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Abstract

This dissertation studies some matrix results and gives their generalizations in the con-

text of semisimple Lie groups. The adjoint orbit is the primary object in our study.

The dissertation consists of four chapters. Chapter 1 is a brief introduction about the

interplay between matrix theory and Lie theory.

In Chapter 2 we introduce some structure theory of semisimple Lie groups and Lie

algebras. It involves the root space decompositions for complex and real semisimple Lie

algebras, Cartan decomposition and Iwasawa decomposition for real semisimple Lie algebras

and Lie groups. They play significant roles in our generalizations.

In Chapter 3 we introduce a famous problem on Hermitian matrices proposed by H.

Weyl in 1912, which has been completely solved. Motivated by a recent paper of Li et al.

[34] we consider a generalized problem in the context of semisimple as well as reductive Lie

groups. We give the gradient flow of a function corresponding to the generalized problem.

This provides a unified approach to deriving several results in [34].

Chapter 4 is essentially a brief survey on some generalized numerical ranges associated

with Lie algebras. The classical numerical range of an n×n complex matrix is the image of the

unit sphere in Cn under the quadratic form. One of the most beautiful properties is that the

numerical range of a matrix is always convex. It is known as the Toeplitz-Hausdorff theorem.

We give another proof of the convexity of some generalized numerical range associated with

a compact Lie group. The Toeplitz-Hausdorff theorem becomes a special case.
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Chapter 1

Introduction

This dissertation is a study of some matrix results and their generalizations in the

context of semisimple Lie groups. It is universally believed that matrix theory has many

applications in various branches of mathematics and sciences. Matrix theory has a close

relationship with the theory of Lie groups. For example, the general linear groups GLn(C)

and GLn(R) are Lie groups. Roughly speaking, a Lie group is a smooth manifold which

is also a group and in which the group operations are smooth. The tangent space at the

identity of a Lie group has a Lie algebra structure, which captures most information about

the Lie group via the exponential map. The classical Lie groups are matrix groups. This

close connection between matrix theory and Lie theory is beneficial to both fields: matrix

theory provides various results which may lead to new developments of Lie theory and, in

turn, Lie theory often provides unified approaches to matrix results and thus inspires deeper

understanding of them.

The main tools in this dissertation are some important decompositions of Lie algebras

and their counterparts for Lie groups. These decompositions are Cartan decomposition and

Iwasawa decomposition which are corresponding to Hermitian decomposition (algebra level),

polar decomposition (group level), and QR decomposition in matrix theory. They exist for

semisimple Lie algebras and Lie groups as well as for reductive Lie algebras and Lie groups.

These decompositions reflect the rich structures of Lie groups. For example, if G is a

connected semisimple Lie group with Lie algebra g and if θ is a Cartan involution of g, then

g = k ⊕ p is a Cartan decomposition, where k and p are the +1 and −1 eigenspaces of θ,

respectively, and the Killing form B on g induces a positive definite symmetric bilinear form

Bθ on g defined by Bθ(X, Y ) = −B(X, θY ). The bilinear form Bθ, together with adjoint
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orbits in g, enables one to do fruitful analysis on the Lie group G via the exponential map

from g to G.

In matrix theory, any complex n × n matrix is an element of gln(C), the Lie algebra

of the general linear group GLn(C) and the Lie bracket is given by [X, Y ] = XY − Y X.

If we define a Cartan involution θ of g by θ(X) = −X∗ for all X ∈ g, the corresponding

Cartan decomposition is just the Hermitian decomposition and Bθ is (up to a positive scalar

multiple) the usual inner product given by Bθ(X, Y ) = trXY ∗.

The following is the structure of this dissertation. In Chapter 2, we introduce some

structures of semisimple Lie groups and Lie algebras for future reference. They are root

space decompositions for complex and real semisimple Lie algebras, Cartan and Iwasawa

decomposition for real semisimple Lie algebras and Lie groups. In Chapter 3, we consider a

generalization of a famous problem on sum of Hermitian matrices proposed by Weyl in the

context of semisimple as well as reductive Lie groups, where we will derive the gradient flow

and provide a unified approach to several results in [34]. Chapter 4 is essentially a brief survey

on some generalized numerical ranges associated with Lie algebras. The classical numerical

range of a complex square matrix is the image of the unit sphere under the quadratic form.

One of the most beautiful properties is that the numerical range of a matrix is always convex.

We give another proof of the convexity of a generalized numerical range associated with a

compact Lie group via a connectedness argument. The main tools are a connectedness result

of Atiyah [1] and a Hessian index result of Duistermaat, Kolk and Varadarajan [16].
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Chapter 2

Structure Theory of Semisimple Lie Groups and Lie Algebras

In this chapter, we introduce most notations in the dissertation and summarize some

structures of semisimple Lie groups and Lie algebras for later reference. Since a Lie group is

simultaneously a smooth manifold and a group such that the group operations are smooth,

we begin with smooth manifolds, for which our main references are [32] and [50].

2.1 Smooth Manifolds

A topological manifold of dimension n is a second countable Hausdorff topological space

of which every point has an open neighborhood that is homeomorphic to an open subset of

Rn. Let M be a topological manifold of dimension n. A chart on M is a pair (U,ϕ), where

U ⊂ M is open and ϕ is a homeomorphism of U onto an open subset of Rn. Recall that a

map F : U → V , where U and V are open subsets of Rn and Rm, respectively, is said to be

C∞ or smooth if each of the component functions of F has continuous partial derivatives of

all orders. A smooth structure on M is a collection of charts {(Uα, ϕα) : α ∈ I} such that

(1)
⋃
α∈I

Uα = M ,

(2) ϕα ◦ ϕ−1
β is C∞ for all α, β ∈ I, and

(3) the collection is maximal with respect to (2).

A topological manifold with a smooth structure is called a smooth manifold, or simply

manifold unless otherwise specified. A chart on a manifold is said to be smooth if it is

an element of its smooth structure.

Let M and N be manifolds. A continuous map F : M → N is said to be smooth if for

every p ∈M , there exist smooth charts (U,ϕ) containing p and (V, φ) containing F (p) such
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that F (U) ⊂ V and the composite map φ ◦ F ◦ ϕ−1 is C∞ from ϕ(U) to φ(V ). If N = R,

F is called a smooth function on M if for every p ∈ M , there exists a smooth chart (U,ϕ)

containing p such that F ◦ϕ−1 is C∞. Let C∞(M) denote the set of all smooth functions on

M . A linear map v : C∞(M)→ R is called a derivation at p ∈M if it satisfies

v(fg) = f(p)v(g) + g(p)v(f), ∀f, g ∈ C∞(M).

The set Tp(M) of all derivations of C∞(M) at p forms a vector space called the tangent space

to M at p. Elements of Tp(M) are called tangent vectors at p.

Let F : M → N be a smooth map and let p ∈M . The differential of F at p is the linear

map dFp : Tp(M)→ TF (p)(N) defined by

dFp(v)(f) = v(f ◦ F ), ∀v ∈ Tp(M),∀f ∈ C∞(N).

The rank of F at p ∈ M is the rank of dFp. The smooth map F is an immersion if

rankF = dimM at every p ∈ M . A submanifold of M is a subset S ⊂ M endowed with

a manifold topology and a smooth structure, i.e., S is a smooth manifold in its own right,

such that the inclusion map ι : S →M is an immersion.

The tangent bundle T (M) of M is the disjoint union of the tangent spaces at all points

of M . The projection map π : T (M) → M is defined by sending each vector in Tp(M)

to p ∈ M . The tangent bundle has a natural topology and smooth structure that make it

into a manifold such that π : T (M) → M is a smooth map. A vector field on M is a map

X : M → T (M) such that Xp := X(p) ∈ Tp(M) for all p ∈ M . The set of smooth vector

fields on M forms in the obvious way a vector space over R; it is also a module over the

ring C∞(M): if X is a vector field on M and f ∈ C∞(M), then Xf ∈ C∞(M) is defined by

Xf(p) = Xp(f). Note that a vector field X on M is R-linear on C∞(M) and satisfies

X(f · g) = (Xf) · g + f ·Xg, ∀f, g ∈ C∞(M).
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In other words, X acts as a derivation of the R-algebra C∞(M). In fact, derivations of

C∞(M) can be identified with smooth vector fields: A function X : C∞(M)→ C∞(M) is a

derivation if and only if it is of the form X (f) = Xf for some smooth vector field X on M

[32, p.86]. If X and Y are smooth vector fields on M , then X ◦ Y : C∞(M)→ C∞(M) need

not be a smooth vector field in general, but the Lie bracket [X, Y ] := X ◦ Y − Y ◦X always

is. The space of smooth vector fields on a manifold has the structure of a Lie algebra over

R.

2.2 Lie Groups and Their Lie Algebras

A vector space g over a field F with a product g× g→ g, denoted by (X, Y ) 7→ [X, Y ]

and called the Lie bracket of X and Y , is called a Lie algebra over F if the following three

conditions are satisfied:

(1) The Lie bracket is bilinear.

(2) [X,X] = 0 for all X ∈ g.

(3) The Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 holds for all X, Y, Z ∈ g.

An example of a Lie algebra is the general linear algebra gl(V ) consisting of all linear oper-

ators on a vector space V with the Lie bracket defined by

[X, Y ] = XY − Y X, ∀X, Y ∈ gl(V ).

Let g and h be Lie algebras. A linear transformation ϕ : g→ h is called a homomorphism

if

ϕ([X, Y ]) = [ϕ(X), ϕ(Y )], ∀X, Y ∈ g.

It follows from the bilinearity and the Jacobi identity that the linear transformation

ad : g→ gl(g)
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given by adX(Y ) = [X, Y ] for all X, Y ∈ g is a Lie algebra homomorphism, called the

adjoint representation of g. A subspace s of g is called a subalgebra if [X, Y ] ∈ s for all

X, Y ∈ s; it is called an ideal if [X, Y ] ∈ s for all X ∈ g and Y ∈ s.

A Lie group G is both a smooth manifold and a group such that the maps m : G×G→ G

and i : G → G defined by multiplication and inversion are smooth. For example, the set

of all nonsingular complex matrices forms a Lie group, called the general linear group and

denoted by GLn(C). Any closed subgroup of GLn(C) is a Lie group, called a closed linear

group.

Let G be a Lie group. For each g ∈ G, the left translation Lg : G → G defined by

Lg(h) = gh is a diffeomorphism of G. A smooth vector field X on G is left-invariant if X is

Lg-related to itself for every g ∈ G, i.e.,

X ◦ Lg = dLg ◦X, ∀g ∈ G.

If we regard X as a derivation, left-invariance is expressed by

(Xf) ◦ Lg = X(f ◦ Lg), ∀f ∈ C∞(G),∀g ∈ G.

The space of left-invariant smooth vector fields on G is closed under the Lie bracket, and

is therefore a Lie algebra g, called the Lie algebra of G. The map X 7→ Xe is a vector

space isomorphism of g onto Te(G). If Xe, Ye ∈ Te(G), let [Xe, Ye] denote the tangent vector

[X, Y ]e. The vector space Te(G), with the composition rule (Xe, Ye) 7→ [Xe, Ye], forms a Lie

algebra which is identified with g.

A smooth map ϕ : G → H between Lie groups G and H is called a smooth homo-

morphism if it is also a group homomorphism. The differential dϕ : g → h between the

corresponding Lie algebras g and h is a Lie algebra homomorphism, called the derived ho-

momorphism of ϕ.
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Let G be a Lie group with Lie algebra g. A one-parameter subgroup of G is a smooth

homomorphism φ : R → G. It is a consequence of the theorem of existence and uniqueness

of solutions of linear ordinary differential equations that the map φ 7→ dφ(0) is a bijection of

the set of one-parameter subgroups of G onto g [23, p.103]. For each X ∈ g, let φX be the

one-parameter subgroup corresponding to X and define the exponential map exp : g → G

by exp(X) = φX(1). It follows that φX(t) = exp(tX) and that the one-parameter subgroups

are the maps t 7→ exp tX for X ∈ g. The exponential map for a closed linear group is given

by the matrix exponential function [29, p.76]. An important property of the exponential

map is its naturality: if ϕ : G→ H is a smooth homomorphism, then ϕ ◦ expg = exph ◦dϕ.

A submanifold H of G is called a Lie subgroup if H is a Lie group with binary operation

being that induced by the binary operation on G. A Lie subgroup of G is called a closed

subgroup if it is a closed subset of G. The following theorem shows a one-to-one correspon-

dence between connected Lie subgroups of a Lie group and subalgebras of its Lie algebra

[23, p.112, p.115, p.118].

Theorem 2.1. Let G be a Lie group with Lie algebra g. If H is a Lie subgroup of G, then the

Lie algebra h of H is a subalgebra of g. Moreover, h = {X ∈ g : exp tX ∈ H for all t ∈ R}.

Each subalgebra of g is the Lie algebra of exactly one connected Lie subgroup of G.

For each g ∈ G, let Ig be the inner automorphism of G defined by x 7→ gxg−1. The

derived homomorphism of Ig, denoted by Ad g, is an automorphism of g. We thus have

exp(Ad(g)X) = g(expX)g−1, ∀g ∈ G,∀X ∈ g.

In the special case that G is a closed linear group, we have Ad (g)X = gXg−1. Since exp has

a smooth inverse in a neighborhood of e ∈ G, if X is small Ad (g)X is smooth as a function

from a neighborhood of e to g. That is, g 7→ Ad g is smooth from a neighborhood of e into

GL(g). Moreover Ad g ◦ Adh = Ad (gh) because Ig ◦ Ih = Igh. Thus the smoothness is

valid everywhere on G. Therefore Ad : G → GL(g) is a smooth homomorphism, called the
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adjoint representation of G. The derived homomorphism of Ad is the adjoint representation

ad : g→ gl(g) of g [29, p.80]. Consequently we have

Ad (expX) = exp(adX), ∀X ∈ g.

The group Aut g of all automorphisms of g is a closed subgroup of GL(g), hence is a Lie

subgroup of GL(g). The Lie algebra Der g of Aut g consists of all derivations of g [23,

p.127]. Since ad g is a subalgebra of Der g, it corresponds to a connected subgroup Int g of

Aut g [23, p.127], which is generated by exp(ad g) and called the adjoint group of g. Since

exp(adX) = Ad (expX) for all X ∈ g, we have Int g = AdG if G is connected. The Lie

algebra g is said to be compact if G is compact or, equivalently, the adjoint group Int g is

compact.

The symmetric bilinear form B on g defined by

B(X, Y ) = tr (adX adY ), ∀X, Y ∈ g

is called the Killing form, which is associative in the sense that

B([X, Y ], Z) = B(X, [Y, Z]), ∀X, Y, Z ∈ g.

If σ is an automorphism of g, then

ad (σX) = σ ◦ adX ◦ σ−1

and thus B(σX, σY ) = B(X, Y ). In particular, B is AdG-invariant.

A Lie algebra g is Abelian if [g, g] = 0; it is simple if it is not Abelian and has no nontrivial

ideals; it is solvable if Dkg = 0 for some k, where D0g = g and Dk+1g = [Dkg, Dkg]; it is

nilpotent if Ckg = 0 for some k, where C0g = g and Ck+1g = [Ckg, g]; it is semisimple if its
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(unique) maximal solvable ideal, called the radical of g and denoted by Rad g, is trivial (or,

equivalently, its Killing form is nondegenerate); it is reductive if its center z(g) = Rad g (or,

equivalently, [g, g] is semisimple). A Lie algebra is semisimple if and only if it is isomorphic

to a direct sum of simple algebras. A Lie group is called semisimple (simple, reductive,

solvable, nilpotent, Abelian) if its Lie algebra is semisimple (simple, reductive, solvable,

nilpotent, Abelian).

2.3 Complex Semisimple Lie Algebras

Let g be a complex semisimple Lie algebra. An element X ∈ g is called nilpotent if

adX is a nilpotent endomorphism; it is called semisimple if adX is diagonalizable. Since g

is semisimple, it possesses nonzero subalgebras consisting of semisimple elements, which are

Abelian and are called toral subalgebras of g [27, p.35]. The normalizer of a subalgebra a of

g is

Ng(a) = {X ∈ g : adX(a) ⊂ a};

it is the largest subalgebra of g which contains a and in which a is an ideal. A subalgebra h

of g is called a Cartan subalgebra of g if it is self-normalizing, i.e., h = Ng(h), and nilpotent.

The Cartan subalgebras of g are exactly the maximal toral subalgebras of g [27, p.80]. All

Cartan subalgebras of g are conjugate under the adjoint group Int g of inner automorphisms

[27, p.82].

Let h be a Cartan subalgebra of g. Since h is Abelian, ad gh is a commuting family

of semisimple endomorphisms of g, which are thus simultaneously diagonalizable. In other

words, g is the direct sum of the subspaces

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ h},

where α ranges over the dual h∗ of h. Note that g0 = h because h is self-normalizing. A

nonzero α ∈ h∗ is called a root of g relative to h if gα 6= 0. The set of all roots, denoted by

9



∆, is call the root system of g relative to h. Thus we have the root space decomposition

g = h⊕
⊕
α∈∆

gα.

The importance of root space decomposition lies on the fact that ∆ characterizes g com-

pletely.

The restriction of the Killing form on h is nondegenerate and is given by

B(H,H ′) =
∑
α∈∆

α(H)α(H ′), ∀H,H ′ ∈ h.

Consequently we can identify h with h∗: each α ∈ h∗ corresponds a unique Hα ∈ h with

α(H) = B(Hα, H) for all H ∈ h, and there is a nondegenerate bilinear form 〈·, ·〉 defined on

h∗ by 〈α, β〉 = B(Hα, Hβ) for all α, β ∈ h∗. The following is a collection of some properties

of the root space decomposition [27, p.36–40]:

(1) ∆ is finite and spans h∗.

(2) If α, β ∈ ∆ ∪ {0} and α + β 6= 0, then B(gα, gβ) = 0.

(3) If α ∈ ∆, then −α ∈ ∆, but no other scalar multiple of α is a root.

(4) If α ∈ ∆, then [gα, g−α] is one dimensional, with basis Hα.

(5) If α ∈ ∆, then dim gα = 1.

(6) If α, β ∈ ∆, then
2〈β, α〉
〈α, α〉

∈ Z and β − 2〈β, α〉
〈α, α〉

α ∈ ∆.

2.4 Real Forms

Let g be a complex Lie algebra. Then g can be viewed as a real Lie algebra gR, called

the realification of g. A real form of g is a subalgebra g0 of gR such that gR = g0 ⊕ ig0;

in this case, g is called the complexification of g0. Let g0 be a real form of g. Each Z ∈ g
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can be uniquely written as Z = X + iY with X, Y ∈ g0. A map σ : g → g given by

X + iY 7→ X − iY (X, Y ∈ g0) is called a conjugation of g with respect to g0. It is easy to

see that

(1) σ2 = 1,

(2) σ(αX) = ᾱσ(X) for all X ∈ g0 and α ∈ C,

(3) σ(X + Y ) = σ(X) + σ(Y ) for all X, Y ∈ g0, and

(4) σ[X, Y ] = [σX, σY ] for all X, Y ∈ g0.

Thus σ is not an automorphism of g, but it is an automorphism of the real algebra gR. On

the other hand, if σ : g→ g satisfies the above properties, the set g0 of fixed points of σ is a

real form of g and σ is the conjugation of g with respect to g0. Hence there is a one-to-one

correspondence between real forms and conjugations of g.

Let B0, B, and BR denote the Killing forms of the Lie algebras g0, g, and gR, respectively.

Then [23, p.180]

B0(X, Y ) = B(X, Y ), ∀X, Y ∈ g0

BR(X, Y ) = 2ReB(X, Y ), ∀X, Y ∈ gR.

Consequently g0, g, and gR are all semisimple if any of them is.

Every complex semisimple Lie algebra has a compact real form [23, p.181]. The compact

real forms of complex simple Lie algebra are list in [23, p.516].

2.5 Cartan Decomposition

Let g be a real semisimple Lie algebra, gC its complexification, σ the conjugation of

gC with respect to g. A direct decomposition g = k ⊕ p of g into a subalgebra k and a

vector subspace p is called a Cartan decomposition if there exists a compact real form u of
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gC such that σ(u) ⊂ u, k = g ∩ u and p = g ∩ iu. If u is any compact real form of gC with a

conjugation τ , then there exists an automorphism ϕ of gC such that the compact real form

ϕ(u) is invariant under σ, which guarantees the existence of a Cartan decomposition of g.

In this case, the involutive automorphism θ = στ is called a Cartan involution of g. The

bilinear form Bθ of g defined by

Bθ(X, Y ) = −B(X, θY ), ∀X, Y ∈ g

is symmetric and strictly positive definite. The following theorem establishes a one-to-one

correspondence between Cartan decompositions of a real semisimple Lie algebra and its

Cartan involutions [23, p.184] [39, p.144].

Theorem 2.2. Let g be a real semisimple Lie algebra with the direct sum of subspaces

g = k⊕ p. The following statements are equivalent.

(1) g = k⊕ p is a Cartan decomposition.

(2) The map θ : X + Y 7→ X − Y (X ∈ k, Y ∈ p) is a Cartan involution of g.

(3) The Killing form is negative definite on k and positive definite on p, and [k, k] ⊂ k,

[p, p] ⊂ k, [k, p] ⊂ p.

Let g = k ⊕ p be a Cartan decomposition. It follows that k and p are the +1 and −1

eigenspaces of θ, respectively, and that k is a maximal compactly embedded subalgebra of g.

Moreover, k and p are orthogonal to each other with respect to both the Killing form B and

the inner product Bθ.

In the special case of g being a complex semisimple Lie algebra, if u is a compact real

form of g, then gR = u⊕ iu is a Cartan decomposition [23, p.185].

The group level of Cartan decomposition is summarized below [23, p.252] [29, p.362].
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Theorem 2.3. Let G be a noncompact semisimple Lie group with Lie algebra g. Let g = k⊕p

be the Cartan decomposition corresponding to a Cartan involution θ of g. Let K be the

analytic subgroup of G with Lie algebra k. Then

(1) K is connected, closed, and contains the center Z of G. Moreover, K is compact if

and only if Z is finite. In this case, K is a maximal compact subgroup of G.

(2) There exists an involutive, analytic automorphism Θ of G whose fixed point set is K

and whose differential at e is θ.

(3) The map K × p→ G given by (k,X) 7→ k expX is a diffeomorphism onto.

For any k ∈ K, Ad k leaves B invariant because Ad k ∈ Aut g; Ad k also leaves k

invariant because k is the Lie algebra of K and hence Ad k leaves invariant the subspace of

g orthogonal to k, which is exactly p. If X ∈ g, write X = Xk +Xp with Xk ∈ k and Xp ∈ p

and we see that

Ad k(θ(X)) = Ad (k)Xk − Ad (k)Xp = θ(Ad (k)Xk) + θ(Ad (k)Xp) = θ(Ad (k)X),

i.e., Ad k commutes with θ. Hence Ad k leaves Bθ invariant as well.

2.6 Root Space Decomposition and Iwasawa Decomposition

Let g be a real semisimple Lie algebra and g = k ⊕ p a Cartan decomposition with θ

the corresponding Cartan involution. The bilinear form Bθ endows g with the structure of

a finite-dimensional inner product space. For any X ∈ g, with respect to Bθ, the adjoint of

adX is −ad θ(X) [29, p.360]. If X ∈ p, then adX is represented by a symmetric matrix

with respect to an orthonormal basis of g. Thus the elements of p are semisimple with real

eigenvalues. Let a be a maximal Abelian subspace of p. The commutative family ad a is
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simultaneously diagonalizable. For each real linear functional α on a, let

gα = {X ∈ g : [H,X] = α(H)X for allH ∈ a }.

It is easy to see that θ(gα) = g−α and [gα, gβ] ⊂ gα+β. If α 6= 0 and gα 6= {0}, then α is

called a root of g with respect to a. Let Σ denote the set of all roots. The simultaneously

diagonalization is expressed by g = g0⊕
⊕

α∈Σ gα, which is called the root space decomposition

of g with respect to a.

For each root α, the set

Pα = {X ∈ a : α(X) = 0}

is a subspace of a of codimension 1. The subspaces Pα (α ∈ Σ) divide a into several open

convex cones, called Weyl chambers. Fix a Weyl chamber a+ and refer it as the fundamental

Weyl chamber. A root α is positive if it is positive on a+. Let Σ+ denote the set of all positive

roots. If α ∈ Σ+ and X ∈ gα, write X = Xk + Xp with Xk ∈ k and Xp ∈ p. Since [k, p] ⊂ p

and [p, p] ⊂ k, for any H ∈ a we have (adH)Xk = α(H)Xp and (adH)Xp = α(H)Xk, which

imply (adH)2Xk = α(H)2Xk, (adH)2Xp = α(H)2Xp, and θ(X) = Xk − Xp ∈ g−α. For

α ∈ Σ+, define

kα = {X ∈ k : (adH)2X = α(H)2X for all H ∈ a},

pα = {X ∈ p : (adH)2X = α(H)2X for all H ∈ a}.

Let m be the centralizer of a in k, i.e.,

m = {X ∈ k : ad (X)H = 0 for all H ∈ a}.

The following result [36, p.107] is helpful in deriving the Hessian of a smooth function on K

(see Lemma 4.5).
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Lemma 2.4. (1) k = m⊕
∑
α∈Σ+

kα and p = a⊕
∑
α∈Σ+

pα are direct sums whose components

are mutually orthogonal under Bθ,

(2) gα ⊕ g−α = kα ⊕ pα for all α ∈ Σ+, and

(3) dim gα = dim kα = dim pα for all α ∈ Σ+.

The space n =
⊕

α∈Σ+ gα is a subalgebra of g. If X ∈
⊕

α∈Σ+ g−α, then

X = (X + θ(X))− θ(X) ∈ k + n.

Since g0 = (g0∩ k)⊕ a, we see that g = k+ a+n. Applying θ we conclude that g = k⊕ a⊕n,

which is called Iwasawa decomposition of g [23, p.263] [29, p.373].

The following theorem summarizes the group level of Iwasawa decomposition [29, p.374].

Theorem 2.5. Let G be a semisimple Lie group with Lie algebra g. Let g = k⊕ a⊕ n be a

Iwasawa decomposition. Let K, A, and N be the analytic subgroups of G with Lie algebras

k, a, and n, respectively. Then G = KAN and the map (k, a, n) 7→ kan is a diffeomorphism

of K × A×N onto G.

2.7 Weyl Groups

Let the notations be as in Section 2.6. Let m and M be the centralizers of a in k and in

K, respectively, and M ′ the normalizer of a in K, i.e.,

m = {X ∈ k : ad (X)H = 0 for all H ∈ a}

M = {k ∈ K : Ad (k)H = H for all H ∈ a}

M ′ = {k ∈ K : Ad (k)a ⊂ a}.

Note that M and M ′ are also the centralizer and normalizer of A in K, respectively, and

that they are closed Lie subgroups of K. Moreover, M is a normal subgroup of M ′, and
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the quotient group M ′/M is finite because M and M ′ have the same Lie algebra m [23,

p.284]. The finite group W (G,A) = M ′/M is called the (analytically defined) Weyl group

of G relative to A. For w = mwM ∈ W (G,A), the linear map Ad (mw) : a → a does

not depend on the choice of mw ∈ M ′ representing w. It follows that w 7→ Ad (mw) is a

faithful representation of W (G,A) on a. Thus we may regard w ∈ W (G,A) as the linear map

Ad (mw) : a→ a and W (G,A) as a group of linear operators on a. The Weyl group W (G,A)

also acts on a∗ by w · α = α ◦w−1 for all α ∈ a∗. The Killing form B is nondegenerate on a,

and thus it induces an isomorphism of a∗ and a by λ 7→ Hλ such that

λ(H) = B(Hλ, H), ∀λ ∈ a∗, ∀H ∈ a

This isomorphism induces an action of W (G,A) on a∗ as follows. If we denote Hw·λ = w ·Hλ

for all λ ∈ a∗, then for all H ∈ a

(w · λ)(H) = B(Hw·λ, H) = B(w ·Hλ, H) = B(Ad (mw)Hλ, H)

= B(Hλ,Ad (mw)−1H) = λ(Ad (mw)−1H)

= (λ ◦ Ad (mw)−1)(H)

So the Weyl group W (G,A) acts on a∗ by w · λ = λ ◦ Ad (mw)−1 := λ ◦ w−1.

For each root α, the reflection sα about the hyperplane Pα = {X ∈ a : α(X) = 0}, with

respect to the Killing form B, is a linear map on a given by

sα(H) = H − 2α(H)

α(Hα)
Hα, ∀H ∈ a,

where Hα is the element of a representing α, i.e., α(H) = B(Hα, H) for all H ∈ a. The

group W (g, a) generated by {sα : α ∈ Σ} is called the (algebraically defined) Weyl group

of g relative to a. When viewed as groups of linear operators on a, the two Weyl groups

W (G,A) and W (g, a) coincide [29, p.383].
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Chapter 3

Gradient Flows for the Minimum Distance to the Sum of Adjoint Orbits

This chapter introduces a famous problem on the sum of Hermitian matrices proposed

by Weyl. Motivated by a recent paper of Li et al. [34], we study Weyl’s problem in the

context of semisimple as well as reductive Lie groups and give the gradient flow of a function

corresponding to a generalized problem. This provides a unified approach to several results

in [34].

3.1 Introduction

Given the eigenvalues of two n× n Hermitian matrices A and B, a famous problem of

Weyl [52] is to give a complete description of the eigenvalues of C = A+B. The problem is

completely solved and one may see [14, 17, 31] and their references for historical development.

Its extension to compact Lie groups is given in [41, Theorem 9.3] and in particular the

determination of singular values of the sum of two rectangular complex matrices is given in

[41, p.447–450]. The solution of Weyl’s problem and the result in [41] are not easy to be

used as a checking tool for concrete matrices. For example, 10×10 Hermitian matrices yield

too many inequalities [34], according to the Littlewood-Richardson rule. If we denote by

S(H) the unitary similarity orbit of a Hermitian matrix H, then Weyl’s problem is to find

necessary and sufficient conditions for

S(C) ⊂ S(A) + S(B) := {UAU−1 + V BV −1 : U, V ∈ U(n)}
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in terms of the eigenvalues of A,B and C. The set inclusion is equivalent to

min
U,V ∈U(n)

‖UAU−1 + V BV −1 − C‖F = 0,

where ‖ · ‖F is the Frobenius norm on Cn×n.

Given complex matrices A0, A1, . . . , AN , Li et al. [34] studied the more general prob-

lem of finding the least squares approximation of A0 by the sum of matrices from orbits

S(A1), . . . , S(AN), i.e.,

min{‖X1 + · · ·+XN − A0‖F : (X1, . . . , XN) ∈ S(A1)× · · · × S(AN)}, (3.1)

where the orbits S(Ai), i = 1, . . . , N , are induced by some equivalence class on matrices such

as unitary similarity, unitary equivalence, and unitary congruence. In each case, by Fréchet

differentiation they derived the gradient flow of a corresponding smooth function, which was

then used to design an algorithm to solve the respective optimization problem.

Motivated by the results in [34], we ask whether there might be a unified approach for

studying these problems. The purpose of this chapter is to present such an approach in the

context of semisimple as well as reductive Lie groups. Examples are given to illustrate our

results and their relations to those in [34].

3.2 Formulation

Let G be a connected semisimple Lie group with Lie algebra g. Let g = k ⊕ p be the

Cartan decomposition corresponding to a Cartan involution θ of g, where k and p are the

+1 and −1 eigenspaces of θ, respectively. The Killing form B of g induces a positive definite

symmetric bilinear form Bθ on g given by Bθ(X, Y ) = −B(X, θY ) for all X, Y ∈ g. Note

that Bθ|(k×k) = −B and Bθ|(p×p) = B, and that k and p are orthogonal under both B and Bθ

[29, p.359]. Given X ∈ g, we have the unique decomposition X = Xk +Xp with Xk ∈ k and

Xp ∈ p. Let K be the analytic subgroup of G with Lie algebra k. Note that K is compact
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if and only if G has finite center [29, p.362]. We remark that simple classical groups have

compact K [23, p.446–455]. Though K may not be compact in general, Ad GK (or simply

AdK) is compact in the adjoint group Int g = AdG and each Ad k ∈ Aut g is orthogonal

with respect to Bθ. Both k and p are AdK-invariant, i.e., Ad (k)k = k and Ad (k)p = p for

all k ∈ K.

We cast Problem (3.1) in the context of semisimple Lie groups as follows. Given

A0, A1, . . . , AN ∈ g (not necessarily in p), find

min
ki∈K

∥∥∥∥∥
N∑
i=1

Ad (ki)Ai − A0

∥∥∥∥∥ , (3.2)

where the norm ‖ · ‖ is induced by Bθ, i.e., ‖X‖2 = Bθ(X,X) for all X ∈ g. In other

words, we want to find the (minimum) distance between A0 and the sum of the orbits

Ad (K)Ai, i = 1, . . . , N . The sum Ad (K)A1 + · · · + Ad (K)AN is a union of orbits since it

is invariant under AdK. The minimum is justified since AdK is compact. Problem (3.2) is

very difficult in view of the nontrivial solution to Weyl’s problem, which is corresponding to

sln(C) = su(n) ⊕ isu(n) with A,B,C ∈ p and p = isu(n) consisting of Hermitian matrices.

The solution of O’Shea and Sjmaar [41, Theorem 9.3] is very involved, which is essentially

corresponding to a complex semisimple Lie algebra g = k⊕ik, i.e., p = ik. Both are restricted

to A0, A1, · · ·AN ∈ p. Our goal is not to solve Problem (3.2). Instead we provide its gradient

flow and related results. Since the general case does not differ much from the N = 2 case,

our focus will be on this simpler case.

In Section 3.3, we derive the gradient flow of a smooth function associated to Problem

(3.2). In Section 3.4, we show that several results in [34] can be recovered from our general

results. In Section 3.5, we consider the special case when N = 2 and A1 ∈ p and A2 ∈ k, for

which the minimum and the maximum are given. Finally, some remarks are made for local

and global extrema in Section 3.6.
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3.3 Gradient Flow

Let the notations be as in Section 3.2. We first define the gradient flow of a smooth

function on the analytic Lie subgroup K of G. It has a bi-invariant Riemannian structure [23,

p.47] induced by the unique bi-invariant Riemannian structure Q on G such that Qe = Bθ

[23, p.148 #5]. More precisely, for each k ∈ K, the right translation Rk : K → K defined

by Rk(h) = hk is a diffeomorphism. Its derivative at the point h ∈ K is denoted by

dRk : Th(K)→ Thk(K), where Th(K) denotes the tangent space of K at h. The Riemannian

structure on K is given by

〈U, V 〉k := Q(U, V ) = Bθ(dR
−1
k (U), dR−1

k (V )) = −B(dR−1
k (U), dR−1

k (V ))

for all U, V ∈ Tk(K). Note that this structure is bi-invariant since

〈U, V 〉k = −B(Ad (k−1)dR−1
k (U),Ad (k−1)dR−1

k (V ))

= −B(dL−1
k (U), dL−1

k (V )).

We simply write 〈U, V 〉 for 〈U, V 〉k if there is no danger of confusion. With respect to this

Riemannian structure, if ϕ : K → R is a smooth function, the gradient ∇ϕk ∈ Tk(K) of ϕ

at k is given by

dϕk(V ) = 〈∇ϕk, V 〉k, V ∈ Tk(K). (3.3)

Since 〈·, ·〉k is nondegenerate, ∇ϕk is well defined and thus we have the gradient vector field

∇ϕ : K → Tk(K). So the gradient flow of ϕ becomes

dk

dt
= −∇ϕk. (3.4)
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Now we return to Problem (3.2) and focus on the simpler case when N = 2, i.e.,

min
k,h∈K

‖Ad (k)A+ Ad (h)B − C‖, A,B,C ∈ g. (3.5)

The general case is similar. Note that for any k, h ∈ K

‖Ad (k)A+ Ad (h)B − C‖2

= ‖Ad (k)A‖2 + ‖Ad (h)B‖2 + ‖C‖2 + 2Bθ(Ad (k)A,Ad (h)B)

−2Bθ(Ad (k)A,C)− 2Bθ(Ad (h)B,C)

= ‖A‖2 + ‖B‖2 + ‖C‖2 + 2Bθ(Ad (k)A,Ad (h)B)

−2Bθ(Ad (k)A,C)− 2Bθ(Ad (h)B,C).

Thus Problem (3.5) is equivalent to the problem of finding

min
k,h∈K

f(k, h), (3.6)

where the smooth function f : K ×K → R is defined by

f(k, h) := Bθ(Ad (k)A,Ad (h)B)−Bθ(Ad (k)A,C)−Bθ(Ad (h)B,C). (3.7)

Apply the previous discussion on K ×K. The tangent space T(k,h)(K ×K) of K ×K at the

point (k, h) is endowed with a bi-invariant Riemannian structure given by

〈U, V 〉 = −B(g,g)(dR
−1
(k,h)U, dR

−1
(k,h)V ), U, V ∈ T(k,h)(K ×K), (3.8)

where the Killing form B(g,g) is naturally induced by B. With respect to this structure, the

gradient ∇f(k,h) of f at the point (k, h) is given by

df(k,h)(V ) = 〈∇f(k,h), V 〉, V ∈ T(k,h)(K ×K). (3.9)
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The gradient flow of (3.7) becomes

d(k, h)

dt
= −∇f(k,h). (3.10)

Theorem 3.1. The gradient flow of f defined in (3.7) is given by

d(k, h)

dt
= (−dRk(t)[θ(C − Ad (h)B),Ad (k)A]k,−dRh(t)[θ(C − Ad (k)A),Ad (h)B]k), (3.11)

or equivalently,

dk

dt
= −dRk(t)[θ(C − Ad (h)B),Ad (k)A]k, (3.12)

dh

dt
= −dRh(t)[θ(C − Ad (k)A),Ad (h)B]k. (3.13)

When A,B,C ∈ p, the gradient flow becomes

d(k, h)

dt
= (dRk(t)[C − Ad (h)B,Ad (k)A], dRh(t)[C − Ad (k)A,Ad (h)B]). (3.14)

When A,B,C ∈ k, the gradient flow becomes

d(k, h)

dt
= (−dRk(t)[C − Ad (h)B,Ad (k)A],−dRh(t)[C − Ad (k)A,Ad (h)B]). (3.15)

Proof. Each element V ∈ T(k,h)(K × K) is of the form V = dR(k,h)(X, Y ) for some unique

(X, Y ) ∈ (k, k). The curve et(X,Y )(k, h) passes through (k, h) with tangent vector V . Note

that B([X, Y ], Z) = B(X, [Y, Z]) for all X, Y, Z ∈ g [23, p.131], and that k and p are
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orthogonal under B. We have

df(k,h)(V ) =
d

dt

∣∣∣
t=0
f(et(X,Y )(k, h)) =

d

dt

∣∣∣
t=0
f((etXk, etY h))

=
d

dt

∣∣∣
t=0
{Bθ(Ad (etXk)A,Ad (etY h)B)−Bθ(Ad (etXk)A,C)

−Bθ(Ad (etY h)B,C)}

= −B([X,Ad (k)A], θAd (h)B)−B([Y,Ad (h)B], θAd (k)A)

+B([X,Ad (k)A], θC) +B([Y,Ad (h)B], θC)

= −B([Ad (k)A, θAd (h)B], X)−B([Ad (h)B, θAd (k)A], Y )

−B([θC,Ad (k)A], X)−B([θC,Ad (h)B], Y )

= −B(g,g)([θ(C − Ad (h)B),Ad (k)A], [θ(C − Ad (k)A),Ad (h)B], X ⊕ Y )

= 〈dR(k,h)([θ(C − Ad (h)B),Ad (k)A]k, [θ(C − Ad (k)A),Ad (h)B]k), V 〉 by (3.8)

Thus

∇f(k,h) = (dRk[θ(C − Ad (h)B),Ad (k)A]k, dRh[θ(C − Ad (k)A),Ad (h)B]k) (3.16)

and the gradient flow takes the desired form (3.11). The results for A,B,C ∈ p and A,B,C ∈

k follow from the facts that p and k are AdK-invariant, and that [p, p] ⊂ k and [k, k] ⊂ k [29,

p.359], and that k and p are the +1 and −1 eigenspaces of θ, respectively.

Similarly we have the following result for the general case.

Theorem 3.2. The gradient flow of the smooth function associated to Problem (3.2) is given

by the following system of differential equations

dki
dt

= −dRki(t)[θ(A0 −
∑
j 6=i

Ad (kj)Aj),Ad (ki)Ai]k, i = 1, . . . , N. (3.17)
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Remark 3.3. The above results in this section are also true for reductive Lie groups (proofs

are skipped), which are members of the Harish-Chandra class [29, p.446]. More precisely, a

reductive Lie group is a 4-tuple (G,K, θ, B), where G is a Lie group, K is a compact subgroup

of G, θ is a Lie algebra involution of the Lie algebra g of G, and B is an AdG-invariant,

θ-invariant, nondegenerate symmetric bilinear form on g such that

(1) g is reductive, i.e., g = z⊕ [g, g], where z is the center of g and [g, g] is semisimple,

(2) g = k⊕ p, where k and p are the +1 and −1 eigenspaces of θ, respectively, and k is also

the Lie algebra of K,

(3) k and p are orthogonal with respect to B, and B is negative definite on k and positive

definite on p,

(4) the map K × exp p→ G given by multiplication is a diffeomorphism onto,

(5) for every g ∈ G, the automorphism Ad g of g, extended to the complexification gC of

g, is contained in Int gC, and

(6) the semisimple connected subgroup Gss of G with Lie algebra [g, g] has finite center.

Example 3.4. Let G be a semisimple Lie group with finite center, let B be the Killing form

on the Lie algebra g of G, let θ : g→ g be a Cartan involution, let g = k⊕ p be the Cartan

decomposition with respect to θ, and let K be the analytic subgroup of G with Lie algebra

k. Then (G,K, θ, B) is a reductive Lie group.

Remark 3.5. The gradient flow method has been used for other studies. For instance,

a variety of algorithms in numerical analysis can be approached through gradient flows

on adjoint orbits associated with semisimple Lie groups [9]. The recent review [43] gives

a comprehensive account on the foundations of gradient flows on Riemannian manifolds

including new applications to quantum control. See also [3, 8, 12, 24, 47]. See [53] for some

study involving the sum of adjoint orbits associated with a compact connected Lie group.
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3.4 Examples

In this section, we show by examples that several results in [34] can be recovered from

our general results. Fréchet derivative is the main tool in [34] to derive various gradient

flows. Our approach in Theorem 3.1 is intrinsic, i.e., no ambient space is required as in

Fréchet differentiation.

Example 3.6. Consider the reductive group G = GLn(C) with Lie algebra g = gln(C)

and θ(X) = −X∗. Then g = k ⊕ p is just the Hermitian decomposition with k = u(n)

consisting of skew-Hermitian matrices and p = iu(n) consisting of Hermitian matrices. Let

the nondegenerate symmetric bilinear form be defined by B(X, Y ) = Re trXY for all X, Y ∈

g. Now Bθ(X, Y ) = Re trXY ∗ and the norm induced by Bθ is the Frobenius norm. Problem

(3.5) is then

min
U,V ∈U(n)

‖UAU∗ + V BV ∗ − C‖F . (3.18)

By Remark 3.3 (we cannot directly apply Theorem 3.1 since gln(C) is not semisimple) the

associated gradient flow becomes

dU

dt
= −dRU [θ(C − Ad (V )B),Ad (U)A]k = [(C∗ − V B∗V ∗), UAU∗]kU,

dV

dt
= −dRV [θ(C − Ad (U)A),Ad (V )B]k = [(C∗ − UA∗U∗), V BV ∗]kV,

which are exactly the formulae in [34, Section 2.4].

Example 3.7. Consider the group G = Up,q [29, p.115], whose Lie algebra is

up,q =


X1 Y

Y ∗ X2

 : X1 ∈ u(p), X2 ∈ u(q), Y ∈ Cp×q

 .
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Let θ(X) = Ip,qXIp,q where Ip,q = (−Ip)⊕ Iq. Then we have

k =


X1 0

0 X2

 : X1 ∈ u(p), X2 ∈ u(q)

 ,

p =


 0 Y

Y ∗ 0

 : Y ∈ Cp×q

 ,

K = U(p)× U(q) =


U 0

0 V ∗

 : U ∈ U(p), V ∗ ∈ U(q)

 .

The group action of K on p is given by

Â :=

 0 A

A∗ 0

 7→
U 0

0 V ∗


 0 A

A∗ 0


U∗ 0

0 V

 =

 0 UAV

(UAV )∗ 0

 ,

under which the orbit of Â ∈ p is the set

Ad (K)Â =


 0 UAV

(UAV )∗ 0

 : U ∈ U(p), V ∈ U(q)

 .

We set B(X, Y ) := Re trXY . For Â, B̂, Ĉ ∈ p, the minimization problem

min
k,h∈K

‖Ad (k)Â+ Ad (h)B̂ − Ĉ‖ (3.19)

is equivalent to

min
U,X∈U(p),V,Y ∈U(q)

‖UAV +XBY − C‖F , (3.20)

which is studied in [34, Section 3.1]. So we want to minimize the function

f(U, V,X, Y ) := Re tr (UAV (XBY − C)∗ −XBY C∗).
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Then from (3.14) the associated gradient flow to the minimization problem (3.19) becomes

dk

dt
= dRk(t)[Ĉ − Ad (h)B̂,Ad (k)Â], (3.21)

dh

dt
= dRh(t)[Ĉ − Ad (k)Â,Ad (h)B̂]. (3.22)

Set k = U ⊕ V ∗, h = X ⊕ Y ∗ ∈ K. Then (3.21) and (3.22) become

dU

dt
= −2{(UAV )(C −XBY )∗}u(p)U,

dV ∗

dt
= −2{(UAV )∗(C −XBY )}u(q)V

∗,

dX

dt
= −2{(XBY )(C − UAV )∗}u(p)X,

dY ∗

dt
= −2{(XBY )∗(C − UAV )}u(q)Y

∗,

which match the formulae in [34, Section 3.1].

Example 3.8. Consider the simple Lie algebra g = spn(R) and let θ(A) = −A> for all

A ∈ g. Then we have

spn(R) =


A1 A2

A3 −A>1

 : A>2 = A2, A
>
3 = A3, A1, A2, A3 ∈ Rn×n


K =


 U1 U2

−U2 U1

 : U>1 U1 + U>2 U2 = I, U>1 U2 = U>2 U1, U1, U2 ∈ Rn×n


k =


 A1 A2

−A2 A1

 : A>1 = −A1, A
>
2 = A2, A1, A2 ∈ Rn×n


p =


A1 A2

A2 −A1

 : A>1 = A1, A
>
2 = A2, A1, A2 ∈ Rn×n

 .
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As in [44], we identify K with U(n) through the map γ : K → U(n) defined by

γ

 U1 U2

−U2 U1

 = U1 + iU2.

The map γ preserves matrix multiplication as well as addition. We identify k with u(n) in

the same way. Let S denote the space of n× n complex symmetric matrices. We identify p

with S via the map δ : p→ S defined by

δ

A1 A2

A2 −A1

 = A2 + iA1.

Note that U−1 = U> for all U ∈ K and that for all A ∈ p,

δ(Ad (U)A) = δ


 U1 U2

−U2 U1


A1 A2

A2 −A1


 U1 U2

−U2 U1


−1

= (U1 + iU2)(A2 + iA1)(U1 + iU2)>.

Hence with these identifications, the adjoint action of K on p corresponds to the map A 7→

UAU> for A ∈ S and U ∈ U(n).

For A,B,C ∈ S, the minimization problem [34, Section 4.1]

min
U,V ∈U(n)

‖UAU> + V BV > − C‖
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corresponds to Problem (3.5) with g = spn(R) and A,B,C ∈ p. The associated gradient

flow is given by (3.14):

dU

dt
= −[Ad (U)A,C − Ad (V )B]U

= −(UAU>C̃ − C̃UAU>)U, (with C̃ = C − V BV >)

dV

dt
= −[Ad (V )B,C − Ad (U)A]V

= −(V BV >C̃ − C̃V BV >)V, (with C̃ = C − UAU>).

Remark 3.9. The results in [34, Section 4.1] are for all A,B,C ∈ Cn×n. When A,B,C ∈ S,

our results in Example 3.8 match [34].

3.5 Special Case: A ∈ p, B ∈ k

We now consider the special case of Problem (3.5) when A ∈ p and B ∈ k, or vice versa.

The consideration is mainly motivated by [34, Section 2.3] in which the reductive gln(C) is

studied. We first consider the semisimple case and then make a remark on the reductive

case. Let a be a maximal Abelian subspace of p. Let Wa = M ′/M be the Weyl group of G

relative to a, where

M = {k ∈ K : Ad (k)H = H for all H ∈ a},

M ′ = {k ∈ K : Ad (k)H ∈ a for all H ∈ a}.

Since M ′ and M have the same Lie algebra [23, p.284], Wa is a finite group. For each

w = kwM ∈ Wa, Ad kw : a→ a is independent of the representative kw ∈M ′ so that we may

regard Wa as a subgroup of GL(a). The root space decomposition of g with respect to a is

g = g0 ⊕
∑
α∈Σ

gα,
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where Σ is the root system and

gα = {X ∈ g : adH(X) = α(H)X for all H ∈ a}

for α ∈ a∗. The hyperplanes Pα = {H ∈ a : α(H) = 0} for α ∈ Σ divide a into finitely many

open convex cones, which are called Weyl chambers. The Weyl group acts transitively on

the Weyl chambers. Fix a Weyl chamber a+ and refer it as the fundamental Weyl chamber,

whose opposite Weyl chamber is then −a+. A root α is called positive if it is positive on

a+, and a positive root is called simple if it is not the sum of two positive roots. The set of

simple roots is denoted by ∆. For each root α the reflection sα about the hyperplane Pα in

a, with respect to Bθ, is a linear map given by

sα(H) = H − α(H)

α(Hα)
Hα, for all H ∈ a,

where Hα ∈ a is the element representing α, i.e., α(H) = Bθ(H,Hα) for all H ∈ a. It is

known that the Weyl group Wa is generated by the simple reflections sα for α ∈ ∆ [29,

Proposition 2.62, Theorem 6.57]. For each w ∈ Wa, define the length of w to be the smallest

integer l such that w can be expressed as a product of l simple reflections. There is a unique

element of maximal length [28, Section 1.8], which we denote by ωa and call the longest

element of Wa. This element is also uniquely characterized as the element in Wa that sends

the fundamental Weyl chamber a+ to −a+. So it is also known as the opposition element [42,

p.88]. For example, when g = sln(C) and a consists of diagonal matrices in p = isu(n), let

a+ be the set of diagonal matrices with non-increasing diagonal entries of zero trace. Then

we have

ωa(diag (a1, a2, . . . , an)) = diag (an, . . . , a2, a1) ∈ −a+.

There is another Weyl group associated with K that is different from the Weyl group

Wa of (g, a). By the proof of [30, Proposition 2.3], we have K = K0Z, where K0 is compact
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semisimple and Z is the center of K. Let T0 be any maximal Abelian subgroup of K0 and

t0 its Lie algebra. The Weyl group of (K0, T0), defined to be the quotient of the normalizer

of T0 in K modulo T0, acts by automorphisms of T0, hence by invertible operators on t0

and the maximal Abelian subalgebra t = t0 ⊕ z of k, where z is the Lie algebra of Z. We

therefore define in this way the Weyl group Wt for a fixed maximal Abelian subalgebra t of k.

A fundamental Weyl chamber (t0)+ in t0 gives a corresponding fundamental Weyl chamber

t+ = (t0)+⊕ z in t. The longest element wt of Wt is the one that sends the fundamental Weyl

chamber t+ to −t+.

Let the notations be as above. Note that p = Ad (K)a [29, p.378] and the Weyl groups

defined above can be viewed as subgroups of AdK. Since A,C − θC ∈ p, there exist

k′, u ∈ K such that Ad (k′)A ∈ a+ and Ad (u)(C − θC)/2 ∈ a+. Since B,C + θC ∈ k, there

exist h′, v ∈ K such that Ad (h′)B ∈ t+ and Ad (v)(C + θC)/2 ∈ t+.

Lemma 3.10. Let X, Y ∈ a (respectively, t). Suppose that ω1 · X and Y are in the same

Weyl chamber and that ω2 ·X and Y are in opposite Weyl chambers. Then

‖Y − ω1 ·X‖ ≤ ‖Y − ω ·X‖ ≤ ‖Y − ω2 ·X‖

for all ω ∈ Wa (respectively, Wt).

Proof. Note that Wa and Wt can be viewed as subgroups of AdK. The Killing form is

AdK-invariant, so it is both Wa-invariant and Wt-invariant. Thus the Bθ-induced norm

‖ · ‖, which is convex, is also both Wa-invariant and Wt-invariant. The lemma then follows

from [25, Corollary 3.10, Proposition 2.8].

For the special case when A ∈ p and B ∈ k, the minimization problem (3.5) has a

solution. The following result extends [34, Theorem 2.1].

Theorem 3.11. Let A ∈ p, B ∈ k, and C ∈ g. Let k′, u ∈ K such that Ad (k′)A ∈ a+ and

Ad (u)(C−θC)/2 ∈ a+, and let h′, v ∈ K such that Ad (h′)B ∈ t+ and Ad (v)(C+θC)/2 ∈ t+.
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Then

min
k,h∈K

‖Ad (k)A+ Ad (h)B − C‖2

= ‖Ad (u−1k′)A+ Ad (v−1h′)B − C‖2 (3.23)

= ‖Ad (u−1k′)A− (C − θC)/2‖2

+‖Ad (v−1h′)B − (C + θC)/2‖2

and

max
k,h∈K

‖Ad (k)A+ Ad (h)B − C‖2

= ‖Ad (u−1)ω−1
a · Ad (k′)A+ Ad (v−1)ω−1

t · Ad (h′)B − C‖2 (3.24)

= ‖Ad (u−1)ω−1
a · Ad (k′)A− (C − θC)/2‖2 +

‖Ad (v−1)ω−1
t · Ad (h′)B − (C + θC)/2‖2,

where ωa and ωt are the longest elements of the Weyl groups Wa and Wt, respectively.

Proof. Since k and p are orthogonal under Bθ and k and p are invariant under AdK, we have

‖Ad (k)A+ Ad (h)B − C‖2

= ‖(Ad (k)A− (C − θC)/2) + (Ad (h)B − (C + θC)/2)‖2

= ‖Ad (k)A− (C − θC)/2‖2 + ‖Ad (h)B − (C + θC)/2‖2.

So

min
k,h∈K

‖Ad (k)A+ Ad (h)B − C‖2

= min
k∈K
‖Ad (k)A− (C − θC)/2‖2 + min

h∈K
‖Ad (h)B − (C + θC)/2‖2
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and

max
k,h∈K

‖Ad (k)A+ Ad (h)B − C‖2

= max
k∈K
‖Ad (k)A− (C − θC)/2‖2 + max

h∈K
‖Ad (h)B − (C + θC)/2‖2.

Noting that Wa ⊂ AdK and Wt ⊂ AdK and that the longest Weyl group element maps a

Weyl chamber to its opposite chamber, the result then follows from Lemma 3.10.

Example 3.12. We would like to use sln(R) = k⊕p with n = 2m ≥ 2 to illustrate Theorem

3.11. Here k = so(n) and p is the space of n×n real symmetric matrices of zero trace. Thus

K = SO(n). We may choose [7, p.219]

t =


 0 α1

−α1 0

⊕ · · · ⊕
 0 αm

−αm 0

 : α1, . . . , αm ∈ R


t+ =


 0 α1

−α1 0

⊕ · · · ⊕
 0 αm

−αm 0

 : α1 ≥ · · · ≥ αm−1 ≥ |αm|


a = {diag (α1, . . . , αn) : α1, . . . , αn ∈ R,

n∑
i=1

ai = 0}

a+ = {diag (α1, . . . , αn) : α1 ≥ · · · ≥ αn,
n∑
i=1

ai = 0}.

The Weyl group Wa acts as the symmetric group Sn on a, i.e.,

diag (α1, . . . , αn)→ diag (ασ(1), . . . , ασ(n)), σ ∈ Sn

and the Weyl group Wt acts on t in the following way

 0 α1

−α1 0

⊕ · · · ⊕
 0 αm

−αm 0

→
 0 ±ασ(1)

∓ασ(1) 0

⊕ · · · ⊕
 0 ±ασ(m)

∓ασ(m) 0
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in which the total number of sign changes on α’s is even and σ ∈ Sm.

Suppose C ∈ sln(R). According to the Hermitian decomposition and the spectral de-

composition of real symmetric and skew symmetric matrices,

C = U


 0 g1

−g1 0

⊕ · · · ⊕
 0 gm

−gm 0


U−1 + V diag (f1, . . . , fn)V −1 (3.25)

for some U, V ∈ SO(n), g1 ≥ · · · ≥ gm−1 ≥ |gm|, and f1 ≥ · · · ≥ fn.

Let A ∈ p and B ∈ k. Then

A = Zdiag (a1, . . . , an)Z−1 (3.26)

and

B = W


 0 b1

−b1 0

⊕ · · · ⊕
 0 bm

−bm 0


W−1 (3.27)

for some Z,W ∈ SO(n), b1 ≥ · · · ≥ bm−1 ≥ |bm|, and a1 ≥ · · · ≥ an. The Killing form of

sln(R) [23, p.180, p.186] is B(X, Y ) = 2ntrXY . Since θ(X) = −X>,

Bθ(X, Y ) = −B(X, θY ) = 2ntrXY >

and

‖X‖2 = 2ntrXX>,

a scalar multiple of the Frobenius norm. By Theorem 3.11

min
k,h∈SO(n)

‖kAk−1 + hBh−1 − C‖2 = 2n

(
n∑
j=1

|fj − aj|2 + 2
m∑
j=1

|gj − bj|2
)
. (3.28)

Note that the scalar multiple 2n is not in [34, Theorem 2.1] because the Frobenius norm is

used there.
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The longest element of Wa sends

diag (α1, . . . , αn)→ diag (αn, . . . , α1)

and the longest element [42, p.88] of Wt sends

 0 α1

−α1 0

⊕ · · · ⊕
 0 αm

−αm 0



→



 0 −α1

α1 0

⊕ · · · ⊕
 0 −αm

αm 0

 if m is even

 0 −α1

α1 0

⊕ · · · ⊕
 0 −αm−1

αm−1 0

⊕
 0 αm

−αm 0

 if m is odd

So

max
k,h∈SO(n)

‖kAk−1 + hBh−1 − C‖2

=



2n(
∑n

j=1 |fj − an−j+1|2

+2
∑m

j=1 |gj + bj|2) if m is even

2n(
∑n

j=1 |fj − an−j+1|2

+2(
∑m−1

j=1 |gj + bj|2 + |gm − bm|2)) if m is odd

(3.29)

However when we view C ∈ sln(C) = su(n)⊕ isu(n),

C = iU1diag (g1, . . . , gm−1, |gm|,−|gm|,−gm−1, . . . ,−g1)U−1
1

+V diag (f1, . . . , fn)V −1
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for some U1 ∈ SU(n). Similarly viewA ∈ isu(n) andB ∈ su(n) so thatA = Zdiag (a1, . . . , an)Z−1

as before and

B = iW1diag (b1, . . . , bm−1, |bm|,−|bm|,−bm−1, . . . ,−b1)W−1
1

for some W1 ∈ SU(n). By Theorem 3.11 or [34, Theorem 2.1],

min
k,h∈SU(n)

‖kAk−1 + hBh−1 − C‖2

= 2n

(
n∑
j=1

|fj − aj|2 + 2(
m−1∑
j=1

|gj − bj|2 + | |gm| − |bm| |2)

)
. (3.30)

Clearly (3.30) is smaller than or equal to (3.28) because of the triangle inequality | |gm| −

|bm| | ≤ |gm − bm|. Indeed SO(n) ⊂ SU(n) is the underlying reason.

The two Weyl groups Wa and Wt for sln(C) are equal to Sn. So by Theorem 3.11 or [34,

Theorem 2.1],

max
k,h∈SU(n)

‖kAk−1 + hBh−1 − C‖2

= 2n(
n∑
j=1

|fj − an−j+1|2 + 2(
m−1∑
j=1

|gj + bj|2 + (|gm|+ |bm|)2)) (3.31)

which is independent of the parity of m.

In conclusion, given C ∈ g = k ⊕ p ⊂ gC, A ∈ p and B ∈ k, where gC = u ⊕ iu

(u = k⊕ ip so that A ∈ iu and B ∈ u) is the complexification of g, it may not be true that

the corresponding extrema given in Theorem 3.11 are the same for g and gC.

Theorem 3.13. Let C ∈ Rn×n, A ∈ Rn×n be symmetric with eigenvalues a1 ≥ · · · ≥

an and B ∈ Rn×n be skew symmetric with eigenvalues ±ib1, . . . ,±ibm when n = 2m and

±ib1, . . . ,±ibm, 0 when n = 2m + 1. Let A,B,C have decompositions (3.26), (3.27) and

(3.25) respectively, with f1 ≥ · · · ≥ fn and

1. b1 ≥ · · · ≥ bm−1 ≥ |bm| and g1 ≥ · · · ≥ gm−1 ≥ |gm| when n = 2m
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2. b1 ≥ · · · ≥ bm ≥ 0 and g1 ≥ · · · ≥ gm ≥ 0 when n = 2m+ 1.

Let ‖ · ‖ be the Frobenius norm on Rn×n. Then

{‖kAk−1 + hBh−1 − C‖2 : k, h ∈ SO(n)} = [`0, L0].

1. If n = 2m, then

`0 =
n∑
j=1

|fj − aj|2 + 2
m∑
j=1

|gj − bj|2 (3.32)

and

L0 =



∑n
j=1 |fj − an−j+1|2 + 2

∑m
j=1 |gj + bj|2 if m even∑n

j=1 |fj − an−j+1|2 + 2(
∑m−1

j=1 |gj + bj|2

+|gm − bm|2) if m odd

(3.33)

2. If n = 2m+ 1, then

`0 =
n∑
j=1

|fj − aj|2 + 2
m∑
j=1

|gj − bj|2

L0 =
n∑
j=1

|fj − an−j+1|2 + 2
m∑
j=1

|gj + bj|2.

Proof. Note that the subspaces of symmetric matrices and skew symmetric matrices of Rn×n

are orthogonal with respect to the inner product (X, Y ) = trXY >. So

‖kAk−1 + hBh−1 − C‖2 = ‖kAk−1 − (C + C>)/2‖2 + ‖hBh−1 − (C − C>)/2‖2.

Hence

`0 = min
k∈SO(n)

‖kAk−1 − (C + C>)/2‖2 + min
h∈SO(n)

‖hBh−1 − (C − C>)/2‖2.
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Consider n = 2m. For the first term using (3.28) (dropping the scalar 2n and with B = 0

and C − C> = 0 in mind) and for the second term using [34, Theorem 2.1] (with A = 0

and C + C> = 0 in mind), we have `0. Similarly from (3.29) we have L0. The odd case is

simpler.

Remark 3.14. Theorem 3.11 is also true for reductive Lie groups with connected K (so

the Weyl group Wt is defined). For example, the reductive group (GLn(C),U(n), θ, B) with

θ(X) = −X∗ and B(X, Y ) = trXY yields [34, Theorem 2.1].

The reductive group (GLn(R),O(n), θ, B) with θ(X) = −X> and B(X, Y ) = trXY

has non-connected K = O(n). Now k = so(n) and p is the space of n × n real symmetric

matrices. Though K = O(n) is not connected, O(n) = SO(n) ∪ ŜO(n) where

ŜO(n) = diag (−1, 1, . . . , 1)SO(n)

is the set of orthogonal matrices with determinant −1. So we cannot apply Theorem 3.11

directly. But the problem can be solved by two approaches. The first approach is to use

O(n) = SO(n)∪ ŜO(n) and apply Example 3.12. The second approach is to use O(n) ⊂ U(n)

and apply [34, Theorem 2.1] as follows.

We only consider even n since the odd case is similar. Let A ∈ p, B ∈ k and C ∈ gln(R).

Then

C = U


 0 g1

−g1 0

⊕ · · · ⊕
 0 gm

−gm 0


U−1 + V diag (f1, . . . , fn)V −1 (3.34)

for some U, V ∈ O(n), g1 ≥ · · · ≥ gm ≥ 0, and f1 ≥ · · · ≥ fn. Moreover

A = Zdiag (a1, . . . , an)Z−1 (3.35)
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and

B = W


 0 b1

−b1 0

⊕ · · · ⊕
 0 bm

−bm 0


W−1 (3.36)

for some Z,W ∈ O(n), b1 ≥ · · · ≥ bm ≥ 0, and a1 ≥ · · · ≥ an. Since O(n) ⊂ U(n), by [34,

Theorem 2.1]

min
k,h∈O(n)

‖kAk−1 + hBh−1 − C‖2 ≥ min
k,h∈U(n)

‖kAk−1 + hBh−1 − C‖2

=
n∑
j=1

|fj − aj|2 + 2
m∑
j=1

|gj − bj|2,

where ‖ · ‖ denotes the Frobenius norm. Clearly the right side is attainable so we have

min
k,h∈O(n)

‖kAk−1 + hBh−1 − C‖2 =
n∑
j=1

|fj − aj|2 + 2
m∑
j=1

|gj − bj|2. (3.37)

Similarly

max
k,h∈O(n)

‖kAk−1 + hBh−1 − C‖2 =
n∑
j=1

|fj − an−j+1|2 + 2
m∑
j=1

|gj + bj|2. (3.38)

The outcomes are identical to those [34, Theorem 2.1] if we view A,B,C ∈ gln(C).

The following summaries the above discussion and asserts that the set {‖kAk−1 +

hBh−1 − C‖2 : k, h ∈ O(n)} is connected though O(n) is not.

Theorem 3.15. Let C ∈ Rn×n, A ∈ Rn×n be symmetric with eigenvalues a1 ≥ · · · ≥

an and B ∈ Rn×n be skew symmetric with eigenvalues ±ib1, . . . ,±ibm when n = 2m and

±ib1, . . . ,±ibm, 0 when n = 2m + 1 (b1 ≥ · · · ≥ bm ≥ 0). Let A,B,C have decompositions

(3.35), (3.36) and (3.34) respectively. Let ‖ · ‖ be the Frobenius norm on Rn×n. Then

{‖kAk−1 + hBh−1 − C‖2 : k, h ∈ O(n)} = [`, L],
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where

` =
n∑
j=1

|fj − aj|2 + 2
m∑
j=1

|gj − bj|2

L =
n∑
j=1

|fj − an−j+1|2 + 2
m∑
j=1

|gj + bj|2.

Proof. We only deal with the even case n = 2m (the odd case is simpler). We have already

established (3.37) and (3.38). Let

S := {‖kAk−1 + hBh−1 − C‖2 : k, h ∈ O(n)}.

The set S contains

S1 = {‖kA1k
−1 + hB1h

−1 − C1‖2 : k, h ∈ SO(n)}

in which A1, B1, C1 are A,B,C as in (3.35) (3.36), (3.34) respectively and in addition

U,Z,W ∈ SO(n) (we can also assume V ∈ SO(n) otherwise replace V by V diag (−1, 1, . . . , 1)).

Now S1 is an interval since SO(n) is compact connected, i.e., S1 = [`1, L1]. By Theorem 3.13

`1 =
n∑
j=1

|fj − aj|2 + 2
m∑
j=1

|gj − bj|2 = `

and

L1 =


∑n

j=1 |fj − an−j+1|2 + 2
∑m

j=1 |gj + bj|2 if m is even∑n
j=1 |fj − an−j+1|2 + 2(

∑m−1
j=1 |gj + bj|2 + |gm − bm|2) if m is odd

The set S also contains

S2 = {‖kA2k
−1 + hB2h

−1 − C2‖2 : k, h ∈ SO(n)} = [`2, L2]
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in which A2, B2, C2 are A,B,C as in (3.35) (3.36), (3.34) respectively except the last block

B2 is the negative of the last block of B and in addition U, V, Z,W ∈ SO(n) as before. Again

by Theorem 3.13

`2 =
n∑
j=1

|fj − aj|2 + 2(
m−1∑
j=1

|gj − bj|2 + |gm + bm|)

and

L2 =


∑n

j=1 |fj − an−j+1|2 + 2
∑m

j=1 |gj + bj|2 if m is odd∑n
j=1 |fj − an−j+1|2 + 2(

∑m−1
j=1 |gj + bj|2 + |gm − bm|2) if m is even

Note that L1 ≥ `2 ≥ `1 so S1 and S2 intersect. Moreover L = L1 ∈ S1 if m is even and

L = L2 ∈ S2 if m is odd. We then have the desired result.

3.6 Global Extrema

The gradient flow we obtained in Section 3.3 could be used to design an algorithm to

solve Problem (3.5) as the following coupled discretized gradient system alike [34]:

km+1 = km exp{−αm[θ(C − Ad (hm)B),Ad (km)A]k}, m = 1, 2, . . .

hm+1 = hm exp{−βm[θ(C − Ad (km)A),Ad (hm)B]k}, m = 1, 2, . . .

where αm, βm > 0 are the steps. But the gradient flow method has pitfalls of local minima.

We now consider a special case: B = 0 and A,C ∈ p. So the problem is to study

the distance between C and the adjoint orbit Ad (K)A of A. Such problem would have a

unique local minimum except for a measure zero set of A and C. Since B = 0 and A,C ∈ p,

Problem (3.5) becomes

min
k∈K
‖Ad (k)A− C‖, (3.39)
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which is equivalent to the problem

max
k∈K

B(Ad (k)A,C). (3.40)

Let a be a maximal Abelian subspace of p. Since p = Ad (K)a and the Killing form B is

AdK-invariant, we may assume that A,C ∈ a. Define a smooth function fC,A : K → R as

fC,A(k) = B(Ad (k)A,C).

This induces a function f̂C,A : K/KA → R since K/KA ≈ Ad (K)A [49, p.214], where

KA := {k ∈ K : Ad (k)A = A} is the centralizer of A in K.

The set of non-regular elements in a is of measure zero, since it is the union of finite

many hyperplanes in a. If C is regular, then f̂C,A is a Morse function on K/KA. If in addition

A and C are in the same Weyl chamber, then fC,A has a unique local minimum and local

maximum (which are global minimum and maximum) [49, Proposition 4.4].

As an example, consider G = GLn(C). Without loss of generality we may assume that

A = diag (a1, . . . , an) and C = diag (c1, . . . , cn) with a1 ≥ · · · ≥ an and c1 ≥ · · · ≥ cn. Then

(3.40) becomes

max
U∈U(n)

trCUAU∗. (3.41)

It is well known that for (3.41) the global maximum is
∑n

i=1 aici. The permutation matrix

group {Pσ : σ ∈ Sn} ⊂ U(n) is part of the critical set of fC,A. For each σ ∈ Sn,
∑n

i=1 aicσi is

a critical value of fC,A. Under the assumption that A and C are regular, i.e., a1 > · · · > an

and c1 > · · · > cn, the optimization problem (3.39) has a unique local (global) minimum [12,

Theorem 4.1]. A similar result is true for GLn(R).
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Chapter 4

Convexity of Generalized Numerical Ranges Associated with Lie Algebras

This chapter is essentially a brief survey on some generalized numerical ranges associated

with Lie algebras. The classical numerical range of a complex square matrix is the image of

the unit sphere under the quadratic form. One of the most beautiful properties is that the

numerical range of a matrix is always convex. We give another proof of the convexity of a

generalized numerical range associated with a compact Lie group via a connectedness result

of Atiyah and a Hessian index result of Duistermaat, Kolk and Varadarajan.

4.1 Classical Numerical Range

Let Cn (resp., Rn) be the vector space of all n-tuple complex (resp., real) numbers.

Let Cn×n denote the set of all complex n × n matrices. The (classical) numerical range of

A ∈ Cn×n is the set

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} ⊂ C,

which is the image of the unit sphere in Cn under the quadratic map x 7→ x∗Ax. Toeplitz-

Hausdorff theorem [48, 22] asserts that W (A) is convex for all A ∈ Cn×n, which perhaps

is the most interesting property of numerical range. See [13] for an interesting geometric

proof. The following is a collection of some other nice properties of numerical range, for

which proofs and references can be found in [18, 26].

Proposition 4.1. The following statements hold for all A ∈ Cn×n.

(1) W (A) is compact.

(2) σ(A) ⊂ W (A), where σ(A) is the spectrum of A.
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(3) W (A+ αI) = W (A) + α for all α ∈ C, where I ∈ Cn×n is the identity matrix.

(4) W (αA) = αW (A) for all α ∈ C.

(5) W (U∗AU) = W (A) for all U ∈ U(n), where U(n) is the unitary group.

(6) W (A) = convσ(A) if A is normal, where convσ(A) is the convex hull of σ(A).

(7) W (A⊕B) = conv (W (A) ∪W (B)) for any B ∈ Ck×k with k ∈ N.

(8) W (S) ⊂ W (A) for any principal submatrix S of A.

(9) If A ∈ C2×2 has eigenvalues λ1 and λ2, then W (A) is an elliptical disk with λ1 and λ2

as foci, and minor axis of length
√

tr (A∗A)− |λ1|2 − |λ2|2.

4.2 Generalized Numerical Ranges

There are many generalizations of the classical numerical range motivated by theo-

ries and applications in the last decades [20, 33]. Halmos [21] introduced the notion of

k-numerical range of A ∈ Cn×n for 1 ≤ k ≤ n, which is defined by

Wk(A) =

{
k∑
i=1

x∗iAxi : x1, . . . , xk are orthonormal in Cn

}
.

He conjectured and Berger [2] proved that Wk(A) is always convex. Westwick [51] further

generalized the k-numerical range to the c-numerical range of A ∈ Cn×n for c ∈ Cn defined

by

Wc(A) =

{
n∑
i=1

cix
∗
iAxi : x1, . . . , xn are orthonormal in Cn

}
.

Westwick proved that Wc(A) is always convex if c ∈ Rn and fails to be convex if c ∈ Cn

in general. Let c = (c1, . . . , cn)> and C = diag (c1, . . . , cn). Then one sees that µ ∈ Wc(A)

if and only if µ ∈ tr (CU∗AU) for some U ∈ U(n), where U(n) denotes the unitary group.

This observation motivates the definition of C-numerical range of A ∈ Cn×n for a general
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C ∈ Cn×n defined by

WC(A) = {tr (CU∗AU) : U ∈ U(n)}.

This notion was first introduced by Goldberg and Straus in [19]. Note that WC(A) is the

image of the unitary orbit

U(A) = {U∗AU : U ∈ U(n)}.

under the linear functional on Cn×n represented by C. Clearly WC(A) = WA(C) and

WC(A) = WC(U∗AU) for all U ∈ U(n). Cheung and Tsing [11] proved that WC(A) is

star-shaped.

4.3 Generalized Numerical Ranges Associated with Lie Algebras

4.3.1 Compact Case

Let C ∈ Cn×n be Hermitian and let A ∈ Cn×n. Let A = A1 + iA2 be a Hermitian

decomposition, where A1 and A2 are Hermitian. Then WC(A) can be identified with

WC(A1, A2) := {(trCU∗A1U, trCU
∗A2U) : U ∈ U(n)} ⊂ R2.

Note that U(n) is a compact connected Lie group, whose Lie algebra u(n) consists of all

n× n skew Hermitian matrices. If B ∈ Cn×n is Hermitian, then iB, iC ∈ u(n) and

tr (CU∗BU) = tr (BUCU∗) = −tr (iB)U(iC)U∗.

Thus one can assume that A1, A2, C ∈ u(n) when concerning convexity of WC(A1, A2).

Westwick’s proof uses the idea of Hausdorff’s connectedness argument. He considered

the function fB : U(n)/D(n) → R given by fB([U ]) = trCU∗BU , where B,C ∈ Cn×n

are Hermitian, D(n) is the subgroup of diagonal matrices in U(n), and [U ] = D(n)U for
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U ∈ U(n). He showed that f−1
B (c) is connected for any c ∈ R. Räıs [40] pointed out that

there is a gap in Westwick’s proof since the eigenvalues of C and B are assumed distinct.

Motivated by Westwick’s paper, Räıs [40] considered a generalized numerical range

associated with a compact Lie group. The following is Räıs [40] consideration. Let K be

a compact connected Lie group with Lie algebra k. Let 〈·, ·〉 be any AdK-invariant inner

product on k, i.e.,

〈Ad (k)X,Ad (k)Y 〉 = 〈X, Y 〉, ∀X, Y ∈ k,∀k ∈ K.

For any X1, X2, C ∈ k, the C-numerical range of the pair (X1, X2) is defined by

WC(X1, X2) = {(〈X1,Ad (k)C〉, 〈X2,Ad (k)C〉) : k ∈ K}.

Tam [46] proved that WC(X1, X2) is convex in R2. One may also consider the joint C-

numerical range of X1, . . . , Xp ∈ k defined by

WC(X1, . . . , Xp) = {(〈X1,Ad (k)C〉, . . . , 〈Xp,Ad (k)C〉) : k ∈ K}.

Tam’s result is best possible in the sense that WC(X1, . . . , Xp) fails to be convex in general

if p ≥ 3 [6]. The main ideas in Tam’s proof are applying a connectedness result of Atiyah [1]

and using the symplectic structure of the co-adjoint orbit. Then the connectedness of the

fibres of the map πC : Ad (K)X → R defined by

πC(Y ) = 〈C, Y 〉, ∀Y ∈ Ad (K)X

is established. The convexity of WC(X1, X2) then follows through rotation.

Very recently Markus and Tam [37] gave another proof of the convexity of WC(X1, X2).

Without using symplectic technique, they proved the connectedness of the fibres of the map
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fC,X : K → R for all C,X ∈ k defined by

fC,X(k) = 〈C,Ad (k)X〉, ∀k ∈ K.

The fibre connectedness result in the compact group K of Markus and Tam is clearly stronger

than the fibre connectedness result in the adjoint orbit Ad (K)X:

K
Ad (·)X //

fC,X ��

Ad (K)X

πC
zz

R

since the map Ad (·)X : K 7→ Ad (K)X is continuous.

We shall give a third convexity proof (see Remark 4.10) via a connectedness result of

Atiyah [1] and a Hessian index result of Duistermaat, Kolk and Varadarajan [16].

It is worthwhile to note that one may further assume that K is semisimple when con-

cerning the convexity of WC(X1, X2). Since K is compact, we have K = Z0Ks = KsZ0 [29,

Prop 4.29] and k = ks ⊕ z, where Ks is semisimple with Lie algebra ks, Z0 is the identity

component of the center Z of K, and z0 is the Lie algebra of Z. Since AdZ is trivial and

AdK acts trivially on z, for any A = As +A0 with As ∈ ks and A0 ∈ z and for any k = ksz0

with ks ∈ Ks and z0 ∈ Z0, we have Ad (k)A = Ad (ks)As + A0. Thus

WC(X1, X2) = {(〈X1s,Ad (ks)Cs〉, 〈X2s,Ad (ks)Cs〉) : ks ∈ Ks}+ c,

where c ∈ R2 is a constant and X1s, X2s, Cs ∈ ks.

4.3.2 Complex Semisimple Case

Tam [45] considered a generalized C-numerical range in the context of complex semisim-

ple Lie algebras. Let g be a complex semisimple Lie algebra and let k be a compact real form

of g. Then g = k⊕ ik is a Cartan decomposition of g with a corresponding Cartan involution
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θ. The Killing form B induces an inner product Bθ on g defined by

Bθ(X, Y ) = −B(X, θY ), ∀X, Y ∈ g.

Let G be a connected complex Lie group with Lie algebra g and let K be the analytic

subgroup of G with Lie algebra k. Given X,C ∈ g, the C-numerical range of X is defined

by

WC(X) = {Bθ(C,Ad (k)X) : k ∈ K}. (4.1)

Note that the usual C-numerical range is for the reductive Lie algebra gln(C) and that the

compact case is essentially a special one with X ∈ k. Tam [45] conjectured that for any

X ∈ g and f ∈ g∗, the dual space of g, the set f(Ad (K)X) is star-shaped with respect to

the origin.

The adjoint orbit Ad (K)X depends only on Ad GK, the analytic subgroup of the adjoint

group Int g corresponding to ad gk, and thus Ad (K)X is independent of the choice of G. Let

t be a maximal abelian subalgebra of k. Then h = t ⊕ it is a Cartan subalgebra of g. Let

g = h⊕
⊕
α∈∆

gα be the root space decomposition of g with respect to h, where

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ h},

∆ = {α ∈ h∗ : α 6= 0 and dim gα 6= 0}.

Since B(gα, gβ) = 0 whenever α + β 6= 0, we have the orthogonal projection π : g → h.

Cheung and Tam [10] proved that π(Ad (K)X) is star-shaped in h with star center 0 for all

X ∈ g. They further affirmed Tam’s conjecture for the complex simple Lie algebras of type

B [10]. The conjecture is valid for simple Lie algebras of type A [11], D,E6 and E7 [15]; it

remains unknown for type C,E8, F4 and G2.
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4.3.3 Real Semisimple Case

Li and Tam [35] generalized C-numerical range in the context of real semisimple Lie

algebras. Let g be a real semisimple Lie algebra. Let G be a connected real semisimple Lie

group with Lie algebra g. Let g = k ⊕ p be the Cartan decomposition of g corresponding

to a Cartan involution θ, where k and p are the +1 and −1 eigenspaces of θ, respectively.

The Killing form B is positive definite on p and negative definite on k. Let K be the

analytic subgroup of G with Lie algebra k. For C,X1, . . . , Xp ∈ p, the C-numerical range of

(X1, . . . , Xp) is defined by

WC(X1, . . . , Xp) = {(B(C,Ad (k)X1), . . . , B(C,Ad (k)Xp)) : k ∈ K}. (4.2)

Since Ad (K)X is independent of the choice of connected G, so is (4.2). Li and Tam [35]

proved thatWC(X1, X2) is convex for all classical real simple Lie algebras except sl2(R). They

also investigated WC(X1, X2, X3) case by case for each classical real simple Lie algebra. It

would be nice if we can show the convexity results of [35] in a unified way.

Remark 4.2. Reductive Lie algebras have similar structures with semisimple ones (see

Remark 3.3). Thus the C-numerical range (4.2) is also well defined for reductive Lie algebras.

We begin with the notation of Morse function [38]. Let M be a manifold and f : M → R

a smooth function. A point p ∈ M is called a critical point of f if the differential map

dfp : Tp(M) → Tf(p)(R) is trivial. If p is a critical point of f , the Hessian Hp of f at p is a

symmetric bilinear form on Tp(M) defined by

Hp(v, w) = Vp(Wf), ∀v, w ∈ Tp(M),

where V and W are vector fields extended by v and w (i.e., Vp = v,Wp = w), respectively,

and where Wf ∈ C∞(M) is defined by (Wf)(q) = Wq(f) for all q ∈ M . It is symmetric
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because

Vp(Wf)−Wp(V f) = [V,W ]p(f) = 0

where [V,W ] is the Poisson bracket of V and W , and where [V,W ]p(f) = 0 since p is a

critical point. It is well-defined because Vp(Wf) = v(Wf) is independent of the extension

V of v, while Wp(V f) is independent of W . If we choose a local chart about p, the Hessian

can be represented by a real symmetric matrix. The index of Hp, referred to as the index of

f at p, is the maximal dimension of a subspace of Tp(M) on which Hp is negative definite, or

equivalently the number of negative eigenvalues of the matrix associated with Hp. A smooth

function on a manifold is called a Morse function if its Hessian is nondegenerate at every

critical point. A Morse-Bott function [4, 5] is a smooth function on a manifold whose critical

set is a closed submanifold and whose Hessian is nondegenerate in the normal direction.

Equivalently, the kernel of the Hessian at a critical point equals the tangent space to the

critical submanifold.

Now let a be a maximal Abelian subspace of p and let g = k ⊕ a ⊕ n be a Iwasawa

decomposition of g. Let G = KAN be the corresponding Iwasawa decomposition of G. Let

W = W (G,A) = M ′/M be the Weyl group of G relative to A, where M ′ and M are the

normalizer and centralizer of A in K, respectively. For C,X ∈ p, we consider the smooth

function fC,X : K → R defined by

fC,X(k) = B(C,Ad (k)X). (4.3)

The C-numerical range WC(X, Y ) with C,X, Y ∈ p is convex if every fibre f−1
C,X(c) with

c ∈ R is connected (or empty) in K. Since p = ∪k∈KAd (k)a and B is AdK-invariant, we

can assume that C,X ∈ a.

Example 4.3. Let g = sl2(R) and G = SL2(R). Up to a multiple of 4, the Killing form

is given by B(X, Y ) = trXY for all X, Y ∈ g. Let the Cartan involution θ be defined by
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θ(X) = −X> for all X ∈ g. Then

p =


a b

b −a

 : a, b ∈ R


k = so(2) =


 0 c

−c 0

 : c ∈ R


K = SO(2) =


 cos θ sin θ

− sin θ cos θ

 : θ ∈ R

 .

Let a =


a 0

0 −a

 : a ∈ R

. Pick C = X =

1 0

0 −1

 ∈ a, Y =

0 1

1 0

 ∈ p.

For k =

 cos θ sin θ

− sin θ cos θ

, we have fC,X(k) = tr (CkXk−1) = 2 cos 2θ. Thus the fibre

f−1
C,X(2) =


1 0

0 1

 ,

−1 0

0 −1


 is clearly not connected in K. In fact, the C-numerical

range of (X, Y ) is not convex. More precisely, WC(X, Y ) = {(2 cos 2θ, 2 sin 2θ) : θ ∈ R} is a

circle on R2.

For eachX ∈ a, letKX andWX denote the centralizers ofX inK and inW , respectively.

It is obviously that M ⊂ KX , which guarantees that the notion KCwKX makes sense for

w ∈ W . The following two lemmas show that fC,X is a Morse-Bott function.

Lemma 4.4. ([16, p.314–316], [49, p.214]) The critical set of fC,X is

KC,X = {k ∈ K : [C,Ad (k)X] = 0}

=
⋃
w∈W

KCwKX

=
⋃

w∈WC\W/WX

KCwKX
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where the second union is disjoint and over a complete set of double coset representatives.

Lemma 4.5. ([16, p.317] [49, p.216]) Let k = uxwv with u ∈ KC , v ∈ KX , and xw a

representative of w in K. The Hessian Hk of fC,X at k ∈ K is given by

Hk(dLk(Z), dLk(Z))

=
d2

dt2

∣∣∣
t=0
fC,X(k exp tZ)

= −
∑
α∈Σ+

α(X)(w · α)(C)‖Fα(Ad (v)Z)‖2, ∀Z ∈ k (4.4)

where dLk : k → Tk(K) denotes the differential at the identity of the left translation Lk :

K → K given by Lk(h) = kh and Fα : k → kα is an orthogonal projection. In particular,

fC,X is a Morse-Bott function and its index at k is

∑
α∈Σ+,α(X)(w·α)(C)>0

dim gα. (4.5)

Remark 4.6. For each α ∈ Σ+, define kvα = {Z ∈ k : Ad (v)Z ∈ kα}. On each subspace

kvα of k, depending on the value of α(X)(w · α)(C), exactly one of the following three cases

happens for the Hessian: (1) positive definite, (2) negative definite, (3) trivial.

Noting that Ad v : k→ k is nonsingular and that k = m⊕
⊕
α∈Σ+

kα (see Lemma 2.4), we

see dim kvα = dim kα = dim gα and k = Ad (v−1)m⊕
⊕
α∈Σ+

kvα. The index of fC,X is then

∑
α∈Σ+,α(X)(w·α)(C)>0

dim kvα =
∑

α∈Σ+,α(X)(w·α)(C)>0

dim gα.

The following example shows the explicit expression of the Hessian of fC,X for sln(C).

Example 4.7. Let g = sln(C) be viewed as a real semisimple Lie algebra. The Killing form

of g is given by B(X, Y ) = Re trXY for all X, Y ∈ g up to a scalar multiple of 4n. Let

the Cartan involution θ on g be defined by θ(X) = −X∗ for all X ∈ g. Then k = su(n),

K = SU(n), and p consists of Hermitian matrices in g. Let a ⊂ p be the subspace of (real)
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diagonal matrices. The root space decomposition of g with respect to a is

g = (a⊕ ia)⊕
⊕
i 6=j

CEij,

where Eij is the matrix with 1 at the (i, j)-entry and 0 elsewhere. The root system is

Σ = {ei − ej : 1 ≤ i 6= j ≤ n}, where ei ∈ a∗ sends A ∈ a to the i-th diagonal entry of

A. The Weyl group W is isomorphic to the group Pn of permutation matrices. Let a+ ⊂ a

be the fundamental Weyl chamber consisting of all diagonal matrices whose diagonal entries

are in descending order. The set of positive roots is then Σ+ = {ei − ej : 1 ≤ i < j ≤ n}.

For each α = ei − ej ∈ Σ+, kα = {cEij − cEji : c ∈ C}. Pick C = diag (c1, . . . , cn), X =

diag (x1, . . . , xn) ∈ a. The centralizers KC (resp., KX) of C (resp., X) in K consists of

all matrices in SU(n) that commute with C (resp., X). The critical set of fC,X is thus

KC,X = KCPnKX . For each k = UPV with U ∈ KC , P ∈ Pn, and V ∈ KX , the Hessian of

fC,X at k is

−
∑
α∈Σ+

(w · α)(C)α(X)‖Fα(Ad (v)Z)‖2, Z ∈ su(n)

= −8n
∑
i<j

((PCP−1)ii − (PCP−1)jj)(xi − xj) · |(V ZV −1)ij|2.

The index of fC,X at k is

∑
i<j,((PCP−1)ii−(PCP−1)jj)(xi−xj)>0

dimR(CEij)

= 2 · |{(i, j) : 1 ≤ i < j ≤ n and ((PCP−1)ii − (PCP−1)jj)(xi − xj) > 0}|

The following lemma of Atiyah is crucial.
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Lemma 4.8. [1, p.4] Let f : M → R be a Morse-Bott function on a compact connected

manifold M . If neither f nor −f has a critical manifold of index 1, then f−1(c) is connected

(or empty) for every c ∈ R.

The above lemmas enable one to focus on the computation of the index

∑
α∈Σ+,α(X)(w·α)(C)>0

dim gα

of fC,X in (4.5) and the index

∑
α∈Σ+,α(X)(w·α)(C)<0

dim gα

of −fC,X . If neither of them is 1, the convexity of WC(X, Y ) follows for real semisimple Lie

groups G with finite center (in which case K is compact). As an application, we have the

convexity of the C-numerical range for complex semisimple Lie groups.

Theorem 4.9. Let G be a complex semisimple Lie group viewed as a real Lie group, and

let g = k⊕ p with p = ik be a Cartan decomposition of the (real) Lie algebra g of G. Then

the C-numerical range WC(X, Y ) defined in (4.2) is convex for all C,X, Y ∈ p.

Proof. Note that K is compact since k is a compact real form of g. Since g is complex

semisimple, each gα has even dimension over R [49, p.217] and thus the indices of fC,X and

−fC,X are both even. By Atiyah’s lemma f−1
C,X(c) is connected for all c ∈ R. Rotating

WC(X, Y ) anti-clockwise by an angle θ ∈ R yields WC(X ′, Y ′), where

(X ′, Y ′) = (cos θX + sin θY,− sin θX + cos θY ) ∈ p× p.

It follows that the intersection of WC(X, Y ) with every straight line is connected, whence

WC(X, Y ) is convex.
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Remark 4.10. Since p = ik in Theorem 4.9. It is essentially the same as the compact case

discussed in Section 4.3.1. This gives a third proof of Tam’s result in [46].

The following example shows that the index condition is sufficient but not necessary for

convexity of C-numerical range.

Example 4.11. Let g = sl3(R) and G = SL3(R). Let the Cartan involution θ be defined

by θ(X) = −X> for all X ∈ g. Then k = so(3), K = SO(3), and p is the space of all

traceless symmetric matrices. Let a ⊂ p be the subspace of diagonal matrices. The root

space decomposition of g relative to a is

g = a⊕
⊕
i 6=j

REij.

The root system is Σ = {ei − ej : 1 ≤ i 6= j ≤ 3}. The centralizer M of a in K consists of

diagonal matrices in SO(3), and the normalizer of a in K consists of generalized permutation

matrices in SO(3) whose nonzero entries are either 1 or−1. Thus the Weyl group W = M ′/M

is isomorphic to the group P3 of permutation matrices. Let a+ ⊂ a be the fundamental Weyl

chamber consisting of all diagonal matrices whose diagonal entries are in descending order.

The set of positive roots is then Σ+ = {e1 − e2, e2 − e3, e1 − e3}. Now pick C,X ∈ a+ and

consider the map fC,X : SO(3) → R as defined in (4.3). Obviously KC = KX = M . By

Lemma 4.4, the critical manifold of fC,X is KC,X = KCWKX = M ′. Because α(X) > 0 and

dim gα = 1 for all α ∈ Σ+, the index given by (4.5) is equal to the number of positive roots

sent to positive roots by the w ∈ W under consideration. Since WC and WX are trivial, each

Weyl group element can appear for some k ∈ KC,X . Therefore we have the following six

cases for the index of fC,X with the notations that α1 := e1− e2, α2 := e2− e3, α3 := e1− e3.

Case 1: w =


1 0 0

0 1 0

0 0 1

. Since w · α1 = α1, w · α2 = α2, w · α3 = α3, the index is 3.
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Case 2: w =


0 1 0

1 0 0

0 0 1

. Since w · α1 = −α1, w · α2 = α3, w · α3 = α2, the index is 2.

Case 3: w =


1 0 0

0 0 1

0 1 0

. Since w · α1 = α3, w · α2 = −α2, w · α3 = α1, the index is 2.

Case 4: w =


0 0 1

0 1 0

1 0 0

. Since w · α1 = −α2, w · α2 = −α1, w · α3 = −α3, the index is

0.

Case 5: w =


0 0 1

1 0 0

0 1 0

. Since w ·α1 = α2, w ·α2 = −α3, w ·α3 = −α1, the index is 1.

Case 6: w =


0 1 0

0 0 1

1 0 0

. Since w ·α1 = −α3, w ·α2 = α1, w ·α3 = −α2, the index is 1.

Now dimK = dim SO(3) = 3. This shows that for g = sl3(R) the condition of Lemma

4.8 is not satisfied, but WC(X, Y ) is still convex [6].
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École Norm. Sup., (4) 6 (1973), 413–455.

[31] A. Knutson and T. Tao, Honeycombs and sums of Hermitian matrices, Notices Amer.
Math. Soc., 48 (2001), 175–186.

[32] J. Lee, Introduction to Smooth Manifolds, Springer-Verlag, New York, 2002.

[33] C. K. Li, C-numerical ranges and C-numerical radii, Linear Multilinear Algebra, 37
(1994), 51–82.

58



[34] C. K. Li, Y. T. Poon, and T. Schulte-Herbrüggen, Least-squares approximation by
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