
ROBOT-OBJECT INTERACTION LANGUAGE

by

Christin Danelle Shelton

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 04, 2012

Keywords: robot, object, interaction

Copyright 2012 by Christin Danelle Shelton

Approved by

Juan Gilbert, Professor & Chair Division of Human Centered Computing School of
Computing, Clemson University

Richard Chapman, Associate Professor of Computer Science and Software Engineering,
Auburn University

Cheryl Seals, Associate Professor of Computer Science and Software Engineering, Auburn
University

Abstract

As the world anticipates receiving helper robots into their homes there are still a few

more hurdles that the robotics field must leap over in order for us to reach such a goal.

The main issues that the discipline faces are the snowflake robot designs (no two are alike)

and the large learning curve for robot programming. These issues create a difficulty and an

inconsistency in design and usability. To resolve these issues, a language structure has been

designed to communicate with the programming language of any robot enabling the robot

to manipulate any object. Thus, the hypothesis submitted in this proposal states that any

robot is capable of interacting with any real world object to the robots optimality and within

its limitations.

ii

Acknowledgments

I must first thank the Lord God Almighty for trusting me to take on such a challenge.

He has given me strength to accomplish great things in Jesus’ name. He is my ultimate and

eternal partner, friend and Savior. I would also like to thank my committee and other faculty

members for their advice, flexibility and encouragment. I would never be able to list all of

my friends here, but ones who stand out are Drs. Wanda Eugene and Shanee Dawkins who

refused to leave me behind. Thank you for you prayers and all the work you’ve done to get

me to the finishline. All of my other friends know who they are and you know what you’ve

done. Thank you. As for my family, there is no way that I could ever begin to thank you.

You have been a light in a dark dark world. To my Uncle Victor: thank you for being my

inspiration. My sister who is still praying for me this very moment and is on call and ready

to encourage at a drop of a hat. Her children, who are like my own and love me just for being

their “TiTi”. My mother who words could never combine together to begin to be enough

to mean or give a true thanks. Thank you for telling me that I didn’t have to do this but

that I could. Thank you for teaching me to identify myself in Christ and not in academia.

And last but never least (in fact he’s second to God) is my loving husband. Thank you for

your support and your patience especially since I finished when we should have been in our

honeymoon stage and just relaxing together. Thank you for loving me through this. God

sent you to me at the perfect time.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . ix

1 Introduction . 1

1.1 Motivation . 1

1.2 Overview of Research Goals and Contributions 4

1.3 Research Problem . 5

1.4 Organization of the Research . 6

2 Literature Review . 7

2.1 Programming Languages . 7

2.2 Robot Programming Languages . 8

2.2.1 RoboML . 8

2.2.2 RobotScript . 9

2.2.3 Urbi . 10

2.2.4 Robot Manipulation . 12

2.3 Universal Console Overview . 16

2.3.1 Plug and Play . 16

2.3.2 Universal Remote Console . 17

2.3.3 Personal Universal Controllers . 18

2.4 Robotics Middleware . 18

3 System Design . 21

3.1 Robot-Object Interaction Language . 21

iv

3.1.1 Overview . 21

3.1.2 Component I MySQL Database . 22

3.1.3 Component II XML Structures . 23

3.1.4 Component III - Website . 25

3.1.5 Component IV Simulated Robot Environment 33

4 Experiment . 34

4.1 Experiment Design . 34

4.1.1 Overview . 34

4.2 Materials . 35

4.2.1 Participants . 36

4.2.2 Simulation Environment . 38

4.2.3 Setup . 39

4.2.4 Units of Measurement . 39

4.2.5 Tasks . 41

4.2.6 Variable Environment . 42

4.2.7 Control Experiment . 43

4.2.8 Scenario . 43

5 Results . 45

5.1 Data Analysis . 45

5.1.1 Lines of Code . 45

5.1.2 Redundancy . 63

6 Summary and Conclusion . 69

6.1 Summary . 69

6.1.1 Conclusion . 70

6.1.2 Contributions . 70

6.1.3 Directions for Future Research . 71

References . 73

v

Appendices . 78

A MySQL Database . 79

B XML Structure - Robot . 83

C XML Structure - Object . 86

D ROILfile - C# . 88

E ROILfile - Code Append . 101

F Lines of Code - Results . 105

G Redundancy - Results . 110

vi

List of Figures

1.1 Granny and her helper robot in I, Robot. 2

1.2 RoboCup soccer tournament. 2

1.3 Domo, a robot that passes objects with humans. 4

2.1 Snippet of RoboML code; XML structured . 9

2.2 Snippet of Robotscript code; VBScript-like . 10

2.3 An example of a gripper. 13

2.4 El-E, a robot that delivers objects with a laser interface. 14

2.5 An unusable everyday object (teakettle). 15

3.1 ROIL Architecture . 22

3.2 Object XML Structure without data . 24

3.3 Object XML Structure without data . 25

3.4 Various geometric shapes/objects. 26

3.5 The index page of the website. 26

3.6 The second page of the website. 28

3.7 The third page of the website. 28

vii

3.8 The fourth page of the website. 29

3.9 Object XML Structure without data . 31

3.10 Object XML Structure without data . 32

4.1 Lego Mindstorms TriBot . 37

4.2 CoroWares CoroBot . 37

4.3 Lynxmotions Lynx6 Arm . 38

5.1 The lines of code count in the Tribot program vs the count in ROIL 47

5.2 The lines of code count in the CoroBot program vs the count in ROIL 48

5.3 The lines of code count in the Lynx6 program vs the count in ROIL 49

5.4 The percentage of decrease in the LOC count of each robot’s program that inserted

nine objects. 50

5.5 The percentage of decrease in the LOC count of each robot’s program that inserted six

objects. 51

5.6 The percentage of decrease in the LOC count of each robot’s program that inserted

three objects. 52

5.7 The percentage of decrease in the LOC count of each robot’s program that inserted

one object. 53

5.8 The mean and percentage of difference by number set of objects 64

viii

List of Tables

5.1 Lines of code count per simulated robot for ROIL (control group) 46

5.2 The input to retrieve results of TriBot with 9 objects 55

5.3 The statistical results of TriBot with 9 objects 55

5.4 The input to retrieve results of CoroBot with 9 objects 55

5.5 The statistical results of CoroBot with 9 objects 56

5.6 The input to retrieve results of Lynx with 9 objects 56

5.7 The statistical results of Lynx6 with 9 objects 56

5.8 The input to retrieve results of TriBot with 6 objects 57

5.9 The statistical results of TriBot with 6 objects 57

5.10 The input to retrieve results of CoroBot with 6 objects 57

5.11 The statistical results of CoroBot with 6 objects 58

5.12 The input to retrieve results of Lynx6 with 6 objects 58

5.13 The statistical results of Lynx6 with 6 objects 58

5.14 The input to retrieve results of TriBot with 3 objects 59

5.15 The statistical results of TriBot with 3 objects 59

5.16 The input to retrieve results of CoroBot with 3 objects 59

5.17 The statistical results of CoroBot with 3 objects 60

5.18 The input to retrieve results of Lynx6 with 3 objects 60

5.19 The statistical results of Lynx6 with 3 objects 60

5.20 The input to retrieve results of TriBot with 1 object 61

ix

5.21 The statistical results of TriBot with 1 object 61

5.22 The input to retrieve results of CoroBot with 1 object 61

5.23 The statistical results of CoroBot with 1 object 62

5.24 The input to retrieve results of Lynx6 with 1 object 62

5.25 The statistical results of Lynx6 with 1 object 62

5.26 The counts of redundancy of each program by number of objects 63

5.27 The number of redundancies among the programs with one object. 65

5.28 The input to retrieve results of redundancy among programs with 9 objects . . 66

5.29 The statistical results of redundancy among programs with 9 objects 66

5.30 The input to retrieve results of redundancy among programs with 6 objects . . 67

5.31 The statistical results of redundancy among programs with 6 objects 67

5.32 The input to retrieve results of redundancy among programs with 3 objects . . 67

5.33 The statistical results of redundancy among programs with 3 objects 68

5.34 The input to retrieve results of redundancy among programs with 1 object . . . 68

5.35 The statistical results of redundancy among programs with 1 object 68

F.1 TriBot with 1 Object . 105

F.2 TriBot with 3 Objects . 105

F.3 TriBot with 6 Objects . 106

F.4 TriBot with 9 Objects . 106

F.5 CoroBot with 1 Object . 106

F.6 CoroBot with 3 Objects . 107

F.7 CoroBot with 6 Objects . 107

F.8 CoroBot with 9 Objects . 107

F.9 Lynx6 with 1 Object . 108

F.10 Lynx6 with 3 Objects . 108

x

F.11 Lynx6 with 6 Objects . 108

F.12 Lynx6 with 9 Objects . 109

F.13 ROIL Lines of Code . 109

F.14 Average and Percentages of Decrease for Each Robot 109

G.1 Amount of Redundancy for Programs with One Object 110

G.2 Amount of Redundancy for Programs with Three Objects 110

G.3 Amount of Redundancy for Programs with Six Objects 111

G.4 Amount of Redundancy for Programs with Nine Objects 111

G.5 Average and Percentages of Decrease for Each Set of Objects 111

G.6 Redundancy in ROIL . 111

xi

Chapter 1

Introduction

1.1 Motivation

The world has been anticipating the day that robots will become a major part of our

everyday lives. The service and entertainment industries are two fields on which robots will

have a significant impact (Makatchev & Tso, 2000). Researchers are eagerly designing robots

that will be able to provide effective in-home care to the disabled and the elderly (Edsinger

& Kemp, 2006, 2007, 2008; C. C. Kemp, Anderson, Nguyen, Trevor, & Xu, 2008; Nguyen et

al., 2008). The movie I, Robot, featured an elderly woman who had a live-in robot assistant

(Figure 1.1). Her robot was able to recognize and interact with all of the worlds objects both

inside and outside of her home. Now, imagine a paraplegic who drops her remote control or

needs a book on an unreachable shelf. Given a service robot, it should be able to locate and

identify the object and know how to appropriately handle it. As technology advances, we

are sure to discover an optimal robot design that will allow them to attend to us all.

Regarding entertainment, RoboCup (shown in Figure 1.2) is a 16-year-old initiative that

joins Artificial Intelligence and Robotics in an effort to promote research and education.

RoboCup is an international conference and competition in which the participants take

robots and program them to operate as soccer players. The robots are programmed to

compete by searching for, acquiring and passing a small colored ball back and forth, and

hopefully into a goal. RoboCup has included Search and Rescue events since 2000, and

it aspires to play the ultimate robotics soccer game featuring life-size humanoid robots.

Although its underlying motivation is not entertainment, RoboCup events and tournaments

provide entertainment for both its participants and spectators (A Brief, n.d.).

1

Figure 1.1: Granny and her helper robot in I, Robot.

Figure 1.2: RoboCup soccer tournament.

2

Whether the focus of development is service or entertainment, robotics technology is

widely accessible for relatively low-budget research, particularly for primary to graduate

education (Stone, 2007). There are many manufacturers that build robots for development

(Lapham, 1999; Wörn, Wurll, & Henrich, 1998), but research labs are building more and

more robots in-house to perform and test for their particular needs. Because of this vast

accessibility, the growth of the robotics industry has been exponential. The designs of robots

have infinite possibilities. No two robot designs will be exactly alike, even more different

than the humans who design them.

Before robots can become a part of our everyday lives, consistency is needed among

the various robot technologies. Research has been conducted that enables robots to interact

with particular real world objects (e.g., grasping, fetching, finding, etc.). Research also

indicates that robots are able to safely exchange and pass objects back and forth with humans

(Edsinger & Kemp, 2007). Domo, an assistive humanoid robot created for passing objects,

particularly tools, is shown in Figure 1.3. Kemp (2008) designed and built El-E, a robot for

object manipulation research that uses a green laser to select a number of objects on a level

surface (e.g., floor, table, etc.). The robot detects the laser and is directed to the objects

location, and calculates how to grasp the object and carry it to another place or a person

(C. C. Kemp et al., 2008). These robots are examples of different designs and capabilities.

Despite these differences, there should be one method enabling each for interaction via

programming, also allowing each robot to have the same manipulation potential. Based on

this prior research, one can state that robots are able to appropriately interact with various

objects (i.e., pick up a book, set a cup down) within its own limitations. However, this has

been proven difficult due to the lack of consistency in robot programming technology for

object manipulation.

In addition to the barriers of design and development in assistive robot technology, the

learning curve for robot programming is an issue, as well (Stone, 2007). Manufacturers all

use different programming languages, syntaxes, and structures, requiring programmers to be

3

Figure 1.3: Domo, a robot that passes objects with humans.

proficient in many, or specific, languages. Prior research has determined that using computer

programming languages that have sustained over time, such as C and Java, has decreased

the learning curve and made robot programming easy to learn due to more computing power

and cheap memory. Learning the commands and their use makes any type of programming

difficult to learn, and mastering any programming language is a considerable time investment

(Lapham, 1999). Students of robotics can find a large learning curve frustrating, which may

cause them to avoid robotics in the future (Anderson, Thaete, & Wiegand, 2007). Essentially,

there is a need to diminish this learning curve and allow any robotics novice to program any

robot to interact with any object without having to learn a new robot programming language

for each robot. The following section will affirm the goals, designed approach, and planned

contributions of the language grammar and system presented in this dissertation research.

1.2 Overview of Research Goals and Contributions

The chief goal of this research is to establish a standard system that will automate code

that will create the opportunity for any robot to appropriately interact with any real-world

object. The submitted hypothesis states that any robot is capable of interacting with any

real world object that is within its limitations. It is anticipated that the findings of this

4

research will support and evolve the design and development of robot manipulation for any

environment.

The results presented here are expected to contribute to the fields of Human Robot

Interaction, Robot Programming Languages, and Robot Manipulation.

Overall, this research will achieve the following:

• Establish a standard automated robot language production system

• Diminish the learning curve for robot programming for objects in any environment

• Improve robot programming capabilities

1.3 Research Problem

Robots today come in many shapes, sizes, and forms (Wörn et al., 1998; Lapham,

1999). However, the world is still waiting for a mainstream robot to penetrate the home as

the modern day PC that will assist in various roles. Robot manipulation has been proven to

be one of the more difficult areas of the robotics industry as research has yet to deliver a robot

that may serve as a helper for the elderly and disabled or for the purposes of entertainment.

Due to the exponential and perpetual growth of the industry, new technological advances not

only produce aesthetically new designs, but also new functions, capabilities, and platform

designs and language (Stone, 2007). This has created the problem of each robot design having

a unique platform and language. Much of the research in the Human-Robot Interaction

(HRI) field is dedicated to robot autonomy in a human’s everyday environment; however,

because of the lack of design standards, each robot must have a unique method of interaction.

The learning curve has become great and time-consuming for both robotics novices and

experts (Wörn et al., 1998).

Researchers recognize a need for a common or standard language to make robot pro-

gramming easier (Lapham, 1999). Some focus their robotics research on manipulation or

designing and building a robot intended for precise set of tasks. However, there is a lack of

5

research conducted to design and develop a method that will assist robot programming in

relating to any real-world object.

Most robots that are capable of manipulation are restricted by the tasks for which

they were developed. This means that if a robot needs to interact with new objects, the

programmer must go in and manually program or script each new object each time a new

object is presented. Even if an algorithm is used to detect and recognize unknown objects

there is still a limited set of shapes that are detectable and manipulation will not be optimized

for each object. Furthermore, should a new programmer join the research team, she must

know and perhaps learn the particular programming language that is being used on each

individual robot.

The problem being addressed is the lack of a standard method that discovers whether

or not a robot is appropriate for any real-world object and produce code that will make the

objects accessible. This study will support the hypothesis that a standard architecture that

can discover a robot and its capabilities will be the basis of a system for interaction with

objects. For the purposes of this study, a small, diverse subset of simulated objects will be

held by a database and exported into the grammar structure. The website will output a

block of code that corresponds to the language on which the robot operates.

1.4 Organization of the Research

The organization of this dissertation will proceed following a research agenda. Chapter 2

reviews the background information that relates and analogizes the system of this dissertation

to the areas of robot programming, robot manipulation, plug and play networks. Chapter

3 will provide details of the system design and implementation and includes a scenario to

give further understanding of how to use the system. Chapter 4 follows with the disclosure

of experimentation of the system mentioned in Chapter 3. The results of the experiments

performed are discussed in Chapter 5. The summary and conclusions of Chapter 5 are in

Chapter 6 along with the contributions made by this work and issues for future work.

6

Chapter 2

Literature Review

This chapter identifies two areas of robotics technology that explore the aspects of

getting a robot to do what you want through design and development. Presented here are

various robots and languages that best demonstrate the technologies of robot programming

and robot manipulation.

2.1 Programming Languages

This section of the review intends to introduce the understanding the difficulty of learn-

ing a new high-level programming language to be succeeded with a discussion of programming

languages that specifically support robotics technology. With any language, and particularly

mainstream programming languages (e.g. C++ and Java), there is said to usually be quite

a steep learning curve (Katz & McCormick, 2000). David Brooks (1999) offers advice for

students who want to succeed in a programming class. With many books that are written

to teach a programming language, no matter the level programmer, there is usually some

prerequisite of knowledge that the write expects has already been attained by the reader and

determining the most useful background involves understanding the history and ancestry of

each language and comparing the syntax and concepts of each. As a result, Brooks (1999)

advises that the student find out what their textbook assumed about the reader. For exam-

ple, it is suggested that knowledge of Windows programming will help a programmer pick

up Visual C++ more quickly (DelRossi, 1993) and C/C++ programmers will more easily

acquire C# and Java (Mueller, 2009; Grimes, 2001). On the contrary, Visual Basic program-

mers will find it difficult to grasp C# due to the varying syntactical styles and fundamental

concepts (Mueller, 2009; Simon et al., n.d.). Likewise, programmers of Java, C++ or C#

7

will conceptually relate to Python, but syntactically will struggle with the new language

(Smith, 2011). Therefore, experience helps to pick up other language. While those with

experience may struggle with a new language, true novices will have the most difficulties.

Other factors involved in the learning curve include time. Time involves the learning

of the syntax and nuances of the new language (Pappas & Murray, 1995). Additionally,

programmers must learn to use a number of tools and techniques to implement the new

language (Warth, 2011), as well as, understand the environments help, warning, and error

messages (Pappas & Murray, 1995). The following section will cover various programming

languages that have been written to support robots and robotics technology. It will further

establish these issues in programming languages specifically for robotics.

2.2 Robot Programming Languages

2.2.1 RoboML

RoboML (or Robo Markup Language) is a human-robot interface software prototype

that utilizes Extensible Markup Language (XML) (see Figure 2.1) as communication lan-

guage for robot agents. This agent-based interface is meant to act as a common language

for ”robot programming, agent communication, and knowledge representation (Makatchev

& Tso, 2000). RoboML recognizes the need for open standards with regards to robot hard-

ware and software. It sought to answer the need by facilitating communications between

real-time agents (user clients) and embedded software and user interface agents via a proxy

agent. Its focal points are issues of human-robot interfacing using the Internet: 1) an agent-

based architecture and 2) a common markup language (Makatchev & Tso, 2000). Makatchev

(2000) chose XML to develop RoboML due to its aptness for demonstrating what can be

conveyed by the more common languages for programming robots, its usefulness for human

users to manipulate using simple software and its availability for cross-platform applications.

It is well believed that XML is a convenient language for describing various data structures

8

Figure 2.1: Snippet of RoboML code; XML structured

(Makatchev & Tso, 2000). The work on the formation of a tentative language is decreased

with XML (Makatchev & Tso, 2000).

2.2.2 RobotScript

The Universal Robot Controller (URC) is an open-architecture controller that uses a

Windows platform. The URC works with most robots and increases flexibility and capa-

bilities over other typical controllers. The operating system for the URC is Windows NT,

which is an enterprise-wide network connected to the robot controller by the user for logging

data, backing up programs, and handling other tasks for communication. The creators of the

URC believe it is the idyllic stage for a common programming language for robots and that

RobotScript is that language. RobotScript is meant to allow a single language to command

all of the robots in a factory (Lapham, 1999).

RobotScript was developed over the course of a number of steps. The first relevant step

was to decide the purpose of the programming language, which was originally to command

a robot and enable the user to design user interfaces or correspond with other software

9

Figure 2.2: Snippet of Robotscript code; VBScript-like

applications. RobotScript presents a solution that requires programming proficiency in a

new language. Its creator, Lapham, desired that the language be effortless and yet function

as a typical programming language for robots that only determined the motion, which is

essential to the robots path (Lapham, 1999). Next, it was decided that RobotScript would

be a robot library for a pre-existing computer language. Microsofts Visual Basic Scripting

Edition, or VBScript (see Figure 2.2), was selected for its easy-to-learn syntax and interpreted

compiler. The library must match the syntax in VBScript (Lapham, 1999).

2.2.3 Urbi

Urbi is a universal platform created to provide all robots with software compatibility,

establishing a standard way for the reuse of components from one robot to another. Gostai,

the company that created Urbi, created this platform to tackle the demands of Artificial

Intelligence and robot programming for autonomous robots. Two major focal points of

the Urbi platform concentrate on flexibility and simplicity. According to Gostai, flexibility

is being universal, working with any robot on any OS with any programming language.

Simplicity requires that the platform be easy to acquire for all experts, kids and hobbyists

as well as have as little documentation as possible (Gostai, n.d.).

10

“Urbi is a middleware which includes component architecture” called UObject. Urbi

presents a new scripting language, urbiScript, to handle parallelism and events in robot

programming. It is interfaced through liburbi with languages like Java, C++ (see Code

samples in Listings 2.1 & 2.2), Ruby, Matlab, Python, and others. This is accomplished in

urbiStudio, which holds a number of graphical programming tools. Urbi is used by various

research labs and companies; however, there is the learning curve to consider. One still needs

to learn one or more specific programming languages in addition to the new language that

Urbi introduces.

Listing 2.1: Urbi Basic Function Definition; C++/C-like

// Def ine myFunction

func t i on myFunction ()

{

echo (” He l lo world ”) ;

echo (” from my func t i on ! ”) ;

} ;

[00000000] f unc t i on () {

echo (” He l lo world ”) ;

echo (” from my func t i on ! ”) ;

}

// Invoke i t

myFunction () ;

[00000000] ∗∗∗ Hel lo world

[00000000] ∗∗∗ from my func t i on !

Listing 2.2: Urbi Return Function Definition; C++/C-like

func t i on sum(a , b , c)

11

{

r e turn a + b + c ;

} ;

[00003553] f unc t i on (var a , var b , var c) { r e turn a . + (b) . + (c) }

f unc t i on sum2(a , b , c)

{

r e turn a + b + c ;

} | ;

sum(20 , 2 , 2 0) ;

[00003556] 42

2.2.4 Robot Manipulation

Whether at home or at work, we desire that robots be capable of “physically altering

the world through contact” (C. Kemp, Edsinger, & Torres-Jara, 2007). Most research in

robot manipulation has occurred in various controlled environments, e.g., industrial plants

and uncluttered research areas. Within those environments, successful demonstrations of re-

search robots autonomously performing complicated manipulation tasks have relied on some

combination of known or simplified objects, fixed or organized environments, or “narrowly

defined, task-specific controllers” (C. Kemp et al., 2007).

Merriam-Websters (Merriam-Webster.com, n.d.) online dictionary defines ‘manipulate’

as “to treat or operate with or as if with the hands or by mechanical means especially in

a skillful manner”. In keeping with the spirit of this definition, for the purpose of this

hypothesis, manipulation, or appropriate interaction, is interpreted as gripping and carrying

objects according to the robots affordances. The limitations of robots today enable a robot

to only grip and pick up a cell phone but not to accurately press the buttons to make

an effective call. Any mention of a robot manipulation is restricted to its end-effectors or

grippers (Figure 2.3).

12

Figure 2.3: An example of a gripper.

Robot designs for manipulation often carry several restrictions. Robots are often de-

signed to carry out fixed tasks, e.g., search and rescue and object passing. Therefore, their

end-effectors are rarely at their optimum usage and restricted to the precise objects they were

designed to interact with. The issue here is if a programmer or developer chooses for her

robot to interact with any additional objects she will have to make changes to her program

manually.

El-E, a robot shown in Figure 2.4, makes use of a green laser pointer that highlights

the object the robot is to detect, locate, grasp, and hand-over to the user. El-E acquires an

object and places it upon a flat surface, e.g., tables, floors, and bookshelves. Flat surfaces

are found throughout human environments due to the need for people to randomly place

objects on top of their things (C. C. Kemp et al., 2008). After acquiring the object, the

El-E can set the object on a surface appointed by the laser above the floor, then trail the

laser along the floor, or carry it to a designated, seated person. Should the user misplace or,

perhaps in the case of a disabled user, drop the laser pointer, the robot is rendered useless.

The laser interface hinders the addition of modalities, such as speech and touch recognition

because the robot is restricted to finding the green light. Subsequently, due to limitations of

the laser interface and the eliminated possibility of any other modality, if the desired object

13

Figure 2.4: El-E, a robot that delivers objects with a laser interface.

is in another room, the user must go to the room with the robot in tow and sit down, if not

already seated.

There are a couple of questions concerning object manipulation that need to be ad-

dressed. What set of objects will be used for research purposes or what objects does the

robot need to interact with? How are known objects to be recognized? If the task requires

interaction with additional objects, how does the robot recognize and know how to interact

with the unknown? In the book The Design of Everyday Things, Norman (1990) states that

objects in human environments have similar design features that make using them easier.

Figure 2.5 is a well-known image of an example of an unusable or at least difficult-to-use

design. Edsinger and Kemp (2006) found that manipulation is simplified by developing be-

haviors that suit those features. They show that the handling of a substantial set of tools

can be determined by the tools tip (Edsinger & Kemp, 2006). However, exact autonomous

grasping of what once was a foreign object still remains a challenge (Saxena, Driemeyer,

Kearns, Osondu, & Ng, 2006). In order for a robot to acknowledge and manipulate any new

14

Figure 2.5: An unusable everyday object (teakettle).

object each object must be scripted by hand (Saxena et al., 2006). Often, object recognition

requires the incorporation of an algorithm. Saxena (2006) uses a supervised learning algo-

rithm to predict how to grasp new objects through vision. When deciding which objects to

use, typically, the robots purpose or its current task will definitively make that determina-

tion. However, when the research calls specifically for a robot to learn many various types

and shapes of objects, a training set may be required (Saxena et al., 2006).

Currently, this research does not support physically plugging in a robot machine so that

the hosting computer is able to discover information about it and transfer and receive data

to and from it.

2.3 Universal Console Overview

This section serves strictly as an analogy to the approach of the proposed study in

this paper. The science of Plug and Play and the applications mentioned, the Universal

Remote Console and the Personal Universal Controller, represent research and devices of

comparative architectures. In addition to similar formats, the following consoles also employ

XML to structure their languages.

15

2.3.1 Plug and Play

In the history of data processing technology hardware modules were assembled and

linked by wires for various calculating operations. This process was complex often requir-

ing soldering and wire cutting for configuration changes and it was most frequently used

by companies that processed large amounts of data. However, due to the permeation of

the personal computers throughout the general public there was pressure to automate the

configuration of these devices for use by those who are less skilled with the wire connection

techniques. After several attempts at self-configuration among various companies, Microsoft

released Windows 95, which dbuted an attempt at fully automated device detection and

configuration called Plug and Play (PnP). Briefly, the implementation of plug and play has

three basic requirements. The operating system being used must have handlers in support

of plug and play media that finish the process of configuration through the BIOS started for

each device. The BIOS, the core utility of the plug and play process, reads a file that has

the information about the installed PnP devices called the Extended System Configuration

Data (ESCD). The BIOS enables the plug and play and detects the devices (Grabianowski

& Tyson, 2001).

”Some bus types such as Peripheral Component Interconnect (PCI) and Universal Serial

Bus (USB) take full advantage of Plug and Play” (Microsoft, 2003). Today, interfaces

like USB are now thought of as a common method of connection for peripheral devices

(Computer Desktop Encyclopedia, 2008). As it is quite similar to URC (expounded upon in

the following section) Universal Serial Bus is the realized dream of any person who has ever

used and personal computer and desired a quick and easy way to link all of their accessories

(e.g. scanner, printer, digital camera) to it (Universal Serial Bus, n.d.). Connecting an

antiquated component can be rather daunting task that would require some “computer

savvy” or, perhaps, a bit of luck. However, today, for PCs and peripheral devices that are

USB-compliant, one can simply plug them in and power them on. It is an automatic process

16

that takes no skill whatsoever. Anyone can take advantage of this technology (Universal

Serial Bus, n.d.).

USB is reviewed here for analogous purposes. USB is a direct connection method for

hosts and peripherals. The system developed for and presented in this dissertation currently

does not require or use the connection of a robot to any platform host. It acts as middleware

to “discover” the robots information. This is all done with minimal effort from the user. As

previously mentioned the only task required for use of any peripheral that connects via USB

is to plug it in. Likewise, the user only need possess knowledge of robot name and what

objects the user would like the robot to make use of.

2.3.2 Universal Remote Console

The idea of a remote console for universal usability aims to transform the way that

people will one day exploit technical devices. The Universal Remote Console (URC) is

an instrument intended to operate compatible target devices. The problem is a lack of a

standard for managing target devices using a single device. This standard would include

various manufactured devices. A single user interface is rendered to accommodate the users

requirements and preferences. Home security systems, thermostats, and public kiosks are

examples of networked-based applications and tools, which operate using a built-in user

interface. URC researchers are looking to take advantage of electronic devices, such as cell

phones, wrist watches, PDAs and other wearable and handheld computing devices to create

remote consoles for all of the technologies found on a users network and operating them from

anywhere. The electronic consoles would have to accommodate the diverse interfaces of each

target technology (Zimmermann, Vanderheiden, & Gilman, 2003).

Waloszek (2005) believes a URC is anticipated by people who struggle with setting up

video recorders and operate ”smart” microwaves. With a URC, people will be able to choose

their own applications as remote controls for their other devices (Waloszek, 2005).

17

2.3.3 Personal Universal Controllers

Appliances for the home and office are steadily becoming more elaborate as software

enables new capabilities. More functionality typically means a more difficult user interface.

Many researchers, including Nichols, propose a separation of the interface from the appliance.

A user would carry a single device that would operate all the appliances and applications in

her domain. The device, the Personal Universal Controller (PUC), downloads a specifica-

tion from the target device and automatically generates an interface for the remote control

(Nichols et al., 2002).

2.4 Robotics Middleware

This subsection was written to extend the introduction. Similarly mentioned in Chapter

1, there is a prolonged absence of credited, commonly adopted software architecture, termed

middleware, in the robotics field (Smart, 2007).

Bakken (2003) describes middleware as . . .

“a class of software technologies designed to help manage the complexity and

heterogeneity inherent in distributed systems. It is defined as a layer of software

above the operating system but below the application program that provides a

common programming abstraction across a distributed system. In doing so, it

provides a higher-level building block for programmers than Application Pro-

gramming Interfaces (APIs) that are provided by the operating system. This

significantly reduces the burden on application programmers by relieving them

of this kind of tedious and error-prone programming. Middleware is also infor-

mally called plumbing because it connects parts of a distributed system with

data pipes and then passes data between them”.

Smart (2007) asserts that nearly all researchers and institutions continue to formulate

their own systems, except that the software engineering community set the standards and

18

that, naturally, these institutions develop software that are specifically designed for their

own systems, machines, and middleware. If we have a tried and true set of middleware, it

can be reused and optimized with confidence over many applications (Gill & Smart, 2002).

Therefore, Smart (2007) believes sharing is difficult and more than often impossible because

re-use of architecture-specific technology by another institution often involves reimplemen-

tation for their different system, machines, and middleware. Costly time is taken away from

studies and experimentation due to the needless, extraneous programming and debugging

that takes place. If various institutions were able to implement the same algorithms, the

varying systems would be capable of comparisons amongst themselves, more bugs discovered

and removed, and time put to better use. A necessary prerequisite for such implementation

re-use is a common communications middleware (Smart, 2007).

Middleware, now crucial to innovative robotics, is situated “between hardware and soft-

ware”, making it easier to develop programs (Ahn et al., 2006). Speaking in terms of software,

middleware joins individual, unique, “interoperable platforms” that they might share infor-

mation and system modules (Jagiello, Tay, Eronen, Fernhill, & Park, 2006). Essentially,

robotics technology involves “significant interaction and coordination of diverse hardware

and software elements” (Gill & Smart, 2002). Middleware can offer a common programming

model across language and/or platform boundaries, as well as across distributed end systems

(Gill & Smart, 2002).

CORBA is the most commonly used robotics middleware to date. Common Object

Request Broker Architecture, or CORBA, is Object Management Groups “open, vendor-

independent architecture and infrastructure” that computer programs use to interoperate

over networks (CORBA FAQ , n.d.). However, it is not capable of accommodating the dy-

namics of the computing world. Therefore, other middleware have been developed that

conform. Among are .Net, Jini and UPnP (Universal Plug and Play) (Ahn et al., 2006).

Microsoft developed .NET to afford an association among the many programs operating on

Windows (Ahn et al., 2006). Jini, which is not an acronym or moniker for anything, is a

19

distributed computing environment written entirely in Java that supplies plug and play for

networks. Clients are discovered and are available for devices to late and use for various

operations (Newmarch, 2010). Of the few mentioned, UPnP has most recently been investi-

gated as a middleware technology for use in robotics technology. UPnP is another technology

developed by Microsoft, but, unlike .Net, is a “pervasive peer-to-peer network” architecture

connecting smart appliances, computers, and devices that are wireless. It is distributed,

open networking architecture taking advantage of TCP/IP and the Web to enable seamless

proximity networking in addition to control and data transfer among networked devices in

the home, office, and everywhere in between (Universal Serial Bus, n.d.).

Networks are capable of being joined and left dynamically by various devices, thus, more

middleware is being developed to accommodate. Robots, like networks, must be “dynamic

distributed computing environments” because soon each module will be dynamically installed

and uninstalled.as well (Ahn et al., 2006).

The notion of robotics middleware lends itself to this dissertation as the system presented

is an architecture built with components (robots and objects) that must work well together,

yet, have need for an agent to join them, so to speak, for interaction.

The middleware system of this dissertation is inherently different from typical robotics

systems in that the set of components that are desired to interact with are non-networkable

items. Everyday real-world objects such as balls, tables, or flat screen televisions are unable

to be dynamically discovered on a network. The most common way for objects to be found

is through visual interfaces using cameras. This method of discovery is out of the scope of

this research dissertation acts as a broker between the simulated robot and the simulated

platform.

20

Chapter 3

System Design

3.1 Robot-Object Interaction Language

3.1.1 Overview

The purpose of the overall design is to feed any given robot details about an object

that it is to interact with. Each robot could be in a different environment and have various

manipulators and different methods of kinematics. The Plug and Play aspect is taken into

account by the simulator’s capability to virtually and asserted seamlessly introduce any

generic or specific robot into any environment.

Robot-Object Interaction Language (ROIL), the system presented in this dissertation,

is an attempt to answer the need to create a provisional method for robots to access various

objects both in the real world and simulation.

With the basic programming skills of reading a file, knowing the object is simplified by

ROILs ability to acknowledge the appropriate methods to include in a program. The ROIL

system, as seen in Figure 3.1, was designed so that a user could use an internet browser

to input robot information, select an object, and find out if that object is appropriate for

interaction with the robot in question. With this information, the user can include the

objects information in the robot’s program and, as a result, properly interact with it.

At present, Plug and Play is easily relatable to inserting or “plugging in” a flash drive or

some other USB-enabled device into a system. The device is then automatically discovered

by the system with no need for configuration or user intervention for use, or “play”. ROIL

aims to mimic this concept by allowing the user to “plug”, or input, little information into the

system: the robots name and the robots programming language, the language to “discover”

21

Figure 3.1: ROIL Architecture

the code needed for interaction, if capable. Based on this model, little coding regarding

inserting objects into the environment or giving the robots code the information to access

the objects is required on the part of the user.

The system, Robot-Object Interaction Language, consists of four major components.

The first component is the database which stores all robot and object data. The second

component consists of the the XML structures, or the ”languages”, that link all four compo-

nents. The third component is web-based and essentially acts as an USB-enabled plugged-in

robot. The fourth component enables the user to make use of or manipulate the provided

robot data to her will and benefit.

3.1.2 Component I MySQL Database

The MySQL database (see Appendix A) consists of four tables and are accessed solely

by the website (Component III). The first table accessed robotinfo stores specifications

22

about robot systems and includes the robots name, span of gripper, payload, gripper cat-

egory, as well as the manufacturing information. The next table accessed by the website

sim objects contains the objects and their descriptive attributes. Attributes include the

generic name of the object, the general geometric shape, dimensions, and weight. The final

table of note code contains the actual generic code that must be appended by the user and

called by her program, the instructions on how and where to append, and an additional

file (ROILfile.someextension, discussed in Component II) to download. The particular in-

structions and code to append depend on the language the user writes her program in. The

programming language attribute is, in fact, a foreign key linking to the auxiliary fourth

table that only contains unique programming languages and a corresponding automatically

incremented identification number.

3.1.3 Component II XML Structures

Concerning the two XML structures to be discussed in this section, all data is populated

from the robotinfo table in the database.

Robot XML Structure

The XML structure (example in Figure 3.2 and Appendix B) designed to represent the

robots begins with a node called therobot which has five attributes robotID, modelID, name,

manu (or manufacturer), and brand. The field robotID is generated by the database from

the automatic incrementation function applied to the field in the database table. The only

direct child of therobot node is properties which has seven child nodes of its own. The seven

children are all the rest of the fields of the robotinfo table being used in experimentation

and are as follows: the span of the gripper (minimum and maximum), payload, height

in inches (minimum and maximum), and the category. The category refers to the four

basic prehension types of robot grippers found in Monkmans Robot Grippers (2007). The

first category is called astrictive which is described as “a binding force produced by a field”

23

Figure 3.2: Object XML Structure without data

(Monkman, 2007). Field types include “vacuum suction, magnetism, or electrostatic charge”

(Monkman, 2007). A contigutive gripper involves direct contact with the surface of the

object as “contigutive mean touching” (Monkman, 2007). Examples include chemical and

thermal adhesion. Ingressive grippers permeate the surface of the objects and can either be

intrusive (e.g. using pins) or non-intrusive (e.g. using hooks or loops). Finally, impactive

describes “a mechanical gripper” whereby apprehension is achieved by, for example, forces

that impact against the surface of the object (Monkman, 2007). Category is the last child

node of properties and properties is the only child of therobot, thus completing the structure.

Object XML Structure

The XML data for the objects (Figure 3.3 and see Appendix C) is populated from the

sim object table in the database. The root node called all objects is capable of having an

infinite number of child nodes called object. The object node has two attributes (name and

category) and a single child node. Name is the generic name for the object. Category refers

to the four robot end-effector prehension categories mentioned in the previous subsection.

The only child of object is properties which encapsulates its thirteen child nodes that describe

the objects. The node gen geom shape is short for the general geometric shape of the object

24

Figure 3.3: Object XML Structure without data

(e.g., sphere, box, capsule). See Figure 3.4 as an example of various geometric shapes. In

terms of weight and dimension (i.e. height, width, depth), depending on the object, there is

either a specific weight and size or a general range used to describe the object. Therefore,

either the explicit set of dimensions and weight will be populated in the XML structure or

the set with bounds. The last child of properties is generally found in which denotes the

environment in which the object is most commonly found. The structure closes properties,

object, and all objects concluding the XML design for objects.

3.1.4 Component III - Website

Components III and IV of this system together essentially frame the plug and play

model. The third component determines of the manipulation relationship between the robot

and the object. It involves a website that, upon receiving a small set of information, generates

a page containing a generic code and a canned file, and provides instruction on how to

25

Figure 3.4: Various geometric shapes/objects.

Figure 3.5: The index page of the website.

use them and where to place them (i.e. the main source code and in the same directory,

respectfully). The first page of the website (Figure 3.5) is a simple form that asks the user

to choose which of the available or canned robots she is using and to input the programming

language her code is written in. The robot names populate a dropdown list and are retrieved

from the robotinfo table in the database. Upon submission, the two fields are passed on to

the next page.

The second page (Figure 3.6) only retrieves and displays the robots specifications from

the robotinfo table in the database so that the user may verify that the robot chosen is, in

26

fact, what she specifically wanted. If not, she has the option to go back and change the values

on the previous page. If the robot specifications are correct, then the robots information

is hidden in html input tags and submitted to the next page objectindex.php (Figure 3.7).

Upon loading, the robot XML file (Figure 3.2; also see Appendix B) is created by being fed

the selected robot’s data. Displayed on the page is a multiple select list occupied with each

object stored in the database table sim objects. When all of the desired objects are selected

the objects are sent to the final page of the website createXMLfile.php (Figure 3.8). On this

page each object populates the child node object discussed in Component II and are written

to a newly created XML file called selectedobject.xml (Figure 3.3 and see Appendix C)that

uses the object XML structure. Using the PHP function SimpleXML the XML structures are

loaded into two variables and using if statements the child node of properties in both XML

files are logically compared. For example, the weight of the object is compared to the payload

of the robots gripper. The results of the comparison are displayed on the page. Next, the

instructions, ROILfile, and the paste-in code are retrieved from the table code depending

on the programming language inputted on the first page. They are all also displayed on

the page; only ROILfile.someextension, the canned file, is downloaded using a displayed

hyperlink.

The page will produce results such as “CoroBots gripper span is too small to fit around

the book” and “The TriBots payload is able to carry the ping pong ball.” Below, on this

same page, are the code in a scrollable window, a link to the canned file, and the instructions

produced directing the user to take and incorporate the provided code in their existing

program. This page is the result of the compilation and comparison of the two XML files.

This comprises the third component of the system design.

The Canned File - ROIL.someextension

This file is generally a class that reads the XML object file uploaded on the server and is

read from the main source code. The code in ROIL.someextension begins with the creation

27

Figure 3.6: The second page of the website.

Figure 3.7: The third page of the website.

28

Figure 3.8: The fourth page of the website.

29

of a multidimensional array that is set as the return type of a function Readfile(). Next, the

object XML file is loaded into a variable named xmlfile and a builtin function that reads

XML files is utilized to traverse the nodes and access each element. Because the programming

for experimentation of this dissertation was specifically written in C# XMLReader is the

function seen in Figure 3.9. Here, XMLReader is used twice. The first use determines how

many objects are in the XML file, which is the first dimension in the array. The second

dimension, which is the number of attributes and properties in the XML file, is determined

using a switch statement that accesses each element to determine what is in the file and its

value.

The Appended Code

The snippet of code (Figure 3.10) the user is asked to append to her code is produced in

the same language as the program she is writing her program in. This pasted code snippet

is a function that calls the function Readfile() (Appendix D) in ROILfile.someextension.

The array of objects that is returned is traversed using a foreach statement to create and

insert each object in, in this case, the simulated environment. Microsoft Robotics Developer

Studio is programmed in C#, for example, and the code to create and insert an object

involves identifying the basic or complex geometric shape of the object. If the object is

a cube or rectangular shape, as exhibited in Figure 3.4, then the block of code requires a

specific set of dimensions or volume, depending on the shape (e.g. cube requires length,

width, and height). Also required are the mass and position of the object. The object

must be uniquely named and then inserted. Besides changing the position, dimensions, etc.,

the user also has the option to add information, such as a mesh file, to give the shape the

appearance of the object as seen in the real world.

30

Figure 3.9: Object XML Structure without data

31

Figure 3.10: Object XML Structure without data

32

3.1.5 Component IV Simulated Robot Environment

The fourth component requires the produced generic code from Component III, which

is placed in the users main source code as noted in the instructions. The generic code simply

places the selected object in the robots simulated environment with real world dimensions

and in a random position. The user is able to modify the code, however, to change the objects

dimensions in order for it to be scaled to fit their particular environment. The position, mesh

and every other part of the code are editable, as well.

Together, Components I, II, III, and IV comprise the Robot-Object Interaction Lan-

guage scheme. With these items established the next step in this dissertation research is to

examine the efficiency of the design and architecture of the system.

33

Chapter 4

Experiment

Upon completing the system implementation of ROIL based on the approaches outlined

in the previous chapter, a formal experiment was conducted to validate this system. The

objective of this evaluation focuses on the system performance with respect lines of code,

and redundancy, which supports the hypotheses. This chapter reports on the experiment

with the simulated CoroBot, simulated Lynx 6 Arm, and the simulated TriBot.

4.1 Experiment Design

4.1.1 Overview

The goal of this experiment is to evaluate ROIL with respect to its ability to connect

to various robots, create and insert appropriate code, and work effectively via simulation. A

positive outcome would involve the addition of fewer lines of code and faster processing time

of task completion. This outcome should also include manipulation with less redundancy

and as effective as a simulation without ROIL.

Both the control and variable setups predominately consist of the coding in the Microsoft

Robotics Developer Studio. However, the control setup, ROIL, is essentially two parts

itself, where the plug and play feel is given by the website, but the platform language takes

advantage of the generated code to do the actual task at hand.

34

4.2 Materials

Platform

The software used to implement the simulation was Microsoft Robotics Developer Stu-

dios 2008 R3 (MRDS) (Microsoft, n.d.), a platform for developing robotics applications. This

platform was chosen for its powerful graphics engine and its portability, flexibility, afford-

ability, and set of templates. The Visual Simulation Environment allows for testing robotic

applications using a 3D physics-based simulation engine. MRDS is portable due to the fact

that one can use the simulation code and deliver it to robot hardware with few changes. Its

flexibility is attributed to the fact that it supports a wide variety of robots. Programming

in MRDS is typically done using Visual Studio and the .NET framework, and is generally

executed in C#.

Specifically, Visual studio 2008 and the .NET Framework 4.0 were used to code the

simulated robots, environments and objects for MS Robotics Studio. The experimentation

was performed on a single Dell Optiplex 755 running Windows Vista Business SP1. A local

server was needed to upload and access the XML files. The server was downloaded via

XAMPP (Apache Friends - XAMPP , n.d.), a cross-platform (X) distribution package which

includes Apache, MySQL, PHP and Perl (AMPP) for Windows platforms XP and above.

The website was created on the local server using PHP. MySQL houses the data describing

the object set and robots and code.

One other technology used to support this research includes LineTally. LineTally ver-

sion 1.7 is simple freeware that counts the number of lines in the source code of 61 different

program languages. It determines how many lines are code, comments, mixed (code and

comments), blank, the sum, and the respective percentages of each (LineTally , 2008). Line-

Tally is the software that was used to count the lines of code for that would be analyzed for

experimentation.

35

4.2.1 Participants

There were no human participants in this research study. To use human participants

would have required a severely limited group or community, as well as, a very specific and

small segment of the worlds population. Human participation would also be time consuming

(e.g. learning a new language, applying said language) proceeding weeks and months per

robot programmer and program. A certain level of education would be preferred in computer

science or engineering, as well as, efficient programming experience. Therefore, the researcher

of this study was the sole participant to program the interaction using one language with

three robots on one platform.

Robot Descriptions

Three robots were used in this study. Although each robot was written on the same

platform and in the same language, each has different features, functions and capabilities

due to their varying designs and construction. In addition, a different programmer originally

coded each.

TriBot : This 3-wheeled vehicle has multiple sensors. Lego Mindstorms NXT (1999)

follows the typical building block scheme that its brand is known for and, therefore, despite

some instructions, users are not restricted to any building specifications or guidelines. How-

ever, the TriBot used in this experimentation was built specifically according the instructions

as the only required pieces were the grippers, which are included in the manufacturers in-

structions. Broadly, the TriBot (Figure 4.1) has 1 degree of freedom (DOF) and its grip

opens to approximately 7 inches and closes at approximately 2 inches. It is powered by the

Lego Mindstorms NXT brick. The simulated TriBot used in this research is a software pack-

age originally programmed by the development company, SimplySim (n.d.) and was altered

for use in this research.

CoroBot : The CoroBot, in Figure 4.2, with an arm has the following dimensions: 12 x

13 x 10 (x 16 inches with arm). It has a 4-wheel drive, a 14 inch long arm, 4 DOFs in the

36

Figure 4.1: Lego Mindstorms TriBot

Figure 4.2: CoroWares CoroBot

arm, a gripper span of 1.3 inches. CoroBot has a gripper sensor, an arm payload capacity of

8 ounces and is supported on Windows XP in C, Linux Ubuntu, and Player. It is powered

by a standard CPU/motherboard and is designed, built, and sold by CoroWare (CoroWare,

n.d.). The simulated version of the CoroBot was written by CoroWare developers and was

released to the robotics community and was altered for the cause of this dissertation study.

Lynx L6 Robotic Arm: The Lynx 6, in Figure 4.3, is itself an articulated arm. Although

its production has been discontinued there are similar robots being sold by its creator com-

pany Lynxmotion (e.g. AL5A Robot Arm). This arm, built for hobbyist, boasts 6 degrees

37

Figure 4.3: Lynxmotions Lynx6 Arm

of freedom (DOF) with a base height of 3 inches and a 5.083 inch median reach and a 4.5

ounce lift capacity. Its maximum grip span is 2.25 inches and is powered by an SSC-32

controller. In MRDS, the Lynx 6 is immobile. It is not an extension of another driving

robot (Lynxmotion, n.d.). The Lynx L6 Arm simulation was written by Microsoft Robotics

Developers and was altered to suit the purpose of this dissertation research.

4.2.2 Simulation Environment

Microsoft Robotics Developer Studio 2008 R3 (MRDS) is a simulation engine that was

developed to be both an area for those who do not have physical robot hardware to program

and for others to use as a testing site before applying their code to their robot machine.

MRDS has a great number of varied simulated robots and environments to take advantage

of and the software makes it easy to add or create many more (Johns & Taylor, 2008). It is

reasonable to suggest that student-led research that requires a number of robots of various

forms and capabilities is reasonably better suited in a simulation environment. This is such

research, in that three different robots are used but are not readily available in their hardware

form.

38

Each robot is packaged with its own individual default simulation MRDS environment.

The Simulated Lynx 6 is inserted into an uncluttered environment. It sits on a wooden floor

that is surrounded by an infinite amount of open space. The CoroBot is situated in a two

room house. It begins in an office that has a desk, chair, and bookshelf. The Tri Bot is

defaulted in a room that has a poster on the floor that has colors for its color sensor and

other default objects like plants in the background. The first environment is more likened

to a research lab/area where the last two environments are the most similar to real world

human environments.

4.2.3 Setup

The variable group of the study focuses on the concept of handwritten programming

without any automation. In the experimentation, two factors are represented: ROIL and

non-automated, handwritten code. The latter factor has four sets of object groupings. There

are three robots each with a default environment and twelve objects to be created, inserted,

and accessed by each robot. The four groupings of the variable setup are described as follows:

• A set of nine random objects was inserted in each robots program.

• A set of six random objects was inserted in each robots program.

• A set of three random objects was inserted in each robots program.

• Each object was inserted individually in each robot’s environment

The code produced by ROIL replaces each object grouping, thus, only four programs

(one per object grouping) utilizing ROIL per robot are necessary for experimentation.

4.2.4 Units of Measurement

Note that in Chapter 2 none of the languages or software discussed made mention a unit

of measurement to gauge its performance. For each software project, there was no accessible

39

or publicized study found to establish a unit of measurement for this dissertation research.

After further consideration, it was determined that lines of code and redundancy would be

the most appropriate measurements of efficiency.

When researching the lines of code metric, what was found was that the metric was

typically utilized for measuring the growth of a project (Cunningham & Cunningham, Inc.,

n.d.), the progress or effort a programmer is making (Cunningham & Cunningham, Inc.,

n.d.), and cost estimates (Tuxtips.org, 2011). In these cases, for those who accept LOC as a

valid form of measurement, the greater the number of lines of code is considered beneficial;

however, Andy Hertzfeld (2011), an early Apple Macintosh developer, recounts an anecdote

about the author of QuickDraw, describing how his goal of programming “was to write as

small and fast a program as possible”. Although LOC as a metric is widely argued to be a

useless metric for measuring productivity or progress in software development (Marx, 2008)

it may also be argued that fewer LOC produce less complex yet more precise (Charlton,

2008) software, fewer defects (Cunningham & Cunningham, Inc., n.d.). Counting lines of

code in this experimentation is not relatable to designing “clever code (James, 2007) or code

tuning, where one take five lines of code and shrink them down to one. This smarter code

often reduces readability (Lucas, 2008). The advantage of reducing lines of code, which

involves getting rid of unnecessary code, especially if they are redundant, includes increasing

maintainability or reducing the complexity of bugs (Lucas, 2008). Other advantages decrease

in compilation time and often readability. Steve McConnell (1993), the author of Code

Complete: A Practical Handbook of Software Construction, believes that using lines of code

to measure software estimation is an acceptable place to start as long as its limitations are

kept in mind. While speed is not a factor explored within the scope of this dissertation

research, size is. The smallness in program size is determined advantageous.

Redundancy was also resolved to be a source of performance measuring for the ROIL

system. Again, this metric is employed adversely to its typical appliance. Software redun-

dancy is more often used to prevent failure and as a form of backup but usually with more

40

critical software (e.g. medical and space) (Teach-ICT.com, n.d.). Here, it is promoted as a

source of fault due to the facts that the software platform that the programs are written in

is heavy in video graphics and can be greatly delayed with redundancy, as well as the fact

that purposed redundancy opposes the desire to decrease the number of lines of code.

A decreased count of lines of code and redundancy in the programs do not directly corre-

late to robot programming standardization. Determining standardization would require the

inclusion of human participants and qualitative experimentation, which was not feasible for

or within the scope of this research. Official standardization will require ROIL to be widely

used amongst the robotics industry. The deduction of the two measuring units recommends

themselves to optimal and efficient usage of the software. ROIL, being one place for users

of various robots to gain code for object interaction, is in itself a commonality.

4.2.5 Tasks

The immediate task at hand is to get the robot and object relating and producing

some results and generate a generic code waiting for specifications (e.g. position) from the

user. Subsequently, the task of the generic code should insert the chosen object(s) into the

environment.

Briefly, the task of each robot is to have access to information about the object with

which it is to interact. The user must use a form of modality to make that determination, (e.g.

she speaks to the robot, presses a button or makes a gesture). The use of the information is

beneficial both before and during the simulation. The user is able to use the information when

informed of the compatibility of the object with her robot pre-simulation. Moreover, the

robot is capable of using the information by adjusting its grip span, arm reach (depending on

the inverse kinematics model used). The researchers task included learning a new language.

Again, briefly, the tasks are:

• Establish the relationship between the robot and the objects

• Generate a bare, generic code in the language of the robot

41

– Code should create and insert the various objects

• End user provides specifications, modality for interaction

4.2.6 Variable Environment

The variable experiment demonstrates what a robot programmer would ordinarily do

without any assistance. The program is a fully developed environment and is completely

coded by hand. The testing of this environment demonstrates the increased number of lines

and redundancy that may result from a lack of a standardized or common support. The

following sections explain the reasoning behind the methodology of inserting both a single

object and multiple objects in the simulation environments for experimentation.

Single Object

In the variable experimentation the decision to insert a single object in each robot

environment was based on the assumed simplicity and ease of doing so when compared to

inserting multiple objects at a time. When inserting a single object it would be sensible

to code as if there were only one object as opposed to coding for the likelihood of multiple

objects. This is not especially difficult except in the case where the user decides to change

the number of objects she would like to include. Furthermore, if the lone object itself must

change whether this is known at the beginning of the project or is decided later on then

the programmer must decide whether or not to initially include each object in the code and

continually go in and change which one is used every time that change is needed. Otherwise,

she will have to go in and rewrite the code to replace the old object with the new one. Either

decision is a nuisance without some type of array, struct, class or database that stores the

information of each object.

42

Multiple Objects

During experimentation for the variable group when coding to insert more than one

object complexity is further increased when considering any changes that may be required

concerning which objects to use. Coding the programs with multiple objects was an absolute

necessity in order to show ever growing amount of code as the number of objects coded

increases.

4.2.7 Control Experiment

The control experiment is the system developed during this research that is purposed to

decrease the amount of work and code on behalf of the end user. That system is the Robot-

Object Interaction Language (ROIL). ROILs main goal is to simplify the programming of

code for an object or objects that will interact with various robots.

4.2.8 Scenario

A graduate student pursuing a Masters in computer engineering with a focus on robotics,

Zahara, is working a manipulation project with her advisor and two others. Zahara and her

group are using the Lynx 6 and are simulating it in Microsoft Robotics Developer Studio.

Their code is written in C#. Zahara is responsible for gathering objects on which they can

test the arm and determine if they are compatible for interaction with the Lynx 6 Arm. She

goes to the ROIL website and checks to see if her robot is listed. She sees that it is and

chooses her robot from the dropdown list on the page and types in the language in which

they will code their robot. She presses the “Continue” button, and on the next page, she

is asked to verify that the information displayed is the specifications for the Lynx 6. If the

robot is not correct she may press the “Go Back” button and choose another robot or she

may press the “Continue” button to proceed. Zahara presses “Continue” and now has a list

of random objects that she can find in the real world. She wants the Lynx 6 to pick up and

43

move around the following objects: an empty ring box, a single die, a baseball, a marble, a

large prescription bottle, and a pencil.

After pressing the “Choose” button, the next page informs her that the robot is able

to handle the widths of all the objects except the baseball. It states that all of the payloads

are acceptable, as well. If she scrolls down a bit she will see a set of instructions that tell

her to copy the generic block of code presented further down on the same page and to place

it in the main class of her source code. It also tells her where to place a few other lines of

code in the same class. Finally, Zahara is directed to a link of a file that she should simply

include it in the same directory of her main file.

Now Zahara makes sure her windows form code is able to call and access each object.

When she runs her simulation she uses the two windows forms she created to drive the Lynx

6s arm and to set the grip span of the gripper.

44

Chapter 5

Results

This section discusses the results of the comparisons of the quantitative data from the

programs that were coded. Each section will give the initial look at the resulting numbers and

the following section will analyze the significance of the collected data. The data presented

was collected from the programs written for the three robots previously mentioned and the

ROIL system programs (control group) to determine if there were any improvements in the

numbers of lines of code and the amount of redundancy.

5.1 Data Analysis

5.1.1 Lines of Code

The main purpose of this research is to provide a service that eases a programmer into

developing code by providing a standard in coding that would permit their robots to interact

with objects. To validate this research, results were explored from the comparison of the

number of lines of code and redundancy of three robots programmed to interact with one,

three, six, or nine object(s) to the ROIL system. This section reviews the data collected

concerning the number of lines of code from programs with four sets of objects for the robots

to interact with.

Where eight programs per robot were written to create a sample population (each to

code a different combination of objects), only one program was necessary for experimentation

per robot using ROIL. The following table, 5.1, displays the number of lines of code (LOC)

for the control group. These three quantities, one per robot, were used and referred to

repeatedly for comparison to the variable group.

45

Robot simulation Lines of Code
CoroBot 190
Lynx6 1070
TriBot 137

Table 5.1: Lines of code count per simulated robot for ROIL (control group)

Figures 5.1 , 5.2, and 5.3 show each robots LOCs by number of objects and also where

ROIL fares in comparison at first glance. As seen in Figure 5.1, ROILs LOC are less than all

sets of the TriBots simulated code with more than one object. However, comparing ROIL

with the CoroBot programs (Figure 5.2), ROIL fared differently as the variable groups with

one and three objects both have fewer lines of code than the control group. Therefore, the

control groups lines of code only fare better compared to the CoroBots variable programs

with six and nine objects.

In Figure 5.3, it is seen that all four sets of objects in Lynx6 programs have an overall

greater number of LOC than that of the control group.

Figures 5.4, 5.5, 5.6, and 5.7, below, describe the difference in percentage of lines of

code for each set of objects within the variable group from the control group, ROIL. The

average of each set of objects was found as the starting point and the percentage of difference

was established for each robot of the control group. Hence, a positive percentage denotes a

decrease in the LOC, the desired result. Figures 5.4 and 5.5 both show that programs in the

variable group with nine and six objects both average to have a decrease in LOC of 40.82%,

26.99% and 24.85% and of 26.29%, 13.09%, and 22.18%, respectively.

In Figure 5.6, CoroBots three-object programs average to have 5.63% less LOC than the

control. However, the TriBot and Lynx6 both have a decrease in lines of code using ROIL

with the same number of objects.

Displayed in Figure 5.7, TriBots and CoroBots lines of code with a single object average

to have 15.21% and 30.36%, respectively, less LOC than ROIL. Lynx6 LOC all has a greater

46

118.9166667

147.125

185.875

231.5

137

0

50

100

150

200

250

tri 1 tri 3 tri 6 tri 9 ROIL

Avg LOC for Tribot vs ROIL LOC

tri 1

tri 3

tri 6

tri 9

ROIL

Figure 5.1: The lines of code count in the Tribot program vs the count in ROIL

47

145.75

179.875

218.625

260.25

190

0

50

100

150

200

250

300

coro 1 coro 3 coro 6 coro 9 ROIL

Avg Corobot LOC vs ROIL LOC

coro 1

coro 3

coro 6

coro 9

ROIL

Figure 5.2: The lines of code count in the CoroBot program vs the count in ROIL

48

1271.25

1336
1375

1418.25

1070

0

200

400

600

800

1000

1200

1400

1600

lynx 1 lynx 3 lynx 6 lynx 9 ROIL

Avg Lynx6 LOC vs ROIL LOC

lynx 1

lynx 3

lynx 6

lynx 9

ROIL

Figure 5.3: The lines of code count in the Lynx6 program vs the count in ROIL

49

40.82073434

26.9932757

24.55490922

0

5

10

15

20

25

30

35

40

45

tri 9 coro 9 lynx 9

Nine Object LOC: Percentage of Decrease

Avg Percentage
Difference

Figure 5.4: The percentage of decrease in the LOC count of each robot’s program that inserted
nine objects.

50

26.29455279

13.09319611

22.18181818

0

5

10

15

20

25

30

tri 6 coro 6 lynx 6

Six Object LOC: Percentage of Decrease

Avg Percentage Difference

Figure 5.5: The percentage of decrease in the LOC count of each robot’s program that inserted
six objects.

51

6.881903144

-5.628908965

19.91017964

-10

-5

0

5

10

15

20

25

tri 3 coro 3 lynx 3

Three Object LOC: Percentage of Decrease

Avg Percentage Difference

Figure 5.6: The percentage of decrease in the LOC count of each robot’s program that inserted
three objects.

52

-15.2067274

-30.36020583

15.83087512

-40

-30

-20

-10

0

10

20

tri 1 coro 1 lynx 1

One Object LOC: Percentage of Decrease

Avg Percentage
Difference

Figure 5.7: The percentage of decrease in the LOC count of each robot’s program that inserted
one object.

percentage difference at an average of 15.83%, also seen in Figure 5.7. What will be explored

next is whether or not these differences in program line tallies are significant.

Significant Difference of Lines of Code

As previously discussed one of the determinations to be made from this research is

whether or not using ROIL, the control group, decreases the number of lines in each robots

code creating a more efficient method of coding, independent of the number of objects being

inserted in the environment. In the previous section, the control groups LOC are generally

53

shown to be fewer than the variable groups LOC across all programs, but are the differences

between the line of code counts of any significance? Also, are the LOC of the variable group

fewer than those of the control group significantly fewer? To determine if the numbers are

significantly different a One Sample T-test was employed to make that determination. A One

Sample T-test is utilized for statistics that involve a known or specified value that is compared

to a sample mean to determine if that mean is significantly different. The One Sample T-

test is a comparison of the average sample and the population with an adjustment for the

number of cases in the sample and the standard deviation. The hypothesis to be examined

states that the difference between the lines of code of ROIL and the variable programs is

not zero. The null hypothesis states that the difference is zero. We wish to reject the null

hypothesis to show a significant difference between the control and variable programs. Here,

control groups LOC values from Table 5.1 are the specified values and the variable group

mean values are analyzed. Tables 5.2–5.25 display the results of the comparisons of the two

groups produced by R, a statistical software (Gentleman & Ihaka, 2011).“R is a language

and environment for statistical computing and graphics.” John Chambers and his colleagues

at Bell Laboratories instigated this GNU project, which is a free software that compiles

various operating systems while the user has full control over all functionality (including

data analysis and graphics) (Gentleman & Ihaka, 2011).

Set of Nines The following tables (i.e. Tables 5.2, 5.3, 5.4, 5.5, 5.6, & 5.7) display the

statistics and test results for the simulated robot programs that contain nine objects. In

the tables called stats the abbreviation in the third row of the first column is short for the

robot and the number of objects in the program. For example, if the Tribot has nine objects

then it is abbreviated as tri9. The N is the number of experimental results (number of LOC

counts) and mean is the average number of lines among the N programs. The tables below

stats are test. The test value (also called mu) in this table is ROILs LOC count that is

the sample of the robots programs are being compared to. The notation t is the standard

54

deviation, and the result of the t-test. Df is the degree of freedom which is N-1 and lower

and upper represent the confidence interval bounds. Recall from Figure 5.6 that for all three

robot programs containing nine objects the LOC were greater than the control groups LOC.

To determine significance the produced p-value was analyzed given a 95% confidence level.

As seen in Tables 5.2 & 5.3, with a known test value (from Table 5.1) of 137 and 7 degrees

of freedom, the LOC in the TriBot (tri9) programs was significantly reduced as the p-value,

7.50e-10, is less than 0.05.

Stats
N Mean

tri9 8 231.5

Table 5.2: The input to retrieve results of TriBot with 9 objects

Test
Test value= 137

95% conf interval of the difference
t df lower upper p-value

44.5477 7 226.4839 236.5161 7.50E-10

Table 5.3: The statistical results of TriBot with 9 objects

Displayed in Tables 5.4 & 5.5, with a known test value (from Table 5.1) of 190 and

7 degrees of freedom, the LOC count for the CoroBot (coro9) programs was significantly

reduced as the p-value, 6.05e-09, is less than 0.05.

Stats
N Mean

coro9 8 260.25

Table 5.4: The input to retrieve results of CoroBot with 9 objects

Displayed in Tables 5.6 & 5.7, with a known test value (from Table 5.1) of 1070 and 7

degrees of freedom, the LOC count for the Lynx6 (lynx9) programs was significantly reduced

as the p-value, 8.38e-14, is less than 0.05.

55

Test
Test value= 190

95% conf interval of the difference
t df lower upper p-value

33.018 7 255.219 265.281 7.50E-10

Table 5.5: The statistical results of CoroBot with 9 objects

Stats
N Mean

lynx9 8 1418.25

Table 5.6: The input to retrieve results of Lynx with 9 objects

Test
Test value= 1070

95% conf interval of the difference
t df lower upper p-value

163.6802 7 1412.219 1423.281 8.3E-14

Table 5.7: The statistical results of Lynx6 with 9 objects

56

Set of Sixes The following tables, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13, display the statistics

and test results for the simulated robot programs that contain six objects. Recall from Figure

5.5 that for all three robot programs containing six objects the LOC were greater than the

control groups LOC. To determine significance the produced p-value was analyzed given a

95% confidence level. As seen in Tables 5.8 & 5.9, with a known test value (from Table 5.1)

of 137 and 7 degrees of freedom, the LOC in the TriBot (tri6) programs was significantly

reduced as the p-value, 1.36e-07, is less than 0.05.

Stats
N Mean

tri6 8 185.875

Table 5.8: The input to retrieve results of TriBot with 6 objects

Test
Test value= 137

95% conf interval of the difference
t df lower upper p-value

21.0857 7 180.394 191.356 1.36E-07

Table 5.9: The statistical results of TriBot with 6 objects

Displayed in Tables 5.10 & 5.11, with a known test value (from Table 5.1) of 190 and

7 degrees of freedom, the LOC count for the CoroBot (coro9) programs was significantly

reduced as the p-value, 6.86e-06, is less than 0.05.

Stats
N Mean

coro6 8 185.875

Table 5.10: The input to retrieve results of CoroBot with 6 objects

Displayed in Tables 5.12 & 5.13, with a known test value (from Table 5.1) of 1070 and 7

degrees of freedom, the LOC count for the Lynx6 (lynx9) programs was significantly reduced

as the p-value, 3.23e-13, is less than 0.05.

57

Test
Test value= 190

95% conf interval of the difference
t df lower upper p-value

11.8663 7 212.9208 224.3292 6.86E-06

Table 5.11: The statistical results of CoroBot with 6 objects

Stats
N Mean

lynx6 8 1375

Table 5.12: The input to retrieve results of Lynx6 with 6 objects

Test
Test value= 1070

95% conf interval of the difference
t df lower upper p-value

134.9618 7 1369.656 1380.344 3.23E-13

Table 5.13: The statistical results of Lynx6 with 6 objects

58

Set of Threes Tables 5.14, 5.15, 5.16, 5.17, 5.18, and 5.19 display the statistics and test

results for the simulated robot programs that contain three objects. Recall from Figure 5.6

that two of the three robot programs containing three objects had a positive percentage

difference meaning there was a decrease in LOC after using ROIL. To determine significance

the produced p-value was analyzed given a 95% confidence level. As seen in Tables 5.14 &

5.15, with a known test value (from Table 5.1) of 137 and 7 degrees of freedom, the LOC

in the TriBot (tri3) programs was significantly reduced as the p-value, 0.002424, is less than

0.05.

Stats
N Mean

tri3 8 147.125

Table 5.14: The input to retrieve results of TriBot with 3 objects

Test
Test value= 137

95% conf interval of the difference
t df lower upper p-value

4.608 7 141.9436 152.3064 0.002424

Table 5.15: The statistical results of TriBot with 3 objects

CoroBot was the singular robot program in this group containing three objects that had

a negative percentage difference. Displayed in Tables 5.16 & 5.17, with a known test value

(from Table 5.1) of 190 and 7 degrees of freedom, the LOC count for the CoroBot (coro3)

programs was significantly increased as the p-value, 2.19e-03, is less than 0.05.

Stats
N Mean

coro3 8 179.875

Table 5.16: The input to retrieve results of CoroBot with 3 objects

59

Test
Test value= 190

95% conf interval of the difference
t df lower upper p-value

-4.7092 7 174.7909 184.9591 2.19E-03

Table 5.17: The statistical results of CoroBot with 3 objects

Displayed in Tables 5.18 & 5.19, with a known test value (from Table 5.1) of 1070 and 7

degrees of freedom, the LOC count for the Lynx6 (lynx3) programs was significantly reduced

as the p-value, 6.04e-13, is less than 0.05.

Stats
N Mean

lynx3 8 1336

Table 5.18: The input to retrieve results of Lynx6 with 3 objects

Test
Test value= 1070

95% conf interval of the difference
t df lower upper p-value

123.4494 7 1330.905 1341.095 6.04E-13

Table 5.19: The statistical results of Lynx6 with 3 objects

Set of Singles Tables 5.20, 5.21, 5.22, 5.23, 5.24, and 5.25 display the statistics and test

results for the simulated robot programs that contain one object. Recall from Figure 5.7

that only one of the three robot programs containing one object had a positive percentage

difference meaning there was a decrease in LOC after using ROIL. To determine significance

the produced p-value was analyzed given a 95% confidence level. TriBot was the one of the

two robot programs in this group containing a single object that had a negative percentage

difference. As seen in Tables 5.20 & 5.21, with a known test value (from Table 5.1) of 137

60

and 11 degrees of freedom, the LOC in the TriBot (tri1) programs was significantly reduced

as the p-value, 6.82e-10, is less than 0.05.

Stats
N Mean

tri1 12 118.9167

Table 5.20: The input to retrieve results of TriBot with 1 object

Test
Test value= 137

95% conf interval of the difference
t df lower upper p-value

-19.5518 11 116.881 120.9523 6.82E-10

Table 5.21: The statistical results of TriBot with 1 object

CoroBot was the other robot program in this group containing three objects that had

a negative percentage difference. Displayed in Tables 5.22 & 5.23, with a known test value

(from Table 5.1) of 190 and 11 degrees of freedom, the LOC count for the CoroBot (coro3)

programs was significantly increased as the p-value, 1.91e-12, is less than 0.05.

Stats
N Mean

coro1 12 145.75

Table 5.22: The input to retrieve results of CoroBot with 1 object

Displayed in Tables 5.24 & 5.25, with a known test value (from Table 5.1) of 1070 and 11

degrees of freedom, the LOC count for the Lynx6 (lynx3) programs was significantly reduced

as the p-value, 9.60e-05, is less than 0.05.

61

Test
Test value= 190

95% conf interval of the difference
t df lower upper p-value

-33.6508 11 142.8558 1148.6442 1.91E-12

Table 5.23: The statistical results of CoroBot with 1 object

Stats
N Mean

lynx1 12 1271.25

Table 5.24: The input to retrieve results of Lynx6 with 1 object

Test
Test value= 1070

95% conf interval of the difference
t df lower upper p-value

5.9494 7 1196.798 1345.702 9.60E-05

Table 5.25: The statistical results of Lynx6 with 1 object

62

5.1.2 Redundancy

Programmers, at times, create the same code again and again, which causes unnecessary

sum of code lines and increases the programs intricacy since a change might be made in one

of the routines. One could be left behind and create problems (Teach me how to, 2011).

Debugging becomes hard as the lines look so similar that finding the problem is next to

impossible. Also redundancy in code increases the time it takes for code to run and process

(Php Web Scripting, n.d.). Thus, to measure optimization using the ROIL system, redundant

code within each program was discovered and tallied. Where lines of code were measured

per robot and set of objects, contrarily, redundancy was only measured per set of objects.

This is because the only part of each program that was counted was the lines that exploited

the differences between the redundancy of the variable and control groups, specifically the

code that creates and inserts the objects into each environment. This was permissible due

to the fact that all objects were coded in the same language, causing each robot to have

no differentiation. Therefore, redundancy in the variable group is partially based on the

number of objects. Only one program was necessary for experimentation using ROIL, thus,

the control group has a single value which totals to 14.

The following table, Table 5.26, displays the redundant code counts of each program by

number of objects - nine, six and three.

8 programs Number of objects
nine six three

a 42 21 14
b 42 21 14
c 42 21 14
d 42 21 14
e 42 21 10
f 42 28 10
g 42 21 10
h 42 35 10

Table 5.26: The counts of redundancy of each program by number of objects

63

42

23.625

12

65.63636364

40.74074074

-16.66666667

-25

-15

-5

5

15

25

35

45

55

65

75

nine six three

Mean

% diff

Mean and Percentage Difference By Number Set of Objects

Figure 5.8: The mean and percentage of difference by number set of objects

For the eight programs written in the control group that contain nine objects, the

amount of redundancy is consistent with forty-two lines of redundant code per program.

It is seen that for the nine-object programs the number of redundancies is reduced using

ROILs code. The mean, 42, is higher than 14 and there is a 65.64% decrease in redundancy,

in Figure 5.8.

For the eight programs written in the control group that contain six objects, the amount

of redundant code is reduced using ROILs code. The mean, 23.63, is higher than 14 and

there is a 40.74% decrease in redundancy in Figure 5.8.

64

Table 5.26 displays the results of the redundancy counts within the eight written pro-

grams of the variable group of three objects. The mean, 12, is lower than 14 and there is a

16.67% increase in redundancy using ROIL, which is seen in Figure 5.8.

Table 5.27 displays the results of the redundancy counts within the twelve written

programs of the variable group where each contains a single object. As seen in the table,

the number of redundancies within each program is zero as one object is coded. Zero is, of

course, less than the fourteen redundancies of the control group. As previously mentioned,

the redundancies are related to the number of objects written in the code, therefore, no

redundancies here is expected.

Programs Redundancies
marble 0
baseball 0

book 0
box 0
cone 0
die 0

domino 0
golfball 0

mechanical pencil 0
prescription bottle 0

ringbox 0
soda bottle 0

Table 5.27: The number of redundancies among the programs with one object.

The next section looks to discover whether or not any of these differences in redundancy

are significant.

Significant Different of Redundancies

As previously discussed, the research presented here seeks to determine if using the ROIL

system, the control group, decreases redundancy in each robots code creating a more optimal

method of coding, independent of the number of object being inserted in the environment.

In the previous section, the redundancy of the ROIL system has been shown to be generally

65

lower than the variable groups. Are the differences between the redundancies of each group

of any significance? Also, are the redundancies of the variable group that are fewer than

those of the control group significantly fewer? To determine if the numbers are significantly

different a One Sample T-test was employed to make that determination. Here, control

groups redundancy value 14 is the specified value and the variable group mean values are

analyzed. Tables 5.28, 5.29, 5.30, 5.31, 5.32, 5.33, 5.34 and 5.35 reveal the results of those

comparisons produced by R.

Tables 5.28 & 5.29 display the statistics and test results for redundancy among the

coding that contain nine objects. Recall from Figure 5.8 codes containing nine objects had

a positive percentage difference meaning there were decreases in LOC after using ROIL.

To determine significance the produced p-value was analyzed given a 95% confidence level.

Unfortunately, as seen in Tables 5.28 & 5.29, with a known test value of 14 and 7 degrees

of freedom, the software returned an error quoting data are essentially constant due to

the amount of redundancy being the exact same amongst all code containing nine objects.

Therefore, no p-value was returned and significance could not be determined by the software.

Stats
N Mean

redof9 8 42

Table 5.28: The input to retrieve results of redundancy among programs with 9 objects

Test
Test value= 14

95% conf interval of the difference
t df lower upper p-value

N/A 7 N/A N/A N/A

Table 5.29: The statistical results of redundancy among programs with 9 objects

Recall from Figure 5.8 codes containing six objects had a positive percentage difference

meaning there were decreases in redundancy after using ROIL. To determine significance

66

the produced p-value was analyzed given a 95% confidence level. After employing the one

sample t-test, the degree of freedom produced 7, the p-value, 1.22e-03, is less than 0.05, seen

in Tables 5.30 & 5.31, therefore, the redundancy in ROIL code is significantly lower than

that of the variable group containing six objects.

Stats
N Mean

redof6 8 23.625

Table 5.30: The input to retrieve results of redundancy among programs with 6 objects

Test
Test value= 14

95% conf interval of the difference
t df lower upper p-value

5.2271 7 19.27086 27.97914 1.22E-03

Table 5.31: The statistical results of redundancy among programs with 6 objects

The result of this t-test leads to the understanding that objects containing nine objects

also have a significantly decreased amount of redundancy upon using the ROIL system. Re-

call from Figure 5.8 that codes containing three objects had a negative percentage difference

meaning there was an increase in redundancy after using ROIL. To determine significance

the produced p-value was analyzed given a 95% confidence level. Seen in Tables 5.32 &

5.33, after employing the One Sample T-test, the degree of freedom produced 7, the p-value,

3.32e-02, is less than 0.05, therefore, the redundancy in ROIL code is significantly greater

than that of the variable group containing three objects.

Stats
N Mean

redof3 8 12

Table 5.32: The input to retrieve results of redundancy among programs with 3 objects

67

Test
Test value= 14

95% conf interval of the difference
t df lower upper p-value

-2.6458 7 10.21251 13.78749 3.32E-02

Table 5.33: The statistical results of redundancy among programs with 3 objects

There is a presumed increase in redundancy due the fact that there is an entire lack of

redundancy amongst the coding of a single object. Unfortunately, due to the consistency of

zero redundancy, the t-test essentially failed, as seen in Tables 5.34 & 5.35. However, despite

the failure, a p-value was returned by the R application with a degree of freedom of 11 and

a p-value that is less than 2.2e-16. Therefore, there is a significant increase in redundancy

using ROIL compared to the variable group of a single objects.

Stats
N Mean

redof1 12 0

Table 5.34: The input to retrieve results of redundancy among programs with 1 object

Test
Test value = 14

95% conf interval of the difference
t df lower upper p-value

-Inf 11 NaN NaN <2.2E-16

Table 5.35: The statistical results of redundancy among programs with 1 object

68

Chapter 6

Summary and Conclusion

6.1 Summary

The ROIL system was created to facilitate robot programming, specifically code that

creates objects that the robots may interact with. ROILs main purpose is to provide code

that will give more efficient, optimally functioning code chunks as well as reduce the learning

curve of the programmer. Through experimentation the ROIL system has demonstrated that

it is a viable option for programming object code into simulated environments for robots.

The ROIL system reduced the lines of code for all robot programs that contained nine and

six objects. Tests showed that there was a significant reduction is lines of code in these

categories. There was also a significant decrease in lines of code of the Lynx6 robot arm

with three and one object(s) and the TriBot with three objects , as well. However, it must

be noted that there was a significant increase in lines of code for the CoroBot programs that

contained three objects and one object as well as the TriBot program written with a single

object.

When comparing redundancy of the ROIL system to that of the variable group the

results were evened out. The redundancy of objects with nine and six objects was significantly

reduced using the ROIL system. Recall that the statistical significance for programs with

nine objects was determined by the significance of six-object codes due to the fact that the

software was unable to return a p-value because the amount of redundancy didnt change

amongst all programs with nine objects. Also note, that the redundancy within code with

three or less objects was significantly less than the ROIL code.

69

6.1.1 Conclusion

This research has shown that the ROIL system is a viable option to programming objects

into simulated robot programs. The ROIL system significantly reduced the lines of code for

programs that use six or more objects among all three robots simulated. In addition, the

ROIL system reduced the lines of code count within the Lynx6 and TriBot programs that

use three objects and the Lynx6 programs that only had one object. Also, redundancy was

reduced when ROIL was used in programs that had six or more objects.

Research on writing more efficient, optimal code is minimal and usually debated via

programming bloggers using small chunks of code with quick measurement of completion

times, number of runs or loops, or readability. Furthermore, programmers as a result of

these unreliable determinations often shun using lines of code as a unit of measurement.

This shunning is also backed by the fact that more often than not researchers are comparing

lines of code amongst various languages (Tuxtips.org, 2011). However, it is found to be quite

useful and a reasonable measure taken when used to compare programs that are written in

the same language to determine progress or complexity (Tuxtips.org, 2011). Lines of code

are a starting point to determine if there may be any difference at all amongst the programs.

It is also understood that less code correlates to fewer bugs and errors (Cunningham &

Cunningham, Inc., n.d.). It is determined by this research that there is an overall significant

difference when using the ROIL system when comparing lines of code. Like lines of code,

redundancy is also a controversial measurement, but again, similarly, reduces the likelihood

of bugs and also makes the code easier to read and debug (Teach me how to, 2011). However,

further research is needed in order to determine other qualities of ROIL such as readability

and process time completion to further provide a basis for efficiency and optimality.

6.1.2 Contributions

This dissertation research has made the following contributions to the field of Human

Robot Interaction:

70

• A grammar written in XML was established to create and show a commonality in robot

machines and robot programming .

• The learning curve for robot programming for object manipulation was decreased due

to the systems capability of generalizing object manipulation per language and deliv-

ering the code to the user.

• This dissertation demonstrates the ability for a robot to approach and optimally grip

any object within its capabilities and limitations.

6.1.3 Directions for Future Research

There are a number of questions and concerns that remain concerning this dissertation

and the direction that it should take:

1. The research experimentation was done in simulated in environments. Many insti-

tutions use simulated environments to perform studies. Therefore, other simulated

environments must be tested. Additionally, despite their frequent use in robotics re-

search, simulated environments are not adequate enough to resemble a real environment

which is the greater target for the end purpose of this study. Therefore, real robots

and objects must be acquired and used in the future to determine that the results are

same.

2. In this study, only one programming language was used to code the robots for ex-

perimentation. The number and variations of languages, in both simulated and real

environments, must be increased in order for ROIL to be determined useful in the

community.

3. RFID devices and tags will be used to gain a more accurate description and position

of the worlds infinite, unique objects. In addition, cameras and color tags will be

used to broaden the studys capabilities and for use of the various studies at various

institutions.

71

4. Due to the fact that measuring efficiency using the counting lines of code is often con-

sidered debatable, research will also continue exploring other performance measure-

ments including time of completion, manipulation accuracy, identification accuracy,

manipulation optimality, and code error frequency.

72

References

Ahn, S. C., Lee, J. W., Lim, K. W., Ko, H., Kwon, Y. M., & Kim, H. G. (2006). Upnp sdk

for robot development. In Siceicase international joint conference (pp. 363–368).

Anderson, M., Thaete, L., & Wiegand, N. (2007). Player/stage: A unifying paradign to

improve robotics education delivery. In Workshop on research in robots for educatoin

at robotics: science and systems conference.

Apache Friends - XAMPP. (n.d.). http://www.apachefriends.org/en/xampp.html. ([On-

line; accessed 5-March-2012])

Bakken, D. E. (2003). Middleware. In Encyclopedia of distributed computing. Kluwer

Academic Press.

Brooks, D. R. (1999). C programming: the essentials for engineers and scientists. Springer–

New York.

Charlton, J. (2008). Lines of Code as a Measure of Progress. http://devlicio.us/blogs/

casey/archive/2008/05/16/lines-of-code-as-a-measure-of-progress.aspx.

(Web log comment)

Computer Desktop Encyclopedia. (2008). USB. http://www.pcmag.com/encyclopedia

term/0,2542,t%3DUSB&i%3D53531,00.asp. The Computer Language Company Inc.

CORBA FAQ. (n.d.). http://www.omg.org/gettingstarted/corbafaq.htm. ([Online;

accessed 2-March-2012])

CoroWare. (n.d.). CoroBot Classic programmable mobile robot platform. http://robotics

.coroware.com/corobot. ([Online; accessed 2-March-2012])

Cunningham & Cunningham, Inc. (n.d.). Lines of code. http://www.c2.com/cgi/wiki

?LinesOfCode. (Web log comment)

DelRossi, R. A. (1993). Visual c++ is a strong development tool. InfoWorld , 25 , 101.

73

Edsinger, A., & Kemp, C. C. (2006). Manipulation in human environments (Nos. 102–109).

(Humanoid Robots)

Edsinger, A., & Kemp, C. C. (2007). Human-robot interact for cooperative manipulation:

Handing objects to one another.

Edsinger, A., & Kemp, C. C. (2008). Two arms are better than one: A behavior based control

system for assistive bimanual manipulation (Vol. 370). Springer.

Gentleman, R., & Ihaka, R. (2011). R (2.14.1). http://cran.cnr.berkeley.edu/bin/

windows/. (Software)

Gill, C. D., & Smart, W. D. (2002). Middleware for robots. In Intelligent distributed and

embedded systems: Papers from the 2002 aaai spring symposium (pp. 1–5).

Gostai. (n.d.). Urbi. http://www.gostai.com/index.php.

Grabianowski, E., & Tyson, J. (2001). How PCI Works: Plug and Play. http://computer

.howstuffworks.com/pci4.htm.

Grimes, R. A. (2001). Malicious mobile code: virus protection for windows. O’Reilly &

Associates–Sebastopol, CA.

Hertzfeld, A. (2011). Revolution in the valley: The insanely great story of how the mac was

made. In (chap. -2000 Lines of Code). O’Reilly Media.

Jagiello, J., Tay, N., Eronen, M., Fernhill, D., & Park, F. (2006). A robotic middleware.

Components , 1–6.

James, J. (2007). Is SLOC a valid measure of quality or efficiency? http://

www.techrepublic.com/blog/programming-and-development/is-sloc-a-valid

-measure-of-quality-or-efficiency/499. (Web log comment)

Johns, K., & Taylor, T. (2008). Professional microsoft robotics developer studio. Wiley

Publishing, Inc.–Indianapolis.

Katz, J. K., & McCormick, D. L. (2000). The encyclopedia of trading strategies. McGraw-

Hill–New York.

74

Kemp, C., Edsinger, A., & Torres-Jara, E. (2007). Challenges for robot manipulation in

human environments. Perception, 1 (14), 20–29.

Kemp, C. C., Anderson, C. D., Nguyen, H. T., Trevor, A. J., & Xu, Z. (2008). A point-and-

click interface for the real world: laser designation of objects for mobile manipulation.

Proceedings of the 3rd ACMIEEE international conference on Human robot interaction,

241–248. (ACM)

Lapham, J. (1999). Robotscript: The introduction of a universal robot programming lan-

guage. The Industrial Robot , 1 , 17.

Lego Mindstorms NXT. (1999). http://mindstorms.lego.com/en-us/Default.aspx.

LineTally. (2008). http://download.cnet.com/LineTally/3000-2229 4-10785145.html#

ixzz1nn5orMF1. (Software)

Lucas, A. (2008). Lines of Code - Dispelling The Myths. http://www.callingshotgun.net/

geekery/lines-of-code-dispelling-the-myths/. (Web log comment)

Lynxmotion. (n.d.). AL5A Robotics Arm CoroBot Kit. http://www.lynxmotion.com/

c-27-robotic-arms.aspx.

Makatchev, M., & Tso, S. K. (2000). Human-robot interface using agents communicating

in an xml-based markup language. Proceedings 9th IEEE International Workshop on

Robot and Human Interactive Communication IEEE ROMAN 2000 , 270–275. (IEEE)

Marx, D. (2008). Lines of Code and Unintended Consequences. http://marxsoftware

.blogspot.com/2008/09/lines-of-code-and-unintended.html. (Web log com-

ment)

McConnell, S. (1993). Code Complete: A Practical Handbook of Software Construction.

Microsoft Press – Redmond, WA.

Merriam-Webster.com. (n.d.). Manipulate.

Microsoft. (n.d.). Microsoft Robotics Developer Studios 2008 R3 (2.2.76.0). http://www

.microsoft.com/download/en/details.aspx?id=17386. (Software)

75

Microsoft. (2003). How Plug and Play Works. http://technet.microsoft.com/en-us/

library/cc781092(v=ws.10).aspx.

Monkman, G. J. (2007). Robot Grippers (1st ed.). Wiley-VCH.

Mueller, J. (2009). C design and development. Wrox.

Newmarch, J. (2010). Jan Newmarchs Guide to Jini Technologies (1st ed. http://jan

.newmarch.name/java/jini/tutorial/Jini.html. APress.

Nguyen, H., Anderson, C., Trevor, A., Jain, A., Xu, Z., & Kemp, C. C. (2008). El-e : An

assistive robot that fetches objects from flat surfaces. Robotics .

Nichols, J., Myers, B. A., Higgins, M., Hughes, J., Harris, T. K., Rosenfeld, R., & Pignol,

M. (2002). Generating remote control interfaces for complex appliances. Proceedings

of the 15th annual ACM symposium on User interface software and technology UIST

02 , 2 , 161–170.

Norman, D. (1990). The design of everyday things. Doubleday Business–New York.

Pappas, C. H., & Murray, W. H. (1995). The visual c++ handbook. Osborne McGraw-Hill–

Berkeley, Calif.

Php Web Scripting, L. (n.d.). Elimination of code redundancy. http://phpwebscripting

.com/phpwebsite/index.php?module=article&view=4&page num=2.

Saxena, A., Driemeyer, J., Kearns, J., Osondu, C., & Ng, A. Y. (2006). Learning to grasp

novel objects using vision. Learning , 12 (39), 1–10.

Simon, R., Nagel, C., Watson, K., Glynn, J., Skinner, M., & Evjen, B. (n.d.). Professional

c#.

SimplySim. (n.d.). http://www.simplysim.net/DL/NXT-MSRDS-R3.msi. (Software pack-

age)

Smart, W. D. (2007). Is a common middleware for robotics possible? Development .

Smith, P. (2011). Software build systems: principles and experience. Addison Wesley–Upper

Saddle River, NJ.

76

Stone, P. (2007). Intelligent autonomous robotics: A robot soccer case study. Synthesis

Lectures on Artificial Intelligence and Machine Learning , 1 .

Teach-ICT.com. (n.d.). Software Redundancy. http://www.teach-ict.com/gcse

computing/ocr/211 hardware software/reliability/miniweb/pg6.htm.

Teach me how to. (2011). Redundant code. http://www.teach-ict.com/gcse computing/

ocr/211 hardware software/reliability/miniweb/pg6.htm. (Web log comment)

Tuxtips.org. (2011). Lines Of Code The Most Meaningless Metric. http://www.tuxtips

.org/?p=4. (Web log comment)

Universal Serial Bus. (n.d.). What is UPnP? UPnP Forum. http://http://www.usb.org/

about/features/.

Waloszek, G. (2005). Universal Remote Console. http://www.sapdesignguild.org/

editions/edition9/urc.asp. (SAP User Experience, SAP AG)

Warth, A. (2011). Experimenting with programming languages. ProQuest, UMI Dissertation

Publishing.

Wörn, H., Wurll, C., & Henrich, D. (1998). Automatic off-line programming and motion

planning for industrial robots. In Isr98, 29th international symposium on robotics.

Zimmermann, G., Vanderheiden, G., & Gilman, A. (2003). Universal remote console -

prototyping for the alternate interface access standard. Universal Access Theoretical

Perspectives Practice and Experience, 524–531.

77

Appendices

78

Appendix A

MySQL Database

−− Database : ‘ r o i l db ‘

−− Table s t r u c t u r e f o r t ab l e ‘ code ‘

−−

CREATE TABLE IF NOT EXISTS ‘ code ‘ (

‘ codeID ‘ i n t (11) NOT NULL AUTO INCREMENT,

‘ programminglanguage ‘ i n t (3) DEFAULT NULL,

‘ pa s t e InF i l e ‘ l ongtext ,

‘ ROILfi le ‘ mediumblob ,

‘ i n s t r u c t i o n s ‘ text ,

PRIMARY KEY (‘ codeID ‘)

) ENGINE=InnoDB DEFAULT CHARSET=l a t i n 1 AUTO INCREMENT=2 ;

−−

−− Table s t r u c t u r e f o r t ab l e ‘ programminglanguages ‘

−−

CREATE TABLE IF NOT EXISTS ‘ programminglanguages ‘ (

‘ plID ‘ i n t (3) DEFAULT NULL,

‘ plname ‘ varchar (35) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=l a t i n 1 ;

79

−− −−

−−

−− Table s t r u c t u r e f o r t ab l e ‘ robot in fo ‘

−−

CREATE TABLE IF NOT EXISTS ‘ robot in fo ‘ (

‘ robotID ‘ i n t (11) NOT NULL AUTO INCREMENT,

‘ modelID ‘ i n t (10) NOT NULL DEFAULT ’0 ’ ,

‘ robot manufacturer ‘ varchar (100) DEFAULT NULL,

‘ robot brand ‘ varchar (100) DEFAULT NULL,

‘ modelNumber ‘ varchar (100) DEFAULT NULL,

‘ robotname ‘ varchar (150) DEFAULT NULL,

‘ e s s e n t i a l p a r t s ‘ varchar (250) DEFAULT NULL,

‘ a d d i t i o n a l p a r t s ‘ varchar (250) DEFAULT NULL,

‘ bui l t how ‘ varchar (25) DEFAULT NULL,

‘ gr ipper span max ‘ f l o a t DEFAULT NULL,

‘ gr ipper span min ‘ f l o a t DEFAULT NULL,

‘ payload ‘ f l o a t DEFAULT NULL,

‘ he ight inches max ‘ f l o a t DEFAULT NULL,

‘ he ight inches min ‘ f l o a t DEFAULT NULL,

‘ e n d e f f e c t o r e x i s t s ‘ char (3) DEFAULT NULL,

‘ basehe ight ‘ f l o a t DEFAULT NULL,

‘ category ‘ varchar (25) DEFAULT NULL,

PRIMARY KEY (‘ robotID ‘)

) ENGINE=InnoDB DEFAULT CHARSET=l a t i n 1 AUTO INCREMENT=7 ;

80

−− −−

−−

−− Table s t r u c t u r e f o r t ab l e ‘ s im ob j ec t s ‘

−−

CREATE TABLE IF NOT EXISTS ‘ s im ob jec t s ‘ (

‘ objectID ‘ i n t (11) NOT NULL AUTO INCREMENT,

‘ objectName ‘ varchar (50) DEFAULT NULL,

‘ category ‘ varchar (50) DEFAULT NULL,

‘ o weight max ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o weight min ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o he ight inches max ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o he i ght inche s min ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ f i d c o l o r 1 ‘ char (11) DEFAULT NULL,

‘ f i d c o l o r 2 ‘ char (11) DEFAULT NULL,

‘ f i d c o l o r 3 ‘ char (11) DEFAULT NULL,

‘ o weight ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o heightY ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o widthX ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o depthZ ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o r i e n t a t i o n ‘ varchar (100) DEFAULT NULL,

‘ g e n e r a l l y f o u n d i n ‘ varchar (50) DEFAULT NULL,

‘ o width inches max ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o width inches min ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ gen geometr ic shape ‘ varchar (30) DEFAULT NULL,

81

‘ o depth inches max ‘ f l o a t (20 ,5) DEFAULT NULL,

‘ o depth inches min ‘ f l o a t (20 ,5) DEFAULT NULL,

‘1 or 2 hands ? ‘ t i n y i n t (1) DEFAULT NULL,

PRIMARY KEY (‘ objectID ‘)

) ENGINE=InnoDB DEFAULT CHARSET=l a t i n 1 AUTO INCREMENT=14 ;

82

Appendix B

XML Structure - Robot

Listing B.1: Empty object XML structure

<?xml ve r s i on = ’1.0 ’ encoding =’ISO−8859−1’?>

<a l l o b j e c t s >

<ob j e c t name= ’ ’ category =’’>

<prope r t i e s>

<gen geom shape></gen geom shape>

<heightY></heightY>

<weight></weight>

<widthX></widthX>

<depthZ></depthZ>

<weight max></weight max>

<weight min></weight min>

<height max></height max>

<height min></height min>

<width max></width max>

<width min></width min>

<depth max></depth max>

<depth min></depth min>

<g e n e r a l l y f o u n d i n ></g e n e r a l l y f o u n d i n>

</p rope r t i e s>

</object>

</ a l l o b j e c t s >

83

Listing B.2: Example of a street cone data

<?xml ve r s i on = ’1.0 ’ encoding =’ISO−8859−1’?>

<a l l o b j e c t s >

<ob j e c t name=’cone ’ category =’’>

<prope r t i e s>

<gen geom shape></gen geom shape>

<heightY></heightY>

<weight></weight>

<widthX></widthX>

<depthZ></depthZ>

<weight max >10.00000</weight max>

<weight min >1.50000</ weight min>

<height max >36.00000</ height max>

<height min >12.00000</ height min>

<width max></width max>

<width min></width min>

<depth max></depth max>

<depth min></depth min>

<g e n e r a l l y f o u n d i n ></g e n e r a l l y f o u n d i n>

</p rope r t i e s>

</object>

</ a l l o b j e c t s >

Listing B.3: Example of an official golfball data

<?xml ve r s i on = ’1.0 ’ encoding =’ISO−8859−1’?>

<a l l o b j e c t s >

<ob j e c t name=’ g o l f b a l l ’ category =’’>

84

<prope r t i e s>

<gen geom shape></gen geom shape>

<heightY></heightY>

<weight></weight>

<widthX></widthX>

<depthZ></depthZ>

<weight max >1.62000</weight max>

<weight min >0.00000</ weight min>

<height max></height max>

<height min >1.68000</ height min>

<width max></width max>

<width min></width min>

<depth max></depth max>

<depth min></depth min>

<g e n e r a l l y f o u n d i n ></g e n e r a l l y f o u n d i n>

</p rope r t i e s>

</object>

</ a l l o b j e c t s >

85

Appendix C

XML Structure - Object

Listing C.1: Empty robot XML structure

<?xml ve r s i on = ’1.0 ’ encoding =’ISO−8859−1’?>

<the robot>

<therobot robotID = ’ ’ modelID= ’ ’ name=’Lynx6 ’ manu= ’ ’ brand=’’>

<prope r t i e s>

<gripper span max></gripper span max>

<gr ipper span min></gr ipper span min>

<payload></payload>

<height inches max></he ight inches max>

<he ight inches min ></he ight inches min>

<category></category>

</p rope r t i e s>

</therobot>

</the robot>

Listing C.2: Example of an the Lynx6 Arm data

<?xml ve r s i on = ’1.0 ’ encoding =’ISO−8859−1’?>

<the robot>

<therobot robotID = ’4 ’ modelID= ’0 ’ name=’Lynx6 ’ manu=’Lynxmotion ’

brand=’Lynxmotion ’>

<prope r t i e s>

<gripper span max >1.25</ gripper span max>

86

<gr ipper span min >0</gr ipper span min>

<payload>4</payload>

<height inches max >14</he ight inches max>

<he ight inches min >0</he ight inches min>

<category>Impactive</category>

</p rope r t i e s>

</therobot>

</the robot>

87

Appendix D

ROILfile - C#

p u b l i c c l a s s ROIL

{

pub l i c ROIL()

{

}

i n t objcount = 0 ;

s t a t i c s t r i n g [,] a l l o b j e c t s ; // = new s t r i n g [i , 7] ;

s t r i n g he ight ;

s t r i n g width ;

f l o a t widthf ;

s t r i n g depth ;

f l o a t depthf ;

f l o a t height max = 0 ;

f l o a t he ight min ;

f l o a t width max = 0 ;

f l o a t width min ;

f l o a t depth max = 0 ;

f l o a t depth min ;

f l o a t h e i g h t f ;

s t r i n g f i d u c i a l r g b 1 = ”” ;

88

#reg ion

pub l i c s t r i n g [,] R e a d f i l e ()

{

s t r i n g p h p f i l e = ” http :// l o c a l h o s t / d i s s / s e l e c t e d o b j e c t . xml ” ;

Uri h t tpur i = new Uri (p h p f i l e) ;

s t r i n g x m l f i l e = Convert . ToString (DisplayFi leFromServer (h t tpur i)) ;

// s t r i n g x m l f i l e = Convert . ToString (f t p u r i) ;

#reg i on XMLReader

i n t i = 0 ;

us ing (XmlReader reader = XmlReader . Create (new Str ingReader (x m l f i l e)))

{

whi le (reader . Read ())

{

// Only de t e c t s t a r t e lements .

i f (r eader . I sStartElement ())

{

// Get element name and switch on i t .

i f (r eader .Name == ” ob j e c t ”)

{

++objcount ;

}

89

}

}

}

a l l o b j e c t s = new s t r i n g [objcount , 7] ;

s t r i n g ggs = ”” ;

s t r i n g name attr ;

s t r i n g weight = ”” ;

f l o a t we ight f ;

f l o a t weight max = 0 ;

f l o a t weight min ;

us ing (XmlReader reader = XmlReader . Create (new Str ingReader (x m l f i l e)))

{

r eader . ReadToDescendant (” ob j e c t ”) ;

do

{

i f (r eader . I sStartElement ())

{

s t r i n g name = reader .Name ;

switch (reader .Name)

{

case ” a l l o b j e c t s ” :

90

case ” ob j e c t ” :

name attr = reader [” name ”] ;

a l l o b j e c t s [i , 0] = name attr ;

break ;

case ” p r o p e r t i e s ” :

break ;

case ” gen geom shape ” :

i f (r eader . Read ())

{

i f (r eader . Value == ” sphere ”)

{

a l l o b j e c t s [i , 1] = ” sphere ” ;

}

e l s e i f (r eader . Value == ”box ”)

{

ggs = ”box ” ;

a l l o b j e c t s [i , 1] = ggs ;

}

e l s e i f (r eader . Value == ” capsu l e ”)

{

ggs = ” capsu l e ” ;

a l l o b j e c t s [i , 1] = ggs ;

}

e l s e i f (r eader . Value == ” r e c t a n g l e ”)

{

ggs = ” r e c t a n g l e ” ;

91

a l l o b j e c t s [i , 1] = ggs ;

}

e l s e Console . WriteLine (” no shape ”) ;

// break ;

}

break ;

case ” heightY ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

i f ((! s t r i n g . IsNullOrEmpty (ho ldva lue)) | |

(ho ldva lue != ”0”))

{

he ight = reader . Value ;

a l l o b j e c t s [i , 5] = he ight ;

}

e l s e { he ight = ”” ; }

}

break ;

case ” weight ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

i f ((! s t r i n g . IsNullOrEmpty (ho ldva lue)) | |

(ho ldva lue != ”0”))

{

weight = reader . Value ;

92

a l l o b j e c t s [i , 2] = weight ;

// goto case ”depthZ ” ;

}

e l s e

{

weight = ”” ;

}

}

break ;

case ”widthX ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

i f ((! s t r i n g . IsNullOrEmpty (ho ldva lue)) | |

(ho ldva lue != ”0”))

{

width = reader . Value ;

a l l o b j e c t s [i , 4] = width ;

}

e l s e { width = ”” ; }

}

break ;

case ”depthZ ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

93

i f ((! s t r i n g . IsNullOrEmpty (ho ldva lue)) | |

(ho ldva lue != ”0”))

{

depth = reader . Value ;

a l l o b j e c t s [i , 3] = depth ;

}

e l s e { depth = ”” ; }

}

break ;

case ”weight max ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

weight max = Convert . ToSingle

(reader . Value) ;

// goto case ” weight min ” ;

}

e l s e { weight max = 0 ; }

}

break ;

case ” weight min ” :

i f (r eader . Read ())

{

94

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

// weight max += 0 ;

weight min = Convert . ToSingle

(reader . Value) ;

we ight f = (weight max + weight min)/2 f ;

weight = Convert . ToString (we ight f) ;

a l l o b j e c t s [i , 2] = weight ;

// goto case ”depthZ ” ;

// cont inue ;

}

e l s e { weight min = 0 ; }

}

break ;

case ” height max ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

height max = Convert . ToSingle

(reader . Value) ;

// goto case ” he ight min ” ;

}

95

e l s e

{

// goto case ” heightY ” ;

height max = 0 ;

}

}

break ;

case ” he ight min ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

height min = Convert . ToSingle

(reader . Value) ;

// take avg diameter

h e i g h t f = (height max + height min)/2 f ;

he ight = Convert . ToString (h e i g h t f) ;

a l l o b j e c t s [i , 5] = he ight ;

// goto case ” f i d u c i a l r g b 1 ” ;

}

}

break ;

case ”width max ” :

i f (r eader . Read ())

{

96

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

width max = Convert . ToSingle

(reader . Value) ;

}

e l s e

{ // goto case ”widthX ” ;

width max = 0 ;

}

}

break ;

case ”width min ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

width min = Convert . ToSingle

(reader . Value) ;

widthf = (width max + width min)/2 f ;

width = Convert . ToString (widthf) ;

a l l o b j e c t s [i , 4] = width ;

}

e l s e { width min = 0 ; }

97

}

break ;

case ”depth max ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

depth max = Convert . ToSingle

(reader . Value) ;

}

e l s e { depth max = 0 ; }

}

break ;

case ”depth min ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

depth min = Convert . ToSingle

(reader . Value) ;

depthf = (depth max + depth min)/2 f ;

depth = Convert . ToString (depthf) ;

a l l o b j e c t s [i , 3] = depth ;

98

}

e l s e { depth min = 0 ; }

}

break ;

case ” f i d u c i a l r g b 1 ” :

i f (r eader . Read ())

{

s t r i n g ho ldva lue = reader . Value . Trim () ;

s t r i n g compare = ”” ;

i f (ho ldva lue != compare)

{

//do something

a l l o b j e c t s [i , 6] = f i d u c i a l r g b 1 ;

}

}

break ;

}

}

} whi le (reader . Read ()) ; // i ++;

i f (r eader .Name == ” ob j e c t ”) { i ++; }

}

#endreg ion

re turn a l l o b j e c t s ;

}

#endreg ion

99

pub l i c s t a t i c s t r i n g Disp layFi leFromServer (Uri s e r v e rU r i)

{

s t r i n g f i l e S t r i n g ;

// Get the ob j e c t used to communicate with the s e r v e r .

WebClient myrequest = new WebClient () ;

// This example assumes the FTP s i t e uses anonymous logon .

t ry

{

byte [] Data = myrequest . DownloadData (s e r v e rU r i) ;

f i l e S t r i n g = System . Text . Encoding .UTF8. GetStr ing (Data) ;

r e turn f i l e S t r i n g ;

}

catch (WebException e)

{

Console . WriteLine (”The f i l e could not be read : ”) ;

Console . WriteLine (e . ToString ()) ;

r e turn e . Message ;

}

}

}

100

Appendix E

ROILfile - Code Append

i n t i = 0 ;

ROIL r = new ROIL () ;

void AddChosenObjects (s t r i n g obje)

{

s t r i n g [,] a l l o b j e c t s = r . R e ad f i l e () ;

f o r each (s t r i n g ao in a l l o b j e c t s)

{

i f (obje == ao){

i = Array . IndexOf (a l l o b j e c t s , obje) ;

MoveToPosition (Convert . ToSingle (a l l o b j e c t s [i , 6]) ,

Convers ions . InchesToMeters (

Convert . ToSingle (a l l o b j e c t s [i , 5])) ,

Convert . ToSingle (a l l o b j e c t s [i , 8]) , 80 , 0 ,

Convers ions . InchesToMeters (

Convert . ToSingle (a l l o b j e c t s [i , 4])) , 1) ;

}

}

}

void AddChosenObjects (){ // t h i s f unc t i on simply adds the o b j e c t s . . .

101

// f l o a t x , y , z ;

s t r i n g [,] a l l o b j e c t s = r . R e a d f i l e () ; // Re a d f i l e r e tu rn s a l l o b j e c t s

f o r each (s t r i n g ao in a l l o b j e c t s)

{

i f (a l l o b j e c t s [i , 1] == ”box ”)

{

Sing leShapeEnt i ty t e s t = new Sing leShapeEnt i ty (

new BoxShape (

new BoxShapePropert ies (

Convers ions . InchesToMeters (

Convert . ToSingle (

a l l o b j e c t s [i , 2])) ,

new Pose () , new Vector3 (

Convers ions . InchesToMeters (

Convert . ToSingle (Convert . ToSingle (

a l l o b j e c t s [i , 5]))) ,

Convers ions . InchesToMeters (Convert . ToSingle (

a l l o b j e c t s [i , 4])) ,

Convers ions . InchesToMeters (

Convert . ToSingle (

a l l o b j e c t s [i , 3])))

)

) , new Vector3 (− .1677594 f , 0 , −.2387654 f)

) ;

102

t e s t . State .Name = a l l o b j e c t s [i , 0] ;

S imulat ionEngine . Globa l InstancePort . I n s e r t (t e s t) ;

MoveToPosition (− .1677594 f , Convers ions . InchesToMeters

(Convert . ToSingle (

a l l o b j e c t s [i , 5])) , −.2387654 f , 80 , 0 ,

Convers ions . InchesToMeters (

Convert . ToSingle (a l l o b j e c t s [i , 4])) , 1) ;

}

e l s e i f (a l l o b j e c t s [i , 1] == ” sphere ”)

{

Sing leShapeEnt i ty t e s t = new Sing leShapeEnt i ty (

new SphereShape (

new SphereShapePropert ies (

Convers ions . InchesToMeters (

Convert . ToSingle (a l l o b j e c t s [i , 2])) ,

new Pose () ,

Convers ions . InchesToMeters (

Convert . ToSingle (

a l l o b j e c t s [i , 5]))

)

) , // d e f a u l t rad iu s

new Vector3 (− .2479551 f , 0 , −0.1866515 f)

) ;

t e s t . State .Name = a l l o b j e c t s [i , 0] ;

103

Simulat ionEngine . Globa l InstancePort . I n s e r t (t e s t) ;

MoveToPosition (− .2479551 f , Convers ions . InchesToMeters (

Convert . ToSingle (a l l o b j e c t s [i , 5])) ,

−0.1866515 f , 0 , 0 , Convers ions . InchesToMeters (

Convert . ToSingle (a l l o b j e c t s [i , 5])) , 1) ;

}

e l s e i f (a l l o b j e c t s [i , 1] == ” capsu l e ”)

{

Console . WriteLine (” ”) ;

}

//}

i ++;

}

}

104

Appendix F

Lines of Code - Results

Table F.1: TriBot with 1 Object

TriBot single Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

baseball 115 64 4 51 234
book 121 61 1 49 232
box 121 62 1 49 233

cone 116 60 4 48 228
die 121 61 1 48 231

domino 121 65 1 50 237
Golfball 114 63 4 50 231
Marble 114 62 4 48 228

Mechanical Pencil 120 61 4 53 238
Prescriptionbottle 121 60 3 50 234

ringbox 123 61 1 51 236
sodabtl 120 61 3 49 233

Table F.2: TriBot with 3 Objects

TriBot geom Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

capsules.cs 253 74 8 86 421
spheres.cs 236 83 10 86 415
3aboxes.cs 257 77 1 88 423
3bboxes.cs 252 80 4 88 424

31Ea.cs 249 79 6 91 425
31Eb.cs 248 83 7 91 429
31Ec.cs 249 77 6 89 421
31Ed.cs 248 79 7 89 423

105

Table F.3: TriBot with 6 Objects

Source File Path Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

6a.cs 179 72 15 77 343
6b.cs 189 66 10 76 341

6boxes.cs 198 70 4 76 348
6c.cs 186 71 12 77 346
6d.cs 181 68 15 76 340
6e.cs 187 73 11 82 353
6f.cs 178 71 17 80 346
6g.cs 189 76 18 85 368

Table F.4: TriBot with 9 Objects

Source File Path Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

9a.cs 222 74 18 88 402
9b.cs 236 72 12 89 409
9c.cs 236 72 12 89 409
9d.cs 229 75 15 92 411
9e.cs 228 74 17 93 412
9f.cs 226 78 17 94 415
9g.cs 237 83 18 96 434
9h.cs 238 75 9 89 411

Table F.5: CoroBot with 1 Object

CoroBot single Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

baseball 156 69 12 47 284
book 140 70 13 41 264
box 147 62 10 39 258

cone 148 62 10 39 259
die 143 61 13 39 256

domino 147 62 10 40 259
Golfball 147 66 10 41 264
Marble 140 63 13 41 257

Mechanical Pencil 140 70 13 42 265
Prescriptionbottle 146 61 13 39 259

ringbox 147 61 12 40 260
sodabtl 148 61 10 40 259

106

Table F.6: CoroBot with 3 Objects

CoroBot geom Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

capsules.cs 176 61 17 45 299
spheres.cs 168 72 19 53 312
3aboxes.cs 184 64 13 53 314
3bboxes.cs 189 69 10 56 324

31Ea.cs 181 67 15 56 319
31Eb.cs 180 71 16 54 321
31Ec.cs 181 65 15 53 314
31Ed.cs 180 67 16 54 317

Table F.7: CoroBot with 6 Objects

Source File Path Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

6a.cs 213 73 24 65 375
6b.cs 223 67 19 63 372

6boxes.cs 232 71 13 65 381
6c.cs 220 72 21 65 378
6d.cs 215 69 24 63 371
6e.cs 221 74 20 69 384
6f.cs 212 72 26 67 377
6g.cs 213 77 24 70 384

Table F.8: CoroBot with 9 Objects

Source File Path Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

9a.cs 253 75 27 76 431
9b.cs 267 73 21 76 437
9c.cs 264 78 23 76 441
9d.cs 260 76 24 77 437
9e.cs 259 75 26 79 439
9f.cs 257 79 26 80 442
9g.cs 253 79 27 78 437
9h.cs 269 76 18 77 440

107

Table F.9: Lynx6 with 1 Object

Lynx6 single Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

baseball 1372 986 366 66 282
book 1312 986 349 56 264
box 1312 986 349 56 264

cone 1307 986 348 59 262
die 1312 986 349 56 263

domino 1312 986 353 56 264
Golfball 1305 986 352 59 264
Marble 1305 986 350 59 264

Mechanical Pencil 1310 986 348 59 264
Prescriptionbottle 930 986 190 46 175

ringbox 1166 986 0 0 175
sodabtl 1312 986 348 56 263

Table F.10: Lynx6 with 3 Objects

Lynx6 geom Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

capsules.cs 1340 334 63 269 2006
spheres.cs 1323 344 65 270 2002
3aboxes.cs 1344 337 56 268 2005
3bboxes.cs 1339 339 59 271 2008

31Ea.cs 1336 339 61 273 2009
31Eb.cs 1335 343 62 271 2011
31Ec.cs 1336 337 61 269 2003
31Ed.cs 1335 339 62 270 2006

Table F.11: Lynx6 with 6 Objects

Source File Path Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

6a.cs 1368 345 70 282 2065
6b.cs 1378 339 65 281 2063

6boxes.cs 1387 342 59 280 2068
6c.cs 1375 344 67 282 2068
6d.cs 1370 341 70 280 2061
6e.cs 1376 346 66 286 2074
6f.cs 1368 349 70 286 2073
6g.cs 1378 349 73 291 2091

108

Table F.12: Lynx6 with 9 Objects

Source File Path Code Lines Comment Lines Mixed Lines Blank Lines Total Lines

9a.cs 1411 347 73 292 2123
9b.cs 1425 345 67 292 2129
9c.cs 1422 350 69 290 2131
9d.cs 1418 348 70 292 2128
9e.cs 1417 347 72 295 2131
9f.cs 1415 351 72 294 2132
9g.cs 1411 351 73 293 2128
9h.cs 1427 348 64 291 2130

Table F.13: ROIL Lines of Code

ROIL

Source File Path Code Lines Comment Lines Mixed Lines Blank Lines Total Lines
CoroBot ROIL.cs 190 68 23 46 327

LynxL6Arm ROIL.cs 1070 218 54 202 1544
TriBot ROIL.cs 137 64 13 45 259

Table F.14: Average and Percentages of Decrease for Each Robot

LOC avg LOC %diff

tri 1 118.9167 tri 1 -15.2067
tri 3 147.125 tri 3 6.881903
tri 6 185.875 tri 6 26.29455
tri 9 231.5 tri 9 40.82073

ROIL 137 ROIL

LOC LOC
coro 1 145.75 coro 1 -30.3602
coro 3 179.875 coro 3 -5.62891
coro 6 218.625 coro 6 13.0932
coro 9 260.25 coro 9 26.99328
ROIL 190 ROIL

LOC LOC
lynx 1 1271.25 lynx 1 15.83088
lynx 3 1336 lynx 3 19.91018
lynx 6 1375 lynx 6 22.18182
lynx 9 1418.25 lynx 9 24.55491
ROIL 1070 ROIL

109

Appendix G

Redundancy - Results

Table G.1: Amount of Redundancy for Programs with One Object

File/object same object type redundant objects results

s c b
marble 0 0 0 0

baseball 0 0 0 0
book 0 0 0 0
box 0 0 0 0

cone 0 0 0 0
die 0 0 0 0

domino 0 0 0 0
golfball 0 0 0 0

mechanical pencil 0 0 0 0
prescription bottle 0 0 0 0

ringbox 0 0 0 0
sodabtl 0 0 0 0

Table G.2: Amount of Redundancy for Programs with Three Objects

File/object same type red objs multi NO red obj results

s c b
capsules 2 14
spheres 2 14
3aboxes 2 14
3bboxes 2 14

31Ea 0 0 0 2 10
31Eb 0 0 0 2 10
31Ec 0 0 0 2 10
31Ed 0 0 0 2 10

110

Table G.3: Amount of Redundancy for Programs with Six Objects

File/object same object type redundant objects results

s c b
6a 2 1 0 21
6b 0 0 3 21
6c 1 1 1 21
6d 1 1 1 21
6e 1 1 1 21
6f 2 2 0 28
6g 2 1 0 21

boxes (6) 5 35

Table G.4: Amount of Redundancy for Programs with Nine Objects

File/object same object type redundant objects results

s c b
9a 2 1 3 42
9b 0 1 5 42
9c 1 2 3 42
9d 1 1 4 42
9e 1 2 3 42
9f 2 2 2 42
9g 2 0 4 42
9h 0 0 6 42

Table G.5: Average and Percentages of Decrease for Each Set of Objects

Redundancy

Number of objects Mean % diff
nine 42 65.63636

six 23.625 40.74074
three 12 -16.6667

Table G.6: Redundancy in ROIL

Amount of Redundancy

ROIL 14

111

