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ABSTRACT 

 

More than 80 percent of people suffer from low back pain at some point in their 

lifetime costing losses of up to $9 billion because of treatment and loss of work hours in 

the US alone. Kinematics and kinetics of body movements can be affected by low back 

pain and may result in spinal instability.  

The aim of this study was to develop testing procedure to quantify stability of the 

spine during low back motion using both traditional and non-linear methods in standing 

position. The objective was to quantify movements that are performed repetitively in 

flexion - extension (FE), lateral bending (LB), and rotation (ROT) of the trunk using 

traditional and non-linear methods.  The study was approved by Institutional Review 

Boards (IRB) of Auburn University, AL as well as Palmer College of Chiropractic, IA. 

Nine healthy test subjects were recruited for the study using word of mouth and screened 

for eligibility by licensed clinicians. Participants were asked to perform 10 cycles of 

flexion - extension, lateral bending and rotation motion against no resistance, 5 lb, 10 lb 

and 15 lb resistance. Motion data was recorded at a frequency of 120 Hz for each 

exertion and for each resistance. Range of Motion (ROM) and non-linear techniques 

(Correlation Dimension (CoD), Approximate Entropy (ApEn)) were employed to analyze 

the motion data. EMG data was recorded at a frequency of 1200 Hz from six muscle 

groups: Erector Spinae, Multifidus, Latissimus Dorsi, Internal Obliques, External 
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Obliques and Rectus Abdominis. Mean and median frequency of the recorded signals 

were analyzed to see the effect of increasing load on muscle fatigue. 

The ROM values varied from 7.5 – 40.2 Deg. For FE, 9.06 – 44.6 Deg. for LB 

and 6.68 – 21.3 Deg. for ROT, the ApEn values ranged from 0.133 – 0.40 while the CoD 

values ranged from 1.79 – 2.47. The overall results indicated that variability did not 

change significantly with increasing loads. The EMG results indicated that fatigue was 

not induced in participant’s muscles which might have helped them provide required 

neuromuscular response to increasing loads. However it is important to keep in mind that 

the main objective of the thesis was development of test protocol for analysis of low back 

motion. The test protocol developed herein needs to be further fine tuned before it can be 

applied for larger studies. Testing method for data recording during rotations needs 

improvement as there might be inaccuracy involved due to skin motion altering the 

position of sensors. Also, once the protocol is perfected, further testing needs to be 

carried out on a larger sample size so that the results can be generalized. Future studies 

need to consider the following recommendations for obtaining more meaningful data 

based on healthy subjects. 1) Increase the resistance to motion so that higher fatigue is 

induced in the participant. 2) Ask the participant to perform the exertions at two different 

fixed speeds. 3) To minimize the effect of skin stretching during rotation, a plastic plate 

can be attached to the skin before motion sensors are attached. Once the data base on 

healthy subjects is obtained, studies on low back pain subjects can be undertaken. 
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CHAPTER 1  

INTRODUCTION 

1.1 Low Back Pain (LBP) –  

 LBP is the second most common cause of disability in US adults
 
(Centers for 

Disease Control and Prevention)
 
and a common reason for lost work days

 
(Stewart W.F., 

2003). When persons of all ages are considered, back pain was the second leading cause 

for absenteeism in the United States, accounting for approximately 25 percent of all lost 

workdays in 2009
 
(Devereaux M., 2009). The condition is also costly, with total costs 

estimated to be between $100 and $200 billion annually in 2006, two-thirds of which are 

because of decreased wages and productivity
 
(Katz J. N., 2006). More than 80 percent of 

the population will experience an episode of LBP at some time during their lives
 
(Rubin 

D. I., 2007). For most, the clinical course is benign, with 95 percent of those afflicted 

recovering within a few months of onset
 
(Carey T. S. et. al, 1995). Some however, will 

not recover and will develop chronic LBP (i.e., pain that lasts for 3 months or longer). 

Recurrences of LBP are also common, with the percentage of subsequent LBP episodes 

ranging from 20 percent to 44 percent within 1 year for working populations to lifetime 
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recurrences of up to 85 percent
 
(van Tulder M., 2002). The use of health care services for 

chronic LBP has increased substantially over the past two decades. Multiple studies using 

national and insurance claims data have identified greater use of spinal injections
 
(Weiner 

D. K., 2006). Surgery
 
(Deyo R. A., 2005)

 
and opioid medications (Luo X, 2004) — 

treatments most likely to be used by individuals with chronic LBP. Studies have also 

documented increases in medication prescription and visits to physicians, physical 

therapists, and chiropractors
 
(Feuerstein M, 2004).

 
Because individuals with chronic LBP 

are more likely to seek care (IJzelenberg W, 2004)
 
and to use more health care services

 

(Carey T. S. et. al., 1995),
 
relative to individuals with acute LBP, increases in health care 

use are likely driven more by chronic than by acute cases. Increased health care use for 

chronic LBP could be a function of (1) increased prevalence of chronic LBP; (2) 

increased proportion of those with chronic LBP who seek care; (3) increased use by those 

who seek care, or (4) some combination of these factors
 
(Thorpe K. E. et. al., 2004). The 

documented increase in use of services is often assumed to be because of increased health 

care seeking or use by those who seek care.  

 A large number of studies have focused on chronic LBP, but they have not 

revealed a complete understanding of this condition
 
(Bergman, S. 2007). In order to 

apprehend this condition, researchers are now focusing on the effect of LBP on trunk 

movements. Kinematic and kinetic quantities are assumed to be periodic or pseudo 

periodic based on body characteristics and personal ability to control the lumbar spine. 

With neuromuscular and musculoskeletal pathologies or injuries, these movements may 

not be periodic and may result in increased instability of the lumbar spine
 
(Papadakis, 

N.C. et. al., 2009). 
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1.2 Stability of Spine -  

Local dynamic stability of the spine is defined as the sensitivity of the system to 

small perturbations, such as the natural stride to stride variations present during 

locomotion.
 
A study done by Manohar Panjabi explains the factors responsible for 

stability and normal functioning of the spine. The vertebrae, discs, and ligaments 

constitute the passive subsystem. All muscles and tendons surrounding the spinal column 

that can apply forces to the spinal column constitute the active subsystem. The nerves  

and central nervous  system  comprise  the neural subsystem,  which determines the 

requirements  for spinal stability  by monitoring  the various  transducer signals, and 

directs the active subsystem  to provide  the needed stability. A dysfunction of a 

component of any one of the subsystems may lead to one or more of  the following  three 

possibilities:  (a) an immediate  response  from other  subsystems to successfully  

compensate,  (b) a long-term adaptation  response of one or more subsystems, and  (c) an  

injury  to one or more components of any subsystem. It is conceptualized  that the first 

response results  in normal function,  the second results  in normal  function (but with an 

altered spinal stabilizing  system) and  the third leads  to overall  system dysfunction,  

producing,  for example, low back pain (LBP). In situations where  additional  loads or 

complex postures are anticipated,  the neural  control unit may alter the muscle  

recruitment  strategy, with  the temporary goal of enhancing  the spine stability beyond  

the normal  requirements
 
(Panjabi M. M.).
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1.3 Variability –  

Variation, as mentioned in the definition of stability, is inherent within all 

biological systems and can be characterized as the normal changes that occur in motor 

performance across multiple repetitions of tasks. For example, a man performs similar 

repetitive movement while rowing a boat. But, his hands do not follow exactly the same 

trajectory each and every time. For various reasons, there is some change in trajectory 

every time. This change in trajectory is known as variation. Until recently, variability was 

interpreted as the result of random processes
 
(Leon Glass, ‘From Clocks to Chaos: The 

Rhythms of Life’).
 
However, recent literature from a number of scientific domains has 

shown that many phenomena previously described as noisy are actually the result of non 

linear interactions and have a deterministic origin (Gleick, J. 1987. Chaos: Making a new 

Science, Amato, I. 1992. Chaos breaks out at NIH, but order may come of it). Thus, one 

can get important information regarding the system’s behavior by examining the ‘noisy’ 

component of the measured signal.   

1.4 Quantification of Variability –  

In the past years a lot of effort has gone into correctly quantifying the variability 

in various biological systems. The magnitude of the variability is the measure of stability 

of that biological system. There are numerous methods and quantities for representing 

variability. The variability in kinematic, kinetic, and temporal variables can be computed 

using both traditional and non-traditional approaches. Traditional methods originate from 

descriptive statistics, while non-traditional methods are those that use techniques from the 
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study of non-linear dynamical systems to isolate chaotically deterministic variability from 

other variability components contained within the movement process. 

The traditional methods include range, variance, standard deviation (SD), etc. 

These methods are known as discrete methods. Range is simply the difference between 

the greatest and the least values and is computed by subtracting the least value from the 

greatest value. Variance is a measure of variability that uses the sum of the squared 

deviations between the individual values and the sample mean divided by the 

approximate degrees of freedom for the sample, while SD is merely square root of 

variance. Although variance and SD are computed similarly, variance is used less often in 

variability studies because units of variance are squared, making the interpretation of 

variability somewhat harder than that of SD
 
( Fitzgerald, G.K. et. al., 1983).

 

Collectively, the discrete methods provide a thorough description of the 

variability of the discrete variables across multiple performance trials. A literature survey 

shows that hundreds of studies have been conducted where these discrete methods have 

been applied in the analysis of various human physiological phenomena, such as human 

gait and heart rate analysis. Let us take a look at some of the recent studies done related 

to human lumbar spine motion and gait analysis. In 2008, Hsu et. al. measured the range 

of motion (ROM) of the spine in healthy individuals by using an electromagnetic tracking 

device to evaluate the functional performance of the spine. The authors used the Flock of 

Birds electromagnetic tracking device with four receiver units attached to C-7, T-12, S-1, 

and the mid-thigh region. Forward/backward bending, bilateral side bending, and axial 

rotation of the trunk were performed in 18 healthy individuals. The average ROM was 

calculated after three consecutive measurements. The results showed that the thoracic 
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spine generated the greatest angle in axial rotation and smallest angle in backward 

bending. The lumbar spine generated the greatest angle in forward bending and smallest 

angle in axial rotation. The hip joints generated the greatest angle in forward bending and 

smallest angle in backward bending. Additionally, 40 percent of forward-bending motion 

occurred in the lumbar spine and 40 percent occurred in the hip joints. Approximately 60 

percent of backward bending occurred in the lumbar spine; 60 percent of axial rotation 

occurred in the thoracic spine; and 45 percent of side bending occurred in the thoracic 

spine
 
(Chien-Jen Hsu et. al., 2008)

 

In 2010, Shrawan Kumar studied the muscle activation in combined rotation and 

flexion of the torso in varying degree of asymmetries of the trunk. Nineteen normal 

young subjects (seven males and 12 females) were stabilized on a posture-stabilizing 

platform and instructed to assume a flexed and right rotated posture. A combination 20 

degrees, 40 degrees and 60 degrees of rotation, and 20 degrees, 40 degrees and 60 

degrees of flexion resulted in nine postures. These postures were assumed in a random 

order. The subjects were asked to exert their maximal voluntary isometric contraction 

(MVC) in the plane of rotation of the posture assumed for a period of five seconds. The 

surface EMG from the external and internal obliques, rectus abdominis, latissimus dorsi 

and erector spinae at the 10th thoracic and third lumbar vertebral levels was recorded. 

The abdominal muscles had the least response, at 40 degrees of flexion; the dorsal 

muscles had the highest magnitude. 

With increasing right rotation, the left external oblique continued to decrease its 

activity. The ANOVA revealed that rotation and muscles had a significant main effect on 

normalized peak EMG (p < 0.02) in both genders. There was a significant interaction 



7 
 

between rotation and flexion in both genders (p < 0.02) and rotation and muscle in 

females. The erector spinae activity was highest at 40 degrees flexion, because of greater 

mechanical disadvantage and having not reached the state of flexion–relaxation. The 

abdominal muscle activity declined with increasing asymmetry, because of the 

decreasing initial muscle length. The EMG activity was significantly more affected by 

rotation than by flexion (p < 0.02)
 
(Shrawan Kumar, 2010).

 

In 2010, Desai et. al. conducted a study in which they applied discrete methods to 

analyze variability in trunk muscle activation and other physiological parameters for 

subjects with and without LBP. The group with LBP and the control group each had 10 

participants. Bilateral trunk muscle activity was measured using surface 

electromyography (EMG); whole body balance was measured by quantifying the 

dispersion of the centre of pressure (CoP); lumbar range of motion (LROM) was 

measured with single-axis inclinometers. Individuals with LBP had adaptive recruitment 

patterns during the side-bridge and modified push-up exercises. CoP dispersion and 

LROM were not different between the groups for any exercise. The labile surface did not 

change the difference between groups, and only increased muscle activity during the 

side-bridge (p < 0.05). The labile surface increased LROM (p = 0.35) and CoP dispersion 

(p < 0.001) during the quadruped, decreased LROM during squats (p = 0.05), and 

increased CoP dispersion during push-ups (p = 0.04)
 
(Imtiaz Desai, 2010). 

1.5 Nonlinear Methods to Quantify Variability –  

Traditionally, physicians in the medical field use linear models for prediction and 

problem solving. However, biological systems, including those of humans, are complex 
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adaptive systems, characterized by multiple interconnected and interdependent parts
 

(Harbourne, R.T. et. al., 2009). These are highly non-linear systems with inherent 

variability in all healthy organisms. There is growing understanding that linear models 

are limited in many cases and are certainly not the best models for understanding the 

nonlinear human system (Stergiou, N. 2004). Professionals in different medical fields, 

such as biomechanics, epidemiology, etc., are now turning to nonlinear tools for solving 

such complex systems. Some of these nonlinear methods are Lyapunov Exponents, 

Approximate Entropy, and Correlation Dimension. Lyapunov Exponent calculates the 

rate at which adjacent trajectories converge or diverge in reconstructed state space. 

Approximate Entropy calculates the predictability of a given time series. Correlation 

dimension is used to quantify chaos in a given time series. Detailed explanation of these 

non-linear methods has been provided in Chapter 3. 

In 2006, Granata and England used non-linear tools to estimate control of 

dynamic stability during repetitive flexion and extension movements of the lumbar spine.  

There were 20 healthy subjects who performed repetitive trunk flexion and extension 

movements at 20 and 40 cycles per minute. Maximum lyapunov exponents describing the 

expansion of the kinematic state-space were calculated from the measured trunk 

kinematics to estimate stability of the dynamic system. 

Repeated trajectories from fast paced movements diverged more quickly than 

slower movement, indicating that local dynamic stability is limited in fast movements. 

Movements in the mid-sagittal plane showed higher multi-dimensional kinematic 

divergence than asymmetric movements. Non-linear dynamic systems analyses were 

successfully applied to empirically measured data
 
(Kevin P. Granata et. al., 2006).
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The local dynamic stability of trunk movements was assessed by Graham et. al. in 

2011 during repetitive lifting using non-linear Lyapunov analysis. The goal was to assess 

how varying the load-in-hands affects the neuromuscular control of lumbar spinal 

stability. Thirty healthy participants (15M, 15F) performed repetitive lifting at 10 cycles 

per minute for three minutes under two load conditions: zero load and 10 percent of each 

participant’s maximum back strength. Short and long-term maximum finite-time 

Lyapunov exponents, describing responses to infinitesimally small perturbations, were 

calculated from the measured trunk kinematics to estimate the local dynamic stability of 

the system.  

The findings indicated improved dynamic spinal stability when lifting the heavier 

load, meaning that as muscular and moment demands increased, so too did participants’ 

abilities to respond to local perturbations. These results support the notion of greater 

spinal instability during movement with low loads because of decreased muscular 

demand and trunk stiffness, and should aid in understanding how lifting various loads 

contributes to occupational low back pain
 
(Ryan B. Graham et. al., 2011). 

In 2009, Kavanagh studied lower trunk motion and speed dependence during 

walking. He used another nonlinear tool, Approximate Entropy, to do so. The primary 

purpose of this study was to examine how gait speed influences a healthy individual's 

lower trunk motion during over-ground walking. Thirteen healthy subjects (23 ± 3 years) 

performed five straight-line walking trials at self-selected slow, preferred, and fast 

walking speeds. Accelerations of the lower trunk were measured in the anterior-posterior 

(AP), vertical (VT), and mediolateral (ML) directions using a triaxial accelerometer. 
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The results showed that the value of Approximate Entropy decreased as the 

walking velocity increased. The main finding of this study was that walking at speeds 

slower than preferred primarily alters lower trunk accelerations in the frontal plane. 

Despite greater amplitudes of trunk acceleration at fast speeds, the lack of regularity and 

repeatability differences between preferred and fast speeds suggested that features of 

trunk motion are preserved between the same conditions
 
(Justin J. Kavanagh, 2009).

 

Correlation Dimension is another non-linear parameter that can be used to study 

the stability of a physiological system. In 2003, Buzzi et. al. investigated the nature of 

variability present in a time series generated from gait parameters of two different age 

groups via a non-linear analysis. Twenty females, 10 younger (20–37 years old) and 10 

older (71–79 years old) walked on a treadmill for 30 consecutive gait cycles. Time series 

from selected kinematic parameters of the right lower extremity were analyzed using 

nonlinear dynamics. The largest Lyapunov exponent and the correlation dimension of all 

the time series were calculated.  

The elderly exhibited significantly larger Lyapunov exponents and correlation 

dimensions for all parameters evaluated, indicating local instability. The non-linear 

analysis revealed that fluctuations in the time series of certain gait parameters are not 

random, but display a deterministic behavior
 
(Ugo H. Buzzi, 2003). 

1.6 Objectives of the Study –  

From the above illustration described in the previous section, we understand that 

bio-mechanists and scientists are increasingly starting to employ non-linear analysis 

methods to study dynamic behavior of various biological systems. But, despite the 
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advantages that non-linear tools offer, it also has certain limitations. Some of them are 

mentioned below –  

1. Non-linear measurement techniques require mathematical equations and 

software to evaluate time series data; as a result they must be carried out in a research 

environment.  

2. There is a lack of understanding of variability and complexity in most medical 

fields.  

3. Translation of non-linear measures to clinical problems requires concurrent use 

of linear tools to make associations and determine clinical meaning.  

4. Most of these measures require multiple repetitions or cycles of a movement
 

(Harbourne, R.T et. al., 2009). 

Thus, even now the best option remains to study the biological systems using both 

linear and non-linear methods given the advantages and disadvantages of both. Also, in 

spite of all the work that has been done previously, plenty of scope for future research 

remains to better understand the characteristics of biological systems.  

In 2008, Lee et. al. studied the effects of trunk exertion force and direction on 

postural control of the trunk during unstable sitting. Seat movements were recorded while 

subjects maintained a seated posture on a wobbly chair against different exertion forces 

(0N, 40N, and 80N) and exertion directions (trunk flexion and extension). Postural 

control of the trunk was assessed from kinematic variability and non-linear stability 

analyses (stability diffusion exponent and maximum finite-time Lyapunov exponent).  
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Kinematic variability and non-linear stability estimates increased as exertion force 

increased.  The study showed that trunk exertion force and exertion direction affect 

postural control of the trunk
 
(Hyun Wook Lee et. al. 2008).

 

In one of the previously mentioned studies, Hsu et. al. measured the range of 

motion (ROM) of the spine in healthy individuals by using an electromagnetic tracking 

device to evaluate the functional performance of the spine
 
(Chien-Jen Hsu et. al., 2008).

 

Also, Granata and England used non-linear tools to estimate control of dynamic stability 

during repetitive flexion and extension movements of lumbar spine
 
(Kevin P. Granata et. 

al., 2006). In 2005, Lamoth et. al. studied the effects of chronic low back pain on trunk 

coordination and back muscle activity during walking. The study included 19 individuals 

with non-specific LBP and 14 healthy controls. Gait kinematics and Erector Spinae (ES) 

activity were recorded during treadmill walking at (1) a self-selected (comfortable) 

velocity, and (2) sequentially increased velocities from 1.4 up to maximally 7.0 km/h. 

The angular movements of the thorax, lumbar and pelvis were recorded in three 

dimensions. ES activity was recorded with pairs of surface electrodes. 

Rotational amplitudes were not significantly different between the LBP and 

control participants. In the LBP participants, the pattern of ES activity was affected in 

terms of increased (residual) variability, timing deficits, amplitude modifications and 

frequency changes. The gait of the LBP participants was characterized by a more rigid 

and less variable kinematic coordination in the transverse plane, and less tight and more 

variable coordination in the frontal plane, accompanied by poorly coordinated activity of 

the lumbar ES
 
(Claudine J. C. Lamoth et. al., 2006). 
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During this literature survey, it was noticed that more research can be done in low 

back motion and muscle recruitment pattern during the standing position. The effect of 

increasing load resistance on various trunk motions such has flexion extension, lateral 

bending and rotation has not yet been investigated. These types of motions are a common 

occurrence in places such as gymnasiums of warehouses where heavy lifting is required. 

We may get some valuable insight in characteristics of motion lumbar vertebrae and 

recruitment of related muscles during these motions. 

We have attempted to do this in this particular exercise. The objectives of this 

study are –  

1. Develop a test procedure to measure and record data for lumbar motion and trunk 

muscle recruitment. 

2. Identify particular muscle groups recruited for specific types of low back motions. 

3. Analysis of variability of motion and strength generation of low back muscles 

using traditional discrete and non-linear techniques. 

4. Try and suggest the most suitable method to analyze and study these motions. 
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CHAPTER 2 

ANATOMY OF HUMAN SPINE 

 

2.1 The Vertebral Column –  

The human spine is composed of 26 individual bony masses, 24 of those are 

bones called vertebrae. The vertebrae are stacked one on top of the other and form the 

main part of the spine running from the base of the skull to the pelvis. At the base of the 

spine, there is a bony plate called the sacrum which is made of five fused vertebrae. The 

sacrum forms the back part of the pelvis. At the bottom of the sacrum is a small set of 

four partly fused vertebrae, the coccyx or tailbone. Adding the fused and partly fused 

bones of the sacrum and coccyx to the 24 vertebrae, the spine has 33 bones all together. 

The spine is labeled in three sections: the cervical spine, the thoracic spine and the 

lumbar spine. Starting from the top, there are seven cervical vertebrae, 12 thoracic 

vertebrae, and five lumbar vertebrae. 
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The spinal vertebrae are separated from each other by intervertebral discs. These 

discs are made of collagen fibers and cartilage. They provide padding and shock 

absorption for the vertebrae. Each pair of vertebrae creates a movable unit. 

The spinal cord runs within the vertebral canal formed by the back parts of the 

vertebrae. Thirty-one pairs of nerves branch out from the spinal cord through the 

vertebrae, carrying messages between the brain and every part of the body. 

Aging, diseases, accidents and muscular imbalances can cause compression and 

thinning of the intervertebral discs. This results in pressure on the spinal nerves and wear 

on the bony vertebrae, and these conditions are common sources of back pain. 

 

Figure 1 The Human Spine (Uwe Gille, Wikipedia.com) 

http://backandneck.about.com/od/anatomyexplained/ig/Parts-of-a-Vertebra/Spinal-Nerves-and-Back-Pain.htm
http://backandneck.about.com/
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There are four natural curves in the spine. We usually speak in terms of the three 

that comprise the cervical, thoracic, and lumbar portions of the spine; but, as you can see, 

the sacrum and coccyx form a curved section as well.  

The spinal curves provide architectural strength and support of the spine. They 

distribute the vertical pressure on the spine, and balance the weight of the body. If the 

spine were absolutely straight, it would be more likely to buckle under the pressure of the 

weight of the body.  

When all the natural curves of the spine are present, the spine is a neutral position. 

This is its strongest position and usually the safest to exercise in. When we have perfect 

posture the curves of the spine are helping us balance. We are meant to walk and stand in 

the neutral spine position (Marguerite Ogle, About.com).
 

2.1.1 Thoracic Vertebrae –  

In vertebrates, thoracic vertebrae compose the middle segment of the vertebral 

column, between the cervical vertebrae and the lumbar vertebrae. In humans, they are 

intermediate in size between those of the cervical and lumbar regions; they increase in 

size as one proceeds down the spine, the upper vertebrae being much smaller than those 

in the lower part of the region. They are distinguished by the presence of facets on the 

sides of the bodies for articulation with the heads of the ribs, and facets on the transverse 

processes of all, except the 11th and 12th, for articulation with the tubercles of the ribs. 

The cervical vertebrae run into the cranium. 

 

http://pilates.about.com/od/pilatesexercises/a/PilatesPosture.htm
http://pilates.about.com/od/pilatesexercises/a/PilatesPosture.htm
http://pilates.about.com/bio/Marguerite-Ogle-19615.htm
http://en.wikipedia.org/wiki/Vertebrates
http://en.wikipedia.org/wiki/Vertebral_column
http://en.wikipedia.org/wiki/Vertebral_column
http://en.wikipedia.org/wiki/Cervical_vertebrae
http://en.wikipedia.org/wiki/Lumbar_vertebrae
http://en.wikipedia.org/wiki/Rib
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Figure 2 Thoracic Vertebra (Anatomist90, Wikipedia.com) 

 

First thoracic vertebra –  

The first thoracic vertebra has, on either side of the body, an entire articular facet 

for the head of the first rib, and a demi-facet for the upper half of the head of the second 

rib. The body is like that of a cervical vertebra, being broad, concave, and lipped on 

either side. The superior articular surfaces are directed upward and backward; the spinous 

process is thick, long, and almost horizontal. The transverse processes are long, and the 

upper vertebral notches are deeper than those of the other thoracic vertebrae. The thoracic 

spinal nerve 1 (T1) passes out underneath it (Anatomist90, Wikipedia.com). 

2.1.2 Lumbar Vertebrae –  

The lumbar vertebrae are the largest segments of the movable part of the vertebral 

column, and are characterized by the absence of the foramen transversarium within the 

http://en.wikipedia.org/wiki/Thoracic_spinal_nerve_1
http://en.wikipedia.org/wiki/Thoracic_spinal_nerve_1
http://en.wikipedia.org/wiki/Vertebral_column
http://en.wikipedia.org/wiki/Vertebral_column
http://en.wikipedia.org/wiki/Foramen_transversarium


18 
 

transverse process, and by the absence of facets on the sides of the body. They are 

designated L1 to L5, starting at the top. 

Each lumbar vertebra consists of a vertebral body and a vertebral arch. The 

vertebral arch, consisting of a pair of pedicles and a pair of laminae, encloses the 

vertebral foramen (opening) and supports seven processes (Wikipedia.com). 

 

Figure 3 Lumbar Vertebra (Anatomist90, Wikipedia.com) 

 

2.2 Low Back Musculature –  

 In this study, six muscle groups have been used to collect Electromyography 

(EMG) data. Let us take a look at the muscle groups and their location in the human 

body. 

 

http://en.wikipedia.org/wiki/Process_%28anatomy%29
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2.2.1 Erector Spinae –  

A deep muscle of the back; it arises from a tendon attached to the crest along the 

centre of the sacrum (the part of the backbone at the level of the pelvis, formed of five 

vertebrae fused together). When it reaches the level of the small of the back, the erector 

divides into three columns, each of which has three parts. The muscle system extends the 

length of the back and functions to straighten the back and to rotate it to one side or the 

other (Britannica.com) 

2.2.2 Multifidus –  

The multifidus muscle consists of a number of fleshy and tendinous fasciculi, 

which fill up the groove on either side of the spinous processes of the vertebrae, from the 

sacrum to the axis. The multifidus is a very thin muscle. Deep in the spine, it spans three 

joint segments, and works to stabilize the joints at each segmental level. The stiffness and 

stability makes each vertebra work more effectively, and reduces the degeneration of the 

joint structures (Wikipedia.com). 

2.2.3 Latissimus Dorsi –  

The latissimus dorsi, meaning 'broadest muscle of the back' (Latin latus meaning 

'broad', latissimus meaning 'broadest' and dorsum meaning the back), is the larger, flat, 

dorso-lateral muscle on the trunk, posterior to the arm, and partly covered by the 

trapezius on its median dorsal region. 

http://www.britannica.com/EBchecked/topic/398553/
http://www.britannica.com/EBchecked/topic/587171/
http://www.britannica.com/EBchecked/topic/515744/
http://www.britannica.com/EBchecked/topic/398553/muscle
http://en.wikipedia.org/wiki/Muscle_fascicle
http://en.wikipedia.org/wiki/Spinous_processes
http://en.wikipedia.org/wiki/Vertebrae
http://en.wikipedia.org/wiki/Sacrum
http://en.wikipedia.org/wiki/Axis_%28anatomy%29
http://en.wikipedia.org/wiki/Vertebra
http://en.wikipedia.org/wiki/Latin
http://en.wikipedia.org/wiki/Trapezius
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The latissimus dorsi is responsible for extension, adduction, transverse extension 

(also known as horizontal abduction), flexion (from an extended position), and (medial) 

internal rotation of the shoulder joint. It also has a synergistic role in extension and lateral 

flexion of the lumbar spine (Wikipedia.com). 

2.2.4 Internal Obliques –  

The internal oblique muscle (of the abdomen) is the intermediate muscle of the 

abdomen, lying just underneath the external oblique and just above (superficial to) the 

transverse abdominal muscle. 

Its fibers run perpendicular to the external oblique muscle, beginning in the 

thoracolumbar fascia of the lower back, the anterior two-thirds of the iliac crest (upper 

part of hip bone) and the lateral half of the inguinal ligament. The muscle fibers run from 

these points superiomedially (up and towards midline) to the muscle's insertions on the 

inferior borders of the 10th through the 12th ribs and the linea alba (abdominal midline 

seam). 

 

Figure 4 Abdominal Muscles (SEER Training Module) 

http://en.wikipedia.org/wiki/Extension_%28kinesiology%29
http://en.wikipedia.org/wiki/Adduction
http://en.wikipedia.org/wiki/Internal_rotation
http://en.wikipedia.org/wiki/Shoulder_joint
http://en.wikipedia.org/wiki/Synergistic
http://en.wikipedia.org/wiki/External_oblique
http://en.wikipedia.org/wiki/Transverse_abdominal_muscle
http://en.wikipedia.org/wiki/External_oblique_muscle
http://en.wikipedia.org/wiki/Thoracolumbar_fascia
http://en.wikipedia.org/wiki/Iliac_crest
http://en.wikipedia.org/wiki/Inguinal_ligament
http://en.wikipedia.org/wiki/Linea_alba_%28abdomen%29
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2.2.5 External Obliques –  

The external oblique muscle (of the abdomen) (also external abdominal oblique 

muscle) is the largest and the most superficial (outermost) of the three flat muscles of the 

lateral anterior abdomen. The external oblique is situated on the lateral and anterior parts 

of the abdomen. It is broad, thin, and irregularly quadrilateral, its muscular portion 

occupying the side, its aponeurosis the anterior wall of the abdomen. In most humans 

(especially females), the oblique is not visible, due to subcutaneous fat deposits and the 

small size of the muscle. 

The external oblique functions to pull the chest downwards and compress the 

abdominal cavity, which increases the intra-abdominal pressure as in a valsalva 

maneuver. It also has limited actions in both flexion and rotation of the vertebral column. 

One side of the obliques contracting can create lateral flexion. It also contributes to 

compression of abdomen. 

2.2.6 Rectus Abdominis –  

The rectus abdominis muscle, also known as the "six pack" is a paired muscle 

running vertically on each side of the anterior wall of the human abdomen (and in some 

other animals). There are two parallel muscles, separated by a midline band of connective 

tissue called the linea alba (white line). It extends from the pubic symphysis/pubic crest 

inferiorly to the xiphisternum/xiphoid process and lower costal cartilages (5–7) 

superiorly. 

http://en.wikipedia.org/wiki/Abdomen
http://en.wikipedia.org/wiki/Aponeurosis
http://en.wikipedia.org/wiki/Adipose
http://en.wikipedia.org/wiki/Valsalva_maneuver
http://en.wikipedia.org/wiki/Valsalva_maneuver
http://en.wikipedia.org/wiki/Vertebral_column
http://en.wikipedia.org/wiki/Muscle
http://en.wikipedia.org/wiki/Linea_alba_%28abdomen%29
http://en.wikipedia.org/wiki/Pubic_symphysis
http://en.wikipedia.org/wiki/Xiphisternum
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             The rectus abdominis is an important postural muscle. It is responsible for flexing 

the lumbar spine, as when doing a "crunch" The rib cage is brought up to where the 

pelvis is when the pelvis is fixed, or the pelvis can be brought towards the rib cage 

(posterior pelvic tilt) when the rib cage is fixed, such as in a leg-hip raise. The two can 

also be brought together simultaneously when neither is fixed in space. 

                 In 2010, Shin et. al. used the lumbar erector spinae muscles to record data 

during EMG activity analysis of low back extensor muscles during cyclic flexion-

extension (Shin et. al., 2010). The same muscle group was used by Mathieu et. al. in their 

study of EMG and kinematic analysis of trunk flexion-extension in free space (Mathieu 

et. al. 2000). Dickstein et. al. studied EMG activity of lumbar erector spinae (ES), 

latissimus dorsi (LD), rectus abdominis (RA), and external oblique (EO) muscles in their 

study of trunk flexion-extension of post-stroke hemiparetic subjects (Dickstein et. al., 

2004). 

 Ten channels of EMG data were collected from bipolar surface electrodes over 

the right and left sides of the erector spinae, rectus abdomini, latissimus dorsi, external 

abdominal obliques, and internal abdominal oblique muscles by Marras and Granata in 

their study of spine loading during trunk lateral bending motion (Marras et. al., 1997). 

 Similarly, for trunk rotation Joseph K.-F Ng et. al. collected data from rectus 

abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and 

multifidus muscles in their study of EMG activity of trunk muscles and torque output 

during isometric axial rotation exertion (Joseph K.-F Ng, 2002). 

 In this study of ours, we are trying to see if meaningful data can be obtained from 

the six muscle groups that we are studying under the given laboratory conditions. 

http://en.wikipedia.org/wiki/Human_position
http://en.wikipedia.org/wiki/Lumbar_spine
http://en.wikipedia.org/wiki/Crunch_%28exercise%29
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CHAPTER 3 

METHODS AND TECHNIQUES USED 

 

3.1 Experimental Protocol –  

 During the literature review it was noticed that there was still scope for analysis of 

low back exertions in the standing position. Flexion-extension, lateral bending, and 

rotation motions were selected because these are the motions that are repeated plenty of 

times in day to day routines and hence can affect daily activities to a larger extent. 

 It was decided that data will be collected for the three motion types against no 

load and resistances of 5 lbs., 10 lbs. and 15 lbs. to study the effect of increasing loads on 

stability of low back spine. The participant performed flexion-extension, lateral bending 

and rotation at no load at first. After the first set of data acquisition, the participant 

repeated the same exercises against resistances of 5 lbs., 10 lbs. and 15 lbs. The weights 

for resistance were attached to a rope which was passed over a pulley away from the 

body of the participant. The participants performed 10 repetitions of each exercise with 

the rope held close to their chest. 
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 Approvals were obtained from Institutional Review Boards (IRB) of both Auburn 

University (Protocol Number – 09-344 M41001) and Palmer College of Chiropractic, IA 

(IRB Assurance Number - 2008G116). Following the IRB approvals, the participants 

were recruited through word of mouth. The following were the inclusion and exclusion 

criteria for the participants: 

Inclusion Criteria –  

1. Participant must be an adult (over 18 years old) and capable of reading and 

understanding English language. 

2. Participant should not have any musculoskeletal injury related to spine, hands or 

legs in the past 12 months. 

3. Participant should not have a pacemaker or any non-removable metal object on 

them. 

4. Participant should not experience any pain in the range of motion while 

performing the motions mentioned in the testing protocol. 

Exclusion Criteria –  

The participants were additionally screened for neurological or dermatitis-related 

symptoms by certified clinicians before they performed the biomechanical tests. The 

screening was based on questionnaires, physical tests and visual observation. If the 

participants exhibited those symptoms they were excluded. 
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3.2 Sample Size –  

  A biomedical study, to be successful, has to have a well-defined problem, 

an appropriate population, and a reliable procedure and instruments, among other 

resources. In addition to these, an adequate sample size is one of the most critical 

parameters to be considered. It must be big enough that it does not waste resources on an 

inconclusive study, and short enough that it can yield useful results in a timely manner. 

Sample size is of the utmost importance in experiments involving human or animal 

subjects for ethical issues. In an over-populated experiment, an unnecessary number of 

participants are exposed to potentially hazardous tests, while under-populated studies 

expose subjects to potentially hazardous tests without advancing the research knowledge 

(Lenth, R.V. 2001). 

Finally, the study must be of adequate size, which would be relative to the goal of 

the study. The present study is a preliminary study, and time and cost are the main 

constraints. Keeping this in mind, a sample size of ten subjects was considered adequate 

for this study. 10 males subjects were recruited through word of mouth, though data was 

only recorded from 9 participants as sensors could not be attached properly to one of the 

participants. The demographics of the participants were as follows:  

Age (yrs) Height (cm) Weight (kg) 

Mean 43.22222 Mean 176.4444 Mean 76.68889 

SD 17.41248 SD 11.04662 SD 10.1228 

 

Table 1 Demographics 
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3.3 Data Acquisition –  

Two types of motion data were obtained for this study, motion data and EMG 

data. The motion data was obtained using the Liberty 24/8 (Polhemus, Vermont, USA) 

system. Motion data was recorded at 120 samples per second using motion sensors 

attached to T1, L3, L5 and S1 vertebrae. A fourth order butterworth filter with low pass 

frequency of 20 Hz was used to filter the motion data. The EMG data was recorded at 

1200 samples per second using DELSYS Bagnoli - 12 Channel EMG System. The EMG 

signals were amplified 1000 times and band passed between 20 Hz and 500 HZ (Lee et. 

al., 2007; Okubo et. al, 2010). Frequencies less than 20 Hz eliminate noise due to wire 

sway, whereas frequencies over 500 Hz eliminate noise due to surface contact between 

the electrodes and the skin (M. B. I. Raez et. al., 2006).
 
Motion Monitor 7.0 software 

(Innovative Sports Training, Inc.) was used to collect both Motion and EMG data. 

 

Figure 5 SEMG and motion sensors attached to back muscles and vertebrae respectively 
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Figure 6 SEMG sensors attached to abdominal muscles 

 SEMG sensor positions were initially marked using body markers. The skin was 

then prepared using alcohol prep pads and skin abrasive. The skin was initially cleaned 

using alcohol prep pads to remove any oil present on the surface of the skin. The skin was 

then gently abraded using skin abrasive to remove any dead cells, which may affect EMG 

signals, from the surface of the skin. The skin was cleaned again using alcohol prep pads 

to remove any dead cell debris from the skin. The sEMG sensors were also cleaned using 

alcohol prep pads to remove any dirt from their surfaces. The sensors were then attached 

to the skin using double sided tape. As mentioned in the table above, EMG data was 

obtained from 6 muscles, namely Multifidus, Erector Spinae, Latissimus Dorsi, Internal 

Obliques, External Obliques and Rectus Abdominis. The locations for the placement of 

sEMG sensors were determined based on previous studies. (Sridhar Poosapadi Arjunan 

et. al., 2009; Rafael F Escamilla et. al., 2006). 

 The motion sensors were attached at T1, L3, L5 and S1 vertebrae. The locations 

of these vertebrae were found using a palpation technique. The skin was cleaned using 

alcohol prep pads to remove any oil present on the surface of the skin. The motion 

sensors were attached to the skin using double-sided tape. 
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Table 2 EMG sensor placement 

 

Once the sensors were attached the participant was asked to wear a harness and 

anti-vibration gloves for safety. The participant was asked to hold the rope to which the 

weight was attached close to the chest and then stand in an upright position with his feet 

in a comfortable position. The chosen position of the feet was marked and was kept 

constant throughout the data acquisition process. Once the data acquisition started, the 

participants were asked to hold the neutral position for 2 seconds, then asked to perform 

10 repetitions of the three exertions as described above, and then asked to hold the neutral 

position for 2 seconds again before the data acquisition ended. The data was then 

Muscle Side Amplifier 

Ch. No. 

(Sensor 

No.) 

A/D 

Board 

Channel 

No. 

Location 

Erector 
Spinae 

Left 1 0 6 Over the largest muscle mass 
found by palpation and 4 cm 

from midline of the spine at 

the third lumbar vertebrae. 

Righ
t 

2 0 7 

Rectus 

Abdominus  

Left 3 0 8 3 cm from the midline of the 

abdomen and 2 cm above the 

umbilicus. 
Righ

t 

4 0 9 

External 

Oblique 

Left 5 0 10 10 cm from the midline of the 

abdomen and 4 cm above the 

ilium at an angle of 45º. 

 

Righ

t 

6 0 11 

Internal 

Oblique 

Left 7 0 12 4 cm above the ilium in the 

lumbar triangle at an angle of 

45º.  

 

Righ

t 

8 0 13 

Multifidus Left 11 1 0 Bilaterally at the level of L5 

and aligned parallel between 
the line of the posterior-

superior iliac spine (PSIS) and 

the interspinous space of L1 

and L2. 

Righ

t 

12 1 1 

Latissimus 

Dorsi 

Left 9 0 14 Positioned obliquely 

(approximately 25° from 

horizontal in the inferomedial 

direction) 4 cm below the 

inferior angle of the scapula. 

Righ

t 

10 0 15 
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exported from motion monitors using the preference file created (Appendix). The data 

was exported twice, once for motion data and then for EMG data. 

3.4 Motion Data Analysis –  

 After exporting the data, the data was separated from Excel files to form 

individual data files for FE, LB and ROT data for 0 lb, 5 lb, 10 lb and 15 lb respectively. 

Data for the first and the last two seconds when the participant was stationary was 

eliminated. Data analysis was carried out on these data files. 

3.4.1 Time series –  

 The motion data obtained is nothing but a time series. A time series is a collection 

of observations made sequentially through time. Examples occur in a variety of fields 

ranging from engineering to economics. Examples include daily stock market prices or 

pressure readings from pressure gauges at some factories (Chatfield Chris, ‘The Analysis 

of Time Series: An Introduction’).
 
The best way to see how a physical quantity changes 

with time is to plot a graph. 
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Figure 7 Sine Curve 

 

Figure 8 Time series for flexion-extension against 5 lb resistance 

 

3.4.2 Range of Motion (ROM) –  

 ROM tells us the limits between which a person can carry out a particular type of 

exercise. The flexibility of the spine represents the functional performance of the trunk 
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mobility. For most spinal surgeries, spinal flexibility is regarded as an important part of 

preoperative evaluation and postoperative functional outcome assessment (McGregor A. 

H. et. al. 2004, Nissan M. et. al. 1999). Analysis of spinal ROM may improve our 

understanding the severity of some spinal disorders, such as progression of ankylosing 

spondylitis and the surgical effect of multiple-level discectomy or laminectomy. The 

information derived from changes in spinal ROM is also useful in investigating the 

development of adjacent-segment instability after fusion procedures (Chou WY et. al. 

2002, Lu WW et. al. 1999).
 

 
In our study the ROM was studied for flexion-extension, lateral bending and 

rotation motions. As mentioned before, the participants were asked to perform these three 

exercises against no load and resistances of 5 lbs, 10 lbs and 15 lbs. The participants were 

asked to move in their comfortable range of motion without exerting too much force on 

their lower back muscles. The data was obtained as described previously and analyzed for 

changes in ROM. A customized MATLAB program was used to study the ROM. The 

time series data obtained after repetitive trunk FE, LB and ROT was plotted first. The 

peaks and valleys of the plot were identified and the highest and lowest points were 

selected. The difference between a successive highest and lowest point was ROM for that 

particular movement cycle. The average of ROM of a particular time series data was the 

average of all the ROM values of individual movement cycles. 
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3.4.3 Classification of time series as periodic or chaotic –  

 The non-linear methods that we are going to apply calculate the chaos in a 

dynamic system. Before we do this, we have to make sure that the system that we have is 

indeed chaotic. This can be done using Fast Fourier Transformation (FFT) and Phase 

Plane plots (L. F. P. Franca et. al. 2001). As is well known, the FFT of a chaotic signal 

presents continuous spectra over a limited range and the energy is spread over a wider 

bandwidth. On the other hand, FFT of a periodic signal presents discrete spectra, where a 

finite number of frequencies contribute for the response (Mullin T. 1993, Moon F. C. 

1992).  

 

Figure 9 FFT of a periodic sine curve 

 

Figure 10 FFT of experimental motion data 
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 From the above FFT plots we can see that the experimental data contains 

continuous spectra over a limited range, as opposed to FFT of the sine wave which 

returns a single frequency. This is an indication that our data might be chaotic. 

3.4.4 Approximate Entropy (ApEn) –  

 Entropy is a statistical concept, which was first introduced by Shanon and Weaver 

in 1963 as a measure of uncertainty or variability. Similarly, ApEn is a specific method to 

determine complexity that can quantify the regularity or predictability of a time series 

(Pincus, 1994). Predictability and regularity are inversely proportional to complexity. The 

more predictable and regular the time series, the less would be the complexity, and vice 

versa. Approximate Entropy measures the logarithmic probability that a series of data 

points a certain distance apart will exhibit similar relative characteristics on the next 

incremental comparison within the state space (Pincus, 1994). Data points that exhibit 

greater possibilities of remaining the same distance apart upon comparison will result in 

lower ApEn values, while those with large differences in distance between them will 

result in higher ApEn values.   

  In order to mathematically define ApEn, we need to form a time series of data u 

(1), u (2) ………….u (N). These are N raw data values from measurements taken at 

equally spaced points in time. We then fix m, an integer, and r, a positive real number. 

The input parameter m is the length of compared runs, and r is the tolerance that specifies 

a filtering level. The first step is to form a sequence of vectors x(1), x(2)……..x(N - m + 

1) in R
m
, real m-dimensional space, defined by x(i ) = [u(i)…..u(I + m - 1)]. The second 

step is to use the sequence x(1), x(2)…..x(N - m + 1) to construct for each I, 1 ≤ i ≤ N - m 

+ 1, Ci
m
(r) = (number of x(j) such that d[x(i), x(j)]≤ r)/(N - m+1). We must define d[x(i), 



34 
 

x(j)] for vectors x(i) and x(j). We follow the Takens modification of formula by defining 

d[x, x*] = max Ιu(a) - u*(a)Ι, where the u(a) are the m scalar components of x. d 

represents the distance between the vectors x(i) and x(j), given by the maximum 

difference in their respective scalar components. Next we define Φ
m
(r) = (N - m + 1)

-1 

Σi=
1N-m+1

 In Ci
m
(r), where In is natural logarithm. Lastly we define Approximate Entropy 

as: 

ApEn (m, r, N) = Φ
m
(r) - Φ

m+1
(r) 

  As seen above, calculation of ApEn requires selection of two parameters: m, the 

number of observation windows to be compared, and r, the tolerance factor. In order to 

compare the results, these parameters, along with the data length, must be kept the same 

for all calculations (Pincus and Goldberger, 1994). 

  Typically m = 2 or 3; r depends greatly on the application (Pincus et. al, 1991). 

This choice of m is made to ensure that the conditional probabilities, defined in the 

equation below for fixed m and r, are reasonably estimated from the N input data points. 

Theoretical calculations indicate that reasonable estimates of these probabilities, for fixed 

m and r chosen as discussed below, are achieved with between 10
m
 and 30

m
 points, 

analogous to findings of Wolf et al. (Pincus et. al, 1991). 

  The number of input points for ApEn computations ranges typically from 50 to 

5,000 points (Stergiou, 2003; Pincus, 1994; Pincus et. al, 1991). Using fewer than 50 data 

points yields less meaningful results, especially for m = 2 or 3, while using more than 

5,000 points will result in unacceptably long computational time (Pincus et. al, 1991). For 

noiseless, theoretically described systems, such as Henon maps and logistic maps, it has 

been shown that if entropy (A) ≤ entropy (B), then ApEn (m, r) (A) ≤ ApEn (m, r) (B) and 
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vice versa. Moreover, for both theoretical and experimental systems, if ApEn (m1, r1) (A) 

≤ ApEn (m1, r1) (B), then ApEn (m2, r2) (A) ≤ ApEn (m2, r2) (B) and vice versa. This 

ability of ApEn to preserve the order is a relative property and is an important utility of 

ApEn (Pincus et al, 1991). Considering this, one should not conclude that for the same 

systems, ApEn (m1, r1) (A) ≤ ApEn (m2, r2) (B), as ApEn values differ with different m 

and r values. The strength of ApEn is its ability to compare systems.  

  As explained above there are two critical parameters (m and r) that need to be set 

in order to achieve reasonable results while using ApEn. Different m and r values would 

result in different results. ApEn (2, 0.1) may be different form ApEn (3, 0.01) values. 

This leads to the question of which one should be chosen. ‘r’ is effectively a filter level 

and in order to eliminate the effect of noise in the ApEn calculation, ‘r’ must be chosen 

such that its value is above most of the noise. In order to achieve reasonable results the 

magnitude of noise should rarely reach ‘r’. 

  Another key factor in choosing the value of r is that it should be large enough to 

achieve numerically stable conditional probability estimates in equation (A) above 

(Pincus et. al, 1991). If the ‘r’ value is small, one gets unstable conditional probability 

estimates, while larger ‘r’ values result in detailed system information being lost due to 

filter coarseness. In the current study a value of 2 was used for m and r was 0.2 (Pincus 

1990; Pincus 1994; Stergiou, 2004). 

3.4.5 Calculation of ApEn –  

  Consider a time series SN, consisting of N number of sample size. To compute 

ApEn we must choose two input parameters, m and r. We denote a pattern of m time 

series, beginning at measurement i within SN, by the vector pm(i). Two patterns, pm(i) and 
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pm(j), are said to be similar if the difference between any pair of corresponding 

measurements in the patterns is less than r — i.e, if 

|N(i+k)-N(j+k)|< r, for k=0 to m 

  Now consider the set Pm of all patterns of length m (i.e., pm(1),pm(2),…pm(N-

m+1)), within SN. So we may define Cim(r) = nim(r)/ (N-m+1) where nim(r) is the number 

of patterns in Pm that are similar to pm(i)(provided similarity criterion ‘r’). The quantity 

Cm(r) is the fraction of length m that is identical to the pattern of the same length that 

begins at interval i. We can calculate Cim(r) for each pattern in Pm, and we define Cm(r) as 

the mean of these Cim(r) values. The quantity Cm(r) expresses the prevalence of repetitive 

patterns of length m in SN. Finally, we define approximate entropy of SN, for patterns of 

length m and similarity criterion r, as 

ApEn(m,r)=In[Cm(r)/Cm+1(r)] 

  Thus, if we find similar patterns in a time series, ApEn estimates the logarithmic 

likelihood that the next intervals after each of the patterns will differ. 

3.4.6 Correlation Dimension (CoD) –  

 The correlation dimension presently is the most popular measure of dimension. 

It's much like the information dimension but is slightly more complex. The information 

dimension usually is based on spreading a grid of uniformly sized compartments over the 

trajectory like a quilt. That's like moving the measuring device over the object by equal, 

incremental lengths. Analysis for the correlation dimension could also be done with that 

approach. Instead, however, the usual technique is to center a compartment on each 

successive datum point in turn, regardless of how many points a region has and how far 

apart the points may be. 
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 Many types of exponent dimension are essentially impossible to compute in 

practice, either because they apply to some unattainable limit (such as ε→0) or they are 

computationally very inefficient. The correlation dimension avoids those problems. Also, 

for a given dataset, it probes the attractor to a much finer scale than, say, the box-

counting dimension. Two data points that plot close together in phase space are highly 

correlated spatially. (One value is a close estimate of the other.) However, depending on 

the trajectory's route between them, those same two points can be totally unrelated with 

regard to time. (The time associated with one point may be vastly and unpredictably 

different from the time of the other.) The correlation dimension only tests points for their 

spatial interrelations; it ignores time. (That's also true of the information dimension, but 

for other reasons it acquired a different name) (Garnett P. Williams, 1997). 

 Before we go to the measuring procedure for the CoD, we need to understand 

some basic concepts, namely Phase Space Plots, Time Delay and Embedding Dimension. 

3.4.7 Phase Plane Plots –  

 We'll begin by setting up the arena or playing field. One of the best ways to 

understand a dynamical system is to make those dynamics visual. A good way to do that 

is to draw a graph. Two popular kinds of graph show a system's dynamics. One is the 

ordinary time-series graph that we've already discussed (Fig. 1.1). Usually, that's just a 

two-dimensional plot of some variable (on the vertical axis, or ordinate) versus time (on 

the horizontal axis, or abscissa).  

 Right now we're going to look at the other type of graph. It doesn't plot time 

directly. The axis that normally represents time therefore can be used for some other 

variable. In other words, the new graph involves more than one variable (besides time). A 
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point plotted on this alternate graph reflects the state or phase of the system at a particular 

time (such as the phase of the Moon). The space on the new graph has a special name: 

phase space or state space.  

The phase space includes all the instantaneous states the system can have. As a 

complement to the common time-series plot, a phase space plot provides a different view 

of the evolution. Also, whereas some time series can be very long and therefore difficult 

to show on a single graph, a phase space plot condenses all the data into a manageable 

space on a graph. 

Chaos theory deals with two types of phase space: standard phase space (my 

term) and pseudo phase space. The two types differ in the number of independent 

physical features they portray (e.g. temperature, wind velocity, humidity, etc.) and in 

whether a plotted point represents values measured at the same time or at successive 

times (Garnett P. Williams, 1997). 

3.4.8 Standard Phase Space –  

 Standard phase space (hereafter just called phase space) is the phase space defined 

above: an abstract space in which coordinates represent the variables needed to specify 

the state of a dynamical system at a particular time. On a graph, a plotted point neatly and 

compactly defines the system's condition for some measuring occasion, as indicated by 

the point's coordinates (values of the variables). For example, we might plot a baby's 

height against its weight. Any plotted point represents the state of the baby (a dynamical 

system!) at a particular time, in terms of height and weight. The next plotted point is the 

same baby's height and weight at one time interval later, and so on. Thus, the succession 
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of plotted points shows how the baby grew over time. That is, comparing successive 

points shows how height has changed relative to weight, over time, t. 

 

 

Figure 11 Example of standard phase space 

 

3.4.9 Pseudo Phase Space –   

 Each axis on a standard phase space graph represents a different variable (e.g. Fig. 

12). In contrast, our graph of the one-dimensional map plots two successive 

measurements (xt+1 versus xt) of one measured feature, x. Because xt and xt+1 each have a 

separate axis on the graph, chaosologists (those who study chaos) think of xt and xt+1 as 

separate variables ("time-shifted variables") and of their associated plot as a type of phase 

space. However, it's not a real phase space because the axes all represent the same feature 

(e.g., stock price) rather than different features. Also, each plotted point represents 

sequential measurements rather than a concurrent measurement. Hence, the graphical 

space for a one-dimensional map is really a pseudo phase space. Pseudo phase space is an 

imaginary graphical space in which the axes represent values of just one physical feature, 

taken at different times (Garnett P. Williams, 1997). 
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Figure 12 Pseudo phase space plot of experimental data 

 

3.4.10 Time Lag –  

 To properly reconstruct a state space, it is essential to quantify an appropriate time 

delay and embedding dimension for the investigated time series. Investigation of the 

characteristics of the state space is a powerful tool for examining a dynamic system 

because it provides information that is not apparent by just observing the time series 

(Abarbanel, 1996; Baker and Gollub, 1996). To reconstruct the state space, a state vector 

was created from the time series. This vector was composed of mutually exclusive 

information about the dynamics of the system (Eq. (1)). 

y(t) = [x(t), x(t-T1), x(t-T2)…………]                                        (1) 

where y(t) was the reconstructed state vector, x(t) was the original data, and x(t – Ti) was 

time delay copies of x(t). The time delay (Ti) for creating the state vector was determined 

by estimating when information about the state of the dynamic system at x(t) was 

different from the information contained in its time-delayed copy. If the time delay was 
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too small then no additional information about the dynamics of the system would be 

contained in the state vector. Conversely, if the time delay was too large then information 

about the dynamics of the system may be lost, and this can result in random information 

(Abarbanel, 1996; Baker and Gollub, 1996). Selection of the appropriate time delay was 

performed by using an average mutual information algorithm (Eq. (2); Abarbanel, 1996). 

Ix(t), x(t+T) = ∑ P(x(t), x(t+T))log2

              

                
                          (2) 

 

where T was the time delay, x(t) was the original data, x(t + T) was the time delay data, 

P(x(t), x(t + T)) was the joint probability for measurement of x(t) and x(t + T), P(x(t)) 

was the probability for measurement of x(t), and P(x(t + T)) was the probability for 

measurement of x(t + T). The probabilities were constructed from the frequency of x(t) 

occurring in the time series. Average mutual information was iteratively calculated for 

various time delays and the selected time delay was at the first local minimum of the 

iterative process (Abarbanel, 1996; Stergiou et al., 2004). This selection was based on 

previous investigations that have determined that the time delay at the first local 

minimum contains sufficient information about the dynamics of the system to reconstruct 

the state vector (Abarbanel, 1996). 

3.4.11 Embedding Dimension –  

Embedding dimension is the number of variables required to define a given 

dynamic system. The minimum embedding dimension in the reconstruction producer was 

estimated using an algorithm proposed by Kennel et al. (1992). The algorithm is based on 

the idea that in the passage from dimension d to d + 1, one can differentiate between 

points on the orbit that are true neighbors and those that are false. A false neighbor is a 

point in the data set that is identified as a neighbor solely because of viewing the attractor 
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in an embedding space that is too small. When the point in the data has achieved a large 

enough embedding space, all neighbors of every attractor point in the multivariate phase 

space will be true neighbors.  

3.4.12 Measuring Correlation Dimension –  

 The procedure for getting the correlation dimension involves not only lag but also 

the embedding dimension—the number of pseudo phase space axes. For any given 

practical problem, there is no way to determine the correct embedding dimension in 

advance. It depends on the attractor's true dimension in regular phase space, and that 

value is what we're trying to find. The correct embedding dimension emerges only after 

the analysis.  

Once the lag is specified, the procedure usually begins with an embedding 

dimension of two (two-dimensional pseudo phase space). First, situate the measuring cell 

such that its center is a datum point in the pseudo phase space. Next, count the number of 

data points in the cell. After that, center the cell on the reconstructed trajectory's next 

point (in the ideal approach) and make a new count. Keep repeating that same procedure, 

systematically moving the cell's center to each successive point on the trajectory. (Some 

people choose center points at random to get a representative sample of the attractor, 

instead of going to every point on the trajectory.) Let's look at an example with just five 

data points (Garnett P. Williams, 1997). 
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Figure 13 Identifying qualifying neighbors from (a) point 1 and (b) point 2 

 

 Next we center our circle on point 2, keeping the same radius as before (Fig. 14). 

Within the circle at its new location, points 1 and 3 now qualify. (As before, the reference 

point doesn't count.) Keeping that same radius and systematically centering the circle on 

each point, in turn, we count the qualifying points within each circle. Once through the 

entire dataset with the same radius, we add up the total number of qualifying points for 

that radius. For example, Figure 14 has a total of eight points for the radius indicated. 

(We get two points when the circle is centered at point 1, two more when it is on point 2, 

two again at point 3, and one point each for centering on points 4 and 5.) Having obtained 

the total for the radius chosen, we now work only with that total rather than with the 

numbers pertaining to any particular point. I'll refer to that total (eight in this example) in 

a general way as the "total number of points within radius ε" or the "total number of 

qualifying points."  

The total number of points defining the trajectory (i.e., the size of the basic-

dataset) obviously influences the total count for a given radius. For instance, the count of 

qualifying points for a given radius is much smaller for a trajectory made up of ten points 

than for a trajectory of 10,000 points. For comparison purposes, therefore, we normalize 

each count of qualifying points, to account for the total available on the trajectory. That 
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means dividing each total of qualifying points by some maximum reference constant. 

That constant here is the maximum number of total points obtainable by applying the 

circling-and-counting procedure to each point throughout the dataset, for a given radius. 

The normalized result is the correlation integral or correlation sum, Cε, for the 

particular radius: 

Cε = 
                                      

                                                
 

       = 
                                      

      
                                                                                                                    (3) 

in which N is the total number of points in the dataset (i.e., on the trajectory). 

 A special version of the ratio that defines the correlation sum (3) comes from 

considering the limit as N becomes large. When N is very large, the 1 in N-1 becomes 

negligible. For all practical purposes, N-1 then becomes simply N. The quantity N(N-1) 

(the denominator in the definition of correlation sum) therefore becomes N(N) or N
2
. 

Thus, in the limit of infinitely large N we can define the correlation sum (3) as: 

Cε =       
                                      

   
                                                                                                (4) 

 In the technical literature, Equation 24.2 often appears in an imposing symbol 

form, as follows: 

Cε =    
   

 
 

   
                

   
 
                                     (5) 

The xi in Equation 5 stands for a point on which we center our measuring device 

(e.g., our circle). xj is each other point on the trajectory (each point to which we'll 

measure the distance from the circle's center point xi). For each center point, the absolute 

distance between xi and xj is |xi - xj|. The distance formula gives that absolute distance. 
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The next thing Equation 5 says to do is to subtract that distance from radius e. In 

symbols, that means computing ε - |xi - xj|. If the answer is negative, then the measured 

distance |xi-xj| is greater than ε. That means point xj is beyond the circle of radius ε and 

therefore doesn't qualify for our count. On the other hand, if ε - |xi - xj| is positive, then | 

xi-xj | is smaller than ε, and the point xj is within the circle. 

We now have to devise a way to earmark the qualifying points (the points within 

the circle). (In the highly unlikely event that the distance to a point equals the radius, we 

can count it or not, as long as we're consistent throughout the analysis.) Equation 5's next 

ingredient (to the left of the distance symbols) is G. G is an efficient way to label each 

qualifying point — that is, each point for which ε - |xi - xj| is positive (>0). In another 

sense, G acts as a sort of gatekeeper or admissions director. (The technical literature gives 

it the imposing name of the Heaviside function.) It lets all qualifying points into the 

ballgame for further action and nullifies all others. If ε-|xi-xj| is positive, the point xj has to 

be counted, as just explained. For all those cases the computer program assigns a value of 

1 to the entire expression G (ε - |xi - xj|). If, instead, ε - |xi - xj| is negative, the point xj is 

beyond the radius of the measuring device. For those cases, the computer program 

assigns a value of 0 to G (ε - |xi - xj|). 

Normalization is the equation's final job. As explained above, that's done by 

dividing the total number of qualifying points by the total number of available points. 

Strictly, the total number of available points is N (N-1). Hence, we'd multiply the counted 

total by 1/ [N (N-1)]. Equation 5 uses the approximation (per Eq. 4) and so multiplies by 

1/N
2
, with N

2
 being the total number of available points or pairs on the trajectory in the 

abstract limit where N becomes infinitely large. And that's all there is to Equation 5. 
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Having determined the correlation sum for our first radius, we next increase the 

radius and go through the entire dataset with the new radius. The larger radius catches 

more points than the smaller radius did. That is, the new radius yields a larger total 

number of qualifying points (numerator in Eq. 3). The normalization constant N
2
 depends 

only on the size of the basic dataset and so is constant regardless of the radius ε. Hence, 

the larger ε yields a larger correlation sum. 

The idea is to keep repeating the entire procedure, using larger and larger radii. 

Each new radius produces a larger and larger total of qualifying points and a larger 

correlation sum. We end up with a dataset of successively larger radii and their associated 

correlation sums. Those radii and correlation sums apply only to the two-dimensional 

pseudo phase space in which we've been working. We now have to go to a three-

dimensional pseudo phase space (an embedding dimension of three) and compute a 

similar dataset (or, rather, tell our computer to do it). All computed distances with the 

distance formula now involve three coordinates instead of two. Once the radii and 

associated correlation sums for three-dimensional pseudo phase space are assembled, we 

move on to four embedding dimensions, then five, and so on. A typical analysis involves 

computing a dataset for embedding dimensions of up to about ten. You might get by with 

fewer, or you might need more, depending on what a plot of the data shows. That plot is 

the next step. 

 For each embedding dimension, the correlation sum is plotted against the radius. 

Except for tail regions at the ends of the distribution, data for a given embedding 

dimension tend to plot as a straight line (a power law) on log paper (Fig. 14) (Garnett P. 

Williams, 1997).  
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Figure 14 Plot of Correlation Sum vs. Radius 

 

  Figure 15, involving the special case of uniformly distributed phase space points, 

shows the reason for the power law. One center point is enough to demonstrate the 

power-law relation. For a given embedding dimension and center point, we choose a 

radius and count the number of qualifying points (Nε). Using the same center point, we 

then repeat for larger and larger radii. A plot of such data (not included here) shows that 

Nε ∝ ε dimension, which is a power law. For instance, data for the one dimensional case 

(Fig. 16 (a)) follow the relation Nε ∝ ε
1
. In the two-dimensional case (Fig. 16 (b)), the 

data adhere to the rule Nε ∝ ε
2
, and so on. Also, that proportionality doesn’t change if we 

deal with a correlation sum rather than just Nε. The numerator in the correlation sum just 

increases by a constant multiplier that equals the number of center points; the 

denominator, based on the size of the dataset, is also a constant. 
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Figure 15 Sketch showing geometric increase in number of points within circle of radius ε for uniformly spaced 

points (after Bergé et al. 1984: Fig. VL. 36). (a) One-dimensional attractor (line). (b) Two-dimensional attractor 
(plane) 

     

  Why does Figure 14 have tail regions where the power law no longer holds? The 

general idea is the same as we discussed for the information dimension. As we increase 

our measuring radius ε, it eventually becomes so large that it starts to catch nearly all the 

available points. That is, it catches fewer and fewer new points. The numerator in 

Equation 4 (total number of points within radius ε) then increases at a lesser rate than at 

smaller radii. The plotted data then depart from a power law, and the relation becomes 

flatter (upper end of curve in Fig. 14). The radius finally becomes so large that it catches 

all possible points, no matter where it's centered. Thereafter, the total number of points 

remains constant at the maximum available in the data. The numerator and denominator 

in Equation 4 then are equal, and the correlation sum becomes 1 (its maximum possible 

value). 

A tail region also occurs at small radii. The reason is that, in practice, data include 

noise and aren't uniformly distributed. Some small radius marks the beginning of a zone 

where measuring errors (noise) are of the same magnitude as true values. We can then no 

longer distinguish between the two. Furthermore, qualifying points become very scarce at 

small radii. In fact, even with noiseless data, our radius is eventually so small that it 
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doesn't catch any points. All of these features lead to unreliable statistics. The result is 

that the plotted relation at the smallest radii might curve away from the straight line, in 

either direction (Fig. 15). 

We have, then, a scaling region (middle segment of plotted line), just as we found 

on a related plot when deriving the information dimension. 

 

Figure 16 Idealized plot of Correlation Sum vs. Radius for increasing Embedding Dimension 

 

 The slope of the scaling region gives us the value of the CoD for that particular 

embedding dimension. Fig. 16 shows us the plots of correlation sum vs. measuring radius 

for successive embedding dimensions. As we can see from Fig. 16, the slope of the 

scaling region for the successive embedding dimensions tends to saturate to one 

particular value. This value of the slope is our CoD for the given time series (Garnett P. 

Williams, 1997). 
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3.5 EMG Data Analysis –  

3.5.1 Identifying muscle activation –  

 EMG data was acquired from 6 muscle groups using 12 channels of DELSYS 

sEMG sensors. The first step was to identify the muscles recruited for each type of low 

back exertion. This was done by plotting the EMG signals as a time series and then 

observing the nature of the graph. Below you can see the nature of the raw and RMS 

value graphs for ES Left muscle under 5 lb resistance during FE. It can be observed that 

there is a spike in muscle activity during FE motion and decrease in muscle activity when 

the participant is in neutral position. 

 

Figure 17 Muscle Recruitment for ES Left muscle during FE under 5 lb resistance 
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If a muscle is not recruited, then the spike in muscle activity is absent throughout 

the motion indicating that the muscle is not getting exerted under motion. 

3.5.2 Mean and Median Frequency of SEMG signals –  

 The next step was to calculate the mean and median frequencies of the recorded 

sEMG signals. The median frequency is the frequency at which 50% of the total power 

within the epoch is reached. Mean frequency is the frequency at which the average power 

within the epoch is reached (BIOPAC Systems Inc., Application notes). Previous 

research has shown that the mean and median frequencies decrease with fatigue induced 

in muscles (Bilodeau et. al., 2003; Mannion et. al., 1997). It would be interesting to see 

how the mean and median frequencies in the muscles under consideration vary with 

increase in resistance to motion. The mean and median frequencies were calculated using 

customized MATLAB programs in the Biomechanics et. al. Toolbox (BEAT) created by 

Ian Kremenic and Ali Sheikhzadeh from the Nicholas Institute of Sports Medicine and 

Athletic Trauma. The mean was calculated as the ratio of sum of product of signal 

amplitude and frequency to sum of amplitudes, whereas the median frequency was 

calculated as the frequency which divides the area under the amplitude vs frequency 

graph in two equal parts. 
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CHAPTER 4 

RESULTS 

 

 Traditional (ROM) and non-traditional (ApEn and Cod) methods were used to 

study low back motion during FE, LB and ROT under resistance of 0 lb, 5 lb, 10 lb and 

15 lb. Muscle activation under the same exertions was studied using mean and median 

frequency analysis. 

4.1 ROM Results –   

The ROM results for all nine participants for flexion-extension, lateral bending, 

and rotation for exercises against no load and against resistances of 5 lb, 10 lb and 15 lb 

have been plotted in graphs 1(a), 1(b), and 1(c) respectively.                

                                

Figure 18 ROM results for FE 
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Figure 19 ROM results for LB 

 

Figure 20 ROM results for ROT 

 

 One factor ANOVA test revealed that the ROM did not change significantly (p > 

0.05) as the resistance increased from zero to 15 lb during all three types of exercise.  
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SUMMARY 

Groups Count Sum Average Variance 
  Column 1 9 248.2337 27.58152 87.75713 
  Column 2 9 233.7492 25.97214 94.77536 
  Column 3 9 225.004 25.00045 101.5264 
  Column 4 9 209.7471 23.30524 105.3682 
  

 ANOVA 

Source of 
Variation SS df MS F P-value F crit 

Between Groups 86.55527 3 28.85176 0.296351 0.827739 2.90112 

Within Groups 3115.417 32 97.35677 
   

       Total 3201.972 35         
 

Table 3 One factor ANOVA test on ApEn results for FE 

 

Exercise p-value 

Flexion - Extension 0.8277 

Lateral Bending 0.716 

Rotation 0.0907 

 

Table 4 p-values for ROM results 

 

4.2 Phase Plane Plots –  

 Phase Plane Plots were plotted to give a general idea of the dynamics of the 

system. The original time series was plotted against a lagged time series using time delay 

calculated by first minimum of average mutual information method. Below are the phase 

plane plots plotted for Participant 1 during FE, LB and ROT motion against 0 lb, 5 lb, 10 

lb and 15 lb resistance. 
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Figure 21 Phase Plane plots for FE data against 0 lb, 5 lb, 10 lb and 15 lb respectively for participant 1 (left to 
right; top to bottom) 

                                                                                                                                                          

 From the above plots we can see that the trajectory follows a specific pattern with 

limited divergence. This indicates variability in the dynamic system. These plots can be 

compared to phase plane plots of perfectly periodic time series (sine wave). 
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Figure 22 Phase Plane plot of a perfectly periodic (sine wave) time series data 

 

 Fig. 21 shows the Phase Plane plot of a sine wave. We can see that the trajectories 

overlap perfectly. The nature of the graph is ellipsoid because of the time delay value 

selected. This means that there is no variability in the data.  

4.3 Fast Fourier Transformation (FFT) –  

 As mentioned in the previous chapter, one of the ways of detecting chaos in a 

synamical system is to take FFT of the given data. FFT of a chaotic signal presents 

continuous spectra over a limited range and the energy is spread over a wider bandwidth. 

On the other hand, FFT of a periodic signal presents discrete spectra, where a finite 

number of frequencies contribute for the response (Mullin T. 1993, Moon F. C. 1992). 
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Figure 23 FFT for FE data against 0 lb, 5 lb, 10 lb and 15 lb respectively for participant 1 (left to right; top to 
bottom) 

 

 We can see from above FFT plots that the experimental data recorded during FE 

for the participant consists of frequencies over a wide spectrum. This is an indication that 

the data that we have might be chaotic. We can compare this to a sine wave, which is an 

example of non chaotic data, which consists of a single frequency. 
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Figure 24 FFT of sine wave 

 

4.4 Approximate Entropy (ApEn) Results –  

 ApEn results were calculated using the algorithm developed by Pincus (Pincus, 

1994). Below are the results for ApEn of experimental data recorded during FE, LB and 

ROT against 0 lb, 5 lb, 10 lb and 15 lb resistance. 

 

Figure 25 ApEn results for FE 
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Figure 26 ApEn results for LB 

 

Figure 27 ApEn results for ROT 

 

One factor ANOVA tests revealed that the ApEn values did not change 

significantly (p > 0.05) as the resistance increased from zero to 15 lb during all the three 

types of exercises.  
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SUMMARY 

Groups Count Sum Average Variance 
  Column 1 9 2.6096 0.289956 0.001987 
  Column 2 9 2.7531 0.3059 0.004959 
  Column 3 9 2.5042 0.278244 0.005593 
  Column 4 9 2.6835 0.298167 0.005934 
  

 ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 0.003781 3 0.00126 0.272894 0.844479 2.90112 

Within Groups 0.147779 32 0.004618 
   

       Total 0.151559 35         

 

Table 5 One factor ANOVA test on ApEn results for FE 

 

Exercise p-value 

Flexion – Extension 0.8444 

Lateral Bending 0.8371 

Rotation 0.2034 

 

Table 6 p-values for ApEn results 

 

4.5 Correlation Dimension (CoD) Results –  

 CoD for the motion data was calculated using an algorithm developed by 

Grassberger and Procaccia (1983). Below are the results for CoD of experimental data 

recorded during FE, LB and ROT against 0 lb, 5 lb, 10 lb and 15 lb resistance. 
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Figure 28 CoD results for FE 

 

 

Figure 29 CoD results for LB 

 

 

Figure 30 CoD results for ROT 
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The ANOVA tests revealed that the CoD did not change significantly (p > 0.05) 

as the resistance increased from zero to 15 lb during all the three types of exercised. The 

p-values for FE, LB and ROT data sets came out to be 0.9734, 0.5668 and 0.6328 

respectively. 

SUMMARY 

Groups Count Sum Average Variance 
  Column 1 9 17.83 1.981111 0.003436 
  Column 2 9 17.83 1.981111 0.002536 
  Column 3 9 17.94 1.993333 0.007075 
  Column 4 9 17.86 1.984444 0.002678 
  

 ANOVA 
 Source of Variation SS df MS F P-value F crit 

Between Groups 0.0009 3 0.0003 0.076312 0.972327 2.90112 

Within Groups 0.1258 32 0.003931 
   

       Total 0.1267 35         

 

Table 7 One factor ANOVA test on CoD results for FE 

 

Exercise p-value 

Flexion - Extension 0.9723 

Lateral Bending 0.5668 

Rotation 0.6328 

 

Table 8 p-values for CoD results 
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4.6 EMG Frequency Analysis Results –  

 EMG signals were recorded from six muscle groups, namely Erector Spinae, 

Multifidus, Latissimus Dorsi, Internal Obliques, External Obliques and Rectus 

Abdominis. After the signals were recorded and processed, they were plotted to identify 

the muscles recruited by each participant for each type of low back exertion. It was 

interesting to note that not all the participants recruited the same muscles for the same 

type of low back exertion. The following table shows details about which muscle was 

recruited by how many participants for each type of low back exertion. 

Muscle No. of participants who used that muscle for that motion 

 
Flexion-Extension Lateral Bending Rotation 

ES Left 9 4 9 

ES Right 9 9 9 

EO Left 6 5 6 

EO Right 6 9 6 

IO Left 3 4 4 

IO Right 3 4 3 

RA Left 4 2 1 

RA Right 4 2 1 

LD Left 9 5 9 

LD Right 9 9 9 

MF Left 9 3 9 

MF Right 9 9 9 

 

Table 9 Muscle recruitment during FE, LB and ROT by number of participants. 

  

Thus we can see that during FE, ES Left, ES Right, LD Left, LD Right, MF Left 

and MF Right were recruited by all the participants while the remaining muscles were 

not. Similarly, during LB, ES Right, EO Right, LD Right and MF Right were recruited by 
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all the participants. During ROT motion, ES Left, ES Right, LD Left, LD Right, MF Left 

and MF Right were recruited by all the participants. 

 For comparison purposes, the data from the muscles that were used by all the 

participants for that particular type of motion was used. Below are the results of mean 

and median frequency calculations for data obtained from muscles that were recruited by 

all the participants during FE, LB an ROT. After the mean and median frequency were 

calculated, One Factor ANOVA analysis with significance level of α = 0.05 was 

conducted to see if the mean and median frequency varied significantly with increase in 

resistance to motion. 

4.6.1 Mean and Median Frequency during Flexion – Extension motion –  

  

Figure 31 ES Left – Mean and Median Frequencies (Left and Right) 
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Figure 32 ES Right - Mean and Median Frequencies (Left and Right) 

 

  

Figure 33 LD Left - Mean and Median Frequencies (Left and Right) 

 

  

Figure 34 LD Right - Mean and Median Frequencies (Left and Right) 
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Figure 35 MF Left - Mean and Median Frequencies (Left and Right) 

 

  

Figure 36 MF Right - Mean and Median Frequencies (Left and Right) 
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Muscle Mean value of Mean Frequencies in Hz (S.D.) 

 NL 5 lb 10 lb 15 lb 

ES Left 135.58 (4.85) 137.5 (4.4) 138.04 (4.01) 139.99 (5.29) 

ES Right 139.85 (6.67) 141.50 (5.37) 142.83 (4.87) 142.21 (5.68) 

LD Left 132.42 (4.30) 133.49 (4.64) 130.35 (4.74) 128.02 (4.51) 

LD Right 129.44 (5.40) 127.22 (6.49) 125.21 (6.26) 122.9 (6.46) 

MF Left 161.79 (3.60) 162.36 (4.20) 163.39 (4.28) 161.63 (4.35) 

MF Right 162.75 (4.92) 166.49 (5.68) 167.73 (5.14) 166.71 (5.13) 

Table 10 Mean values of Mean Frequencies with increasing loads during FE 

 

Muscle Mean value of Median Frequencies in Hz (S.D.) 

 NL 5 lb 10 lb 15 lb 

ES Left 94.36 (5.97) 96.85 (5.47) 98.29 (4.91) 101.19 (6.31) 

ES Right 99.06 (8.23) 100.38 (6.52) 101.85 (6.28) 103.02 (7.13) 

LD Left 89.05 (4.79) 91.89 (4.98) 58.52 (5.54) 87.67 (5.05) 

LD Right 85.57 (5.60) 86.65 (4.90) 87.29 (5.20) 85.75 (5.36) 

MF Left 122.79 (4.48) 124.32 (4.80) 125.57 (5.10) 124.45 (5.04) 

MF Right 121.54 (6.26) 126.96 (6.91) 130.22 (6.37) 129.95 (6.29) 

 

Table 11 Mean values of Median Frequencies with increasing loads during FE 
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4.6.2 Mean and Median Frequency during Lateral Bending motion –  

  

Figure 37 ES Right - Mean and Median Frequencies (Left and Right)  

    

  

Figure 38 EO Right - Mean and Median Frequencies (Left and Right) 

 

  

Figure 39 LD Right - Mean and Median Frequencies (Left and Right) 
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Figure 40 MF Right - Mean and Median Frequencies (Left and Right) 

 

Muscle Mean value of Mean Frequencies in Hz (S.D.) 

 NL 5 lb 10 lb 15 lb 

ES Right 161.60 (7.73) 157.62 (5.00) 155.75 (4.09) 152.00 (5.15) 

EO Right 138.85 (5.53) 142.00 (7.48) 141.21 (5.95) 139.01 (6.72) 

LD Right 139.62 (7.05) 133.80 (6.02) 127.74 (5.37) 124.14 (4.99) 

MF Right 190.37 (6.43) 188.28 (5.16) 184.77 (5.81) 181.60 (5.23) 

 

Table 12 Mean values for Mean Frequencies with increasing loads during LB 

 

Muscle Mean value of Median Frequencies in Hz (S.D.) 

 NL 5 lb 10 lb 15 lb 

ES Right 117.9 (10.4) 111.56 (7.57) 112.01 (6.87) 109.94 (7.39) 

EO Right 88.38 (5.91) 95.07 (8.35) 92.78 (6.29) 92.13 (6.87) 

LD Right 93.42 (6.01) 89.38 (4.42) 86.18 (4.03) 85.00 (4.10) 

MF Right 155.53 (8.67) 152.10 (6.53) 147.71 (8.09) 145.10 (7.64) 

 

Table 13 Mean values for Median Frequencies with increasing loads during LB 
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4.6.3 Mean and Median Frequency during Rotation motion –  

  

Figure 41 ES Left - Mean and Median Frequencies (Left and Right) 

 

  

Figure 42 ES Right - Mean and Median Frequencies (Left and Right) 

 

  

Figure 43 LD Left - Mean and Median Frequencies (Left and Right) 
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Figure 44 LD Right - Mean and Median Frequencies (Left and Right) 

 

  

Figure 45 MF Left - Mean and Median Frequencies (Left and Right) 

 

  

Figure 46 MF Right - Mean and Median Frequencies (Left and Right) 
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Muscle Mean value of Mean Frequencies in Hz (S.D.) 

 NL 5 lb 10 lb 15 lb 

ES Left 164.10 (5.89) 160.31 (5.12) 158.69 (4.71) 156.52 (4.59) 

ES Right 163.16 (6.05) 162.58 (5.29) 160.89 (4.78) 158.64 (4.43) 

LD Left 137.78 (6.30) 137.31 (6.34) 128.55 (6.00) 126.33 (5.44) 

LD Right 141.58 (7.93) 130.95 (5.92) 128.95 (5.70) 127.04 (5.90) 

MF Left 179.88 (5.87) 180.76 (4.71) 178.91 (4.62) 176.00 (4.53) 

MF Right 177.65 (9.50) 179.28 (6.75) 182.40 (6.18) 175.94 (7.77) 

Table 14 Mean values of Mean Frequencies with increasing loads during ROT 

 

Muscle Mean value of Median Frequencies in Hz (S.D.) 

 NL 5 lb 10 lb 15 lb 

ES Left 124.44 (8.91) 122.91 (6.66) 122.41 (5.90) 120.21 (5.44) 

ES Right 121.80 (9.43) 124.67 (6.95) 122.73 (6.35) 121.08 (5.83) 

LD Left 95.23 (6.98) 96.62 (5.28) 90.66 (5.61) 88.75 (5.15) 

LD Right 98.19 (6.25) 93.77 (6.15) 89.16 (4.86) 90.77 (5.56) 

MF Left 144.96 (8.63) 148.41 (6.30) 146.91 (6.38) 143.60 (6.11) 

MF Right 143.46 (12.95) 146.24 (8.46) 151.77 (7.84) 143.65 (9.70) 

 

Table 15 Mean values of Median Frequencies with increasing loads during ROT 
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CHAPTER 5 

DISCUSSION 

 

 The aim of this exercise was to develop test protocols for analysis of low back 

exertions in standing position. Traditional (ROM) and non-linear (ApEn and CoD) 

techniques were employed for analysis of low back motion while analysis of EMG data 

was done using mean and median frequency calculations.  

 The ROM, while giving accurate measures of motor variability within the system, 

is not explanatory of the underlying neural processes of human movement. The nonlinear 

measures helped us to understand the motor variability within a system, and not just to 

provide a measure of the amount of variability that is present. Furthermore, as stated 

previously, traditional linear tools can mask the true structure of motor variability, since a 

few strides are averaged to generate a ‘‘mean’’ picture of the subject’s gait. In this 

averaging procedure, the temporal variations of the gait pattern may be lost. On the 

contrary, nonlinear techniques focus on understanding how variations in the gait pattern 

change over time (Dingwell and Cusumano, 2000; Hausdorff et al., 1997). This is the 

reason for using both traditional and non-linear tools to analyze low back motion in our 
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case. The ROM does not describe the effect of increasing resistance on motion. It does 

not take into account the chaos in the dynamic motion of low back. Non-linear methods 

will help us better understand the dynamics of low back motion. 

 Motion and EMG data was recorded from nine healthy participants using the 

protocols approved by the IRB’s of Auburn University, AL and Palmer College of 

Chiropractic, IA. One of the participants could not be used for data acquisition as the 

sensors could not be attached to the participant’s lower back because of perspiration. 

Following data exporting and data reduction, motion data was analyzed using ROM, 

ApEn and CoD techniques. The values of ApEn and CoD results were similar to results 

obtained in some of the other studies conducted on healthy participants to study 

variability. Newell et. al. in their study of dimensional constraints on limb movement 

found out that the approximate entropy values increased from an average of 0.2 to 0.3 as 

participants went from gait with vision to gait without vision aid. Buzzi et. al. studied 

effect of aging on variability during gait and found out that CoD values for young people 

were 2.3 as compared to 2.7 for old people for variation in knee angle.  Both traditional 

and non-linear methods were thus applied successfully to the human physiological data 

obtained.  

Statistical analysis revealed that variability did not change significantly as the 

resistance to FE, LB and ROT increased from zero to 15 lb. It must be noted that the aim 

of this exercise was to develop test protocol to analyze low back exertion. The sample 

size used for this study was relatively small and statistical analysis results may not be 

enough to generalize the results for entire healthy population. The protocol needs to be 

fine tuned before it can be applied to a large scale study. Statistical analysis on results of 
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a much larger population will then give a correct estimate of effect of increasing loads on 

variability in motion of low back spine. 

Though the overall results suggested that variability remained constant as the 

resistance to motion increased, there were some exceptions. One of them is discussed 

below. 

 

 

Figure 47 ROM, ApEn and CoD results for participant 1 during LB 

 

 In the graphs above, you can see the results for ROM, ApEn and CoD for 

participant 1 (Age – 59 yrs, Height – 164 cm, Weight – 66.2 kg). It can be noticed that as 

the resistance to lateral bending increases, the ROM falls sharply. This means that the 

participant found it difficult to cope with the increase in resistance. However, the values 

for ApEn and CoD do not change with increase in load. This means that even though the 

ROM decreased, the regularity of the repetition cycles did not change significantly. The 

age of the participant was significantly higher than the average age (43.2 yrs) of all the 
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participants. This may have been one of the reasons for decrease in ROM with increasing 

resistance. Thus you can see that to totally analyze motion, both traditional and non-

linear tools are necessary. 

 Mean and median frequencies of recorded EMG signals were calculated to see the 

effect of increasing loads on muscle fatigue. As explained earlier, it was noticed that 

muscle fatigue typically results in decrease in the mean and median frequencies. 

Statistical analysis revealed that mean and median frequencies did not change 

significantly with increase in load. This means muscle fatigue was not induced in the 

participants due to increasing loads. This may be one of the reasons; variability in motion 

was not affected by increasing loads, as the muscles were able to provide the required 

neuro-muscular response to the increasing loads. However, as mentioned before, this is 

only the protocol development stage of the study and more testing will be needed before 

this conclusion can be generalized for the entire healthy population. As with the motion 

analysis results, there were some outliers in the EMG results also. A couple of them are 

discussed below. 

  

Figure 48 Mean and Median Frequency results for ES Left muscle for participant 3 during ROT 
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It can be seen that the mean and median frequencies for participant 3 (Age – 24 

yrs, Height – 181 cm, Weight – 80 kg) decrease as the resistance to motion increases. 

This means that fatigue is getting induced in the muscles of participant 3 as the load 

increases. This is not consistent with other results and hence may be considered an 

outlier. The reason might be less endurance when it comes to dealing with increasing 

resistance. This is a surprising result, as younger participants are expected to have higher 

muscle endurance. 

  

Figure 49 Mean and Median Frequency results for ES Right muscle for participant 3 during ROT 

 

 Fig. 49 shows us the mean and median frequency results for ES Right muscle of 

participant 5 (Age – 51 yrs, Height – 160 cm, Weight – 63 kg) during ROT. The overall 

results show that mean and median frequencies either remained constant or decreased 

slightly as the resistance to motion increased. However, in this case, the mean and 

median frequencies increased as the resistance to motion increases. This may happen if 

the participant uses the leg muscles to compensate for the increase in effort required to 

overcome the increase in resistance. The age of this participant is higher than the average 

age (43.2) of all the participants. Thus he might have needed his leg muscles to deal with 

the increasing resistance to motion. In this case the participant does not use only his back 
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muscle which may lead to them relaxing, resulting in increase in mean and median 

frequencies. 

As mentioned before test methods need to be improved before using them in a 

larger study. Some of the recommendations to improve the protocol are listed below –  

1. It was observed that the rotation data did not truly reflect the motion of 

participants because the skin was stretched during rotation. This can be minimized by 

applying a stiff plastic plate to the skin before the motion sensors are applied.  

2. The participants were also asked to perform the exertions at their comfortable 

speeds. This may have allowed them to compensate for the increase in resistance to 

motion. It would be interesting to see the results if the participants are asked to perform 

these exertions under two different fixed speeds or under higher resistance. It has been 

previously reported that variability is less for slower trunk movements as compared to 

rapid ones. In this study healthy participants were asked to perform repetitive trunk 

flexion and extension movements at 20 and 40 cycles per second. Maximum Lyapunov 

exponents describing the expansion of the kinematic state-space were calculated from the 

measured trunk kinematics to estimate stability of the dynamic system. The values of the 

Maximum Lyapunov exponent were more for rapid movements than for slow movements 

(Granata et. al., 2006). 

3. Another limitation of the study might be the fact that participants were able to use 

their leg muscle to compensate for the increase in load resistance. It was necessary to 

leave the legs unconstrained to simulate real world conditions. Before the data recording 

started, the participants were instructed to move only their upper body, from the waist up 

and perform the three types of exertions. However, it was observed that some of the 
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participants still used their leg muscle to compensate for increasing loads. To remedy this 

participants can be given a practice session to get better acquainted to the exercises. 

Once the protocol had been developed, the next step would be to apply the 

protocol to larger sample sizes of healthy participants as well as patients with LBP. It has 

been shown previously that LBP affects trunk co-ordination and muscle activity during 

walking (Lamoth et. al., 2005). It will be interesting to see the effect of LBP on FE, LB 

and ROT exertions under increasing loads. If LBP affects variability significantly, then 

these exercises will be characterized by different values of ROM, ApEn and CoD.  

When a patient under goes rehabilitation for LBP, then convergence of these 

values towards values for these parameters for healthy subjects may suggest that the 

treatment is working. Hence, this sort of variability analysis can be used as a diagnostic 

tool during rehabilitation. However, before this can be done, a solid database needs to be 

created by testing more healthy subjects, as nine subjects is not enough to generalize 

movement characteristics of entire healthy population. This should be followed by testing 

of patients with LBP to establish the difference in movement characteristics. 
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CHAPTER 6 

CONCLUSION 

 

Collectively, the results of kinematic analysis during FE, LB and ROT revealed 

that variability in motion does not change under gradual increase in resistance to motion. 

The findings of the traditional method (ROM) used were supported by non-linear analysis 

(ApEn and CoD) of motion. Thus, both traditional and non-linear methods were applied 

successfully to analyze motion. Also, the increasing resistance to motion did not induce 

enough fatigue in muscles of participants which might have helped the participants to 

provide required neuromuscular response to increasing loads. The measurements during 

rotation should be improved by attaching the sensors to prevent sliding over the skin. 

Future studies should be undertaken to increase the challenges by either increasing the 

load, or by asking the subjects to increase the speed. Studies recruiting larger number of 

subjects should be undertaken. These will ultimately lead to studies involving low back 

pain subjects and possible tools for diagnosing low back pain using motion 

measurements. 
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C. Motion Monitor Preference File Settings –  
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Figure 54 EMG Data 2 
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D. Literature Review Summary Sheets –  

Study Title 

Health 

Status and 

number of 

participan

ts 

Gender 
Age in 

years 

(SD) 

Weight 

in kg 

(SD) 

Height 

in cm 

(SD) 
Males 

Female

s 

Cavanaug

h et. al. 

2007 

Approximate entropy detects the effect 

of 

a secondary cognitive task on postural 

control in healthy young adults: a 

methodological report 

Healthy - 

30 
15 15 21.7 (2.3) 71 (13.3) 173 (11) 

Kavanagh 

et. al 2006 

Lumbar and cervical erector  

spinae fatigue elicit compensatory  

postural responses to assist in  

maintaining head stability during  

walking 

Healthy - 8 8 0 23 (4) 77 (12) 181 (9) 

Kavanagh 

et. al 2009 

Lower trunk motion and speed-

dependence 

during walking 

13 7 6 23 (3) 71 (11) 171 (11) 

Fell et. al. 

2000 

Nonlinear analysis of continuous ECG 

during 

sleep II. Dynamical measures 

Healthy - 

12 
12 0 27.3 (4.2) 

Not 

Clear 

Not 

Clear 

Lee et. al. 

2010 

Non-linear Analysis of Single 

Electroencephalography (EEG) for 

Sleep-Related Healthcare Applications 

Healthy - 4 4 0 27.5 
Not 

Clear 

Not 

Clear 

Newell et. 

al. 2000 

Dimensional constraints on limb 

movements 
Healthy - 8 8 0 Not Clear 

Not 

Clear 

Not 

Clear 

Buzzi et. 

al. 2003 

Nonlinear dynamics indicates aging 

affects 

variability during gait 

Healthy 

young - 10 

Healthy 

older - 10 

0 20 

25.1 (5.3) 

74.6 

(2.55) 

63.93 

(6.53) 

64.07 

(9.69) 

170 (4.9) 

159 (5.3) 
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Study Title 
Rate of data 

collection 
Duration r, m ApEn 

Cavanaugh et. 

al. 2007 

Approximate entropy 

detects the effect of 

a secondary cognitive 

task on postural 

control in healthy 

young adults: a 

methodological 

report 

100 Hz Not Clear 
r = 0.2 

m= 2 

No significant interaction 

was 

found between cognitive 

task and sensory 

condition for ApEn-AP 

and ApEn-ML 

Kavanagh et. 

al 2006 

Lumbar and cervical 

erector spinae fatigue 

elicit 

compensatory 

postural responses to 

assist in maintaining 

head stability during 

walking 

Motion - 250 Hz 

EMG - 1000 Hz 

Time required to 

walk 30 m level 

walkway at 

comfortable speed. 

r = 0.2 

m = 1 

ApEn values did not 

show significant change 

when data obtained after 

fatigue induced in neck 

and trunk region were 

compared. 

Kavanagh et. 

al 2009 

Lower trunk motion 

and speed-

dependence 

during walking 

512 Hz 

Time required to 

walk 30 m level 

walkway at 

comfortable speed. 

r = 0.2 

m = 1 

ApEn values increased as 

the walking speed 

increased. The increase in 

value ranged from 0.15 to 

0.24 depending on axis of 

inclinometer. 

Newell et. al. 

2000 

Dimensional 

constraints on limb 

movements 

100 Hz 2 minutes 
r = 0.25 

m = 2 

ApEn values increased as 

the subjects went from 

preferred with vision to 

random and no vision 

type of motion. The 

increase was in the range 

of 0.2 to  0.3. 

 

Approximate Entropy Studies Summary 

 

 


