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Abstract

We say that a graph G is (δ, r)-balanced if the degree of each vertex in G is congruent

to r (mod δ) and no two degrees differ by more than δ. In this paper, we give necessary and

sufficient conditions for the existence of a (δ, r)-balanced graph with e edges on n vertices.

In the case of bipartite graphs where each partition is modular balanced with the same δ

but possibly different remainders, Yuceturk gave necessary and sufficient conditions for the

existence of such a graph with a list of exceptions in [8] for δ = 2. We state a similar result

for δ = 3 and note that the list of exceptions for any higher δ can be found with similar

methods. Additionally, we present some partial results from Anti-Ramsey theory which deals

with extremal edge colorings of graphs that avoid certain colorings of subgraphs.
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Chapter 1

Modular Balance

1.1 Definitions

Throughout the paper, G will denote a finite, simple graph with vertex set V (G) and

edge set E(G). Let φ : X → Z and let A ⊆ X. φ is balanced on A if for any a, b ∈ A,

|φ(a) − φ(b)| ≤ 1. For a simple graph G, we say that A ⊆ V (G) is balanced if the vertex

degree function is balanced on A. If A = V (G), we say that G is balanced if V (G) is balanced.

An integer vector (a1, a2, ..., an) is balanced if |aj −ai| ≤ 1 for all 1 ≤ i, j ≤ n. Thus, a graph

is balanced if its degree sequence is balanced.

If δ, r are integers such that 0 ≤ r ≤ δ − 1 and n is a positive integer, we say that the

integer vector (a1, a2, ..., an) is (δ, r)-balanced if ai ≡ r(mod δ) for 1 ≤ i ≤ n and |aj−ai| ≤ δ

for all 1 ≤ i, j ≤ n. We say that a simple graph G is (δ, r)-balanced if the degree sequence

of G is (δ, r)-balanced.

Theorem 1.1 Let δ, r, s be non-negative integers with r ≤ δ− 1 and n be a positive integer.

There is a (δ, r)-balanced non-negative integer vector v = (v1, v2, v3, ..., vn) with n coordinates

summing to s if and only if:

i) nr ≤ s

ii) nr ≡ s (mod δ)

Furthermore, if these conditions hold, every such vector consists of:

n− ( s−nr
δ

)(mod n) coordinates equal to ⌊ s−nr
δn

⌋δ + r

( s−nr
δ

)(mod n) coordinates equal to ⌈ s−nr
δn

⌉δ + r

Proof (⇒) Since each coordinate of v must be at least r, i) is clearly necessary. For any

coordinate vi of v, vi = r + biδ for some non-negative integer bi, thus:

1



s =
n∑

i=1

r + biδ = nr +
n∑

i=1

biδ ≡ nr(mod δ)

(⇐) Suppose we have δ, r, s, non-negative integers with r ≤ δ − 1 and n, a positive integer

such that i) and ii) are satisfied.

We will construct our (δ, r)-balanced non-negative integer vector v = (v1, v2, v3, ..., vn)

by first setting each coordinate of v to r. Note that:

s = ( s−nr
δ

)δ + nr = n(( s−nr
δn

)δ) + nr

Where s−nr
δ

is the non-negative integer (an integer since nr ≡ s (mod δ)) number of copies

of δ that must be added to the coordinates of v to bring the sum up to s. The number of

copies of δ that each coordinate receives on average, s−nr
δn

, is not necessarily an integer.

n((⌊ s−nr
δn

⌋)δ) + nr ≤ s ≤ n((⌈ s−nr
δn

⌉)δ) + nr

Thus, to maintain (δ, r)-balance, each coordinate of v must get at least ⌊ s−nr
δn

⌋ copies of

δ and no more than ⌈ s−nr
δn

⌉ copies. So, the only possible entries of v are ⌊ s−nr
δn

⌋δ + r and

⌈ s−nr
δn

⌉δ + r.

We can note here that if s−nr
δn

is an integer, we have equality in the string of inequalities

above and each coordinate of v is exactly ( s−nr
δn

)δ + r.

For 0 ≤ j ≤ ⌊ s−nr
δn

⌋, all coordinates of v must be at least r + jδ before any can be

increased to r + (j + 1)δ. Thus, s−nr
δ

(mod n) coordinates of v will get one more copy of δ

than the remaining n− ( s−nr
δ

(mod n)) coordinates.

Corollary 1.1 If G is a (δ, r)-balanced graph on n vertices with e edges then:

i) nr ≤ 2e

ii) nr ≡ 2e (mod δ)

iii) e = nr
2
+ (2e−nr

2δ
)δ

2



Furthermore, the degree sequence of G consists of:

n− (2e−nr
δ

)(mod n) coordinates equal to ⌊2e−nr
δn

⌋δ + r

(2e−nr
δ

)(mod n) coordinates equal to ⌈2e−nr
δn

⌉δ + r

Proof Clear since the sum of the degree sequence of G is 2e. For iii), recall that 2e = s =

( s−nr
δ

)δ + nr.

The main question will be, for what values of n, e, δ, and r does there exist a (δ, r)-

balanced graph with e edges on n vertices? A necessary condition would be that if r is odd

and δ is even then n must be even because all vertex degrees in such a (δ, r)-balanced graph

would be odd.

Given integers δ, r such that 0 ≤ r ≤ δ − 1 and positive integer n > r, we will first

determine the possible numbers of edges with the only requirements being that the resultant

degree sequence is (δ, r)-balanced and the degree sum is even. Afterwards, we will determine

which of these sequences are actually graphic, that is, which of them are the degree sequence

of a simple graph. Throughout, for a given δ, r, n, let m be the integer such that mδ + r <

n ≤ (m+ 1)δ + r.

1.2 Possible Degree Sequences

We will proceed by cases based on the parities of n, δ and r, giving us eight total cases.

As mentioned before, the case where n is odd, δ is even, and r is odd produces only sequences

with an odd number of odd degrees. There are no (δ, r)-balanced graphs in this case.

The seven remaining cases will be handled by grouping them together as follows:

Group 1: Three remaining cases where δ is even: (n odd, δ even, r even), (n even, δ even,

r odd), (n even, δ even, r even)

3



Group 2: Cases where δ is odd and at least one of n, r is even: (n even, δ odd, r odd), (n

even, δ odd, r even), (n odd, δ odd, r even)

Group 3: Case where n, δ, r are all odd.

Within each group, let [e0, e1, e2, ..., emax] be the increasing list of possible edge numbers

for that group. That is, the edge numbers whose degree sequence is (δ, r)-balanced and

whose degree sum is even.

Group 1: First note that an even δ means that all available degrees will have the same

parity. The smallest possible edge number, e0, will have degree sequence (r, r, r, ..., r, r︸ ︷︷ ︸
n

).

Since at least one of n and r is even, nr is even and e0 =
nr
2
.

Given a possible edge number ei with degree sequence (cδ+ r, cδ+ r, ..., cδ+ r, (c−1)δ+

r, (c − 1)δ + r, ..., (c − 1)δ + r) and even degree sum s, we can increase one of the smaller

degrees by δ, maintaining the (δ, r)-balance and increasing our degree sum to s+ δ, still an

even number. Note that this is the smallest increment we can add to the degree sum and

maintain (δ, r)-balance. This increases the edge number by δ
2
. That is, ei+1 = ei +

δ
2
.

The largest possible edge number will have degree sequence (mδ + r,mδ + r, ...,mδ + r︸ ︷︷ ︸
n

),

giving us emax = nr
2
+ nm

2
δ.

So, given n, δ, r fitting one of the cases in this group, possible edge numbers will be of

the form:

ek =
nr
2
+ k

2
δ, k ∈ [0, 1, 2, ..., nm]

Furthermore, by Corollary 1.1, k
2
= 2e−nr

2δ
and thus k = 2e−nr

δ
, the degree sequence for

ek will consist of:

n− (k)(mod n) entries of degree ⌊ k
n
⌋δ + r

(k)(mod n) entries of degree ⌈ k
n
⌉δ + r

Group 2: As with Group 1, the smallest possible edge number for Group 2 will be e0 =
nr
2

with degree sequence (r, r, r, ..., r, r︸ ︷︷ ︸
n

) since in each case, at least one of n and r is even.

4



Suppose we have a possible edge number ei with degrees (c − 1)δ + r and cδ + r and

even degree sum s. Increasing a single degree by δ will yield a degree sum of s + δ, an odd

number since δ is odd. Increasing two degrees by δ will give us a degree sum of s + 2δ, an

even number. To maintain (δ, r)-balance, we increase two (c−1)δ+r entries by δ or, if there

is only one (c− 1)δ + r entry, increase that entry and one of the cδ + r entries by δ as well.

Thus, our degree sum must increase by 2δ and our edge number will increase by δ. That is,

ei+1 = ei + δ.

In the two cases here where n is even, the largest possible edge number will have degree

sequence (mδ + r,mδ + r, ...,mδ + r︸ ︷︷ ︸
n

). Whether mδ + r is even or odd, n(mδ + r) will be

an even degree sum. In the lone case where n is odd, if m is even, then mδ + r is even

since δ is odd and r is even. This means (mδ + r,mδ + r, ...,mδ + r︸ ︷︷ ︸
n

) is still a possible degree

sequence. In all of the above instances, the largest degree sum is n(mδ + r) and the largest

edge number is emax = nr
2
+ nm

2
δ.

In the case that n,m are both odd our largest degree sequence will be (mδ + r,mδ +

r, ...mδ+ r, (m− 1)δ+ r) with degree sum (n− 1)(mδ+ r) + (m− 1)δ+ r = (nm− 1)δ+ nr

and edge number emax = nr
2
+ nm−1

2
δ. Thus, for all cases in this group we can write the

largest edge number as emax = nr
2
+ ⌊nm

2
⌋δ

So, for n, δ, r that fit the conditions of this group, possible edge numbers will be of the

form:

ek =
nr
2
+ kδ, k ∈ [0, 1, 2, ..., ⌊nm

2
⌋]

Furthermore, Corollary 1.1 tells us that k = 2e−nr
2δ

and so 2k = 2e−nr
δ

and the degree

sequence of ek will consist of:

n− (2k)(mod n) entries of degree ⌊2k
n
⌋δ + r

(2k)(mod n) entries of degree ⌈2k
n
⌉δ + r

5



Group 3: For the single case in Group 3, (r, r, r, ..., r, r︸ ︷︷ ︸
n

) is not a possible degree sequence

since n and r are both odd. But nr+δ is even so we can increase a single degree by δ. Thus,

the first possible degree sequence will be (δ + r, r, r, ..., r︸ ︷︷ ︸
n−1

) with edge number e0 =
nr
2
+ δ

2
.

Suppose we have a possible edge number ei with the appropriate degree sequence and

even degree sum s. As in Group 2, an odd δ means that we must increase s by 2δ by adding

δ to two entries to maintain an even degree sum. This increases the edge number by δ,

ei+1 = ei + δ.

If m is odd, mδ + r is even since δ, r are odd. Thus, (mδ + r,mδ + r, ...,mδ + r︸ ︷︷ ︸
n

) is

the largest possible degree sequence since the degree sum n(mδ + r) is even. This gives us

emax = nr
2
+ nm

2
δ = nr

2
+ δ

2
+ nm−1

2
δ.

If m is even, mδ+ r is odd and thus (mδ+ r,mδ+ r, ...mδ+ r, (m− 1)δ+ r) will be our

largest possible degree sequence. Here, emax = nr
2
+ nm−1

2
δ = nr

2
+ δ

2
+ nm−2

2
δ.

In either case, we can write emax = nr
2
+ δ

2
+ ⌊nm−1

2
⌋δ.

So, if n, δ, r are all odd, our possible edge numbers will be:

ek =
nr
2
+ δ

2
+ kδ = nr

2
+ (k + 1

2
)δ, k ∈ [0, 1, 2, ..., ⌊nm−1

2
⌋]

By Corollary 1.1, each of these edge numbers implies a degree sequence with the following

entries:

n− (2k + 1)(mod n) entries of degree ⌊2k+1
n

⌋δ + r

(2k + 1)(mod n) entries of degree ⌈2k+1
n

⌉δ + r

Noting the pattern inherent in the results above, we can state the possible edge numbers

for a given n, δ, r as follows.

Theorem 1.2 Given integers δ, r such that 0 ≤ r ≤ δ − 1 and positive integer n > r such

that if δ is even then at least one of n, r is even, the possible edge numbers of a (δ, r)-balanced

graph on n vertices are of the form:

6



e = nr
2
+ lδ

l =


k
2
, k ∈ [0, 1, 2, ..., nm] if δ is even

k, k ∈ [0, 1, 2, ..., ⌊nm
2
⌋] if δ is odd and at least one of n, r is even

k + 1
2
, k ∈ [0, 1, 2, ..., ⌊nm−1

2
⌋] if δ, n, r are all odd

Additionally, each e implies a degree sequence consisting of:

n− (2l)(mod n) entries of degree ⌊2l
n
⌋δ + r

(2l)(mod n) entries of degree ⌈2l
n
⌉δ + r

1.3 Realizable Degree Sequences

Theorem 1.3 Let G be a simple graph on n = a1+ a2 vertices with a1 vertices of degree d1.

Call this set of vertices A1. Let the remaining a2 vertices have degree d2 and call this set of

vertices A2. Let x be the number of edges connecting two vertices in A1. Then the following

inequalities hold:

i) 0 ≤ x ≤ 1
2
a1(a1 − 1)

ii) 0 ≤ a1d1 − 2x ≤ a1a2

iii) 0 ≤ 1
2
(a2d2 − a1d1 + 2x) ≤ 1

2
a2(a2 − 1)

Proof The inequalities are clear from Figure 1.1.

a1 vertices of degree d1

x edges

a2 vertices of degree d2

1

2
(a2d2 − (a1d1 − 2x)) edges

} a1d1 − 2x edges

A1

A2

Figure 1.1: Distribution of edges in G
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The values in the middle of each string of inequalities are the number of edges i) between

vertices in A1, ii) with one end vertex in A1 and one end vertex in A2, and iii) between

vertices in A2. Thus, the left bound in each is clear and the right bound is the maximum

number of possible edges of each type.

We will use these two lemmas, both proven in [4].

Lemma 1.1 ([4]) There is a bipartite graph with e edges on bipartition (A,B) where A, B

are balanced if and only if 0 ≤ e ≤ ab where a = |V (A)| and b = |V (B)|.

Lemma 1.2 ([4]) There is a simple, balanced graph on n vertices with e edges if and only

if 0 ≤ e ≤
(
n

2

)
.

Additionally, we will call on the following elementary lemmas relating to balanced integer

vectors.

Lemma 1.3 Let v1 = (α, α, ..., α︸ ︷︷ ︸
i

, α + 1, α + 1, ..., α + 1) and v2 = (β, β, ..., β︸ ︷︷ ︸
j

, β − 1, β −

1, ..., β− 1) be balanced integer vectors of length n. Then v1+ v2 is a balanced integer vector.

Proof If i ≤ j, then

v1 + v2 = (α + β, ..., α + β︸ ︷︷ ︸
i

, α + 1 + β, ..., α + 1 + β︸ ︷︷ ︸
j−i

, α + β, ..., α + β︸ ︷︷ ︸
n−j

)

which is a balanced vector.

If i > j, then

v1 + v2 = (α + β, ..., α + β︸ ︷︷ ︸
j

, α + β − 1, ..., α + β − 1︸ ︷︷ ︸
i−j

, α + β, ..., α + β︸ ︷︷ ︸
n−i

)

another balanced vector.
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Lemma 1.4 Let v1 = (δ1, δ2, δ3, ..., δn) be a balanced nonnegative integer vector. If
n∑

i=1

δi =

λn for some integer λ, then δi = λ for all i.

Proof Suppose δj < λ for some 1 ≤ j ≤ n. Then
n∑

i=1

δi ≤ δj +
n−1∑
i=1

λ < λn. Similarly, no δj

can be greater than λ.

Theorem 1.4 Let a1, a2, d1, d2, and x be nonnegative integers such that a2d2−a1d1 is even.

If the following system of inequalities holds, then there exists a simple graph consisting of a1

vertices of degree d1 and a2 vertices of degree d2:

i) 0 ≤ x ≤ 1
2
a1(a1 − 1)

ii) 0 ≤ a1d1 − 2x ≤ a1a2

iii) 0 ≤ 1
2
(a2d2 − a1d1 + 2x) ≤ 1

2
a2(a2 − 1)

Proof By ii and Lemma 1.1, there is a bipartite graph with a1d1 − 2x edges on bipartition

(A,B) where |A| = a1, |B| = a2, and A, B are both balanced. Form such a graph and call

it G1.

By i and Lemma 1.2, there is a simple, balanced graph on a1 vertices with x edges. Form

such a graph on A and call it G2. Since a2d2 − a1d1 is even and thus 1
2
(a2d2 − a1d1 + 2x)

is an integer, iii and Lemma 1.2 imply that there is a simple, balanced graph on a2 vertices

with 1
2
(a2d2 − a1d1 + 2x) edges. Form such a graph on B and call it G3.

Consider G = G1

∪
G2

∪
G3. By Lemma 1.3, it is possible to form G such that A and

B are both balanced in G.

There will be 2x+(a1d1−2x) = a1d1 edge ends in A. Thus, the degree sequence of A is

a balanced vector and the sum of its entries is an integer multiple of the number of entries.

By Lemma 1.4, the degree of each of the a1 vertices in A must be d1.

9



Similarly, there will be (a2d2−a1d1+2x)+(a1d1−2x) = a2d2 edge ends in B. Again, we

have a balanced degree sequence whose sum is an integer multiple of the number of entries,

showing that all a2 vertices in B have degree d2.

Note that the values for a1, a2, d1, d2 coming from any possible number of edges from

the previous section will yield an even a2d2 − a1d1.

We can isolate the variable x in the system of inequalities appearing in the previous two

theorems, giving us the system:

i) 0 ≤ x ≤ 1
2
a1(a1 − 1)

ii) 1
2
a1(d1 − a2) ≤ x ≤ 1

2
a1d1

iii) 1
2
(a1d1 − a2d2) ≤ x ≤ 1

2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)

This system will have a solution for x if each of the nine inequalities created by picking

one of the lower bounds and one of the upper bounds has a solution for x. We will write

this system as:

0

1
2
a1(d1 − a2)

1
2
(a1d1 − a2d2)

 ≤ x ≤


1
2
a1(a1 − 1)

1
2
a1d1

1
2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)

We can now combine the two theorems above, specifying properties of a1, a2, d1, d2 that

will come from the possible edge numbers generated in the previous section.

Theorem 1.5 Let a1, a2, d1, d2, n, and e be nonnegative integers such that a1 + a2 = n and

a1d1+a2d2 = 2e. Then there exists a simple graph on n vertices with a1 vertices of degree d1

and a2 vertices of degree d2 if and only if there is an integer solution to the following system

of inequalities:

0

1
2
a1(d1 − a2)

1
2
(a1d1 − a2d2)

 ≤ x ≤


1
2
a1(a1 − 1)

1
2
a1d1

1
2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)
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Theorem 1.6 Let a1, a2, d1, d2, n, and e be nonnegative integers such that a1 + a2 = n and

a1d1+a2d2 = 2e. If the following system of inequalities has a solution, then it has an integer

solution.

0

1
2
a1(d1 − a2)

1
2
(a1d1 − a2d2)

 ≤ x ≤


1
2
a1(a1 − 1)

1
2
a1d1

1
2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)

Proof We will verify that in each of the nine strings of inequalities, at least one of the bounds

is an integer and thus, if there is a solution, there is an integer solution. We first note that

0 and 1
2
a1(a1 − 1) are always integers and thus any of the inequality strings involving them

will have an integer solution, provided the string has a solution.

Since a1d1 + a2d2 = 2e, either a1d1 and a2d2 are both even or they are both odd. Thus,

a1d1 − a2d2 is even. So, 1
2
(a1d1 − a2d2) is an integer. Also, 1

2
a2(a2 − 1) + 1

2
(a1d1 − a2d2) is

an integer since 1
2
a2(a2 − 1) is an integer. This takes care of all strings of inequalities except

for:

1
2
a1(d1 − a2) ≤ x ≤ 1

2
a1d1

1
2
a1d1 is an integer unless a1 and d1 are both odd. Suppose this is the case. Then a1d1

is odd and so a2d2 must also be odd, implying that a2 is odd. Thus, d1 − a2 is even and

1
2
a1(d1 − a2) is an integer.

So, we only need to determine whether the strings of inequalities have a solution, equiv-

alent to determining whether the following system of inequalities holds.

0

1
2
a1(d1 − a2)

1
2
(a1d1 − a2d2)

 ≤


1
2
a1(a1 − 1)

1
2
a1d1

1
2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)
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Theorem 1.7 If a1, a2, d1, d2, n, and e are nonnegative integers such that d1, d2 ≤ n − 1,

a1 + a2 = n, a1d1 + a2d2 = 2e, then the system of inequalities above is equivalent to the

system:

a2d2 − a1d1 ≤ a2(a2 − 1)

a1d1 − a2d2 ≤ a1(a1 − 1)

Proof The original system includes the nine inequalities:

i) 0 ≤ 1
2
a1(a1 − 1)

ii) 0 ≤ 1
2
a1d1

iii) 0 ≤ 1
2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)

iv) 1
2
a1(d1 − a2) ≤ 1

2
a1(a1 − 1)

v) 1
2
a1(d1 − a2) ≤ 1

2
a1d1

vi) 1
2
a1(d1 − a2) ≤ 1

2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)

vii) 1
2
(a1d1 − a2d2) ≤ 1

2
a1(a1 − 1)

viii) 1
2
(a1d1 − a2d2) ≤ 1

2
a1d1

ix) 1
2
(a1d1 − a2d2) ≤ 1

2
a2(a2 − 1) + 1

2
(a1d1 − a2d2)

Since a1, a2, d1, and d2 are all nonnegative, i, ii, v, viii, and ix are clearly true. Consider

iv and note that if a1 = 0, the inequality is true. If a1 ̸= 0:

1

2
a1(d1 − a2) ≤

1

2
a1(a1 − 1)

d1 − a2 ≤ a1 − 1

d1 ≤ a1 + a2 − 1

d1 ≤ n− 1

This was one of our assumptions, so iv will be true.
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Consider vi and note that if a2 = 0, the inequality is true. If a2 ̸= 0:

1

2
a1(d1 − a2) ≤

1

2
a2(a2 − 1) +

1

2
(a1d1 − a2d2)

a1d1 − a1a2 ≤ a2(a2 − 1) + a1d1 − a2d2

−a1a2 ≤ a2(a2 − 1)− a2d2

−a1 ≤ a2 − 1− d2

d2 ≤ a1 + a2 − 1 = n− 1

This was an assumption, and so the inequality is true. We are left with inequalities iii and

vii, which can be rewritten as:

a2d2 − a1d1 ≤ a2(a2 − 1)

a1d1 − a2d2 ≤ a1(a1 − 1)

Theorem 1.8 The two inequalities:

i) a2d2 − a1d1 ≤ a2(a2 − 1)

ii) a1d1 − a2d2 ≤ a1(a1 − 1)

are equivalent to the following string of inequalities:

a1d1 −
(
a1
2

)
≤ e ≤

(
a2
2

)
+ a1d1

13



Proof Inequality i can be rewritten as follows by substituting 2e− a1d1 for a2d2.

(2e− a1d1)− a1d1 ≤ a2(a2 − 1)

2e ≤ a2(a2 − 1) + 2a1d1

e ≤ 1

2
a2(a2 − 1) + a1d1 =

(
a2
2

)
+ a1d1

We proceed analogously for inequality ii.

a1d1 − (2e− a1d1) ≤ a1(a1 − 1)

−2e ≤ a1(a1 − 1)− 2a1d1

e ≥ a1d1 −
1

2
a1(a1 − 1) = a1d1 −

(
a1
2

)

This yields our desired string of inequalities.

So, we can combine all of our results in this section and state this theorem on the

existence of graphs in which each vertex has one of two possible degrees.

Theorem 1.9 Let a1, a2, d1, d2, n, and e be nonnegative integers such that d1, d2 ≤ n − 1,

a1 + a2 = n, and a1d1 + a2d2 = 2e. Then there exists a simple graph on n vertices with a1

vertices of degree d1 and a2 vertices of degree d2 if and only if:

a1d1 −
(
a1
2

)
≤ e ≤

(
a2
2

)
+ a1d1
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1.4 Main Result

By combining the results of Theorem 1.2 and Theorem 1.9 we can reach the main

conclusion of this chapter.

Theorem 1.10 Let n, e, and δ be positive integers. Let r be an integer such that 0 ≤ r < δ

and r < n. Let m be the integer such that mδ+r < n ≤ (m+1)δ+r. There is a (δ, r)-balanced

graph with e edges on n vertices if and only if e = nr
2
+ lδ such that:

nr
2
+ lδ ≥ (n− (2l)(mod n))(⌊2l

n
⌋δ + r)−

(
n−(2l)(mod n)

2

)
nr
2
+ lδ ≤

(
(2l)(mod n)

2

)
+ (n− (2l)(mod n))(⌊2l

n
⌋δ + r)

where l =


k
2
, k ∈ [0, 1, 2, ..., nm] if δ is even

k, k ∈ [0, 1, 2, ..., ⌊nm
2
⌋] if δ is odd and at least one of n, r is even

k + 1
2
, k ∈ [0, 1, 2, ..., ⌊nm−1

2
⌋] if δ, n, r are all odd

1.5 A Note on Duality

Theorem 1.11 There is a simple graph G with e edges on n = a1+ a2 vertices such that a1

vertices have degree d1 and a2 vertices have degree d2 if and only if there is a simple graph

G∗with

(
n

2

)
− e edges on n = a1 + a2 vertices such that a1 vertices have degree (n− 1)− d1

and a2 vertices have degree (n− 1)− d2.

Proof This is clear since G∗ = Kn − E(G) and G = Kn − E(G∗).

Corollary 1.2 If G is (δ, r)-balanced, then:

i) (n− 1)− d1 ≡ (n− 1)− d2 ≡ ((n− 1)− r)(mod δ)

ii) |((n− 1)− d1)− ((n− 1)− d2)| = |d2 − d1| ≤ δ
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Proof Let d be the degree of a vertex of G. Since G is (δ, r)-balanced, d = pδ + r for some

0 ≤ p ≤ m, so (n − 1) − d = (n − 1) − r − pδ ≡ ((n − 1) − r)(mod δ). This shows i. ii is

obvious.

Corollary 1.3 If G is is (δ, r)-balanced, then G∗ is (δ, (n− 1)− r −mδ)-balanced.

Proof By i in the corollary above, the remainder for G∗ is (n − 1) − r − µδ for some

nonnegative integer µ such that:

0 ≤ (n− 1)− r − µδ < δ

Since mδ + r ≤ n− 1:

(n− 1)− r −mδ = (n− 1)− (mδ + r) ≥ 0

Also, (m+ 1)δ + r > n− 1, so:

(n− 1)− ((m+ 1)δ + r) < 0

(n− 1)− (mδ + r)− δ < 0

(n− 1)− (mδ + r) < δ
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Chapter 2

Balanced Bipartite Graphs

2.1 Bipartite Graphs with Four Degrees

The following theorem, found in [8], gives necessary and sufficient conditions for the

existence of a simple, bipartite graph in which each partition consists of vertices of one of

two degrees.

Theorem 2.1 Let a1, a2, b1, b2, d1, d2, f1, f2 be nonnegative integers. There is a simple, bi-

partite graph on bipartition (A,B) such that A consists of a1 vertices of degree d1 and a2

vertices of degree d2 and B consists of b1 vertices of degree f1 and b2 vertices of degree f2 if

and only if

a1d1 + a2d2 = b1f1 + b2f2

and the following inequalities are all satisfied:

i) a1d1 ≤ a1b1 + b2f2 or, equivalently b1f1 ≤ a1b1 + a2d2

ii) a1d1 ≤ a1b2 + b1f1 or, equivalently b2f2 ≤ a1b2 + a2d2

iii) b1f1 ≤ a2b1 + a1d1 or, equivalently a2d2 ≤ a2b1 + b2f2

iv) b2f2 ≤ a2b2 + a1d1 or, equivalently a2d2 ≤ a2b2 + b1f1

v) a1 = 0 or d1 ≤ b1 + b2

vi) a2 = 0 or d2 ≤ b1 + b2

vii) b1 = 0 or f1 ≤ a1 + a2

viii) b2 = 0 or f2 ≤ a1 + a2

Proof Note that each side of the first equality counts the number of edges and so is necessary.

Also note that it can be used to see the equivalent inequalities in conditions i through iv.
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First, we will show that the existence of such a graph is equivalent to a particular

system of inequalities having a solution. We will then show that the system is equivalent to

conditions i through viii. Assume we have a simple, bipartite graph on bipartition (A,B)

such that A consists of a1 vertices of degree d1 and a2 vertices of degree d2 and B consists

of b1 vertices of degree f1 and b2 vertices of degree f2.

Let A1 be the set of vertices of degree a1 and A2 be the set of vertices of degree a2 in

A. Similarly, we have B1 and B2. Suppose there are x edges between A1 and B1. Then the

distribution of edges can be summarized as follows:

B1 B2

A1 x a1d1 − x
A2 b1f1 − x a2d2 − b1f1 + x = b2f2 − a1d1 + x

Table 2.1: Distribution of Edges

Furthermore, we get the following inequalities based on the maximum and minimum

number of possible edges of each type.

0 ≤ x ≤ a1b1

0 ≤ a1d1 − x ≤ a1b2

0 ≤ b1f1 − x ≤ a2b1

0 ≤ a2d2 − b1f1 + x ≤ a2b2

Isolating x in each of them gives us the system of sixteen inequalities:

0

a1d1 − a1b2

b1f1 − a2b1

b1f1 − a2d2


≤ x ≤



a1b1

a1d1

b1f1

a2b2 − a2d2 + b1f1

Now, suppose that we have nonnegative integers a1, a2, b1, b2, d1, d2, f1, f2 and disjoint

sets of vertices A1, A2, B1, B2 such that |A1| = a1, |A2| = a2, |B1| = b1, |B2| = b2. Also,

suppose that there is a solution, x, to the system above.
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We can use the construction found in [4] to form a simple, bipartite graph G1 with x

edges between A1 and B1 such that both parts are balanced. Similarly we can form a simple,

bipartite graph G2 with a1d1 − x vertices between A1 and B2 so that parts are balanced.

If we consider G1

∪
G2, we can arrange the vertices such that A1 will be balanced by

Lemma 1.3 and each degree in the degree sequence of A1 will be d1 by Lemma 1.4. We can

construct additional bipartite graphs from A2 to B1 and B2 with b1f1−x and a2d2− b1f1+x

edges respectively. As before, the lemmas guarantee we can arrange vertices to get the

desired graph with four degrees.

Again, suppose that we have nonnegative integers a1, a2, b1, b2, d1, d2, f1, f2. We will now

show that the system of sixteen inequalities below is equivalent to conditions i through viii

stated in the theorem.

0

a1d1 − a1b2

b1f1 − a2b1

b1f1 − a2d2


≤



a1b1

a1d1

b1f1

a2b2 − a2d2 + b1f1

Starting with the inequalities that have 0 on the left, the following are all clear.

0 ≤ a1b1

0 ≤ a1d1

0 ≤ b1f1

The last one is equivalent to condition iv.

0 ≤ a2b2 − a2d2 + b1f1

a2d2 ≤ a2b2 + b1f1
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Moving to the inequalities with a1d1−a1b2 on the left, the first is equivalent to condition

v.

a1d1 − a1b2 ≤ a1b1

a1d1 ≤ a1b1 + a1b2

d1 ≤ b1 + b2

The second is clear.

a1d1 − a1b2 ≤ a1d1

0 ≤ a1b2

The third is equivalent to condition ii.

a1d1 − a1b2 ≤ b1f1

a1d1 ≤ a1b2 + b1f1

If we recall that a1d1 + a2d2 = b1f1 + b2f2, the fourth is equivalent to condition viii.

a1d1 − a1b2 ≤ a2b2 − a2d2 + b1f1

a1d1 + a2d2 ≤ a2b2 + b1f1 + a1b2

b1f1 + b2f2 ≤ a2b2 + b1f1 + a1b2

b2f2 ≤ a2b2 + a1b2

f2 ≤ a2 + a1
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Now, the inequalities with b1f1 − a2b1 on the left. The first is equivalent to condition

vii.

b1f1 − a2b1 ≤ a1b1

b1f1 ≤ a1b1 + a2b1

f1 ≤ a1 + a2

The second is equivalent to condition iii.

b1f1 − a2b1 ≤ a1d1

b1f1 ≤ a1d1 + a2b1

The third is clear.

b1f1 − a2b1 ≤ b1f1

0 ≤ a2b1

The fourth is equivalent to condition vi.

b1f1 − a2b1 ≤ a2b2 − a2d2 + b1f1

−a2b1 ≤ a2b2 − a2d2

a2d2 ≤ a2b1 + a2b2

d2 ≤ b1 + b2
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Finally, consider the inequalities with b1f1 − a2d2 on the left. The first is equivalent to

condition i, the last of the conditions we needed to show.

b1f1 − a2d2 ≤ a1b1

b1f1 ≤ a1b1 + a2d2

Noting that a1d1 + a2d2 = b1f1 + b2f2, the second is clear.

b1f1 − a2d2 ≤ a1d1

b1f1 ≤ a1d1 + a2d2

b1f1 ≤ b1f1 + b2f2

0 ≤ b2f2

The third is clear.

b1f1 − a2d2 ≤ b1f1

0 ≤ a2d2

To complete the proof, the fourth is clear as well.

b1f1 − a2d2 ≤ a2b2 − a2d2 + b1f1

0 ≤ a2b2
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2.2 Modular Balanced Bipartite Graphs

Let a, b be positive integers, e be a nonnegative integer and let ra, rb, δ be integers such

that 0 ≤ ra, rb ≤ δ−1. We say that the bipartite graph G with e edges on bipartition (A,B),

with |A| = a and |B| = b, is (δ, ra, rb)-balanced if:

i) For all u ∈ A, dG(u) ≡ ra(mod δ) and furthermore for all v ∈ A, |dG(u)− dG(v)| ≤ δ

ii) For all u ∈ B, dG(u) ≡ rb(mod δ) and furthermore for all v ∈ B, |dG(u)− dG(v)| ≤ δ

Lemma 2.1 Let a, b be positive integers, e be a nonnegative integer and let ra, rb, δ be inte-

gers such that 0 ≤ ra, rb ≤ δ− 1. If G is a simple, bipartite graph with e edges on bipartition

(A,B), with |A| = a and |B| = b such that G is (δ, ra, rb)-balanced, then A consists of:

a− la vertices of degree δqa + ra

la vertices of degree δqa + ra + δ

where qa =

⌊
e− raa

δa

⌋
and la =

e− raa

δ
(moda)

Also, B consists of:

b− lb vertices of degree δqb + rb

lb vertices of degree δqb + rb + δ

where qb =

⌊
e− rbb

δb

⌋
and lb =

e− rbb

δ
(modb)

Proof The proof follows from Theorem 1.1. If G is (δ, ra, rb)-balanced, then e = raa + δν

for some nonnegative integer ν. Let 0 ≤ qa and 0 ≤ la ≤ a − 1 be the integers such that

ν = aqa + la. That is, qa is the number of times that every vertex in A has had its degree

increased by δ from ra and la is the number of vertices whose degrees are increased by an

additional δ.
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So e = δaqa + δla + raa and we have:

qa =
e− raa− δla

δa

=
e− raa

δa
− la

a

=

⌊
e− raa

δa

⌋

Also, we have:

la =
e− raa

δ
− aqa

=
e− raa

δ
(moda)

We have simliar results for B.

If A and B are disjoint sets, KA,B is the complete bipartite graph on bipartition (A,B).

The bipartite complement of a bipartite graph G on bipartition (A,B) with edge set E is

the bipartite graph G
′
on (A,B) with edge set E

′
= E(KA,B)\E.

We can note here that if G is (δ, ra, rb)-balanced on (A,B), then G
′
is (δ, r

′
a, r

′

b)-balanced

where ra + r
′
a ≡ b (mod δ), rb + r

′

b ≡ a (mod δ), |A| = a, and |B| = b.

The following lemma outlines necessary conditions for the existence of (δ, ra, rb)-balanced

graphs.

Lemma 2.2 Let a, b, δ be positive integers, e be a nonnegative integer, and ra, rb, r
′
a, r

′

b ∈

{0, 1, ..., δ − 1} such that ra + r
′
a ≡ b (mod δ) and rb + r

′

b ≡ a (mod δ). If there is a simple,

(δ, ra, rb)-balanced bipartite graph with e edges on (A,B) where |A| = a and |B| = b, then:

raa ≤ e ≤ ab− r
′
aa

rbb ≤ e ≤ ab− r
′

bb
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and all five quantities above are congruent (mod δ).

Proof e = raa+ δν for some nonnegative ν so raa ≤ e and the two are congruent (mod δ).

Also, ab−r
′
aa = a(b−r

′
a) ≡ raa (mod δ). If a simple, bipartite graph G is (δ, ra, rb)-balanced,

then G
′
is (δ, r

′
a, r

′

b)-balanced. Thus, r
′
aa ≤ ab − e and we can get e ≤ ab − r

′
aa. Similarly,

we can get the desired conditions for B.

2.2.1 δ = 2

With certain exceptions, the conditions in Lemma 2.2 are also sufficient for δ = 2. The

result, originally in [8], is stated here with an additional class of exceptions overlooked by

the author and the omission of several erroneous exceptions.

Theorem 2.2 Let a, b be positive integers, e be a nonnegative integer, and ra, rb, r
′
a, r

′

b ∈

{0, 1} such that ra + r
′
a ≡ b (mod 2) and rb + r

′

b ≡ a (mod 2). There is a simple, (2, ra, rb)-

balanced bipartite graph with e edges on (A,B) where |A| = a and |B| = b if and only

if:

raa ≤ e ≤ ab− r
′
aa

rbb ≤ e ≤ ab− r
′

bb

and all five quantities above are congruent (mod 2) with the following exceptions (and the

analogous exceptions of Class II with A and B reversed):

Exception Class I:

a ≥ 2, ra = 0, r
′
a = b(mod 2)

b ≥ 2, rb = 0, r
′

b = a(mod 2)

e = 2

Exception Class I*:
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a ≥ 2, ra = b(mod 2), r
′
a = 0

b ≥ 2, rb = a(mod 2), r
′

b = 0

e = ab− 2

Exception Class II:

a = 2, ra = (m+ 1)(mod 2), r
′
a = (b− ra)(mod 2)

b ≥ 4, rb = 0, r
′

b = 0

e = 2m, where m ∈ [2, 3, 4, ..., b− 2]

This was done by translating the problem of (δ, ra, rb)-balanced graphs into the problem

of bipartite graphs with four degrees and applying Theorem 2.1.

2.2.2 δ = 3

We will now state the main result of this chapter, a result similar to Theorem 2.2 with

list of exceptions for δ = 3.

Theorem 2.3 Let a, b be positive integers, e be a nonnegative integer, and ra, rb, r
′
a, r

′

b ∈

{0, 1, 2} such that ra+ r
′
a ≡ b (mod 3) and rb+ r

′

b ≡ a (mod 3). There is a simple, (3, ra, rb)-

balanced bipartite graph with e edges on (A,B) where |A| = a and |B| = b if and only

if:

raa ≤ e ≤ ab− r
′
aa

rbb ≤ e ≤ ab− r
′

bb

and all five quantities above are congruent (mod 3) with the following exceptions (and the

analogous exceptions with A and B reversed) where the necessary conditions are not suffi-

cient:

Exception Class I:

a ≥ 4, ra = 0, r
′
a = 0

26



b = 6, rb = 1, r
′

b = (a− 1)(mod 3)

e = 9

Exception Class I*:

a = 6, ra = (b− 1)(mod 3), r
′
a = 1

b ≥ 4, rb = 0, r
′

b = 0

e = 6b− 9

Exception Class II:

a ≥ 6, ra = 0, r
′
a = 1

b = 4, rb = 0, r
′

b = a(mod 3)

e = 15

Exception Class II*:

a = 4, ra = b(mod 3), r
′
a = 0

b ≥ 6, rb = 1, r
′

b = 0

e = 4b− 15

Exception Class III:

a = 5, ra = 1, r
′
a = 1

b = 5, rb = 1, r
′

b = 1

e = 11

Exception Class III*:

a = 5, ra = 1, r
′
a = 1

b = 5, rb = 1, r
′

b = 1

e = 14

Exception Class IV:
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a ≥ 3, ra = 0, r
′
a = b(mod 3)

b ≥ 3, rb = 0, r
′

b = a(mod 3)

e = 3

Exception Class IV*:

a ≥ 3, ra = b(mod 3), r
′
a = 0

b ≥ 3, rb = a(mod 3), r
′

b = 0

e = ab− 3

Exception Class V:

a ≥ 3, ra = 0, r
′
a = b(mod 3)

b ≥ 3, rb = 0, r
′

b = a(mod 3)

e = 6

Exception Class V*:

a ≥ 3, ra = b(mod 3), r
′
a = 0

b ≥ 3, rb = a(mod 3), r
′

b = 0

e = ab− 6

Exception Class VI:

a ≥ 4, ra = 0, r
′
a = 0

b = 3, rb ̸= m(mod 3), r
′

b = (a− rb)(mod 3)

e = 3m, where m ∈ [2, 3, 4, ..., a− 2]

Proof Let a, b be positive integers, e be a nonnegative integer, and ra, rb, r
′
a, r

′

b ∈ {0, 1, 2}

such that ra + r
′
a ≡ b (mod 3) and rb + r

′

b ≡ a (mod 3).

(⇒) This implication is clear by Lemma 2.2.

(⇐) Suppose:
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raa ≤ e ≤ ab− r
′
aa

rbb ≤ e ≤ ab− r
′

bb

and all five quantities above are congruent (mod 3).

We will first translate the problem of a (3, ra, rb)-balanced bipartite graph to the problem

of a bipartite graph with four degrees. Let

qa =

⌊
e− raa

3a

⌋
, qb =

⌊
e− rbb

3b

⌋
and

la =
e− raa

3
(moda), lb =

e− rbb

3
(modb)

By Lemma 2.1, if a (3, ra, rb)-balanced bipartite graph exists, it would have the following

values for a1, a2, d1, d2, b1, b2, f1, f2, where, as in Theorem 2.1, A consists of a1 vertices of

degree d1 and a2 vertices of degree d2 and B consists of b1 vertices of degree f1 and b2

vertices of degree f2:

a1 = a− la b1 = b− lb
d1 = 3qa + ra f1 = 3qb + rb

a2 = la b2 = lb
d2 = 3qa + ra + 3 f2 = 3qb + rb + 3

Table 2.2: Translation to Bipartite Graph with Four Degrees

We will now verify that the necessary inequalities hold for the exceptions but no such

graphs exist. For Class I, we have:

0 ≤ 9 ≤ 6a X(since a ≥ 4)

and:

and 6 ≤ 9 ≤ 6a− 6r
′

b = 6(a− r
′

b) X(since a− r
′

b ≥ 2)

All five terms are congruent to 0 (mod 3). However, we get the following values for

a1, a2, d1, d2, b1, b2, f1, f2 and condition iv from Theorem 2.1 does not hold:
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a1 = a− 3 b1 = 5
d1 = 0 f1 = 1
a2 = 3 b2 = 1
d2 = 3 f2 = 4

Table 2.3: a2d2 = 9 > 3 + 5 = a2b2 + b1f1

Obviously, such a graph can’t exist since B has a vertex whose degree is larger than the

number of vertices of nonzero degree in A.

For Class I*, the inequalities are:

6ra ≤ 6b− 9 ≤ 6b− 6 X(since b ≥ 4)

and:

0 ≤ 6b− 9 ≤ 6b. X(since b ≥ 4)

Again, all terms are congruent to 0 (mod 3). Since these would be the bipartite complements

of Class I, such graphs do not exist.

For Class II:

0 ≤ 15 ≤ 4a− a = 3a X(since a ≥ 6)

and:

0 ≤ 15 ≤ 4a− 4r
′

b = 4(a− r
′

b) X(since a− r
′

b ≥ 4)

Since a ≡ r
′

b (mod 3), all the terms are congruent to 0 (mod 3). However, with the following

values, condition iv from Theorem 2.1 does not hold.

a1 = a− 5 b1 = 3
d1 = 0 f1 = 3
a2 = 5 b2 = 1
d2 = 3 f2 = 6

Table 2.4: a2d2 = 15 > 5 + 9 = a2b2 + b1f1
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As with Class I, there is a vertex in B with higher degree than the number of vertices

of nonzero degree in A.

Class II*, the bipartite complements of Class II:

4ra ≤ 4b− 15 ≤ 4b X(since b ≥ 6)

and:

b ≤ 4b− 15 ≤ 4b X(since b ≥ 6)

To see congruence (mod 3), note that ra = b (mod 3) and so 4ra = ra + 3ra ≡ b (mod

3), 4b− 15 = b+ (3b− 15) ≡ b (mod 3), and 4b = b+ 3b ≡ b (mod 3).

For Class III, both necessary inequalities are 5 ≤ 11 ≤ 20 and all terms are congruent

(mod 3). However:

a1 = 3 b1 = 3
d1 = 1 f1 = 1
a2 = 2 b2 = 2
d2 = 4 f2 = 4

Table 2.5: a2d2 = 8 > 4 + 3 = a2b2 + b1f1

For Class III*, both inequalities are 5 ≤ 14 ≤ 20 and all terms are congruent (mod 3).

Since the graph from Class III does not exist, neither does this one.

Class IV satisfies the inequalities since:

0 ≤ 3 ≤ ab− ar
′
a = a(b− r

′
a) X(since a ≥ 3 and b− r

′
a ≥ 1

and:

0 ≤ 3 ≤ ab− br
′

b = b(a− r
′

b) X(since b ≥ 3 and a− r
′

b ≥ 1

Since b− r
′
a ≡ 0 (mod 3) and a− r

′

b ≡ 0 (mod 3), all the terms are congruent to 0 (mod 3).

However:
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a1 = a− 1 b1 = b− 1
d1 = 0 f1 = 0
a2 = 1 b2 = 1
d2 = 3 f2 = 3

Table 2.6: a2d2 = 3 > 1 + 0 = a2b2 + b1f1

Clearly, no such simple, bipartite graphs exist.

For Class IV*, the bipartite complements of Class IV:

raa ≤ ab− 3 ≤ ab X(since raa ≤ 2a ≤ 3a− 3 ≤ ab− 3)

and:

rbb ≤ ab− 3 ≤ ab X(since rbb ≤ 2b ≤ 3b− 3 ≤ ab− 3)

Since ra ≡ b (mod 3) and rb ≡ a (mod 3), the terms are all congruent to ab (mod 3). Again,

such graphs do not exist.

Class V:

0 ≤ 6 ≤ ab− ar
′
a = a(b− r

′
a) X(b− r

′
a ≥ 2 since if b = 3, r

′
a = 0)

and:

0 ≤ 6 ≤ ab− br
′

b = b(a− r
′

b) X(ba− r
′

b ≥ 2 since if a = 3, r
′

b = 0)

Since r
′
a ≡ b (mod 3) and r

′

b ≡ a (mod 3), all terms are congruent to 0 (mod 3). However,

condition iv of Theorem 2.1 is not satisfied.

a1 = a− 2 b1 = b− 2
d1 = 0 f1 = 0
a2 = 2 b2 = 2
d2 = 3 f2 = 3

Table 2.7: a2d2 = 6 > 4 + 0 = a2b2 + b1f1

As we have seen in previous classes, there are vertices in one part with degree larger

than the number of vertices of nonzero degree in the other part.
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Since graphs of Class V do not exist, neither do those of Class V*. To see that the

necessary conditions hold:

raa ≤ ab− 6 ≤ ab X(raa ≤ 2a ≤ ab− 6 since if b = 3, ra = 0)

and:

rbb ≤ ab− 6 ≤ ab X(rbb ≤ 2b ≤ ab− 6 since if a = 3, rb = 0)

Since ra ≡ b (mod 3) and rb ≡ a (mod 3), the terms are all congruent to ab (mod 3).

Finally, for Class VI, our necessary inequalities are satisfied since 2 ≤ m ≤ a− 2.

0 ≤ 3m ≤ 3a X

and:

3rb ≤ 3m ≤ 3a− 3r
′

b = 3(a− r
′

b) X

Note that:

lb =
e− rbb

3
(modb) =

3m− 3rb
3

(mod3) = (m− rb)(mod3)

Thus, if rb = (m+ 1)(mod 3), we have:

a1 = a−m b1 = 2
d1 = 0 f1 < m
a2 = m b2 = 1
d2 = 3 f2 < m+ 3

Table 2.8: a2d2 = 3m = m+ 2m > a2b2 + b1f1

If rb = (m+ 2)(mod 3), we have:
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a1 = a−m b1 = 1
d1 = 0 f1 < m
a2 = m b2 = 2
d2 = 3 f2 < m+ 3

Table 2.9: a2d2 = 3m = 2m+m > a2b2 + b1f1

Now, we will verify that the conditions of Theorem 2.1 hold for cases other than our

exceptions. We first note that the numbers of edge ends in each part are equal because:

a1d1 + a2d2 = (a− la)(3qa + ra) + (la)(3qa + ra + 3)

= 3aqa + 3la + ara − 3laqa + 3laqa − lara + lara

= 3aqa + 3la + ara

= e

b1f1 + b2f2 = e by a similar argument.

Condition v says:

d1 ≤ b1 + b2

3qa + ra ≤ b

Since 3qa =
e− raa− 3la

a
=

e

a
− ra −

3la
a

and e ≤ ab , we can get:

3qa + ra =
e

a
− ra −

3la
a

+ ra

=
e

a
− 3la

a

≤ b− 3la
a

≤ b

Condition vii can be shown in the same manner.
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To show the remaining conditions of Theorem 2.1 we will proceed by cases. First suppose

a2 = 0 = b2. Thus conditions ii, iii, iv, vi, viii are automatically satisfied. To see condition

i:

a1d1 ≤ a1b1 + b2f2

a1d1 ≤ a1b1

d1 ≤ b1

3qa + ra ≤ b

which was shown previously.

Now assume that one of a2 and b2 is zero while the other is nonzero. Say, a2 = 0 and

b2 ̸= 0. Thus, iii, iv, vi are automatically satisfied and we have shown v and vii already.

Note that i reduces to vii:

b1f1 ≤ a1b1 + a2d2

b1f1 ≤ a1b1

f1 ≤ a1

Also, ii reduces to viii:

b2f2 ≤ a1b2 + a2d2

b1f2 ≤ a1b2

f2 ≤ a1
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Thus, it only remains to show viii for this case. That is, we need:

f2 ≤ a1 + a2

f2 ≤ a

3qb + rb + 3 ≤ a

Since 3qb =
e− rbb− 3lb

b
=

e

b
− rb −

3lb
b
, e ≤ ab, and b2 = lb ̸= 0 we have:

3qb + rb + 3 =
e

b
− rb −

3lb
b

+ rb + 3

=
e

b
− 3lb

b
+ 3

≤ a− 3lb
b

+ 3

< a+ 3

≤ a+ 2

So, a ≥ 3qb + rb + 1 and viii is satisfied unless a = 3qb + rb + 1 or a = 3qb + rb + 2.

Suppose a = 3qb + rb + 1. Since rb + r
′

b ≡ a (mod 3), r
′

b = 1. But then:

3qb + rb + 3 =
e

b
− 3lb

b
+ 3

≤ (a− r
′

b)−
3lb
b

+ 3 (e ≤ ab− r
′

bb)

= a+ 2− 3lb
b

< a+ 2 (b2 = lb ̸= 0)

This is a contradiction of the assumption that a = 3qb + rb + 1.
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Now suppose a = 3qb + rb + 2 and thus r
′

b = 2. Then:

3qb + rb + 3 =
e

b
− 3lb

b
+ 3

≤ (a− r
′

b)−
3lb
b

+ 3 (e ≤ ab− r
′

bb)

= a+ 1− 3lb
b

< a+ 1 (b2 = lb ̸= 0)

This is a contradiction of the assumption that a = 3qb + rb + 2. This completes the case.

Finally, assume that a2 = la and b2 = lb are both nonzero. Note that vi and viii reduce

to 3qa + ra + 3 ≤ b and 3qb + rb + 3 ≤ a which can both be shown in the same manner as

condition viii was verified in the previous case.

To verify i, we need to show:

a1d1 ≤ a1b1 + b2f2

(a− la)(3qa + ra) ≤ (a− la)(b− lb) + lb(3qb + rb + 3)

(a− la)(3qa + ra − b+ lb) ≤ lb(3qb + rb + 3)

(a− la)(lb − (b− 3qa − ra)) ≤ lb(3qb + rb + 3)

37



Since (a − la), lb, 3qb + rb + 3 are all positive, the inequality is automatically true if lb ≤

b− 3qa − ra. So, assume lb > b− 3qa − ra = b− (3qa + ra).

a1d1 ≤ a1b1 + b2f2

(a− la)(3qa + ra) ≤ (a− la)(b− lb) + lb(3qb + rb + 3)

3aqa + ara − la(3qa + ra) ≤ ab− alb − bla + lalb + lb(3qb + rb + 3)

3aqa + ara − la(3qa + ra) + 3la − 3la ≤ ab− alb − bla + lalb + lb(3qb + rb + 3)

(3aqa + ara + 3la)− la(3qa + ra + 3) ≤ ab− alb − bla + lalb + lb(3qb + rb + 3)

e− la(3qa + ra + 3) ≤ ab− alb − bla + lalb + lb(3qb + rb + 3)

e+ la(b− (3qa + ra + 3)) + lb(a− (3qb + rb + 3))− lalb ≤ ab

Since b− (3qa + ra + 3) < b− (3qa + ra) < lb, we have that la(b− (3qa + ra + 3)) < lalb and

thus:

e+ la(b− (3qa + ra + 3)) + lb(a− (3qb + rb + 3))− lalb < e+ lalb + lb(a− (3qb + rb + 3))− lalb

= e+ lb(a− (3qb + rb + 3))

Here we can use the fact that e = (b− lb)(3qb + rb) + lb(3qb + rb + 3) and get:

e+ lb(a− (3qb + rb + 3)) = (b− lb)(3qb + rb) + lb(3qb + rb + 3) + lb(a− (3qb + rb + 3))

= (b− lb)(3qb + rb) + alb

And since 3qb + rb ≤ a as proved in vii:

(b− lb)(3qb + rb) + alb ≤ (b− lb)a+ alb

= ab
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This shows condition i.

To show condition ii, we need to show that:

a1d1 ≤ a1b2 + b1f1

(a− la)(3qa + ra) ≤ (a− la)lb + (b− lb)(3qb + rb)

(a− la)(3qa + ra − lb) ≤ (b− lb)(3qb + rb)

Note that if 3qa + ra ≤ lb, the inequality is satisfied since a− la, b− lb, and 3qb + rb are all

nonnegative. So, assume 3qa + ra + 1 ≥ lb. We need to show:

(a− la)(3qa + ra) ≤ (a− la)lb + (b− lb)(3qb + rb)

3aqa + ara − la(3qa + ra) ≤ alb − lalb + 3bqb + brb − lb(3qb + rb)

3aqa + ara − la(3qa + ra) + 3la − 3la ≤ alb − lalb + 3bqb + brb − lb(3qb + rb) + 3lb − 3lb

(3aqa + ara + 3la)− la(3qa + ra + 3) ≤ alb − lalb + (3bqb + brb + 3lb)− lb(3qb + rb + 3)

Here we can note that 3aqa + ara + 3la = e = 3bqb + brb + 3lb, so we need to show:

−la(3qa + ra + 3) ≤ alb − lalb − lb(3qb + rb + 3)

lalb + lb(3qb + rb + 3) ≤ alb + la(3qa + ra + 3)

We assumed that 3qa + ra + 1 ≥ lb, so lalb < la(3qa + ra + 3). Also, we know from viii that

3qb + rb + 3 ≤ a. Thus, we have:

lalb + lb(3qb + rb + 3) ≤ la(3qa + ra + 3) + lb(3qb + rb + 3)

≤ la(3qa + ra + 3) + alb

This shows ii. The proof of iii is analogous, switching parts A and B.
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So, it only remains to show condition iv. To do this, we need to show:

b2f2 ≤ a2b2 + a1d1

lb(3qb + rb + 3) ≤ lalb + (a− la)(3qa + ra)

or:

a2d2 ≤ a2b2 + b1f1

la(3qa + ra + 3) ≤ lalb + (b− lb)(3qb + rb)

These inequalities can be reduced to:

lb(3qb + rb + 3− la) ≤ (a− la)(3qa + ra)

and:

la(3qa + ra + 3− lb) ≤ (b− lb)(3qb + rb)

So, if either 3qb + rb + 3 ≤ la or 3qa + ra + 3 ≤ lb, the inequalities are satisfied.

We know from viii that 3qb + rb + 3 ≤ a. So, we have:

lb(3qb + rb + 3) ≤ alb

= lalb + (a− la)lb

So, if lb ≤ 3qa + ra, the inequalities are satisfied. Similarly, if la ≤ 3qb + rb, they are satisfied

as well. That is, we only have problems when:

3qa + ra + 1 ≤ lb ≤ 3qa + ra + 2

and:

3qb + rb + 1 ≤ la ≤ 3qb + rb + 2
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Case 1 : Suppose la = 3qb + rb + 2 and lb = 3qa + ra + 1. We need to show:

b2f2 ≤ a2b2 + a1d1

lb(3qb + rb + 3) ≤ lalb + (a− la)(3qa + ra)

(3qa + ra + 1)(3qb + rb + 3) ≤ (3qb + rb + 2)(3qa + ra + 1) + (a− la)(3qa + ra)

3qa + ra + 1 ≤ (a− la)(3qa + ra)

1 ≤ (a− la − 1)(3qa + ra)

1 ≤ (a− la − 1)(lb − 1)

Since a ≥ 3qb + rb + 3 = la + 1 by condition viii, a − la − 1 ≥ 0. Also, we assumed lb ≥ 1.

Thus, the inequality is true unless a− la − 1 = 0 or lb − 1 = 0.

Suppose lb − 1 = 0. That is, lb = 3qa + ra + 1 = 1 and so qa = ra = 0. Consider the

number of edges, e, calculated based on both A and B.

3aqa + 3la + ara = 3qb + 3lb + brb

3la = 3qb + 3lb + brb (qa = ra = 0)

3(3qb + rb + 2) = 3qb + 3lb + brb

3(3qb + rb) + 6 = b(3qb + rb) + 3 (lb = 1)

3 = (b− 3)(3qb + rb)

Since b − 3 is an integer and 3qb + rb is a nonnegative integer, their product can be 3 only

when one of those terms is 3 and one of them is 1.

If b− 3 = 3 and 3qb + rb = 1, then b = 6, qb = 0, and rb = 1. Thus la = 3qb + rb + 2 = 3

and a ≥ 4. Also, e = 3la = 9. These are the Class I exceptions.

If b − 3 = 1 and 3qb + rb = 3, then b = 4, qb = 1, and rb = 0. Thus la = 5, a ≥ 6, and

e = 3la = 15. This gives us the Class II exceptions.
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Suppose a−la−1 = 0. Again, consider the number of edges, e, calculated as the number

of edge ends in A.

3aqa + 3la + ara = 3aqa + 3(a− 1) + ara

= a(3qa + ra + 3)− 3

= a(lb + 2)− 3

Now, beginning with e calculated from B:

3qb + 3lb + brb = b(3qb + rb) + 3lb

= b(a− 3) + 3lb

= ab− 3(b− lb)

So, we have:

a(lb + 2)− 3 = ab− 3(b− lb)

a(lb + 2)− ab = 3− 3(b− lb)

2a− a(b− lb) = 3− 3(b− lb)

2a− 3 = (a− 3)(b− lb)

2a− 3

a− 3
= b− lb
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Note that if a = 3 then la = 3qb + rb + 2 = a − 1 = 2, and thus qb = rb = 0. But then,

equating our two edge counts:

3aqa + 3la + ara = 3qb + 3lb + brb

9qa + 3la + 3ra = 3lb

3qa + la + ra = lb

3qa + 2 + ra = lb

This contradics our assumption for lb.

The only positive integers, a, for which
2a− 3

a− 3
yields a positive integer for b − lb are

a = 4 and a = 6.

If a = 6, then
2a− 3

a− 3
= b− lb = 3 and e = ab− 3(b− lb) = ab− 9 = 6b− 9. This gives

us the Class I* exceptions, the bipartite complements of Class I.

If a = 4, then
2a− 3

a− 3
= b − lb = 5 and e = ab − 3(b − lb) = ab − 15 = 6b − 15. These

are the Class II* exceptions, the bipartite complements of Class II.

Case 2 : Suppose la = 3qb + rb + 1 and lb = 3qa + ra + 1. We need to show:

b2f2 ≤ a2b2 + a1d1

lb(3qb + rb + 3) ≤ lalb + (a− la)(3qa + ra)

(3qa + ra + 1)(3qb + rb + 3) ≤ (3qb + rb + 1)(3qa + ra + 1) + (a− la)(3qa + ra)

2(3qa + ra + 1) ≤ (a− la)(3qa + ra)

2 ≤ (a− la − 2)(3qa + ra)

2 ≤ (a− la − 2)(lb − 1)

We know that a ≥ 3qb + rb + 3 = la + 2 from condition viii of Theorem 2.1 and lb ≥ 1

by assumption. Thus both terms on the right are at least 0 and the inequality is satisfied

unless a− la − 2 = 0, lb − 1 = 0, or both are equal to 1.
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Suppose that both a− la − 2 = 1 and lb − 1 = 1. Thus la = a− 3 and lb = 2, implying

qa = 0 and ra = 1. Starting with our two calculations of e:

3aqa + 3la + ara = 3qb + 3lb + brb

3la + a = b(3qb + rb) + 6

3(3qb + rb) + 3 + a = b(3qb + rb) + 6

a− 3 = (b− 3)(3qb + rb)

la = (b− 3)(la − 1)

Since la is a nonnegative integer, this can only be true when la = 2 and b− 3 = 2. So, b = 5,

qb = 0, rb = 1, a = la + 3 = 5, and e = 3la + a = 11. This is the Class III exception.

Suppose lb − 1 = 0. Then lb = 3qa + ra + 1 = 1 and so qa = ra = 0.

e = 3aqa + 3la + ara

= 3la

= 3(3qb + rb + 1)

= 3(3qb + rb) + 3

Also:

e = 3bqb + 3lb + brb

= b(3qb + rb) + 3

Thus:

3(3qb + rb) + 3 = b(3qb + rb) + 3

0 = (b− 3)(3qb + rb)
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So, we have problems if b = 3 or 3qb + rb = 0.

If 3qb + rb = 0, then qb = rb = 0, la = 3qb + rb + 1 = 1, and e = 3la = 3. This gives us

the exceptions of Class IV.

Suppose b = 3. Recall that we already know ra = 0 and e = 3la. Also, in this case we

know that a ≥ la + 2. Furthermore:

lb = 1 =
e− rbb

3
(modb) =

3la − rb3

3
(mod3) = (la − rb)(mod3)

This means that rb = (la−1)(mod 3). So we have found a subset of the Class VI exceptions,

specifically those where rb = (la − 1)(mod 3). Note that if la = 1 or a = 3, we get a Class

IV exception.

Suppose a− la − 2 = 0 and thus la = a− 2 and a = la + 2 = 3qb + rb + 3.

e = 3aqa + 3la + ara

= 3aqa + 3(a− 2) + ara

= a(3qa + ra + 3)− 6

= a(lb + 2)− 6

Also:

e = 3bqb + 3lb + brb

= b(3qb + rb) + 3lb

= b(a− 3) + 3lb

= ab− 3(b− lb)
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So, we have:

a(lb + 2)− 6 = ab− 3(b− lb)

a(lb + 2)− ab = 6− 3(b− lb)

a(lb − b) + 2a = 6− 3(b− lb)

(3− a)(b− lb) = 6− 2a

Meaning that either b− lb =
6− 2a

3− a
= 2 or a = 3.

If b − lb = 2, then e = ab − 3(b − lb) = ab − 6. This gives us Exception Class V*, the

bipartite complements of Class V.

If a = 3, we have la = 1, qb = rb = 0 and we get the analogous Class VI exceptions as

we did above with A and B reversed.

Case 3 : Suppose la = 3qb + rb + 2 and lb = 3qa + ra + 2. We need to show:

b2f2 ≤ a2b2 + a1d1

lb(3qb + rb + 3) ≤ lalb + (a− la)(3qa + ra)

(3qa + ra + 2)(3qb + rb + 3) ≤ (3qb + rb + 2)(3qa + ra + 2) + (a− la)(3qa + ra)

3qa + ra + 2 ≤ (a− la)(3qa + ra)

2 ≤ (a− la − 1)(3qa + ra)

2 ≤ (a− la − 1)(lb − 2)

Similar to previous cases, the inequality is satisfied unless a− la − 1 = 0, lb − 2 = 0, or both

are equal to 1.
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Suppose a− la − 1 = 1 and lb − 2 = 1. Since lb = 3qa + ra + 2 = 3, qa = 0 and ra = 1.

3aqa + 3la + ara = 3qb + 3lb + brb

3la + a = b(3qb + rb) + 9

3(3qb + rb) + 6 + a = b(3qb + rb) + 9

a− 3 = (b− 3)(3qb + rb)

la − 1 = (b− 3)(la − 2)

Since la − 1 is a nonnegative integer, this is only true when la − 1 = 2 and b− 3 = 2. Thus,

la = 3, qb = 0, rb = 1, b = 5, a = la + 2 = 5, and e = 3la + a = 14. This is the Class III*

exception, the bipartite complement of Class III.

Suppose lb = 3qa + ra + 2 = 2. Then qa = ra = 0.

e = 3aqa + 3la + ara

= 3la

= 3(3qb + rb + 2)

= 3(3qb + rb) + 6

Also:

e = 3bqb + 3lb + brb

= b(3qb + rb) + 6

So we have:

3(3qb + rb) + 6 = b(3qb + rb) + 6

0 = (b− 3)(3qb + rb)
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Thus, we have problems if b = 3 or 3qb + rb = 0.

If 3qb + rb = 0, qb = rb = 0, la = 3qb + rb + 2 = 2, and e = 3la = 6. These are the Class

V exceptions.

Suppose b = 3. We’ve already assumed that ra = 0 and e = 3la where la ≥ 2. Since

lb = 2, rb = (la − 2)(mod 3), filling in the remaining entries in Class VI. Note that if a = 3

or la = a− 1, we get an exception from Class IV*.

Suppose a− la − 1 = 0. Then la = a− 1 and a = la + 1 = 3qb + rb + 3.

e = 3aqa + 3la + ara

= 3aqa + 3(a− 1) + ara

= a(3qa + ra + 3)− 3

= a(lb + 1)− 3

Also:

e = 3bqb + 3lb + brb

= b(3qb + rb) + 3lb

= b(a− 3) + 3lb

= ab− 3(b− lb)

So:

a(lb + 1)− 3 = ab− 3(b− lb)

a(lb + 1)− ab = 3− 3(b− lb)

a(lb − b) + a = 3− 3(b− lb)

(3− a)(b− lb) = 3− a
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So, either b− lb = 1 or a = 3.

If b − lb = 1, then e = ab − 3(b − lb) = ab − 3 and we get the Class IV* exceptions.

These are the bipartite complements of Exception Class IV.

If a = 3, we get the analogous exceptions of those found previously with A and B

reversed.

2.2.3 δ ≥ 4

By examining the proof of Theorem 2.3, we can see that it will translate to an arbitrary

value for δ until we need to show condition iv from Theorem 2.1 when both a2 = la and

b2 = lb are nonzero. This is where the exceptions are found for δ = 3 in Theorem 2.3.

To verify condition iv from Theorem 2.1, we need to show one of these equivalent

conditions:

b2f2 ≤ a2b2 + a1d1

a2d2 ≤ a2b2 + b1f1

For an arbitrary δ, Lemma 2.1 says this will mean we need to show one of the following:

lb(δqb + rb + δ) ≤ lalb + (a− la)(δqa + ra)

la(δqa + ra + δ) ≤ lalb + (b− lb)(δqb + rb)

Analagous to the case of δ = 3, these will be satisfied unless both of the following are

true:

δqa + ra + 1 ≤ lb ≤ δqa + ra + (δ − 1)

and:

δqb + rb + 1 ≤ la ≤ 3qb + rb + (δ − 1)
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This means we will have

(
δ

2

)
combinations of la and lb to consider. So, for larger

values of δ, we can predict that our list of exceptions in any result similar to Theorem 2.2 or

Theorem 2.3 will grow significantly, but will be found in the same way as in the δ = 3 case.

So, we can combine this observation with Lemma 2.1 to state the following, general

result.

Conjecture 2.1 Let a, b be positive integers, e be a nonnegative integer and let ra, rb, r
′
a, r

′

b, δ

be integers such that 0 ≤ ra, rb, r
′
a, r

′

b ≤ δ − 1, ra + r
′
a ≡ b (mod δ), and rb + r

′

b ≡ a (mod δ).

There is a simple, bipartite, (δ, ra, rb)-balanced graph G with e edges on bipartition (A,B),

with |A| = a and |B| = b such that A consists of:

a− la vertices of degree δqa + ra

la vertices of degree δqa + ra + δ

where qa =

⌊
e− raa

δa

⌋
and la =

e− raa

δ
(moda)

and B consists of:

b− lb vertices of degree δqb + rb

lb vertices of degree δqb + rb + δ

where qb =

⌊
e− rbb

δb

⌋
and lb =

e− rbb

δ
(modb)

if and only if the following inequalities are satisfied and all five quantities are congruent

(mod δ):

raa ≤ e ≤ ab− r
′
aa

rbb ≤ e ≤ ab− r
′

bb

with a list of exceptions that can be found by examining the

(
δ

2

)
combinations of la and lb

such that:

δqa + ra + 1 ≤ lb ≤ δqa + ra + (δ − 1)

and:

δqb + rb + 1 ≤ la ≤ 3qb + rb + (δ − 1)
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Chapter 3

Anti-Ramsey Numbers

3.1 Definitions

Throughout the chapter, G will denote a finite, simple graph with vertex set V (G) and

edge set E(G). Cn and Pn will denote the cycle and path on n vertices, respectively. C+
n

and C++
n will denote the cycle on n vertices with one and two pendant edges, respectively.

Note that, for our purposes, the two pendent edges in C++
n can be pendant to two different

vertices or to the same vertex.

A k-edge-coloring of G is a labeling of the edges of G with elements of a set of colors S

where |S| = k and each color in S is used on at least one edge of G. Throughout the paper,

we will refer to an edge-coloring simply as a coloring. A rainbow coloring of G is a coloring

that labels each edge of G with a different color. G is said to be totally multicolored in this

coloring. At the other end of the spectrum, a monochromatic coloring of G is a coloring that

labels each edge of G with the same color. G is said to be monochromatic in this coloring.

Given a set of graphs G1, ..., Gk, the k-color ramsey number for this set of graphs,

denoted R(G1, ..., Gk), is the minimum integer n such that any k-edge-coloring of Kn must

contain a monochromatic copy of Gi in the color i for some i.

In [6], Ramsey proved that for any such set of graphs, the ramsey number is finite. In

general, Ramsey numbers themselves have proven difficult to find but have led to several

useful generalizations. One of these, the anti-ramsey numbers, will be the focus of this

chapter.

Given graphs H ⊆ G, the anti-ramsey number, denoted ar(G,H), is the maximum

number of colors, k, such that there exists an edge-coloring of G with exactly k colors in
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which every copy of H has at least two edges labeled the same color. That is, the coloring

yields no totally multicolored copy of H.

Given graphs K,H ⊆ G, the sub-anti-ramsey number, denoted sar(K,G,H), is the

maximum number of colors, k, such that if κ > k colors are used on any copy of K, then

there is a totally multicolored copy of H in G.

Claim If any coloring of G using exactly l colors produces a multicolored copy of H, then

any coloring using more than l colors produces a totally multicolored copy of H.

Proof Assume we have colored the edges of G with λ > l colors. Denote this color set as

[1, 2, 3, ..., l, l + 1, ..., λ]. Recolor all edges colored from the set [l + 1, ..., λ] with the color

l. Thus we have a coloring with exactly l colors, which we assumed produces a totally

multicolored H. At most one of the edges in this copy of H was recolored from the original

coloring and if it was, its original color does not appear on any other edge in this copy. Thus,

in the original coloring, this copy of H was also totally multicolored.

In this paper (and indeed in most anti-ramsey results), G will be a large complete graph.

We will give partial investigations of the cases where H is a cycle or a path.

The Turán number of a graph H is the maximum number of edges a simple graph on n

vertices can have without having a subgraph isomorphic to H, denoted ex(n,H).

Claim ([1]) ar(Kn, H) ≤ ex(n,H).

Proof Color the edges of Kn with λ > ex(n,H) colors. Pick one edge of each color and call

this subgraph G
′
. G

′
has λ > ex(n,H) edges and so therefore must contain a copy of H.

Since G
′
is totally multicolored, this copy of H is totally multicolored.
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Thus, the Turán numbers form an upper bound for the anti-ramsey numbers. However,

it is often not a very useful one.

3.2 Cycles With Pendant Edges

The anti-ramsey number for cycles was conjectured in [1] by Erdős, Simonovits, and Sós

and later proven by Montellano-Ballesteros and Neumann-Lara in [5]. We use one specific

case that was proven in the original paper.

Theorem 3.1 ([1]) ar(Kn, C3) = n− 1

Proof Order and name the vertices of Kn as [v1, v2, v3, ..., vn−1, vn] and suppose we have the

set of colors [1, 2, 3, ..., n−2, n−1]. For each edge vivj where i < j, color the edge with color

i. We will thus use all n− 1 colors and a triangle with vertices vi, vj, vk where i < j < k will

have two edges colored i. This shows that ar(Kn, C3) ≥ n− 1.

n− 1
n− 2

1

2

3

v1 v2 v3 v4 vn−2 vn−1 vn

1 2 3 n− 2

Figure 3.1: (n− 1)-coloring of Kn containing no rainbow C3

Now, color the edges of Kn with n colors and pick one edge of each color. Call this

subgraph G′. G′ has n edges on at most n vertices so it must contain a cycle. Let C be the

smallest cycle in G′. If C is a triangle, then we have a totally multicolored C3 and we’re

done. So, assume C is a cycle of length l > 3. Call the vertices of C [c1, c2, ..., cl]. Pick a

pair of nonadjacent vertices in C, cα, cβ where α < β, and consider the edge between them.

If the edge cαcβ is colored δ, then δ may occur in C but it can only occur at most once
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since G′ and thus C is totally multicolored. It can occur in the subgraph of C induced by

[c1, c2, ..., cα−1, cα, cβ, cβ+1, ..., cl−1, cl] or the subgraph of C induced by [cα, cα+1, ..., cβ−1, cβ]

but not both. Without loss of generality, suppose that δ does not occur in the subgraph

induced by [cα, cα+1, ..., cβ−1, cβ]. Thus, we can form a smaller, totally multicolored cycle C ′

by taking the the edges induced by [cα, cα+1, ..., cβ−1, cβ] and adding the edge cαcβ.

C C
′

cα cβ cα cβδ δ

Figure 3.2: Forming C ′ from C

We can repeat this process until we arrive at a totally multicolored C3.

Theorem 3.2 ar(Kn, C
+
3 ) = n− 1

Proof The coloring used in the preceding theorem will work again here to establish that

ar(Kn, C
+
3 ) ≥ n− 1.

Color the edges of Kn with n colors and pick one edge of each color. Call this graph G′.

G′ has n edges on at most n vertices so it must contain a cycle. Let C be the smallest cycle

in G′. If C is a triangle, then either it has a pendant edge in C and we are done or G′ − C

(having n− 3 edges on at most n− 3 vertices) must contain another triangle. Pick any edge

between these two totally multicolored triangles. This edge along with the triangle in which

its color does not appear is a totally multicolored C+
3 .
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If C is not a triangle, proceed as in the proof of the previous conjecture to reduce C

to a C3. Let v1, v2, v3, v4, v5 be the vertices in C such that the edge v2v4 was the edge that

reduced the cycle to the triangle v2v3v4.

v1

v2

v3

v4

v5 v1

v2

v3

v4

Figure 3.3: Reducing to a totally multicolored C+
3

The color of v2v4 can occur on at most one of v1v2 and v4v5. Without loss, assume that

it does not occur on v1v2. Thus, the triangle v2v3v4 along with the edge v1v2 is a totally

multicolored C+
3 .

The following, more general result was proven in [3].

Theorem 3.3 ([3]) ar(Kn, C
+
m) = ar(Kn, Cm) for n ≥ m+ 1

We now consider two pendant edges. As mentioned before, it is immaterial whether the

two edges are pendant to different vertices or not. Whereas adding one pendant edge did

not affect the anti-ramsey number, adding two gives us the flexibility to create a coloring

with a larger number of colors.

Theorem 3.4 ar(Kn, C
++
3 ) ≥ n > ar(Kn, C

+
3 ) = ar(Kn, C3)

Proof Order and name the vertices of Kn as [v1, v2, v3, ..., vn−1, vn]. Color the edges of the

triangle with vertices v1, v2, and v3 with colors 1, 2, and 3. Call this triangle T . For edges

vivj where 4 ≤ i < j ≤ n, color the edge with color i, bringing us to n− 1 colors used. Call

this subgraph S. Finally, color the remaining edges, those connecting T and S, with color

n.
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v1

v2

v3

v4 v5 v6 vn−2 vn−1 vn

1

2

3

4
5 n− 2

n− 1

n

n

n

n

Figure 3.4: n-coloring of Kn containing no rainbow C++
3

By the argument used in the preceding proofs, there can be no totally multicolored

triangle within S and clearly there can not be one using edges between T and S. Thus, T is

the only totally multicolored triangle in our coloring. Since all edges pendant to T are the

same color, there can be no totally multicolored C++
3 .

And again, the more general result was proven by Gorgol in [3].

Theorem 3.5 ([3]) ar(Kn, C
++
m ) > ar(Kn, Cm)

3.3 Paths

We begin with the following theorem, which states that the only way to avoid a totally

multicolored P4 is to use two or fewer colors. Adding as few as one edge of a third color

produces a path on three edges where each of our three colors is used.

Theorem 3.6 ar(Kn, P4) = 2 for n ≥ 5

Proof Obviously, ar(Kn, P4) ≥ 2. So, assume we have colored Kn with colors 1, 2, 3 and

pick one edge of each color. Call this graph G′. If G′ is a path, we’re done. The other

possibilities are as follows.

Case 1 : G′ is three disjoint edges. Let vk and v∗k be the vertices on the edge colored

k for 1 ≤ k ≤ 3. To avoid a totally multicolored P4 ⊂ G, the edge v1v2 must be colored 1
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or 2. Without loss, we can assume 2. Then v2v3 must be colored 2 for if v2v3 is colored 3,

v∗1v1v2v3 is totally multicolored and if v2v3 is colored 1, v∗3v3v2v1 is totally multicolored.

v
∗

1
v
∗

2
v
∗

3

v1
v2

v3

1 2 3

2 2

?

Figure 3.5: G
′
is three disjoint edges

However, this means that no matter what color we use on edge v1v3, we have formed a

totally multicolored P4. If v1v3 is colored 1, then v2v1v3v
∗
3 is totally multicolored. If v1v3 is

colored 2, then v∗1v1v3v
∗
3 is totally multicolored. If v1v3 is colored 3, then v2v3v1v

∗
1 is totally

multicolored.

Case 2 : G′ is a P3 and a disjoint edge. Let the P3 have vertices v1, v2, and v3 with

v1v2 colored 1 and v2v3 colored 2. Let the disjoint edge be v4v5, colored 3. To avoid a

totally multicolored P4 the edge v3v4 must be colored 2 and similarly v1v5 must be colored

1. However, this would form a totally multicolored P4 with edges v3v4, v4v5, v1v5.

v1

v2

v3

v4

v51

2

2

1

3

Figure 3.6: G
′
is a P3 and a disjoint edge

Case 3 : G′ is a triangle. Call the vertices of G′ v1, v2, and v3. Assume edge v1v2 is

colored 1, v2v3 is colored 2, and v3v1 is colored 3. To avoid a totally multicolored P4, any
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edge connecting v2 to G−G′ must be colored 3. Call one such edge e1. Similarly, any edge,

call it e2 connecting v3 to G − G′ must be colored 1. If n ≥ 5, it is possible to pick e1 and

e2 such that they do not share the same vertex in G−G′. In this case, the path consisting

of edges e1, e2, and v2v3 is totally multicolored.

v1

v2

v3

1

2

3

3

1

e1

e2

G−G
′

Figure 3.7: G′ is a triangle

Case 4 : G′ is a 3-star. Call the leaf vertices v1, v2, and v3. Call the center v4. Assume

that edge v4vi is colored i for 1 ≤ i ≤ 3. To avoid a totally multicolored P4, the edge v2v3

must be colored 1. Also, any edge (call it e1) connecting v2 to G − G′ must be colored 2.

However, if both of those are true, then e1, v2v3, and v3v4 form a totally multicolored P4.

v1

v2

v3

v4

1

2

3 1

2

e1

G−G
′

Figure 3.8: G′ is a 3-star
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If n = 4, it is easy to verify that the 3-edge-coloring in Figure 3.9 produces no totally

multicolored P4.

1

13

3
2

2

Figure 3.9: 3-coloring of K4 containing no totally multicolored P4

Lemma 3.1 The only connected simple graphs whose longest path is a P3 are stars and C3.

Proof Suppose a graph contains a P3 as a subgraph. To avoid forming a P4, the only

possible edge connected to either endpoint is the edge joining them, forming a C3. Since a

C3 with a pendant edge contains a P4, there can not be any more edges in the graph if the

edge joining the endpoints is included.

If that edge is not included, there can be arbitrarily many edges attached to the center

vertex of the P3, forming a larger star. Any two of these edges form a P3 and the same rule

applies as above. If there were more than 2 edges in our star, joining any of the leaves would

create a C3 with a pendant edge.
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Figure 3.10: Two ways to add edges to a P3 without forming a P4

Theorem 3.7 ar(Kn, P5) = n

Proof Pick one vertex of Kn and call it v. Color the n − 1 edges between v and Kn − v

with different colors. Color all edges in Kn−v with another color. Thus, our coloring uses n

colors and any P5 can only use two edges between v and Kn − v and so must use two edges

in Kn − v, guaranteeing that it is not totally multicolored. This shows that ar(Kn, P5) ≥ n.

v

1

2

3

n− 2

n− 1

n

n

n

Figure 3.11: n - coloring of Kn that contains no totally multicolored P5

Color the edges of Kn with n + 1 colors and pick one edge of each color and call the

graph with these edges G. G has more edges than vertices and so, if G is not connected, at
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least one of its components must have more edges than vertices. Call one such component

C.

Consider the longest path in C. Since |E(C)| > |V (C)|, the longest path can not be a

P2 for in that case C is a P2 which has more vertices than edges. Nor can the longest path

be a P3 by the lemma above since neither stars nor C3 have more edges than vertices. If the

longest path in C is a P5, we are done, so assume that the longest path in C is a P4.

If there is another component of G, call it C∗, that also contains a P4, then Figure 3.12

and Table 3.1 show that the coloring must contain a totally multicolored P5.

C C
∗

e1

2

3

4

5

6

v1

v2

v3

v4

v5

v6

v7

v8

Figure 3.12: Two components of G containing a P4

Color of e Totally Multicolored Path Created
1,≥ 5 v4v3v2v6v5
2, 3, 4 v1v2v6v7v8

Table 3.1: Totally Multicolored Paths Created By Coloring Edge e in Figure 3.12

If there is another component of G, again call it C∗, that contains a C3, then Figure 3.13

and Table 3.2 show that the coloring must contain a totally multicolored P5.
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v1

v2

v3

v4

v5

v6

1

2

3

4

5

6

e

C C
∗

v7

Figure 3.13: Component of G containing a P4 and component containing a C3

Color of e Totally Multicolored Path Created
1,≥ 5 v4v3v2v6v5
2, 3, 4 v1v2v6v7v5

Table 3.2: Totally Multicolored Paths Created By Coloring Edge e in Figure 3.13

So, assume that no other component of G contains a P4 or a C3. Thus, any other

component C∗ of G must be a k-star, where 1 ≤ k. |E(C∗)| < |V (C∗)| for any such

component. But |E(G)| > |V (G)| so not only does C have more edges than vertices, it has

to have at least two more edges than vertices to make up for the other components.

If C has 4 vertices, it must be a K4. Then, Figure 3.14 and Table 3.3 show that the

coloring must contain a totally multicolored P5.

v1 v2

v3v4

v5

1

2

3

4

5

6

e

Figure 3.14: C is a K4
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Color of e Totally Multicolored Path Created
2,≥ 5 v3v4v1v2v5
1, 3 v3v1v4v2v5
4 v4v3v1v2v5

Table 3.3: Totally Multicolored Paths Created By Coloring Edge e in Figure 3.14

So, assume C has m ≥ 5 vertices and at least m + 2 ≥ 7 edges. Consider the longest

cycle in C. If C contains a Ci for i ≥ 5, then C contains a totally multicolored P5.

If the longest cycle in C is a C4, then the fifth vertex has to be connected to the C4,

forming a P5.

So assume that the longest cycle in C is a triangle. Call the vertices of one such triangle

v1, v2, v3. The remaining vertices of C, v4, v5, ..., vm must be connected to the triangle. Label

the remaining vertices so that v4 is connected via the edge v3v4. Consider a fifth vertex,

v5. If v5v1 is an edge in C, then v5v1v2v3v4 is a totally multicolored P5. Similarly, if v5v2

is an edge in C, then v5v2v1v3v4 is a totally multicolored P5. If v5v4 is an edge in C, then

v5v4v3v2v1 is totally multicolored. Thus, all vertices v5, ..., vm can only be connected to v3.

v1

v2

v3

v4v5v6vm

Figure 3.15: Longest cycle C is a triangle

However, this will give us only m = |V (C)| edges, which is not enough. Thus, there

must be a P5 in C.

Lemma 3.2 sar(K5, Kn, P6) ≤ 7
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Proof Assume n ≥ 6 and consider one copy of K5 ⊆ Kn. Call this copy K∗
5 . Color the

edges of K∗
5 with at least 8 unique colors and pick 8 edges, each of which having a different

color, leaving two edges possibly colored using duplicate colors. These two edges either share

a vertex or they do not.

First, assume the two edges share a vertex, v1. Let v6 be a vertex in Kn − K∗
5 and

consider the edge v6v1. Let c be the color of v6v1. By considering Figure 3.16, we can note

that because of the path v6v1v3v2v4v5, c ∈ [8, 1, 7, 3] or a totally multicolored P6 is formed.

Similarly, the paths v6v1v3v4v2v5 and v6v1v4v5v2v3 necessitate that c is also in the color

sets [8, 2, 7, 4] and [6, 3, 4, 1] respectively. However, these three color sets share no common

element and thus, regardless of c, a totally multicolored P6 is formed.

v1

v2

v3

v4 v5

v6

1

2

3

4
56

7

8 c

Figure 3.16: Coloring of K∗
5 where duplicate colors share a vertex

Assume that the two edges do not share a vertex. Again, Let v6 be a vertex in Kn−K∗
5

and consider the edge v6v1. Let c be the color of v6v1. Consider the paths v6v1v4v2v3v5,

v6v1v5v2v3v4, and v6v1v5v3v4v2 in Figure 3.17. As above, the respective color sets [4, 5, 3, 6],

[1, 8, 3, 2], and [1, 6, 2, 5] share no common element and a totally multicolored P6 is formed

regardless of c.
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v1

v5

v4

v3 v2

v6

1

2

3

8
57

6

4 c

Figure 3.17: Coloring of K∗
5 where duplicate colors do not share a vertex

Lemma 3.3 For n ≥ 6, if the edges of a copy of K5 ⊆ Kn are colored with exactly 7 colors

such that one edge of each color can be chosen such that the duplicate edges left do not all

share a vertex, then there is a totally multicolored copy of P6 in Kn.

Proof There are three possibilities for the three duplicate edges. In each case, call the

vertices of the K5 v1, v2, v3, v4, v5 and consider another vertex v6.

Case 1 : The three edges form a P4. By considering Figure 3.18 and Table 3.4, we can

see that no matter what color we use on edge v1v6, a totally multicolored P6 is formed.

v1

v2

v3

v4 v5

v6

12

3

4

5

6 7

Figure 3.18: Duplicate edges form a P4
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Color of v1v6 Totally Multicolored Path Created
≥ 5 v6v1v2v3v4v5
1,2,4 v6v1v5v2v4v3
3 v6v1v5v4v2v3

Table 3.4: Totally Multicolored Paths Created By Coloring Edge v1v6 in Figure 3.18

Case 2 : The three edges form a triangle. Figure 3.19 and Table 3.5 illustrate that any

color on edge v1v6 creates a totally multicolored P6.

v1

v2

v3

v4 v5

v6

12

3

4

5

6

7

Figure 3.19: Duplicate edges form a triangle

Color of v1v6 Totally Multicolored Path Created
1, ≥ 6 v6v1v5v4v2v3
4,5 v6v1v2v3v5v4
2 v6v1v2v4v5v3
3 v6v1v5v3v2v4

Table 3.5: Totally Multicolored Paths Created By Coloring Edge v1v6 in Figure 3.19

Case 3 : The three edges form a P3 and a disjoint edge. Figure 3.20 and Table 3.6

complete the argument.
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v1

v2

v3

v4 v5

v6

12

3

4

5

6

7

Figure 3.20: Duplicate edges form a P3 and a disjoint edge

Color of v1v6 Totally Multicolored Path Created
≥ 5 v6v1v2v3v4v5
1,3,4 v6v1v5v3v2v4
2 v6v1v2v4v3v5

Table 3.6: Totally Multicolored Paths Created By Coloring Edge v1v6 in Figure 3.20

Lemma 3.4 If a coloring of K5 with exactly 7 colors is such that the three duplicate edges

left after picking one edge of each color always form a 3−star, then the coloring is as follows:

Color each edge of some K4 ⊆ K5 with unique colors and all the remaining edges with the

seventh color.

Proof Assume we have colored the edges of K5 with exactly 7 colors and picked one edge

of each color, calling this set of edges E, such that the remaining duplicate edges form a

3 − star. Call the vertex at the center of the star v and let the color of the fourth edge

incident with v be 7.

Pick one of the duplicate edges and call it e. Assume e is colored c. If c ̸= 7, the edge

in E that is colored c is not incident with v. Replace the edge colored c in E with e. We
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have now chosen one edge of each color such that the remaining duplicate edges do not form

a 3− star. Thus, each of our original three duplicate edges must have been colored 7, giving

us the coloring above.

Corollary 3.1 If a copy of K5 ⊆ Kn, call it K
∗
5 , is colored as described in the lemma above,

there can be no colors on the the edges between K∗
5 and the rest of Kn that do not appear in

K∗
5 without creating a totally multicolored P6.

Proof Consider Figure 3.21. If any edge between v1 and Kn −K∗
5 is colored 8, then a P6

composed of that edge and any Hamilton path on K∗
5 starting at v1 is totally multicolored.

If an edge between any other vertex of K∗
5 and Kn −K∗

5 is colored 8, then a P6 composed

of that edge and a Hamilton path on K∗
5 starting at that vertex and ending at v1 is totally

multicolored.

1

2

3

4

5 6

7

7 7

7

v1

Figure 3.21: K5 colored with exactly 7 colors such that the three duplicate edges left after
picking one edge of each color always form a 3− star
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Theorem 3.8 ar(Kn, P6) = n+ 1

Proof Pick one vertex of Kn and call it v. Color the n − 1 edges between v and Kn − v

with different colors. Color all edges in Kn − v with a further two colors. Thus, our coloring

uses n + 1 colors and any P6 can only use two edges between v and Kn − v and so must

use three edges in Kn − v, guaranteeing that it is not totally multicolored. This shows that

ar(Kn, P6) ≥ n+ 1.

v

1

2

3

n− 2

n− 1

n

n

n+ 1

Figure 3.22: (n+ 1) - coloring of Kn that contains no totally multicolored P6

Now, assume we have colored the edges of Kn with at least n + 1 colors such that the

coloring does not produce a totally multicolored P6. Since ar(Kn, P5) = n, the coloring must

produce a totally multicolored P5. Call this path P = v1v2v3v4v5. And let the edge vivi+1

be colored i for 1 ≤ i ≤ 4. Let Φ be the K5 induced by V (P ). Let K be the subgraph

induced by Kn−V (P ) and label the vertices of K as v6, v7, ..., vn. Let C be the set of colors

[5, 6, 7, ..., n+ 1, ...]. See Figure 3.23.

Our first goal will be to show that there are at most n − 5 colors from C that occur

outside of Φ We will consider the ways that a vertex in K can be incident with two or more

edges colored with different colors from C. Note that if any edge between v1 or v5 and K is

colored from C, we have a totally multicolored P6.
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v1

v2

v3

v4

v5

v6

v7

v8

vn−1

vn

1

2

3

4

Φ K

Figure 3.23: P ⊂ Φ and K

Case 1 : Let vm be a vertex in K and suppose vmv3 and either vmv2 or vmv4 (let us

suppose it is vmv2) are colored with different colors from C, say 5 and 6. However, this

would mean that v1v2vmv3v4v5 would be totally multicolored, contradicting our assumption

that there is no totally multicolored P6 in our coloring. See Figure 3.24.

v5

v4

v3

v2

v1

vm

1

2

3

4

5

6

K

Figure 3.24: Case 1

Case 2 : Let vm and vµ be vertices in K. Suppose that vmvµ and either vmv2 or vmv4

(let us suppose it is vmv2) are colored with different colors from C, again 5 and 6. Then

vµvmv2v3v4v5 would be a totally multicolored P6, a contradiction. See Figure 3.25
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v5

v4

v3

v2

v1
vm1

2

3

4

5

6

vµ
K

Figure 3.25: Case 2

Case 3 : Suppose vm, vµ, and vν are all vertices in K and suppose that vmvµ and vmvν

are both colored with different colors from C. Let vmvν be colored 5 and vmvµ be colored 6.

Consider the edge v1vν . We know that any color from C will create a totally multicolored P6.

Furthermore, coloring the edge 3 or 4 will make v3v2v1vνvmvµ totally multicolored. Thus,

the edge can only be colored 1 or 2.

Similarly, v5vµ must be colored either 3 or 4. However, if v1vν is colored 2, this would

make v2v1vνvmvµv5 totally multicolored. So, v1vν must be colored 1 and by the same argu-

ment v5vµ can only be colored 4.

v1

v2

v3

v4

v5

vν

vm

vµ

1

2

3

4

5

6

1

4

?

K

Figure 3.26: Case 3

But, with the enforced colors as shown in Figure 3.26, any color at all on the edge v2vν

will create a totally multicolored P6 as shown by Table 3.7.
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Color Totally Multicolored Path Created
1 v5v4v3v2vνvm
2 v1v2vνvmvµv5
3 v1v2vνvmvµv5
4 v4v3v2vνvmvµ
5 v1vνv2v3v4v5

≥ 6 v5v4v3v2vνvm

Table 3.7: Totally Multicolored Paths Created By Coloring Edge v2vν in Figure 3.26

Case 4 : Let vm be a vertex in K. Suppose vmv2 and vmv4 are colored with different

colors from C, say vmv2 is colored 5 and vmv4 is colored 6. Consider the edge v1v5. No

matter what its color, a totally multicolored P6 is formed as shown in Table 3.8.

v5

v4

v3

v2

v1

vm

1

2

3

4

5

6

?

K

Figure 3.27: Case 4

Color Totally Multicolored Path Created
1 vmv2v3v4v5v1
2 vmv2v1v5v4v3
3 vmv4v5v1v2v3
4 vmv4v3v2v1v5
5 vmv4v3v2v1v5

≥ 6 vmv2v3v4v5v1

Table 3.8: Totally Multicolored Paths Created By Coloring Edge v1v5 in Figure 3.27

Case 5 : Suppose that vµ and vm are vertices in K and suppose that v3vm is colored

5 and vmvµ is colored 6. If n ≥ 8, any other edge from vµ to an additional vertex in K,

vν , must be colored 6. We know from case 3 that no such edge can be colored with any
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color from C other than 6. Furthermore, it is easy to see that if vµvν is colored 1 or 2 then

vνvµvmv3v4v5 is totally multicolored. Similarly, if vµvν is colored 3 or 4 then vνvµvmv3v2v1 is

totally multicolored.

v5

v4

v3

v2

v1
vm1

2

3

4

5
6

K

6

vµ

vν

Figure 3.28: Every vertex in K must be incident to an edge colored 6

This means that every vertex in K is incident to an edge colored 6. From previous cases,

this means that the only way for any vertex vν in K other than vm to be incident with more

than one color from C is for v3vν to be colored from C. If v3vν is colored 5 for all vν in K,

then 5 and 6 are the only colors from C that occur outside of Φ.

So assume that for some vertex vν in K other than vm, the edge v3vν is colored with a

color from C other than 5 or 6. Let v3vm be colored 5, v3vν be colored 7, and vmvµ, vνvρ be

colored 6, where vρ is an additional vertex in K. Note that it may be the case that vµ and

vρ are the same vertex. Also, it is possible that vµ = vν or vρ = vm. Consider the edge v1v5.

Figure 3.29 and Table 3.9 show that any color on edge v1v5 creates a totally multicolored

P6.

Color Totally Multicolored Path Created
3, 4,≥ 7 vµvmv3v2v1v5
1, 2, 5 vρvνv3v4v5v1
6 vmv3v2v1v5v4

Table 3.9: Totally Multicolored Paths Created By Coloring Edge v1v5 in Figure 3.29

So, in this case it is possible for a vertex in K to be incident with two unique colors

from C, but then those are the only colors from C that occur outside of Φ. For n = 6 this
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vµ

7

vν vρ

?

Figure 3.29: Case 5

case can not happen and for n ≥ 7, 2 ≤ n− 5. In every other case, any vertex in K can add

at most one color from C to our total palette of colors. Thus, there are at most n− 5 colors

from C that occur outside of Φ.

We assumed at least n + 1 colors were used, so there must be at least six additional

colors on Φ. Furthermore, the lemmas above show that there can be at most seven colors on

Φ without creating a totally multicolored P6. These colors will be 1, 2, 3, 4, and either two

or three colors from C.

If we use exactly six colors on Φ, then we have at most (n − 5) + 6 = n + 1 colors in

total.

If we use seven colors, the corollary above states that all of the colors on the edges

between K and Φ must occur in Φ to avoid a totally multicolored P6. That is, these seven

colors are the only colors that appear outside of K. By Case 3 earlier in this proof, each

vertex within K can be incident with at most one edge within K that is colored from C.

This means that at most ⌊n−5
2
⌋ colors from C can occur within K. So we can have at most

⌊n−5
2
⌋+ 7 colors, which is at most n+ 1 for n ≥ 6.

Simonovits and Sós proved the following general result for paths in [7].

Theorem 3.9 ([7]) There exists a constant c such that if t ≥ 5, n > ct2, then
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ar(Kn, P2t+3+ε) = tn−
(
t+ 1

2

)
+ 1 + ε

where ε is either 0 or 1.

The specific statement and proof restricts us to sufficiently long paths but the authors

note that the cases when t ≤ 4 are also true but required more cases to be evaluated and

were thus omitted. Note that this result confirms that ar(Kn, P6) = n+ 1 as conjectured.

The extremal coloring used is as follows. Partition the vertices of Kn into sets A =

[a1, a2, ..., at] and B = [b1, b2, ..., bn−t]. Color each edge in the subgraph induced by A and

each edge with one end in A and one end in B with a different color and color the edges of

the subgraph induced by B with 1+ ε colors. Note that this is an extension of the colorings

used in the previous theorems.
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