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Abstract

Accurate predication of the future states of op@nal spacecraft and space
debris are necessary for conjunctional analysisediBtion of the states of debris for a
few orbital periods is possible with improved madeff the upper atmosphere if the
objects have spherical geometries. However, spafteand other objects with complex
geometries that tumble throughout their orbit pnése difficult problem because the
rotational motion affects their orbital motion ande versa. In this thesis, the coupled
translational and rotational motions of objectgcsfically space debris, are studied using
a digital simulation based on a six-degree-of-fagedrigid body model. In particular,
focus is on variations due to rotation of an obgeballistic coefficient, which is the
product of a coefficient of drag and a referen@aativided by the object's mass. If the
density is well modeled, the ballistic coefficigstthe principal unknown in the drag
force. The results of numerous simulations shopvedlictable relationship between an
object's ballistic coefficient and its nodal regiea. The simulation is also used to
produce data for an orbit determination processvimich the ballistic coefficient is
estimated. Results are presented that show causnestimation of the ballistic

coefficient, which is fundamental to accuratelydicéng future states of debris.
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Chapter 1

Introduction

1.1 Background

Since mankind started launching spacecraft intacegetric orbits in the 1950's,
the threat of orbital collisions has been of insieg prevalence and importance.
Increased understanding in the fields of geopaéatid atmospheric density have led to
highly accurate orbital propagation schemes. Aigiothese schemes take into account a
great many perturbations, they typically do notoactt for the variability of the area used
in the calculation of atmospheric drag. This asethhe projection of the surface area of
the object onto a plane normal to the relative sigfoof the object with respect to the
atmosphere. Herein, it is called the "projectezhaor "effective area.” Unless a satellite
is spherical or tidally locked, this area can m@ayajor role in changing the magnitude of
the drag force. An example of such change occumedte September, 2011, when
NASA's Upper Atmospheric Research Satellite plunemhdtack to Earth over the pacific
ocean. Scientists and engineers tracking thelisatead difficulty predicting re-entry
locations because the satellite began tumblinghabthe area used in determining the
magnitude of drag was highly variable. This prablextends beyond re-entry events to
objects in the upper reaches of Earth's atmosphArgitime the projected area is not
known, accurate drag calculations cannot be peddrmHistorically, the calculation of
the variable projected area has been left out @bggation schemes due to the complex

time varying nature of the variables necessanptopute it. With modern computational



power, it is feasible to use high fidelity dynammodels to compute variables that were

once deemed constant.

1.2 Focus of this Research

To create a better understanding of the projeated, a digital simulation was
developed that includes coupling of the rotatiarditumbling” motion of a satellite with
the orbital motion of its center of mass. The ®ai this work is the variability of the
projected area and its effects on the ballistidfeanent. Since the other parameters in the
calculation of the ballistic coefficient are comdtathe difference between the two
parameters is simply a ratio. Characteristic tseofdthe ballistic coefficient are shown
that demonstrate a relationship between the hallstefficient's time evolving behavior
and the orientation of the orbit it follows. Anafs are also conducted that provide
insight into the emergence of certain charactesstsuch as frequency and amplitude
changes, that are observed in actual ballisticfioerit data. An orbit determination
program is employed to show that with a known afhesic density, estimates of the
average ballistic coefficient with an averaged @ctgd area can be obtained. The
analysis and results in this thesis should proedulsn not only determining the ballistic
coefficient of satellites with unknown attitude ditions, but also in predicting what the

ballistic coefficient should be in the near future.



Chapter 2

Review of Literature and Low Earth Orbit

2.1  Space Debris

The term space debris is restricted to manmadectsbihat are typically divided
into three size categories: "large" objects gretitan 10 cm diameter, "risk" objects
between 1 and 10 cm diameter, and "small" objexss than 1 cm diameter. While all
three sizes of debris can cause catastrophic datoagetive orbital payloads, it is only
feasible to catalog large and some risk sized thje©bjects in the risk category are
typically the most dangerous, as they are too stoalfack but large enough to cause
substantial damage. It is estimated that overQIBl@rge objects, 500,000 risk objects,
and upwards of tens of millions of small objects emrrently in orbit about the Earth [1].
Sources for debris can include derelict spaceckddpleted upper-stages of launch
vehicles, and ejecta from orbital collisions. 4t dlear that without mitigation, the
number of debris objects, and the threat to opegatpacecraft will continue to increase.
Smaller objects may be harmless, but the relafped in a collision of a small object
and a spacecraft in orbit can be nearly 15 km/slead to enormous releases of energy.
The largest concentrations of orbital debris li¢oy Earth orbit, around 200 to 2,000 km
altitude, and in geostationary orbit, around 35,R60altitude. Nearly all debris can be
attributed to Russia, China, and the United Sf&es

Due to the threat of debris colliding with opengtispacecraft and the manned
International Space Station, it is necessary tkatid objects are tracked accurately and
their positions catalogued. Several U.S. governaieand military agencies track more

than 20,000 of the larger objects. They also perfanalyses and predict close misses



and collisions between objects. Of course, agismdoads must be monitored closely to
avoid collisions with objects in the debris fielit it is also helpful to know of collisions
between two debris objects as well. Simulations loa used to predict where the new

debris from these collisions will reside as weltlas number of objects created.

2.2  The Space Environment

The motion of any object in geocentric orbit maydescribed using well known
physical laws. If the object's physical charastess and those of its environment are
known, the study of its motion can be broken domto iinear and angular displacements
caused by forces and moments, respectively. Ihasessary to understand the
phenomena that causes these actions in order telntfoeim mathematically with an

acceptable degree of accuracy.

2.2.1 Forces

Generally, the largest magnitude environmentaldaxerted on an object in orbit
is gravity. Gravity is an attractive force betwesmy two objects in the universe that
have mass. As such, all objects in the univerae ltave mass attract the object under
inspection at any given time. For orbital velasti Newton's law of gravitation for two
point masses can be used to model spacecraft mofidns is an acceptable way to
achieve accurate results if the masses, velocém$ energies of the objects in the system

are sufficiently small.



The principal aerodynamic force experienced byedtsj in low Earth orbit is
drag. Strictly dissipative, drag is responsible docularizing such an object's orbit and
eventually causing it to reenter the Earth's atrhesgp

For decades, perhaps the greatest challenge tivdreome in determining an
accurate model for orbital motion has been thataofurately modeling the upper
atmosphere. Atmospheric densities vary not onlgh wititude, but with the complex
solar cycle. Solar output, the intensity of thdiation emitted by the sun, varies in an
approximate 11 year cycle of the number and lonatiaf sunspots. Many atmospheric
density models, such as those in the Jacchia fa@dgchia 70, Jacchia 77) include
models of the solar cycle. However, a substaatiabunt of error in density models for
periods of time several days in length can stilledxg@erienced. The drag coefficient
multiplied by the projected area and divided by ieess of the object form the ballistic
coefficient. Along with density models, the bdlliscoefficient has been a value long
sought after by investigators to increase the amgurof atmospheric drag models.
Historically, accurate estimates of the drag cogffit have been obtained in laboratory
tests for atmospheric vehicles. However, accueateeation of the environment of space
in a laboratory is much more difficult and expemsileaving the drag coefficient to be
estimated in other ways. Values of @re typically between 2 and 3 when the projected
area of an object is used as the reference aré® mibst common value for the drag
coefficient used in orbital analyses is 2.2. Twadue was recommended by Cook as
acceptable for satellites of unknown geometries [#Jssuming that the mass of the
object is known, the remaining parameter in thewation of drag is the projected area,

A. For most satellites, space stations, and pagldad geometries are well known.



Hence, for any given orientation of such an obyeith respect to the velocity, akcan
be calculated. For an operational spacecraftctiaienge in determining the projected
area in these cases is determining the orientatitowever, due to the uncertain histories
of many objects in the debris field, accurate geoyneand orbital orientation are
generally unknown, making the estimationfofery difficult.

The last force that is considered of importancthis investigation is that due to
the oblateness of the Earth. Due to the Earthbeotg entirely spherical and having a
rough surface with large amounts of mass displao&sne.e. mountains, oceans,
continents; its gravitational field is not unifornfhe conventional approach to modeling
the Earth's gravitational field is to use Legenpoédynomials. The aJzonal harmonic,
which is symmetric and invariant about the EaréiXis of rotation, is used to model the
Earth's oblateness, or bulging about the equalbe force due to this bulging results in
periodic changes in the eccentricities and semomaxes of the orbits spacecraft and
debris, as well as secular changes in the riglgresson of the ascending node, known as
nodal precession or regression. Depending on &it'soinclination and shape, the

ascending node can precess or regress at ratésrghem 6 degrees per day.

2.2.2 Torques

There are several environmental factors that ease changes in the orientation
of an object. The two that have the greatest efia@n object in low Earth orbit are the
gravity-gradient and aerodynamic torques. Gragigdient torque, like gravitational
perturbations, is due to the non-uniformity of terth's gravitational field and the finite

size of an orbiting object. The gradient is duiengrily to the decreasing magnitude of



Earth's gravitational field with distance, whiclsu#is in a greater force on portions of an
orbiting object that are closer to the center efarth. The generation of a torque due to
this effect of course requires that the object be-symmetrical about at least one axis.
The direction in which the torque acts on an obgepends entirely on its current
orientation. In Chapter 3 it will be shown that tmagnitude of the gravity-gradient
torque is inversely proportional to the cube of thagnitude of the object's geometric
position vector [3].

For orbits below about 400 km altitude, aerodyrmataique becomes the primary
perturbation affecting rotational motion [5]. Atspheric densities at these altitudes
allow for interactions to be handled by using aefmolecule flow model. Free-
molecular flow, derived from the kinetic theorygdses, is based on the fact that in near-
Earth space, the molecular mean free path is maigerd than any particular object's
physical dimensions. This treatment allows foroming and outgoing particles to be
handled separately. As such, two limiting caseseain the study of the molecular
reflections: specular and diffuse. Specular otiftes dictate that the molecule bounces
off a surface without any energy loss, and th&aves the surface in the same plane it
arrived in with equal speed. The momentum exchéngein the surface-normal
direction, orthogonal to the surface plane. In¢hsee of diffuse reflections, molecules
adhere to the surface upon collision. Then, trepyad the surface at a later time with an
energy that is determined by the surfaces temperatérew molecules exhibit either
model exactly, but fall somewhere in between [6[The calculation of aerodynamic
torques on orbiting objects is difficult for complebject geometries, but formulas are

available for simple geometries like cylinders, esrand flat plates.



Chapter 3

Development of the Analysis Program

3.1 Introduction

The numerical analysis of low Earth orbit debriegented in this thesis was
performed by a program written in Fortran 77. Tisgram is a six degree-of-freedom
(6DoF) digital simulation that numerically integeat a set of ordinary differential
equations of motion. At user specified time inceats, information such as position,

attitude, and angular momentum can be extracted fhe simulation and recorded.

3.2  Equations of Motion

Herein, orbiting objects are modeled as rigid bedi Hence, the equations of
motion that determine the linear and angular mogixperienced by an orbiting object as
functions of time are well known. The equationsaiie the translational motion of the
object's center of mass and the rotation of itegyal axis system. The integration
scheme is designed to integrate first-order, orglirgifferential equations. Thus, the
equations are written to describe changes in Mglo@cceleration) and changes in
position (velocity) for both translational and riid@al motion. The phrase "six-degrees-
of-freedom" stems from three possible linear movas@nd three possible rotational
movements. The equations that describe these nesrare derived about two sets of
orthogonal, ordered triplet axes. Six first-ordkiferential equations are required to
describe the point mass motion of the object in steof axes. Typically, an additional

six equations are required to describe the rotatiorotion of the object in the other set



of axes. Conventionally Euler angles are usedefind orientation of the rigid bodies.
To overcome singularities in the rotational motequations, the three equations that
describe the rotational velocity are replaced hy fequations for Euler parameters. All
tolled, there are thirteen equations of motion:x fa@r linear motion and seven for

rotational motion.

3.2.1 Translational Equations

The application of Newton's laws of motion reqgsirthe use of an inertial
coordinate system. Although an Earth-centereddinate system is not truly inertial,
accelerations due to forces neglected in consigeha Earth and an orbiting object as a
system are small in magnitude compared to thosedthe interaction between the Earth
and the object. Thus, to study the relative motbra spacecraft or debris object, an
Earth-centered coordinate system is appropriatee Harth-centered system can also be
fixed in orientation. So, the six translationaluations are derived using an Earth-
centered inertial (ECI) coordinate system. An arption of why the ECI system is

appropriate to use is given in Appendix A.



(X.Y.2Z)  Line

of

Figure 1. Earth-centered inertial coordinate systéth orbital elements

Orbital Plane

Figure 2: Orbital plane with semi-major axasoccupied focud;, and perigee?
Figures 1 and 2 show five orbital elements andGheesian coordinate system
OXYZ used as the reference system for the equatibn®tion. Elements shown are the
inclination, i, the right-ascension of the ascegdiode,Q or R.A.A.N., argument of the

perigee,o, the true anomaly), and the semi-major axis, a. The sixth orbitaheint,
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eccentricity, or simple, falls between 0 and 1 and is a measure of howhrthue orbit
deviates from a circle. Together they form thepghaf an orbit and the position of the
object along the orbit. The position is also gilmnthe coordinates X, Y, and Z or the
position vector r(X,Y,Z).

The first three equations for linear motion arthea trivial. The time rate of

change of a position component is equal to thecigl@orresponding to that component,

Vx,y, z-

X =vy 31
Y =v, 3.2
Z=v, 3.3

The three equations which govern the acceleratidheocenter of mass of the object are
broken down into four parts: two-body gravitatibf@ce due to the Earth, gravitational
perturbations due to the Earth, aerodynamic dnag ferces due to other sources, such as

the Sun and moon.

Ma=F,,, +Fyue + Fye + F

grav oblate

3.4

drag other

The forces acting on the object are labeled acogrth their source. The forces are
caused by gravitygrav, the oblateness of the Earthlate, atmospheric dragirag, and
third-body objectsother. The sum of the forces is equal to the masgstimes the
acceleration of the object, according to Newton's second law. The equatimins
motion for the acceleration caused by two-body iméiwnal force are derived from

Newton's law of universal gravitation.

3.5

11



The forceF,, is a function of the universal gravitational camitG, the primary and

grav
secondary massea®; andm, respectively, and the relative position vectothef two
massesy . Consider an inertial coordinate system thataosttwo point masses.

AZ,

Xy
Figure 3: Inertial coordinate system with two hesdi
The origin,|, is a fixed point. R, and R, represent the inertial position vectors of the two
point masses, whileR,, is the inertial position vector of the system'sitee of mass.
Taking into account mutual gravitational attractmmly, the inertial equations of motion

for the position vectors of the masses are given by

mR =M p 36

3.7

12



Here, the subscripts 1 and 2 refer to the two poiassesym, andm,. The vector
pointing frommy, to my is ', and f is the magnitude of that vector. Through vector
addition, it is clear that:
R+7T=R, 3.8
r=R,-R 3.9
R, and R, are the inertial position vectors of the two paimisses. Taking the second

derivative of equation 3.9 yields the acceleratbthe relative position vector of ywith

respectto m

r=R-R 3.10
s oMo omy o (mrm)
r—Grzr G—r=-G 2 r 3.11

We now assume thatinis the mass of the Earth and m the mass of the satellite.
Therefore the mass of ;mis negligible in comparison to jmand the following
approximation is made:

G(m, +m,)=GIm, = u 3.12
This product will be referred to as the standaal/gational parameter, or simply The
standard gravitational parameter used in all sitrarla has a value of 398600.4415
km®s?. We can now state the equation for the relatiation of the satellite when it and
the Earth are both considered to attract like paiasses:

3.13

To obtain a more general result, it is conveniersagsume that the center of mass of the

Earth-object system © in the ECI system and is "inertial." It is alsssamed that the

13



Earth is a rigid body with a gravitational potehtia For two-body gravity, part dl is

U, So that;
r=0U, 3.14
where
nu,, = oU Py oU i+ U, g
F=[x2+v2+22]"
and

U,g :é 3.16

For the case of a more general gravitational field,considetJ to be a more general
function of the position vector. Here, the del symbol represents the mathematical
gradient operator. In Cartesian coordinates, dbeeleration components are the

components ofJU ;.

Uy _ o . 1 2 2 2% - U X 3.17
— ==X =V =YX YT+ 27 722X )= —— :
oX X 2,u[ ] (2x) re

U, __ . _—uY 3.18
—Z=Y=y, =—"—

oY r

aU—ZB:Z:\'/Zzﬂ 3.19
0z r3

Since the Earth is non-spherical, terms must beddal the right-hand side of the above
potential to accurately model the gravitationaldie It is convenient to express these
terms in spherical coordinates €, 1), due to the nature of planets being nearly sphkri

U for the Earth can now be expressed in the form [7]:

14



U :§+ B(r,6,4) whereB is: 3.20

r

(&]anPno (sinH)—

B(r,0,4)=- 3.21

M

(%j (C,, cosmt +S__sinmA)P, (sind)

1

Z [

Figure 4. ECI coordinate system with sphericalrdowtes
This full form version of the approximation of Hag gravitational field consists of
Legendre polynomial®).n, and the radius of EartR.. Zonal harmonic coefficients are
Jn, Com, @nd Sy, are tesseral harmonic coefficients forznm and sectoral harmonic
coefficients for n = m. It should be noted that tases for n = 0 is simply the two-body
gravitation and n = 1 is not present because tiggnazoincides with the center of Earth's
mass. Tesseral and sectoral harmonics are gegneradlller than zonal harmonics and
not nearly as important for accurate simulationslaat Earth orbits. As such, the

potential function can be approximated as:

3.22
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From Fig. 4, it can be seen thsinﬁzz. The second zonal harmonic is of concern for
r

this program, so for n = 2 the Legendre polynomial is:

2
szo(sin9)=gsin28—% = §[£j - 3.23

1
2\r 2

It follows that the second term in the above appnation for the gravitational potential,

U,, is:

2 2 2 2
Ul R, 3 zj 1) w3, R (327 1
U,=-£[ 2], 22| S |=- A2 20 2
2 ( r j Z[Z(r 2 2 r* 3.24

Taking the gradient gives the component accelerataf the g zonal harmonic to be

added to the two-body gravitational accelerations.

J 2 [ 2
a, =H)2R 15Z7X_¥} 3.25
' 2 | r
_ M, R[152%y 3y 3.26
Qzy =75 o s
J 2 [ 3
a,, =* ;Re 152 _9_q 3.27
' r r

This completes the second phase of summing theddhat affect low Earth orbits in the
analysis program.

The next accelerations to be added to the objegtistions of motion are those
caused by aerodynamic drag. Using a similar agprda two-body gravitation, the

acceleration experienced by objects in the uppeosphere is given by:

3.28

The atmospheric density is found using an expoalemibdel that reads in an

altitude and outputs a density. This model is fdrby a combination of tHg.S.
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Sandard Atmosphere (1976), CIRA-72, and CIRA-72 with exospheric tengiare with
the temperature set at 1000 Kelvin [7].
The velocity termV,q, represents the relative velocity between theablged the
atmosphere. This is calculated using the Eartiégional velocity,c, .
V,=V-axf 3.29
@, = wk 3.30
Another modification to the drag equations is tise of the previously defined ballistic

coefficient,S. Taking the partial derivatives of the total decations gives the

component accelerations to be added into the liegaations of motion.

1
adrag,X = _Eﬂp [(VX + weY)z + (VY - wex)z +V§ ]% [(VX + weY) 331
sy == A0 + ) + (v - X) + ] iy, - x) 3.22
1
adrag,Z = _Eﬁp[(vx + weY)z + (VY - wex)z +V§ ]}é [(VZ) 333

Adding these accelerations according to their coraptmresults in the final three
equations for linear motion. These first-orderimady differential equations are to be

numerically integrated to propagate the locatiornthaf center of mass of objects in low

Earth orbit.
. _ HX _
Vy =~ [ +a;,« +adrag,x 3.34
vo=-H va. . va.. 3.35
3.36
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3.2.2 Rotational Equations

As mentioned previously, there are seven equatidn®sotion that are used to
describe the rotational motion of an object in fhigestigation. For convenience, these
equations are derived using the center of masseobbject and assuming that the body-

fixed axis system G¥gzs is a principal coordinate system of the object.

Z

Zp

¥B Y
Figure 5: Body centered coordinate system
This coordinate system coincides with the Earthteredl inertial system when the
attitude angles are all zero.

In a manner similar to the derivation of the ttatienal equations of motion, the
first equations considered are those that defiaatigular position variables. First, Euler
angles are considered. These angles are funafadhemselves and the angular velocity
of the object. Euler angles are used to definariti@l angular orientation of the object.
The set of three angleg, (9, ¢) that are used define a 3-2-1 transformation ftbenECI

system to the principal Gygzs system.
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Figure 6: Rotation of body centered coordinatéesyshrough Euler angles
That is, the z-axis rotation takes place first tigilo an angle of, followed by a rotation
about the new y-axis through and finally a rotation about the new x-axis tigby.
These angles are converted into a quaternion |énee@ts of which are Euler parameters,
for integration purposes. The advantage of usiraggarnion algebra in attitude dynamics
is that there are no singularities in the diffet@rgquation for the Euler parameters.

Quaternion algebra was developed in 1843 by SlliaiMi Rowan Hamilton [8].
A guaternion consists of four terms, i.e. a veetod scalar part. The vector part can be
directly correlated to the axis that a given ratatis about, while the scalar part is the
cosine of one-half the angle swept through in ttation. The quaternion used in this
analysis is a unit quaternion whose values rang®a f1 to 1. The initial quaternion for
integration is created through the use of a dioectiosine matrix, or DCM. A DCM is a
matrix that houses the cosines of the angles beta@eector and the coordinate system.
For example, it can transform the components ad@or in the inertial frame to a body-

fixed frame. The transpose of a DCM transforms tector back to the original
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coordinate frame. The following DCM is createdngsithe three Euler angles that
describe the attitude of the principle axis systerAs denoted by the subscript, it
transforms vectors in the inertial frame to theyé@dme. For brevity, cosine has been

abbreviated asxc" and sine ass" in the following expression.

c(@)c(6) s(w)c(6) - S(0)
Co =| c@)s(@)s(0) —c(Psy) (W) +s(@)s@)s(6) c(0)s(9) 3.37
S(@)s@) +c(Pc)s(6) c(P)sy)s(0) —c)s(g) c(d)c(9)

The components of this DCM are used to create ¢timeponents of the unit quaternion
that is to be integrated. The components of thequaternion are Euler parameters as
defined in equations 3.38 through 3.41. The supiscof C; denote the location of the

element in the DCM, wheligs the row andl is the column.

1 3.38
d, :E\/Cll +Cy +Cy3 +1
C,.-C
q = —=—2=2 3.39
4q,
— CSl B C13
d. 4q, 3.40
q, = Cp-Cy
> 4q, 3.41

The differential equation for a unit quaternionaigunction of angular velocity and the
current quaternion. This is where most of the ath@es can be realized. Using the tilde

notation, a matrix of angular velocities is formasisuch:

® 3.42

The differential equation is given by [8]:
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1
1=—Q 3.43
5 q

whereQ ={ . O} 3.44

Equation 3.43 provides four scalar differential equationspittgdagate the components

of a quaterniong|.

) 1 3.45
G = E(qzws — (s, + Q4wl)

. 1

4, =§(‘ O, + Q0 +q4a)2) 3.46
. 1

6 = (0,0, ~ 0t +0y0,) 3.47
. 1

4, = E (_ Q. ~ QW — q30~)3) 3.48

After integration, the Euler parameters are tramséat into Euler angles and recorded as
an output. Transformation formulas may be obtaibgdequating components of the
DCM in terms of quaternion components with that &f iIfCM in terms of the Euler

angles. The quaternion form of the DCM is:

Z+a’-ai -2 2(qd, +a:4,)  2(a0; —6,0,)
Co =| 2(00,-aq,) @2+a2-d2-a2 2(a,9, +.a,) 3.49
20,0, +a,0,) 20,0, -9a,) 9l +ai-af-q;

The Euler angles are found by relating selected e¢sof each DCM.

% =tany) = ?(qquz + q73q4) _—w=tar —1( qz(chqqz + qﬁ3q41) _ ] 3.50
3.51
3.52
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The last three equations that describe rotatiomaion are for the propagation of
the rotational angular momentum vector. This amgolomentum is the product of the
object's inertia dyadid, with its angular velocity.

H=l® 3.53
It is a vector quantity that is conserved if thare no external torques on the object.
Since there are torques acting the objects insinilation, the angular momentum can
vary greatly in magnitude and direction dependinglee case. Since the principal axis
system is rotating with respect to the inertiahfea the time rate of change of angular

momentum is equal to the torque about the centerasst [8].
H=-GH+T 3.54
In component form, Eq. 3.54 gives the final thr@&kential equations for the rotational

motion of the object,

H,=wH, ~wH, +T,

3.55
Hy:a)XHz—a)sz+Ty 3.56
H,=wH, ~oH, +T, 3.57

whereT,, Ty, and T, are body-fixed components df. After propagating the angular
momentum, the new angular velocities are formedniwjtiplying the inverse of the

inertia matrix, | , times the new angular momentum vector.

[@] [

3.58

The final step in completing the equations of motis to determine expressions
for the torques acting on an object. The graviydgent torque stems from the fact that

the force due to gravity is non-uniform over a bodyhe derivation begins by using
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Newton's law of universal gravitation in mass elatrferm to write the element forces,
dF, as a function of mass elemedts. For the case of an arbitrary origin of the body
axes, Fig. 7 is used in the derivation.

r
%dm 3.59

oF, = -

The torque on an object is due to this force aatingn element of mass at a distadce

from the geometric center. The following equattakes advantage ob, the vector

from the geometric center to the center of masd, din the vector from the center of
mass to the mass element.

dT, = d, xdF, = (p +d/) x dF, 3.60

]

Center of Mass

Cieonmetrie
Center

Body
Retorence
Syslem

\
Figure 7. Coordinate System for Gravity-Gradieatdue

The differential torque in Eqg. 3.60 may be integdabver the entire object to obtain:

3.61

The position of the mass element in the inertiahfe can be expressed in terms of the
position of the center of mass. This is imporfaatause torques act about the center of

mass.
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Fi:F+ai=F+IZ)+di' 3.62
For cases involving space debris, the dimensiorieeobbject are much smaller than the
distances between the gravitational sourcesyie> p+d,. This allows the use of an

approximation of the distance between the massezieand the inertial origin.

}-% ) r_{l_mﬂi)} 3.63

2

r r 2

r

W= ()7 :Hu 2rdp+d) o+

Substituting the above equation into the mass elemeegral yields the gravity-gradient

torque for the coordinate system in Fig. 7.

=) 2

To further simplify the expression, the first tewan be eliminated by choosing the

geometric center of objects to coincide with tloginter of mass. The unit vectoris the
orientation of the body axes with respect to thkitmg frame. This vector can be

determined by taking the first column of the pradofdtwo direction cosine matrices.
Ceo =CgCo 3.65
The integral in Eq. 3.64 may be evaluated and egeck in terms of the moment of

inertia tensor to yield the gravity-gradient torq[g.
_ 34 [~ -
Tee =r_/'31[bx(| Eb)] 3.66

The Cartesian components of the above torque arexpressions for gravity-gradient

torque that are part of the componéeRsTy, andT, for Egs. 3.55 through 3.57.
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" (Izz _Iw)bzba
r_s (l XX lZZ)ble 3.67
(IYY =1 XX )blbz

w

TGG

The aerodynamic torque model adopted for this efédes advantage of the
aerodynamic force per unit mass calculated in thmeons of motion. Multiplying the
accelerations by the mass gives the aerodynantgedan the inertial coordinate system.
The forces must then be transferred into the bedyered coordinate system by use of a

direction cosine matrix. If we lat, be the vector pointing from the center of mas$éo t

user-defined center of pressure, the cross-praxfutind the aerodynamic forces results

in the aerodynamic torques.

Fep = I,rCPx Fepy rCPzJ

'Edrag =m |:ﬁéi-drag,x Berag.y é‘drag,z]
rCPy Eﬁ - rCPz |:ﬁdrag,y

Taeo =Tep X Fyag =MU 1, [ ~Tepy By
I'epx Eﬁdrag,y ~epy (&

drag,z
drag, X

drag, X

The resultant torque added to the rate of changbeofangular momentum is now the

summation of the gravity gradient and aerodynauorigues.

Tx :TGG,X +Taero,x 371
Ty :TGG,y +Taero,y 3.72
Tz :TGG,Z +Taero,z 373

3.3  Effective Area
To determine the effective area of a tumbling abjeorbit, it is convenient to

take advantage of the simple shapes that makeeugréater object. In the case of a
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right-circular cylinder, it becomes a circle whaawed from the x-direction, and a
rectangle when viewed from the y or z-directioR®r a right-circular cone, these
become a circle and triangle, respectively. Thermmoof the angle between the normal
direction of these shapes and the relative windrdghe the magnitude of the
contribution they make to the total area. Sineertbrmal direction from the circular
base of the cylinder or cone are in the x-diregtibe dot product between an x-direction

unit vector and the relative wind give the cosihéhe angle between the two vectors.

Ve o off 3.74

V]

where \7=b/X vV, VZ]

cosa =

_ chll +VyC12 +VzCl3
cosa = =
M 3.75

The cosine of the anglesosa, is simply a function of the inertial velocity artdree

direction cosines. It can now be applied to thdiviiual areas to determine the entire

total effective area.

A=A [  + A, 31-coxa? 3.76
If the angle between the normal direction of theebaf the object reaches 90 degrees, the
cosine of that angle will be zero and the resultatatl area will be the area of the side of
the object. Likewise, any deviation of the anglenf zero degrees will add to the total
area via the side without regard to the orientatidhis allows the use of the Pythagorean

identity as a means of finding the multiplier foetcontribution of the sidé\gge.
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3.4 Numerical Integration

Propagation of the equations of motion throughetis achieved by numerical
integration. The algorithm used is a modified i@rf the Runge-Kutta-Fehlberg fifth
order solution method. It is a six-step, variaige-step algorithm that products a fourth
and fifth order solution. The difference of thessutions is compared to a tolerance
which determines if the time-step will increasedacrease. When the comparison is
below the desired accuracy tolerance, the fiftreordolution is reported and the
algorithm continues, with an increase in the tirreps This algorithm proves to be time
efficient while maintaining accuracy [8]. Depenglion the initial conditions, mainly the
rotational velocities, one low Earth orbit simubatitakes a fraction of a second to run.
Maodifications include logic to set a maximum numbéiterations and a maximum time

step.

3.4.1 Integration Performance

To determine the rate at which integration enamtaminates the results, stability
tests must be performed on the analysis program.have constant orbital elements,
angular momentum, and energy, a number of subemitiare withheld from the
program's normal operation. In effect, it reduttesprogram to a two-body propagation
scheme with an object tumbling at a constant r#e.arbitrary integration time of two
years was chosen because it is much longer thamprposed ballistic coefficient or
position forecasting window. The orbit propagated near-circular, 700 km altitude
orbit with the initial right ascension of the asderg node at 0 degrees and inclination of

45 degrees. Three attributes, which would be emsh an ideal scenario, were chosen
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as indicators of integration accuracy decay: amgolomentum magnitude, H, specific
orbital energy,e, and rotational kinetic energy,f All three indicators increased
secularly throughout the integration, but at vdoysrates. Translational kinetic energy,
Twans @and potential energy, tkhs varied periodically as expected for an elliptibib
The specific orbital energy is a combination of tif@aslational and rotational energies.

=T

trans

+Utrans +Tr0t 377

The angular momentum magnitude increased by 4.3s3 an increase of 0.0135
percent. Rotational kinetic energy increased BfH J, an increase of 0.0257 percent.
The specific orbital energy increased in accordamtie the increase in rotational kinetic

energy. The following plot show these performapasmeters plotted against time.

31.095 . . . .
T 31.09- - - .
31 085 | 1 1 1 1 1
0 100 200 300 400 500 600 700
Days
-27.0124 . . . .
II
J—r—‘l
w -27.0125- / ! .
—‘_.'
y !
-27.01 260 100 200 300 400 500 600 700
Days

Figure 8: Performance Indicators vs. Integrationd
The next plot shows the energy components versos. tilt is worth noting that the
translational kinetic and potential energies cortbtdance each other and account for a
constant total translational energy throughout ititegration. The orbital elements,

except for the true anomaly, remained nearly consta in an ideal scenario.

28



40 T T

&30 [
'_
20 | | | | | | 1
0 100 200 300 400 500 600 700
Days
2 -601,
> .60
0 100 200 300 400 500 600 700
Days
05842 T T T T T T T
. ©0.5841 f—ﬂ—ﬁ
0 100 200 300 400 500 600 700
Days

Figure 9: Spacecraft Energies vs. Time
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Chapter 4

Analysis Theory and Results

4.1  Analysis Approach

The principal objective of the this thesis is tdain a greater understanding of the
factors that cause time variations of the ballistaefficients of debris objects. Of
particular interest are the causes of another giexjlearea variations. Another objective
is to investigate the feasibility of using orbittelenination techniques to detect rapid
changes in the ballistic coefficient. A possibéason for sudden changes in a ballistic
coefficient a collision of the tracked object obde with another that results in a change
of the angular momentum of the tracked object. tAeoreason is that there are un-
modeled density variations that change the draghenobject, but the changes are
attributed to the ballistic coefficient.

The projected area of a tracked object is an itapowvariable in the drag model,
but often it is overlooked and assumed to be cahstaA better understanding of
variables such as the projected area will lead twenaccurate force and prediction
models that can be used to predict the state afbgect for use in evasive maneuvers.
Sibert,et al. concluded that accurate position calculations el & an increase in state
vector update frequency can result in a nearly detepeduction of near collision events
[9].

Due to the number of pieces of debris and thedidhinformation available about
each individual piece, certain assumptions musnhde to obtain typical results. Here,

it is assumed that all tracked objects in the satioh program have a mass of 100
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kilograms. Three geometries are used to repréerdbjects: a cylinder, a right circular
cone, and a flat plate. The cylinder is repredengtaof a satellite bus or spent launch
vehicle stage. Right circular cones are also commaocketry, especially for re-entry
vehicles. A flat plat geometry is representatifa separated solar panel or a portion of a
spacecraft. In all simulations, the three georasthave lengths extending in the body-x
direction of 10 meters. The cylinder and cone Haase diameters of 1 meter, while the
flat-plate has a width of 1 meter. It is assunteat the flat-plate is infinitely thin. The
three geometries are meant to give diversity tostimeilations, that is, of course still less

than the diverse set of geometries of actual sgabss.

4.1.1 Average Effective Area
Since the simulation program integrates non-liregarations of motion with high

accuracy, a very small time step is generally negli It is not uncommon for this time-
step to be less than one second, meaning therd@rsands of opportunities to record
the dynamical states and effective area per oibihen collecting data on the dynamical
states, this can be very advantageous and reduiljlinfidelity area data as shown in Fig.
10. The orbit propagated to generate data for Fgs nearly circular with the object at
an altitude of 700 km. The orbit is inclined at dé&grees with initial right ascension of

ascending node, true anomaly, and argument ofgxnfjzero degrees.
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Figure 10: Effective Area vs. Time Over 1 Orbit €@ylinder
However, the effective area may vary so much oveedended period of time that
without manipulation, finding trends can be difficu This problem is alleviated by

calculating the average area over a time period,raporting that value less frequently.

The average effective ared , is calculated by summing the area at each tix®,

times the time-stepit, and dividing the sum by the difference of theltatbservational

time as indicated in Eq. 4.1.

tinal
> AL)
K — Hlinitia

tfinal _tinitial

4.1
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Figure 11: Average Effective Area Overlaid on &maneous Effective Area for
Cylinder
The observational time used to obtain the averdigetee area in Fig. 11 is 8 hours.
Clearly, an average effective area is a much mepeesentative factor that scales the
amount of drag on an object is observed. Aftepagating the motion for ten days using
both the actual and average effectives areasirthegositions are compared.

Table 1: Difference in Positions Determined Udimgtantaneous Area vs. Average Area

X Yy z Frelative
Act. Area (km) 5922.5495 -1246.1790 3658.2549 -
Ave. Area (km) 5922.5400 -1246.1057 3658.2954 -
Difference (m)| 9.1268699998 -71.233669999 -39.30997| 81.869538554
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Linear interpolation was used between average alat@ points to obtain the
instantaneous area for continuous drag calculati®sce the magnitude of the position
error is only 81.87 meters, using and studying #werage effective area can be
considered reasonable for some purposes. Fowsioalliavoidance the actual area is

probably better if characterized well.

4.1.2 Existing Ballistic Coefficient Data

The Air Force Space Command Space Analysis Centare of the governmental
agencies tasked with tracking debris and performiogjunctional analyses on the
catalog of objects including active payloads. Redwgers at the center have developed a
method to extract the ballistic coefficient estiasafor the objects they track. Although
the Air Force's software and methods are not puldioain, they have provided a sample
of ballistic coefficient data sets for 17 piecesdebris. The samples are for the period
January, 2005 to January, 2007 and are presenfezt@mnt deviations from the mean for
the two years. The following figures are presemathiout edit. The title contains the
NORAD catalog number and name of the object. Altaed in the title is the term
"DCA Values," where DCA stands for dynamic calibvatatmosphere. This refers to
the Air Force's method of calibrating the tempematwalues for their synthetic
atmosphere by observing the forces on satellitesehcharacteristics are well

established.
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Figure 12: Ballistic Coefficient vs. Time for Skite 00461

12184 DELTA DEBRIS DB/Bave 2005-6 DCA Values

100

80

60 -

40

20 A

220 4

-40

Figure 13: Ballistic Coefficient vs. Time for Skite 12184
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Figure 15: Ballistic Coefficient vs. Time for Skite 20857
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These four examples were chosen because theyy eadiibit the extreme
variability of the ballistic coefficient as well @me insight into the nature. The data in
Fig. 12 shows well-behaved periodicity for thetfiyear, followed by a large increase in
the mean value of the ballistic coefficient in Nouwer of the first year. That increase is
followed by high frequency variation at what appgetar be a different mean value. The
data in Fig. 13 exhibits an almost periodic relaginp that looks like it should be
predictable. The data in Fig. 14 shows a much rooneplex time variation that looks to
be somewhat predictable. However, the data in Bagshows extreme jumps in value
with noisy data throughout. Some of the ballistefticient data exhibits almost period
variations with periods on the order of monthstedest was found in these variations
because the period of the nodal regression of ggtbbrbiting the Earth varies from 1 to
8 months depending on the orbit's inclination. §lan investigation into the variation of
the effective area of an object and its relationniination and the regression of the
ascending node was conducted. Of interest indhewing section are the inclinations
of the orbits of the objects that were used toudate ballistic coefficient plots.

Table 2: Inclinations of Example Satellites [10]

Satellite 00461| Satellite 12184 Satellite 10230 tel8&e 20857

Inclination 67.5086° 98.7720° 29.0228° 98.6656°

4.2 Relationship of Effective Area Variations wittclination
The right ascension of the ascending node of grpde orbit about the Earth

varies periodically and secularly. The secularngeais a rotation of the orbital plane

37



about the Z-axis of the ECI coordinate system an#nown as nodal regression (or
precession for retrograde orbits). The causeefdlgression is the non-sphericity of the
Earth and in turn its gravitational field. Theeait which an orbit regresses depends
principally on the semi-major axis, eccentricity thie orbit, and its inclination. The

average precession rate of the right ascensioheodscending node is given by Eq. 4.2

8],
Q = —l:éM:l(cosi) 4.2

2 (1—e2)2a72

Since the orbits simulated in this thesis are geartular, inclination is the main factor
determining the period of the motion of the rightension of the ascending node in the
results presented here. The "nodal rate" is gépdretween 1.5 and 8 degrees per day,
resulting in periods ranging from 240 to 45 dagspectively.

Figures 16 through 30 contain plots of time his®of the average effective area
and the sine of the right ascension of the ascgmuiale. In each case, the initial orbit of
the object is nearly circular with the object iaily placed at 700 kilometers altitude and
at the ascending node. For calculating the senmmais in all simulations, the radius
of the Earth used is 6378.137 km. The initial tam@maly, right ascension of ascending
node, and argument of perigee are all zero. Titialiattitude with respect to the inertial
frame and angular rates are zero. After the prapay begins, environmental torque
cause the object to tumble in a "random” mannel. sifulations were propagated for
365 days with various initial inclinations. Thetabpropagation time was chosen to

exhibit the periodicity of the effective area ansl rielationship to the nodal regression.
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During a year the right ascension of the ascendorgpletes at least one period for all
inclinations. The average of the effective area te&ken every 8 hours. The sine of the
right ascension of the ascending node is presentttda negative phase shift of 45
degrees. This phase shift aligns the effectiva arel the sine of the ascending node to
show their similar periodicities. Figures 16 thgbu34 contain the phase shifted sine of

R.A.A.N.
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Figure 18: Average Area & Sine of R.A.A.N. vs. Brfor 45° Inclination for Cylinder
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Figure 19: Average Area & Sine of R.A.A.N. vs. Brfor 60° Inclination for Cylinder
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Figure 20: Average Area & Sine of R.A.A.N. vs. Brfor 80° Inclination for Cylinder

As can be seen, the period of the average efteciiea is clearly related to the
period of the right ascension of the ascending nodlso, the amplitude grows with the
increases in inclination. These factors should/@naseful in determining a bandwidth in
which the ballistic coefficient should reside. Qfurse, the patterns may change with
varying initial conditions. The following figuresontain area data for a right circular
cone with the same initial conditions. Since tkater of pressure of the cone is not at
the same location as its center of mass, aerodgnémngues play a role in causing

rotational motion of the cone.
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Figure 21: Average Area & Sine of R.A.A.N. vs. Brfor 10° Inclination for Cone
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Figure 22: Average Area & Sine of R.A.A.N. vs. Brfor 30° Inclination for Cone
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Figure 23: Average Area & Sine of R.A.A.N. vs. Brfor 45° Inclination for Cone
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Figure 24: Average Area & Sine of R.A.A.N. vs. Brfor 60° Inclination for Cone
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Figure 25: Average Area & Sine of R.A.A.N. vs. Brfor 80° Inclination for Cone

The behavior of the variable effective area offligat circular cone is markedly
similar to that of the cylinder. The same symnestin moments of inertia are present in
both the cone and the cylinder, but only half of gide area is present in the cone.
Again, the amplitudes of the effective areas ineedawith the inclination. The
aerodynamic torque seems to have played a minerinothe rotational motion at this
altitude.

The next set of plots is generated from the samalations using a flat plate as
the object. A flat plate has the same moment eftim symmetries as the other

geometries, so motion is expected to be simildne main difference occurs in the area

calculation, which is now a function of only oneafage.
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Figure 26: Average Area & Sine of R.A.A.N. vs. Brfor 10° Inclination for Flat Plate
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Figure 27: Average Area & Sine of R.A.A.N. vs. Brfor 30° Inclination for Flat Plate

46



‘N'VY'Y'Y joaulg

Average Area
-=-=='Sine of R.A.AN.

-
-
-
-
llllllllllllll
lllll
-

-
-
o
-

-
-
-
lllllllll
llllll
-

-
IIIIIIIIII
-
-

————

10

ANEV ealy obelany

100 150 200 250 300 350
Time (days)

50

Figure 28: Average Area & Sine of R.A.A.N. vs. Brfor 45° Inclination for Flat Plate
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Figure 29: Average Area & Sine of R.A.A.N. vs. Brfor 60° Inclination for Flat Plate
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Figure 30: Average Area & Sine of R.A.A.N. vs. Brfor 80° Inclination for Flat Plate

The plots also exhibit periodic trends that follte phase shifted sine of the
ascending node. Although the trends are similéinase of the cylinder and right circular
cone, the peaks corresponding to the minimum ofsihe of R.A.A.N. are far less
amplified. Since the geometry is so different francylinder or cone, it is expected to
see different characteristics. However, seeingstirae qualitative trends corresponding
to the ascending node is surprising and encouragngnyone seeking the ballistic
coefficient. This also bodes well for the applicatof this work to the LEO debris field
since the geometries are unknown and almost cBriginte varied.

Trends emerged between the average effectiveaam@ahe ascending node for a
number of different inclinations with the initiattidude conditions set to zero for all
cases. To determine if these trends holds forratbeditions, further testing is required.

In the following simulation, a uniform pseudo-randmumber generator was employed
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to randomize the initial conditions of the attituofethe object before integration began.
As before, the object was placed at the ascendialg.n The year-long simulation was

repeated 250 times, each with unique initial atgtgonditions.
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Figure 31: Average Area & Sine of R.A.A.N. vs. Brfor 45° Inclination for Cylinder
with Random Initial Attitude Conditions for 250 @a&s
Obviously, the same trend of following the phasdtesth sine of the ascending node
occurs. The area falls within a bandwidth thaargest when the phase shifted sine of
R.A.A.N. reaches its lowest value, corresponding t@5 degree right ascension of the
ascending node. A similar simulation was conduttedetermine if the initial position
of the satellite plays a role in the behavior af Hverage effective area. This time, the

true anomaly was randomized.
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Figure 32: Average Area & Sine of R.A.A.N. vs. Brfor 45° Inclination for Cylinder
with Random True Anomaly for 250 Cases

As can be seen in Fig. 32, the previously stattitholds. The characteristics of
the plot are very similar to Fig. 31, which strémgts the argument that the effective
average area, and in turn the ballistic coefficidats the same frequency as the sine of
R.A.A.N. In another benchmark of validity, agreense with the actual ballistic
coefficient data can be seen. For a year's wdrttata from satellite 12184 in Fig. 13,
the ballistic coefficient peaked three times. Hg#el2184's orbit is inclined 98.772°, or
nearly 10° from polar. This is the same case as3@th orbit, which for all three
geometries the average area peaked three time®las Whe same conclusion can be
drawn between satellite 00461 in Fig. 12 and tharatteristics of the 60° effective

average area plots.
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For Figs. 33 and 34, simulations were run forrigat circular cone and the flat
plate. The propagation time was one half yeareagd 250 times. The true anomaly
and initial attitude conditions were selected frarmpseudo-random uniform distribution

ranging from -180° to 180°.
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Figure 33: Average Area & Sine of R.A.A.N. vs. Erfor 45° Inclination for Cone with

Random True Anomaly and Initial Attitude Conditidies 250 Cases
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Figure 34: Average Area & Sine of R.A.A.N. vs. Hror 45° Inclination for Flat Plate
with Random True Anomaly and Initial Attitude Cotidins for 250 Cases
It appears that no matter the geometry, theressbstantial dependence on the
sine of the phase shifted right ascension of tloerading node. Like the cylinder, the
average area falls within a bandwidth for alterinigjal conditions of the cone and flat

plate.

4.3 Impact Analysis

One of the possible reasons for a sudden chantpe iballistic coefficient seen in
Figs. 12 and 15 is an impact with another obj&lative speeds for objects in low Earth
orbit can approach 15 km/s, resulting in large amt®of kinetic energy in the smallest of
objects. Of interest to this investigation is te&ange in angular momentum due to the

impact. Another way in which a change in the badi coefficient could occur is the
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addition, or reduction, of mass by an inelastidisioin. Not only would this change the
ballistic coefficient inherently, but could quit@gsibly affect the rotational behavior by
altering the moments of inertia.

The impact as simulated herein is based on thargdson that a small orbiting
mass is absorbed by the object under inspectidre tdtal mass change of the system is
negligible, and the impact takes place a certastadce from the center of mass of the
object, causing a change in angular momentum. obifect used for this analysis is the
cylinder. The angular momentum added to the systeformed by taking the cross
product of the impact vector and the linear momenéxchanged between the impacting

particle and the cylinder.

—

impact = rimpact X mereI

H 4.3

In the above equatior‘17,re| is the relative velocity between the cylinder @mel impacting

particle,r; ... is the vector pointing from the center of masthtposition of impactn,

is the mass of the impacting particle, aﬁ% is the angular momentum added to the

act
object. The mass of the impacting particle wassehoto be 1 gram, and the impact
location was 4 meters from the center of mass. s&marameters were held constant
while the impacting particle's orbit was chosenngsithe pseudo-random number
generator. Impacting particle velocities rangeainfrO to 100 percent of the object's
velocity since they have the same eccentricity altitbde. The propagation for each
impacted cylinder case lasted one half year. €kalting average area is plotted over the
average area for the same case without an imgpectdntrol case. The cylinder's orbit

was inclined 45° for each case with a nearly cacghape and an altitude of 700 km.
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The angular orbital elements are initialized ate@rées, and the impact occurred after
one day of integration. The cases shown are fterdnt completions of the algorithm in

which the relative velocity is unique in each cas@&hese cases demonstrate the
similarities of the effective area's time-varyinghlavior between unique impacts, as well

as the differences that occur.
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Figure 35: Impacted Cylinder Case 1 vs. Time
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It is clear that a substantial reduction in therage effective area occurs after
impact for each case. No cases arose where thts afbthe object and impacting
particle were the same, resulting in zero relatiglocity. The periodic trend occurs at
the same frequency, but the amplitude range is nargier. The trend in Fig. 37 is of
utmost importance, as it shows that in impact pdaaisible cause for the erratic behavior
of the ballistic coefficient exhibited by satelli@®461 in the second year of Fig. 12.
Also, the behavior of the area in Fig. 36 is vamgisr to that of satellite 10320 in Fig.
14. This indicates that satellite 10320 was tuntplvith substantial angular momentum

during the two-year period since there are no tptale changes in its behavior.
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Chapter 5

Orbit Determination

5.1 Methodology

In this chapter, orbit determination techniques ahown to prove useful in
determining the average effective area, which &urtralidates the use of an average area
for tracking purposes. Also, simulations are pamtlito test the orbit determination
program's ability to detect large characteristiardes in the ballistic coefficient. The
process outlined here makes use of a modified deteKalman filter (MEKF) written in
Fortran 77. The program tracks and updates sda&ss the inertial position vector, the
inertial velocity vector, and the ballistic coeféat. The MEKF is a well-known tool
used for orbit and trajectory determination. Thetipular algorithm used was taken from
Tapley [11]. Since the MEKF estimates and updage position to the most accurate
location, it does not rely on a variable ballistmefficient to calculate the correct drag
accelerations to propagate the orbital positiorueately. In other words, the MEKF is a
tool used in this work to estimate values of thiidiec coefficient, not estimate accurate
positions of the object. The ballistic coefficiehat the MEKF determines is a best fit to
the data it is given. It will be shown later thlis "best fit" is very close to the ballistic

coefficient calculated using the average effecaires.

5.1.1 Data Generation Program
The MEKF essentially operates by propagating ttetesvector, reading an

observation, and applying updates to the state aftery observation. This event driven
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process continues, for simulation purposes, unéte are no more observations to read.
Thus, observations must be generated for the progyaead.

The data generation program uses the 6DoF siroaolédi provide the motion of
the cylinder for a given time period. Every 15@®ds, a range measurement is taken
from the nearest radar station on Earth. This oelyurs if the cylinder is in the line of
sight to the radar station, which is restricted6@ downward from zenith in any
direction. The location of these radar statioresgagnerated randomly and stored before
the process begins. The 10 radar stations modekeccomparable in number to the
stations in the space surveillance network usedhiey U.S. government [12]. The
average effective area is also recorded duringptfosess for later comparison with the
estimated ballistic coefficient. This area is synpultiplied by the ratio of the drag
coefficient to the cylinder mass to yield the agerdallistic coefficient. The orbit used
for data generation was nearly circular with amahialtitude of 700 km. The orbit was

inclined 45 degrees with all other angular orbél@iments initialized at zero degrees.

5.1.2 Power-Density Matrix and Process Noise

One drawback that plagues the MEKF is a tendencyliverge, or produce
incorrect state updates, after many observationBis occurs because the program is
based on a variable covariance matrix. After timas passed and many observations
have been processed, this covariance matrix becamedl. The result is the MEKF
having more confidence in the current state tharottservations. To avoid this problem,
a diagonal matrix the same size as the covariareixms added to the differential

equation governing the covariance matrix's ratehaihge.
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P=AP+PAT +Q 5.1
In Eq. 5.1,P is the covariance matri is the state relation matrix, aQis the power-
density matrix. This diagonal matrix is known ke power-density matrixQ, described
by Vallado as the second moment (or covarianceh@fprocess noise [13].The process
noise represents un-modeled accelerations actingeoabject. It is the fact that process
noise is present in the model that allows the MEBFRipdate the ballistic coefficient.
The ballistic coefficient does not change througbppgation, but its value is estimated
using the observed range to the range calculatatidoynodel used to propagate the six
translational states. The addition of the powarsitg matrix to the covariance's
differential equation has a large effect when tbgaciance becomes small, which is
when it is most necessary to take action. Theceféean increase in the elements of the
covariance matrix. This process is repeated etrerg the covariance matrix becomes
small, resulting in non-divergence of the MEKF.

The values that occupy the power-density matrixensetermined by a binary-
encoded genetic algorithm made available at Aubumiversity. The optimization
program's goal is to minimize the root-mean-squarer of the difference between the
range measurements and the ranges calculated fitt¢he The design variables that the
genetic algorithm varied to meet this goal are Thdiagonal elements of the power-
density matrix. The reference orbit, which wasrlyeaircular with an initial object
altitude at 700 km, was propagated for 50 dayse dlgorithm evaluated 200 members
for 20 generations. Therefore, the values for gbaver-density matrix found by the
genetic algorithm are the best found for the 4086es evaluated. The last diagonal

position, which is coupled to the ballistic coeifist, can be left at zero. This allows the
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estimated ballistic coefficient to converge to duea and not vary every time the
covariance matrix was affected by the power-densiggrix. These two options will be
referred to as a convergent ballistic coefficieptian and a dynamic ballistic coefficient
option. The diagonals of the power-density madigtermined by the genetic algorithm
are shown in Table 5.1.

Table 5.1: Diagonal Values of Power-Density Ma{f®

Qu Q22 Qs3 Qua

0.99139344E-027 0.20386984E-03 0.20386984E|

03 OHAPE-09

Qss Qes Qr7

0.10986999E-08 0.14038943E-07 0.97215438H

05

5.2 Orbit Determination Results

The first simulation used a synthetic ballistieffwient that was not calculated
by the 6DoF. This was done to show that the MEKKEsdan exemplary job of finding
the mean of the ballistic coefficient. The orb#ted to generate the observations was
inclined at 45 degrees. The power-density optiba @convergent ballistic coefficient
was used. The output of the orbit determinatioogpam consists of two plots: the
average and estimated ballistic coefficients vetsue and the measurement residuals
(O-C) versus time. The O-C plot shows the differ=sbetween the range measurement
calculated by the MEKF and the range measurememingby the observation at that
time. If the filter is working correctly, theseluas are typically less than 10 meters and

only influenced by the random noise introducechimdata generation program.
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Figure 40: MEKF Results for 10 Days with Synth@&aillistic Coefficient

The synthetic ballistic coefficient consisted ofmaan value of 0.2 ftkg plus a
sine function with a period of 10 days and ampktwd 0.04 Mkg. Figure 40 shows that
the MEKF converged on the mean value of 0’kgand that the filter did not diverge as
shown by the O-C plot. The MEKF converged to a peafect answer within 2 days.

A similar simulation was repeated twice with attallistic coefficient data. The
simulations lasted one-half year, with the onlyet#nce being the power-density matrix

option.
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Figure 41: MEKF Results for One Half Year with @ergent Ballistic Coefficient

o
~

| Average B.C.
B Estimated B.C. |]

o
w
e

Ballistic Coefficient (m 2/kg)

| 1 1 1 |
0 20 40 60 80 100 120 140 160 180
Time (days)

Figure 42: MEKF Results for One Half Year with ynic Ballistic Coefficient
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As can be seen from Figs. 41 and 42, the MEKF dwoesxcellent job of
estimating the ballistic coefficient with eithervper-density matrix option. In Fig. 41,
the estimated ballistic coefficient converged te thean value of the sinusoidal average
ballistic coefficient. Figure 42 exhibits the \alility introduced by using the dynamic
ballistic coefficient option. This option is natagal for instantaneous retrieval of the
actual ballistic coefficient, but should prove udeh determining time varying trends

that the actual ballistic coefficient exhibits.
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Chapter 6

Conclusions

An investigation of the effects of gravitationahda aerodynamic forces and
torques on space debris was conducted to gain ter bemderstanding of the time
variations of the ballistic coefficient of piecekdebris. A six-degree-of-freedom, rigid
body model digital simulation was developed as wasllan orbit determination program
that uses a modified extended Kalman filter. Theukation program is capable of
calculating the effective drag area at every tite@ ®f integration and provides accurate
drag calculations. These calculations are importior the determination of
conjunctional events and re-entry of objects inte tEarth's atmosphere. Results
obtained show that with knowledge of the atmosghdensity, the ballistic coefficient
can be calculated for a number of different geoim&trThe attitude of a tumbling object,
and thus the behavior of the ballistic coefficieanthibit certain observed characteristics
that are reproducible in the digital simulatione$h characteristics that are dependent on
the orbital inclination and the regression (or ps=ton) of the right ascension of the
ascending node should prove useful in predictirgltallistic coefficient not only for a
10-day predication window, but perhaps for muchgkm It has also been shown that
using an average effective drag area is an accuwuabstitute for the instantaneous
effective area. The instantaneous effective area dumbling object yields high
amplitude and frequency that requires more comjoumtat

The orbit determination program that uses a mediéxtended Kalman filter was
employed to show that determining and tracking ldb#istic coefficient of a tumbling

object is feasible. Although this process is tomputationally intensive to apply to the
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entire catalog of trackable objects, it could beli@d to objects that are "at risk" of
entering a conjunctional event. The orbit deteation program yielded both the
average ballistic coefficient and data that represkthe trend of the coefficient.

There are number of ideas that could increasédbébty of the analysis program
and this work if further research on the subjecpussued. The effective area can be
calculated numerically, instead of analytically, ib@rease the accuracy and allow for
more complex geometries. This can be coupled Vgitladowing" algorithms that take
into account portions of the object that are blackg other portions such as solar panels.
These ideas can also be applied to determine decaeaodynamic torques for complex
geometries. A continuance of the current effoidudd be to determine the underlying
cause of the periodicity of the effective area dasdelationship to its orbital inclination.
Another objective of such work should be to deteenthe frequency relationship

between the right ascension of the ascending nodé¢h& average effective area.
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Appendix A

ECI Coordinate System and Alternate Relative Moigiations Derivation

The ECI coordinate system is used to write theagguns of motion for the
spacecraft or object in Chapter 2. The ECI systamits origin at the center of the Earth,
which is also assumed to be the geometric centéheofEarth. Despite its name, the
origin of the ECI system is not inertial. Its ax@® oriented so that the Z-axis points
towards the celestial north pole and its X-axigasted toward the vernal equinox.

Let i, and T, be position vectors of the center of mass of thgt£O in Fig. 1,

and the center of mass of the object, r(X,Y,Z) ig. A, with respect to a true inertial
point. Whether the Earth and object are modelepoast masses or rigid bodies, their

total accelerations are modeled as

mr, =F,, +F Al

1,other

mzrz = I:2/1 + |:2,other A2
wherem; andm, are the masses of the Earth and object, resplctivdso, F,, is the

force on the Earth due to the objeét,, is the force on the object due to the Earth,

Ifl,other is the remaining force on the Earth aﬁgother has the same meaning for the
object. The forces, ,, andF, . are due primarily to the Sun, Moon, and Jupiter.
The relative acceleration ~ of the object with respect to the center of thethEks

A3

By Newton's Third Law of Motion, the force on tharkh due to the object is equal and

opposite to . Hence,
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_ 1 1= 1 - 1 -
a= |:_ + _:| I:2/1 +— F2,other T I:1,other A4
m, m m, m

The forceF,,, includes the force on the object due to the Earth's gravitfietd and
the force on the object due to the Earth's atmosphere, i.e.ntbspdteric drag on the

object. The forces, ., andF, .., divided by the masses of the Earth and the object,

other

respectively, are essentially the same because ofdbe ptoximity of the object to the
Earth. Thus, for this analysis, the relative acceleraifdhe object with respect to the

Earth is approximated by:

1 1=
a=|—+—|F,, A5
m, m

Since the force!fz,l is the sum of the gravitational force and the atmospheag,

_ A ~
a= |:i + i:| EEl:grav - CD ereIVreI :| A.6
m, m 2

where F__ is the gravitational forcep is the atmospheric densitg,is the "flat-plate”

grav
or effective area for calculating the dr&§) is the drag coefficient\7re| is the velocity of
the center of mass of the object with respect ¢oatmosphere and is the magnitude

of V,. Since the mass of the Earth is approximately4:9 10* kilograms [8],

[ESEAREY A7

Finally, withm= m,

A.8
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Appendix B
Attitude Dynamics

The one purpose of the analysis program develdpedhis investigation and
described in Chapter 3 is to integrate the equatadnmotion for the attitude of an object
in orbit. A closer look at the variables involvéd this integration shows that, as
expected, Euler angles and rotational rates aréncmus. The angular momentum is
determined about the body principal axis systemiandlated to the rotational rates by
the principal moments of inertia. The orbit foe ttollowing simulation is inclined at 45

degrees and the body is placed at the ascendirgwitial zero initial attitude conditions.
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Figure B.1: Euler Angles vs. Time
The Euler angles shown in Fig. B.1 were obtainedhfthe DCM constructed using the

attitude quaternion. Since this transformationsuseerse trigonometric identities, the
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range for the Euler angles is between -180 anddeg@ees, but the anglecontinuously

increases.
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Figure B.2: Rotational Rates vs. Time
As shown in Fig. B.2, the angular velocity compdses, andw, vary with time due to
the gravity-gradient torque. However, remains zero because the torque about the body
x-axis, the symmetry axis of the cylinder, is zefidhe Euler angles vary according to the

following kinematical relationships [14].
B.1

B.2
B.3

p=w, + (a)y sin(@) + w, cos@))tan(@)

Clearly, the object is tumbling slowly, as the satl® not exceed 0.15 degrees per second.
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Figure B.4: Instantaneous Area vs. Time
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Continuity in the area algorithm can be seen bying the simulation without torques.
Figure B.4 shows the reference area for the cytimdi no torques, propagated over one
period. Without torques, the object's attituddixed in inertial space. As the object
progresses through it's orbit, the instantaneowgegted area changes smoothly and
predictably. Areas corresponding to the end ofcylinder, less than 1 nand the side
of the cylinder, 10 3 are both perpendicular to the oncoming wind &erént times

throughout the orbit.
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