Modular Balanced Graphs

by

Wesley R. Brown

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Auburn, Alabama
August 4, 2012

Keywords: Graph Theory, Anti-Ramsey Numbers, Modular Balance

Copyright 2012 by Wesley R. Brown

Approved by
Dean Hoffman, Chair, Professor of Mathematics and Statistics
Pete Johnson, Professor of Mathematics and Statistics
Chris Rodger, C. Harry Knowles Professor of Mathematical Sciences

Abstract

We say that a graph G is (δ, r)-balanced if the degree of each vertex in G is congruent to $r(\bmod \delta)$ and no two degrees differ by more than δ. In this paper, we give necessary and sufficient conditions for the existence of a (δ, r)-balanced graph with e edges on n vertices. In the case of bipartite graphs where each partition is modular balanced with the same δ but possibly different remainders, Yuceturk gave necessary and sufficient conditions for the existence of such a graph with a list of exceptions in [8] for $\delta=2$. We state a similar result for $\delta=3$ and note that the list of exceptions for any higher δ can be found with similar methods. Additionally, we present some partial results from Anti-Ramsey theory which deals with extremal edge colorings of graphs that avoid certain colorings of subgraphs.

Acknowledgments

Let it be known that writing acknowledgements is much harder than writing math. It isn't that I'm not grateful. I'm just not much for big flowery speeches.

The following is a list of entities to whom I am indebted. I will not go into too much detail as to why they deserve thanks. It should be obvious, really:

Every math teacher at every level of my pre-Auburn education, especially Watt Parker, Jeff Barton, Bernie Mullins, and Doug Riley.

My advisor, Dean Hoffman.
Pete Johnson, Chris Rodger, and the other members of the Combinatorics faculty at Auburn.

My friends. I have a lot and they're pretty great.
My family, especially my parents. Against all reason, they always knew I would finish this thing.

Also, here are some cats, some dogs, and a lizard who have helped along the way: Boots, Baby, Simon, Taylor, Zoe, Toonces, Betsy Ross, Banjo, Dexter, Delilah, Malcolm, Samantha, Wesley, Spurt, Greyskull, Harper, Rufus, Madison, Anubis, Jonah, Bennett, Rizzo, Iggy.

Table of Contents

Abstract ii
Acknowledgments iii
List of Figures v
List of Tables vii
1 Modular Balance 1
1.1 Definitions 1
1.2 Possible Degree Sequences 3
1.3 Realizable Degree Sequences 7
1.4 Main Result 15
1.5 A Note on Duality 15
2 Balanced Bipartite Graphs 17
2.1 Bipartite Graphs with Four Degrees 17
2.2 Modular Balanced Bipartite Graphs 23
2.2.1 $\delta=2$ 25
2.2.2 $\quad \delta=3$ 26
2.2.3 $\quad \delta \geq 4$ 49
3 Anti-Ramsey Numbers 51
3.1 Definitions 51
3.2 Cycles With Pendant Edges 53
3.3 Paths 56
Bibliography 76

List of Figures

1.1 Distribution of edges in G 7
$3.1 \quad(n-1)$-coloring of K_{n} containing no rainbow C_{3} 53
3.2 Forming C^{\prime} from C 54
3.3 Reducing to a totally multicolored C_{3}^{+} 55
$3.4 n$-coloring of K_{n} containing no rainbow C_{3}^{++} 56
$3.5 G^{\prime}$ is three disjoint edges 57
3.6 G^{\prime} is a P_{3} and a disjoint edge 57
$3.7 \quad G^{\prime}$ is a triangle 58
$3.8 G^{\prime}$ is a 3 -star 58
3.9 3-coloring of K_{4} containing no totally multicolored P_{4} 59
3.10 Two ways to add edges to a P_{3} without forming a P_{4} 60
$3.11 n$ - coloring of K_{n} that contains no totally multicolored P_{5} 60
3.12 Two components of G containing a P_{4} 61
3.13 Component of G containing a P_{4} and component containing a C_{3} 62
$3.14 C$ is a K_{4} 62
3.15 Longest cycle C is a triangle 63
3.16 Coloring of K_{5}^{*} where duplicate colors share a vertex 64
3.17 Coloring of K_{5}^{*} where duplicate colors do not share a vertex 65
3.18 Duplicate edges form a P_{4} 65
3.19 Duplicate edges form a triangle 66
3.20 Duplicate edges form a P_{3} and a disjoint edge 67
$3.21 K_{5}$ colored with exactly 7 colors such that the three duplicate edges left after picking one edge of each color always form a 3 - star 68
$3.22(n+1)-$ coloring of K_{n} that contains no totally multicolored P_{6} 69
$3.23 P \subset \Phi$ and K 70
3.24 Case 1 70
3.25 Case 2 71
3.26 Case 3 71
3.27 Case 4 72
3.28 Every vertex in K must be incident to an edge colored 6 73
3.29 Case 5 74

List of Tables

2.1 Distribution of Edges 18
2.2 Translation to Bipartite Graph with Four Degrees 29
$2.3 \quad a_{2} d_{2}=9>3+5=a_{2} b_{2}+b_{1} f_{1}$ 30
$2.4 a_{2} d_{2}=15>5+9=a_{2} b_{2}+b_{1} f_{1}$ 30
$2.5 \quad a_{2} d_{2}=8>4+3=a_{2} b_{2}+b_{1} f_{1}$ 31
$2.6 \quad a_{2} d_{2}=3>1+0=a_{2} b_{2}+b_{1} f_{1}$ 32
$2.7 \quad a_{2} d_{2}=6>4+0=a_{2} b_{2}+b_{1} f_{1}$ 32
$2.8 \quad a_{2} d_{2}=3 m=m+2 m>a_{2} b_{2}+b_{1} f_{1}$ 33
$2.9 \quad a_{2} d_{2}=3 m=2 m+m>a_{2} b_{2}+b_{1} f_{1}$ 34
3.1 Totally Multicolored Paths Created By Coloring Edge e in Figure 3.12 61
3.2 Totally Multicolored Paths Created By Coloring Edge e in Figure 3.13 62
3.3 Totally Multicolored Paths Created By Coloring Edge e in Figure 3.14 63
3.4 Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{6}$ in Figure 3.18 66
3.5 Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{6}$ in Figure 3.19 66
3.6 Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{6}$ in Figure 3.20 67
3.7 Totally Multicolored Paths Created By Coloring Edge $v_{2} v_{\nu}$ in Figure 3.26 72
3.8 Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{5}$ in Figure 3.27 72
3.9 Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{5}$ in Figure 3.29 73

Chapter 1

Modular Balance

1.1 Definitions

Throughout the paper, G will denote a finite, simple graph with vertex set $V(G)$ and edge set $E(G)$. Let $\varphi: \mathrm{X} \rightarrow \mathbb{Z}$ and let $A \subseteq \mathrm{X} . \varphi$ is balanced on A if for any $a, b \in A$, $|\varphi(a)-\varphi(b)| \leq 1$. For a simple graph G, we say that $A \subseteq V(G)$ is balanced if the vertex degree function is balanced on A. If $A=V(G)$, we say that G is balanced if $V(G)$ is balanced. An integer vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is balanced if $\left|a_{j}-a_{i}\right| \leq 1$ for all $1 \leq i, j \leq n$. Thus, a graph is balanced if its degree sequence is balanced.

If δ, r are integers such that $0 \leq r \leq \delta-1$ and n is a positive integer, we say that the integer vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is (δ, r)-balanced if $a_{i} \equiv r(\bmod \delta)$ for $1 \leq i \leq n$ and $\left|a_{j}-a_{i}\right| \leq \delta$ for all $1 \leq i, j \leq n$. We say that a simple graph G is (δ, r)-balanced if the degree sequence of G is (δ, r)-balanced.

Theorem 1.1 Let δ, r, s be non-negative integers with $r \leq \delta-1$ and n be a positive integer. There is a (δ, r)-balanced non-negative integer vector $v=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)$ with n coordinates summing to s if and only if:
i) $n r \leq s$
ii) $n r \equiv s(\bmod \delta)$

Furthermore, if these conditions hold, every such vector consists of:

$$
\begin{gathered}
n-\left(\frac{s-n r}{\delta}\right)(\bmod n) \text { coordinates equal to }\left\lfloor\frac{s-n r}{\delta n}\right\rfloor \delta+r \\
\left(\frac{s-n r}{\delta}\right)(\bmod n) \text { coordinates equal to }\left\lceil\frac{s-n r}{\delta n}\right\rceil \delta+r
\end{gathered}
$$

Proof (\Rightarrow) Since each coordinate of v must be at least $r, i)$ is clearly necessary. For any coordinate v_{i} of $v, v_{i}=r+b_{i} \delta$ for some non-negative integer b_{i}, thus:

$$
s=\sum_{i=1}^{n} r+b_{i} \delta=n r+\sum_{i=1}^{n} b_{i} \delta \equiv n r(\bmod \delta)
$$

(\Leftarrow) Suppose we have δ, r, s, non-negative integers with $r \leq \delta-1$ and n, a positive integer such that i) and $i i$) are satisfied.

We will construct our (δ, r)-balanced non-negative integer vector $v=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)$ by first setting each coordinate of v to r. Note that:

$$
s=\left(\frac{s-n r}{\delta}\right) \delta+n r=n\left(\left(\frac{s-n r}{\delta n}\right) \delta\right)+n r
$$

Where $\frac{s-n r}{\delta}$ is the non-negative integer (an integer since $n r \equiv s(\bmod \delta)$) number of copies of δ that must be added to the coordinates of v to bring the sum up to s. The number of copies of δ that each coordinate receives on average, $\frac{s-n r}{\delta n}$, is not necessarily an integer.

$$
n\left(\left(\left\lfloor\frac{s-n r}{\delta n}\right\rfloor\right) \delta\right)+n r \leq s \leq n\left(\left(\left\lceil\frac{s-n r}{\delta n}\right\rceil\right) \delta\right)+n r
$$

Thus, to maintain (δ, r)-balance, each coordinate of v must get at least $\left\lfloor\frac{s-n r}{\delta n}\right\rfloor$ copies of δ and no more than $\left\lceil\frac{s-n r}{\delta n}\right\rceil$ copies. So, the only possible entries of v are $\left\lfloor\frac{s-n r}{\delta n}\right\rfloor \delta+r$ and $\left\lceil\frac{s-n r}{\delta n}\right\rceil \delta+r$.

We can note here that if $\frac{s-n r}{\delta n}$ is an integer, we have equality in the string of inequalities above and each coordinate of v is exactly $\left(\frac{s-n r}{\delta n}\right) \delta+r$.

For $0 \leq j \leq\left\lfloor\frac{s-n r}{\delta n}\right\rfloor$, all coordinates of v must be at least $r+j \delta$ before any can be increased to $r+(j+1) \delta$. Thus, $\frac{s-n r}{\delta}(\bmod n)$ coordinates of v will get one more copy of δ than the remaining $n-\left(\frac{s-n r}{\delta}(\bmod n)\right)$ coordinates.

Corollary 1.1 If G is a (δ, r)-balanced graph on n vertices with e edges then:
i) $n r \leq 2 e$
ii) $n r \equiv 2 e(\bmod \delta)$
iii) $e=\frac{n r}{2}+\left(\frac{2 e-n r}{2 \delta}\right) \delta$

Furthermore, the degree sequence of G consists of:

$$
\begin{gathered}
n-\left(\frac{2 e-n r}{\delta}\right)(\bmod n) \text { coordinates equal to }\left\lfloor\frac{2 e-n r}{\delta n}\right\rfloor \delta+r \\
\left(\frac{2 e-n r}{\delta}\right)(\bmod n) \text { coordinates equal to }\left\lceil\frac{2 e-n r}{\delta n}\right\rceil \delta+r
\end{gathered}
$$

Proof Clear since the sum of the degree sequence of G is $2 e$. For $i i i$), recall that $2 e=s=$ $\left(\frac{s-n r}{\delta}\right) \delta+n r$.

The main question will be, for what values of n, e, δ, and r does there exist a (δ, r) balanced graph with e edges on n vertices? A necessary condition would be that if r is odd and δ is even then n must be even because all vertex degrees in such a (δ, r)-balanced graph would be odd.

Given integers δ, r such that $0 \leq r \leq \delta-1$ and positive integer $n>r$, we will first determine the possible numbers of edges with the only requirements being that the resultant degree sequence is (δ, r)-balanced and the degree sum is even. Afterwards, we will determine which of these sequences are actually graphic, that is, which of them are the degree sequence of a simple graph. Throughout, for a given δ, r, n, let m be the integer such that $m \delta+r<$ $n \leq(m+1) \delta+r$.

1.2 Possible Degree Sequences

We will proceed by cases based on the parities of n, δ and r, giving us eight total cases. As mentioned before, the case where n is odd, δ is even, and r is odd produces only sequences with an odd number of odd degrees. There are no (δ, r)-balanced graphs in this case.

The seven remaining cases will be handled by grouping them together as follows:
Group 1: Three remaining cases where δ is even: (n odd, δ even, r even), (n even, δ even, r odd), (n even, δ even, r even)

Group 2: Cases where δ is odd and at least one of n, r is even: $(n$ even, δ odd, r odd), (n even, δ odd, r even), (n odd, δ odd, r even)

Group 3: Case where n, δ, r are all odd.
Within each group, let $\left[e_{0}, e_{1}, e_{2}, \ldots, e_{\max }\right]$ be the increasing list of possible edge numbers for that group. That is, the edge numbers whose degree sequence is (δ, r)-balanced and whose degree sum is even.

Group 1: First note that an even δ means that all available degrees will have the same parity. The smallest possible edge number, e_{0}, will have degree sequence $(\underbrace{r, r, r, \ldots, r, r}_{n})$. Since at least one of n and r is even, $n r$ is even and $e_{0}=\frac{n r}{2}$.

Given a possible edge number e_{i} with degree sequence $(c \delta+r, c \delta+r, \ldots, c \delta+r,(c-1) \delta+$ $r,(c-1) \delta+r, \ldots,(c-1) \delta+r)$ and even degree sum s, we can increase one of the smaller degrees by δ, maintaining the (δ, r)-balance and increasing our degree sum to $s+\delta$, still an even number. Note that this is the smallest increment we can add to the degree sum and maintain (δ, r)-balance. This increases the edge number by $\frac{\delta}{2}$. That is, $e_{i+1}=e_{i}+\frac{\delta}{2}$.

The largest possible edge number will have degree sequence $(\underbrace{m \delta+r, m \delta+r, \ldots, m \delta+r}_{n})$, giving us $e_{\text {max }}=\frac{n r}{2}+\frac{n m}{2} \delta$.

So, given n, δ, r fitting one of the cases in this group, possible edge numbers will be of the form:

$$
e_{k}=\frac{n r}{2}+\frac{k}{2} \delta, k \in[0,1,2, \ldots, n m]
$$

Furthermore, by Corollary 1.1, $\frac{k}{2}=\frac{2 e-n r}{2 \delta}$ and thus $k=\frac{2 e-n r}{\delta}$, the degree sequence for e_{k} will consist of:

$$
\begin{gathered}
n-(k)(\bmod n) \text { entries of degree }\left\lfloor\frac{k}{n}\right\rfloor \delta+r \\
(k)(\bmod n) \text { entries of degree }\left\lceil\frac{k}{n}\right\rceil \delta+r
\end{gathered}
$$

Group 2: As with Group 1, the smallest possible edge number for Group 2 will be $e_{0}=\frac{n r}{2}$ with degree sequence $(\underbrace{r, r, r, \ldots, r, r}_{n})$ since in each case, at least one of n and r is even.

Suppose we have a possible edge number e_{i} with degrees $(c-1) \delta+r$ and $c \delta+r$ and even degree sum s. Increasing a single degree by δ will yield a degree sum of $s+\delta$, an odd number since δ is odd. Increasing two degrees by δ will give us a degree sum of $s+2 \delta$, an even number. To maintain (δ, r)-balance, we increase two $(c-1) \delta+r$ entries by δ or, if there is only one $(c-1) \delta+r$ entry, increase that entry and one of the $c \delta+r$ entries by δ as well. Thus, our degree sum must increase by 2δ and our edge number will increase by δ. That is, $e_{i+1}=e_{i}+\delta$.

In the two cases here where n is even, the largest possible edge number will have degree sequence $(\underbrace{m \delta+r, m \delta+r, \ldots, m \delta+r}_{n})$. Whether $m \delta+r$ is even or odd, $n(m \delta+r)$ will be an even degree sum. In the lone case where n is odd, if m is even, then $m \delta+r$ is even since δ is odd and r is even. This means $(\underbrace{m \delta+r, m \delta+r, \ldots, m \delta+r}_{n})$ is still a possible degree sequence. In all of the above instances, the largest degree sum is $n(m \delta+r)$ and the largest edge number is $e_{\max }=\frac{n r}{2}+\frac{n m}{2} \delta$.

In the case that n, m are both odd our largest degree sequence will be $(m \delta+r, m \delta+$ $r, \ldots m \delta+r,(m-1) \delta+r)$ with degree sum $(n-1)(m \delta+r)+(m-1) \delta+r=(n m-1) \delta+n r$ and edge number $e_{\max }=\frac{n r}{2}+\frac{n m-1}{2} \delta$. Thus, for all cases in this group we can write the largest edge number as $e_{\max }=\frac{n r}{2}+\left\lfloor\frac{n m}{2}\right\rfloor \delta$

So, for n, δ, r that fit the conditions of this group, possible edge numbers will be of the form:

$$
e_{k}=\frac{n r}{2}+k \delta, k \in\left[0,1,2, \ldots,\left\lfloor\frac{n m}{2}\right\rfloor\right]
$$

Furthermore, Corollary 1.1 tells us that $k=\frac{2 e-n r}{2 \delta}$ and so $2 k=\frac{2 e-n r}{\delta}$ and the degree sequence of e_{k} will consist of:

$$
\begin{gathered}
n-(2 k)(\bmod n) \text { entries of degree }\left\lfloor\frac{2 k}{n}\right\rfloor \delta+r \\
(2 k)(\bmod n) \text { entries of degree }\left\lceil\frac{2 k}{n}\right\rceil \delta+r
\end{gathered}
$$

Group 3: For the single case in Group $3,(\underbrace{r, r, r, \ldots, r, r}_{n})$ is not a possible degree sequence since n and r are both odd. But $n r+\delta$ is even so we can increase a single degree by δ. Thus, the first possible degree sequence will be $(\delta+r, \underbrace{r, r, \ldots, r}_{n-1})$ with edge number $e_{0}=\frac{n r}{2}+\frac{\delta}{2}$.

Suppose we have a possible edge number e_{i} with the appropriate degree sequence and even degree sum s. As in Group 2, an odd δ means that we must increase s by 2δ by adding δ to two entries to maintain an even degree sum. This increases the edge number by δ, $e_{i+1}=e_{i}+\delta$.

If m is odd, $m \delta+r$ is even since δ, r are odd. Thus, $(\underbrace{m \delta+r, m \delta+r, \ldots, m \delta+r}_{n})$ is the largest possible degree sequence since the degree sum $n(m \delta+r)$ is even. This gives us $e_{\text {max }}=\frac{n r}{2}+\frac{n m}{2} \delta=\frac{n r}{2}+\frac{\delta}{2}+\frac{n m-1}{2} \delta$.

If m is even, $m \delta+r$ is odd and thus $(m \delta+r, m \delta+r, \ldots m \delta+r,(m-1) \delta+r)$ will be our largest possible degree sequence. Here, $e_{\max }=\frac{n r}{2}+\frac{n m-1}{2} \delta=\frac{n r}{2}+\frac{\delta}{2}+\frac{n m-2}{2} \delta$.

In either case, we can write $e_{\max }=\frac{n r}{2}+\frac{\delta}{2}+\left\lfloor\frac{n m-1}{2}\right\rfloor \delta$.
So, if n, δ, r are all odd, our possible edge numbers will be:

$$
e_{k}=\frac{n r}{2}+\frac{\delta}{2}+k \delta=\frac{n r}{2}+\left(k+\frac{1}{2}\right) \delta, k \in\left[0,1,2, \ldots,\left\lfloor\frac{n m-1}{2}\right\rfloor\right]
$$

By Corollary 1.1, each of these edge numbers implies a degree sequence with the following entries:

$$
\begin{gathered}
n-(2 k+1)(\bmod n) \text { entries of degree }\left\lfloor\frac{2 k+1}{n}\right\rfloor \delta+r \\
(2 k+1)(\bmod n) \text { entries of degree }\left\lceil\frac{2 k+1}{n}\right\rceil \delta+r
\end{gathered}
$$

Noting the pattern inherent in the results above, we can state the possible edge numbers for a given n, δ, r as follows.

Theorem 1.2 Given integers δ, r such that $0 \leq r \leq \delta-1$ and positive integer $n>r$ such that if δ is even then at least one of n, r is even, the possible edge numbers of $a(\delta, r)$-balanced graph on n vertices are of the form:

$$
l=\left\{\begin{array}{cl}
e=\frac{n r}{2}+l \delta \\
\frac{k}{2}, k \in[0,1,2, \ldots, n m] & \text { if } \delta \text { is even } \\
k, k \in\left[0,1,2, \ldots,\left\lfloor\frac{n m}{2}\right\rfloor\right] & \text { if } \delta \text { is odd and at least one of } n, r \text { is even } \\
k+\frac{1}{2}, k \in\left[0,1,2, \ldots,\left\lfloor\frac{n m-1}{2}\right\rfloor\right] & \text { if } \delta, n, r \text { are all odd }
\end{array}\right.
$$

Additionally, each e implies a degree sequence consisting of:

$$
\begin{gathered}
n-(2 l)(\bmod n) \text { entries of degree }\left\lfloor\frac{2 l}{n}\right\rfloor \delta+r \\
(2 l)(\bmod n) \text { entries of degree }\left\lceil\frac{2 l}{n}\right\rceil \delta+r
\end{gathered}
$$

1.3 Realizable Degree Sequences

Theorem 1.3 Let G be a simple graph on $n=a_{1}+a_{2}$ vertices with a_{1} vertices of degree d_{1}. Call this set of vertices A_{1}. Let the remaining a_{2} vertices have degree d_{2} and call this set of vertices A_{2}. Let x be the number of edges connecting two vertices in A_{1}. Then the following inequalities hold:

$$
\begin{aligned}
\text { i) } & 0 \leq x \leq \frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\text { ii) } & 0 \leq a_{1} d_{1}-2 x \leq a_{1} a_{2} \\
\text { iii) } & 0 \leq \frac{1}{2}\left(a_{2} d_{2}-a_{1} d_{1}+2 x\right) \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)
\end{aligned}
$$

Proof The inequalities are clear from Figure 1.1.

Figure 1.1: Distribution of edges in G

The values in the middle of each string of inequalities are the number of edges i) between vertices in $\left.A_{1}, i i\right)$ with one end vertex in A_{1} and one end vertex in A_{2}, and $i i i$) between vertices in A_{2}. Thus, the left bound in each is clear and the right bound is the maximum number of possible edges of each type.

We will use these two lemmas, both proven in [4].

Lemma 1.1 ([4]) There is a bipartite graph with e edges on bipartition (A, B) where A, B are balanced if and only if $0 \leq e \leq a b$ where $a=|V(A)|$ and $b=|V(B)|$.

Lemma 1.2 ([4]) There is a simple, balanced graph on n vertices with e edges if and only if $0 \leq e \leq\binom{ n}{2}$.

Additionally, we will call on the following elementary lemmas relating to balanced integer vectors.

Lemma 1.3 Let $v_{1}=(\underbrace{\alpha, \alpha, \ldots, \alpha}_{i}, \alpha+1, \alpha+1, \ldots, \alpha+1)$ and $v_{2}=(\underbrace{\beta, \beta, \ldots, \beta}_{j}, \beta-1, \beta-$ $1, \ldots, \beta-1)$ be balanced integer vectors of length n. Then $v_{1}+v_{2}$ is a balanced integer vector.

Proof If $i \leq j$, then

$$
v_{1}+v_{2}=(\underbrace{\alpha+\beta, \ldots, \alpha+\beta}_{i}, \underbrace{\alpha+1+\beta, \ldots, \alpha+1+\beta}_{j-i}, \underbrace{\alpha+\beta, \ldots, \alpha+\beta}_{n-j})
$$

which is a balanced vector.
If $i>j$, then

$$
v_{1}+v_{2}=(\underbrace{\alpha+\beta, \ldots, \alpha+\beta}_{j}, \underbrace{\alpha+\beta-1, \ldots, \alpha+\beta-1}_{i-j}, \underbrace{\alpha+\beta, \ldots, \alpha+\beta}_{n-i})
$$

another balanced vector.

Lemma 1.4 Let $v_{1}=\left(\delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n}\right)$ be a balanced nonnegative integer vector. If $\sum_{i=1}^{n} \delta_{i}=$ λn for some integer λ, then $\delta_{i}=\lambda$ for all i.

Proof Suppose $\delta_{j}<\lambda$ for some $1 \leq j \leq n$. Then $\sum_{i=1}^{n} \delta_{i} \leq \delta_{j}+\sum_{i=1}^{n-1} \lambda<\lambda n$. Similarly, no δ_{j} can be greater than λ.

Theorem 1.4 Let $a_{1}, a_{2}, d_{1}, d_{2}$, and x be nonnegative integers such that $a_{2} d_{2}-a_{1} d_{1}$ is even. If the following system of inequalities holds, then there exists a simple graph consisting of a_{1} vertices of degree d_{1} and a_{2} vertices of degree d_{2} :

$$
\begin{aligned}
\text { i) } & 0 \leq x \leq \frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\text { ii) } & 0 \leq a_{1} d_{1}-2 x \leq a_{1} a_{2} \\
\text { iii) } & 0 \leq \frac{1}{2}\left(a_{2} d_{2}-a_{1} d_{1}+2 x\right) \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)
\end{aligned}
$$

Proof By $i i$ and Lemma 1.1, there is a bipartite graph with $a_{1} d_{1}-2 x$ edges on bipartition (A, B) where $|A|=a_{1},|B|=a_{2}$, and A, B are both balanced. Form such a graph and call it G_{1}.

By i and Lemma 1.2, there is a simple, balanced graph on a_{1} vertices with x edges. Form such a graph on A and call it G_{2}. Since $a_{2} d_{2}-a_{1} d_{1}$ is even and thus $\frac{1}{2}\left(a_{2} d_{2}-a_{1} d_{1}+2 x\right)$ is an integer, i ii and Lemma 1.2 imply that there is a simple, balanced graph on a_{2} vertices with $\frac{1}{2}\left(a_{2} d_{2}-a_{1} d_{1}+2 x\right)$ edges. Form such a graph on B and call it G_{3}.

Consider $G=G_{1} \bigcup G_{2} \bigcup G_{3}$. By Lemma 1.3, it is possible to form G such that A and B are both balanced in G.

There will be $2 x+\left(a_{1} d_{1}-2 x\right)=a_{1} d_{1}$ edge ends in A. Thus, the degree sequence of A is a balanced vector and the sum of its entries is an integer multiple of the number of entries. By Lemma 1.4, the degree of each of the a_{1} vertices in A must be d_{1}.

Similarly, there will be $\left(a_{2} d_{2}-a_{1} d_{1}+2 x\right)+\left(a_{1} d_{1}-2 x\right)=a_{2} d_{2}$ edge ends in B. Again, we have a balanced degree sequence whose sum is an integer multiple of the number of entries, showing that all a_{2} vertices in B have degree d_{2}.

Note that the values for $a_{1}, a_{2}, d_{1}, d_{2}$ coming from any possible number of edges from the previous section will yield an even $a_{2} d_{2}-a_{1} d_{1}$.

We can isolate the variable x in the system of inequalities appearing in the previous two theorems, giving us the system:

$$
\begin{aligned}
& \text { i) } 0 \leq x \leq \frac{1}{2} a_{1}\left(a_{1}-1\right) \\
& \text { ii) } \frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \leq x \leq \frac{1}{2} a_{1} d_{1} \\
& \text { iii) } \frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right) \leq x \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{aligned}
$$

This system will have a solution for x if each of the nine inequalities created by picking one of the lower bounds and one of the upper bounds has a solution for x. We will write this system as:

$$
\left.\begin{array}{c}
0 \\
\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \\
\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right\} \leq x \leq\left\{\begin{array}{c}
\frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\frac{1}{2} a_{1} d_{1} \\
\frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right.
$$

We can now combine the two theorems above, specifying properties of $a_{1}, a_{2}, d_{1}, d_{2}$ that will come from the possible edge numbers generated in the previous section.

Theorem 1.5 Let $a_{1}, a_{2}, d_{1}, d_{2}, n$, and e be nonnegative integers such that $a_{1}+a_{2}=n$ and $a_{1} d_{1}+a_{2} d_{2}=2 e$. Then there exists a simple graph on n vertices with a_{1} vertices of degree d_{1} and a_{2} vertices of degree d_{2} if and only if there is an integer solution to the following system of inequalities:

$$
\left.\begin{array}{c}
0 \\
\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \\
\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right\} \leq x \leq\left\{\begin{array}{c}
\frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\frac{1}{2} a_{1} d_{1} \\
\frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right.
$$

Theorem 1.6 Let $a_{1}, a_{2}, d_{1}, d_{2}$, n, and e be nonnegative integers such that $a_{1}+a_{2}=n$ and $a_{1} d_{1}+a_{2} d_{2}=2 e$. If the following system of inequalities has a solution, then it has an integer solution.

$$
\left.\begin{array}{c}
0 \\
\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \\
\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right\} \leq x \leq\left\{\begin{array}{c}
\frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\frac{1}{2} a_{1} d_{1} \\
\frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right.
$$

Proof We will verify that in each of the nine strings of inequalities, at least one of the bounds is an integer and thus, if there is a solution, there is an integer solution. We first note that 0 and $\frac{1}{2} a_{1}\left(a_{1}-1\right)$ are always integers and thus any of the inequality strings involving them will have an integer solution, provided the string has a solution.

Since $a_{1} d_{1}+a_{2} d_{2}=2 e$, either $a_{1} d_{1}$ and $a_{2} d_{2}$ are both even or they are both odd. Thus, $a_{1} d_{1}-a_{2} d_{2}$ is even. So, $\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)$ is an integer. Also, $\frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)$ is an integer since $\frac{1}{2} a_{2}\left(a_{2}-1\right)$ is an integer. This takes care of all strings of inequalities except for:

$$
\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \leq x \leq \frac{1}{2} a_{1} d_{1}
$$

$\frac{1}{2} a_{1} d_{1}$ is an integer unless a_{1} and d_{1} are both odd. Suppose this is the case. Then $a_{1} d_{1}$ is odd and so $a_{2} d_{2}$ must also be odd, implying that a_{2} is odd. Thus, $d_{1}-a_{2}$ is even and $\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right)$ is an integer.

So, we only need to determine whether the strings of inequalities have a solution, equivalent to determining whether the following system of inequalities holds.

$$
\left.\begin{array}{c}
0 \\
\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \\
\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right\} \leq\left\{\begin{array}{c}
\frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\frac{1}{2} a_{1} d_{1} \\
\frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}\right.
$$

Theorem 1.7 If $a_{1}, a_{2}, d_{1}, d_{2}, n$, and e are nonnegative integers such that $d_{1}, d_{2} \leq n-1$, $a_{1}+a_{2}=n$, $a_{1} d_{1}+a_{2} d_{2}=2 e$, then the system of inequalities above is equivalent to the system:

$$
\begin{aligned}
& a_{2} d_{2}-a_{1} d_{1} \leq a_{2}\left(a_{2}-1\right) \\
& a_{1} d_{1}-a_{2} d_{2} \leq a_{1}\left(a_{1}-1\right)
\end{aligned}
$$

Proof The original system includes the nine inequalities:

$$
\begin{array}{ll}
\text { i) } & 0 \leq \frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\text { ii) } & 0 \leq \frac{1}{2} a_{1} d_{1} \\
\text { iii) } & 0 \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right) \\
\text { iv) } & \frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \leq \frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\text { v) } & \frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \leq \frac{1}{2} a_{1} d_{1} \\
\text { vi) } & \frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right) \\
\text { vii) } & \frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right) \leq \frac{1}{2} a_{1}\left(a_{1}-1\right) \\
\text { viii) } & \frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right) \leq \frac{1}{2} a_{1} d_{1} \\
\text { ix) } & \frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right) \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right)
\end{array}
$$

Since a_{1}, a_{2}, d_{1}, and d_{2} are all nonnegative, $i, i i, v$, viii, and $i x$ are clearly true. Consider $i v$ and note that if $a_{1}=0$, the inequality is true. If $a_{1} \neq 0$:

$$
\begin{aligned}
\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) & \leq \frac{1}{2} a_{1}\left(a_{1}-1\right) \\
d_{1}-a_{2} & \leq a_{1}-1 \\
d_{1} & \leq a_{1}+a_{2}-1 \\
d_{1} & \leq n-1
\end{aligned}
$$

This was one of our assumptions, so $i v$ will be true.

Consider $v i$ and note that if $a_{2}=0$, the inequality is true. If $a_{2} \neq 0$:

$$
\begin{aligned}
\frac{1}{2} a_{1}\left(d_{1}-a_{2}\right) & \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)+\frac{1}{2}\left(a_{1} d_{1}-a_{2} d_{2}\right) \\
a_{1} d_{1}-a_{1} a_{2} & \leq a_{2}\left(a_{2}-1\right)+a_{1} d_{1}-a_{2} d_{2} \\
-a_{1} a_{2} & \leq a_{2}\left(a_{2}-1\right)-a_{2} d_{2} \\
-a_{1} & \leq a_{2}-1-d_{2} \\
d_{2} & \leq a_{1}+a_{2}-1=n-1
\end{aligned}
$$

This was an assumption, and so the inequality is true. We are left with inequalities $i i i$ and vii, which can be rewritten as:

$$
\begin{aligned}
& a_{2} d_{2}-a_{1} d_{1} \leq a_{2}\left(a_{2}-1\right) \\
& a_{1} d_{1}-a_{2} d_{2} \leq a_{1}\left(a_{1}-1\right)
\end{aligned}
$$

Theorem 1.8 The two inequalities:
i) $a_{2} d_{2}-a_{1} d_{1} \leq a_{2}\left(a_{2}-1\right)$
ii) $a_{1} d_{1}-a_{2} d_{2} \leq a_{1}\left(a_{1}-1\right)$
are equivalent to the following string of inequalities:

$$
a_{1} d_{1}-\binom{a_{1}}{2} \leq e \leq\binom{ a_{2}}{2}+a_{1} d_{1}
$$

Proof Inequality i can be rewritten as follows by substituting $2 e-a_{1} d_{1}$ for $a_{2} d_{2}$.

$$
\begin{aligned}
\left(2 e-a_{1} d_{1}\right)-a_{1} d_{1} & \leq a_{2}\left(a_{2}-1\right) \\
2 e & \leq a_{2}\left(a_{2}-1\right)+2 a_{1} d_{1} \\
e & \leq \frac{1}{2} a_{2}\left(a_{2}-1\right)+a_{1} d_{1}=\binom{a_{2}}{2}+a_{1} d_{1}
\end{aligned}
$$

We proceed analogously for inequality $i i$.

$$
\begin{aligned}
a_{1} d_{1}-\left(2 e-a_{1} d_{1}\right) & \leq a_{1}\left(a_{1}-1\right) \\
-2 e & \leq a_{1}\left(a_{1}-1\right)-2 a_{1} d_{1} \\
e & \geq a_{1} d_{1}-\frac{1}{2} a_{1}\left(a_{1}-1\right)=a_{1} d_{1}-\binom{a_{1}}{2}
\end{aligned}
$$

This yields our desired string of inequalities.

So, we can combine all of our results in this section and state this theorem on the existence of graphs in which each vertex has one of two possible degrees.

Theorem 1.9 Let $a_{1}, a_{2}, d_{1}, d_{2}, n$, and e be nonnegative integers such that $d_{1}, d_{2} \leq n-1$, $a_{1}+a_{2}=n$, and $a_{1} d_{1}+a_{2} d_{2}=2 e$. Then there exists a simple graph on n vertices with a_{1} vertices of degree d_{1} and a_{2} vertices of degree d_{2} if and only if:

$$
a_{1} d_{1}-\binom{a_{1}}{2} \leq e \leq\binom{ a_{2}}{2}+a_{1} d_{1}
$$

1.4 Main Result

By combining the results of Theorem 1.2 and Theorem 1.9 we can reach the main conclusion of this chapter.

Theorem 1.10 Let n, e, and δ be positive integers. Let r be an integer such that $0 \leq r<\delta$ and $r<n$. Let m be the integer such that $m \delta+r<n \leq(m+1) \delta+r$. There is a (δ, r)-balanced graph with e edges on n vertices if and only if $e=\frac{n r}{2}+l \delta$ such that:

$$
\begin{gathered}
\frac{n r}{2}+l \delta \geq(n-(2 l)(\bmod n))\left(\left\lfloor\frac{2 l}{n}\right\rfloor \delta+r\right)-\binom{n-(2 l)(\bmod n)}{2} \\
\frac{n r}{2}+l \delta \leq\binom{(2 l)(\bmod n)}{2}+(n-(2 l)(\bmod n))\left(\left\lfloor\frac{2 l}{n}\right\rfloor \delta+r\right)
\end{gathered}
$$

where $l=\left\{\begin{array}{cl}\frac{k}{2}, k \in[0,1,2, \ldots, n m] & \text { if } \delta \text { is even } \\ k, k \in\left[0,1,2, \ldots,\left\lfloor\frac{n m}{2}\right\rfloor\right] & \text { if } \delta \text { is odd and at least one of } n, r \text { is even } \\ k+\frac{1}{2}, k \in\left[0,1,2, \ldots,\left\lfloor\frac{n m-1}{2}\right\rfloor\right] & \text { if } \delta, n, r \text { are all odd }\end{array}\right.$

1.5 A Note on Duality

Theorem 1.11 There is a simple graph G with e edges on $n=a_{1}+a_{2}$ vertices such that a_{1} vertices have degree d_{1} and a_{2} vertices have degree d_{2} if and only if there is a simple graph G^{*} with $\binom{n}{2}-e$ edges on $n=a_{1}+a_{2}$ vertices such that a_{1} vertices have degree $(n-1)-d_{1}$ and a_{2} vertices have degree $(n-1)-d_{2}$.

Proof This is clear since $G^{*}=K_{n}-E(G)$ and $G=K_{n}-E\left(G^{*}\right)$.

Corollary 1.2 If G is (δ, r)-balanced, then:
i) $(n-1)-d_{1} \equiv(n-1)-d_{2} \equiv((n-1)-r)(\bmod \delta)$
ii) $\left|\left((n-1)-d_{1}\right)-\left((n-1)-d_{2}\right)\right|=\left|d_{2}-d_{1}\right| \leq \delta$

Proof Let d be the degree of a vertex of G. Since G is (δ, r)-balanced, $d=p \delta+r$ for some $0 \leq p \leq m$, so $(n-1)-d=(n-1)-r-p \delta \equiv((n-1)-r)(\bmod \delta)$. This shows i. $i i$ is obvious.

Corollary 1.3 If G is is (δ, r)-balanced, then G^{*} is $(\delta,(n-1)-r-m \delta)$-balanced.

Proof By i in the corollary above, the remainder for G^{*} is $(n-1)-r-\mu \delta$ for some nonnegative integer μ such that:

$$
0 \leq(n-1)-r-\mu \delta<\delta
$$

Since $m \delta+r \leq n-1$:

$$
(n-1)-r-m \delta=(n-1)-(m \delta+r) \geq 0
$$

Also, $(m+1) \delta+r>n-1$, so:

$$
\begin{array}{r}
(n-1)-((m+1) \delta+r)<0 \\
(n-1)-(m \delta+r)-\delta<0 \\
(n-1)-(m \delta+r)<\delta
\end{array}
$$

Chapter 2

Balanced Bipartite Graphs

2.1 Bipartite Graphs with Four Degrees

The following theorem, found in [8], gives necessary and sufficient conditions for the existence of a simple, bipartite graph in which each partition consists of vertices of one of two degrees.

Theorem 2.1 Let $a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}, f_{1}, f_{2}$ be nonnegative integers. There is a simple, bipartite graph on bipartition (A, B) such that A consists of a_{1} vertices of degree d_{1} and a_{2} vertices of degree d_{2} and B consists of b_{1} vertices of degree f_{1} and b_{2} vertices of degree f_{2} if and only if

$$
a_{1} d_{1}+a_{2} d_{2}=b_{1} f_{1}+b_{2} f_{2}
$$

and the following inequalities are all satisfied:
i) $a_{1} d_{1} \leq a_{1} b_{1}+b_{2} f_{2}$ or, equivalently $b_{1} f_{1} \leq a_{1} b_{1}+a_{2} d_{2}$
ii) $a_{1} d_{1} \leq a_{1} b_{2}+b_{1} f_{1}$ or, equivalently $b_{2} f_{2} \leq a_{1} b_{2}+a_{2} d_{2}$
iii) $\quad b_{1} f_{1} \leq a_{2} b_{1}+a_{1} d_{1}$ or, equivalently $a_{2} d_{2} \leq a_{2} b_{1}+b_{2} f_{2}$
iv) $b_{2} f_{2} \leq a_{2} b_{2}+a_{1} d_{1}$ or, equivalently $a_{2} d_{2} \leq a_{2} b_{2}+b_{1} f_{1}$
v) $a_{1}=0$ or $d_{1} \leq b_{1}+b_{2}$
vi) $a_{2}=0$ or $d_{2} \leq b_{1}+b_{2}$
vii) $b_{1}=0$ or $f_{1} \leq a_{1}+a_{2}$
viii) $\quad b_{2}=0$ or $f_{2} \leq a_{1}+a_{2}$

Proof Note that each side of the first equality counts the number of edges and so is necessary. Also note that it can be used to see the equivalent inequalities in conditions i through $i v$.

First, we will show that the existence of such a graph is equivalent to a particular system of inequalities having a solution. We will then show that the system is equivalent to conditions i through viii. Assume we have a simple, bipartite graph on bipartition (A, B) such that A consists of a_{1} vertices of degree d_{1} and a_{2} vertices of degree d_{2} and B consists of b_{1} vertices of degree f_{1} and b_{2} vertices of degree f_{2}.

Let A_{1} be the set of vertices of degree a_{1} and A_{2} be the set of vertices of degree a_{2} in A. Similarly, we have B_{1} and B_{2}. Suppose there are x edges between A_{1} and B_{1}. Then the distribution of edges can be summarized as follows:

	B_{1}	B_{2}
A_{1}	x	$a_{1} d_{1}-x$
A_{2}	$b_{1} f_{1}-x$	$a_{2} d_{2}-b_{1} f_{1}+x=b_{2} f_{2}-a_{1} d_{1}+x$

Table 2.1: Distribution of Edges

Furthermore, we get the following inequalities based on the maximum and minimum number of possible edges of each type.

$$
\begin{gathered}
0 \leq x \leq a_{1} b_{1} \\
0 \leq a_{1} d_{1}-x \leq a_{1} b_{2} \\
0 \leq b_{1} f_{1}-x \leq a_{2} b_{1} \\
0 \leq a_{2} d_{2}-b_{1} f_{1}+x \leq a_{2} b_{2}
\end{gathered}
$$

Isolating x in each of them gives us the system of sixteen inequalities:

$$
\left.\begin{array}{c}
0 \\
a_{1} d_{1}-a_{1} b_{2} \\
b_{1} f_{1}-a_{2} b_{1} \\
b_{1} f_{1}-a_{2} d_{2}
\end{array}\right\} \leq x \leq\left\{\begin{array}{c}
a_{1} b_{1} \\
a_{1} d_{1} \\
b_{1} f_{1} \\
a_{2} b_{2}-a_{2} d_{2}+b_{1} f_{1}
\end{array}\right.
$$

Now, suppose that we have nonnegative integers $a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}, f_{1}, f_{2}$ and disjoint sets of vertices $A_{1}, A_{2}, B_{1}, B_{2}$ such that $\left|A_{1}\right|=a_{1},\left|A_{2}\right|=a_{2},\left|B_{1}\right|=b_{1},\left|B_{2}\right|=b_{2}$. Also, suppose that there is a solution, x, to the system above.

We can use the construction found in [4] to form a simple, bipartite graph G_{1} with x edges between A_{1} and B_{1} such that both parts are balanced. Similarly we can form a simple, bipartite graph G_{2} with $a_{1} d_{1}-x$ vertices between A_{1} and B_{2} so that parts are balanced.

If we consider $G_{1} \bigcup G_{2}$, we can arrange the vertices such that A_{1} will be balanced by Lemma 1.3 and each degree in the degree sequence of A_{1} will be d_{1} by Lemma 1.4. We can construct additional bipartite graphs from A_{2} to B_{1} and B_{2} with $b_{1} f_{1}-x$ and $a_{2} d_{2}-b_{1} f_{1}+x$ edges respectively. As before, the lemmas guarantee we can arrange vertices to get the desired graph with four degrees.

Again, suppose that we have nonnegative integers $a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}, f_{1}, f_{2}$. We will now show that the system of sixteen inequalities below is equivalent to conditions i through viii stated in the theorem.

$$
\left.\begin{array}{c}
0 \\
a_{1} d_{1}-a_{1} b_{2} \\
b_{1} f_{1}-a_{2} b_{1} \\
b_{1} f_{1}-a_{2} d_{2}
\end{array}\right\} \leq\left\{\begin{array}{c}
a_{1} b_{1} \\
a_{1} d_{1} \\
b_{1} f_{1} \\
a_{2} b_{2}-a_{2} d_{2}+b_{1} f_{1}
\end{array}\right.
$$

Starting with the inequalities that have 0 on the left, the following are all clear.

$$
\begin{aligned}
& 0 \leq a_{1} b_{1} \\
& 0 \leq a_{1} d_{1} \\
& 0 \leq b_{1} f_{1}
\end{aligned}
$$

The last one is equivalent to condition $i v$.

$$
\begin{aligned}
0 & \leq a_{2} b_{2}-a_{2} d_{2}+b_{1} f_{1} \\
a_{2} d_{2} & \leq a_{2} b_{2}+b_{1} f_{1}
\end{aligned}
$$

Moving to the inequalities with $a_{1} d_{1}-a_{1} b_{2}$ on the left, the first is equivalent to condition v.

$$
\begin{aligned}
a_{1} d_{1}-a_{1} b_{2} & \leq a_{1} b_{1} \\
a_{1} d_{1} & \leq a_{1} b_{1}+a_{1} b_{2} \\
d_{1} & \leq b_{1}+b_{2}
\end{aligned}
$$

The second is clear.

$$
\begin{aligned}
a_{1} d_{1}-a_{1} b_{2} & \leq a_{1} d_{1} \\
0 & \leq a_{1} b_{2}
\end{aligned}
$$

The third is equivalent to condition $i i$.

$$
\begin{aligned}
a_{1} d_{1}-a_{1} b_{2} & \leq b_{1} f_{1} \\
a_{1} d_{1} & \leq a_{1} b_{2}+b_{1} f_{1}
\end{aligned}
$$

If we recall that $a_{1} d_{1}+a_{2} d_{2}=b_{1} f_{1}+b_{2} f_{2}$, the fourth is equivalent to condition viii.

$$
\begin{aligned}
a_{1} d_{1}-a_{1} b_{2} & \leq a_{2} b_{2}-a_{2} d_{2}+b_{1} f_{1} \\
a_{1} d_{1}+a_{2} d_{2} & \leq a_{2} b_{2}+b_{1} f_{1}+a_{1} b_{2} \\
b_{1} f_{1}+b_{2} f_{2} & \leq a_{2} b_{2}+b_{1} f_{1}+a_{1} b_{2} \\
b_{2} f_{2} & \leq a_{2} b_{2}+a_{1} b_{2} \\
f_{2} & \leq a_{2}+a_{1}
\end{aligned}
$$

Now, the inequalities with $b_{1} f_{1}-a_{2} b_{1}$ on the left. The first is equivalent to condition vii.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} b_{1} & \leq a_{1} b_{1} \\
b_{1} f_{1} & \leq a_{1} b_{1}+a_{2} b_{1} \\
f_{1} & \leq a_{1}+a_{2}
\end{aligned}
$$

The second is equivalent to condition $i i i$.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} b_{1} & \leq a_{1} d_{1} \\
b_{1} f_{1} & \leq a_{1} d_{1}+a_{2} b_{1}
\end{aligned}
$$

The third is clear.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} b_{1} & \leq b_{1} f_{1} \\
0 & \leq a_{2} b_{1}
\end{aligned}
$$

The fourth is equivalent to condition vi.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} b_{1} & \leq a_{2} b_{2}-a_{2} d_{2}+b_{1} f_{1} \\
-a_{2} b_{1} & \leq a_{2} b_{2}-a_{2} d_{2} \\
a_{2} d_{2} & \leq a_{2} b_{1}+a_{2} b_{2} \\
d_{2} & \leq b_{1}+b_{2}
\end{aligned}
$$

Finally, consider the inequalities with $b_{1} f_{1}-a_{2} d_{2}$ on the left. The first is equivalent to condition i, the last of the conditions we needed to show.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} d_{2} & \leq a_{1} b_{1} \\
b_{1} f_{1} & \leq a_{1} b_{1}+a_{2} d_{2}
\end{aligned}
$$

Noting that $a_{1} d_{1}+a_{2} d_{2}=b_{1} f_{1}+b_{2} f_{2}$, the second is clear.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} d_{2} & \leq a_{1} d_{1} \\
b_{1} f_{1} & \leq a_{1} d_{1}+a_{2} d_{2} \\
b_{1} f_{1} & \leq b_{1} f_{1}+b_{2} f_{2} \\
0 & \leq b_{2} f_{2}
\end{aligned}
$$

The third is clear.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} d_{2} & \leq b_{1} f_{1} \\
0 & \leq a_{2} d_{2}
\end{aligned}
$$

To complete the proof, the fourth is clear as well.

$$
\begin{aligned}
b_{1} f_{1}-a_{2} d_{2} & \leq a_{2} b_{2}-a_{2} d_{2}+b_{1} f_{1} \\
0 & \leq a_{2} b_{2}
\end{aligned}
$$

2.2 Modular Balanced Bipartite Graphs

Let a, b be positive integers, e be a nonnegative integer and let r_{a}, r_{b}, δ be integers such that $0 \leq r_{a}, r_{b} \leq \delta-1$. We say that the bipartite graph G with e edges on bipartition (A, B), with $|A|=a$ and $|B|=b$, is $\left(\delta, r_{a}, r_{b}\right)$-balanced if:
i) For all $u \in A, d_{G}(u) \equiv r_{a}(\bmod \delta)$ and furthermore for all $v \in A,\left|d_{G}(u)-d_{G}(v)\right| \leq \delta$
ii) For all $u \in B, d_{G}(u) \equiv r_{b}(\bmod \delta)$ and furthermore for all $v \in B,\left|d_{G}(u)-d_{G}(v)\right| \leq \delta$

Lemma 2.1 Let a, b be positive integers, e be a nonnegative integer and let r_{a}, r_{b}, δ be integers such that $0 \leq r_{a}, r_{b} \leq \delta-1$. If G is a simple, bipartite graph with e edges on bipartition (A, B), with $|A|=a$ and $|B|=b$ such that G is $\left(\delta, r_{a}, r_{b}\right)$-balanced, then A consists of:

$$
\begin{gathered}
a-l_{a} \text { vertices of degree } \delta q_{a}+r_{a} \\
l_{a} \text { vertices of degree } \delta q_{a}+r_{a}+\delta \\
\text { where } q_{a}=\left\lfloor\frac{e-r_{a} a}{\delta a}\right\rfloor \text { and } l_{a}=\frac{e-r_{a} a}{\delta}(\bmod a)
\end{gathered}
$$

Also, B consists of:
$b-l_{b}$ vertices of degree $\delta q_{b}+r_{b}$
l_{b} vertices of degree $\delta q_{b}+r_{b}+\delta$
where $q_{b}=\left\lfloor\frac{e-r_{b} b}{\delta b}\right\rfloor$ and $l_{b}=\frac{e-r_{b} b}{\delta}(\bmod b)$

Proof The proof follows from Theorem 1.1. If G is $\left(\delta, r_{a}, r_{b}\right)$-balanced, then $e=r_{a} a+\delta \nu$ for some nonnegative integer ν. Let $0 \leq q_{a}$ and $0 \leq l_{a} \leq a-1$ be the integers such that $\nu=a q_{a}+l_{a}$. That is, q_{a} is the number of times that every vertex in A has had its degree increased by δ from r_{a} and l_{a} is the number of vertices whose degrees are increased by an additional δ.

So $e=\delta a q_{a}+\delta l_{a}+r_{a} a$ and we have:

$$
\begin{aligned}
q_{a} & =\frac{e-r_{a} a-\delta l_{a}}{\delta a} \\
& =\frac{e-r_{a} a}{\delta a}-\frac{l_{a}}{a} \\
& =\left\lfloor\frac{e-r_{a} a}{\delta a}\right\rfloor
\end{aligned}
$$

Also, we have:

$$
\begin{aligned}
l_{a} & =\frac{e-r_{a} a}{\delta}-a q_{a} \\
& =\frac{e-r_{a} a}{\delta}(\bmod a)
\end{aligned}
$$

We have simliar results for B.

If A and B are disjoint sets, $K_{A, B}$ is the complete bipartite graph on bipartition (A, B). The bipartite complement of a bipartite graph G on bipartition (A, B) with edge set E is the bipartite graph G^{\prime} on (A, B) with edge set $E^{\prime}=E\left(K_{A, B}\right) \backslash E$.

We can note here that if G is $\left(\delta, r_{a}, r_{b}\right)$-balanced on (A, B), then G^{\prime} is $\left(\delta, r_{a}^{\prime}, r_{b}^{\prime}\right)$-balanced where $r_{a}+r_{a}^{\prime} \equiv b(\bmod \delta), r_{b}+r_{b}^{\prime} \equiv a(\bmod \delta),|A|=a$, and $|B|=b$.

The following lemma outlines necessary conditions for the existence of (δ, r_{a}, r_{b})-balanced graphs.

Lemma 2.2 Let a, b, δ be positive integers, e be a nonnegative integer, and $r_{a}, r_{b}, r_{a}^{\prime}, r_{b}^{\prime} \in$ $\{0,1, \ldots, \delta-1\}$ such that $r_{a}+r_{a}^{\prime} \equiv b(\bmod \delta)$ and $r_{b}+r_{b}^{\prime} \equiv a(\bmod \delta)$. If there is a simple, $\left(\delta, r_{a}, r_{b}\right)$-balanced bipartite graph with e edges on (A, B) where $|A|=a$ and $|B|=b$, then:

$$
\begin{aligned}
r_{a} a & \leq e \leq a b-r_{a}^{\prime} a \\
r_{b} b & \leq e \leq a b-r_{b}^{\prime} b
\end{aligned}
$$

and all five quantities above are congruent (mod δ).

Proof $e=r_{a} a+\delta \nu$ for some nonnegative ν so $r_{a} a \leq e$ and the two are congruent $(\bmod \delta)$. Also, $a b-r_{a}^{\prime} a=a\left(b-r_{a}^{\prime}\right) \equiv r_{a} a(\bmod \delta)$. If a simple, bipartite graph G is $\left(\delta, r_{a}, r_{b}\right)$-balanced, then G^{\prime} is $\left(\delta, r_{a}^{\prime}, r_{b}^{\prime}\right)$-balanced. Thus, $r_{a}^{\prime} a \leq a b-e$ and we can get $e \leq a b-r_{a}^{\prime} a$. Similarly, we can get the desired conditions for B.

2.2.1 $\delta=2$

With certain exceptions, the conditions in Lemma 2.2 are also sufficient for $\delta=2$. The result, originally in [8], is stated here with an additional class of exceptions overlooked by the author and the omission of several erroneous exceptions.

Theorem 2.2 Let a, b be positive integers, e be a nonnegative integer, and $r_{a}, r_{b}, r_{a}^{\prime}, r_{b}^{\prime} \in$ $\{0,1\}$ such that $r_{a}+r_{a}^{\prime} \equiv b(\bmod 2)$ and $r_{b}+r_{b}^{\prime} \equiv a(\bmod 2)$. There is a simple, $\left(2, r_{a}, r_{b}\right)-$ balanced bipartite graph with e edges on (A, B) where $|A|=a$ and $|B|=b$ if and only $i f:$

$$
\begin{aligned}
r_{a} a & \leq e \leq a b-r_{a}^{\prime} a \\
r_{b} b & \leq e \leq a b-r_{b}^{\prime} b
\end{aligned}
$$

and all five quantities above are congruent (mod 2) with the following exceptions (and the analogous exceptions of Class II with A and B reversed):

Exception Class I:

$$
\begin{gathered}
a \geq 2, r_{a}=0, r_{a}^{\prime}=b(\bmod 2) \\
b \geq 2, r_{b}=0, r_{b}^{\prime}=a(\bmod 2) \\
e=2
\end{gathered}
$$

Exception Class I*:

$$
\begin{aligned}
a \geq 2, r_{a} & =b(\bmod 2), r_{a}^{\prime}=0 \\
b \geq 2, r_{b} & =a(\bmod 2), r_{b}^{\prime}=0 \\
e & =a b-2
\end{aligned}
$$

Exception Class II:

$$
\begin{gathered}
a=2, r_{a}=(m+1)(\bmod 2), r_{a}^{\prime}=\left(b-r_{a}\right)(\bmod 2) \\
b \geq 4, r_{b}=0, r_{b}^{\prime}=0 \\
e=2 m, \text { where } m \in[2,3,4, \ldots, b-2]
\end{gathered}
$$

This was done by translating the problem of $\left(\delta, r_{a}, r_{b}\right)$-balanced graphs into the problem of bipartite graphs with four degrees and applying Theorem 2.1.

2.2.2 $\delta=3$

We will now state the main result of this chapter, a result similar to Theorem 2.2 with list of exceptions for $\delta=3$.

Theorem 2.3 Let a, b be positive integers, e be a nonnegative integer, and $r_{a}, r_{b}, r_{a}^{\prime}, r_{b}^{\prime} \in$ $\{0,1,2\}$ such that $r_{a}+r_{a}^{\prime} \equiv b(\bmod 3)$ and $r_{b}+r_{b}^{\prime} \equiv a(\bmod 3)$. There is a simple, $\left(3, r_{a}, r_{b}\right)-$ balanced bipartite graph with e edges on (A, B) where $|A|=a$ and $|B|=b$ if and only $i f:$

$$
\begin{aligned}
r_{a} a & \leq e \leq a b-r_{a}^{\prime} a \\
r_{b} b & \leq e \leq a b-r_{b}^{\prime} b
\end{aligned}
$$

and all five quantities above are congruent (mod 3) with the following exceptions (and the analogous exceptions with A and B reversed) where the necessary conditions are not sufficient:

Exception Class I:

$$
a \geq 4, r_{a}=0, r_{a}^{\prime}=0
$$

$$
\begin{gathered}
b=6, r_{b}=1, r_{b}^{\prime}=(a-1)(\bmod 3) \\
e=9
\end{gathered}
$$

Exception Class I*:

$$
\begin{gathered}
a=6, r_{a}=(b-1)(\bmod 3), r_{a}^{\prime}=1 \\
b \geq 4, r_{b}=0, r_{b}^{\prime}=0 \\
e=6 b-9
\end{gathered}
$$

Exception Class II:

$$
\begin{gathered}
a \geq 6, r_{a}=0, r_{a}^{\prime}=1 \\
b=4, r_{b}=0, r_{b}^{\prime}=a(\bmod 3) \\
e=15
\end{gathered}
$$

Exception Class II*:

$$
\begin{gathered}
a=4, r_{a}=b(\bmod 3), r_{a}^{\prime}=0 \\
b \geq 6, r_{b}=1, r_{b}^{\prime}=0 \\
e=4 b-15
\end{gathered}
$$

Exception Class III:

$$
\begin{gathered}
a=5, r_{a}=1, r_{a}^{\prime}=1 \\
b=5, r_{b}=1, r_{b}^{\prime}=1 \\
e=11
\end{gathered}
$$

Exception Class III*:

$$
\begin{gathered}
a=5, r_{a}=1, r_{a}^{\prime}=1 \\
b=5, r_{b}=1, r_{b}^{\prime}=1 \\
e=14
\end{gathered}
$$

Exception Class IV:

$$
\begin{gathered}
a \geq 3, r_{a}=0, r_{a}^{\prime}=b(\bmod 3) \\
b \geq 3, r_{b}=0, r_{b}^{\prime}=a(\bmod 3) \\
e=3
\end{gathered}
$$

Exception Class $I V^{*}$:

$$
\begin{aligned}
a \geq 3, r_{a} & =b(\bmod 3), r_{a}^{\prime}=0 \\
b \geq 3, r_{b} & =a(\bmod 3), r_{b}^{\prime}=0 \\
& e=a b-3
\end{aligned}
$$

Exception Class V:

$$
\begin{gathered}
a \geq 3, r_{a}=0, r_{a}^{\prime}=b(\bmod 3) \\
b \geq 3, r_{b}=0, r_{b}^{\prime}=a(\bmod 3) \\
e=6
\end{gathered}
$$

Exception Class V^{*} :

$$
\begin{aligned}
a \geq 3, r_{a} & =b(\bmod 3), r_{a}^{\prime}=0 \\
b \geq 3, r_{b} & =a(\bmod 3), r_{b}^{\prime}=0 \\
e & =a b-6
\end{aligned}
$$

Exception Class VI:

$$
\begin{gathered}
a \geq 4, r_{a}=0, r_{a}^{\prime}=0 \\
b=3, r_{b} \neq m(\bmod 3), r_{b}^{\prime}=\left(a-r_{b}\right)(\bmod 3) \\
e=3 m, \text { where } m \in[2,3,4, \ldots, a-2]
\end{gathered}
$$

Proof Let a, b be positive integers, e be a nonnegative integer, and $r_{a}, r_{b}, r_{a}^{\prime}, r_{b}^{\prime} \in\{0,1,2\}$ such that $r_{a}+r_{a}^{\prime} \equiv b(\bmod 3)$ and $r_{b}+r_{b}^{\prime} \equiv a(\bmod 3)$.
(\Rightarrow) This implication is clear by Lemma 2.2.
(\Leftarrow) Suppose:

$$
\begin{aligned}
r_{a} a & \leq e \leq a b-r_{a}^{\prime} a \\
r_{b} b & \leq e \leq a b-r_{b}^{\prime} b
\end{aligned}
$$

and all five quantities above are congruent (mod 3$)$.
We will first translate the problem of a $\left(3, r_{a}, r_{b}\right)$-balanced bipartite graph to the problem of a bipartite graph with four degrees. Let

$$
q_{a}=\left\lfloor\frac{e-r_{a} a}{3 a}\right\rfloor, q_{b}=\left\lfloor\frac{e-r_{b} b}{3 b}\right\rfloor
$$

and

$$
l_{a}=\frac{e-r_{a} a}{3}(\bmod a), l_{b}=\frac{e-r_{b} b}{3}(\bmod b)
$$

By Lemma 2.1, if a ($3, r_{a}, r_{b}$)-balanced bipartite graph exists, it would have the following values for $a_{1}, a_{2}, d_{1}, d_{2}, b_{1}, b_{2}, f_{1}, f_{2}$, where, as in Theorem 2.1, A consists of a_{1} vertices of degree d_{1} and a_{2} vertices of degree d_{2} and B consists of b_{1} vertices of degree f_{1} and b_{2} vertices of degree f_{2} :

$a_{1}=a-l_{a}$	$b_{1}=b-l_{b}$
$d_{1}=3 q_{a}+r_{a}$	$f_{1}=3 q_{b}+r_{b}$
$a_{2}=l_{a}$	$b_{2}=l_{b}$
$d_{2}=3 q_{a}+r_{a}+3$	$f_{2}=3 q_{b}+r_{b}+3$

Table 2.2: Translation to Bipartite Graph with Four Degrees

We will now verify that the necessary inequalities hold for the exceptions but no such graphs exist. For Class I, we have:

$$
0 \leq 9 \leq 6 a \checkmark(\text { since } a \geq 4)
$$

and:

$$
\text { and } 6 \leq 9 \leq 6 a-6 r_{b}^{\prime}=6\left(a-r_{b}^{\prime}\right) \checkmark\left(\text { since } a-r_{b}^{\prime} \geq 2\right)
$$

All five terms are congruent to $0(\bmod 3)$. However, we get the following values for $a_{1}, a_{2}, d_{1}, d_{2}, b_{1}, b_{2}, f_{1}, f_{2}$ and condition $i v$ from Theorem 2.1 does not hold:

$$
\begin{array}{|c|c|}
\hline a_{1}=a-3 & b_{1}=5 \\
d_{1}=0 & f_{1}=1 \\
\hline a_{2}=3 & b_{2}=1 \\
d_{2}=3 & f_{2}=4 \\
\hline
\end{array}
$$

Table 2.3: $a_{2} d_{2}=9>3+5=a_{2} b_{2}+b_{1} f_{1}$

Obviously, such a graph can't exist since B has a vertex whose degree is larger than the number of vertices of nonzero degree in A.

For Class I*, the inequalities are:

$$
6 r_{a} \leq 6 b-9 \leq 6 b-6 \checkmark(\text { since } b \geq 4)
$$

and:

$$
0 \leq 6 b-9 \leq 6 b . \quad \checkmark(\text { since } b \geq 4)
$$

Again, all terms are congruent to $0(\bmod 3)$. Since these would be the bipartite complements of Class I, such graphs do not exist.

For Class II:

$$
0 \leq 15 \leq 4 a-a=3 a \checkmark(\text { since } a \geq 6)
$$

and:

$$
0 \leq 15 \leq 4 a-4 r_{b}^{\prime}=4\left(a-r_{b}^{\prime}\right) \checkmark\left(\text { since } a-r_{b}^{\prime} \geq 4\right)
$$

Since $a \equiv r_{b}^{\prime}(\bmod 3)$, all the terms are congruent to $0(\bmod 3)$. However, with the following values, condition $i v$ from Theorem 2.1 does not hold.

$$
\begin{array}{|c|c|}
\hline a_{1}=a-5 & b_{1}=3 \\
d_{1}=0 & f_{1}=3 \\
\hline a_{2}=5 & b_{2}=1 \\
d_{2}=3 & f_{2}=6 \\
\hline
\end{array}
$$

Table 2.4: $a_{2} d_{2}=15>5+9=a_{2} b_{2}+b_{1} f_{1}$

As with Class I, there is a vertex in B with higher degree than the number of vertices of nonzero degree in A.

Class II*, the bipartite complements of Class II:

$$
4 r_{a} \leq 4 b-15 \leq 4 b \checkmark(\text { since } b \geq 6)
$$

and:

$$
b \leq 4 b-15 \leq 4 b \checkmark(\text { since } b \geq 6)
$$

To see congruence $(\bmod 3)$, note that $r_{a}=b(\bmod 3)$ and so $4 r_{a}=r_{a}+3 r_{a} \equiv b(\bmod$ 3), $4 b-15=b+(3 b-15) \equiv b(\bmod 3)$, and $4 b=b+3 b \equiv b(\bmod 3)$.

For Class III, both necessary inequalities are $5 \leq 11 \leq 20$ and all terms are congruent (mod 3). However:

$$
\begin{array}{|l|l|}
\hline a_{1}=3 & b_{1}=3 \\
d_{1}=1 & f_{1}=1 \\
\hline a_{2}=2 & b_{2}=2 \\
d_{2}=4 & f_{2}=4 \\
\hline
\end{array}
$$

Table 2.5: $a_{2} d_{2}=8>4+3=a_{2} b_{2}+b_{1} f_{1}$

For Class III*, both inequalities are $5 \leq 14 \leq 20$ and all terms are congruent ($\bmod 3$). Since the graph from Class III does not exist, neither does this one.

Class IV satisfies the inequalities since:

$$
0 \leq 3 \leq a b-a r_{a}^{\prime}=a\left(b-r_{a}^{\prime}\right) \checkmark\left(\text { since } a \geq 3 \text { and } b-r_{a}^{\prime} \geq 1\right.
$$

and:

$$
0 \leq 3 \leq a b-b r_{b}^{\prime}=b\left(a-r_{b}^{\prime}\right) \checkmark\left(\text { since } b \geq 3 \text { and } a-r_{b}^{\prime} \geq 1\right.
$$

Since $b-r_{a}^{\prime} \equiv 0(\bmod 3)$ and $a-r_{b}^{\prime} \equiv 0(\bmod 3)$, all the terms are congruent to $0(\bmod 3)$. However:

$a_{1}=a-1$	$b_{1}=b-1$
$d_{1}=0$	$f_{1}=0$
$a_{2}=1$	$b_{2}=1$
$d_{2}=3$	$f_{2}=3$

Table 2.6: $a_{2} d_{2}=3>1+0=a_{2} b_{2}+b_{1} f_{1}$

Clearly, no such simple, bipartite graphs exist.
For Class IV*, the bipartite complements of Class IV:

$$
r_{a} a \leq a b-3 \leq a b \checkmark\left(\text { since } r_{a} a \leq 2 a \leq 3 a-3 \leq a b-3\right)
$$

and:

$$
r_{b} b \leq a b-3 \leq a b \checkmark\left(\text { since } r_{b} b \leq 2 b \leq 3 b-3 \leq a b-3\right)
$$

Since $r_{a} \equiv b(\bmod 3)$ and $r_{b} \equiv a(\bmod 3)$, the terms are all congruent to $a b(\bmod 3)$. Again, such graphs do not exist.

Class V:

$$
0 \leq 6 \leq a b-a r_{a}^{\prime}=a\left(b-r_{a}^{\prime}\right) \checkmark\left(b-r_{a}^{\prime} \geq 2 \text { since if } b=3, r_{a}^{\prime}=0\right)
$$

and:

$$
0 \leq 6 \leq a b-b r_{b}^{\prime}=b\left(a-r_{b}^{\prime}\right) \checkmark\left(b a-r_{b}^{\prime} \geq 2 \text { since if } a=3, r_{b}^{\prime}=0\right)
$$

Since $r_{a}^{\prime} \equiv b(\bmod 3)$ and $r_{b}^{\prime} \equiv a(\bmod 3)$, all terms are congruent to $0(\bmod 3)$. However, condition $i v$ of Theorem 2.1 is not satisfied.

$a_{1}=a-2$	$b_{1}=b-2$
$d_{1}=0$	$f_{1}=0$
$a_{2}=2$	$b_{2}=2$
$d_{2}=3$	$f_{2}=3$

Table 2.7: $a_{2} d_{2}=6>4+0=a_{2} b_{2}+b_{1} f_{1}$

As we have seen in previous classes, there are vertices in one part with degree larger than the number of vertices of nonzero degree in the other part.

Since graphs of Class V do not exist, neither do those of Class V*. To see that the necessary conditions hold:

$$
r_{a} a \leq a b-6 \leq a b \checkmark\left(r_{a} a \leq 2 a \leq a b-6 \text { since if } b=3, r_{a}=0\right)
$$

and:

$$
r_{b} b \leq a b-6 \leq a b \checkmark\left(r_{b} b \leq 2 b \leq a b-6 \text { since if } a=3, r_{b}=0\right)
$$

Since $r_{a} \equiv b(\bmod 3)$ and $r_{b} \equiv a(\bmod 3)$, the terms are all congruent to $a b(\bmod 3)$.
Finally, for Class VI, our necessary inequalities are satisfied since $2 \leq m \leq a-2$.

$$
0 \leq 3 m \leq 3 a
$$

and:

$$
3 r_{b} \leq 3 m \leq 3 a-3 r_{b}^{\prime}=3\left(a-r_{b}^{\prime}\right) \checkmark
$$

Note that:

$$
l_{b}=\frac{e-r_{b} b}{3}(\bmod b)=\frac{3 m-3 r_{b}}{3}(\bmod 3)=\left(m-r_{b}\right)(\bmod 3)
$$

Thus, if $r_{b}=(m+1)(\bmod 3)$, we have:

$$
\begin{array}{|c|c|}
\hline a_{1}=a-m & b_{1}=2 \\
d_{1}=0 & f_{1}<m \\
\hline a_{2}=m & b_{2}=1 \\
d_{2}=3 & f_{2}<m+3 \\
\hline
\end{array}
$$

Table 2.8: $a_{2} d_{2}=3 m=m+2 m>a_{2} b_{2}+b_{1} f_{1}$

If $r_{b}=(m+2)(\bmod 3)$, we have:

$$
\begin{array}{|c|c|}
\hline a_{1}=a-m & b_{1}=1 \\
d_{1}=0 & f_{1}<m \\
\hline a_{2}=m & b_{2}=2 \\
d_{2}=3 & f_{2}<m+3 \\
\hline
\end{array}
$$

Table 2.9: $a_{2} d_{2}=3 m=2 m+m>a_{2} b_{2}+b_{1} f_{1}$

Now, we will verify that the conditions of Theorem 2.1 hold for cases other than our exceptions. We first note that the numbers of edge ends in each part are equal because:

$$
\begin{aligned}
a_{1} d_{1}+a_{2} d_{2} & =\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right)+\left(l_{a}\right)\left(3 q_{a}+r_{a}+3\right) \\
& =3 a q_{a}+3 l_{a}+a r_{a}-3 l_{a} q_{a}+3 l_{a} q_{a}-l_{a} r_{a}+l_{a} r_{a} \\
& =3 a q_{a}+3 l_{a}+a r_{a} \\
& =e
\end{aligned}
$$

$b_{1} f_{1}+b_{2} f_{2}=e$ by a similar argument.
Condition v says:

$$
\begin{aligned}
d_{1} & \leq b_{1}+b_{2} \\
3 q_{a}+r_{a} & \leq b
\end{aligned}
$$

Since $3 q_{a}=\frac{e-r_{a} a-3 l_{a}}{a}=\frac{e}{a}-r_{a}-\frac{3 l_{a}}{a}$ and $e \leq a b$, we can get:

$$
\begin{aligned}
3 q_{a}+r_{a} & =\frac{e}{a}-r_{a}-\frac{3 l_{a}}{a}+r_{a} \\
& =\frac{e}{a}-\frac{3 l_{a}}{a} \\
& \leq b-\frac{3 l_{a}}{a} \\
& \leq b
\end{aligned}
$$

Condition vii can be shown in the same manner.

To show the remaining conditions of Theorem 2.1 we will proceed by cases. First suppose $a_{2}=0=b_{2}$. Thus conditions $i i, i i i, i v, v i, v i i i$ are automatically satisfied. To see condition i :

$$
\begin{aligned}
a_{1} d_{1} & \leq a_{1} b_{1}+b_{2} f_{2} \\
a_{1} d_{1} & \leq a_{1} b_{1} \\
d_{1} & \leq b_{1} \\
3 q_{a}+r_{a} & \leq b
\end{aligned}
$$

which was shown previously.
Now assume that one of a_{2} and b_{2} is zero while the other is nonzero. Say, $a_{2}=0$ and $b_{2} \neq 0$. Thus, $i i i, i v, v i$ are automatically satisfied and we have shown v and vii already. Note that i reduces to vii:

$$
\begin{aligned}
b_{1} f_{1} & \leq a_{1} b_{1}+a_{2} d_{2} \\
b_{1} f_{1} & \leq a_{1} b_{1} \\
f_{1} & \leq a_{1}
\end{aligned}
$$

Also, ii reduces to viii:

$$
\begin{aligned}
b_{2} f_{2} & \leq a_{1} b_{2}+a_{2} d_{2} \\
b_{1} f_{2} & \leq a_{1} b_{2} \\
f_{2} & \leq a_{1}
\end{aligned}
$$

Thus, it only remains to show viii for this case. That is, we need:

$$
\begin{aligned}
f_{2} & \leq a_{1}+a_{2} \\
f_{2} & \leq a \\
3 q_{b}+r_{b}+3 & \leq a
\end{aligned}
$$

Since $3 q_{b}=\frac{e-r_{b} b-3 l_{b}}{b}=\frac{e}{b}-r_{b}-\frac{3 l_{b}}{b}, e \leq a b$, and $b_{2}=l_{b} \neq 0$ we have:

$$
\begin{aligned}
3 q_{b}+r_{b}+3 & =\frac{e}{b}-r_{b}-\frac{3 l_{b}}{b}+r_{b}+3 \\
& =\frac{e}{b}-\frac{3 l_{b}}{b}+3 \\
& \leq a-\frac{3 l_{b}}{b}+3 \\
& <a+3 \\
& \leq a+2
\end{aligned}
$$

So, $a \geq 3 q_{b}+r_{b}+1$ and viii is satisfied unless $a=3 q_{b}+r_{b}+1$ or $a=3 q_{b}+r_{b}+2$. Suppose $a=3 q_{b}+r_{b}+1$. Since $r_{b}+r_{b}^{\prime} \equiv a(\bmod 3), r_{b}^{\prime}=1$. But then:

$$
\begin{array}{rlrl}
3 q_{b}+r_{b}+3 & =\frac{e}{b}-\frac{3 l_{b}}{b}+3 & \\
& \leq\left(a-r_{b}^{\prime}\right)-\frac{3 l_{b}}{b}+3 & & \left(e \leq a b-r_{b}^{\prime} b\right) \\
& =a+2-\frac{3 l_{b}}{b} & & \\
& <a+2 & \left(b_{2}=l_{b} \neq 0\right)
\end{array}
$$

This is a contradiction of the assumption that $a=3 q_{b}+r_{b}+1$.

Now suppose $a=3 q_{b}+r_{b}+2$ and thus $r_{b}^{\prime}=2$. Then:

$$
\begin{array}{rlrl}
3 q_{b}+r_{b}+3 & =\frac{e}{b}-\frac{3 l_{b}}{b}+3 & \\
& \leq\left(a-r_{b}^{\prime}\right)-\frac{3 l_{b}}{b}+3 & & \left(e \leq a b-r_{b}^{\prime} b\right) \\
& =a+1-\frac{3 l_{b}}{b} & & \\
& <a+1 & \left(b_{2}=l_{b} \neq 0\right)
\end{array}
$$

This is a contradiction of the assumption that $a=3 q_{b}+r_{b}+2$. This completes the case.
Finally, assume that $a_{2}=l_{a}$ and $b_{2}=l_{b}$ are both nonzero. Note that $v i$ and viii reduce to $3 q_{a}+r_{a}+3 \leq b$ and $3 q_{b}+r_{b}+3 \leq a$ which can both be shown in the same manner as condition viii was verified in the previous case.

To verify i, we need to show:

$$
\begin{aligned}
a_{1} d_{1} & \leq a_{1} b_{1}+b_{2} f_{2} \\
\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) & \leq\left(a-l_{a}\right)\left(b-l_{b}\right)+l_{b}\left(3 q_{b}+r_{b}+3\right) \\
\left(a-l_{a}\right)\left(3 q_{a}+r_{a}-b+l_{b}\right) & \leq l_{b}\left(3 q_{b}+r_{b}+3\right) \\
\left(a-l_{a}\right)\left(l_{b}-\left(b-3 q_{a}-r_{a}\right)\right) & \leq l_{b}\left(3 q_{b}+r_{b}+3\right)
\end{aligned}
$$

Since $\left(a-l_{a}\right), l_{b}, 3 q_{b}+r_{b}+3$ are all positive, the inequality is automatically true if $l_{b} \leq$ $b-3 q_{a}-r_{a}$. So, assume $l_{b}>b-3 q_{a}-r_{a}=b-\left(3 q_{a}+r_{a}\right)$.

$$
\begin{aligned}
a_{1} d_{1} & \leq a_{1} b_{1}+b_{2} f_{2} \\
\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) & \leq\left(a-l_{a}\right)\left(b-l_{b}\right)+l_{b}\left(3 q_{b}+r_{b}+3\right) \\
3 a q_{a}+a r_{a}-l_{a}\left(3 q_{a}+r_{a}\right) & \leq a b-a l_{b}-b l_{a}+l_{a} l_{b}+l_{b}\left(3 q_{b}+r_{b}+3\right) \\
3 a q_{a}+a r_{a}-l_{a}\left(3 q_{a}+r_{a}\right)+3 l_{a}-3 l_{a} & \leq a b-a l_{b}-b l_{a}+l_{a} l_{b}+l_{b}\left(3 q_{b}+r_{b}+3\right) \\
\left(3 a q_{a}+a r_{a}+3 l_{a}\right)-l_{a}\left(3 q_{a}+r_{a}+3\right) & \leq a b-a l_{b}-b l_{a}+l_{a} l_{b}+l_{b}\left(3 q_{b}+r_{b}+3\right) \\
e-l_{a}\left(3 q_{a}+r_{a}+3\right) & \leq a b-a l_{b}-b l_{a}+l_{a} l_{b}+l_{b}\left(3 q_{b}+r_{b}+3\right) \\
e+l_{a}\left(b-\left(3 q_{a}+r_{a}+3\right)\right)+l_{b}\left(a-\left(3 q_{b}+r_{b}+3\right)\right)-l_{a} l_{b} & \leq a b
\end{aligned}
$$

Since $b-\left(3 q_{a}+r_{a}+3\right)<b-\left(3 q_{a}+r_{a}\right)<l_{b}$, we have that $l_{a}\left(b-\left(3 q_{a}+r_{a}+3\right)\right)<l_{a} l_{b}$ and thus:

$$
\begin{aligned}
e+l_{a}\left(b-\left(3 q_{a}+r_{a}+3\right)\right)+l_{b}\left(a-\left(3 q_{b}+r_{b}+3\right)\right)-l_{a} l_{b} & <e+l_{a} l_{b}+l_{b}\left(a-\left(3 q_{b}+r_{b}+3\right)\right)-l_{a} l_{b} \\
& =e+l_{b}\left(a-\left(3 q_{b}+r_{b}+3\right)\right)
\end{aligned}
$$

Here we can use the fact that $e=\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right)+l_{b}\left(3 q_{b}+r_{b}+3\right)$ and get:

$$
\begin{aligned}
e+l_{b}\left(a-\left(3 q_{b}+r_{b}+3\right)\right) & =\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right)+l_{b}\left(3 q_{b}+r_{b}+3\right)+l_{b}\left(a-\left(3 q_{b}+r_{b}+3\right)\right) \\
& =\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right)+a l_{b}
\end{aligned}
$$

And since $3 q_{b}+r_{b} \leq a$ as proved in $v i i$:

$$
\begin{aligned}
\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right)+a l_{b} & \leq\left(b-l_{b}\right) a+a l_{b} \\
& =a b
\end{aligned}
$$

This shows condition i.
To show condition i, we need to show that:

$$
\begin{aligned}
a_{1} d_{1} & \leq a_{1} b_{2}+b_{1} f_{1} \\
\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) & \leq\left(a-l_{a}\right) l_{b}+\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right) \\
\left(a-l_{a}\right)\left(3 q_{a}+r_{a}-l_{b}\right) & \leq\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right)
\end{aligned}
$$

Note that if $3 q_{a}+r_{a} \leq l_{b}$, the inequality is satisfied since $a-l_{a}, b-l_{b}$, and $3 q_{b}+r_{b}$ are all nonnegative. So, assume $3 q_{a}+r_{a}+1 \geq l_{b}$. We need to show:

$$
\begin{aligned}
\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) & \leq\left(a-l_{a}\right) l_{b}+\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right) \\
3 a q_{a}+a r_{a}-l_{a}\left(3 q_{a}+r_{a}\right) & \leq a l_{b}-l_{a} l_{b}+3 b q_{b}+b r_{b}-l_{b}\left(3 q_{b}+r_{b}\right) \\
3 a q_{a}+a r_{a}-l_{a}\left(3 q_{a}+r_{a}\right)+3 l_{a}-3 l_{a} & \leq a l_{b}-l_{a} l_{b}+3 b q_{b}+b r_{b}-l_{b}\left(3 q_{b}+r_{b}\right)+3 l_{b}-3 l_{b} \\
\left(3 a q_{a}+a r_{a}+3 l_{a}\right)-l_{a}\left(3 q_{a}+r_{a}+3\right) & \leq a l_{b}-l_{a} l_{b}+\left(3 b q_{b}+b r_{b}+3 l_{b}\right)-l_{b}\left(3 q_{b}+r_{b}+3\right)
\end{aligned}
$$

Here we can note that $3 a q_{a}+a r_{a}+3 l_{a}=e=3 b q_{b}+b r_{b}+3 l_{b}$, so we need to show:

$$
\begin{aligned}
-l_{a}\left(3 q_{a}+r_{a}+3\right) & \leq a l_{b}-l_{a} l_{b}-l_{b}\left(3 q_{b}+r_{b}+3\right) \\
l_{a} l_{b}+l_{b}\left(3 q_{b}+r_{b}+3\right) & \leq a l_{b}+l_{a}\left(3 q_{a}+r_{a}+3\right)
\end{aligned}
$$

We assumed that $3 q_{a}+r_{a}+1 \geq l_{b}$, so $l_{a} l_{b}<l_{a}\left(3 q_{a}+r_{a}+3\right)$. Also, we know from viii that $3 q_{b}+r_{b}+3 \leq a$. Thus, we have:

$$
\begin{aligned}
l_{a} l_{b}+l_{b}\left(3 q_{b}+r_{b}+3\right) & \leq l_{a}\left(3 q_{a}+r_{a}+3\right)+l_{b}\left(3 q_{b}+r_{b}+3\right) \\
& \leq l_{a}\left(3 q_{a}+r_{a}+3\right)+a l_{b}
\end{aligned}
$$

This shows $i i$. The proof of $i i i$ is analogous, switching parts A and B.

So, it only remains to show condition $i v$. To do this, we need to show:

$$
\begin{aligned}
b_{2} f_{2} & \leq a_{2} b_{2}+a_{1} d_{1} \\
l_{b}\left(3 q_{b}+r_{b}+3\right) & \leq l_{a} l_{b}+\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right)
\end{aligned}
$$

or:

$$
\begin{aligned}
a_{2} d_{2} & \leq a_{2} b_{2}+b_{1} f_{1} \\
l_{a}\left(3 q_{a}+r_{a}+3\right) & \leq l_{a} l_{b}+\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right)
\end{aligned}
$$

These inequalities can be reduced to:

$$
l_{b}\left(3 q_{b}+r_{b}+3-l_{a}\right) \leq\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right)
$$

and:

$$
l_{a}\left(3 q_{a}+r_{a}+3-l_{b}\right) \leq\left(b-l_{b}\right)\left(3 q_{b}+r_{b}\right)
$$

So, if either $3 q_{b}+r_{b}+3 \leq l_{a}$ or $3 q_{a}+r_{a}+3 \leq l_{b}$, the inequalities are satisfied.
We know from viii that $3 q_{b}+r_{b}+3 \leq a$. So, we have:

$$
\begin{aligned}
l_{b}\left(3 q_{b}+r_{b}+3\right) & \leq a l_{b} \\
& =l_{a} l_{b}+\left(a-l_{a}\right) l_{b}
\end{aligned}
$$

So, if $l_{b} \leq 3 q_{a}+r_{a}$, the inequalities are satisfied. Similarly, if $l_{a} \leq 3 q_{b}+r_{b}$, they are satisfied as well. That is, we only have problems when:

$$
3 q_{a}+r_{a}+1 \leq l_{b} \leq 3 q_{a}+r_{a}+2
$$

and:

$$
3 q_{b}+r_{b}+1 \leq l_{a} \leq 3 q_{b}+r_{b}+2
$$

Case 1: Suppose $l_{a}=3 q_{b}+r_{b}+2$ and $l_{b}=3 q_{a}+r_{a}+1$. We need to show:

$$
\begin{aligned}
b_{2} f_{2} & \leq a_{2} b_{2}+a_{1} d_{1} \\
l_{b}\left(3 q_{b}+r_{b}+3\right) & \leq l_{a} l_{b}+\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
\left(3 q_{a}+r_{a}+1\right)\left(3 q_{b}+r_{b}+3\right) & \leq\left(3 q_{b}+r_{b}+2\right)\left(3 q_{a}+r_{a}+1\right)+\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
3 q_{a}+r_{a}+1 & \leq\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
1 & \leq\left(a-l_{a}-1\right)\left(3 q_{a}+r_{a}\right) \\
1 & \leq\left(a-l_{a}-1\right)\left(l_{b}-1\right)
\end{aligned}
$$

Since $a \geq 3 q_{b}+r_{b}+3=l_{a}+1$ by condition viii, $a-l_{a}-1 \geq 0$. Also, we assumed $l_{b} \geq 1$. Thus, the inequality is true unless $a-l_{a}-1=0$ or $l_{b}-1=0$.

Suppose $l_{b}-1=0$. That is, $l_{b}=3 q_{a}+r_{a}+1=1$ and so $q_{a}=r_{a}=0$. Consider the number of edges, e, calculated based on both A and B.

$$
\begin{array}{rlrl}
3 a q_{a}+3 l_{a}+a r_{a} & =3 q_{b}+3 l_{b}+b r_{b} & & \\
3 l_{a} & =3 q_{b}+3 l_{b}+b r_{b} & \left(q_{a}=r_{a}=0\right) \\
3\left(3 q_{b}+r_{b}+2\right) & =3 q_{b}+3 l_{b}+b r_{b} & & \\
3\left(3 q_{b}+r_{b}\right)+6 & =b\left(3 q_{b}+r_{b}\right)+3 & \left(l_{b}=1\right) \\
3 & =(b-3)\left(3 q_{b}+r_{b}\right) &
\end{array}
$$

Since $b-3$ is an integer and $3 q_{b}+r_{b}$ is a nonnegative integer, their product can be 3 only when one of those terms is 3 and one of them is 1 .

If $b-3=3$ and $3 q_{b}+r_{b}=1$, then $b=6, q_{b}=0$, and $r_{b}=1$. Thus $l_{a}=3 q_{b}+r_{b}+2=3$ and $a \geq 4$. Also, $e=3 l_{a}=9$. These are the Class I exceptions.

If $b-3=1$ and $3 q_{b}+r_{b}=3$, then $b=4, q_{b}=1$, and $r_{b}=0$. Thus $l_{a}=5, a \geq 6$, and $e=3 l_{a}=15$. This gives us the Class II exceptions.

Suppose $a-l_{a}-1=0$. Again, consider the number of edges, e, calculated as the number of edge ends in A.

$$
\begin{aligned}
3 a q_{a}+3 l_{a}+a r_{a} & =3 a q_{a}+3(a-1)+a r_{a} \\
& =a\left(3 q_{a}+r_{a}+3\right)-3 \\
& =a\left(l_{b}+2\right)-3
\end{aligned}
$$

Now, beginning with e calculated from B :

$$
\begin{aligned}
3 q_{b}+3 l_{b}+b r_{b} & =b\left(3 q_{b}+r_{b}\right)+3 l_{b} \\
& =b(a-3)+3 l_{b} \\
& =a b-3\left(b-l_{b}\right)
\end{aligned}
$$

So, we have:

$$
\begin{aligned}
a\left(l_{b}+2\right)-3 & =a b-3\left(b-l_{b}\right) \\
a\left(l_{b}+2\right)-a b & =3-3\left(b-l_{b}\right) \\
2 a-a\left(b-l_{b}\right) & =3-3\left(b-l_{b}\right) \\
2 a-3 & =(a-3)\left(b-l_{b}\right) \\
\frac{2 a-3}{a-3} & =b-l_{b}
\end{aligned}
$$

Note that if $a=3$ then $l_{a}=3 q_{b}+r_{b}+2=a-1=2$, and thus $q_{b}=r_{b}=0$. But then, equating our two edge counts:

$$
\begin{aligned}
3 a q_{a}+3 l_{a}+a r_{a} & =3 q_{b}+3 l_{b}+b r_{b} \\
9 q_{a}+3 l_{a}+3 r_{a} & =3 l_{b} \\
3 q_{a}+l_{a}+r_{a} & =l_{b} \\
3 q_{a}+2+r_{a} & =l_{b}
\end{aligned}
$$

This contradics our assumption for l_{b}.
The only positive integers, a, for which $\frac{2 a-3}{a-3}$ yields a positive integer for $b-l_{b}$ are $a=4$ and $a=6$.

If $a=6$, then $\frac{2 a-3}{a-3}=b-l_{b}=3$ and $e=a b-3\left(b-l_{b}\right)=a b-9=6 b-9$. This gives us the Class I* exceptions, the bipartite complements of Class I.

If $a=4$, then $\frac{2 a-3}{a-3}=b-l_{b}=5$ and $e=a b-3\left(b-l_{b}\right)=a b-15=6 b-15$. These are the Class II* exceptions, the bipartite complements of Class II.

Case 2: Suppose $l_{a}=3 q_{b}+r_{b}+1$ and $l_{b}=3 q_{a}+r_{a}+1$. We need to show:

$$
\begin{aligned}
b_{2} f_{2} & \leq a_{2} b_{2}+a_{1} d_{1} \\
l_{b}\left(3 q_{b}+r_{b}+3\right) & \leq l_{a} l_{b}+\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
\left(3 q_{a}+r_{a}+1\right)\left(3 q_{b}+r_{b}+3\right) & \leq\left(3 q_{b}+r_{b}+1\right)\left(3 q_{a}+r_{a}+1\right)+\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
2\left(3 q_{a}+r_{a}+1\right) & \leq\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
2 & \leq\left(a-l_{a}-2\right)\left(3 q_{a}+r_{a}\right) \\
2 & \leq\left(a-l_{a}-2\right)\left(l_{b}-1\right)
\end{aligned}
$$

We know that $a \geq 3 q_{b}+r_{b}+3=l_{a}+2$ from condition viii of Theorem 2.1 and $l_{b} \geq 1$ by assumption. Thus both terms on the right are at least 0 and the inequality is satisfied unless $a-l_{a}-2=0, l_{b}-1=0$, or both are equal to 1 .

Suppose that both $a-l_{a}-2=1$ and $l_{b}-1=1$. Thus $l_{a}=a-3$ and $l_{b}=2$, implying $q_{a}=0$ and $r_{a}=1$. Starting with our two calculations of e :

$$
\begin{aligned}
3 a q_{a}+3 l_{a}+a r_{a} & =3 q_{b}+3 l_{b}+b r_{b} \\
3 l_{a}+a & =b\left(3 q_{b}+r_{b}\right)+6 \\
3\left(3 q_{b}+r_{b}\right)+3+a & =b\left(3 q_{b}+r_{b}\right)+6 \\
a-3 & =(b-3)\left(3 q_{b}+r_{b}\right) \\
l_{a} & =(b-3)\left(l_{a}-1\right)
\end{aligned}
$$

Since l_{a} is a nonnegative integer, this can only be true when $l_{a}=2$ and $b-3=2$. So, $b=5$, $q_{b}=0, r_{b}=1, a=l_{a}+3=5$, and $e=3 l_{a}+a=11$. This is the Class III exception.

Suppose $l_{b}-1=0$. Then $l_{b}=3 q_{a}+r_{a}+1=1$ and so $q_{a}=r_{a}=0$.

$$
\begin{aligned}
e & =3 a q_{a}+3 l_{a}+a r_{a} \\
& =3 l_{a} \\
& =3\left(3 q_{b}+r_{b}+1\right) \\
& =3\left(3 q_{b}+r_{b}\right)+3
\end{aligned}
$$

Also:

$$
\begin{aligned}
e & =3 b q_{b}+3 l_{b}+b r_{b} \\
& =b\left(3 q_{b}+r_{b}\right)+3
\end{aligned}
$$

Thus:

$$
\begin{aligned}
3\left(3 q_{b}+r_{b}\right)+3 & =b\left(3 q_{b}+r_{b}\right)+3 \\
0 & =(b-3)\left(3 q_{b}+r_{b}\right)
\end{aligned}
$$

So, we have problems if $b=3$ or $3 q_{b}+r_{b}=0$.
If $3 q_{b}+r_{b}=0$, then $q_{b}=r_{b}=0, l_{a}=3 q_{b}+r_{b}+1=1$, and $e=3 l_{a}=3$. This gives us the exceptions of Class IV.

Suppose $b=3$. Recall that we already know $r_{a}=0$ and $e=3 l_{a}$. Also, in this case we know that $a \geq l_{a}+2$. Furthermore:

$$
l_{b}=1=\frac{e-r_{b} b}{3}(\bmod b)=\frac{3 l_{a}-r_{b} 3}{3}(\bmod 3)=\left(l_{a}-r_{b}\right)(\bmod 3)
$$

This means that $r_{b}=\left(l_{a}-1\right)(\bmod 3)$. So we have found a subset of the Class VI exceptions, specifically those where $r_{b}=\left(l_{a}-1\right)(\bmod 3)$. Note that if $l_{a}=1$ or $a=3$, we get a Class IV exception.

Suppose $a-l_{a}-2=0$ and thus $l_{a}=a-2$ and $a=l_{a}+2=3 q_{b}+r_{b}+3$.

$$
\begin{aligned}
e & =3 a q_{a}+3 l_{a}+a r_{a} \\
& =3 a q_{a}+3(a-2)+a r_{a} \\
& =a\left(3 q_{a}+r_{a}+3\right)-6 \\
& =a\left(l_{b}+2\right)-6
\end{aligned}
$$

Also:

$$
\begin{aligned}
e & =3 b q_{b}+3 l_{b}+b r_{b} \\
& =b\left(3 q_{b}+r_{b}\right)+3 l_{b} \\
& =b(a-3)+3 l_{b} \\
& =a b-3\left(b-l_{b}\right)
\end{aligned}
$$

So, we have:

$$
\begin{aligned}
& a\left(l_{b}+2\right)-6=a b-3\left(b-l_{b}\right) \\
& a\left(l_{b}+2\right)-a b=6-3\left(b-l_{b}\right) \\
& a\left(l_{b}-b\right)+2 a=6-3\left(b-l_{b}\right) \\
& (3-a)\left(b-l_{b}\right)=6-2 a
\end{aligned}
$$

Meaning that either $b-l_{b}=\frac{6-2 a}{3-a}=2$ or $a=3$.
If $b-l_{b}=2$, then $e=a b-3\left(b-l_{b}\right)=a b-6$. This gives us Exception Class V^{*}, the bipartite complements of Class V.

If $a=3$, we have $l_{a}=1, q_{b}=r_{b}=0$ and we get the analogous Class VI exceptions as we did above with A and B reversed.

Case 3: Suppose $l_{a}=3 q_{b}+r_{b}+2$ and $l_{b}=3 q_{a}+r_{a}+2$. We need to show:

$$
\begin{aligned}
b_{2} f_{2} & \leq a_{2} b_{2}+a_{1} d_{1} \\
l_{b}\left(3 q_{b}+r_{b}+3\right) & \leq l_{a} l_{b}+\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
\left(3 q_{a}+r_{a}+2\right)\left(3 q_{b}+r_{b}+3\right) & \leq\left(3 q_{b}+r_{b}+2\right)\left(3 q_{a}+r_{a}+2\right)+\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
3 q_{a}+r_{a}+2 & \leq\left(a-l_{a}\right)\left(3 q_{a}+r_{a}\right) \\
2 & \leq\left(a-l_{a}-1\right)\left(3 q_{a}+r_{a}\right) \\
2 & \leq\left(a-l_{a}-1\right)\left(l_{b}-2\right)
\end{aligned}
$$

Similar to previous cases, the inequality is satisfied unless $a-l_{a}-1=0, l_{b}-2=0$, or both are equal to 1 .

Suppose $a-l_{a}-1=1$ and $l_{b}-2=1$. Since $l_{b}=3 q_{a}+r_{a}+2=3, q_{a}=0$ and $r_{a}=1$.

$$
\begin{aligned}
3 a q_{a}+3 l_{a}+a r_{a} & =3 q_{b}+3 l_{b}+b r_{b} \\
3 l_{a}+a & =b\left(3 q_{b}+r_{b}\right)+9 \\
3\left(3 q_{b}+r_{b}\right)+6+a & =b\left(3 q_{b}+r_{b}\right)+9 \\
a-3 & =(b-3)\left(3 q_{b}+r_{b}\right) \\
l_{a}-1 & =(b-3)\left(l_{a}-2\right)
\end{aligned}
$$

Since $l_{a}-1$ is a nonnegative integer, this is only true when $l_{a}-1=2$ and $b-3=2$. Thus, $l_{a}=3, q_{b}=0, r_{b}=1, b=5, a=l_{a}+2=5$, and $e=3 l_{a}+a=14$. This is the Class III* exception, the bipartite complement of Class III.

Suppose $l_{b}=3 q_{a}+r_{a}+2=2$. Then $q_{a}=r_{a}=0$.

$$
\begin{aligned}
e & =3 a q_{a}+3 l_{a}+a r_{a} \\
& =3 l_{a} \\
& =3\left(3 q_{b}+r_{b}+2\right) \\
& =3\left(3 q_{b}+r_{b}\right)+6
\end{aligned}
$$

Also:

$$
\begin{aligned}
e & =3 b q_{b}+3 l_{b}+b r_{b} \\
& =b\left(3 q_{b}+r_{b}\right)+6
\end{aligned}
$$

So we have:

$$
\begin{aligned}
3\left(3 q_{b}+r_{b}\right)+6 & =b\left(3 q_{b}+r_{b}\right)+6 \\
0 & =(b-3)\left(3 q_{b}+r_{b}\right)
\end{aligned}
$$

Thus, we have problems if $b=3$ or $3 q_{b}+r_{b}=0$.
If $3 q_{b}+r_{b}=0, q_{b}=r_{b}=0, l_{a}=3 q_{b}+r_{b}+2=2$, and $e=3 l_{a}=6$. These are the Class V exceptions.

Suppose $b=3$. We've already assumed that $r_{a}=0$ and $e=3 l_{a}$ where $l_{a} \geq 2$. Since $l_{b}=2, r_{b}=\left(l_{a}-2\right)(\bmod 3)$, filling in the remaining entries in Class VI. Note that if $a=3$ or $l_{a}=a-1$, we get an exception from Class IV*.

Suppose $a-l_{a}-1=0$. Then $l_{a}=a-1$ and $a=l_{a}+1=3 q_{b}+r_{b}+3$.

$$
\begin{aligned}
e & =3 a q_{a}+3 l_{a}+a r_{a} \\
& =3 a q_{a}+3(a-1)+a r_{a} \\
& =a\left(3 q_{a}+r_{a}+3\right)-3 \\
& =a\left(l_{b}+1\right)-3
\end{aligned}
$$

Also:

$$
\begin{aligned}
e & =3 b q_{b}+3 l_{b}+b r_{b} \\
& =b\left(3 q_{b}+r_{b}\right)+3 l_{b} \\
& =b(a-3)+3 l_{b} \\
& =a b-3\left(b-l_{b}\right)
\end{aligned}
$$

So:

$$
\begin{aligned}
a\left(l_{b}+1\right)-3 & =a b-3\left(b-l_{b}\right) \\
a\left(l_{b}+1\right)-a b & =3-3\left(b-l_{b}\right) \\
a\left(l_{b}-b\right)+a & =3-3\left(b-l_{b}\right) \\
(3-a)\left(b-l_{b}\right) & =3-a
\end{aligned}
$$

So, either $b-l_{b}=1$ or $a=3$.
If $b-l_{b}=1$, then $e=a b-3\left(b-l_{b}\right)=a b-3$ and we get the Class IV* exceptions. These are the bipartite complements of Exception Class IV.

If $a=3$, we get the analogous exceptions of those found previously with A and B reversed.

2.2.3 $\quad \delta \geq 4$

By examining the proof of Theorem 2.3, we can see that it will translate to an arbitrary value for δ until we need to show condition $i v$ from Theorem 2.1 when both $a_{2}=l_{a}$ and $b_{2}=l_{b}$ are nonzero. This is where the exceptions are found for $\delta=3$ in Theorem 2.3.

To verify condition $i v$ from Theorem 2.1, we need to show one of these equivalent conditions:

$$
\begin{aligned}
& b_{2} f_{2} \leq a_{2} b_{2}+a_{1} d_{1} \\
& a_{2} d_{2} \leq a_{2} b_{2}+b_{1} f_{1}
\end{aligned}
$$

For an arbitrary δ, Lemma 2.1 says this will mean we need to show one of the following:

$$
\begin{aligned}
& l_{b}\left(\delta q_{b}+r_{b}+\delta\right) \leq l_{a} l_{b}+\left(a-l_{a}\right)\left(\delta q_{a}+r_{a}\right) \\
& l_{a}\left(\delta q_{a}+r_{a}+\delta\right) \leq l_{a} l_{b}+\left(b-l_{b}\right)\left(\delta q_{b}+r_{b}\right)
\end{aligned}
$$

Analagous to the case of $\delta=3$, these will be satisfied unless both of the following are true:

$$
\delta q_{a}+r_{a}+1 \leq l_{b} \leq \delta q_{a}+r_{a}+(\delta-1)
$$

and:

$$
\delta q_{b}+r_{b}+1 \leq l_{a} \leq 3 q_{b}+r_{b}+(\delta-1)
$$

This means we will have $\binom{\delta}{2}$ combinations of l_{a} and l_{b} to consider. So, for larger values of δ, we can predict that our list of exceptions in any result similar to Theorem 2.2 or Theorem 2.3 will grow significantly, but will be found in the same way as in the $\delta=3$ case.

So, we can combine this observation with Lemma 2.1 to state the following, general result.

Conjecture 2.1 Let a, b be positive integers, e be a nonnegative integer and let $r_{a}, r_{b}, r_{a}^{\prime}, r_{b}^{\prime}, \delta$ be integers such that $0 \leq r_{a}, r_{b}, r_{a}^{\prime}, r_{b}^{\prime} \leq \delta-1, r_{a}+r_{a}^{\prime} \equiv b(\bmod \delta)$, and $r_{b}+r_{b}^{\prime} \equiv a(\bmod \delta)$. There is a simple, bipartite, $\left(\delta, r_{a}, r_{b}\right)$-balanced graph G with e edges on bipartition (A, B), with $|A|=a$ and $|B|=b$ such that A consists of:

$$
\begin{gathered}
a-l_{a} \text { vertices of degree } \delta q_{a}+r_{a} \\
l_{a} \text { vertices of degree } \delta q_{a}+r_{a}+\delta \\
\text { where } q_{a}=\left\lfloor\frac{e-r_{a} a}{\delta a}\right\rfloor \text { and } l_{a}=\frac{e-r_{a} a}{\delta}(\bmod a)
\end{gathered}
$$

and B consists of:

$$
\begin{gathered}
b-l_{b} \text { vertices of degree } \delta q_{b}+r_{b} \\
l_{b} \text { vertices of degree } \delta q_{b}+r_{b}+\delta \\
\text { where } q_{b}=\left\lfloor\frac{e-r_{b} b}{\delta b}\right\rfloor \text { and } l_{b}=\frac{e-r_{b} b}{\delta}(\bmod b)
\end{gathered}
$$

if and only if the following inequalities are satisfied and all five quantities are congruent (mod $\delta)$:

$$
\begin{aligned}
r_{a} a & \leq e \leq a b-r_{a}^{\prime} a \\
r_{b} b & \leq e \leq a b-r_{b}^{\prime} b
\end{aligned}
$$

with a list of exceptions that can be found by examining the $\binom{\delta}{2}$ combinations of l_{a} and l_{b} such that:

$$
\delta q_{a}+r_{a}+1 \leq l_{b} \leq \delta q_{a}+r_{a}+(\delta-1)
$$

and:

$$
\delta q_{b}+r_{b}+1 \leq l_{a} \leq 3 q_{b}+r_{b}+(\delta-1)
$$

Chapter 3

Anti-Ramsey Numbers

3.1 Definitions

Throughout the chapter, G will denote a finite, simple graph with vertex set $V(G)$ and edge set $E(G) . C_{n}$ and P_{n} will denote the cycle and path on n vertices, respectively. C_{n}^{+} and C_{n}^{++}will denote the cycle on n vertices with one and two pendant edges, respectively. Note that, for our purposes, the two pendent edges in C_{n}^{++}can be pendant to two different vertices or to the same vertex.

A k-edge-coloring of G is a labeling of the edges of G with elements of a set of colors S where $|S|=k$ and each color in S is used on at least one edge of G. Throughout the paper, we will refer to an edge-coloring simply as a coloring. A rainbow coloring of G is a coloring that labels each edge of G with a different color. G is said to be totally multicolored in this coloring. At the other end of the spectrum, a monochromatic coloring of G is a coloring that labels each edge of G with the same color. G is said to be monochromatic in this coloring.

Given a set of graphs G_{1}, \ldots, G_{k}, the k-color ramsey number for this set of graphs, denoted $R\left(G_{1}, \ldots, G_{k}\right)$, is the minimum integer n such that any k-edge-coloring of K_{n} must contain a monochromatic copy of G_{i} in the color i for some i.

In [6], Ramsey proved that for any such set of graphs, the ramsey number is finite. In general, Ramsey numbers themselves have proven difficult to find but have led to several useful generalizations. One of these, the anti-ramsey numbers, will be the focus of this chapter.

Given graphs $H \subseteq G$, the anti-ramsey number, denoted $\operatorname{ar}(G, H)$, is the maximum number of colors, k, such that there exists an edge-coloring of G with exactly k colors in
which every copy of H has at least two edges labeled the same color. That is, the coloring yields no totally multicolored copy of H.

Given graphs $K, H \subseteq G$, the sub-anti-ramsey number, denoted $\operatorname{sar}(K, G, H)$, is the maximum number of colors, k, such that if $\kappa>k$ colors are used on any copy of K, then there is a totally multicolored copy of H in G.

Claim If any coloring of G using exactly l colors produces a multicolored copy of H, then any coloring using more than l colors produces a totally multicolored copy of H.

Proof Assume we have colored the edges of G with $\lambda>l$ colors. Denote this color set as $[1,2,3, \ldots, l, l+1, \ldots, \lambda]$. Recolor all edges colored from the set $[l+1, \ldots, \lambda]$ with the color l. Thus we have a coloring with exactly l colors, which we assumed produces a totally multicolored H. At most one of the edges in this copy of H was recolored from the original coloring and if it was, its original color does not appear on any other edge in this copy. Thus, in the original coloring, this copy of H was also totally multicolored.

In this paper (and indeed in most anti-ramsey results), G will be a large complete graph. We will give partial investigations of the cases where H is a cycle or a path.

The Turán number of a graph H is the maximum number of edges a simple graph on n vertices can have without having a subgraph isomorphic to H, denoted $e x(n, H)$.

Claim ([1]) $\operatorname{ar}\left(K_{n}, H\right) \leq e x(n, H)$.

Proof Color the edges of K_{n} with $\lambda>e x(n, H)$ colors. Pick one edge of each color and call this subgraph G^{\prime}. G^{\prime} has $\lambda>e x(n, H)$ edges and so therefore must contain a copy of H. Since G^{\prime} is totally multicolored, this copy of H is totally multicolored.

Thus, the Turán numbers form an upper bound for the anti-ramsey numbers. However, it is often not a very useful one.

3.2 Cycles With Pendant Edges

The anti-ramsey number for cycles was conjectured in [1] by Erdős, Simonovits, and Sós and later proven by Montellano-Ballesteros and Neumann-Lara in [5]. We use one specific case that was proven in the original paper.

Theorem 3.1 ([1]) $\operatorname{ar}\left(K_{n}, C_{3}\right)=n-1$

Proof Order and name the vertices of K_{n} as $\left[v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right]$ and suppose we have the set of colors $[1,2,3, \ldots, n-2, n-1]$. For each edge $v_{i} v_{j}$ where $i<j$, color the edge with color i. We will thus use all $n-1$ colors and a triangle with vertices v_{i}, v_{j}, v_{k} where $i<j<k$ will have two edges colored i. This shows that $\operatorname{ar}\left(K_{n}, C_{3}\right) \geq n-1$.

Figure 3.1: $(n-1)$-coloring of K_{n} containing no rainbow C_{3}

Now, color the edges of K_{n} with n colors and pick one edge of each color. Call this subgraph $G^{\prime} . G^{\prime}$ has n edges on at most n vertices so it must contain a cycle. Let C be the smallest cycle in G^{\prime}. If C is a triangle, then we have a totally multicolored C_{3} and we're done. So, assume C is a cycle of length $l>3$. Call the vertices of $C\left[c_{1}, c_{2}, \ldots, c_{l}\right]$. Pick a pair of nonadjacent vertices in C, c_{α}, c_{β} where $\alpha<\beta$, and consider the edge between them. If the edge $c_{\alpha} c_{\beta}$ is colored δ, then δ may occur in C but it can only occur at most once
since G^{\prime} and thus C is totally multicolored. It can occur in the subgraph of C induced by $\left[c_{1}, c_{2}, \ldots, c_{\alpha-1}, c_{\alpha}, c_{\beta}, c_{\beta+1}, \ldots, c_{l-1}, c_{l}\right]$ or the subgraph of C induced by $\left[c_{\alpha}, c_{\alpha+1}, \ldots, c_{\beta-1}, c_{\beta}\right]$ but not both. Without loss of generality, suppose that δ does not occur in the subgraph induced by $\left[c_{\alpha}, c_{\alpha+1}, \ldots, c_{\beta-1}, c_{\beta}\right]$. Thus, we can form a smaller, totally multicolored cycle C^{\prime} by taking the the edges induced by $\left[c_{\alpha}, c_{\alpha+1}, \ldots, c_{\beta-1}, c_{\beta}\right]$ and adding the edge $c_{\alpha} c_{\beta}$.

Figure 3.2: Forming C^{\prime} from C

We can repeat this process until we arrive at a totally multicolored C_{3}.

Theorem 3.2 $\operatorname{ar}\left(K_{n}, C_{3}^{+}\right)=n-1$

Proof The coloring used in the preceding theorem will work again here to establish that $\operatorname{ar}\left(K_{n}, C_{3}^{+}\right) \geq n-1$.

Color the edges of K_{n} with n colors and pick one edge of each color. Call this graph G^{\prime}. G^{\prime} has n edges on at most n vertices so it must contain a cycle. Let C be the smallest cycle in G^{\prime}. If C is a triangle, then either it has a pendant edge in C and we are done or $G^{\prime}-C$ (having $n-3$ edges on at most $n-3$ vertices) must contain another triangle. Pick any edge between these two totally multicolored triangles. This edge along with the triangle in which its color does not appear is a totally multicolored C_{3}^{+}.

If C is not a triangle, proceed as in the proof of the previous conjecture to reduce C to a C_{3}. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the vertices in C such that the edge $v_{2} v_{4}$ was the edge that reduced the cycle to the triangle $v_{2} v_{3} v_{4}$.

Figure 3.3: Reducing to a totally multicolored C_{3}^{+}

The color of $v_{2} v_{4}$ can occur on at most one of $v_{1} v_{2}$ and $v_{4} v_{5}$. Without loss, assume that it does not occur on $v_{1} v_{2}$. Thus, the triangle $v_{2} v_{3} v_{4}$ along with the edge $v_{1} v_{2}$ is a totally multicolored C_{3}^{+}.

The following, more general result was proven in [3].
Theorem 3.3 ([3]) $\operatorname{ar}\left(K_{n}, C_{m}^{+}\right)=\operatorname{ar}\left(K_{n}, C_{m}\right)$ for $n \geq m+1$
We now consider two pendant edges. As mentioned before, it is immaterial whether the two edges are pendant to different vertices or not. Whereas adding one pendant edge did not affect the anti-ramsey number, adding two gives us the flexibility to create a coloring with a larger number of colors.

Theorem 3.4 $\operatorname{ar}\left(K_{n}, C_{3}^{++}\right) \geq n>\operatorname{ar}\left(K_{n}, C_{3}^{+}\right)=\operatorname{ar}\left(K_{n}, C_{3}\right)$
Proof Order and name the vertices of K_{n} as $\left[v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right]$. Color the edges of the triangle with vertices v_{1}, v_{2}, and v_{3} with colors 1,2 , and 3 . Call this triangle T. For edges $v_{i} v_{j}$ where $4 \leq i<j \leq n$, color the edge with color i, bringing us to $n-1$ colors used. Call this subgraph S. Finally, color the remaining edges, those connecting T and S, with color n.

Figure 3.4: n-coloring of K_{n} containing no rainbow C_{3}^{++}

By the argument used in the preceding proofs, there can be no totally multicolored triangle within S and clearly there can not be one using edges between T and S. Thus, T is the only totally multicolored triangle in our coloring. Since all edges pendant to T are the same color, there can be no totally multicolored C_{3}^{++}.

And again, the more general result was proven by Gorgol in [3].

Theorem $3.5([3]) \operatorname{ar}\left(K_{n}, C_{m}^{++}\right)>\operatorname{ar}\left(K_{n}, C_{m}\right)$

3.3 Paths

We begin with the following theorem, which states that the only way to avoid a totally multicolored P_{4} is to use two or fewer colors. Adding as few as one edge of a third color produces a path on three edges where each of our three colors is used.

Theorem 3.6 $\operatorname{ar}\left(K_{n}, P_{4}\right)=2$ for $n \geq 5$

Proof Obviously, $\operatorname{ar}\left(K_{n}, P_{4}\right) \geq 2$. So, assume we have colored K_{n} with colors $1,2,3$ and pick one edge of each color. Call this graph G^{\prime}. If G^{\prime} is a path, we're done. The other possibilities are as follows.

Case 1: G^{\prime} is three disjoint edges. Let v_{k} and v_{k}^{*} be the vertices on the edge colored k for $1 \leq k \leq 3$. To avoid a totally multicolored $P_{4} \subset G$, the edge $v_{1} v_{2}$ must be colored 1
or 2 . Without loss, we can assume 2. Then $v_{2} v_{3}$ must be colored 2 for if $v_{2} v_{3}$ is colored 3 , $v_{1}^{*} v_{1} v_{2} v_{3}$ is totally multicolored and if $v_{2} v_{3}$ is colored $1, v_{3}^{*} v_{3} v_{2} v_{1}$ is totally multicolored.

Figure 3.5: G^{\prime} is three disjoint edges
However, this means that no matter what color we use on edge $v_{1} v_{3}$, we have formed a totally multicolored P_{4}. If $v_{1} v_{3}$ is colored 1 , then $v_{2} v_{1} v_{3} v_{3}^{*}$ is totally multicolored. If $v_{1} v_{3}$ is colored 2, then $v_{1}^{*} v_{1} v_{3} v_{3}^{*}$ is totally multicolored. If $v_{1} v_{3}$ is colored 3 , then $v_{2} v_{3} v_{1} v_{1}^{*}$ is totally multicolored.

Case 2: G^{\prime} is a P_{3} and a disjoint edge. Let the P_{3} have vertices v_{1}, v_{2}, and v_{3} with $v_{1} v_{2}$ colored 1 and $v_{2} v_{3}$ colored 2. Let the disjoint edge be $v_{4} v_{5}$, colored 3. To avoid a totally multicolored P_{4} the edge $v_{3} v_{4}$ must be colored 2 and similarly $v_{1} v_{5}$ must be colored 1. However, this would form a totally multicolored P_{4} with edges $v_{3} v_{4}, v_{4} v_{5}, v_{1} v_{5}$.

Figure 3.6: G^{\prime} is a P_{3} and a disjoint edge
Case 3: G^{\prime} is a triangle. Call the vertices of $G^{\prime} v_{1}, v_{2}$, and v_{3}. Assume edge $v_{1} v_{2}$ is colored $1, v_{2} v_{3}$ is colored 2 , and $v_{3} v_{1}$ is colored 3 . To avoid a totally multicolored P_{4}, any
edge connecting v_{2} to $G-G^{\prime}$ must be colored 3 . Call one such edge e_{1}. Similarly, any edge, call it e_{2} connecting v_{3} to $G-G^{\prime}$ must be colored 1 . If $n \geq 5$, it is possible to pick e_{1} and e_{2} such that they do not share the same vertex in $G-G^{\prime}$. In this case, the path consisting of edges e_{1}, e_{2}, and $v_{2} v_{3}$ is totally multicolored.

Figure 3.7: G^{\prime} is a triangle

Case 4: G^{\prime} is a 3 -star. Call the leaf vertices v_{1}, v_{2}, and v_{3}. Call the center v_{4}. Assume that edge $v_{4} v_{i}$ is colored i for $1 \leq i \leq 3$. To avoid a totally multicolored P_{4}, the edge $v_{2} v_{3}$ must be colored 1. Also, any edge (call it e_{1}) connecting v_{2} to $G-G^{\prime}$ must be colored 2. However, if both of those are true, then $e_{1}, v_{2} v_{3}$, and $v_{3} v_{4}$ form a totally multicolored P_{4}.

Figure 3.8: G^{\prime} is a 3 -star

If $n=4$, it is easy to verify that the 3 -edge-coloring in Figure 3.9 produces no totally multicolored P_{4}.

Figure 3.9: 3-coloring of K_{4} containing no totally multicolored P_{4}

Lemma 3.1 The only connected simple graphs whose longest path is a P_{3} are stars and C_{3}.

Proof Suppose a graph contains a P_{3} as a subgraph. To avoid forming a P_{4}, the only possible edge connected to either endpoint is the edge joining them, forming a C_{3}. Since a C_{3} with a pendant edge contains a P_{4}, there can not be any more edges in the graph if the edge joining the endpoints is included.

If that edge is not included, there can be arbitrarily many edges attached to the center vertex of the P_{3}, forming a larger star. Any two of these edges form a P_{3} and the same rule applies as above. If there were more than 2 edges in our star, joining any of the leaves would create a C_{3} with a pendant edge.

Figure 3.10: Two ways to add edges to a P_{3} without forming a P_{4}

Theorem $3.7 \operatorname{ar}\left(K_{n}, P_{5}\right)=n$

Proof Pick one vertex of K_{n} and call it v. Color the $n-1$ edges between v and $K_{n}-v$ with different colors. Color all edges in $K_{n}-v$ with another color. Thus, our coloring uses n colors and any P_{5} can only use two edges between v and $K_{n}-v$ and so must use two edges in $K_{n}-v$, guaranteeing that it is not totally multicolored. This shows that $\operatorname{ar}\left(K_{n}, P_{5}\right) \geq n$.

Figure 3.11: n - coloring of K_{n} that contains no totally multicolored P_{5}

Color the edges of K_{n} with $n+1$ colors and pick one edge of each color and call the graph with these edges G. G has more edges than vertices and so, if G is not connected, at
least one of its components must have more edges than vertices. Call one such component C.

Consider the longest path in C. Since $|E(C)|>|V(C)|$, the longest path can not be a P_{2} for in that case C is a P_{2} which has more vertices than edges. Nor can the longest path be a P_{3} by the lemma above since neither stars nor C_{3} have more edges than vertices. If the longest path in C is a P_{5}, we are done, so assume that the longest path in C is a P_{4}.

If there is another component of G, call it C^{*}, that also contains a P_{4}, then Figure 3.12 and Table 3.1 show that the coloring must contain a totally multicolored P_{5}.

Figure 3.12: Two components of G containing a P_{4}

Color of e	Totally Multicolored Path Created
$1, \geq 5$	$v_{4} v_{3} v_{2} v_{6} v_{5}$
$2,3,4$	$v_{1} v_{2} v_{6} v_{7} v_{8}$

Table 3.1: Totally Multicolored Paths Created By Coloring Edge e in Figure 3.12

If there is another component of G, again call it C^{*}, that contains a C_{3}, then Figure 3.13 and Table 3.2 show that the coloring must contain a totally multicolored P_{5}.

Figure 3.13: Component of G containing a P_{4} and component containing a C_{3}

Color of e	Totally Multicolored Path Created
$1, \geq 5$	$v_{4} v_{3} v_{2} v_{6} v_{5}$
$2,3,4$	$v_{1} v_{2} v_{6} v_{7} v_{5}$

Table 3.2: Totally Multicolored Paths Created By Coloring Edge e in Figure 3.13

So, assume that no other component of G contains a P_{4} or a C_{3}. Thus, any other component C^{*} of G must be a k-star, where $1 \leq k .\left|E\left(C^{*}\right)\right|<\left|V\left(C^{*}\right)\right|$ for any such component. But $|E(G)|>|V(G)|$ so not only does C have more edges than vertices, it has to have at least two more edges than vertices to make up for the other components.

If C has 4 vertices, it must be a K_{4}. Then, Figure 3.14 and Table 3.3 show that the coloring must contain a totally multicolored P_{5}.

Figure 3.14: C is a K_{4}

Color of e	Totally Multicolored Path Created
$2, \geq 5$	$v_{3} v_{4} v_{1} v_{2} v_{5}$
1,3	$v_{3} v_{1} v_{4} v_{2} v_{5}$
4	$v_{4} v_{3} v_{1} v_{2} v_{5}$

Table 3.3: Totally Multicolored Paths Created By Coloring Edge e in Figure 3.14

So, assume C has $m \geq 5$ vertices and at least $m+2 \geq 7$ edges. Consider the longest cycle in C. If C contains a C_{i} for $i \geq 5$, then C contains a totally multicolored P_{5}.

If the longest cycle in C is a C_{4}, then the fifth vertex has to be connected to the C_{4}, forming a P_{5}.

So assume that the longest cycle in C is a triangle. Call the vertices of one such triangle v_{1}, v_{2}, v_{3}. The remaining vertices of $C, v_{4}, v_{5}, \ldots, v_{m}$ must be connected to the triangle. Label the remaining vertices so that v_{4} is connected via the edge $v_{3} v_{4}$. Consider a fifth vertex, v_{5}. If $v_{5} v_{1}$ is an edge in C, then $v_{5} v_{1} v_{2} v_{3} v_{4}$ is a totally multicolored P_{5}. Similarly, if $v_{5} v_{2}$ is an edge in C, then $v_{5} v_{2} v_{1} v_{3} v_{4}$ is a totally multicolored P_{5}. If $v_{5} v_{4}$ is an edge in C, then $v_{5} v_{4} v_{3} v_{2} v_{1}$ is totally multicolored. Thus, all vertices v_{5}, \ldots, v_{m} can only be connected to v_{3}.

Figure 3.15: Longest cycle C is a triangle

However, this will give us only $m=|V(C)|$ edges, which is not enough. Thus, there must be a P_{5} in C.

Lemma 3.2 $\operatorname{sar}\left(K_{5}, K_{n}, P_{6}\right) \leq 7$

Proof Assume $n \geq 6$ and consider one copy of $K_{5} \subseteq K_{n}$. Call this copy K_{5}^{*}. Color the edges of K_{5}^{*} with at least 8 unique colors and pick 8 edges, each of which having a different color, leaving two edges possibly colored using duplicate colors. These two edges either share a vertex or they do not.

First, assume the two edges share a vertex, v_{1}. Let v_{6} be a vertex in $K_{n}-K_{5}^{*}$ and consider the edge $v_{6} v_{1}$. Let c be the color of $v_{6} v_{1}$. By considering Figure 3.16, we can note that because of the path $v_{6} v_{1} v_{3} v_{2} v_{4} v_{5}, c \in[8,1,7,3]$ or a totally multicolored P_{6} is formed. Similarly, the paths $v_{6} v_{1} v_{3} v_{4} v_{2} v_{5}$ and $v_{6} v_{1} v_{4} v_{5} v_{2} v_{3}$ necessitate that c is also in the color sets $[8,2,7,4]$ and $[6,3,4,1]$ respectively. However, these three color sets share no common element and thus, regardless of c, a totally multicolored P_{6} is formed.

Figure 3.16: Coloring of K_{5}^{*} where duplicate colors share a vertex

Assume that the two edges do not share a vertex. Again, Let v_{6} be a vertex in $K_{n}-K_{5}^{*}$ and consider the edge $v_{6} v_{1}$. Let c be the color of $v_{6} v_{1}$. Consider the paths $v_{6} v_{1} v_{4} v_{2} v_{3} v_{5}$, $v_{6} v_{1} v_{5} v_{2} v_{3} v_{4}$, and $v_{6} v_{1} v_{5} v_{3} v_{4} v_{2}$ in Figure 3.17. As above, the respective color sets $[4,5,3,6]$, $[1,8,3,2]$, and $[1,6,2,5]$ share no common element and a totally multicolored P_{6} is formed regardless of c.

Figure 3.17: Coloring of K_{5}^{*} where duplicate colors do not share a vertex

Lemma 3.3 For $n \geq 6$, if the edges of a copy of $K_{5} \subseteq K_{n}$ are colored with exactly 7 colors such that one edge of each color can be chosen such that the duplicate edges left do not all share a vertex, then there is a totally multicolored copy of P_{6} in K_{n}.

Proof There are three possibilities for the three duplicate edges. In each case, call the vertices of the $K_{5} v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and consider another vertex v_{6}.

Case 1: The three edges form a P_{4}. By considering Figure 3.18 and Table 3.4, we can see that no matter what color we use on edge $v_{1} v_{6}$, a totally multicolored P_{6} is formed.

Figure 3.18: Duplicate edges form a P_{4}

Color of $v_{1} v_{6}$	Totally Multicolored Path Created
≥ 5	$v_{6} v_{1} v_{2} v_{3} v_{4} v_{5}$
$1,2,4$	$v_{6} v_{1} v_{5} v_{2} v_{4} v_{3}$
3	$v_{6} v_{1} v_{5} v_{4} v_{2} v_{3}$

Table 3.4: Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{6}$ in Figure 3.18

Case 2: The three edges form a triangle. Figure 3.19 and Table 3.5 illustrate that any color on edge $v_{1} v_{6}$ creates a totally multicolored P_{6}.

Figure 3.19: Duplicate edges form a triangle

Color of $v_{1} v_{6}$	Totally Multicolored Path Created
$1, \geq 6$	$v_{6} v_{1} v_{5} v_{4} v_{2} v_{3}$
4,5	$v_{6} v_{1} v_{2} v_{3} v_{5} v_{4}$
2	$v_{6} v_{1} v_{2} v_{4} v_{5} v_{3}$
3	$v_{6} v_{1} v_{5} v_{3} v_{2} v_{4}$

Table 3.5: Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{6}$ in Figure 3.19

Case 3: The three edges form a P_{3} and a disjoint edge. Figure 3.20 and Table 3.6 complete the argument.

Figure 3.20: Duplicate edges form a P_{3} and a disjoint edge

Color of $v_{1} v_{6}$	Totally Multicolored Path Created
≥ 5	$v_{6} v_{1} v_{2} v_{3} v_{4} v_{5}$
$1,3,4$	$v_{6} v_{1} v_{5} v_{3} v_{2} v_{4}$
2	$v_{6} v_{1} v_{2} v_{4} v_{3} v_{5}$

Table 3.6: Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{6}$ in Figure 3.20

Lemma 3.4 If a coloring of K_{5} with exactly 7 colors is such that the three duplicate edges left after picking one edge of each color always form a 3 -star, then the coloring is as follows: Color each edge of some $K_{4} \subseteq K_{5}$ with unique colors and all the remaining edges with the seventh color.

Proof Assume we have colored the edges of K_{5} with exactly 7 colors and picked one edge of each color, calling this set of edges E, such that the remaining duplicate edges form a 3 - star. Call the vertex at the center of the star v and let the color of the fourth edge incident with v be 7 .

Pick one of the duplicate edges and call it e. Assume e is colored c. If $c \neq 7$, the edge in E that is colored c is not incident with v. Replace the edge colored c in E with e. We
have now chosen one edge of each color such that the remaining duplicate edges do not form a 3 - star. Thus, each of our original three duplicate edges must have been colored 7 , giving us the coloring above.

Corollary 3.1 If a copy of $K_{5} \subseteq K_{n}$, call it K_{5}^{*}, is colored as described in the lemma above, there can be no colors on the the edges between K_{5}^{*} and the rest of K_{n} that do not appear in K_{5}^{*} without creating a totally multicolored P_{6}.

Proof Consider Figure 3.21. If any edge between v_{1} and $K_{n}-K_{5}^{*}$ is colored 8, then a P_{6} composed of that edge and any Hamilton path on K_{5}^{*} starting at v_{1} is totally multicolored. If an edge between any other vertex of K_{5}^{*} and $K_{n}-K_{5}^{*}$ is colored 8 , then a P_{6} composed of that edge and a Hamilton path on K_{5}^{*} starting at that vertex and ending at v_{1} is totally multicolored.

Figure 3.21: K_{5} colored with exactly 7 colors such that the three duplicate edges left after picking one edge of each color always form a 3 - star

Theorem $3.8 \operatorname{ar}\left(K_{n}, P_{6}\right)=n+1$

Proof Pick one vertex of K_{n} and call it v. Color the $n-1$ edges between v and $K_{n}-v$ with different colors. Color all edges in $K_{n}-v$ with a further two colors. Thus, our coloring uses $n+1$ colors and any P_{6} can only use two edges between v and $K_{n}-v$ and so must use three edges in $K_{n}-v$, guaranteeing that it is not totally multicolored. This shows that $\operatorname{ar}\left(K_{n}, P_{6}\right) \geq n+1$.

Figure 3.22: $(n+1)$ - coloring of K_{n} that contains no totally multicolored P_{6}

Now, assume we have colored the edges of K_{n} with at least $n+1$ colors such that the coloring does not produce a totally multicolored P_{6}. Since $\operatorname{ar}\left(K_{n}, P_{5}\right)=n$, the coloring must produce a totally multicolored P_{5}. Call this path $P=v_{1} v_{2} v_{3} v_{4} v_{5}$. And let the edge $v_{i} v_{i+1}$ be colored i for $1 \leq i \leq 4$. Let Φ be the K_{5} induced by $V(P)$. Let K be the subgraph induced by $K_{n}-V(P)$ and label the vertices of K as $v_{6}, v_{7}, \ldots, v_{n}$. Let C be the set of colors $[5,6,7, \ldots, n+1, \ldots]$. See Figure 3.23.

Our first goal will be to show that there are at most $n-5$ colors from C that occur outside of Φ We will consider the ways that a vertex in K can be incident with two or more edges colored with different colors from C. Note that if any edge between v_{1} or v_{5} and K is colored from C, we have a totally multicolored P_{6}.

Figure 3.23: $P \subset \Phi$ and K

Case 1: Let v_{m} be a vertex in K and suppose $v_{m} v_{3}$ and either $v_{m} v_{2}$ or $v_{m} v_{4}$ (let us suppose it is $v_{m} v_{2}$) are colored with different colors from C, say 5 and 6 . However, this would mean that $v_{1} v_{2} v_{m} v_{3} v_{4} v_{5}$ would be totally multicolored, contradicting our assumption that there is no totally multicolored P_{6} in our coloring. See Figure 3.24.

Figure 3.24: Case 1

Case 2: Let v_{m} and v_{μ} be vertices in K. Suppose that $v_{m} v_{\mu}$ and either $v_{m} v_{2}$ or $v_{m} v_{4}$ (let us suppose it is $v_{m} v_{2}$) are colored with different colors from C, again 5 and 6 . Then $v_{\mu} v_{m} v_{2} v_{3} v_{4} v_{5}$ would be a totally multicolored P_{6}, a contradiction. See Figure 3.25

Figure 3.25: Case 2

Case 3: Suppose v_{m}, v_{μ}, and v_{ν} are all vertices in K and suppose that $v_{m} v_{\mu}$ and $v_{m} v_{\nu}$ are both colored with different colors from C. Let $v_{m} v_{\nu}$ be colored 5 and $v_{m} v_{\mu}$ be colored 6 . Consider the edge $v_{1} v_{\nu}$. We know that any color from C will create a totally multicolored P_{6}. Furthermore, coloring the edge 3 or 4 will make $v_{3} v_{2} v_{1} v_{\nu} v_{m} v_{\mu}$ totally multicolored. Thus, the edge can only be colored 1 or 2 .

Similarly, $v_{5} v_{\mu}$ must be colored either 3 or 4 . However, if $v_{1} v_{\nu}$ is colored 2, this would make $v_{2} v_{1} v_{\nu} v_{m} v_{\mu} v_{5}$ totally multicolored. So, $v_{1} v_{\nu}$ must be colored 1 and by the same argument $v_{5} v_{\mu}$ can only be colored 4 .

Figure 3.26: Case 3

But, with the enforced colors as shown in Figure 3.26, any color at all on the edge $v_{2} v_{\nu}$ will create a totally multicolored P_{6} as shown by Table 3.7.

Color	Totally Multicolored Path Created
1	$v_{5} v_{4} v_{3} v_{2} v_{\nu} v_{m}$
2	$v_{1} v_{2} v_{\nu} v_{m} v_{\mu} v_{5}$
3	$v_{1} v_{2} v_{\nu} v_{m} v_{\mu} v_{5}$
4	$v_{4} v_{3} v_{2} v_{\nu} v_{m} v_{\mu}$
5	$v_{1} v_{\nu} v_{2} v_{3} v_{4} v_{5}$
≥ 6	$v_{5} v_{4} v_{3} v_{2} v_{\nu} v_{m}$

Table 3.7: Totally Multicolored Paths Created By Coloring Edge $v_{2} v_{\nu}$ in Figure 3.26

Case 4: Let v_{m} be a vertex in K. Suppose $v_{m} v_{2}$ and $v_{m} v_{4}$ are colored with different colors from C, say $v_{m} v_{2}$ is colored 5 and $v_{m} v_{4}$ is colored 6 . Consider the edge $v_{1} v_{5}$. No matter what its color, a totally multicolored P_{6} is formed as shown in Table 3.8.

Figure 3.27: Case 4

Color	Totally Multicolored Path Created
1	$v_{m} v_{2} v_{3} v_{4} v_{5} v_{1}$
2	$v_{m} v_{2} v_{1} v_{5} v_{4} v_{3}$
3	$v_{m} v_{4} v_{5} v_{1} v_{2} v_{3}$
4	$v_{m} v_{4} v_{3} v_{2} v_{1} v_{5}$
5	$v_{m} v_{4} v_{3} v_{2} v_{1} v_{5}$
≥ 6	$v_{m} v_{2} v_{3} v_{4} v_{5} v_{1}$

Table 3.8: Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{5}$ in Figure 3.27

Case 5: Suppose that v_{μ} and v_{m} are vertices in K and suppose that $v_{3} v_{m}$ is colored 5 and $v_{m} v_{\mu}$ is colored 6. If $n \geq 8$, any other edge from v_{μ} to an additional vertex in K, v_{ν}, must be colored 6. We know from case 3 that no such edge can be colored with any
color from C other than 6 . Furthermore, it is easy to see that if $v_{\mu} v_{\nu}$ is colored 1 or 2 then $v_{\nu} v_{\mu} v_{m} v_{3} v_{4} v_{5}$ is totally multicolored. Similarly, if $v_{\mu} v_{\nu}$ is colored 3 or 4 then $v_{\nu} v_{\mu} v_{m} v_{3} v_{2} v_{1}$ is totally multicolored.

Figure 3.28: Every vertex in K must be incident to an edge colored 6

This means that every vertex in K is incident to an edge colored 6. From previous cases, this means that the only way for any vertex v_{ν} in K other than v_{m} to be incident with more than one color from C is for $v_{3} v_{\nu}$ to be colored from C. If $v_{3} v_{\nu}$ is colored 5 for all v_{ν} in K, then 5 and 6 are the only colors from C that occur outside of Φ.

So assume that for some vertex v_{ν} in K other than v_{m}, the edge $v_{3} v_{\nu}$ is colored with a color from C other than 5 or 6 . Let $v_{3} v_{m}$ be colored $5, v_{3} v_{\nu}$ be colored 7 , and $v_{m} v_{\mu}, v_{\nu} v_{\rho}$ be colored 6 , where v_{ρ} is an additional vertex in K. Note that it may be the case that v_{μ} and v_{ρ} are the same vertex. Also, it is possible that $v_{\mu}=v_{\nu}$ or $v_{\rho}=v_{m}$. Consider the edge $v_{1} v_{5}$. Figure 3.29 and Table 3.9 show that any color on edge $v_{1} v_{5}$ creates a totally multicolored P_{6}.

Color	Totally Multicolored Path Created
$3,4, \geq 7$	$v_{\mu} v_{m} v_{3} v_{2} v_{1} v_{5}$
$1,2,5$	$v_{\rho} v_{\nu} v_{3} v_{4} v_{5} v_{1}$
6	$v_{m} v_{3} v_{2} v_{1} v_{5} v_{4}$

Table 3.9: Totally Multicolored Paths Created By Coloring Edge $v_{1} v_{5}$ in Figure 3.29

So, in this case it is possible for a vertex in K to be incident with two unique colors from C, but then those are the only colors from C that occur outside of Φ. For $n=6$ this

Figure 3.29: Case 5
case can not happen and for $n \geq 7,2 \leq n-5$. In every other case, any vertex in K can add at most one color from C to our total palette of colors. Thus, there are at most $n-5$ colors from C that occur outside of Φ.

We assumed at least $n+1$ colors were used, so there must be at least six additional colors on Φ. Furthermore, the lemmas above show that there can be at most seven colors on Φ without creating a totally multicolored P_{6}. These colors will be $1,2,3,4$, and either two or three colors from C.

If we use exactly six colors on Φ, then we have at most $(n-5)+6=n+1$ colors in total.

If we use seven colors, the corollary above states that all of the colors on the edges between K and Φ must occur in Φ to avoid a totally multicolored P_{6}. That is, these seven colors are the only colors that appear outside of K. By Case 3 earlier in this proof, each vertex within K can be incident with at most one edge within K that is colored from C. This means that at most $\left\lfloor\frac{n-5}{2}\right\rfloor$ colors from C can occur within K. So we can have at most $\left\lfloor\frac{n-5}{2}\right\rfloor+7$ colors, which is at most $n+1$ for $n \geq 6$.

Simonovits and Sós proved the following general result for paths in [7].

Theorem 3.9 ([7]) There exists a constant c such that if $t \geq 5, n>c t^{2}$, then

$$
\operatorname{ar}\left(K_{n}, P_{2 t+3+\varepsilon}\right)=\operatorname{tn}-\binom{t+1}{2}+1+\varepsilon
$$

where ε is either 0 or 1 .

The specific statement and proof restricts us to sufficiently long paths but the authors note that the cases when $t \leq 4$ are also true but required more cases to be evaluated and were thus omitted. Note that this result confirms that $\operatorname{ar}\left(K_{n}, P_{6}\right)=n+1$ as conjectured.

The extremal coloring used is as follows. Partition the vertices of K_{n} into sets $A=$ $\left[a_{1}, a_{2}, \ldots, a_{t}\right]$ and $B=\left[b_{1}, b_{2}, \ldots, b_{n-t}\right]$. Color each edge in the subgraph induced by A and each edge with one end in A and one end in B with a different color and color the edges of the subgraph induced by B with $1+\varepsilon$ colors. Note that this is an extension of the colorings used in the previous theorems.

Bibliography

[1] P. Erdős, M. Simonovits, and V. T. Sós, Anti-Ramsey theorems, Infinite and finite sets (Colloq., Keszthely, 1973: dedicated to P. Erdős on his 60th birthday), Vol. II, pages 633-643, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[2] S. Fujita, C. Magnant, and K. Ozeki, Rainbow generalizations of ramsey theory: a survey, Graphs Combin., 26(2010): 1-30.
[3] I. Gorgol, Rainbow numbers for cycles with pendant edges, Graphs Combin., 24(2008): 327-331.
[4] D. G. Hoffman, Cores of Class II Graphs, Journal of Graph Theory, Vol. 20, No. 3, 397 - 402 (1995).
[5] J. J. Montellano-Ballesteros and V. Neumann-Lara, An Anti-ramsey theorem on cycles, Graphs Combin., 21(2005): 343-354.
[6] F. P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc., 30(1930): 264 286.
[7] M. Simonovits and V. T. Sós, On restricted colourings of K_{n}, Combinatorica, 4(1984): 101-110.
[8] Yuceturk, Guven, Gregarious Path Decompositions of Graphs, Ph.D. Dissertation, Auburn University (2011).

