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Abstract

Cloud Computing is a booming technology in computer science. Since Google released

the design details of the MapReduce technique in 2004 [1], cloud computing has been more

and more popular. Hadoop [2] has been developed as an open-source implementation of

MapReduce.

A new network-levitated merge mechanism (Hadoop-A) [3] improves the existing Hadoop

framework to solve many problems in the original framework. Hadoop-A avoids repetitive

merging of data and introduces a full pipeline that consists of shuffle, merge and reduce

phases. However, Hadoop-A is implemented based on Infiniband RDMA technology, which

is not commonly deployed on commercial servers. On the other hand, data transmission

based on the TCP/IP protocol is a robust technology, its speed is becoming faster and

faster. Thus, we deem that it worthwhile to complement our RDMA-based connection with

an implementation that is built on TCP/IP protocol.

In this article, I will describe the details of design and implementation of a TCP/IP im-

plementation of Hadoop-A. Two components MOFSupplier (Server) and NetMerger (Client)

are introduced to realize the TCP/IP connection, which can fetch data from Maptasks and

send them to Reducetasks within the new network-levitated merge mechanism. Multithread-

ing technologies are used to manage memory pool, send/receive and merge data segments.

The experiment results show that the TCP/IP implementation can bring good performance

for Hadoop-A on TCP/IP. Its execution time outperforms original Hadoop by 26.7% and

can also achieve good scalability.
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Chapter 1

Introduction

Cloud computing has been popular for several years, it has been ranked as one of the

most leading emerging technologies since 2008. Gartner Inc. has predicted that 80 percent

of Fortune 1000 companies would pay for cloud-computing service, and 30 percent of these

companies can pay for cloud-computing infrastructure [4].

Cloud Computing is defined to be the provision of computational resources on demand

via a computer network, such as applications, databases, file services, emails, etc. [5] A great

many companies have invested a large amount of money and time on cloud computing, for

the reason that it can use lots of resources in an effective way. Lots of big companies includ-

ing Google, Yahoo, Facebook and IBM have made great contributions to cloud computing

technology and achieved remarkable successes both commercially and technically.

Customers can reap many benefits from cloud service. They can cut down on their

capital expenditures and take advantage of operational expenditures to increase computing

capabilities, which requires fewer IT support personnel. Companies can also change deploy-

ment size to match requirements very quickly; as a result, the flexibility of cloud services

enables their customers to use more resources at peak times. It is also convenient to access

cloud services everywhere. With the help of multiple redundant sites, services are more

reliable, and it is easy to achieve the goal of disaster recovery and business continuity. At

the same time, the cost of maintenance can be reduced.

Cloud computing can provide not only broad commercial opportunities for big IT com-

panies but also huge research space for high-performance computing scientists. By now, a

large number of new technologies have been deployed in the cloud.
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In cloud computing, Map Reduce is a programming model for processing and analyzing

large data sets. Users can first create a function handling a Map based on key/value pair

collection of data; then create a Reduce function to combine all of the intermediate key

values with the same value of the intermediate value.

The framework of the Map Reduce program can be executed in parallel on a large

number of computers, and this system focuses on how to split the input data, schedule

the execution of programs on a large number of machines, deal with machine failures, and

manage the communication between computers.

Google File System (GFS) [6] and Hadoop Distributed File System (HDFS) [7] are two

file systems to support Map Reduce framework. In order to satisfy the fast growing demands

of data processing requirements, Google File System (GFS) has been developed, which is

a scalable distributed file system for large distributed data-intensive applications. It also

supports the feature of fault tolerance when deployed on normal commercial cluster, and can

achieve very high aggregated I/O performance. The Hadoop Distributed File System(HDFS)

is used to reliably store large files across different nodes in the cluster. In the Hadoop

Distributed File System, files are stored as a sequence of blocks. The sizes of the blocks,

except the last one, are the same. In a file, blocks are replicated for fault tolerance. Files in

HDFS are ”write once” and only one writer is allowed at any time.

Hadoop is an open source implementation of MapReduce. It is a new way for companies

to store and process data [8]. It contains two key components: data storage mechanism with

the help of Hadoop Distributed File System and high-performance large-scale data processing

using MapReduce framework.

Hadoop has the ability to run on large scale commercial, shared-nothing servers. It is

easy to add or remove servers in a cluster running Hadoop and it can automatically detect

and recover from system or hardware failure.

On top of Hadoop program, Apache Pig [9] and Hive [10] are supported for data pro-

cessing and analizing, which are two examples using Hadoop. Pig is a high level execution
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framework for parallel computing which are used to deal with large amount of data. The

Hive data warehouse software helps to manage and query big data sets stored in distributed

file system.

InfiniBand is a standard switched fabric adopted in high-performance computing and

industry data centers. It has a lot of benefits such as: high throughput, low latency and

good scalability. Remote Direct Memory Access(RDMA) is supported by InfiniBand. RDMA

has the capability of directly accessing remote computers’ memory without the operating

system being involved. RDMA achieves zero-copy communication to exchange data to or

from application memory, reducing the requirement of data copying between application

memory and operating system data buffers, without any work done by host CPUs.

Meanwhile, 10 Gigabit Ethernet [11] defines a version of Ethernet that is ten times

faster than traditional gigabit Ethernet. It offers a sockets-based interface; this is the main

focus of this thesis.

Hadoop-A is an improvement of existing Hadoop project. It has solved a number of

issues in Hadoop to gain better performance from the underlying system, including the

serialization barrier between merge and reduce; repetitive disk access and merge. Hadoop-A

has developed a C++ plug in component to overcome the aforementioned issues. A new

network-levitated merge mechanism has been designed and implemented to avoid merging

data and accessing disk many times, which reduces the disk bandwidth requirement and cuts

down on the I/O bottleneck. A new pipeline is also introduced to cover the whole phases of

data processing.

However, the new algorithm is implemented based on RDMA, which is not commonly

used in commercial clusters. This restricts the good effects of Hadoop-A’s novel network-

levitated merge algorighm, unable to expose the benefits of reducing disk access gained

from new algorithm. Thus, to make Hadoop-A readily available on any cluster,we have

implemented a TCP/IP version of Hadoop-A.
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Figure 1.1 can give you a clear view about the relationship of these components men-

tioned above. Apache Hive and Pig are two applications for dealing with large amount of

data on top of Hadoop. Hadoop can support applications running on large commodity clus-

ter and Hadoop Distributed file system provides data storage mechanism. Under Hadoop

is the TCP/IP implementation of Hadoop Acceleration element which is used to improve

the performance of Hadoop. It includes two components: MOFSupplier and NetMerger

connected with TCP/IP socket protocol via Ethernet.

Figure 1.1: Layered framework

The rest of my thesis is orgnized as follows. Section 2 will provide a literature review

and motivation. I then describe the design and implementation details of TCP/IP version

of Hadoop-A in Chapter 3. Chapter 4 presents experimental results and evaluation. I will

conclude my thesis in Chapter 5.
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Chapter 2

Related Work

In this section, I will first introduce some details about the current status of cloud

computing and the MapReduce programming model for dealing with large amount of data

in cloud computing. After that, I will talk something about Hadoop, which is an open

source implementation of MapReduce. By now, a lot of work has been done to improve

the performance of Hadoop such as Map Reduce on-line and Hadoop-A. I will also describe

them briefly and point out the exsiting problem in Hadoop-A in this chapter, which will lead

to the motivation of our work. Finally, I will present Hive and Pig Latin, which are two

application platform on top of Hadoop to boost the performance of distributed databases.

They are good examples of successful platforms using Hadoop.

2.1 Cloud Computing

Amazon Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2) are

well-known examples. They provide Internet-based, large-scale storage space and computing

resources to the users [12]. With the help of cloud computing, enterprise and personal

users no longer need purchase expensive computing systems like high-performance clusters,

mass storage devices, etc. All they need is a terminal (typically, operating system and web

browser) with network connections to remote computing services. The terminal can either

be a laptop, a desktop personal computer, or even mobile phone or other portable electronic

device. Customers can pay to use the on-demand computing service in the same way as

electricity, water and gas services, without knowing where they come from and how the

services are managed.
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2.1.1 Characteristics

Cloud computing has many characteristics [13], including: (1) Shared Infrastructure,

even if the deplyment model may be different, cloud computing always uses a virtualized

software model to share storage, physical services and networking capabilities; (2) Dynamic

Provisioning, which automatically supplies services as required and maintains the capability

to expand and contract service; (3) Network Access, we need to use PCs, laptops and some

mobile devices to connect cloud servers via the Internet, where applications in the cloud

range from business applications to the newest applications deployed on the smartphones;

(4) Managed Metering, where metering is used to record billing information. In this way,

customers are billed for services based on how much they used.

2.1.2 Service Models

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS) are three main service models in cloud computing. Software as a service means

that the service provider hosts and manages the application on their own server machine,

while their customer can use it over the Internet. SaaS examples include Oracle CRM On

Demand and Netsuite. For platform as a service, the virtualized grid computing architecture

is the basis, and it always consists of development tools, middleware and database as its

infrastructure software. Through websites, developers can develop and deploy applications

on this platform without considering the complexity and cost of managing and buying the

underlying infrastructure. In some PaaS, it can provide some API and programming language

for their users. For example, developers can write Java or Python programs on Google

AppEngine. The last one is Infrastructure as a Service(IaaS), it includes the hardware

(Storage, Server and network), and some low level software such as some virtual file system.
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2.1.3 Deployment Models

Clouds can also be divided into private, public and hybrid (Shown in Figure 2.1). For

private clouds, cloud service is used and managed within organization. In public clouds,

public cloud service providers can provide management and maintenance services, and charge

their customers for usage, which can simplify the implementation, users or companies can

access cloud server via network. Hybrid clouds consist of many types of clouds, and allow

data and/or applications to be used between one type of cloud and another, it can combine

private and public cloud through their interfaces.

Figure 2.1: Public, Private and Hybrid Cloud Deployment

2.2 MapReduce Programming Model

The paper by Dean and Ghemawat on MapReduce in Google [1] first proposed the

MapReduce Framework. Many implementations such as Hadoop are developed based on it.

The purpose of their work was to facilitate the use by hiding locality optimization, load-

balancing, fault-tolerance and parallelization to programming users and to show how a large

number of problems can be solved with the help of MapReduce model, including sorting,
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data mining, machine learning and many other issues. Last but not the least, Map Reduce is

designed for large clusters consisting of tens of thousands of compute nodes. It can efficiently

use compute resources suitable for dealing with large computational problems.

2.2.1 Motivation and Introduction

Nowadays, raw data is increasing dramatically. In order to deal with large amounts of

various kinds of files, such as website information, and do some special-purpose computation,

such as indexing, searching and getting some data analysis information about websiteis, we

need a new programming model to get the input data and distribute the computation across

a large number of machines, in order to finish the job in a limited time. This program-

ming model also needs to deal with the issues of how to partition the data, parallelize the

computation, and handle failures.

Map-Reduce is a new programming model to solve the above problems, which can hide

the complexity of data distribution, parallel programming, fault tolerance and load balance

from the user. The users only need to define a map operation, and apply it to the raw

input data, which can generate some temporary key pairs. After that, they can use a reduce

operation to the record which has the same key and combine the derived data appropriately.

2.2.2 Programming Model

The input of this programming model is a set of key/value pairs, and the output is also

a set of key/value pairs. Users need to write Map and Reduce functions all by themselves.

Map will get a pair of key/value and produce a set of temporary key/value pairs. Based

on these key/value pairs, the MapReduce library can combine the record with the same key

and give the result to Reduce function. In contrast, Reduce receives a key and the values,

merges the values into small set of records.
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There are many different implementations of the MapReduce interface. Here we will

describe the MapReduce implemented on computing environments widely used at Google:

where a large number of PC clusters are connected by switched Ethernet.

MapReduce can partition the input data into M pieces and many Map functions are

executed parallel on different machines. Based on the partition functions, Reduce functions

will partition the temporary key space into R splits. Users can specify the partition functions

and the number of partitions,

Figure 2.2 presents an overview of MapReduce execution. The following actions take

place when a MapReduce function is called:

1. MapReduce will first divide the data into M partitions (The size of every partition

is from 16MB to 64MB ) and then it will start many programs on a cluster of different

machines.

2. One of them is the master program; the others are workers, which can execute their

work assigned by master. Master can distribute a map task or a reduce task to an idle

worker.

3. If a worker is assigned a Map task, it will parse the input data partition and output

the key/value pairs, then pass the pair to a user defined Map function. The map function

will buffer the temporary key/value pairs in memory

4. The pairs will periodically be written to local disk and partitioned into R pieces.

After that, the local machine will inform the master of the location of these pairs.

5. If a worker is assigned a Reduce task and is informed about the location of these

pairs, the Reducer will read the entire buffer by using remote procedure calls. After that, it

will sort the temporary data based on the key.

6. Then, the reducer will deal with all of the records. For each key and according set

of values, the reducer passes key/value pairs to a user defined Reduce function. The output

is the final output of this partition.
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After all of the mappers and reducers have finished their work, the master will return

the result to users’ programs. The output is stored in R individual files.

Figure 2.2: Architecture of MapReduce

2.2.3 Features of MapReduce

1) Fault Tolerance

In order to deal with large amounts of data, MapReduce needs to take advantage of

hundreds or thousands of cluster nodes to do the computing. As a result, it must have

the ability to handle machine failure. (1) Worker Failure: Master will periodically ping the

workers. If the worker does not respond in some fixed time, the master node will mark the

worker as dead. If the worker is working as a mapper, in order to deal with failure, the

completed work needs to be re-executed because data is stored on the local machine. If a

reducer dead, the completed work do not need to be re-executed, because their output is

stored on the local machine. MapReduce can be resilient to large numbers of worker failures.
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(2) Master Failure: By now, they just have one master. If master fails, they have to abort

the computation.

2) Locality

MapReduce has stored data on GFS locally. GFS divides data into many blocks and each

block has 3 copies. The MapReduce master gets the information about the block position

and tries to allocate a map task to the node that stores the data, which can decrease the

amount of network bandwidth required.

3) Backup tasks

Some machines may be very slow due to bad disks or slow CPUs, which may decrease

the total performance of the MapReduce operation. In order to alleviate that problem,

the master will start some backup execution of the remaining jobs when the MapReduce

operation is nearly done. The task can be finished when either the primary or backup

worker has finished. Experiments show that it would take 44% more time without using a

backup mechanism.

2.3 Google File System and Hadoop Distributed File System

The Google File System (GFS) has the qualities to support large-scale data processing

jobs on normal commercial clusters. Distributed applications can be supported by using

the interface extensions provided by GFS. After the reexamination of the assumptions of

traditional file system, GFS has changed the design opinion. Component failures are treated

as the norm and the manners of storing huge files in GFS are optimized. By constant

monitoring, replicating data and automatic recover from failure, GFS can provide the feature

of fault tolerance. In order to gain high aggregate throughput from a lot of concurrent writers

and readers performing all kinds of different tasks, the control of file system is separated from

master. GFS can satisfy the storage requirement in Google and is widely used as the platform

of storage for development and research.
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Hadoop Distributed File System are developed by Yahoo! It also has a master/slave

architecture which consists of a single Namenode and a number of Datanodes. The Namenode

is a master server that manages the whole filesystem’s namespace and controls access to files

by clients. Every node in the cluster has a Datanode, which manages storage on that

node. Via an RPC interface, the Namenode has the ability to open, close and rename

files and directories. It also maps blocks to Datanodes. Datanodes respond for read and

write requests from filesystem clients and follow Namenodes’ instructions to create, delete

or replicate blocks.

2.4 Hadoop

Hadoop was originally developed as infrastructure for the Nutch project [14], which

crawls the web and generates a search engine index for the crawled pages. It is an open-

source implementation of the MapReduce programming model, and a framework to support

applications running on large commodity cluster, which transparently offer applications both

data motion and reliability.

The Hadoop Map/Reduce framework has a master/slave architecture. It has only one

master server/jobtracker and many slave servers/tasktrackers, one per node. Users take

advantage of jobtrackers to interact with the framework. Firstly, users submit jobs to the

jobtracker, which then queues the jobs and serves them on a first-come/first-served basis.

The jobtracker takes charge of the allocation of map and reduce tasks to the tasktrackers.

Based on the instruction of jobtracker, the tasktrackers execute tasks and deal with data

motion between map and reduce phases.

2.5 MapReduce on-line

MapReduce on-line [15] have provided further improvements for Hadoop, they modi-

fied MapReduce programming model that allows data to be pipelined, which extends the

MapReduce programming model beyond batch processing, decreases the execution time and
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improves the utilization of system for batch jobs. In addtion, they change the version of the

MapReduce framework to support on-line aggregation, which can helps users to get early

returns when a job is being computed.

2.6 Hadoop-A and its TCP/IP implementation

In 2011, the paper about Hadoop-A published in SC11 have found a number of issues in

Hadoop, which prevented Hadoop from achieving good performance, including a serialization

barrier that delayed the reduce task, as well as repetitive disk access and merges. Hadoop-A is

implemented by using a C++ plug-in component in Hadoop for data movement, which has

overcome the problems mentioned above. Their novel network-levitated merge algorithm

doubles throughput of data processing in Hadoop, and lowers CPU utilization by more

than 36%. However, Hadoop-A is implemented based on InfiniBand, which restricts the

usage of new algorithms on commercial cloud servers, and prevents them from proving their

contribution towards solving the disk I/O bottleneck. On the other hand, the speed of

TCP/IP-Ethernet connections is a steady technology for a long time, and is becoming faster

and faster. If I can implement Hadoop-A based on the TCP/IP protocol, I can solve the

problems mentioned above. In addition, I need to gain better performance on 10 Gigabit

switches versus 1 Gigabit switches. The rest of the thesis illustrates how I accomplish this,

by implementing TCP/IP-Ethernet support in Hadoop-A.
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Chapter 3

Design and Implementation Details

Because that my work is to enable the Hadoop-A plug-in’s client side and server side

to connect with each other with the help of TCP/IP protocol, I need to first introduce the

architecture of Hadoop-A. After that, I will present the design of my work.

3.1 Hadoop-A architecture

The Hadoop-A plug-in is implemented in C++, while the original Hadoop is imple-

mented in Java. The main reasons for adopting C++ over Java is to avoid the Java Virtual

Machine (JVM)’s overhead in processing, and to enable the RDMA connection mechanisms,

which are not available in Java now. As a result, the first thing I need to consider is how to

connect the C++ plug-in with Hadoop’s Java modules. I will briefly describe some features

of this new framework without lingering on technical details.

As we can see from figure 3.1, two new components-MOFSupplier and NetMerger are

introduced to the framework of Hadoop-A. On the Java side, TaskTrackers first create a

Server Socket, and then lauch a C++ side MOFSupplier and NetMerger, to build connec-

tion with them. If a connection has been created successfully, the Java side will create

DataOutputStreams and DataInputStreams to store the data to/from the C++ side. On

the C++ side, both MOFSuppliers and NetMergers create connections back to TaskTrackers

and create streams for communication. In addition, they will add an event for down calls,

which can deal with commands from Map Tasks and Reduce Tasks.
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Figure 3.1: Interface between Hadoop (Java) and Roce (C++)

3.2 Interface between Hadoop (Java) and Roce (C++)

Following are details of the communication mechanism between Hadoop (Java) and

Hadoop-A plug-in (Roce):

In the beginning, task trackers create socket servers to listen for connection requests.

After that, NetMergers are started. Netmergers first try to connect back to the TaskTrackers.

If the connection has been successfully created, netmergers will create streams for communi-

cation, and add an event for down calls, which can receive init and exit command from task

tracker, Then, they create listeners to listen for new reduce tasks connection requests, once a

reduce task connects to a Netmerger, the connection between Reduce Tasks and NetMergers

has been established. With the help of this connection, Reduce Tasks can send requests to

Netmergers, and Netmergers will return the data that it needs.

In MOFSuppliers, an event-driven thread is created to receive control commands, and

inserts new Map output files (MOFs) into DataEngines. As long as MOFSuppliers receive

commands from Java, it firstly check the command header; if the command is to inform

that new map output has arrived, MOFSuppliers will create a new MOF entry and insert
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it to the list of DataEngine which is used to cache Map Output. In order to improve the

performance and take full advantage of multithreading technology, a unique thread is used

to read Map Output data from disk to memory, while other threads are used to handle some

other problems at the same time. Other commands can be initialization, exiting to init or

exit process and threads, allocate or release resource.

Next, I will describe the details of the TCP/IP connection between MOFSuppliers and

NetMergers. Many technologies are used to handle large amount of data transmission in

cloud computing.

3.3 TCP/IP Implementation in Hadoop-A

In the Hadoop-A plug-in framework, since we need to deal with a big amount of data

and at the same time guarantee the performance, a lot of techniques are used. Following are

the methods that I employed in our TCP/IP implementation.

Epoll in Linux kernel

Epoll is an I/O event notification mechanism used in high performance network com-

munication. It is used to replace traditional POSIX poll and select system calls. Here are

some benefits of epoll over old poll/select mechanism: (1) the disadvantage of select is that

the number of opened file descriptors (FD) is limited, which is sometimes not enough for

the server; epoll does not have this limitation, and the largest number of FD it supports is

the largest number of files that can be opened, which is much larger than 2048; (2) another

disadvantage of traditional select is that when you obtain a large set of sockets, due to net-

work delay, only some of the sockets are active, but select/poll still scans all of the socket set

linearly, which can lead to efficiency proportional penalties. The problem does not exist in

epoll, since it only operates on active socket, because in Linux kernel the implementation of

epoll is based on fd’s callback function. Only the active socket will call callback function by

itself, while other idle socket will not. (3) select, poll and epoll, all require the Linux kernel
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to provide information to the user space; as a result, avoiding useless memory copies is very

important. Epoll solves this problem with the help of mmap via shared memory;

Multithreading

As we know, disk I/O is always the bottleneck and data movement is expensive and time

consuming. Consider the case where we only use one thread to read data from disk. When

we get all the data we need in the memory, we send these data to the receiver. After the

receiver gets this data, it will do some calculation and write data back, every operation in

sequence. Modern computers always have hardware which can support executing multiple

threads efficiently, such as multi-core systems. We can make use of this multithreading

technology to overlap the execution of this process. For instance, we can start a thread to

read data from the disk, at the same time letting another thread send data. In the same

way, we can also keep one thread receiving data while another thread computing the received

data. For the purpose of increasing the speed of sending or receiving data over Ethernet,

I am using multithreading to send and receive large amounts of data between Servers and

Clients.

Buffer allocation management

One of the most scarce resources in computing systems is memory. Figure 3.3 shows

our methods to manage buffer allocation. In MOFSuppliers, our program firstly allocation

many buffers to a Memory Pool, once a Mapper write new Map Output data on the disk,

disk read thread will get new empty buffer from memory pool to read data from disk. After

this buffer has been fully filed, the data in this buffer will be sent to NetMerger by socket.

If all of the data in this buffer has been sent out, memory pool will recycle this buffer. As

long as NetMergers receive data, the receive thread get a empty buffer from Memory Pool

and give this buffer with full filed data to merge thread. After all of the data in this memory

block has been used, our program will recycle that memory block to get more data. In order
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to avoid the overhead of allocating memory, we assign memory outside the key path of data

processing, which can save a lot of execution time.

Figure 3.2: Buffer allocation management

In the following, I’d like to present the TCP/IP implementation detail to show you how

I can realize the aforementioned design to achieve our goal.

3.3.1 MOFSupplier (Server)

Figure 3.3 is the main structure of MOFSupplier. We can see from the figure that there

are three parts in MPFSupplier with the following functions: (1) Create a connection talking

back to the Task Tracker. (2) Create a data engine, which contains a list of MOFs, and its

according indexcache datacache (Implemented by DataEngine component). (3) Create an

OutputServer to connect with Netmerger (Implemented by MOFServer component).

Socket connection with Task Tracker

The first function is an event-driven thread responsible for receiving control commands.

The connection is created with sockets, for communicating command streams. We imple-

ment this function with the help of the epoll mechanism. After creating a connection with
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Figure 3.3: Structure of MOFSupplier

MOFSupplier, an event will be registered for down calls using epoll. When incoming mes-

sages from MOFSuppliers arrive, a thread will automatically inform the user to call down a

call handler. The format of commands from Hadoop is: “NO. of (header+params) : header

: param1 : param2 : ...”. We separate number of (header+params), header and each pa-

rameters with colons. This format is used because we are not sure of the number and the

length of parameters.

There are three types of commands. First, initiation commands are used to initialize

resource and other process. Second, exit messages are called to clean jobs, quit threads

and so on. The third command is ”NEW MAP MSG”, which is to notify MOFSupplier

that new map output has been generated, based on the information in this command, so

the DataEngine can read index and data from the disk to memory to prepare to serve

NetMerger’s request.
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DataEngine

Next, I’d like to present the structure of DataEngine. In the beginning, DataEngine

will allocate a memory pool to wait for reading data from disk into memory. As soon as

MOFSupplier gets ”NEW MAP MSG” commands, which means new Map Output is ready

on the disk to be read, it will add the command information into a list and notisfy Disk Read

Thread to read data into memory. In order to retrieve data quickly, DataEngine also creates

an index to tell whether the data has been loaded or not, and if it has already been loaded,

what’s its path. As we know, disk I/O is always the bottleneck which may consume a lot

of time, to gain more performance, I use one thread to read data from the disk while other

threads deal with receiving and sending issues. We try to load all the data into memory,

which can guarantee that DataEngine can serve others as long as it receives their request.

Another thing DataEngine needs to do is to serve the request from MOFServer. When

MOFServer receives a get data request from NetMerger, it will search its index to find the

required data. After that, DataEngine puts all of the information into one structure to

record the position of the data and receiver information. Other threads will send data to

the destination based on the message provided by the DataEngine.

MOFServer

MOFServer is the structure to receive requests from clients, search for data from the

DataEngine, and finally send required data back to NetMerger. First of all, MOFServer

creates a listener to accept the connection request from NetMerger. We register an event

in epoll. When the connection request from NetMerger arrives, a function will be called to

initialize the connection, and add connection information into a connection list. The con-

nection list has recorded all of the connections that this MOFServer is connecting. Between

each compute node pair, there is one connection. After the connection has been established,

once the MOFServer received the request from NetMerger, it will add the request into a

queue and inform DataEngine.
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I also use data streams to send requests. The format of the request is: “jobid: mapid:

mop offset: reduceid: mem addr: request addr”, for the same reason that the length of

every parameter is unknown, we seperate them by colon. Based on the received request,

DataEngine will return the data they need.

Many threads take charge of sending data from the memory to NetMergers, while at the

same time another thread reads data from the disk to the memory. These sending threads

are started at the initialization time of MOFServer. The number of threads is tunable. One

thread serves a fixed socket fd, which can make sure all of the data from the same sender

and the same receiver are in sequence. In order to achieve load balance, the number of

connections in each thread is almost the same.

The size of data sent each time is larger than the default size of the socket buffer,

one receive call is not always enough to receive the whole chunk which is a memory buffer

allocated in the beginning. To solve this problem, MOFServer firstly send a header to inform

the size of data chunk will be sent along with a lot of other informations such as: the offset

of memory chunk used to receive data at the NetMerger side, this data is required by which

request from NetMerger and so on. Based on the size sent by MOFSupplier, the receiver

uses a while loop to call socket recv function many times, until the receiving side can get all

the data specified in the header.

By now, all of the functions in MOFSupplier has been described. Next, the structure

of NetMerger will be shown to you.

3.3.2 NetMerger (Client)

NetMerger is adopted to serve Reduce Tasks. Its structure is present in Figure 3.4. At

the initialization time, the TaskTracker will send commands to start and init NetMerger. If

some Reduce Task need to get data from MOFSupplier, it will send fetch requests to the

NetMerger. NetMerger receives the requests from Reduce Tasks and send them to MOF-

Supplier. As soon as required data arrives, NetMerger uses multiple threads to receive data
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and pass data to another thread to do some computation (Merge). After the computation

completes, threads will send data back to the Reduce Task and post more request to fetch

data for computation.

Figure 3.4: Structure of NetMerger

Socket connection with Task Tracker and Reduce Tasks

When Task Tracker begins to work, it will start NetMerger. In NetMerger, we register a

client downcall handler and reduce connection handler into epoll. The client downcall han-

dler is used to connect with Task Tracker, to receive commands from TaskTracker. These

commands include inits message and exit messages. If the init messages are received, Net-

Merger can prepare resources for data processing. Exit messages mean you need to release

memory and destroy some structure for exiting.

Controller

In Controller, it first creates an event-driven thread responsible for connecting back to

the TaskTracker and receiving reducer connection requests. The function of connecting with
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TaskTracker has been described above. So we’d like to tell something about dealing with

Reducer connection requests. As long as the controller accepts the connection request with

a Reducer, it will add the connection information into a list. Another thread is responsible

for generating a new epoll set for the ReduceTask, creating a socket to receive fetch requests

from the reducer and using the socket to report progress for the Reducer.

Netlev Reduce Task

If NetMerger finds that new fetch data requests have arrived from Reduce Task, it adds

that request into a queue. Another thread will notice that and try to find out whether there

is a connection between request sender and receiver from a connection list. If this is the

first time it send a request to the receiver and there is no connection between them two, the

NetMerger will send a connection request to the MOFSupplier. As long as the connection has

been created, NetMerger will add the connection into the connection list and send request to

MOFSupplier. The request includes which part of data it is asking for, the memory chunk

that is prepared to receive data from MOFSupplier in NetMerger, the pointer to the request

structure and so on.

If everything goes well, NetMerger should receive required data from MOFSupplier,

after which we start many threads to receive data, and add the pointer of received data into

a Fetched Mops Queue. Another thread uses received data to do some computation. We use

multi-threading to overlap data receiving and data computing, which can take full advantage

of modern multi-core systems to improve our implementation performance. After the merge

thread finishes its job, it will send data results back to TaskTracker and add more Fetch

Requests into Fetch Queue for further computation. At the end of operation, the reduce

task will send an exit message to finish the job.

Above we have stated all of the components and their functions. In the following, we

want to give you a clear view of data processing.
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3.4 Program Flow

Figure 3.5 can give you a view of the flow of the program. I will give you a brief

description based on the figure.

Figure 3.5: Program Flow

1. When a Reduce Task needs to fetch data from Map Task, it will send a fetch request

to the NetMerger.

2. NetMerger creates a connection with MOFSupplier and sends fetchs request to MOF-

Supplier.

3. After receiving the request from NetMerger, MOFSupplier adds the request to the

request queue, and notify DataEngine. Based on the request, DataEngine searches its Data

Cache which is read from disk by the disk read thread.

4. If the required data has been found, DataEngine sends the data back to MOFServer.

5. MOFServer invokes some send threads to send data back to the NetMerger.
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6. NetMerger uses many threads to receive data and gives received data to Merge

Thread to do computation. As soon as computation has been finished, data will be sent to

the Reduce Task.

I have introduced the detail of my TCP/IP implementation of Hadoop-A plugin. I will

present the evaluation results in the following chapter.
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Chapter 4

Evaluation Results

This chapter presents the evaluation of TCP/IP implementation for Hadoop-A, com-

pared to the original Hadoop on Ethrenet.

4.1 Testbed

We do our experiments on a 26-nodes cluster. The configuration of our cluster is: Dual-

socket quad-core 2.13 GHz Intel Xeon processors, 8GB of DDR2 800 MHz memory and 8x

PCI-Express Gen 2.0 bus. 4 MB L2 cache is shared by four cores on one socket. We run

Linux 2.6.18-164.el5 kernel on these nodes. We equipped each node with a 250GB, 7200

RPM, Western Digital SATA hard drive.

The bandwidth of RDMA is tested with the help of perf test from OFED, while IPoIB

and Gigabit Ethernet (GigE) are tested using another netperf benchmark. From 4.1, we can

find that the speed of IB (RDMA) is much faster than IB (IPoIB) and Gigabit Ethernet. But

it can not support Java, that’s why the Hadoop-A plug-in uses C++ as its implementation

language. IB (IPoIB) can achieve a bandwidth of 1078.40 MB/sec for Java and 1220.39

MB/sec for C++, while the speed of Gigabit Ethernet is only about 122.00 MB/s. As a

result, if we can get better performance over Gigabit Ethernet, we will demonstrate the good

effects of reducing disk access from Hadoop-A.
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Table 4.1: The bandwidth of RDMA, IPoIB and Gigabit Ethernet

RDMA IPoIB Gigabit Ethernet
Java - 1078.40 122.31
C++ 3239.21 1220.39 124.13

4.2 Overall Performance

First of all, we show the overall performance of my TCP/IP work compared with the

original Hadoop. TeraSort and WordCount are two benchmarks for testing Hadoop pro-

grams. As mentioned in the Hadoop-A paper, we can see that Hadoop-A can get better per-

formance on the TeraSort benchmark, but the performance of Hadoop on the WordCount

benchmark is the same as for the original. So it makes no sense to run the WordCount

benchmark.

Figure 4.1 shows the overall performance of running TeraSort. We are running 4G data

on each node, the number of nodes is from 2 to 12. Accordingly, the largest data size we have

tested is 48 GB. On each node, we run 8 Mappers and 4 Reducers. Most of the performance

of TCP/IP is 20% better than original Hadoop program. For 8 nodes 32G, our TCP/IP

implementation can gain 26.7% performance, which has proved the benefits of Hadoop-A’s

reducing disk access.

We will take 12 nodes (48GB) as an example to explain the performance of TCP/IP

and the original Hadoop. As shown in Figure 4.2, the map tasks of TCP/IP are much faster,

especially when the map progress is greater than 50%. The reason is that, in the map phase

of TCP/IP implementation, we only execute some lightweight work.

To avoid repetitive merges, reduce tasks do not begin to merge until the completion of

last Map Output (MOF) generated by map task. Once all MOFs are ready, the reduce tasks

begin their work immediately. Data are fetched and merged from map tasks only for one

27



Figure 4.1: Overall performance of TCP/IP implementation

Figure 4.2: Progress of Map Task
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time, which can reduce the times of disk access. From Figure 4.3 we can see reduce tasks

finish their work very quickly.

Figure 4.3: Progress of Reduce Task

4.3 Scalability

Normally in High Performance Computing (HPC), one standard of evaluating the qual-

ity of a program is scalability (scaling efficiency), which means how efficient this program

can achieve when running on an increasing numbers of elements of parallel processing (CPUs

/ cores). Two basic ways can be used to test a given program’s parallel performance, called

strong scalability and weak scalability. Becasue we have more nodes to deal with data, we

want to make sure the scalability of our work is good. We have examined the total execution

time of Terasort’s strong scalability and weak scalability.

Strong scaling is that the size of problem stays fixed while the number of CPUs/cores

change, which is used to find a good situation that the problem can be solved in a reasonable

time and at the same time does not waste too much resource. Usually it is hard to achieve
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strong scalability due to communication overhead. To test the strong scalability of our work,

we conduct our experiment on constant amount of data (24 GB) but change the number of

nodes (from 2 to 12).

Figure 4.4: TCP/IP implementation with Increasing Number of Nodes

From Figure 4.4, we can see that, for a fixed amount of data, the TCP/IP implemen-

tation can maintain an improvement of 20% over the original Hadoop, and that both the

original Hadoop and the TCP/IP implementation of Hadoop-A can achieve good scalability.

Weak scaling means for each processing element, the size of problem stays unchanged

and more nodes are used to solve larger amount of problem. If the execution time stays the

same, we can say the weak scalability of this program is good. To test weak scalability, each

node deals with 4 GB data. The largest number of nodes used to run our program is 12, as

a result, up to 48 GB data has been tested totally.

Figure 4.5 shows the weak scalability of the original Hadoop and TCP/IP implemen-

tation of Hadoop-A. Both the original Hadoop and TCP/IP implementation can achieve
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Figure 4.5: TCP/IP implementation with Increasing Data Size

good weak scalability, becasue the total excution times with these different nodes remain

nearly unchanged, and as you can see, the new TCP/IP implementation can achieve better

performance than original Hadoop.
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Chapter 5

Conclusions

In this article, I have described the details of a TCP/IP implementation of Hadoop-A.

Hadoop-A has solved a number of issues in the original Hadoop, such as the serialization

barrier between merge and reduce and repetitive disk access. But that work is implemented

over Infiniband (RDMA), which is not always used in commercial cloud system due to the

great expense of hardware. As a result, the TCP/IP implementation of the Hadoop-A plug-in

is useful for commercial cloud systems to gain good benefits from Hadoop-A.

We have presented some key technologies used to deal with large scale of data sets

in TCP/IP implementation of Hadoop-A, including multi-threading, epoll mechanism and

buffer allocation management. After that, we introduce two important components: MOF-

Supplier (Server) and NetMerger (Client). Once Netmerger gets a fetch request from Reduce

task, it will send that request to the MOFSupplier. In MOFSupplier, DataEngine is a thread

to read Map Output from disk, if MOFSupplier receives the fetch request from NetMerger,

another thread will be woken up to send data via TCP/IP protocol. One receive thread

in NetMerger receives data and the merge thread uses received data to merge. All of the

buffers are allocated to a memory pool in the beginning, threads can get empty buffers from

this memory pool to do their work and return them when they don’t need them.

From the experimental results we find that our TCP/IP implementation can achieve

26.7% better performance than the original Hadoop project, and the scalability is good,

which has fulfilled the goal of our work.

In the future, we need to test our TCP/IP implementation on much larger commercial

cloud systems, which can better demonstrate the benefits of our work. In addtion, we need

more test results from our implementation, including system utilization and disk read/write
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bandwidth. We also want to test the performance gained when we are running applications

on top of Hadoop.
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