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Abstract

A propeller behaves as a rotating wing producing lift in the direction of the axis of

rotation. Many previous propeller optimization methods have been developed, but usually

focus on piston or turboprop applications. This study discusses the more fundamental pro-

peller theories and uses a hybrid blade element momentum theory to model the propellers.

A brushless motor model is developed and coupled with the propeller theory in an opti-

mizer. Two single point optimizations are made, one for a climb condition and the other

for a cruise condition. A third optimization is presented with optimization at climb and

cruise conditions. The optimizations are conducted with a hybrid pattern/search particle

swarm optimizer. The airfoils for the propellers are optimized with the same optimizer and

a simplex method. Multiple objective functions are evaluated for each of the conditions.

One having non-dimensional values and another with dimensional values. Dimensional val-

ues prove to provide better results for all of the conditions. The optimized cruise propellers

display smaller chords, higher pitches, and larger diameters while the optimized climb pro-

pellers have larger chords, lower pitches and smaller diameters. The multipoint optimization

yields higher pitches with chords and diameters between the single point optimizations. All

optimized propellers show improvement over comparable baseline propellers.
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Chapter 1

Introduction

Propellers are one of the fundamental elements of propulsion and aircraft design, acting

like a rotating wing to produce lift in the same direction as the axis of rotation. There are

several different methods used to calculate the performance parameters of a propeller. These

include momentum theories [1], blade element theories [2], hybrid blade element momentum

theories [3][4], and lifting line theories [5]. Procedures have been developed to optimize

propellers that do not require computers. With advances in computers, optimization is

becoming more readily available and allows for more design variables to be optimized.

One optimization method was developed by Adkins and Liebeck in 1983 [6] and has

several limitations, but is easily implemented. This method will only give the optimum

blade angles and chords for a particular free stream velocity and will not solve for diameters

or multiple design points. Fanjoy and Crossley performed a two dimensional optimization

using a genetic algorithm [7]. Their method used a panel method for aerodynamic analysis on

the propeller blades and included structural penalty functions to ensure a feasible propeller.

This method showed some over prediction in airfoil data which sometimes led to bad results.

Miller used a vortex lattice method for a three dimensional optimization of a propeller [8].

One panel was used in this method with no camber. Burger in 2007 [5] developed another

method using lifting line theory and a genetic algorithm to optimize propellers for noise

reduction over a range of operation.

Due to the fact that a propeller acts like a rotating wing its cross section is an airfoil.

Consequently one aspect of optimizing a propeller is optimizing the airfoil shapes used along

the blade span. Optimizing an an airfoil shape can be challenging if the shape is described

using individual points. It can take 50-100 points to effectively describe an airfoil shape
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which is to many parameters to optimize efficiently. A common approach to describing the

number of parameters used to describe an airfoil is to parameterize the shape. Addressing

this obstacle Kulfan has developed a process that uses Bernstein polynomials to represent

the points of an airfoil [9]. Her approach was adopted for this effort.

Small UAVs are becoming more popular. Advances in small brushless DC motors and

lithium polymer battery technology have created useful drive systems for these UAVs. This

leads to a desire to design propellers for UAV systems that are as efficient as possible when

used with electric motors. The purpose of this study is to examine propeller optimization

with a coupled electric motor. A method will be developed to optimize propellers given

a brushless electric motor for single point or multiple point design conditions. A hybrid

blade element momentum theory method will be used for propeller performance analysis.

Validation of the propeller performance will be included. General trends in propellers at

design conditions will be presented along with the results of optimized propellers.
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Chapter 2

Airfoils

2.1 Airfoil Basics

Like a wing the cross section of a propeller blade is an airfoil. Airfoils produce a lifting

force by creating a low pressure on the surface in the direction of lift and a higher pressure

in the opposite direction of lift. An airfoil has several key geometric features. The leading

and trailing edge mark the front and back of the airfoil as well as separate the upper surface

from the lower surface. The chord, c, is a straight line drawn from the leading edge to the

trailing edge. If the upper and lower surfaces are mirror images of each other the airfoil is

said to be symmetric. The line consisting of points halfway between the upper and lower

surface is known as the mean camber line [10]. The camber is defined as the maximum

distance perpendicular to chord line and mean camber line. A visual interpretation of the

nomenclature for an airfoil is shown in Figure 2.1.

0 0.2 0.4 0.6 0.8 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Camber
Chord Line

Mean Camber Line
Trailing
Edge

Upper 
Surface

Lower 
Surface

Leading
Edge

Figure 2.1: Example Airfoil with Nomenclature
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2.2 Parameterization of Airfoils

Airfoil shapes are potentially hard to optimize if only the coordinates are known due to

the high number of points that need to be used to define an airfoil accurately. To decrease

the number of terms used to define an airfoil a process called parameterization is used for

upper and lower surfaces.

2.2.1 Bezier Curves

Bezier curves are one of the many ways to represent an airfoil. A parametric Bezier

curve of degree n is described in Equation 2.1.

B (t) =
n∑
i=0

Bi
n!

i! (n− i)!
ti (1− t)n−i (2.1)

Venkataraman [11] used four cubic Bezier curves to describe an airfoil. His method spilt the

airfoil into an upper and lower surface and used two curves to define each surface. Rogalsky

[12] expanded on Venkataramans work by using four cubic Bezier curves to define a camber

and thickness line. The curves can then be combined to form an airfoil. Using Equation 2.2

an example Bezier curve can be constructed and is shown in Figure 2.2.

B (t) = (1− t)3B0 + 3 (1− t)2 tB1 + 3 (1− t) t2B2 + t3B3 (2.2)

B0, B1, B2, and B3 are coordinate location for each of the control points and t ranges

from 0 to 1. Camber and thickness lines can then be made. The first of the two Beizer

curves that make up the camber line is anchored at the origin at one end, and the other

end is anchored at the location of maximum camber. The second line is anchored at the

location of maximum camber and at one unit in the x-direction. The thickness line is

constructed in the same manner with the location of maximum thickness between the inner

anchored points. The other points used to construct the curves are placed in such a way to
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provide an appropriate curve. These points along with the locations of the maximum camber

and thickness are unknown variables that can be moved to create an airfoil. An example

camber line, thickness line, and corresponding airfoil are shown in Figure 2.3 with the Beizer

coefficients being displayed in the squares and the solid lines representing the upper and

lower surfaces.
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Figure 2.3: Example of Camber Line, Thickness Line and Corresponding Airfoil
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2.2.2 Bernstein Polynomials Representation of the Unit Shape Function

Bernstein polynomials are a special case of Bezier curves. Bernstein polynomials only

range from 0-1 on the x-axis. Kulfan discusses a method for parameterizing an airfoil using

Bernstein polynomials in Reference [9], and her method will be discussed here. The airfoil

shape is divided into an upper and lower surface. The following process will need to be

repeated for the lower surface. First an overall shape function for the upper surface will be

defined in Equation 2.3.

S (ψ) =
n∑
i=1

AuiSi (ψ) (2.3)

Where ψ = x
c
, Si (ψ) is a shape function, and Aui are the unknown coefficients that define

the contour. A unit shape function is then defined by the Bernstein polynomials in Equation

2.4.

Sr,n (x) = Kr,nx
r (1− x)n−r (2.4)

The Bernstein polynomial is of order n, r = 0, 1, 2, ..., n and Kr,n are binomial coefficients

shown in Equation 2.5.

Kr,n ≡ ( nr ) ≡ n!

r! (n− r)!
(2.5)

An example of Equation 2.4 evaluated for a 6th order Bernstein polynomial is shown in Table

2.1. A class function can now be introduced in Equation 2.6. This class function defines the

i Kr,n Sr,n (x)

0 1 (1− x)6

1 6 6 (1− x)5 x

2 15 15 (1− x)4 x2

3 20 20 (1− x)3 x3

4 15 15 (1− x)2 x4

5 6 6 (1− x)x5

6 1 x6

Table 2.1: 6th Order Bernstein Polynomials Parameters
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leading and trailing edges of the airfoil.

CN1
N2 (ψ) = ψN1 (1− ψ)N2 (2.6)

Table 2.2 provides example values of the N1 and N2 coefficients and the corresponding shape

that they yield [13]. A trailing edge offset is defined by Equation 2.7 where zte is the height

N1 N2 Description
0.5 1.0 Round-Nose and Pointed Aft End Airfoil
0.5 0.5 Elliptic or Ellipsoid Body of Revolution
1.0 1.0 Biconvex Airfoil
0.75 0.75 Sears-Haack Body
0.75 0.25 Low-Drag Projectile
1.0 0.001 Cone or Wedge
0.001 0.001 Rectangle, Circular Duct, or Circular Rod

Table 2.2: Class Function Coefficients and Corresponding Geometric Shapes

of the trailing edge from the x-axis.

∆ξ =
zte
c

(2.7)

An equation for the upper surface, ζupper, can defined in Equation 2.8 by multiplying Equa-

tions 2.4 and 2.6 and adding the offset in Equation 2.7, where ζ = z
c
.

ζupper = CN1
N2 (ψ)S (ψ) + ψ∆ξupper (2.8)

The results of an example of this process is shown in Figure 2.4 where the binomial coefficients

can be found in Table 2.3. The coefficients for the class function are N1 = 0.5 and N2 = 1.0,

and the leading edge radius is equal to 0.03.

i 0 1 2 3 4 5 6
Aupperi 0.2 0.3 0.2 0.2 0.2 0.1 0.1
Aloweri -0.2 -0.2 0.2 - 0.2 0.2 - 0.05 -0.05

Table 2.3: Binomial Coefficients for Bernstein Polynomial Example
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If this process is repeated for the lower surface different binomial coefficients will need to

be used to provide a different contour. The upper and lower surfaces can then be combined to

form an airfoil. An example of a randomly generated airfoil is shown in Figure 2.5 using the

binomial coefficients from Table 2.3. Kulfan provides results that indicate that this method
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Figure 2.5: Example of a Random Airfoil Using Parameterization

is a suitable method for describing an airfoil when the minimum order for the Bernstein

polynomials is higher than 5th order [9].

2.3 XFOIL

There are many different established computer programs and methods for calculating

two dimenisonal lift and drag coefficients of an airfoil. A program developed by Drela in

1986 called XFOIL will be briefly discussed here [14] [15]. XFOIL was originally designed

for assisting with the development of airfoils for human powered aircraft and low Reynolds

number aircraft. Appendix A contains sample inputs and output files for typical sessions

where lift and drag are desired.
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XFOIL can only provide results for two dimensional airfoils. Its capabilities include

both inviscid and viscous solutions. Inviscid solutions are solved using a vortex sheet on the

surface of the airfoil and a source sheet the surface of the airfoil and its wake. Once the

unknown vortices are found a corresponding pressure distribution and lift coefficient for the

airfoil can be found.

The viscous solution is much more complicated process. XFOIL’s viscous solution is

based on the transonic ISES code with a few improvements. The ISES code solves for the

boundary layer and finds separation bubbles using the inviscid solution to solve for the

potential flow field. XFOIL includes the Karman-Tsien compressibility correction which is

reliable up to sonic conditions and provides reliable pressure distributions, lift, and drag

coefficients at low Reynolds numbers [15].
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Chapter 3

Propellers

3.1 Basics of Propellers

A propeller is a device used for creating thrust in a fluid through rotational means.

Figure 3.1 is velocity diagram for a cross section of a propeller blade. This illustrates that

both the free stream and rotation velocities that are seen by the propeller.

β φ

α

Vrot

V∞

Vrel

Propeller
Cross Section

Rotation Axis

Figure 3.1: Blade Cross Section Velocity Disgram

3.1.1 Geometry

Propellers are very similar to wings. The lifting surface on a propeller is called a blade,

and a propeller can have any number of blades. Most propellers have two to four blades.

Any given point along a blade the cross section has all the same characteristics as an airfoil:

leading and trailing edges, mean camber line, chord line, thickness, etc. Where the blades

connect is called the hub which is either directly attached to an engine or to a transmission.

The root is the area between the hub and the blade, and the tip is end of the blade opposite
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the hub. The blade angle, β, is the resultant angle between the free stream and rotational

velocity components and is shown in the velocity diagram in Figure 3.1. The effective pitch,

pe, is the distance a propeller advances in one rotation. While the geometric pitch, ge, is the

theoretical distance an element of a propeller blade would travel in one rotation and may

not be constant along the length of blade [16] [17]. Several of these geometric paratmeters

can be seen in Figures 3.2 and 3.3.

Leading
Edge

Trailing
Edge

Tip Rotation
Direction

Hub
Root

Figure 3.2: Propeller Geometry

3.1.2 Other Parameters

There are many other parameters that are useful in describing propellers. The advance

ratio, J, is the ratio between the distance the propeller moves forward through one rotation

and the blade diameter.

J =
V

nD
(3.1)

Where n is in rotations per second. The aspect ratio, AR, is the tip radius divided by the

maximum blade width. A spinner is a conical or parabolic shaped fairing that is mounted

over the center of the center of the propeller where it is connected to the hub. The blade face

is the lower surface of the propeller airfoil and is also known as the thrust or driving face.

The blade back is the upper surface of the propeller airfoil. Several of these parameters are

shown in 3.3. The rake or tilt of a propeller is the mean angle between a line drawn through

the center of area of each section of a blade and a plane perpendicular to the rotation axis.

Some of these parameters are shown in Figure 3.3.
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Figure 3.3: Propeller Blade Cross Sections

3.1.3 Types

Propellers are either tractor or pusher propellers. A tractor propeller is placed in a

configuration where the engine is downstream of the propeller and pulls the aircraft. While

a pusher propeller is placed where the engine is upstream of propeller and pushes the aircraft.

Propellers can also be classed as either fixed or variable pitched propellers. A fixed pitch

propeller’s blades are rigidly connected to the hub. A variable pitch propeller’s blades can be

adjusted either on the ground or during flight to allow the propeller to operate at maximum

performance throughout its operation range.

3.2 Propeller Theories

There are several methods for solving for propeller performance factors. The following

discusses a few fundamental methods which are computationally friendly and provide ac-

curate results. Before these methods are explained, nondimensional expressions for thrust,

power, and efficiency will be given. These expressions are similar to the lift and drag coeffi-

cients used to characterize airfoils and show how the performance of a propeller changes with

scale or rotation speed. The thrust coefficient, Ct, power coefficient, Cp, and the efficiency,

12



η, are shown in Equations 3.2 - 3.4.

Ct =
Ft

ρn2D4
(3.2)

Cp =
Q

ρn3D5
(3.3)

η =
CtJ

Cp
(3.4)

where n is the rotation speed, D is the Diameter of the propeller, ρ is the density of air, and

J is the advance ratio.

3.2.1 Momentum Theory

Momentum theory is most the fundamental of all of the propeller theories. The following

explanation for the momentum theory was taken from Nelson in Reference [16]. This theory

assumes the propeller is a disk that creates a uniform thrust through a pressure differential

between the front and back of the propeller. The theory does not take in account com-

pressibility or viscous effects. Figure 3.4 is a reproduction from Nelson’s work in Reference

[16] and shows continuous stream lines that form a stream tube. The pressure and velocity

V0

VSVd

V0Propeller
Disk

P0 P0

P'0 P'0+ΔP

Boundary

Figure 3.4: Momentum Theory Stream Tube
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before and after the disk are shown in Figure 3.5. The far upstream pressure, P0, is shown

to change by ∆P at the propeller disk then return to P0 far downstream. It should also

be noted that the pressure drops by P0 − P ′0 at the beginning of the disk then quickly rises

by ∆P before asymptotically returning to P0.The velocity is shown to start at V0 upstream

and slowly rise to a final value of Vs. With this information thrust from a propeller can be

P0 P0
P'

0

P'
0+ΔP

Propeller Disk
Location

Pressure

Velocity

V0
Vd

VS

Figure 3.5: Momentum Theory Pressure and Velocity through Propeller Disk

calculated using classic momentum theory.

Ft = AρVd (VS − V0) (3.5)

where AρVd is the mass per unit time through the disk and (Vs − V0) is the velocity

increase from far upstream to far downstream. The pressure change across the propeller

disk, velocities upstream and downstream, and the area of the propeller can be used to
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calculate the thrust using Bernoulli’s equation.

Ft = A∆P

∆P =

[
P0 +

1

2
ρV 2

s

]
−
[
P0 +

1

2
ρV 2

0

]
∆P =

1

2
ρ
(
V 2
s − V 2

0

)
Ft =

Aρ

2

(
V 2
S − V 2

0

)
(3.6)

Combining Equations 3.5 and 3.6 the velocity at the disk, Vd, can be found.

AρVd (VS − V0) =
Aρ

2

(
V 2
S − V 2

0

)
Vd =

Aρ
2

(V 2
S − V 2

0 )

Aρ (VS − V0)

Vd =
Vs + V0

2
(3.7)

It can then be seen that half of the downstream velocity, VS, is added before the propeller

disk.

Efficiency is defined as the work output divided by the input work. Kinetic energy can

be used to describe the input work, and thrust times velocity defines the work output. The

following process shows the efficiency in terms of the free stream velocity and the downstream

velocity.

η =
TV0
K.E.

=
TV0(

1
2
AρVd

)
(V 2

S − V 2
S )
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plug in Vd from Equation 3.7, and FT from Equation 3.6;

η =
Aρ
2

(V 2
S − V 2

0 )V0(
1
2
AρVs+V0

2

)
(V 2

S − V 2
0 )

=
2AρV0 (V 2

S − V 2
0 )

(Aρ (Vs + V0)) (V 2
S − V 2

0 )

=
2V0

VS + V0

=
2

1 + VS
V0

(3.8)

Ft
2ρV 2

0

=
1− η
η2

(3.9)

Equations 3.8 and 3.6 can be combined to get a theoretical efficiency in terms of density,

free stream velocity, disk area, and thrust.

Equation 3.9 can be used to observe how thrust, free stream velocity, and disk area

affect the efficiency of a propeller. Figure 3.6 shows efficiency verses the thrust coefficient,

Ct. Where Ct is a dimensionless thrust found in Equation 3.10.

Ct =
Ft

1
2
ρV 2

0 A
(3.10)

This shows that increasing thrust a propeller produces, slowing the free stream velocity, or

decreasing the propeller disk area decreases the efficiency. The most efficient propeller would

then produce no thrust, have a high free stream velocity, and be infinitely large.

3.2.2 Simple Blade Element Theory

Blade element theory is the next fundamental propeller theory. This theory separates

each blade of a propeller into elements and calculates the lift and torque generated by each of

the element. The thrust and torque are then summed up to find the total thrust and torque.

The following process is a summarized explanation of Dommasch, Nelson, and Weick’s work

in References [2], [16], and [17]. An example blade element is shown in Figure 3.7 which a
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reproduction from Dommasch’s work in Reference [2]. First consider an individual element.

The lift and drag on the element can be calculated using a differential form of the classic lift

and drag calculations.

dL = qCLbdr (3.11)

dD = qCDbdr (3.12)

Where the dynamic pressure is defined in Equation 3.13.

q =
1

2
ρV 2

Rel (3.13)

VRel is the relative flow velocity which is shown in Figure 3.8 which is a slightly modified

version of Figure 3.1 discussed in Section 3.1.
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Direction

Figure 3.7: Example of a Blade Element

Using the reaction force diagram in Figure 3.8 the differential thrust can be calculated

by adding the lift and drag components.

dFt = dL cos (φ)− dD sin (φ) (3.14)

Substitute Equations 3.11, 3.12, and 3.13 into Equation 3.14.

dFt =
1

2
V 2
Relbdr (CLcos (φ)− CDsin (φ)) (3.15)

A new angle γ, which describes the reaction force of the lift and drag components can now

be used to simplify the differential thrust equation and is defined in Equation 3.16.

tan (γ) =
D

L
=
CD
CL

(3.16)
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Figure 3.8: Velocity Vector Diagram with Reactions on a Blade Element

The following process simplifies the differential thrust equation into its final form where

VRel = V0
sin(φ)

.

dFt =
1

2
ρV 2

Relbdr (CLcos (φ)− CDsin (φ))

=
1

2
ρV 2

Relbdr

(
CL
CL

CLcos (φ)− CL
CL

CDsin (φ)

)
=

1

2
ρV 2

RelbdrCL (cos (φ)− tan (γ) sin (φ))

=
1

2
ρV 2

RelbdrCL

(
cos (φ)− sin (γ)

cos (γ)
sin (φ)

)
=

1

2
ρV 2

RelbdrCL

(
cos (γ) cos (φ)− sin (γ) sin (φ)

cos (γ)

)
=

1

2
ρV 2

RelbdrCL

(
cos (γ + φ)

cos (γ)

)
=

1

2
ρV 2bdrCL

(
cos (γ + φ)

sin2 (φ) cos (γ)

)
(3.17)
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The torque can be found in the same manner using dF found in Figure 3.7.

dQ = r dF

=
1

2
ρV 2brdrCL

(
sin (γ + φ)

cos (γ) sin2 (φ)

)
(3.18)

Equations 3.17 and 3.18 can then be integrated across the radius of the blade to find the

total thrust and torque generated by one blade. That value is multiplied by the number of

blades, B, to find the total thrust and total torque for the propeller.

Ft =

∫ r

0

1

2
V 2bdrBCL

(
cos (γ + φ)

sin2 (φ) cos (γ)

)
(3.19)

Q =

∫ r

0

1

2
ρV 2brdrBCL

(
sin (γ + φ)

cos (γ) sin2 (φ)

)
(3.20)

The efficiency can be found with the same process discussed in the momentum theory.

η =
FtV0
2πnQ

(3.21)

Nelson in Reference [16] says that if the efficiency is taken at a three quarter radius element

that it would characterize the efficiency of the entire blade. He then describes a process to

show the efficiency only it terms of the effective pitch angle, φ and the reaction angle, γ.

η =
dTV

dQ2πn

=
dRcos (γ + φ)V

dRsin (γ + φ) 2πnr

=
tan (φ)

tan (γ + φ)
(3.22)

Figure 3.9 is a reproduction of Nelson’s work. It plots multiple curves which each correspond

to different lift to drag ratio blade elements. It shows that a realistic maximum efficiency a

propeller can have is approximately 93%, but using an average lift to drag ratio would be
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80%. This figure also shows theoretical maximum effective pitch angle which is shown by
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Figure 3.9: Simple Blade Element Helix Angle Efficiency

the dashed line. If it is assumed that the propeller tip, the fastest location on a propeller,

cannot have a relative velocity exceeding the speed of sound, aair, then at the three quarters

location it cannot exceed three quarter the speed of sound. An effective pitch angle of 45◦

is shown to provide the highest efficiency.

tan (φ) =
V0
VRot

=
V0

3
4
aair

(3.23)

If the speed of sound is approximately 1000 feet per second then using Equation 3.23 an

efficiency verse free stream velocity curve can be drawn in Figure 3.10.. It should be noted

that the free stream velocity corresponds to an effective pitch angle that provides the max-

imum efficiency. The simple blade element theory agrees with the momentum theory that

efficiency of a propeller is increased with a higher free stream velocity. The simple blade

element theory adds that the blade angle also needs to increase for added efficiency.
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Figure 3.10: Simple Blade Element Free Stream Velocity Efficiency

3.2.3 Hybrid Momentum Blade Element Theory

There are many different hybrid momentum blade element theories. Two similar meth-

ods will be discussed here. These methods introduce factors to account for radial flow, blade

interference, and tip losses.

Axial Slipstream Factor Method

First will be a method from Weick in Reference [17]. Earlier in the momentum theory

section it was shown that half of the velocity increase is in front of the propeller in the

slipstream. This leads to a new term known as inflow. Inflow is added to the free stream

velocity to increase the overall velocity of the flow in the axial direction. Figure 3.11 is

a reproduction from Weick’s work showing the additional velocity included in the axial

direction. It is shown that the velocity in the free stream direction is given by Equation 3.24

and a new angle of attack needs to be found for the blade element using Equations 3.25 and
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Figure 3.11: Weick’s Inflow Method Velocity Vectors

3.26.

u = V0 + xbV0 (3.24)

tan (φ′) = (1 + xb) tan (φ) (3.25)

α′ = β − φ′ (3.26)

The inflow for this model is an average inflow distributed over the whole blade. More robust

methods calculate the inflow per blade element. According to Weick’s method inflow can

be determined by Equation 3.27. Where b in this case is not the chord but is the axial

slipstream factor and x is an empirical factor that ranges from one third to two thirds.

Ft = A′ρV 2b (1 + xb) (3.27)

A’ is the effective disk area and is given to be between 0.7 and 0.8. The differential thrust

can then be found using the same process derived in the in the previous section. Where b in
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Equations 3.28 and 3.29 is the chord for the blade element.

dFt =
1

2
ρu2bdrCL

(
cos (γ + φ′)

sin2 (φ′) cos (γ)

)
(3.28)

dQ =
1

2
ρu2brdrCL

(
sin (γ + φ′)

cos (γ) sin2 (φ′)

)
(3.29)

This method must be iterated to find the value of the axial slipstream factor, b. This

is executed by establishing an initial guess for the flow angle φ. Equation 3.28 is evaluated,

and the thrust found is substituted in Equation 3.27. The axial slipstream factor, b, is then

solved and now φ′ can be found. This φ′ is plugged into Equation 3.28 and a new thrust is

solved. The new thrust and the old thrust are compared. If they are not within an acceptable

tolerance, the new thrust is plugged in Equation 3.27 and a new axial slipstream factor is

found. This process is repeated until an acceptable tolerance is achieved. One problem with

this method is error introduced by the empirical factor x. This factor varies from propeller

to propeller leading to inconsistent results [17].

Inflow with Axial and Rotational Interference Factors

The second method that will be discussed is an optimum design paper developed by

Adkins and Liebeck in 1983 and was reproduced with more detail in 1994 [3]. This is the

same procedure discussed by Glauert in Reference [1] with updated nomenclature and a

more detailed explanation. This method also uses an axial interference factor, a, and a

rotational interference factor, a′. Using momentum theory the axial interference flow factor,

a, is the increase in flow velocity in front of the propeller, and the rotational interference flow

factor, a′, is the decrease in the relative rotational flow velocity. Figure 3.12 shows these new

modifications to velocity vector diagram for a blade element. Using momentum theory

and Figure 3.12 it can easily be shown that the thrust per unit radius is given by Equation
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Figure 3.12: Axial and Rotational Interference Factor Blade Element Velocity Vectors

3.30, and the torque per unit radius is given by Equation 3.31.

dFt = 4πρrV 2a (1 + a)Fdr (3.30)

dQ

r
= 8π2ρnr2V a′ (1 + a)Fdr (3.31)

With F being the Prandtl momentum tip loss factor. Adkins does not discuss this factor

in any detail in his paper, but it is discussed in more detail by Glauert in Reference [4]. It

was originally developed by Prandtl and describes the losses due to induced velocities at the

tip of the blade. This loss factor would be equal to 1.0 across the radius if the propeller is

shrouded or in a duct. If it is not it will start at 1.0 and at a given location will begin to

decay to 0.0. The location for the start of the decay is due to geometry. Prandtl’s original

method used the inflow angle based on the blade tip which Glauert later revised to using the

local inflow angle. Adkins returns to Prandtl’s original method by using the inflow angle at
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the tip [3] [4]. The Prandtl momentum tip loss factor is expressed in Equation 3.32.

F =
2

π
cos−1

(
e−f
)

(3.32)

where,

f =
B

2

(1− ξ)
sin (φt)

(3.33)

and the flow angle at the tip, φt is defined by

tan (φt) = ξtan (φ) (3.34)

Adkins includes the addition of circulation into this method. Which a simplified version of

the circulation is defined by Equation 3.35. The circulation equation introduces ζ which is

the displacement velocity ratio, v′

V0
. The vortex displacement velocity, v′, is the axial velocity

of the vortex filament in the vortex sheet in the wake of the propeller.

Γ =
2πrV0ζF

B
cos (φ) sin (φ) (3.35)

This circulation is used to described the lift per unit radius and is given by Equation

3.36. The thrust per unit radius and torque per unit radius can be found using Equation

3.36 and Figure 3.8. With ε being the drag to lift ratio.

dL

dr
= BρVrelΓ (3.36)

dFt =

(
dL

dr
cos (φ) (1− ε tan (φ))

)
dr (3.37)

dQ

r
=

(
dL

dr
sin (φ)

(
1 +

ε

tan (φ)

))
dr (3.38)
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Cy, Cx, Cl, and Cd replacing dFt, dF , dL, and dD respectively in Figure 3.8.

Cy = Clcos (φ)− Cdsin (φ) = Cl (cos (φ) + ε sin (φ)) (3.39)

Cx = Clsin (φ) + Cdcos (φ) = Cl (sin (φ) + ε cos (φ)) (3.40)

The axial and rotational interference factors are expressed in Equations 3.41 and 3.42.

a =
σK

F − σK
(3.41)

a′ =
σK ′

F + σK ′
(3.42)

where,

K =
Cy

4sin2 (φ)
(3.43)

K ′ =
Cx

4cos (φ) sin (φ)
(3.44)

The solidity, σ, is defined by Equation 3.45.

σ =
Bb

2πr
(3.45)

Figure 3.12 shows these new modifications to velocity vector diagram for a blade element.

It is easily shown that the flow angle is Equation 3.46.

tan (φ) =
V

2πnr

(1 + a)

(1− a′)
(3.46)

The procedure for solving for the thrust, torque, and efficiency for a propeller goes as follows.

An initial guess for φ is found by setting a and a′ equal to zero in Equation 3.46. This φ then

allows for the angle of attack, α, for the blade element to be found which also yields the lift

and drag coefficients. Equations 3.41 and 3.42 can then be solved for the interference factors.
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The interference factors are plugged back into Equation 3.46 to solve for a new flow angle,

φ. The new and old values of φ are compared, and if they are not within a set tolerance

of each other they average of the two values is used to repeat the process. These iterations

continue until the solution has converged within the set tolerance. It should also be noted

that Adkins suggests using a clipping method by Viterna and Janetzke [18] in which a and

a′ are limited to a maximum value of 0.7. Once the convergence is met the thrust coefficient

and power coefficient for the propeller can be found and is shown in Equations 3.47 and 3.48.

These equations can be integrated to solve for the overall thrust and power coefficients. The

coefficients can be substituted into Equations 3.2-3.4 for final thrust, power, and efficiency

values.

dCt
dξ

=
π3

4
σξ3F 2 Cy

[(F + σK ′) cos (φ)]2
(3.47)

dCp
dξ

=
dCt
dξ

πξ
Cx
Cy

(3.48)

Detailed derivations for Equations 3.47 and 3.48 are shown in Appendix B. This deriva-

tion presented corrects an error in the differential thrust equation in Adkins [3].
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Chapter 4

Electric Motors

Electric motors are being used more frequently in small UAVs due to the high energy

density lithium polymer batteries that are becoming more available and the overall decrease

in sound production of the electric propulsion system compared to an internal combustion

system. Two types of electric motors will be briefly discussed here. First a brushed DC

motor will be introduced followed by a brushless DC motor. More details for DC motors can

found in References [19], [20], [21], and [22].

4.1 Brushed DC Electric Motors

A brushed DC electric motor as the name implies uses a DC voltage source for power.

The motor consists of a rotor, stator, field system, armature, brushes, and a commutator

which are several of main components. The rotor is the rotating part of the motor. The

stator is the stationary part of the motor. The field system provides the magnetic flux used

to create the torque on the motor. The armature carries the current that interacts with the

field flux to create torque. For most brushed DC motors the rotor and the armature are

one in the same since the rotor will have windings that are used to move the current from

the brushes and commutator to the rotor. The brushes connect the armature to the power

supply and a motor requires a minimum of one pair of brushes. The commutator distributes

the current properly to the armature coils [19]. With these components the motor can be

modeled as a resistor or armature resistance and the back e.m.f. A simple equivalent circuit

of a DC motor is shown if Figure 4.1. Where the back e.m.f. is the back electromotive force,

and KE is the back e.m.f. constant.
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Vsupply

Ra

Vback e.m.f. 
   = KEΩ

Ia

Figure 4.1: A Simple Equivalent Circuit of a DC Motor

For the scope of this work it is now assumed that when all of the previous components

are combined the motor is a torque generator. The motor generates torque according to

Fleming’s left hand rule. A detailed explanation of how a DC motor produces torque can be

found in Reference [19]. The torque of a motor can then be found using the torque constant,

Kt, and the current draw, I, on the motor.

τ = KtI (4.1)

If the constant units are in the SI system KE is equal to Kt and if the imperial system

is used 1.352Kt = KE. Another useful term to describe a DC electric is the KV value. This

has units of RPM
V

. This motor speed constant is used to find the motors speed with no load

given a particular input voltage. Equation 4.2 shows the relation between the torque and

speed constants where Kt has units of oz−in
A

[21].

Kt =
1000

KV

1.352 (4.2)
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A torque speed curve can be produced using Equations 4.1 and 4.2. The maximum/stall

torque is found from the stall current in Equation 4.3 and Equation 4.1 with RI being the

internal resistance of the motor. The maximum RPM is found using the motor voltage and

the Kv value. A straight line is connected between the maximum RPM and the stall torque

to form the torque speed curve. Figure 4.2 shows the torque speed curve has a negative

slope, and it is shown that as the voltage is increased the curves remain parallel with a new

maximum/stall torque and peak rotational speed.

Istall =
Vmotor
RI

(4.3)

The power required for motor is then found using Equation 4.4. A power curve can be
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Figure 4.2: Torque Speed Curve Example for a DC Motor

added to the torque speed curve. Figure 4.3 shows an example torque speed power curve for

an arbitrary DC motor with Kv = 1000, Kt = 1.5
(
oz−in
A

)
, RI = 0.2 Ω, and V = 11.1V olts.

P = τ
2πn

60
= VmotorI (4.4)
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Figure 4.3 is a useful tool to describe a motor. It shows that the maximum power con-
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Figure 4.3: Torque Speed Power Curve Example for a DC Motor

sumption is at half the maximum RPM and conversely that little power is used near the

maximum and minimum RPM ranges. Figure 4.4 compares the electric motor from Figure

4.3 with a Cox 0.09 2-stroke model aircraft engine running 30% nitro [23]. Even these motor

are not operating at the same speeds they produce approximately the same power. This plot

shows the main difference between a internal combustion engine and an electric motor, an

electric motor torque starts at a peak and goes to zero with an increase in speed while an

internal combustion engine starts at zero reaches a peak then decreases back to zero. An

electric motor What Figure 4.3 does not show is the actual limits of a motor. The wasted

energy or losses in the motor are due to heat and friction. In most electric motors friction is

minimal and can usually be ignored, but the heat produced by the current flowing through

the motor cannot. The heat that is produced can melt the coils on the armature if too

much current is allowed to flow through the motor without sufficient cooling. This leads

to motors having thermal limits which are identified with continuous and maximum/burst

current ratings or continuous and maximum/burst power ratings. A continuous rating is
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Figure 4.4: Electric Motor and Internal Combustion Engine Comparison

the maximum allowable current or power the motor can experience to run indefinitely. The

maximum/burst ratings are the absolute limits on the motor for a certain time span. This

allowable time for maximum conditions is set by the manufacturer, and this time ranges

from 15-60 seconds.

4.2 Brushless DC Electric Motors

Brushless DC electric motor have become more popular over the last several years for

small remote controlled aircraft due to there more efficient nature and little to no need for

maintenance. Its increase in efficiency over a brushed DC motor comes from the lack of

mechanical brushes in the motor. This reduces the friction inside the motor, and removes

parts that need to be serviced. For the simplicity friction will be ignored in this motor

model. The only advantage of a brushless motor to a brushed motor is the brushless motor

has fewer parts to wear out.

A brushless DC motor may appear to be an AC motor, but it is not. Besides the type of

current being provided to the motor, what separates an AC from DC motor is the brushless
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DC motor uses sensors to detect the rotor position to control the pulses to the motor [19].

Simply put these pulses create magnetic fields which cause the motor to rotate. Usually the

type of sensor used is a Hall Effect sensor, but most hobby grade brushless DC motors which

are used with most small electric UAVs have no physical sensors in the motor. The speed

controllers used to power the motor read the back e.m.f. from the motor and determine the

motors position from that.

A brushless DC motor can be modeled in the same manner as brushed DC motors

approximately yielding the same type of torque speed power curves. The rotational speed in

radians per second of the brushless DC motor under load can be found in Equation 4.5 [22].

ωr =
Vmotor

pλm
2

− RI

m
(
pλm

2

)2Tem (4.5)

Where λm is the flux linkage of the stator winding, p is the number of poles in the motor,

m is the number of phases, and Tem is the electromagnetic torque defined by Equation 4.6.

A poles is the set of windings in a motor and is an even number. The number of phases is

the number of conductors connected to the motor that supply voltage to the motor. All of

the motors discussed here will be three phases motor. This leads to the voltage waveforms

on each of the phases of the motor will be offset by 60◦.

Tem =
mp

2
λm I (4.6)

The efficiency of the brushless DC motor is found by Equations 4.7-4.9. I0 is the idle current

of the motor, this is the current the motor will draw with no load.

η =
Pout
Pin

(4.7)

Pout = (Vmotor − IRI) (I − I0) (4.8)

Pin = VmotorI (4.9)
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Chapter 5

Optimization Methods

Optimization methods are used to minimize or maximize a problem with multiple un-

knowns. These methods greatly decrease the number of function calls over a brute force

method in which every possible combination of unknowns is evaluated. They can also be

used to find local or global minimums. An objective function is evaluated by the optimiza-

tion method to determine if the problem is optimized. The optimizers that will be used for

this work will be treated as black boxes, and no math will be presented in this section. This

chapter will provide a brief overview of a particle swarm method, a pattern search method,

and a simplex method.

5.1 Particle Swarm

Particle swarm optimization was first suggested by Kennedy and Eberhart [24] as a

stochastic methodology based on crowding behavior and collective intelligence. Similar to

genetic algorithms in practice, the particle swarm technique relies on communication and in-

teraction among its members of a population to collectively move throughout a design space.

Like any stochastic based optimization routine, swarming has the ability to escape the local

optima of a problem in search of a better solution. The prime attractor to particle swarm

optimization is its simplicity in implementation compared to other stochastic techniques.

The particles move through the design space to find the optimum location with a varying

velocity. The particles move in the directions in which the best particles are performing and

are swayed by their own best position and the absolute best location of all the particles.

Particle swarm methods can move from local optimum if other particles find an improved

solution unlike gradient methods which will get stuck on local optimum points. The objective
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function used in the particle swarm does not have to differentiable or smooth. This allows

for more problems to be solved. The biggest problem with particle swarms is a particle uses

its previous position and velocity to solve where it should go. This is sometimes a problem if

a particle is located at the optimum point. This leads to particle swarms are good at finding

area of the design space that should yield the optimum global point [24].

5.2 Pattern Search

The pattern search method was originally developed by Hooke and Jeeves and is a

direct search technique [25]. This method works by monitoring the changes each of the

design parameters have on the objective function. The pattern search starts with an initial

design case, and then performs an investigative move on one of the design variables holding

the others constant. It then evaluates the objective function and if it is better than a solution

it stores it. This process is repeated for the rest of the design variables. A pattern move is

then performed which is a changing all of the variables and evaluating the objective function.

If this new evaluated objective function is better the design variables are stored, and if it is

worse the process is repeated with a decreased initial move by the design variables [25].

The pattern search method is a good technique for finding local optimum locations. Its

solution is highly dependent on its initial location. If placed in the correct location in the

design space it can provide rapid results, but more design variables used and worst starting

location can yield a long computation time [26].

5.3 Hybrid Pattern Search/Particle Swarm Method

The hybrid pattern search and particle swarm method that will be presented was de-

veloped by Jenkins and Hartfield [26]. It combines the local optimization features of the

pattern search and the global optimization features of the particle swarm methods. This

method first starts by initializing a population with acceptable values of the design parame-

ters that fulfill the objective function. The pattern search method is then run through user
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a defined number of generations. The particle swarm method is then run went the results of

the pattern search. This process is repeated for a defined number of generations to provide

adequate convergence and to ensure a global optimum is found [26].

5.4 Simplex Method

The simplex method that will be presented is a direct search method and does not use

gradients. This method can be found in MATLAB 2010a as the fminsearch() function [27].

It uses a method developed by Lagarias et al. in Reference [28]. This function uses only

function evaluations like the pattern search and particle swarm methods and does not require

derivatives to be solved. This method uses a simplex which is a geometric shape of same

number of unknowns in the problem with the number of unknowns plus one points describing

the shape. For example if the problem has three unknowns it would be a three dimensional

problem with four points describing the simplex which would resemble a pyramid. When the

method is executed a new point near the simplex is evaluated and compared to the values

of the points of the simplex. If the new point is “better” than one of the simplex points, the

“bad” point is replaced. This process is repeated until the diameter of the simplex is within

a user defined tolerance [27] [29].

The simplex method can be used with discontinuous objective functions. It is not

guaranteed to provide a global optimum solution for discontinuous function and will usually

provide a local optimum minimum [27].
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Chapter 6

Implementation

The optimization of a propeller is split into two major sections. First an airfoil is

optimized for a maximum lift to drag ratio. Second a propeller is optimized using the

optimized airfoil. The process was performed in this matter to decrease the run time of the

finished optimization. MATLAB 2010a was used to execute the optimizations.

6.1 Airfoil Optimization

A set of airfoils for the optimized propellers is found first. This set of airfoils consists

of optimized airfoils for a range of angle of attacks. The process is shown in a flow chart in

Figures 6.1 and 6.2.

A series of functions, which are found in Appendix C, were constructed using the process

discussed in Section 2.2.2 to describe an airfoil. A 6th order Bernstein polynomial was used

for the upper and lower surfaces to provide a good representation of an airfoil surface [9].

The first function will be called AirfoilMaker(). The fourteen unknowns or coefficients as

well as a desired angle of attack for the airfoil is sent to this function. It starts by devising

a name for the airfoil using the coefficients which will be used as the file name for the airfoil

data. The function then calls another function, ParametricAirfoil() to produce x and y

coordinates of the airfoil. It also checks so see if the upper and lower surfaces cross, and if

they do it returns that the airfoil is a bad airfoil. AirfoilMaker() then calls ClCdFinder()

and passes it the x and y values for the airfoil and the airfoil name.

ClCdFinder() checks a folder containing already made airfoils and searches for it. If

it is not found a file corresponding to the airfoil an instruction file for XFOIL is written.

The instruction file looks similar to the example in Appendix A. The function then runs
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Figure 6.1: Flowchart for Airfoil Optimization Process

a batch file that runs XFOIL with the points and instruction files. A timeout was added

to the batch program in the event that XFOIL could not finish running due to improper

convergence. The function then checks to confirm that XFOIL produced an acceptable table

of lift and drag coefficients. The table is not acceptable if any of the values for the lift

or drag coefficients are NaN (not a number) or if XFOIL failed to produce enough data

points to describe the lift and drag curve slopes. If it does fail the process a new instruction

file is written increasing the number of panels on the airfoil. This is done until the airfoil

successfully passes or reaches a maximum panel size in which case the airfoil is considered

to be a bad airfoil.

After either creating the new airfoil table or locating a previously made file the function

reads in the data from the file. It interpolates for the lift and drag coefficients at the desired

angle of attack and returns the values to AirfoilMaker().
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Figure 6.2: Flowchart for Propeller Optimization Process using fminsearch()

An objective function, AirfoilCostFunction, was developed for the optimizers to call. It

called the AirfoilMaker() function with the fourteen coefficients and the angle of attack to

be optimized. The objective function returns the fitness of airfoil to the optimizer. Since all

of the optimization method discussed are minimization methods the optimum airfoil would
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be found by minimizing the drag to lift ratio. The fitness equation is shown if Equation 6.1

where z is the fitness.

z =
cd

cl
(6.1)

If coefficients used in AirfoilMaker() return lift or drag coefficients less than zero the fit-

ness for that set of coefficients was set to 108. This reiterates to the optimizer that those

coefficients produce corrupt results.

The optimized airfoils were found be first using the hybrid pattern search particle swarm

method discuss in Chapter 5. An airfoil was optimized at a zero degree angle of attack using

this method. Then airfoils at a range of angles of attack were optimized using MATLABs

simplex method fminsearch(). It was executed in this matter due to increased run time of

the hybrid optimizer verse fminsearch(). The time results from each of the optimization runs

will be discussed later in the Chapter 7. The zero degree angle of attack airfoil was used

as the initial starting location. As the optimization sweep advanced the previous airfoil was

used as the initial starting location for next airfoil. A list of optimized airfoils was saved to

be used by the propeller optimizer.

6.2 Propeller Optimization

The propeller optimizer code, like the airfoil optimizer, is made up of a series of functions

coded in MATLAB 2010a. Flowcharts for the propeller optimization methods, cruise and

climb are shown in Figures 6.3 and 6.4. All of the functions used for this optimizer can be

found in Appendix D. A brushless DC electric motor model is coupled into the optimizer

for the most efficient system.

The brushless DC motor model function was named BrushlessDCMotor(). The function

has two different sets of input and output cases depending on what is being optimized. The

Kv value, internal resistance, number of poles, number of phases, the idle current, and which

case is being used are inputs that are used for both cases. The first condition has inputs of
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Figure 6.3: Flowchart for Propeller Optimization Process using Hybrid Optimizer for Cruise
Condition

RPM and torque and outputs of voltage, current, and motor efficiency. The current is found

by dividing the input torque with the torque constant, Kt. The voltage is found using a brute

force iterative method evaluating stepping the voltage in Equation 4.5 until the rotational

speed matches the input rotational speed. The efficiency is found the same way as the first

case using Equations 4.7 - 4.9 and dividing the output power with the input power.

The second condition has inputs of voltage and current and outputs of torque, RPM,

and motor efficiency. The rotational speed of the motor is found using Equation 4.5. The

torque is found by using the Kv to find the Kt and then multiplied by the input current.

The efficiency is found using the process expressed in Equations 4.7 - 4.9 by dividing the

output power with the input power.
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Figure 6.4: Flowchart for Propeller Optimization Process using Hybrid Optimizer for Climb
Condition

The function that calculates the performance parameters of a propeller was named

PropellerPerformance(). The functions inputs are the blade angles, β, the chord width

of the elements, the radial position of the elements, the rotational speed, the number of

blades, and the free stream velocity. It uses the method “Inflow with Axial and Rotational

Interference Factors” discussed in more detail in Section 3.2.3. The function uses the inputs

to iterate for the inflow factors, radial factors and the flow angles for each element. The

iteration stops when a maximum iteration limit is reached or a tolerance is met. The thrust

and power coefficients are found for each element and integrated using the trapezoid method

to find the overall coefficients. The efficiency is then found using Equation 3.4. The function
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returns the advance ratio of the propeller, the thrust coefficient, the power coefficient, and

the efficiency of the propeller.

The lift and drag coefficients for each element is found from the function ClCdFinderAir-

foilID(). An “Airfoil ID” and the angle of attack is sent to this function. The angle of attack

desired from PropellerPerformance() is rounded to the nearest integer value and that is used

to identify the which airfoil to use. If the angle of attack is less than or greater than the

minimum or maximum optimized airfoil the closest airfoil to that value is used. If the angle

of attack is greater than 20◦ the largest optimized airfoil is used, but the lift and drag coeffi-

cients are estimated using flat plate theory [30]. Flat plate theory says Cl = 2sin (α) cos (α)

and Cd = 2sin (α)2.

A third condition, optimizing for climb-cruise, is very similar to the first condition

and is a multi-point optimization. The flowchart for this method is shown in Figure 6.5.

This method has inputs of inputs of RPM and torque of a cruise condition and runs the

PropellerPerformance() function and the BrushlessMotor() function. If a “good” propeller

is found the process is repeated with the climb condition.

The optimizer that was chosen was the hybrid pattern search particle swarm method.

This method was chosen over the other methods due to its ability to potentially find a

global optimum better than the other methods. The objective function includes conditional

statements to confirm the optimizer has found a viable solution. These include statements

to confirm the current draw from the motor is not too high, the propeller does not produce

negative thrust, efficiencies are not greater than 100 percent, and several others. The actual

objective function used for this optimizer will be presented in the Chapter 7.
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Chapter 7

Results

The propeller optimization code was performed on three particular flight conditions.

For each of the conditions a propeller is designed using the same brushless DC motor. The

motor is modeled after an Eflite Park 450 Outrunner. The parameters for the motor are

listed in Table 7.1 [31]. The propeller is designed to be placed on a small aircraft with the

Table 7.1: DC Brushless Motor Parameters

Parameter: Value:
Internal Resistance, RI 0.2 Ohms
Kv

(
RPM
V olt

)
890

Idle Current, I0 0.70 Amps
Continuous Current 14 Amps
Maximum Burst Current 18 Amps for 15s
Voltage Range 7.2-12 Volts
Weight 2.5 oz

requirements listed in Table 7.2. Based on the requirements in Table 7.2 the three optimized

Table 7.2: Flight Condition Design Parameters

Design Parameter: Value:
Stall Speed 15 MPH
Cruise Speed 50 MPH
Drag at Cruise 7.5 oz

propeller optimizations will be for a cruise, a climb, and a multi-point climb cruise case.

Two different objective functions where used for each of the optimizations to see the effect

an objective function using coefficients would perform verse dimensional values. The number

of elements used was 10. This was decided on to give a good representation of the propeller

blade and to keep the number of unknowns a small as possible. The element distribution

was an even distribution starting at 12% of the radius. The number of blades was fixed to
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2 blades for all of the propellers. In the optimizer the blade angles, β, could only decrease

from as they traveled outward to the tip, and the chord was allowed to expand until the

three quarter radius location then could only decrease to zero at the tip. The diameter was

allowed to vary from 8 to 12 inches.

7.1 Airfoil Optimization

The set of airfoils used for the propeller were found first. The first airfoil found using the

hybrid pattern search particle swarm optimizer was implemented at a zero angle of attack.

The drag to lift ratio was minimized. It took approximately 22 hours to complete on an Intel

i7 930 with 6 gigabytes of ram running 64-bit Windows 7. Xfoil was called and airfoils were

made 25,000 times before the optimizer was finished running using a population size of 15

for 30 generations with 2 pattern searches per generation. This computer was used for the

remainder of the computations. Figure 7.1 shows the optimized for a zero angle of attack

airfoil. At an angle of attack of 0◦ it has a Cd = 0.01305 , a Cl = 0.8404. This gives a drag

to lift ratio of 0.0155.
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Figure 7.1: Optimized Airfoil at 0◦ Angle of Attack
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The rest of the airfoils, −5◦ to 15,◦ were found using fminsearch() which is a simplex

function in MATLAB. Each of these airfoils took 5-10 minutes to complete. Tables E.1, E.2,

and E.3 in Appendix E contain the coefficients for all of the airfoils, the drag to lift ratios,

and the lift coefficients at the design point. Figure 7.2 shows a comparison of the different

optimized airfoils. The axis in the plot are not equal to show the differences between the

airfoils. The −5◦ airfoil is not show due to the very slight change between the 0◦ airfoil. It is

shown that as the angle of attack increases the upper surface changes, but the lower surface

slightly changes.
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Figure 7.2: Optimized Airfoil Comparison

7.2 Validation of Propeller Code

To confirm the propeller code was providing accurate data three commercial propeller’s

were executed and discussed in this section. The three propellers chosen will be the propellers

used as a baseline comparison for each of the conditions, cruise, climb, and climb cruise. The
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propeller for cruise condition comparison was an APC 11x10E, the climb condition baseline

propeller was an APC 8x6E, and the propeller for the climb cruise condition was an APC

10X7E. The reasonings for these baseline propellers will be discussed later in this chapter.

The geometry was provided from the manufacturer [32] and wind tunnel data for each of

these propellers was found in the UIUC Propeller Database [33].

7.2.1 Validation Results for Baseline Cruise Propeller

The cruise propeller chosen as the baseline propeller was an APC 11x10E. The following

three figures are a comparison with thrust, power, and efficiency verse free stream velocity.

The propeller code and the wind tunnel data was run at a rotational speed of 8000 rpm. The

thrust comparison is shown in Figure 7.3. The thrust calculated using the propeller code is

shown to slightly over predict, but does follow the same trend as the data. The increase in

thrust over the wind tunnel data can be attributed to incorrect lift coefficients from XFOIL

or other losses that were not accounted for in the propeller code.
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Figure 7.3: Thrust Validation for APC 11x10E Cruise Propeller at 8000 rpm
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The propeller power comparison is shown in Figure 7.4. The propeller code under

predicts the power required, but follows the same trend as the propeller code. This under

prediction shows that XFOIL’s drag estimation is small. The efficiency plot is shown in

Figure 7.5. The calculated efficiency is much higher than the wind tunnel data. This is due

to the under estimation in power required and the over estimation of thrust produced.
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Figure 7.4: Power Validation for APC 11x10E Cruise Propeller at 8000 rpm
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Figure 7.5: Efficiency Validation for APC 11x10E Cruise Propeller at 8000 rpm

7.2.2 Validation Results for Baseline Climb Propeller

The climb propeller chosen as the baseline propeller was an APC 8x6E. The following

three figures are a comparison with thrust, power, and efficiency verse free stream velocity.

The propeller code and the wind tunnel data was run at a rotational speed of 8000 rpm. The

thrust comparison is shown in Figure 7.6. The thrust calculated using the propeller code is

shown to slightly over predict, but does follow the same trend as the data. The increase in

thrust over the wind tunnel data can be attributed to incorrect lift coefficients from XFOIL

or other losses that were not accounted for in the propeller code.
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Figure 7.6: Thrust Validation for APC 8x6E Climb Propeller at 8000 rpm

The propeller power comparison is shown in Figure 7.7. The propeller code calculates

power required approximately the same for free stream velocities above 30 miles per hour.

The propeller code does under predict power required below a free stream velocity of 30

miles per hour. This under prediction shows that XFOIL’s drag estimation could be small.

The efficiency plot is shown in Figure 7.5. The calculated efficiency is higher than the wind

tunnel data. This is due to the over estimation of thrust produced.
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Figure 7.7: Power Validation for APC 8x6E Climb Propeller at 8000 rpm
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Figure 7.8: Efficiency Validation for APC 8x6E Climb Propeller at 8000 rpm
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7.2.3 Validation Results for Baseline Climb Cruise Propeller

The climb cruise propeller chosen as the baseline propeller was an APC 10x7E. The

following three figures are a comparison with thrust, power, and efficiency verse free stream

velocity. The propeller code and the wind tunnel data was run at a rotational speed of

8000 rpm. The thrust comparison is shown in Figure 7.3. The thrust calculated using the

propeller code is shown to slightly over predict, but does follow the same trend as the data.

The increase in thrust over the wind tunnel data can be attributed to incorrect lift coefficients

from XFOIL or other losses that were not accounted for in the propeller code.
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Figure 7.9: Thrust Validation for APC 10x7E Climb Cruise Propeller at 8000 rpm

The propeller power comparison is shown in Figure 7.4. Similar to the APC 8X6E pro-

peller, the propeller code calculates power required approximately the same for free stream

velocities above 30 miles per hour. The propeller code does under predict power required

below a free stream velocity of 30 miles per hour. This under prediction shows that XFOIL’s

drag estimation is small. The efficiency plot is shown in Figure 7.5. The calculated efficiency
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is much higher than the wind tunnel data. This is due to the under estimation in power

required and the over estimation of thrust produced.
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Figure 7.10: Power Validation for APC 10x7E Climb Cruise Propeller at 8000 rpm
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Figure 7.11: Efficiency Validation for APC 10x7E Climb Cruise Propeller at 8000 rpm

7.3 Propeller Optimized for Cruise

The first optimization that was tested was the cruise condition. From Table 7.2 the

propeller needs to produce 7.5 ounces of thrust at a free stream velocity of 50 miles per

hour. If the thrust is fixed for the propeller to be as efficient as possible power for the

propeller must be minimized. This leads to the three different objective functions used and

are shown in Table 7.3 where z is the fitness. Case 2a and 2b were chosen to show the

effect on which power is minimized. The range of values used by the optimizer are shown

Table 7.3: Objective Functions used for Cruise Condition

Case Number Objective Function:
1 z = Cp
2a z=Propeller Power (Watts)
2b z=System Power (Watts)

in Table 7.4. The values of β could only decrease to the tip, and the chord was allowed

to expand to approximately the three quarters radius location then decrease to zero at the
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tip. The optimizer was run for 100 generations with 5 pattern searches per generation and

Table 7.4: Optimizer Limits for Cruise Condition

Parameter Minimum Maximum
βstart (◦) 35 65

chordstart(in) 0.5 2.0
Diameter(in) 8 12

RPM 3000 5500
Currrent(Amps) 0 14
V oltage(V olts) 0 11.1

a population size of 15 members. Each case had an execution time of 5 hours. Figures 7.12,

7.13, and 7.14 show the evaluated objective function for each member of each generation.

The members that were “bad” propellers are not plotted. As discussed in the previous

chapter these “bad” propellers do not meet the requirements and the objective function

assigns them a value of 108. Each member is represented by a “x.” A dashed line connects

the maximum values of each generation as well as the minimum values. A solid line is used

to show the best fitness found as of that generation.
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Figure 7.12: Fitness verse Number of Generations Case 1 (Objective Function = Cp)
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Figure 7.13: Fitness verse Number of Generations Case 2a (Objective Function =
PropellerPower)
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Figure 7.14: Fitness verse Number of Generations Case 2b (Objective Function =
SystemPower)

Each case was run for 100 generations to show that the optimizer had converged on

a solution. For Case 1 the optimizer found the “best” solution at generation 24 with an
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objection function value of 0.0218. Case 2a the “best” solution was found on generation 11

with an objection function value of 51.19 Watts. Case 2b the “best” solution was found on

generation 40 with an objection function value of 65.35 Watts. It is also shown that Case 2a

and 2b finds a wider range of values compared to Case 1 were the values are more localized.

The performance the three propellers are shown in Tables 7.5 and 7.6. Detailed properties

(i.e. blade angles, chord sizes, pitch, and element position) for the two cases are shown in

Tables F.1, F.2, F.3 in Appendix F.

Table 7.5: Propeller Performance Parameters for Cruise Case 1

Case 1 (Objective Function = Cp)

J 0.8000 Pitch at 3/4 radius 9.83

Ct 0.0244 Diameter (in) 12.0

Cp 0.0218 β3/4 (◦) 19.23

ηprop 89.54% RPM 5500

Motor Power (Watts) 66.20

Motor Voltage (Volts) 7.78 Torque (oz-in) 12.87

Motor Current (Amps) 8.51 Thrust (oz) 7.55

ηmotor 71.70% ηsystem 62.20%
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Table 7.6: Propeller Performance Parameters for Cruise Case 2a and 2b

Case 2a (Objective Function = PropellerPower)

J 0.8085 Pitch at 3/4 radius 8.67

Ct 0.0248 Diameter (in) 12.0

Cp 0.0220 β3/4 (◦) 17.16

ηprop 91.14% RPM 5442

Motor Power (Watts) 64.62

Motor Voltage (Volts) 7.69 Torque (oz-in) 12.72

Motor Current (Amps) 8.40 Thrust (oz) 7.51

ηmotor 71.63% ηsystem 65.29%

Case 2b (Objective Function = SystemPower)

J 0.8359 Pitch at 3/4 radius 10.20

Ct 0.0283 Diameter (in) 11.6

Cp 0.0261 β3/4 (◦) 20.50

ηprop 90.64% RPM 5433

Motor Power (Watts) 65.35

Motor Voltage (Volts) 7.70 Torque (oz-in) 12.84

Motor Current (Amps) 8.49 Thrust (oz) 7.52

ηmotor 71.53% ηsystem 64.83%

Table 7.5 shows that both propellers produced slightly higher than the desired thrust of

7.5 ounces. This is due to a tolerance set in the objective function that allowed the optimizer

to produce pick propellers that produced more thrust in the early generations and then bring

the thrust down as close as possible to the desired thrust. The propeller from Case 1 has an

overall system efficiency of 62.20%, Case 2a has a slightly better system efficiency of 65.29%,

and Case 2b has a system efficiency of 64.83%.. For this flight condition using the propeller

power proved to provide better results. The system power should provide better results but
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does not. This could be due the selection process from the optimizer. The optimizer was

executed a total of three times to try to find a solution for the system power that exceeded

the propeller power case with no success.

For these Cases a baseline propeller for comparison was chosen to be an APC 11x10E.

This propeller is a commercially available propeller that is 11 inches in diameter with a

constant pitch of 10 and is designed for electric motors.This was chosen due to its similar

diameter and pitch compared to the optimized propellers. Figures 7.15 and 7.16 show the

chord and blade angle distribution across the radius of the blade. The chord in the baseline

propeller expands greatly until mid-blade span then decreases to the tip while Case 1 tapers

to the tip. Case 2a’s chord expands before it tapers to the tip, and Case 2b maintain until

half the blade span then tapers to the tip. Both cases show the blade angle to taper slowly

to the tip. All of optimized propellers are shown to have a smaller chord than the baseline

propeller. The baselines root angle is approximately 55◦ and tapers to ≈ 18◦ while Case 1’s

root blade angle is 57.75◦ and tapers to 1.5◦ at the tip. Case 2a’s root angle is smaller at

40.95◦ and tapers to 8.7◦, and Case 2b’s root angle is larger at 54◦ and tapers to 4.80◦.
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Figure 7.15: Chord Distribution for Cruise Condition Propellers
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Figure 7.16: Blade Angle Distribution for Cruise Condition Propellers
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Figure 7.17 shows the possible blade chord dimensions and optimized blade chord di-

mensions for Case 1 only. This plot is for a fixed diameter of 12 inches. If the optimizer

would have chosen a different diameter the plot would be different. The solid line is the

contour that was picked, and the dashed and dotted lines are the maximum and minimum

possible chord contours.
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Figure 7.17: Comparison of Possible Blade Chord Profiles for Case 1

Different number of elements used to find the performance parameters was used. Orig-

inally 10 elements were used to describe each blade, but 100 was also used to see if there

was any improvement when lift distribution over the blades was integrated. The 100 ele-

ments were found using interpolation between the original 10 optimized elements. For Case

1 Ct = 0.0256 and Cp = 0.0225 with 10 elements and with 100 elements the values changed

to Ct = 0.0253 and Cp = 0.0222. Figure 7.18 shows the lift distribution on the blade. The
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increased elements smooths the distribution, but it does not make a significant difference in

the integrated values.
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Figure 7.18: Lift Distribution on Blade Comparing the Number of Elements used to find
Performance Parameters for Case 1

The performance parameters for each of the propellers were evaluated from a free stream

velocity of 10 mph to whenever the propeller fails to produce any thrust. The APC 11x10E

baseline propeller was included for comparison. The data for the baseline propeller was

calculated using the same propeller code and XFOIL used to calculate the performance

parameters of the other propellers. The thrust was calculated assuming an input voltage

of 11.1 volts for the same motor used in optimizer, Brushless Park 450. This simulates

a full throttle input throughout the free stream velocity range. The rotation speed, rpm,

was found through an iteration process between the electric motor model and the propeller

performance codes. Figure 7.19 shows the thrust verse free stream with the rpm at 11.1

volts, Figure 7.20 shows the power for the propeller verse free stream and current draw at

11.1 volts, and Figure 7.21 shows the efficiency of the propeller verse free stream. It should
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be noted that the power plotted in Figure 7.20 is the power required for the propeller. The

motor will require more power due to losses in the motor. The optimized locations are shown

on the Figures with indicators.
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Figure 7.20: Comparison of Case 1, Case 2a, and Case 2b Propellers Against Baseline
Propeller Power Over a Range of Free Stream Velocities
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Figure 7.21: Comparison of Case 1, Case 2a, and Case 2b Propellers Against Baseline
Propeller Efficiency Over a Range of Free Stream Velocities
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All of the optimized propeller are shown to require less power than the baseline propeller

with approximately equal thrust. This leads to the baseline propeller be less efficient than

the optimized locations. The optimized locations are also shown to have a higher efficiency

at the design speed then the propeller at full throttle at the design speed. This is due to the

increase in power required and more losses in the motor and propeller. All of the propellers

have about the same blade angle distribution, but different chord distributions. Since the

blades have about the same blade angles then only difference is the airfoils. The optimized

airfoils are shown to out perform the baseline propellers airfoils. Case 2a requires less power

and closely matches the desired thrust at the optimized locations it was chosen as the “best”

for cruise.

7.4 Propeller Optimized for Climb

The second optimization that was tested was the climb condition. From Table 7.2 the

propeller needs to produce as much thrust possible at a free stream velocity of 15 miles per

hour given the maximum current draw the motor can perform at maximum voltage which was

set to 11.1 volts to simulate a 3-cell lithium polymer battery power supply for the motor.

If the power is nearly constant for the propeller then to be as efficient as possible thrust

needs to be maximized. The optimizer is designed to minimize a problem. This leads to

inverse of the thrust is used as the objective function. The two different objective functions,

one non-dimensional and the other with dimensional values, and are shown in Table 7.7

where z is the fitness. The range of values used by the optimizer are shown in Table 7.8.

Table 7.7: Objective Functions used for Climb Condition

Case Number Objective Function:
3 z = 1

Ct

4 z = 1
Ft(ounces)

The values of β could only decrease to the tip, and the chord was allowed to expand to

approximately the three quarters radius location then decrease to zero at the tip. For both
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Table 7.8: Optimizer Limits for Climb Condition

Parameter Minimum Maximum
βstart (◦) 20 65

chordstart(in) 0.5 2.0
Diameter(in) 8 12

Motor Current(Amps) 1 14

of the objective functions used the optimizer was run for 100 generations with 5 pattern

searches per generation and a population size of 30 members. The number of members was

increased from the cruise condition due to the inadequate number of members that would

find a viable solution in each generation. Shown in Figures 7.22 and 7.23 a large number

the members did not provide a “good” solution. These Figures show the evaluated objective

function for each member of each generation. The members that were “bad” propellers

are not plotted. As discussed in the previous chapter these ”bad” propellers do not meet

the requirements and the objective function assigns them a value of 108. Each member is

represented by a “x.” A dashed line connects the maximum values of each generation as

well as the minimum values. A solid line is used to show the best fitness found as of that

generation.
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Each case was run for 100 generations to show that the optimizer had converged on

a solution. For Case 3 the optimizer found the “best” solution at generation 99 with an

objection function value of 4.826 and took 15 hours to complete the 100 generations. For

Case 4 the “best” solution was found on generation 25 with an objection function value of

0.030 and took 11 hours to complete. Again it is shown that Case 4 finds a wider range of

values compared to Case 3 were the values are more localized as the number of generations

increase. The performance the two propellers are shown in Table 7.9. Detailed properties

(i.e. blade angles, chord sizes, pitch, and element position) for the two cases are shown in

Tables G.1 and G.2 in Appendix G. Table 7.9 shows that both propellers produced slightly

Table 7.9: Propeller Performance Parameters for Climb Case 3 and Case 4

Case 3 (Objective Function = 1
Ct

)

J 0.2452 Pitch at 3/4 radius 5.25
Ct 0.2072 Diameter (in) 8.12
Cp 0.0982 β3/4 (◦) 15.38
ηprop 51.74% RPM 7956

Motor Power (Watts) 126.19
Motor Voltage (Volts) 11.1 Torque (oz-in) 17.21
Motor Current (Amps) 11.37 Thrust (oz) 28.10

ηmotor 74.62% ηsystem 38.61%

Case 4 (Objective Function = 1
Ft

)

J 0.2067 Pitch at 3/4 radius 3.29
Ct 0.1054 Diameter (in) 9.73
Cp 0.0415 β3/4 (◦) 8.26
ηprop 52.51% RPM 7876

Motor Power (Watts) 131.10
Motor Voltage (Volts) 11.1 Torque (oz-in) 17.60
Motor Current (Amps) 11.81 Thrust (oz) 28.87

ηmotor 74.05% ηsystem 38.88%

lower than the maximum allowable current of 18 Amps. This is due to a tolerance set in

the objective function that allowed the optimizer to produce pick propellers that used less

than the maximum current in the early generations and then bring the current up to drive

the thrust as high as possible. The propeller from Case 3 has an overall system efficiency of
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38.61% and produces 28.10 ounces of thrust at a free stream velocity of 15 miles per hour.

Case 4 has a slightly better system efficiency of 38.88% and produces 28.87 ounces of thrust.

Case 4 with proved to produce a more efficient propeller with more thrust requiring less

power than Case 3. An APC 8x6E propeller was chosen for baseline comparison due to its

very similar nature to the optimized climb propellers. The baseline propeller has a diameter

of 8 inches with a constant pitch of 6. Figures 7.24 and 7.25 show the chord and blade angle

distribution across the radius of the blade. The chord in Case 3 expands before it tapers to

the tip while Case 4 remains approximately constant for half of the radius. Both cases show

the blade angle to follow an exponential decay to tip. Case 3’s root blade angle is 58.05◦ and

is 4.89◦ at the tip. Case 4’s root angle is smaller at 42.67◦ and tapers to 1.46◦. It is shown

that chords are much larger and the blade angles are approximately when compared to the

baseline propeller.
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Figure 7.24: Chord Distribution for Climb Condition Propellers
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Figure 7.25: Blade Angle Distribution for Climb Condition Propellers

To see if any of the propeller blade is stalled at the optimized climb location Figure

7.26 was created. This plot shows that the relative angle of attack on each element for

Case 3 which reaches a maximum around 8◦. This is not close to the stall range which is

important since an average Reynolds number was used for these airfoils, and the Reynolds

number dictates stall location. Case 4 is not shown due to its similar blade angles and flight

conditions that produces a similar result.
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Figure 7.26: Case 3 Angle of Attack Distribution

The performance parameters for each of the propellers were evaluated from a free stream

velocity of 10 mph to whenever the propeller fails to produce any thrust. A baseline propeller

was included for comparison.This propeller was chosen to be an APC 8x6E due to it similar

geometry to the optimized propellers in Case 3 and 4. The data for the baseline propeller

was calculated using the same propeller code and XFOIL used to calculate the performance

parameters of the other propellers. The thrust was calculated assuming an input voltage

of 11.1 volts for the same motor used in optimizer, Brushless Park 450. This simulates

a full throttle input throughout the free stream velocity range. The rotation speed, rpm,

was found through an iteration process between the electric motor model and the propeller

performance codes. Figure 7.27 shows the thrust verse free stream with the rpm at 11.1

volts, Figure 7.28 shows the power for the propeller verse free stream and current draw at

11.1 volts, and Figure 7.29 shows the efficiency of the propeller verse free stream. It should

be noted that the power plotted in Figure 7.28 is the power required for the propeller. The
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motor will require more power due to losses in the motor. The optimized locations are shown

on the Figures with indicators.
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Figure 7.27: Comparison of Case 3 and Case 4 Propellers Thrust over a Range of Free Stream
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Figure 7.28: Comparison of Case 3 and Case 4 Propellers Power over a Range of Free Stream
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Figure 7.29: Comparison of Case 3 and Case 4 Propellers Efficiency over a Range of Free
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The optimized propeller from Case 4 is shown to have a less thrust, require less power,

and have a higher efficiency throughout the free stream velocities. Both propellers are shown

to have much larger chords than the baseline while the blade angles follow the same trend.

The baseline propeller requires more power compared to the optimized propellers. The Case

3 propeller will produce thrust in a wider range in free stream velocities at full throttle. Case

3 and Case 4 were marginally different, but Case 4 met the design requirements better than

Case 3.

7.5 Propeller Optimized for Climb-Cruise

The third optimization that was tested was the multipoint climb cruise condition. From

Table 7.2 the propeller needs to produce as much thrust possible at a free stream velocity of

15 miles per hour. The propeller also needs to produce 7.5 ounces of thrust at a free stream

velocity of 50 miles per hour. Similar to the previous optimizations two different objective

functions were used, but the it was changed slightly for the climb cases. An attempt was

made combining the methods from the cruise and climb optimizer, but the optimizer could

not make an initial population in a reasonable period of time. A minimum desired thrust of 24

ounces was then set for the climb condition. The first is non-dimensional and is maximizing

the efficiency at the two different design conditions. The other tries to minimize the power

at cruise and the thrust during climb. The two different objective functions are shown in

Table 7.10 where z is the fitness. The range of values used by the optimizer are shown in

Table 7.10: Objective Functions used for Climb Cruise Condition

Case Number Objective Function:
5 z = 1− ηcruiseηclimb
6 z = Power

Thrust

Table 7.11. The values of β could only decrease to the tip, and the chord was allowed to

expand to approximately the three quarters radius location then decrease to zero at the tip.

For both of the objective functions used the optimizer was run for 75 generations with 5
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Table 7.11: Optimizer Limits for Climb-Cruise Condition

Parameter Minimum Maximum
βstart (◦) 45 65

chordstart(in) 0.5 2.0
Diameter(in) 8 12
RPMcruise 3000 5500
RPMclimb 5000 8500

Currrentcruise (Amps) 0 14
Currrentclimb (Amps) 0 18

V oltage (V olts) 0 11.1

pattern searches per generation and a population size of 15 members. As shown in Figures

7.30 and 7.31 a large number the members did not provide a “good” solution. These Figures

show the evaluated objective function for each member of each generation. The members

that were “bad” propellers are not plotted. As discussed in the previous chapter these “bad”

propellers do not meet the requirements and the objective function assigns them a value of

108. Each member is represented by a “x.” A dashed line connects the maximum values of

each generation as well as the minimum values. A solid line is used to show the best fitness

found as of that generation.
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Figure 7.30: Fitness verse Number of Generations Case 5 (Objective Function = 1 −
ηpropηmotor)
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)
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Each case was run for 75 generation to show that the optimizer had converged on a

solution. For Case 5 the optimizer found the ”best” solution at generation 56 with an

objection function value of 0.8196 and took 5 hours to complete the 75 generations. For

Case 6 the “best” solution was found on generation 30 with an objection function value of

1.587 and took 5.5 hours to complete. Again it is shown that Case 6 finds a wider range of

values compared to Case 5 were the values are more localized as the number of generations

increase. The performance the two propellers are shown in Tables 7.12 and 7.13. Detailed

properties (i.e. blade angles, chord sizes, pitch, and element position) for the two cases are

shown in Tables H.1 and H.2 in Appendix H.

Table 7.12: Propeller Performance Parameters for Climb Cruise Case 5

Case 5 (Objective Function = 1− ηcruiseηclimb)
Cruise

β3/4 (◦) 19.61 Pitch at 3/4 radius 8.92
J 0.9009 Diameter (in) 10.6559

Ct 0.0457 RPM 5500
Cp 0.0470 Motor Power (Watts) 82.20
ηprop 87.60% Torque (oz-in) 15.33

Thrust (oz) 8.79
Motor Voltage (Volts) 8.11
Motor Current (Amps) 10.14

ηmotor 69.82% ηsystem 61.16%

Climb
J 0.2684

Ct 0.1413 RPM 5538
Cp 0.0739 Motor Power (Watts) 151.45
ηprop 51.32% Torque (oz-in) 24.43

Thrust (oz) 27.54
Motor Voltage (Volts) 9.37
Motor Current (Amps) 16.16

ηmotor 62.66% ηsystem 32.16%

Tables 7.12 and 7.13 shows that both propellers produced higher than the minimum

thrust at climb conditions. The Case 5 propeller where the objective function was based on

the efficiencies at the design points produced a thrust of 24.43 ounces with a system efficiency
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Table 7.13: Propeller Performance Parameters for Climb Cruise Case 6

Case 6 (Objective Function = Power
Thrust

)
Cruise

β3/4 (◦) 19.78 Pitch at 3/4 radius 8.80
J 0.9345 Diameter (in) 10.4566

Ct 0.0441 RPM 5404
Cp 0.0469 Motor Power (Watts) 68.78
ηprop 87.87% Torque (oz-in) 13.43

Thrust (oz) 7.59
Motor Voltage (Volts) 7.74
Motor Current (Amps) 8.89

ηmotor 70.94% ηsystem 62.34%

Climb
J 0.2230

Ct 0.1244 RPM 6792
Cp 0.0578 Motor Power (Watts) 190.41
ηprop 48.00% Torque (oz-in) 26.15

Thrust (oz) 33.82
Motor Voltage (Volts) 11.00
Motor Current (Amps) 17.31

ηmotor 65.74% ηsystem 31.55%

of 32.16%, and Case 6 produced a greater thrust at 33.82 ounces with a system efficiency of

31.55%. At cruise Case 5 produced 8.79 ounces of thrust with a system efficiency of 61.16%,,

and Case 6 produced 7.59 ounces of thrust with a system efficiency of 62.34%. Case 5 and

Case 6 peak in efficiency at 88%. Case 6 is shown to produce as much thrust as possible and

achieve closer to a desired cruise speed compared to Case 5. A baseline propeller was added

to the following series of Figures for comparison. The baseline propeller was chosen to be an

APC 10x7E which has a diameter of 10 inches and a constant pitch of 7. Figures 7.32 and

7.33 show the chord and blade angle distribution across the radius of the blade. The chord

in both cases expands before it tapers to the tip. Both cases show the blade angle to follow

an exponential decay to approximately 15◦ at the tip. Case 5’s root blade angle is 53.74◦

and is 16.42◦ at the tip. Case 6’s root angle is smaller at 46.86◦ and tapers to 13.79◦.
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Figure 7.32: Chord Distribution for Climb Cruise Condition Propellers
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The performance parameters for each of the propellers were evaluated from a free stream

velocity of 15 mph to whenever the propeller fails to produce any thrust. A baseline propeller

was included for comparison. For these cases an APC 10x7 thin electric propeller was chosen

because it is similar to Case 5 and Case 6 propellers. This is a 10 inch propeller with a

constant blade pitch of 7 inches. The data for the baseline propeller was obtained from the

UIUC Propeller Database [33]. Figure 7.34 shows the thrust verse free stream, Figure 7.35

shows the power for the propeller verse free stream, and Figure 7.36 shows the efficiency of

the propeller verse free stream. It should be noted that the power plotted in Figure 7.35 is

the power required for the propeller. The motor will require more power due to losses in

the motor. The Figures are plotted at a fixed rotational speed for the propeller which is the

optimized rotational speed.

The performance parameters for each of the propellers were evaluated from a free stream

velocity of 15 mph to whenever the propeller fails to produce any thrust. A baseline propeller

was included for comparison.This propeller was chosen to be an APC 10x7E due to it similar

geometry to the optimized propellers in Case 5 and 6. The data for the baseline propeller

was calculated using the same propeller code and XFOIL used to calculate the performance

parameters of the other propellers. The thrust was calculated assuming an input voltage

of 11.1 volts for the same motor used in optimizer, Brushless Park 450. This simulates

a full throttle input throughout the free stream velocity range. The rotation speed, rpm,

was found through an iteration process between the electric motor model and the propeller

performance codes. Figure 7.34 shows the thrust verse free stream with the rpm at 11.1

volts, Figure 7.35 shows the power for the propeller verse free stream and current draw at

11.1 volts, and Figure 7.36 shows the efficiency of the propeller verse free stream. It should

be noted that the power plotted in Figure 7.35 is the power required for the propeller. The

motor will require more power due to losses in the motor. The optimized locations are shown

on the Figures with indicators.
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Figure 7.34: Comparison of Case 5 and Case 6 Propellers Thrust over a Range of Free Stream
Velocities
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Figure 7.35: Comparison of Case 5 and Case 6 Propellers Power over a Range of Free Stream
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Figure 7.36: Comparison of Case 5 and Case 6 Propellers Efficiency over a Range of Free
Stream Velocities

The optimized propellers from Case 5 and Case 6 is shown to have approximately

the same performance parameters at the full throttle setting, but the Case 6 propeller out

performs Case 5 at the design condition for climb. Both optimized propellers produce more

thrust and require less power when compared to the baseline propeller. The geometry Case

5 and Case 6 are only slightly different from the baseline. The chord distributions follow

the same trends with approximately the same values, and the blade angles follow the same

trends and approximate values as well. The optimized propellers are also shown to operate

at a much higher free stream velocity compared to the the baseline propeller. Case 5 does

produce higher thrust and require more power compared to the baseline and Case 6. Case

6 does produce higher thrust at the climb design point and more closely matches the thrust

desired for cruise.
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7.6 Cruise, Climb, and Climb-Cruise Comparisons

The “best” propeller from each of the optimized conditions was compared. The “best”

cases were found to be Case 2a, Case 4, and Case 6. These propellers were shown to out

perform the other cases. The blade angles are compared in Figure 7.37. All of the propellers

follow the same trend with the Climb-Cruise and Cruise propellers have similar values and

the Climb propeller having smaller values.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

Radial Position (in)

B
la

d
e
 A

n
g
le

, 
β
 (

d
e
g
re

e
s
)

 

 

Cruise 12 inch (Pitch 8.67) Case 2a

Climb 9.73 inch (Pitch 3.29) Case 4

Climb-Cruise 10.46 inch (Pitch 8.80) Case 6

Figure 7.37: Comparison of Blade Angles, β, for the “Best” Propellers (Case 2a, Case 4, and
Case 6)

Figure 7.38 shows the chord distribution for each of the “best” propellers. The Cruise

propeller is shown to be the largest diameter propeller with the smallest overall chord.

The climb propeller has the largest chord and the smallest diameter, and the Climb-Cruise

propeller has a diameter and chord that is in between the other conditions.

The thrust for these propellers was calculated in the same manner as the previous result

sections. The motor model was given 11.1 volts and a rpm was found through iteration to

match propeller torque and the motor torque. This simulates a theoretical full throttle
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Figure 7.38: Comparison of Chords, β, for the “Best” Propellers (Case 2a, Case 4, and Case
6)

scenario. The thrust comparison for the “best” propellers can be found in Figure 7.39. The

rpm of the propeller/motor is shown in a subplot on the same Figure. The Cruise and

Climb-Cruise propellers are shown to produce more thrust than the climb propeller. They

are also able to produce thrust longer. This is due to their higher blade angles that allow

the relative angle of attack of the propeller to produce positive lift coefficients for each of the

elements. The Cruise and Climb-Cruise propellers also have a much lower rotation speed at

this full throttle setting due to there increased diameter.

The power requirement for the propellers is shown in Figure 7.40. Again the Cruise and

Climb-Cruise propellers are shown to be similar. The climb propeller requires less power

since it was optimized for this design condition. The current draw is also shown and follows

the same trends as the power curves.

Once more the Cruise and Climb-Cruise propellers are shown to be very similar in the

efficiency plot in Figure 7.41, but the Cruise propeller is slightly better. These propellers

peak in efficiency at 90% around 70 miles per hour for the Cruise propeller and 80 miles
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Figure 7.39: Comparison of Thrust, β, for the “Best” Propellers (Case 2a, Case 4, and Case
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per hour for the Climb-Cruise propeller. The Climb propeller matches the Cruise propeller’s

efficiency until 45 miles per hour at ≈ 81 then rapidly decreases.
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Figure 7.40: Comparison of Power, β, for the “Best” Propellers (Case 2a, Case 4, and Case
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Figure 7.41: Comparison of Efficiency, β, for the “Best” Propellers (Case 2a, Case 4, and
Case 6)
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Chapter 8

Conclusions

A method for optimizing an electrically driven propeller for single and multiple con-

ditions with a hybrid pattern search particle swarm optimizer was performed. 6th order

Bernstein polynomials were used to parameterize airfoils that were used with Xfoil to calcu-

late lift and drag coefficients. The hybrid optimizer was used to maximize the lift to drag

ratio at zero angle of attack for an airfoil. A simplex optimizer was then used to find airfoils

over a range of angle of attack from −5◦ − 15◦. A table was generated with the optimum

airfoils and was used for the optimized propellers. The propeller analysis was evaluated using

a momentum blade element method with axial and rotational inflow factors.

The pattern search particle swarm optimizer produced global minimums in the large

design spaces of the propellers. This optimizer required a large amount of time compared to

the simplex method that was used for the airfoil optimizer beyond 0◦ airfoil. However the

simplex was also shown to be highly dependent on initial location. The objective functions

used by the optimizers strongly influence the design. The objective functions using dimen-

sional values proved to produce better results. Several restrictions were also required on

the chord and blade angle distributions which if left unrestrained would produce impractical

designs.

For the Cruise condition the power was minimized. It was shown that an objective

function using dimensional values verse non-dimensional values was better. The dimensional

value case using the propeller power required had a 3% overall system efficiency improvement

over the non-dimensional case. The system power optimization was shown to require slightly

more power than the propeller power optimization. The optimized propellers were all shown

to have improvements over a commercially available baseline propeller. These optimized
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propellers were shown to have smaller chords and approximately equal blades when compared

to the baseline propeller.

For the Climb condition the thrust was maximized. The dimensional value objective

function proved marginally better than the non-dimensional. The results were very similar

with each case producing 28 ounces of thrust and having an overall system efficiency of

39%. Even though the Case 3 propeller could produce more thrust over a wider range of

free stream velocities, Case 4 is the better propeller due to its higher efficiency at the design

point. The non-dimensional objective function case did have a run time approximately 40%

longer than the dimensional case. When compared to a baseline propeller both cases showed

much improvement in power required. The optimized propellers had larger chords than the

baseline propeller, and the blade angles were slightly smaller.

For the Climb-Cruise condition two different methods were used. The first was non-

dimensional objective function maximizing the efficiencies at climb and cruise conditions.

The second objection function minimized power at cruise over thrust at climb. Both methods

proved to have advantages and disadvantages. The optimizer in the non-dimensional case

drove thrust at climb to the minimum desire thrust, but had a higher efficiency across the

range of operation compared to the dimensional objective function. The dimensional case

showed to have a substantial more amount of thrust at climb, but this caused the efficiency

to suffer. The optimized propellers were compared to a baseline propeller with marginally

different chord and blade angle distributions. These results produced two propellers that

when compared to a baseline propeller require less power, produce more thrust, and have

higher efficiencies.

All of the optimized propellers proved to be more efficient than the baseline propellers.

The optimized airfoils allowed the propellers to have increased performance and a larger range

of operation. Cruise propellers were shown to have larger blade angles, smaller chords, and

larger diameters while Climb propellers had smaller blade angles, larger chords, and smaller
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diameters. Climb-Cruise propellers exhibited blade angles similar to cruise propellers and

diameters and chords in between the Climb and Cruise conditions.

A method for optimizing an electrical motor driven propeller has been presented and

shown to be successful for single and multiple design points. The inclusion of a model for

the electric motor assists the optimizer in finding the most efficient rotational speed for the

propeller and eliminates the iterative process of manually matching an electric motor and a

propeller. Compared to baseline propeller performance, the method produced more efficient

propeller designs for single point and multipoint objective functions. As with any method,

additional improvements could be made. A better method for calculating induced airflow

through the rotor disk could be implemented and would provide more accurate results.

Integrating an airfoil optimizer in with the propeller optimizer might provide a significant

performance increase but would also dramatically increase run time. Improvements in the

accuracy at off design conditions where the relative angle of attack on the propeller blades

could be in a stalled region would make the analysis more robust. Other optimization

techniques such as a genetic algorithm could be evaluated to minimize computational times

and possibly improve results. An electric motor optimizer could be developed to investigate

if any improvements over commercially available motors are possible. In addition to these

method improvements, thoughts for future work include actual prototyping a propeller design

optimized by this method and conducting performance tests to further verify and validate

the method. Also providing an internal combustion motor model to the method could be

considered. This addition would allow comparison between propellers optimized for electric

and internal combustion motors and provide insight into the fundamental differences between

propellers tuned to the two types of powerplants.
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Appendix A

Xfoil Inputs and Outputs

A.1 Example XFOIL Command Inputs

The following is a list of commands that would be entered for a standard XFOIL session.
More inputs can be found in the users manual [14].

plop (plot menu)
G (disable plotting)

(blank return)
load (load menu)
Point File.dat (file containing x-y points)
Airfoil Name (name of airfoil)
ppar (paneling parameters menu)
N (change number of panels)
140 (increase number of panels to 140)

(blank return)
(blank return)

oper (direct operating points menu)
visc (toggle to viscous mode)
150000 (enter a Reynolds number)
iter (change the maximum iteration limit)
500 (new iteration limit)
pacc (toggle to auto point accumulation to active polar menu)
Airfoil data.dat (file for polar to be saved to)
Airfoil data dump.dat (file for information to be dumped to)
aseq -5 20 1 (run an angle of attack sweep in 1◦ degree increments from −5◦ to 20◦

(blank return)
quit (exit XFOIL)
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A.2 Example XFOIL Point File

The following is a example input for an airfoil which would be placed in a .dat or .txt
file. The first column is the x-coordinates and the second column is the y-coordinates. The
coordinates are sepearated by a space not a tab.

1.0000000 0.0015000
0.8998800 0.0331400
0.7998101 0.0537800
0.6997400 0.0714200
0.5997000 0.0840600
0.4996700 0.0917000
0.3996600 0.0953400
0.2996600 0.0957800
0.1996700 0.0906200
0.0997300 0.0742600
0.0498100 0.0540800
0.0248700 0.0359900
0.0000000 0.0000000
0.0250200 -.0050100
0.0500200 -.0049200
0.1000200 -.0047400
0.2000200 -.0043800
0.3000100 -.0040200
0.4000100 -.0036600
0.5000100 -.0033000
0.6000100 -.0029400
0.7000100 -.0025800
0.8000100 -.0022200
0.9000100 -.0018600
1.0000000 -.0015000
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A.3 Example XFOIL Output File

The following is an example output file from XFOIL.

XFOIL Vers ion 6 .96

Calcu lated po la r f o r : A i r f o i l name

1 1 Reynolds number f i x e d Mach number f i x e d

x t r f = 1.000 ( top ) 1 .000 ( bottom )
Mach = 0.000 Re = 0.150 e 6 Ncr i t = 9.000

alpha CL CD CDp CM Top Xtr Bot Xtr
−−−−−− −−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−−−
−5.000 −0.2971 0.06867 0.06517 −0.0435 0 .9774 0 .0423
−4.000 −0.1719 0.05244 0.04819 −0.0617 0 .9602 0 .0537
−3.000 −0.0243 0.04023 0.03482 −0.0746 0 .9400 0 .0797
−1.000 0 .3144 0.02246 0.01434 −0.0905 0 .8947 0 .0633

0 .000 0 .4805 0.01534 0.00969 −0.0980 0 .8748 1 .0000
1 .000 0 .6333 0.01355 0.00722 −0.1036 0 .8420 1 .0000
2 .000 0 .7748 0.01237 0.00566 −0.1071 0 .7816 1 .0000
3 .000 0 .8683 0.01245 0.00503 −0.1012 0 .6140 1 .0000
4 .000 0 .9332 0.01526 0.00624 −0.0917 0 .4074 1 .0000
5 .000 1 .0193 0.01757 0.00800 −0.0876 0 .3374 1 .0000
6 .000 1 .1143 0.01973 0.01000 −0.0854 0 .2994 1 .0000
7 .000 1 .2096 0.02195 0.01239 −0.0834 0 .2708 1 .0000
8 .000 1 .3077 0.02469 0.01528 −0.0823 0 .2469 1 .0000
9 .000 1 .3956 0.02764 0.01878 −0.0794 0 .2243 1 .0000

10 .000 1 .4389 0.02869 0.02017 −0.0687 0 .1916 1 .0000
11 .000 1 .4503 0.02956 0.02164 −0.0538 0 .1456 1 .0000
12 .000 1 .4317 0.03907 0.03050 −0.0408 0 .0300 1 .0000
13 .000 1 .4107 0.05045 0.04293 −0.0330 0 .0256 1 .0000
14 .000 1 .3559 0.06895 0.06228 −0.0327 0 .0235 1 .0000
15 .000 1 .2904 0.09461 0.08865 −0.0415 0 .0229 1 .0000
16 .000 1 .2540 0.11515 0.10958 −0.0479 0 .0219 1 .0000
17 .000 1 .2702 0.12359 0.11825 −0.0443 0 .0204 1 .0000
18 .000 1 .2434 0.14474 0.14006 −0.0535 0 .0200 1 .0000
19 .000 1 .2073 0.17196 0.16791 −0.0713 0 .0204 1 .0000
20 .000 0 .7811 0.17806 0.17484 −0.0597 0 .0285 1 .0000
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Appendix B

Derivation of Adkins-Liebeck Differential Coefficients

This appendix is for the derivation of Equations 3.47 and 3.48 which comes from Adkins
and Liebeck in Reference [3]. This is to clear any questions of their derivation process and
to correct an error in dCt

dξ
equation in Reference [3] even though the error is not found in the

original paper [6].
First the momentum propeller theory and Figure 3.8 is used to find the thrust per unit

radius.

dFt
dr

= (mass per unit non dimensional radius) (velocity increase axial direction)

= (2πrρV0 (1 + a)) (2V0aF )

= 4πrρV 2
0 (1 + a) aF (B.1)

The torque per unit radius is found using the same process.

dQ

rdr
= (mass per unit non dimensional radius) (velocity increase rotation direction)

= (2πrρV0 (1 + a)) (4πnra′F )

= 8π2r2ρV0n (1 + a) a′F (B.2)

If Cy, Cx, Cl, and Cd are substituted for dFt, dF , dL, and dD respectively in Figure 3.8. Cy
and Cx and then defined by the following equations.

Cy = Clcos (φ)− Cdsin (φ) = Cl (cos (φ) + ε sin (φ)) (B.3)

Cx = Clsin (φ) + Cdcos (φ) = Cl (sin (φ) + ε cos (φ)) (B.4)

The blade element theory can then be used to define the thrust and torque per unit radius
where b is the chord of the element.

dFt
dr

=
1

2
ρV 2

relBbCy (B.5)

dQ

rdr
=

1

2
ρV 2

relBbCx (B.6)
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With Equations B.1 and B.5 set equal to each other the axial interference factor, a, can be
found. Using Vrel = V0(1+a)

sin(φ)
from Figure 3.8.

dFt
dr

=
1

2
ρV 2

relBbCy = 4πrρV 2
0 (1 + a) aF

1

2
ρ

[
V0 (1 + a)

sin (φ)

]2
BbCy = 4πrρV 2

0 (1 + a) aF

1

2

V 2
0 (1 + a)2

sin2 (φ)
BbCy = 4πrV 2

0 (1 + a) aF

a =
1

F

Bb

2πr

Cy
4 sin2 (φ)

(1 + a)

a =

[
1

F

Bb

2πr

Cy
4 sin2 (φ)

]
+

[
1

F

Bb

2πr

Cy
4 sin2 (φ)

]
a

a

[
1− 1

F

Bb

2πr

Cy
4 sin2 (φ)

]
=

[
1

F

Bb

2πr

Cy
4 sin2 (φ)

]

a =

[
1
F
Bb
2πr

Cy

4 sin2(φ)

]
[
1− 1

F
Bb
2πr

Cy

4 sin2(φ)

]
where the solidity is σ = Bb

2πr
and a constant K = Cy

4 sin2(φ)
a final simplified equation can be

found.

a =
σK

(F − σK)
(B.7)

The same process is repeated with Equations B.2 and B.6 to find the rotational interference
factor, a′, but before this is found a geometric relationship from Figure 3.8 for φ needs to be
expressed.

tan (φ) =
V0(1 + a)

2πnr(1− a′)
(B.8)

a’ is then found as follows.

dQ

rdr
=

1

2
ρV 2

relBbCx = 8π2r2ρV0n (1 + a) a′F

1

2
ρ

[
V0(1 + a)

sin(φ)

]2
BbCx = 8π2r2ρV0n (1 + a) a′F

1

2

V 2
0 (1 + a)2

sin2(φ)
BbCx = 8π2r2V0n (1 + a) a′F

Bb

2πr

V0(1 + a)

sin2(φ)
Cx = 8πrna′F

Bb

2πr

2πnr(1− a′)tan(φ)

sin2(φ)
Cx = 8πrna′F
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1

F

Bb

2πr

Cx
4cos(φ)sin(φ)

(1− a′) = a′

a′ =

[
1

F

Bb

2πr

Cx
4cos(φ)sin(φ)

]
−
[

1

F

Bb

2πr

Cx
4cos(φ)sin(φ)

]
a′

a′ +

[
1

F

Bb

2πr

Cx
4cos(φ)sin(φ)

]
a′ =

[
1

F

Bb

2πr

Cx
4cos(φ)sin(φ)

]

a′ =

[
1
F
Bb
2πr

Cx

4cos(φ)sin(φ)

]
1 +

[
1
F
Bb
2πr

Cx

4cos(φ)sin(φ)

]
where K ′ = Cx

4cos(φ)sin(φ)
,

a′ =
σK ′

F + σK ′
(B.9)

The differential forms of thrust coefficient with respect to ξ can now be found using
Equation B.10, the thrust coefficient equation and Equation B.1, the thrust equation.

Ct =
Ft

ρn2D4
(B.10)

dCt
dξ

=

dFt

dξ

ρn2D4

dCt
dξ

=
4πrρV 2

0 (1 + a) aFR

ρn2D4

dCt
dξ

=
4πrV 2

0

(
1 + σK

(F−σK)

)
σK

(F−σK)
FR

n2D4

dCt
dξ

=
4πrRV 2

0 F

16n2R4

[
σK

(F − σK)
+

σ2K2

(F − σK)2

]
dCt
dξ

=
πξV 2

0 F

4n2R2

[
(σK) (F − σK) + σ2K2

(F − σK)2

]
dCt
dξ

=
πξV 2

0 F

4n2R2

[
σKF

(F − σK)2

]
dCt
dξ

=
πξV 2

0 F
2

4n2R2

[
σK

(F − σK)2

]
dCt
dξ

=
πξV 2

0 F
2

4n2R2

[
σ

(F − σK)2

]
Cy

4sin2(φ)
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Equation B.8 must be modified now before the derivation can continue.

tan (φ) =
V0(1 + a)

2πnr(1− a′)

tan (φ) =
V0

2πnr

(
1 + σK

(F−σK)

)
(
1− σK′

F+σK′

)
tan (φ) =

V0
2πnr

F−σK+σK
F−σK

F+σK′−σK′

F+σK′

tan (φ) =
V0

2πnr

F (F + σK ′)

(F − σK)F

sin (φ)

cos (φ)
=

V0
2πnr

(F + σK ′)

(F − σK)

(F − σK) sin (φ) =
V0

2πnr
(F + σK ′) cos (φ) (B.11)

Equation B.11 can now be substituted into the derivation.

dCt
dξ

=
π

16

σCyV
2
0 ξF

3

n2R2

1

(F − σK)2 sin2 (φ)

dCt
dξ

=
π

16

σCyV
2
0 ξF

3

n2R2

1
V 2
0

4π2n2r2
(F + σK ′)2 cos2 (φ)

dCt
dξ

=
π3

4
σξ3F 2 Cy

[(F + σK ′) cos (φ)]2
(B.12)

The differential form of torque with respect to ξ follows the same procedure as the previous
with using B.13 and B.2.

Cp =
P

ρn3D5
(B.13)

dCp
dξ

=

dP
dξ

ρn3D5
=

dQ
dξ

2πn

ρn3D5
=

(2πn) (8π2r3ρV0n (1 + a) a′F )R

ρn3D5

dCp
dξ

=
16n2π3r3V0 (1 + a) a′FR

n3D5

dCp
dξ

=
16π3r3V0 (1 + a) a′FR

32nR5

dCp
dξ

=
π3ξ3V0Fa

′ (1 + a)

2nR

dCp
dξ

=
π3ξ3V0F

2nR

[
σK ′

F + σK ′

(
1 +

σK

(F − σK)

)]
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dCp
dξ

=
π3ξ3V0F

2nR

[
σK ′

F + σK ′
+

σK ′

(F + σK ′)

σK

(F − σK)

]
dCp
dξ

=
π3ξ3V0F

2nR

[
(σK ′) (F − σK) + σ2K ′K

(F + σK ′) (F − σK)

]
dCp
dξ

=
π3ξ3V0F

2nR

[
σFK ′

(F + σK ′) (F − σK)

]
dCp
dξ

=
π3ξ3V0F

2nR

σF

(F + σK ′) (F − σK)

Cx
4cos(φ)sin(φ)

Using the relationship found in Equation B.11,

dCp
dξ

=
π3ξ3V0F

2nR

σF

4cos(φ) (F + σK ′)

Cx
V0

2πnr
(F + σK ′) cos(φ)

dCp
dξ

=
π3

4
ξ3F 2σ

Cy

[(F + σK ′) cos(φ)]2
πξ
Cx
Cy

dCp
dξ

=
dCt
dξ

πξ
Cx
Cy

(B.14)
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Appendix C

Airfoil Optimization Codes

C.1 AirfoilMaker()

f unc t i on [ c l cd ang l e s c l s cds ] = Air fo i lMaker ( alpha , Atop , Abottom )

Order = 6 ;
T r a i l z = 0 . 0 0 1 ;
numPoints = 50 ;
N1 = 0 . 5 ;
N2 = 1 . 0 ;

%Figure Out A i r f o i l f i l e name ( A i r f o i l I D )
temp = ’ ’ ;
f o r n=1: l ength ( Atop )

i f round ( Atop (n )∗100) < 10 && round ( Atop (n )∗100) >= 0.0
temp = s t r c a t ( temp , ’ 0 ’ , num2str ( round ( Atop (n ) ∗ 1 0 0 ) ) ) ;

e l s e
temp = s t r c a t ( temp , num2str ( round ( Atop (n ) ∗ 1 0 0 ) ) ) ;

end
end
f o r n=1: l ength ( Abottom )

i f round ( Abottom (n)∗100) < 10 && round ( Abottom (n)∗100) >= 0.0
temp = s t r c a t ( temp , ’ 0 ’ , num2str ( round ( Abottom (n ) ∗ 1 0 0 ) ) ) ;

e l s e i f round ( Abottom (n)∗100) < 0 . 0 . . .
&& round ( Abottom (n)∗100) > −10.0

temp = s t r c a t ( temp , ’ 0 ’ , num2str(−1∗round ( Abottom (n ) ∗ 1 0 0 ) ) ) ;
e l s e i f round ( Abottom (n)∗100) <=−10

temp = s t r c a t ( temp , ’ ’ , num2str(−1∗round ( Abottom (n ) ∗ 1 0 0 ) ) ) ;
e l s e

temp = s t r c a t ( temp , num2str ( round ( Abottom (n ) ∗ 1 0 0 ) ) ) ;
end

end
A i r f o i l I D = temp ;

%Get the po in t s f o r the A i r f o i l
[ x , y , isGood ] = . . .

P a r a m e t r i c A i r f o i l ( Atop , Abottom , Order , Tra i l z , numPoints , N1 , N2 ) ;
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%Get the l i f t and drag c o e f f
i f isGood == 1

[ c l , cd , angles , c l s , cds ] = ClCdFinder (x , y , alpha , A i r f o i l I D ) ;
e l s e

c l = −10;
cd = 100 ;
ang l e s = l i n s p a c e ( 0 , 1 5 , 1 5 ) ;
c l s = −1∗ l i n s p a c e ( 1 5 , 2 0 , 1 5 ) ;
cds = 100∗ l i n s p a c e ( 1 5 , 2 0 , 1 5 ) ;

end

C.2 ParametricAirfoil()

f unc t i on [ x , y , isGood ] = . . .
P a r a m e t r i c A i r f o i l ( Atop , Abottom , Order , Tra i l z , numPoints , N1 , N2)

PolyOrder = 6 ;
xoc = l i n s p a c e (0 , 1 , numPoints ) ;

%f i n d the K i va lue s
f o r n=0:Order

Ki (n+1) = f a c t o r i a l ( Order )/ ( f a c t o r i a l (n)∗ f a c t o r i a l ( Order−n ) ) ;
end

%f i n d c l a s s and shape func t i on va lue s . F in i shed with the z/c va lue s
f o r n=1: l ength ( xoc )

C(n) = xoc (n)ˆN1∗(1−xoc (n ) )ˆN2 ;
i f xoc (n) == 0.0

Stop (n) = 0 . 0 ;
Sbottom (n) = 0 . 0 ;

e l s e i f xoc (n) == 1.0
Stop (n) = 0 . 0 ;
Sbottom (n) = 0 . 0 ;

e l s e
Stop (n) = 0 . 0 ;
Sbottom (n) = 0 . 0 ;
f o r m=0:Order

Stop (n) = Stop (n) + . . .
Atop (m+1)∗Ki (m+1)∗xoc (n)ˆm∗(1−xoc (n ) ) ˆ ( Order−m) ;

Sbottom (n) = Sbottom (n) + . . .
Abottom (m+1)∗Ki (m+1)∗xoc (n)ˆm∗(1−xoc (n ) ) ˆ ( Order−m) ;

end
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end
zocTop (n)=C(n)∗ Stop (n)+xoc (n)∗ T r a i l z ;
zocBottom (n)=C(n)∗Sbottom (n)−xoc (n)∗ T r a i l z ;

end

%Check to see i f the bottom curve
%i n t e r s e c t s or pas s e s the upper curve
check = 0 ;
f o r n=1: l ength ( zocTop )

i f zocTop (n) − zocBottom (n) < 0 .0
check = check + 1 ;

end
end

i f check == 0
isGood = 1 ;

e l s e
isGood = 0 ;

end
%End o f i n t e r s e c t i o n check

%combine upper and lower s u r f a c e
%Atop == Abottom
f o r n=1: l ength ( xoc )

x (n) = xoc ( l ength ( xoc)−n+1);
y (n) = zocTop ( l ength ( xoc)−n+1);
i f n>1

x (n+length ( xoc )−1) = xoc (n ) ;
y (n+length ( xoc )−1) = −zocTop (n ) ;

end
end

end

C.3 ClCdFinder()

f unc t i on [ c l , cd , ang les , c l s , cds ] = ClCdFinder (x , y , alpha , A i r f o i l I D )
%This func t i on takes a s e t o f po in t s f o r an a i r f o i l and
%runs x f o i l . exe with the po in t s and a s e t alpha . I t then
%re tu rn s the l i f t and drag c o e f f i c i e n t s

warning o f f a l l
%User Def ined S e t t i n g s
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DirectoryName = ’ OptimumAirfoils ’ ;
N = 120 ; %number o f segments f o r x f o i l
AoAstart = 0 ;
AoAend = 15 ;
AoAstep = 0 . 5 ;
isGood = 1 ;
%Check f o r Main Di rec to ry
CheckMDir = i s d i r ( DirectoryName ) ;
i f CheckMDir == 0

mkdir ( DirectoryName ) ;
DoesF i l eEx i s t = 0 ;

e l s e %Check f o r A i r f o i l
fidTemp = fopen ( s t r c a t ( DirectoryName , ’\ ’ , A i r f o i l ID , ’ . dat ’ ) , ’ r ’ ) ;
i f fidTemp ˜= −1

f c l o s e ( fidTemp ) ;
DoesF i l eEx i s t = 1 ;

e l s e
DoesF i l eEx i s t = 0 ;

end
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%i f the A i r f o i l I D f i l e does not e x i s t i t w i l l be c rea ted
i f DoesF i l eEx i s t == 0

stop = 1 ;
whi l e stop == 1

d e l e t e ( ’ po in t s . dat ’ )
d e l e t e ( ’dump . dat ’ )
d e l e t e ( ’ BatchInstr . inp ’ )
%Create Points F i l e
f i d = fopen ( ’ po in t s . dat ’ , ’w ’ ) ;
f o r m=1: l ength ( x )

f p r i n t f ( f i d , ’%8.4 f %8.4 f \ r\n ’ , x (m) , y (m) ) ;
end
f c l o s e ( f i d ) ;

%Create I n s t r u c t i o n F i l e f o r Batch F i l e
f i d = fopen ( ’ BatchInstr . inp ’ , ’w ’ ) ;
f p r i n t f ( f i d , ’ plop\ r\nG \ r\n \ r\n ’ ) ;
f p r i n t f ( f i d , ’ load \ r\n ’ ) ;
f p r i n t f ( f i d , ’ po in t s . dat\ r\n%s\ r\n ’ , A i r f o i l I D ) ;
f p r i n t f ( f i d , ’ ppar\ r\nN\ r\n%i \ r\n \ r\n \ r\n ’ ,N) ;
f p r i n t f ( f i d , ’ oper\ r\n ’ ) ;
f p r i n t f ( f i d , ’ v i s c \ r\n150000\ r\n ’ ) ;
f p r i n t f ( f i d , ’ i t e r \ r\n400\ r\n ’ ) ;
f p r i n t f ( f i d , ’ pacc\ r\n%s\\%s . dat\ r\ndump . dat\ r\n ’ , . . .
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DirectoryName , A i r f o i l I D ) ;
f p r i n t f ( f i d , ’ aseq %4.2 f %4.2 f %4.2 f \ r\n ’ , . . .

AoAstart , AoAend , AoAstep ) ;
f p r i n t f ( f i d , ’\ r\nquit \ r\n ’ ) ;
f c l o s e ( f i d ) ;

%Run Batch F i l e and d e l e t e some unwanted f o l d e r s
[ sh ,wow]=dos ( ’ x f o i l t a b l e f i l e c r e a t e . bat ’ ) ;
c l e a r sh
c l e a r wow
%Check f o r NaN
filenameNaN = s t r c a t ( DirectoryName , ’\ ’ , A i r f o i l ID , ’ . dat ’ ) ;
fidNaN = fopen ( filenameNaN , ’ r ’ ) ;
i f fidNaN == −1

Nplus = 1 ;
e l s e

cur rentL ine = 1 ;
c=1;
Nplus = 0 ;
whi l e ˜ f e o f ( fidNaN )

temp = f g e t l ( fidNaN ) ;
Angles = 0 . 0 ;
i f cur rentL ine >= 13

a i r f o i l D a t a = str2num ( temp ) ;
Angles = a i r f o i l D a t a ( 1 ) ;
Cl = a i r f o i l D a t a ( 2 ) ;
Cd = a i r f o i l D a t a ( 3 ) ;
i f Nplus == 0

i f i snan ( Cl ) | | i snan (Cd)
N=N+10;
Nplus = 1 ;

end
end

end
cur rentL ine = currentL ine +1;

end
i f Nplus == 0

i f Angles <= 0.6667∗AoAend
N=N+10;
Nplus = 1 ;

end
end
f c l o s e ( fidNaN ) ;
i f Nplus ˜= 1 | | N==170;

i f N>165 && Nplus==1
isGood = 0 ;
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end
stop = 0 ;

e l s e
d e l e t e ( filenameNaN )

end
end

end
d e l e t e ( ’ po in t s . dat ’ )
d e l e t e ( ’dump . dat ’ )
d e l e t e ( ’ BatchInstr . inp ’ )

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Open f i l e and get the l i f t and drag curves
i f isGood == 1

f i d = fopen ( s t r c a t ( DirectoryName , ’ \ ’ , A i r f o i l ID , ’ . dat ’ ) , ’ r ’ ) ;
cur rentL ine = 1 ;
n=1;
whi l e ˜ f e o f ( f i d )

temp = f g e t l ( f i d ) ;
i f cur rentL ine >= 13

a i r f o i l D a t a = str2num ( temp ) ;
ang l e s (n) = a i r f o i l D a t a ( 1 ) ;
c l s (n) = a i r f o i l D a t a ( 2 ) ;
cds (n) = a i r f o i l D a t a ( 3 ) ;
n=n+1;

end
cur rentL ine=currentL ine +1;

end
e l s e

f i d = fopen ( s t r c a t ( DirectoryName , ’ \ ’ , A i r f o i l ID , ’ . dat ’ ) , ’w ’ ) ;
f o r n=1:40

f p r i n t f ( f i d , ’% i −10000 10000\ r\n ’ , n ) ;
end
f c l o s e ( f i d ) ;
c l = −10;
cd = 100 ;
ang l e s = l i n s p a c e ( 0 , 1 5 , 1 5 ) ;
c l s = −1∗ l i n s p a c e ( 1 5 , 2 0 , 1 5 ) ;
cds = 100∗ l i n s p a c e ( 1 5 , 2 0 , 1 5 ) ;

end
%Find c l and cd at d e s i r e d alpha us ing i n t e r p o l a t i o n
i f isGood == 1

AoA = alpha ;
%Begin Table Lookup
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stopLookup = 0 ;
nn=1;
whi l e stopLookup == 0

i f AoA < 0
stopZero = 0 ;
m=1;
whi l e stopZero == 0

i f ang l e s (m) >= 0
ZeroLoc = m;
stopZero = 1 ;

end
m=m+1;

end
s h i f t = 10 ;
c l = c l s ( ZeroLoc+s h i f t ) − . . .

( ang l e s ( ZeroLoc+s h i f t )−AoA)∗ ( c l s ( ZeroLoc+s h i f t ) − . . .
c l s ( ZeroLoc ) ) / ( ang l e s ( ZeroLoc+s h i f t ) − . . .
ang l e s ( ZeroLoc ) ) ;

cd = cds ( ZeroLoc+s h i f t ) − . . .
( ang l e s ( ZeroLoc+s h i f t )−AoA)∗ ( cds ( ZeroLoc+s h i f t ) − . . .
cds ( ZeroLoc ) ) / ( ang l e s ( ZeroLoc+s h i f t ) − . . .
ang l e s ( ZeroLoc ) ) ;

stopLookup = 1 ;
e l s e i f AoA == ang l e s (nn)

c l = c l s (nn ) ;
cd = cds (nn ) ;
stopLookup = 1 ;

e l s e i f AoA < ang l e s (nn+1) && AoA > ang l e s (nn )
c l = c l s (nn+1) − ( ang l e s (nn+1)−AoA ) ∗ . . .

( c l s (nn+1)− c l s (nn ) ) / ( ang l e s (nn+1)−ang l e s (nn ) ) ;
cd = cds (nn+1) − ( ang l e s (nn+1)−AoA ) ∗ . . .

( cds (nn+1)−cds (nn ) ) / ( ang l e s (nn+1)−ang l e s (nn ) ) ;
stopLookup = 1 ;

e l s e i f AoA > ang l e s ( l ength ( ang l e s ) )
c l = c l s ( l ength ( ang l e s ) ) − . . .

( ang l e s ( l ength ( ang l e s ))−AoA ) ∗ . . .
( c l s ( l ength ( ang l e s ))− c l s ( l ength ( ang l e s ) − 1 ) ) . . .
/( ang l e s ( l ength ( ang l e s ) ) − . . .
ang l e s ( l ength ( ang l e s )−1)) ;

cd = cds ( l ength ( ang l e s ) ) − . . .
( ang l e s ( l ength ( ang l e s ))−AoA ) ∗ . . .
( cds ( l ength ( ang l e s ))− cds ( l ength ( ang l e s ) −1 ) ) / . . .
( ang l e s ( l ength ( ang l e s ) ) − . . .
ang l e s ( l ength ( ang l e s )−1)) ;

stopLookup = 1 ;
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e l s e i f AoA < ang l e s (1 )
c l = c l s (2 ) − ( ang l e s (2)−AoA ) ∗ . . .

( c l s (2)− c l s ( 1 ) ) / ( ang l e s (2)− ang l e s ( 1 ) ) ;
cd = cds (2 ) − ( ang l e s (2)−AoA ) ∗ . . .

( cds (2)− cds ( 1 ) ) / ( ang l e s (2)− ang l e s ( 1 ) ) ;
stopLookup = 1 ;

end
nn=nn+1;

end
%End Table Lookup

end

f c l o s e ( ’ a l l ’ ) ;
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Appendix D

Propeller Optimization Codes

D.1 BrushlessMotor()

f unc t i on [ Output ] = . . .
BrushlessMotorV2 ( Input ,Kv, I n t e r n a l R e s i s t a n c e , . . .
numPoles , numPhases , Id leCurrent , WhichCase )

%Cases
%WhichCase = 1 : INPUTS : [ Voltage , Current ] OUTPUTS: [ Torque , RPM, Eta ]
%WhichCase = 2 : INPUTS : [RPM, Torque ] OUTPUTS: [ Voltage , Current , Eta ]

%Constants
Kt = 1000/Kv∗1 . 3 4 5 ;
VoltageStep = 0 . 0 1 ;
RPMtol = 0 . 1 ; %+,− rpm t o l e r a n c e range

%Solve f o r Unknowns
i f WhichCase == 1 %Voltage and Current are inputs

Voltage = Input ( 1 ) ;
Current = Input ( 2 ) ;
%f i n d RPM
Max RPM = Voltage∗Kv;
lambda = 2/( numPoles∗Max RPM ) ∗ . . .

( Voltage−I n t e r n a l R e s i s t a n c e ∗ Id l eCurrent ) ;
Tem = ( numPhases∗numPoles )/2∗ lambda∗Current ;
RPM = ( Voltage /( numPoles∗ lambda /2) − . . .

I n t e r n a l R e s i s t a n c e /( numPhases∗( numPoles∗ lambda /2)ˆ2)∗Tem) ;

%f i n d Torque
Torque = Kt∗Current ;

%Find E f f i c i e n c y
Power In = Voltage∗Current ;
Power Out =(Voltage−Current ∗ . . .

I n t e r n a l R e s i s t a n c e )∗ ( Current−Id l eCurrent ) ;
Eta = Power Out/Power In ;
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%Set Outputs
Output (1 ) = Torque ;
Output (2 ) = RPM;
Output (3 ) = Eta ;

e l s e i f WhichCase == 2 %RPM and Torque are inputs
RPM = Input ( 1 ) ;
Torque = Input ( 2 ) ;
%Find the Current f o r the Motor g iven the Torque
Current = Torque/Kt ;

%Find the Voltage r equ i r ed f o r the g iven Torque and RPM
Voltage = 1 . 0 ;
stop = 0 ;
whi l e stop == 0

Max RPM = Voltage∗Kv;
lambda = 2/( numPoles∗Max RPM ) ∗ . . .

( Voltage−I n t e r n a l R e s i s t a n c e ∗ Id l eCurrent ) ;
Tem = ( numPhases∗numPoles )/2∗ lambda∗Current ;
RPMVolt = ( Voltage /( numPoles∗ lambda /2) − . . .

I n t e r n a l R e s i s t a n c e /( numPhases ∗ . . .
( numPoles∗ lambda /2)ˆ2)∗Tem) ;

i f abs (RPM − RPMVolt) < RPMtol | | RPMVolt > RPM
stop = 1 ;

e l s e
Voltage = Voltage+VoltageStep ;

end
end
%Solve f o r E f f i c i e n c y
Power In = Voltage∗Current ;
Power Out =(Voltage−Current∗ I n t e r n a l R e s i s t a n c e ) . . .

∗( Current−Id l eCurrent ) ;
Eta = Power Out/Power In ;

%Set Outputs
Output (1 ) = Voltage ;
Output (2 ) = Current ;
Output (3 ) = Eta ;

end

D.2 PropellerPerformance()
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f unc t i on [ Ct , Cp, Eta , J ] = Prope l l e rPer formance ( Beta , . . .
Diameter , Chord , Pos i t ion , Props )

%This i s ’The ’ func t i on f o r c a l c u a t i n g performance
%parameters f o r p r o p e l l e r s . I t uses the Adkins/ Glauert
%method to f i n d thrus t /power/ speed curves

load A i r f o i l I D l i s t . mat

RPM = Props ( 1 ) ;
FreeStreamMPH = Props ( 2 ) ;
numBlades = Props ( 3 ) ;
Po s i t i on = Pos i t i on ∗Diameter /2 ;
MaxIter = 150 ;

%−−−−−−−−−−−Units−−−−−−−−−−−−
% Beta = Radians
% RPM = Revolut ions per Minute
% Diameter = inche s
% Chord = inche s
% Pos i t i on = inche s
% FreeStreampMPH = Miles per Hour
% numBlades = non−dim
% rho = Slugs per cubic f o o t
% OutputData = non−dim

%constant s
damp = 0 . 5 ; %t h i s i s the damping c o e f f i c i e n t f o r convergence
J = (FreeStreamMPH∗5280/3600)/((RPM/60)∗( Diameter / 1 2 ) ) ;
numSections = length ( Pos i t i on ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−MAIN−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−I n i t i a l i z e Arrays−−−−−−−−−−
alpha = ze ro s ( numSections ) ;
c l = ze ro s ( numSections ) ;
cd = ze ro s ( numSections ) ;
a = ze ro s ( numSections ) ;
a prime = ze ro s ( numSections ) ;
phi new = ze ro s ( numSections , 1 ) ;
cdc l = ze ro s ( numSections ) ;
Cy = ze ro s ( numSections ) ;
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K = ze ro s ( numSections ) ;
Cx = ze ro s ( numSections ) ;
Kprime = ze ro s ( numSections ) ;
sigma = ze ro s ( numSections ) ;
x i = ze ro s ( numSections ) ;
p h i t = ze ro s ( numSections ) ;
f = ze ro s ( numSections ) ;
F = ze ro s ( numSections ) ;
Ct prime = ze ro s ( numSections ) ;
Cp prime = ze ro s ( numSections ) ;

W = ze ro s ( numSections ) ;

%−−−−−−Solve f o r i n i t i a l i n f l ow angles−−−−−−−−−
f o r n=1: numSections

i n i t i a l p h i (n , 1 ) = atan ( ( FreeStreamMPH ∗5 2 8 0 / 3 6 0 0 ) / . . .
(2∗ pi ∗Pos i t i on (n)/12∗RPM/ 6 0 ) ) ;

sigma (n) = ( numBlades∗Chord (n )/12)/(2∗ pi ∗Pos i t i on (n ) / 1 2 ) ;
x i (n) = Pos i t i on (n )/ ( Diameter / 2 ) ;

end

%−−−−−Run the I n t e r a t i o n Part o f the Code−−−−−−−−−
%Adkins/ Glauert Method
phi = i n i t i a l p h i ;
stop = 0 ;
numIt = 1 ;
ang l e s = l i n s p a c e (−5 ,15 ,21) ;
% ang l e s = l i n s p a c e ( 0 , 1 5 , 1 6 ) ;
whi l e stop == 0 ;

%f i n d alpha /cd/ c l /Cy/Cx/ everyth ing
f o r n=1: numSections

alpha (n) = r e a l ( Beta (n) − phi (n ) ) ;
i f n == numSections

alpha (n) = 0 . 0 ;
c l (n ) = c l (n−1);
cd (n) = cd (n−1);

e l s e
i f alpha (n) >= 19∗ pi /180 %Flat p l a t e Theory

c l (n) = 2∗ s i n ( alpha (n ) )∗ cos ( alpha (n ) ) ;
cd (n) = 2∗( s i n ( alpha (n ) ) ) ˆ 2 ;

e l s e
AoA = round ( alpha (n)∗180/ p i ) ;

i f AoA <= −5
idNum = 1 ;

e l s e i f AoA >= 15
idNum = 21 ;
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e l s e
stopAoA = 0 ;
c=1;
whi l e stopAoA == 0

i f AoA<= ang l e s ( c+1) && AoA>ang l e s ( c )
idNum = c ;
stopAoA=1;

end
c=c+1;

end
end
[ c l (n) cd (n ) ] = ClCdFinderAir fo i l ID ( . . .

num2str ( A i r f o i l I D l i s t ( idNum , : ) ) , alpha (n ) . . .
∗180/ p i ) ;

end
end
cdc l (n) = cd (n)/ c l (n ) ;
Cy(n) = c l (n )∗ ( cos ( phi (n))− cdc l (n)∗ s i n ( phi (n ) ) ) ;
K(n) = Cy(n )/(4∗ s i n ( phi (n ) )∗ s i n ( phi (n ) ) ) ;
Cx(n) = c l (n )∗ ( s i n ( phi (n))+ cdc l (n)∗ cos ( phi (n ) ) ) ;
Kprime (n) = Cx(n )/(4∗ cos ( phi (n ) )∗ s i n ( phi (n ) ) ) ;
p h i t (n) = atan ( x i (n)∗ tan ( phi (n ) ) ) ;
f (n ) = ( numBlades/2)∗(1− x i (n ) )/ s i n ( p h i t (n ) ) ;
F(n) = (2/ p i )∗ acos ( exp(−1∗ f (n ) ) ) ;
a (n) = ( sigma (n)∗K(n ) ) / (F(n)−sigma (n)∗K(n ) ) ;
i f i snan ( a (n ) )

a (n) = 0 . 0 ;
e l s e i f a (n) > 0 .7

a (n) = 0 . 7 ;
e l s e i f a (n) < −1.0

a (n) = 0 . 7 ;
end
a prime (n) = ( sigma (n)∗Kprime (n ) ) / . . .

(F(n)+sigma (n)∗Kprime (n ) ) ;
i f i snan ( a prime (n ) )

a prime (n) = 0 . 0 ;
e l s e i f a prime (n)>0.7

a prime (n) = 0 . 7 ;
end
phi new (n , 1 ) = atan2 ( ( ( FreeStreamMPH ∗5 2 8 0 / 3 6 0 0 )∗ . . .

(1+a (n ) ) ) / (RPM/60∗2∗ pi ∗Pos i t i on (n ) / . . .
12∗(1− a prime (n ) ) ) , 1 ) ;

i f i snan ( phi new (n ) )
phi new (n , 1 ) = 0 . 0 ;

e l s e i f n == numSections
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phi new (n , 1 ) = phi new (n−1 ,1) ;
end

end
i f ( abs ( phi new − phi ) <= 10ˆ−4)

stop = 1 ;
e l s e

phi = phi∗damp +(1−damp)∗ phi new ;
end
i f ( numIt >= MaxIter )

stop = 1 ;
end
numIt = numIt+1;

end
%−−−−−−−−Fin i shed with In t e ra t i ng−−−−−−−−−−−−−

%Find Ct , Cp, Eta
f o r n=1: numSections

W(n) = (FreeStreamMPH∗5280/3600)∗(1+a (n ) )/ s i n ( phi (n ) ) ;
i f i snan (W(n ) )

W(n) = W(n−1);
end
Ct prime (n) = ( p i ˆ3/4)∗ sigma (n)∗Cy(n)∗ x i (n ) ˆ 3 ∗ . . .

F(n )ˆ2/ ( (F(n)+sigma (n)∗Kprime (n ) )∗ cos ( phi (n ) ) ) ˆ 2 ;
i f i snan ( Ct prime (n ) )

Ct prime (n) = 0 . 0 ;
end
Cp prime (n) = Ct prime (n)∗ pi ∗ x i (n)∗Cx(n)/Cy(n ) ;
i f i snan ( Cp prime (n ) )

Cp prime (n) = 0 . 0 ;
end

end

Ct = 0 ;
Cp = 0 ;
%sum up Thrust and Torque
f o r n=1: numSections

i f n==1
Ct=Ct+Ct prime (n)/2∗ x i (n ) ;
Cp=Cp+Cp prime (n)/2∗ x i (n ) ;

e l s e
Ct = Ct + ( Ct prime (n)+Ct prime (n−1))/2∗( x i (n)−x i (n−1)) ;
Cp = Cp + ( Cp prime (n)+Cp prime (n−1))/2∗( x i (n)−x i (n−1)) ;

end
end
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Eta = Ct∗J/Cp ;

D.3 ClCdFinderAirfoilID()

f unc t i on [ c l , cd ] = ClCdFinderAir fo i l ID ( A i r f o i l ID , alpha )

DirectoryName = ’ OptimumAirfoils ’ ;

f i d = fopen ( s t r c a t ( DirectoryName , ’ \ ’ , A i r f o i l ID , ’ . dat ’ ) , ’ r ’ ) ;
cur rentL ine = 1 ;
n=1;
whi l e ˜ f e o f ( f i d )

temp = f g e t l ( f i d ) ;
i f cur rentL ine >= 13

a i r f o i l D a t a = str2num ( temp ) ;
ang l e s (n) = a i r f o i l D a t a ( 1 ) ;
c l s (n) = a i r f o i l D a t a ( 2 ) ;
cds (n) = a i r f o i l D a t a ( 3 ) ;
n=n+1;

end
cur rentL ine=currentL ine +1;

end

f c l o s e ( f i d ) ;

AoA = alpha ;
%Begin Table Lookup
stopLookup = 0 ;
nn=1;
whi l e stopLookup == 0

i f AoA < 0
stopZero = 0 ;
m=1;
whi l e stopZero == 0

i f ang l e s (m) >= 0
ZeroLoc = m;
stopZero = 1 ;

end
m=m+1;

end
s h i f t = 10 ;
c l = c l s ( ZeroLoc+s h i f t ) − ( ang l e s ( ZeroLoc+s h i f t )−AoA ) . . .

∗( c l s ( ZeroLoc+s h i f t )− c l s ( ZeroLoc ) ) / . . .
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( ang l e s ( ZeroLoc+s h i f t )−ang l e s ( ZeroLoc ) ) ;
cd = cds ( ZeroLoc+s h i f t ) − ( ang l e s ( ZeroLoc+s h i f t )−AoA ) . . .

∗( cds ( ZeroLoc+s h i f t )−cds ( ZeroLoc ) ) / . . .
( ang l e s ( ZeroLoc+s h i f t )−ang l e s ( ZeroLoc ) ) ;

stopLookup = 1 ;
e l s e i f AoA == ang l e s (nn)

c l = c l s (nn ) ;
cd = cds (nn ) ;
stopLookup = 1 ;

e l s e i f AoA < ang l e s (nn+1) && AoA > ang l e s (nn )
c l = c l s (nn+1) − ( ang l e s (nn+1)−AoA ) ∗ . . .

( c l s (nn+1)− c l s (nn ) ) / ( ang l e s (nn+1)−ang l e s (nn ) ) ;
cd = cds (nn+1) − ( ang l e s (nn+1)−AoA ) ∗ . . .

( cds (nn+1)−cds (nn ) ) / ( ang l e s (nn+1)−ang l e s (nn ) ) ;
stopLookup = 1 ;

e l s e i f AoA > ang l e s ( l ength ( ang l e s ) )
c l = c l s ( l ength ( ang l e s ) ) − ( ang l e s ( l ength ( ang l e s ) ) − . . .

AoA)∗ ( c l s ( l ength ( ang l e s ))− c l s ( l ength ( ang l e s ) −1 ) ) / . . .
( ang l e s ( l ength ( ang l e s ))− ang l e s ( l ength ( ang l e s )−1)) ;

cd = cds ( l ength ( ang l e s ) ) − ( ang l e s ( l ength ( ang l e s ) ) − . . .
AoA)∗ ( cds ( l ength ( ang l e s ))− cds ( l ength ( ang l e s ) −1 ) ) / . . .
( ang l e s ( l ength ( ang l e s ))− ang l e s ( l ength ( ang l e s )−1)) ;

stopLookup = 1 ;
e l s e i f AoA < ang l e s (1 )

c l = c l s (2 ) − ( ang l e s (2)−AoA)∗ ( c l s (2)− c l s ( 1 ) ) / . . .
( ang l e s (2)− ang l e s ( 1 ) ) ;

cd = cds (2 ) − ( ang l e s (2)−AoA)∗ ( cds (2)− cds ( 1 ) ) / . . .
( ang l e s (2)− ang l e s ( 1 ) ) ;

stopLookup = 1 ;
end
nn=nn+1;

end
%End Table Lookup

118



Appendix E

Optimized Airfoil Data
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Table E.1: Coefficients for Bernstein Polynomial for of Upper Surface of Optimized Airfoils

Angle (◦) Aupper0 Aupper1 Aupper2 Aupper3 Aupper4 Aupper5 Aupper6
-5 0.1507 0.3571 0.2964 0.1991 0.3068 0.3724 0.1995
-4 0.1507 0.3571 0.2964 0.1991 0.3068 0.3724 0.1995
-3 0.1507 0.3571 0.2964 0.1991 0.3068 0.3724 0.1995
-2 0.1507 0.3571 0.2964 0.1991 0.3068 0.3724 0.1995
-1 0.1507 0.3571 0.2964 0.1991 0.3068 0.3724 0.1995
0 0.1507 0.3571 0.2964 0.1991 0.3068 0.3724 0.1995
1 0.1484 0.3410 0.3030 0.2072 0.3134 0.3827 0.2060
2 0.1532 0.3209 0.2909 0.2036 0.3152 0.3787 0.1995
3 0.1505 0.3043 0.2892 0.2008 0.3207 0.3847 0.1994
4 0.1517 0.2783 0.2942 0.2085 0.3084 0.3876 0.1992
5 0.1579 0.2671 0.2583 0.1967 0.3297 0.3845 0.2032
6 0.1558 0.2443 0.2630 0.2046 0.3419 0.3804 0.2000
7 0.1790 0.2279 0.2994 0.2307 0.3354 0.2938 0.1671
8 0.1999 0.2495 0.3054 0.2365 0.3235 0.2938 0.1550
9 0.2234 0.2509 0.3607 0.2605 0.2886 0.2383 0.1525
10 0.2373 0.2707 0.3762 0.2573 0.2763 0.2354 0.1551
11 0.2564 0.2855 0.3963 0.2463 0.2657 0.2461 0.1572
12 0.2780 0.3070 0.4063 0.2324 0.2557 0.2499 0.1613
13 0.3016 0.3325 0.3953 0.2201 0.2497 0.2645 0.1683
14 0.3181 0.3450 0.3522 0.2162 0.2496 0.2739 0.1719
15 0.3181 0.3450 0.3522 0.2162 0.2496 0.2739 0.1719

120



Table E.2: Coefficients for Bernstein Polynomial for of Lower Surface of Optimized Airfoils

Angle (◦) Alower0 Alower1 Alower2 Alower3 Alower4 Alower5 Alower6
-5 -0.0524 0.0904 0.0602 0.2000 0.1988 0.2100 0.1865
-4 -0.0524 0.0904 0.0602 0.2000 0.1988 0.2100 0.1865
-3 -0.0524 0.0904 0.0602 0.2000 0.1988 0.2100 0.1865
-2 -0.0524 0.0904 0.0602 0.2000 0.1988 0.2100 0.1865
-1 -0.0524 0.0904 0.0602 0.2000 0.1988 0.2000 0.1865
0 -0.0524 0.0904 0.0602 0.2000 0.1988 0.2000 0.1776
1 -0.0509 0.0907 0.0599 0.1918 0.1945 0.2038 0.1829
2 -0.0515 0.0910 0.0599 0.2032 0.2011 0.2040 0.1852
3 -0.0531 0.0954 0.0606 0.2006 0.2030 0.2016 0.1781
4 -0.0518 0.0915 0.0598 0.2049 0.2019 0.2066 0.1927
5 -0.0520 0.0948 0.0609 0.1953 0.2099 0.2209 0.1873
6 -0.0522 0.0960 0.0607 0.1983 0.2078 0.2275 0.1911
7 -0.0487 0.1015 0.0650 0.2017 0.2073 0.2285 0.1777
8 -0.0479 0.1022 0.0671 0.1943 0.2065 0.2177 0.1715
9 -0.0485 0.1033 0.0656 0.1978 0.2010 0.2085 0.1744
10 -0.0481 0.1042 0.0655 0.1966 0.1999 0.2046 0.1655
11 -0.0482 0.0921 0.0655 0.2058 0.1961 0.1996 0.1624
12 -0.0490 0.0916 0.0647 0.1889 0.1943 0.2012 0.1578
13 -0.0501 0.0876 0.0611 0.1796 0.1943 0.1935 0.1579
14 -0.0505 0.0887 0.0615 0.1782 0.1994 0.1836 0.1644
15 -0.0505 0.0887 0.0615 0.1782 0.2069 0.1859 0.1644
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Table E.3: Lift Coefficients, and Drag to Lift Ratios for Optimized Airfoils

Angles (◦) Cl
Cl

Cd

-5 0.3255 54.2500
-4 0.4299 58.0946
-3 0.5343 60.7159
-2 0.6386 62.6078
-1 0.7430 63.2821
0 0.8404 64.3985
1 0.9425 77.1324
2 1.0599 85.3908
3 1.1620 88.6870
4 1.2625 91.0250
5 1.3636 94.1172
6 1.4540 93.2293
7 1.4929 88.6897
8 1.4575 81.8492
9 1.6282 79.0274
10 1.6905 73.6789
11 1.7652 67.2100
12 1.8412 59.9403
13 1.9087 50.8843
14 1.9264 41.1357
15 1.9274 31.0871
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Appendix F

Optimized Cruise Propeller

Table F.1: Propeller Properties for Cruise Case 1 (Objective Function = Cp)

Element: Position (in) Chord (in) β (◦) Pitch
1 0.720 0.522 40.946 3.93
2 1.307 0.565 40.737 7.07
3 1.893 0.505 28.958 6.58
4 2.480 0.589 27.518 8.12
5 3.067 0.544 26.356 9.55
6 3.653 0.474 22.756 9.63
7 4.240 0.353 20.156 9.78
8 4.827 0.268 18.071 9.90
9 5.413 0.152 13.832 8.37
10 6.000 0.000 8.704 5.77

Pitch at 3/4 radius 9.83
J 0.8000 Diameter (in) 12.0

Ct 0.0244 RPM 5500
Cp 0.0218 Motor Power (Watts) 66.20
ηprop 89.54% Torque (oz-in) 12.87

Thrust (oz) 7.55
Motor Voltage (Volts) 7.78
Motor Current (Amps) 8.51

ηmotor 71.70% ηsystem 62.20%
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Table F.2: Propeller Properties for Cruise Case 2a (Objective Function = PropellerPower)

Element: Position (in) Chord (in) β (◦) Pitch
1 0.720 0.577 57.746 7.17
2 1.307 0.593 43.346 7.75
3 1.893 0.597 39.937 9.96
4 2.480 0.553 34.422 10.68
5 3.067 0.525 24.889 8.94
6 3.653 0.441 22.895 9.69
7 4.240 0.341 18.898 9.12
8 4.827 0.262 14.973 8.11
9 5.413 0.143 11.845 7.13
10 6.000 0.000 1.526 1.00

Pitch at 3/4 radius 8.67
J 0.8085 Diameter (in) 12.0

Ct 0.0248 RPM 5442
Cp 0.0220 Motor Power (Watts) 64.62
ηprop 91.14% Torque (oz-in) 12.72

Thrust (oz) 7.51
Motor Voltage (Volts) 7.69
Motor Current (Amps) 8.4036

ηmotor 71.63% ηsystem 65.29%
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Table F.3: Propeller Properties for Cruise Case 2a (Objective Function = PropellerPower)

Element: Position (in) Chord (in) β (◦) Pitch
1 0.698 0.527 54.353 6.11
2 1.266 0.550 43.204 7.47
3 1.834 0.612 35.056 8.09
4 2.971 0.551 33.987 10.18
5 3.539 0.530 25.063 8.73
6 4.108 0.451 24.838 10.29
7 4.108 0.353 21.876 10.36
8 4.676 0.280 18.775 9.99
9 5.245 0.128 12.768 7.47
10 5.813 0.000 4.803 3.07

Pitch at 3/4 radius 10.20
J 0.8359 Diameter (in) 11.6

Ct 0.0283 RPM 5433
Cp 0.0261 Motor Power (Watts) 65.35
ηprop 90.64% Torque (oz-in) 12.84

Thrust (oz) 7.52
Motor Voltage (Volts) 7.70
Motor Current (Amps) 8.49

ηmotor 71.53% ηsystem 64.83%
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Appendix G

Optimized Climb Propeller

Table G.1: Propeller Properties for Climb Case 3 (Objective Function = 1
Ct

)

Element: Position (in) Chord (in) β (◦) Pitch
1 0.487 1.409 58.049 4.908
2 0.884 1.463 45.207 5.595
3 1.281 1.578 31.079 4.852
4 1.678 1.517 28.190 5.651
5 2.075 1.534 20.501 4.875
6 2.472 1.308 20.296 5.744
7 2.869 1.056 15.991 5.166
8 3.266 0.805 14.601 5.345
9 3.663 0.474 12.378 5.051
10 4.060 0.000 4.885 2.180

β3/4 (◦) 15.38 Pitch at 3/4 radius 5.25
J 0.2452 Diameter (in) 8.12

Ct 0.2072 RPM 7956
Cp 0.0982 Motor Power (Watts) 190.71
ηprop 51.74% Torque (oz-in) 17.21

Thrust (oz) 28.10
Motor Voltage (Volts) 11.1
Motor Current (Amps) 17.18

ηmotor 74.62% ηsystem 38.61%
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Table G.2: Propeller Properties for Climb Case 4 (Objective Function = 1
Ft

)

Element: Position (in) Chord (in) β (◦) Pitch
1 0.584 1.420 42.671 3.381
2 1.059 1.376 33.071 4.334
3 1.535 1.374 23.345 4.162
4 2.010 1.395 18.384 4.198
5 2.486 1.337 12.619 3.497
6 2.962 1.270 10.490 3.446
7 3.437 1.139 9.783 3.724
8 3.913 0.853 6.348 2.735
9 4.388 0.420 3.700 1.783
10 4.864 0.000 1.465 0.781

β3/4 (◦) 8.26 Pitch at 3/4 radius 3.29
J 0.2067 Diameter (in) 9.73

Ct 0.1054 RPM 7876
Cp 0.0.0415 Motor Power (Watts) 131.10
ηprop 52.51% Torque (oz-in) 17.60

Thrust (oz) 28.87
Motor Voltage (Volts) 11.1
Motor Current (Amps) 11.81

ηmotor 74.05% ηsystem 38.88%
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Appendix H

Optimized Climb-Cruise Propeller
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Table H.1: Propeller Properties for Climb Cruise Case 5 (Objective Function = 1 −
ηpropηmotor)

Element: Position (in) Chord (in) β (◦) Pitch
1 0.639 0.994 53.738 5.476
2 1.160 1.023 38.633 5.827
3 1.681 1.084 36.985 7.956
4 2.202 1.103 30.661 8.203
5 2.723 1.096 26.319 8.464
6 3.244 0.994 21.798 8.152
7 3.765 0.908 20.314 8.758
8 4.286 0.694 18.726 9.129
9 4.807 0.357 17.575 9.567
10 5.328 0.000 16.416 9.863

Cruise Case 5
β3/4 (◦) 19.61 Pitch at 3/4 radius 8.92

J 0.9009 Diameter (in) 10.6559
Ct 0.0457 RPM 5500
Cp 0.0470 Motor Power (Watts) 82.20
ηprop 87.60% Torque (oz-in) 15.33

Thrust (oz) 8.79
Motor Voltage (Volts) 8.11
Motor Current (Amps) 10.14

ηmotor 69.82% ηsystem 61.16%

Climb Case 5
J 0.2684

Ct 0.1413 RPM 5538
Cp 0.0739 Motor Power (Watts) 151.45
ηprop 51.32% Torque (oz-in) 24.43

Thrust (oz) 27.54
Motor Voltage (Volts) 9.37
Motor Current (Amps) 16.16

ηmotor 62.66% ηsystem 32.16%
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Table H.2: Propeller Properties for Climb Cruise Case 6 (Objective Function = PowerCruise

ThrustClimb
)

Element: Position (in) Chord (in) β (◦) Pitch
1 0.627 0.850 46.855 4.206
2 1.139 0.896 45.400 7.255
3 1.650 0.976 36.412 7.646
4 2.161 1.049 33.671 9.046
5 2.672 1.027 26.021 8.197
6 3.183 0.906 26.021 9.765
7 3.695 0.794 22.309 9.525
8 4.206 0.645 16.611 7.884
9 4.717 0.415 15.770 8.370
10 5.228 0.000 13.792 8.064

Cruise Case 6
β3/4 (◦) 19.78 Pitch at 3/4 radius 8.80

J 0.9345 Diameter (in) 10.4566
Ct 0.0441 RPM 5404
Cp 0.0469 Motor Power (Watts) 68.78
ηprop 87.87% Torque (oz-in) 13.43

Thrust (oz) 7.59
Motor Voltage (Volts) 7.74
Motor Current (Amps) 8.89

ηmotor 70.94% ηsystem 62.34%

Climb Case 6
J 0.2230

Ct 0.1244 RPM 6792
Cp 0.0578 Motor Power (Watts) 190.41
ηprop 48.00% Torque (oz-in) 26.15

Thrust (oz) 33.82
Motor Voltage (Volts) 11.00
Motor Current (Amps) 17.31

ηmotor 65.74% ηsystem 31.55%
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