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Field Programmable Gate Arrays (FPGAs) are programmable logic devices that 
can be used to implement virtually any digital circuit design. Built-In Self-Test (BIST) is 
a testing approach that enables the device to test itself without any external test 
equipment. The re-programmability feature of the FPGAs makes BIST a very attractive 
approach for testing FPGAs because it eliminates any area or performance degradation 
associated with BIST.  
Traditional BIST for FPGAs suffers from long test times and large memory 
storage requirements due to the slow configuration download speeds and the large 
number of test configurations required to test the FPGAs. The work presented in this 
thesis implements testing of logic resources of Xilinx Virtex/Spartan-II and Virtex-4 
FPGAs with focus on reduction of test time and memory storage requirements using 
 vi
techniques like dynamic partial reconfiguration and partial configuration memory 
readback. 
The total number of configurations required to completely test the logic resources 
are 28 for Virtex/Spartan-II FPGAs and 24 for Virtex-4 FPGAs. A speed-up of 5.1 times 
and 12.9 times in test time was achieved for Logic BIST for Virtex/Spartan-II and Virtex-
4 FPGAs respectively, using dynamic partial reconfiguration and partial configuration 
memory readback. A reduction in configuration memory storage requirements was also 
achieved using partial reconfiguration; this reduction was 3.2 times and 5.3 times for 
Virtex/Spartan-II and Virtex-4 FPGAs respectively. 
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CHAPTER ONE 
Introduction 
Rapid advances in semiconductor processing technologies have allowed transistor 
densities to double every two years; this phenomenon has led to new opportunities in 
Very Large Scale Integration (VLSI) design and new challenges in design verification 
and testing [1]. The growing complexity of design has made programmable logic devices 
like Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic 
Devices (CPLDs) some of the leading products in the semiconductor industry, as they 
provide an easy way to implement and verify complex digital designs. 
Every innovation in Integrated Circuit (IC) design is accompanied by new 
challenges in testing. The test systems accordingly are becoming faster, more complex 
and hence more expensive. Cost and time are two of the most important factors that 
govern the development of any kind of test system. Built-In Self-Test (BIST) is one 
technique which reduces the cost and time overheads involved in external test systems. It 
is a technique that places a device?s testing function within the device itself [6]. 
 
1.1 Field Programmable Gate Arrays (FPGAs)  
FPGAs are programmable logic devices that can be configured or programmed to 
perform tasks specific to any digital application. The FPGAs gained popularity due to 
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their flexibility and short time-to-market, making them ideal for prototyping systems and 
low volume products. The design to be implemented in an FPGA is converted to a string 
of bits called the configuration file using tools provided by the FPGA manufacturer. The 
configuration file is used to program the memory elements inside the FPGA that control 
the functionality of the programmable components of the FPGA to implement the 
required design [2]. Traditionally, the entire configuration memory of an FPGA is 
rewritten with configuration data if the design needs to be modified; this is called full 
reconfiguration. Current FPGAs have the ability to be configured partially such that only 
the section of the configuration memory that changes due to the design modifications is 
rewritten with new configuration data. This configuration technique is known as partial 
reconfiguration [13] [14]. 
An FPGA typically consists of an array of Programmable Logic Blocks (PLBs), 
programmable interconnect network, Input/Output Buffers (IOBs) and embedded cores 
like memory blocks. The PLBs form the logic resources of an FPGA and usually consist 
of look-up tables, flip-flops and multiplexers. The programmable interconnect network is 
comprised of wire segments and programmable switches that connect or disconnect the 
wire segments. PLBs can be configured and connected to each other using the 
programmable interconnect network to implement virtually any combinational or 
sequential circuit. The IOBs are used to interface the circuit to the outside world [13]. A 
current trend in FPGAs is to embed pre-designed Intellectual Property (IP) cores into the 
FPGA. These IP cores include memory blocks like Random Access Memories (RAMs) 
and Digital Signal Processor (DSP) blocks to improve application-specific performance. 
Figure 1.1 shows the architecture of a typical FPGA.  
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  Figure 1.1  FPGA Architecture 
 
1.2 Testing and BIST 
A quality product can be delivered only if it has been tested thoroughly. Testing is 
done to ensure fault-free operation of a circuit. In order to test any circuit, a mechanism is 
needed to apply a set of input stimuli to the Circuit Under Test (CUT) and another 
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mechanism is required to analyze or compare the output response with the response of a 
known good circuit to determine whether the circuit is fault-free or faulty [5]. 
The input stimuli in case of external test systems are applied and the output 
response is analyzed or compared externally. In case of BIST, the test system is 
integrated within the system itself; the input stimuli are applied and the output response is 
analyzed internally within the system. The BIST technique involves addition of extra 
circuitry to an existing design. There are many variations in BIST depending on the CUT, 
but they all have a common purpose, which is to generate test patterns and analyze the 
output responses of the CUT [6]. A typical implementation of BIST consists of a Test 
Pattern Generator (TPG) for the CUT, input isolation circuitry for isolation of the primary 
inputs of the CUT during testing, an Output Response Analyzer (ORA) for verification of 
proper operation of the CUT, and control circuitry for execution of the test procedure as 
shown in Figure 1.2. 
 
 
Figure 1.2  Basic BIST Architecture [6] 
 
The external test approach is best suited for circuits that allow access to all the I/O 
pins for testing. Over the past two to three decades, the number of I/O pins on most very 
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large scale integration devices has increased by an order of magnitude while the number 
of transistors has increased by as much as four orders of magnitude [6]. This has resulted 
in reduced accessibility of the ICs; making external test systems more complicated and 
expensive. BIST on the other hand is much simpler and inexpensive, as external test 
equipment is absent. Moreover, BIST techniques can be used at any level of testing 
ranging from manufacturing level testing to system level testing. Major drawbacks of the 
BIST technique are additional design requirements, area overhead and performance 
penalty [6]. The drawbacks of BIST are easily compensated by the advantages it offers. 
BIST has been successfully implemented in many digital logic designs and finds special 
use in testing of FPGAs. 
 
1.3 FPGA BIST 
The growing popularity of FPGAs in the VLSI industry has fueled research on 
new methodologies for testing these FPGAs. The re-programmability of FPGAs makes 
them harder to test as compared to regular structures. This is due to the fact that the 
FPGA can be operated and connected in many ways internally; as a result, it must be 
configured multiple times in order to be tested completely. But, due to the in-system re-
programmability of the FPGAs, they can be configured to test themselves [6]. The idea is 
to program the BIST circuitry in a part of the FPGA and treat the rest of the FPGA as the 
CUT. Once the CUT is completely tested, a reversal of roles takes place, as the part of the 
FPGA used for BIST circuitry now becomes the CUT and vice versa. This process is 
illustrated in Figure 1.3. 
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Figure 1.3  BIST in FPGAs 
 
The BIST circuit can be designed in a number of ways to provide high resolution 
diagnostics for the FPGA, opening the door for fault-tolerant systems which was 
previously not possible with external test systems [3]. Moreover, BIST implemented in 
FPGAs does not suffer from any kind of area or performance overhead compared to 
conventional BIST techniques, as the BIST circuitry can be easily replaced by re-
programming the FPGA with the system function after test [3].  
Considerable work has been done in the area of BIST for FPGAs. Depending on 
the resources to be tested, some of the PLBs of an FPGA are configured as Test Pattern 
Generators and Output Response Analyzers, forming the BIST circuitry which tests the 
targeted resources in the FPGA [7]. An FPGA is reconfigured repetitively for testing and, 
as a result, a major portion of the time required to test the FPGAs is spent re-configuring 
them, i.e. downloading BIST configuration data into the FPGA.  
The majority of an FPGA is comprised of routing and logic resources [15]. So not 
surprisingly, most of the research and development work done in the area of BIST for 
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FPGAs has been for its logic and routing resources [3] [7] [17] [20] [23] [27]. A generic 
approach cannot be used to completely test an FPGA since different fault models and test 
techniques are used to test logic and routing resources. The work presented in this thesis 
focuses on BIST for programmable logic resources only. Although considerable work has 
been done in the area of BIST for logic resources of an FPGA, the BIST technique for the 
testing logic resources presented in this thesis is most influenced by work described in [3] 
and [7]. A BIST approach for testing the PLBs of ORCA series FPGAs was presented 
along with a procedure for diagnosis and location of faulty PLBs in [3].  The BIST 
technique presented in [3] was extended to Xilinx XC4000 and Spartan series FPGAs to 
completely test their logic and routing resources in [7].  
 
1.4 Xilinx FPGAs 
The FPGAs used for the work presented in this thesis are Xilinx Virtex/Spartan-II 
and Virtex-4 FPGAs. Virtex/Spartan-II family of FPGA devices consist of primarily an 
array of PLBs, IOBs and memory blocks as shown in Figure 1.1 [8]. The Virtex-4 family 
of FPGAs combine a traditional FPGA with embedded processors, multipliers and high 
speed I/O interfaces in one package [9]. The architectural and operational features of 
these FPGAs can be exploited for implementation of BIST to speed-up the test time and 
also reduce the amount of memory required to store all the test configurations [16].  
 
1.5 Thesis Statement 
The research work presented in this thesis, primarily focuses on ways to improve 
BIST implementation for programmable logic resources of FPGAs. This involves 
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reduction in test time, improvement in diagnostic resolution and reduction in memory 
storage requirements for BIST configurations. This work builds upon the previous work 
done in the area described in [3] [7] [17] [18] [19] [29], extending to newer FPGA device 
families using techniques like partial reconfiguration and partial configuration memory 
readback. The target devices for this research are the Xilinx Virtex/Spartan-II and Virtex-
4 family of devices. Configurations for BIST for programmable logic of Virtex/Spartan-II 
series FPGAs are developed along with methods to improve the test time. In case of the 
Virtex-4 family of devices, a set of BIST configurations for PLBs is developed and using 
architectural and operational features, further improvement in test time and reduction in 
configuration memory storage requirements is achieved.  
The thesis is organized as follows: Chapter 2 describes the previous work done in 
the area of BIST for programmable logic resources and elaborates upon the architectures 
of Virtex/Spartan-II and Virtex-4 FPGAs. Implementation and experimental results of 
BIST for programmable logic resources in the Virtex/Spartan-II family of FPGAs is 
described in Chapter 3.  Chapter 4 presents the implementation of BIST for 
programmable logic resources in the Virtex-4 FPGAs along with experimental results. 
Chapter 5 concludes the thesis with suggestions for future work and a discussion 
regarding the potential use of an embedded processor to assist in BIST. 
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CHAPTER TWO 
Background 
This chapter covers the background knowledge required to understand the 
research work presented in the following chapters. It begins with an overview of the 
architectures and configuration process of the Virtex/Spartan-II and Virtex-4 FPGAs used 
for the work presented in this thesis. This is followed by a discussion of prior work done 
in FPGA testing and BIST for testing the programmable logic resources of an FPGA. The 
chapter concludes with a restatement of the thesis goals. 
 
2.1 FPGA Architectures 
A typical FPGA consists of an array of PLBs, programmable interconnects, IOBs 
and RAM cores. The PLB array is interleaved with RAM cores and IOBs are arranged on 
the periphery as shown in Figure 1.1. Newer FPGAs have additional embedded cores like 
DSP cores, embedded microprocessors, and high-speed I/O interface for better system 
performance [13]. A design can be programmed into the FPGA by writing data to the 
configuration memory of the FPGA. The configuration memory then defines the function 
of the various programmable components of an FPGA. The following sub-sections 
describe the major components of Xilinx Virtex/Spartan-II and Virtex-4 series FPGAs. 
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2.1.1 Configuration Memory 
All programmable devices have some kind of memory elements which connect or 
break connections in a programmable device to establish the desired functionality. Figure 
2.1 illustrates a memory element that determines the connection between two lines [2].  
 
 
Figure 2.1  Configuration Memory Element 
 
A memory element can be an anti-fuse, a floating-gate transistor, as in Read-Only 
Memory (ROM)/Flash memory, or a Static RAM (SRAM) cell. Most modern FPGAs use 
SRAM based memory elements which can be reprogrammed quickly in-system [2]. 
Xilinx Virtex/Spartan-II and Virtex-4 FPGAs are SRAM based, the drawback being 
volatile configuration memory. This means that the FPGA needs to be configured with 
the desired system function every time it is powered up, as the configuration memory 
elements lose their data on loss of power [11]. The configuration memory is spread 
across the entire device and is organized into smaller addressable segments called frames 
in the case of Xilinx devices. The size of the configuration memory varies depending on 
the size of the FPGA [11]. 
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2.1.2 Programmable Interconnects, IOBs, Memory and DSP 
All components in the FPGAs are connected using some type of routing 
resources; as a result the programmable interconnect network forms the biggest part of an 
FPGA [10]. The programmable interconnect network consists of wire segments that are 
connected or disconnected using Programmable Interconnect Points (PIPs), these PIPs 
are essentially switches controlled by configuration memory bits. A collection of these 
PIPs form a switch-matrix that is used in conjunction with wire segments to connect to 
various components of the FPGA like PLBs and RAMs. The routing resources of an 
FPGA are organized in a hierarchical manner that includes local, I/O, dedicated and 
global routing resources. Local routing resources include internal wire segments of a 
component for direct connections between adjacent components and switch matrices. I/O 
routing resources connect the internal components of the FPGA to the IOBs. Dedicated 
routing resources are used to implement high speed buses for better performance. Global 
routing consists of buffered nets used to route high-fanout signals like clock and reset [8] 
[9].  
Over the years memory cores have become an integral part of the FPGA, as any 
kind of modern digital design requires storage capability. The memory cores, also known 
as BlockRAMs in Xilinx FPGAs, can be configured to operate in different modes 
depending on the data width and the size of the memory required. The BlockRAM in 
Xilinx FPGAs is a dual-port RAM that has two ports that can read and write to the 
memory simultaneously. To connect the FPGAs to the outside world, IOBs are provided 
which can be configured to be compatible with different IO standards, drive capabilities 
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and speeds [10]. Newer FPGAs have specialized DSP cores to implement high 
performance digital signal processing functions, these DSP cores typically consist of 
dedicated multipliers, adders and accumulators [10]. 
 
2.1.3 Programmable Logic Resources 
The PLBs of Xilinx FPGAs are divided into smaller units of logic called slices. 
Each slice typically consists of a pair of logic cells, where a logic cell is comprised of a 
Look-Up Table (LUT), a storage element, some carry logic circuitry and multiplexers. 
Figure 2.2 illustrates a typical PLB slice of a Xilinx FPGAs. The LUT in Xilinx FPGAs 
can also be used to implement a shift register or a small RAM (16-bit for a 4-input LUT); 
these small RAMs are called distributed RAMs or Look-Up Table RAMs (LUT RAMs). 
Virtex/Spartan-II FPGAs have two identical slices per PLB [8] [12], whereas a Virtex-4 
PLB consists of two different kind of slices, named SliceL and SliceM. The LUTs in 
SliceM can be used to implement LUT RAMs or shift registers, whereas LUTs in SliceL 
do not have this feature [10]. A Virtex-4 PLB consists of two SliceLs and two SliceMs 
for a total of four slices.  
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Figure 2.2  Typical PLB Slice of a Xilinx FPGA 
 
Table 2.1 shows the various resources available in Virtex/Spartan-II and Virtex-4 
families of FPGAs. Although Spartan-II and Virtex are separate families of FPGAs, 
Spartan-II is essentially derived from the Virtex architecture with fewer features and 
lower performance for lower cost. The Virtex-4 family of FPGAs is sub-divided into 
three sub-families: 
? LX: for logic applications (higher logic resources) 
? SX: for DSP applications (higher DSP resources) 
? FX: for embedded applications (embedded processor, Rocket IO and Ethernet 
cores) 
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Table 2.1  Resources available in different FPGA families [8] [12] [9] 
Resource Spartan-II Virtex Virtex-4 LX Virtex-4 SX Virtex-4 FX
Largest PLB  
Array Size 
(Rows x Columns) 
28 x 42 64 x 96 192 x 116 128 x 48 192 x 84 
PLBs 1,176 6,144 22,272 6,144 16,128 
Logic slices 2,352 12,288 89,088 24,576 64,152 
Distributed RAM 74 Kbits 384 Kbits 1,392 Kbits 384 Kbits 987 Kbits 
BlockRAMs 56 Kbits 184 Kbits 6,048 Kbits 5,760 Kbits 9,936 Kbits 
I/O pins 284 512 960 640 896 
DSP cores - - 96 512 192 
 
2.2 Virtex/Spartan-II Architecture 
The architecture of a Virtex/Spartan-II FPGA is shown in Figure 2.3. An array of 
PLBs and associated routing resources is at the core of the FPGA. A column of 
BlockRAMs is placed at the east and west edges of the PLB array. The IOBs and the 
Delay Locked Loops (DLL) for clocks are located at the periphery of the FPGA. The 
BlockRAMs and PLBs are surrounded by additional routing resources, primarily used to 
connect the internal resources of the FPGA to the I/O pins of the FPGA. 
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Figure 2.3  Virtex/Spartan-II Architecture 
 
A Virtex/Spartan-II PLB consists of a pair of identical slices which are connected 
to a switch matrix as illustrated in Figure 2.4. The switch matrix is responsible for routing 
the signals in and out of the PLB. These PLBs also feature a carry chain that spans the 
entire column of PLBs. Each PLB slice has dedicated circuitry associated with the carry 
chain to implement fast arithmetic functions like an adder using look-ahead carry.  
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Figure 2.4  PLB of a Xilinx Virtex series FPGA 
 
The internal architecture of a Virtex/Spartan-II PLB slice is illustrated in Figure 
2.5. A single LUT of a Virtex/Spartan-II PLB can be used to implement any 4-input 
combinational logic function. It can also operate as a 16x1-bit RAM. Two LUTs of a 
PLB can be combined to form single-port 32x1-bit, 16x2-bit or a dual-port 16x1-bit 
RAM. The storage element can be operated either as a positive or negative edge-triggered 
flip-flop or as an active low or an active high level-sensitive latch. Storage elements have 
control signals including set/reset and clock-enable that are shared by all storage elements 
within a slice [8]. All four LUTs of the PLB can be combined using control logic and 
multiplexers provided in the PLB slices to implement any combinational logic function of 
up to six inputs. The PLBs feature dedicated logic like XOR gates and AND gates in 
order to implement fast arithmetic logic.[8]. 
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Figure 2.5  Virtex/Spartan-II PLB Slice [8] 
 
The configuration memory of Virtex/Spartan-II FPGAs is divided into frames. 
The number frames per column of PLBs and associated routing is fixed at 48 frames as 
shown in Figure 2.6. The frame size varies from 12 words of 32 bits each for the smallest 
device to 39 words for the largest device in the Virtex family, depending on the number 
of PLB rows in the FPGA. The IOB frames are on the edges of the FPGA followed by 
the BlockRAM frames. The PLB frames also have some IOB configuration data at the 
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start and end of the frame. The Centre column consists of frame data for global clocks 
[32].  
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Figure 2.6  Configuration memory structure of Virtex FPGAs 
 
2.3 Virtex-4 Architecture 
The architecture of Virtex-4 FPGAs is different from Virtex/Spartan-II FPGAs, as 
illustrated in Figure 2.7. The PLBs and routing resources are spread across the entire 
FPGA. The I/O buffers are arranged in columns inside the FPGA, unlike Virtex/Spartan-
II FPGAs that have IOBs only on the edges of the FPGA. Columns of BlockRAMs and 
DSP cores are interleaved with columns of PLBs. Virtex-4 FPGAs have up to 12 columns 
of BlockRAMs and 8 columns of DSP cores. The Virtex-4 FX family also features up to 
two embedded PowerPC cores. 
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Figure 2.7  Virtex-4 Architecture 
  
The PLB of a Virtex-4 FPGA is comprised of four slices, two SliceLs and two 
SliceMs as shown in Figure 2.8. All four slices are interconnected and similar slices are 
placed together in a column. Both pairs of slices have an independent carry chain 
spanning the entire column. The LUTs of SliceM also feature a Shift Register and a RAM 
mode of operation, consequently SliceMs feature a shift chain that can be used to 
combine SliceMs in single or multiple PLBs to form a long shift register [10]. 
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Figure 2.8  Diagram of a Xilinx Virtex-4 series FPGA PLB 
 
The slices in Virtex-4 feature two 4-input LUTs, denoted F and G, two storage 
elements, carry logic, multiplexers and some arithmetic gates. The LUTs can be used as a 
4-input LUT, up to a 16-bit shift register (SliceM only) or a 16-bit LUT RAM (SliceM 
only). The storage elements can be configured as positive or negative edge-triggered flip-
flops or active high or active low level-sensitive latches with clock-enable control 
capability. They can be initialized to high or low value after download and set/reset 
synchronously or asynchronously during operation. Multiplexers present in the slices are 
used to cascade LUTs in multiple slices or PLBs to form up to 64x1 LUT RAM in a 
single PLB or a 64-bit shift register using a single PLB (multiple PLBs can be cascaded 
to form larger shift registers). A PLB has two carry chains that are directed vertically 
upwards, the carry chain logic in the slices is used to implement look-ahead carry 
functions. A pair of AND and XOR gates are provided in a slice as dedicated arithmetic 
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gates for efficient utilization of the logic resources [10]. The internal architectures of 
Virtex-4 SliceL and SliceM are illustrated in Figures 2.9 and 2.10, respectively. 
 
 
Figure 2.9  Virtex-4 SliceL [10] 
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Figure 2.10  Virtex-4 SliceM [10] 
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The Configuration memory of a Virtex-4 FPGA is divided into frames of fixed 
size of 41 words of 32 bits each. These frames span a fixed number of rows of an FPGA 
column, unlike Virtex/Spartan-II frames that span the entire column. Frames are grouped 
together to form blocks based on the resources defined by them, like PLBs or 
BlockRAMs [11]. 
 
2.4 FPGA Configuration 
A design is typically synthesized and converted to a configuration file or a 
bitstream that is downloaded into the FPGA to implement the required design [2]. Several 
interfaces are available to configure the FPGAs including Boundary Scan, dedicated 
serial interface and dedicated parallel interface [11]. As the FPGA devices grow bigger, 
the configuration file or bitstream size also grows. This leads to a longer time required to 
download a design.  
Partial reconfiguration is a technique used to reduce the time required to 
reconfigure an FPGA. Once a full configuration for a design has been downloaded to the 
FPGA, minor changes in the design result in small changes in the bitstream. So instead of 
downloading the full bitstream, only parts of the bitstream that change are downloaded 
using partial reconfiguration [29]. In case of Xilinx FPGAs, a frame is the smallest unit 
of configuration memory that can be changed. One of the features of the newer FPGAs is 
dynamic partial reconfiguration. This feature allows the user to retain the flip-flop 
contents of the PLBs and IOBs during reconfiguration. Unused parts of FPGAs are 
reconfigured while the FPGA is operational with the system function [14]. 
 
 24
2.4.1 Configuration Interface 
There are three main configuration interfaces available in Xilinx FPGAs [11]. 
They are: 
1. Master/Slave Serial interface 
2. Master/Slave Parallel (SelectMAP) interface 
3. Boundary Scan interface 
The source of clock used for configuration determines whether the interface is in 
master mode or slave mode. If the source for generation of the configuration clock is 
external to the FPGA then the configuration mode is in slave mode. In master mode the 
configuration clock is generated internally by the FPGA. The configuration interface to 
be used for Xilinx FPGAs is determined by the value set on three mode pins of the FPGA 
[11].  
One bit is downloaded to the FPGA per clock cycle when the serial interface is 
used. In case of the SelectMAP interface, configuration data is downloaded in parallel. 
The configuration data can be both downloaded to the FPGA or read back from the 
FPGA using the SelectMAP interface. The SelectMAP interface is capable of reading or 
writing 8 or 32 bits per clock cycle in parallel, greatly reducing the configuration 
download time as compared to the serial interface [11]. The third interface is known as 
Boundary Scan [5] [30]. It was originally developed to test the integrity of the 
connections between devices on a printed circuit board. Xilinx FPGAs make additional 
use of the Boundary Scan interface to download to or read back from the FPGA 
configuration memory [11].  
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The Boundary Scan interface consists of a 4-pin Test Access Port (TAP), TAP 
controller, instruction register and decoder, bypass register and Boundary Scan register as 
shown in Figure 2.11. 
 
 
Figure 2.11  Boundary Scan Architecture 
 
The TAP controller consists of a finite state machine that is controlled by four 
TAP pins, namely TCK (Test Clock), TMS (Test Mode Select), TDI (Test Data In) and 
TDO (Test Data Out). Depending on the state of the TAP controller, instructions or data 
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can be loaded into the Boundary Scan interface registers. All the IOBs are interconnected 
to form a Boundary Scan register in test mode and test vectors are loaded to the IOBs 
using TDI. Similarly TDO is used to read out the test results from the IOBs. The bypass 
register is a single bit register used to put the device in bypass mode to access other 
devices connected in the Boundary Scan chain. The instruction register and decoder are 
used to execute the Boundary Scan test instructions [11]. Most of the current FPGAs 
allow configuration download using the Boundary Scan interface. Xilinx FPGAs 
implement Boundary Scan instructions that allow both configuration memory download 
and readback by using configuration registers, like the frame data register and frame 
address register. The configuration memory can be written using a CFGIN command and 
read back using a CFGOUT command [11]. 
Xilinx also provides user access to the FPGA core from the Boundary Scan 
interface via Boundary SCAN (BSCAN) modules in the FPGA. These user access 
modules can be used to create internal Boundary Scan chains to implement user-defined 
functions in an FPGA. The BSCAN modules have to be activated using Boundary Scan 
commands before they can be used to perform a user function. All BSCAN modules 
source the clock from the TCK pin in the Boundary Scan interface and the clock for a 
given BSCAN module is enabled only when it is activated. BSCAN modules also consist 
of output pins that indicate the status of the Boundary Scan interface [11] [32] [33]. 
 
2.4.2 Configuration Process 
The configuration of a Xilinx FPGA is a multi-stage process. Before the 
download of configuration data, the FPGA is initialized, which involves synchronization 
 27
of the configuration interface logic of the FPGA with the configuration data to be 
downloaded. It may also include clearing of the configuration memory. A Cyclic 
Redundancy Check (CRC) is performed on the configuration data to check for errors 
while data is downloaded to the configuration memory. The final step is known as the 
startup sequence, it is a multi-step process that includes activation/de-activation of global 
signals like global set/reset (GSR), global write-enable for all the RAMs and flip-flops in 
the FPGA and global tri-state enable for all the IOBs [11].  
For full configuration, all the frames in the FPGA are written with configuration 
data, whereas for partial reconfiguration only the frames that change are rewritten. The 
configuration process is similar for both methods except for the initialization. The 
configuration memory is not cleared during initialization of the FPGA using partial 
reconfiguration. During configuration download, the frame address register (FAR) is 
written with the address of the frame to be written and 32-bit words of configuration data 
are written to the specified frame in the configuration memory via the frame data register 
(FDR) [11].  
 
2.4.3 Configuration Memory Readback 
Xilinx FPGAs allow the user to read back contents of the complete configuration 
memory of the FPGA. This can be used to verify the configuration bits downloaded into 
the FPGA. Instead of full configuration memory readback, parts of the configuration 
memory can also be read back; this procedure is known as partial configuration memory 
readback [14]. A frame is the smallest unit of configuration memory that can be read 
using partial configuration memory readback. For reading a frame, the frame address is 
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written in the FAR and the configuration data is read out from the FDR using an external 
interface like SelectMAP or Boundary Scan [33]. Xilinx FPGAs are also capable of 
capturing the contents of the BlockRAMs and flip-flops of the FPGA during 
configuration memory readback [11]. In the case of Xilinx FPGAs, a CAPTURE module 
needs to be instantiated in the design in order to perform configuration memory readback 
[11] [33]. 
 
2.5 Prior Work in FPGA Testing 
This section lists some of the work previously done in the area of FPGA testing. 
Major work related to testing of logic resources of an FPGA is presented in [3] [7] [16] 
[17] [18] [21] [22] [23] [24] [28]. Stroud et al. present a method to evaluate the number 
of configurations required to test all the logic resources of an FPGA in [21]. The most 
comprehensive works in testing of programmable logic resources using a BIST approach 
were presented in [3] [7]. Reference [7] extends the work done in [3], which was done 
using Lucent?s ORCA series FPGAs to Xilinx 4000 series FPGAs. Reference [3] also 
describes an algorithm called MULTICELLO that can be used for diagnosis of faulty 
PLBs in FPGAs. The work done in [3] and [7] laid the basis for the work presented in 
this thesis.  
Ideas were derived from work done in [17] [18] [19] to improve the BIST 
approach to test logic resources for better diagnostic resolution and faster test times. 
Abramovici et al. introduced a new concept of self-testing areas that are used to 
implement BIST in small unused areas of the FPGA, while the rest of the FPGA is 
operational with the system function in [17] [18]. This work inspired the use of dynamic 
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partial reconfiguration to achieve test time speedup. A technique to test embedded cores 
of SoCs that include regular structures like RAM and multiplier cores, using the FPGA 
core, is explained in [19]. This work introduced the concept of circular comparison that 
results in higher diagnostic resolution. 
Reference [28] by Wang et al. presents an alternative technique to test logic 
resources using BIST. A non-BIST based approach to test an FPGA that uses an external 
Programmable Read Only Memory (PROM) to store the test configurations and test 
vectors is presented in [22] by Huang et al. Reference [23] introduces another technique 
to externally test the logic resources of Xilinx 3000, 4000 and 5000 series FPGAs. 
References [7] [16] [17] [18] [20] [22] [24] [25] [26] [27] present some of the 
work done in the area of FPGA interconnect testing. Reference [20] expands upon the 
BIST technique used in [17] and [18] to test FPGA interconnects. Renovell et al. [25] and 
Wang et al. [27] present techniques to externally test the interconnects of an FPGA. A 
BIST approach to test the interconnects of an FPGA using small BIST structures known 
as BISTERs is presented in [26] by Harris et al. Renovell et al. describe a technique to 
test the Xilinx FPGAs by dividing the FPGA into separate arrays of logic and 
interconnects and LUT RAMs in [24]. 
References [16] and [19] describe comprehensive work done in testing all the 
resources of the FPGAs, including the embedded cores of FPGAs like RAMs and 
multipliers. Stroud et al. presented a case study that uses Atmel?s FPGA based SoCs to 
present the implementation of BIST to completely test the logic, interconnect and 
memory resources of an FPGA  [16].  
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2.6 General BIST Architectures 
There are two primary approaches for testing an FPGA using BIST. One approach 
is to configure the complete FPGA with BIST circuitry to test itself and replace it with 
the original system function after the device has been tested; this method is known as off-
line testing since the system function of the FPGA is halted to test the FPGA [6] [3]. This 
scheme is discussed in detail in the next section. The other option is to keep the system 
operational while testing unused portions of the FPGA by configuring them as Self 
Testing AReas (STARs). These STARs are moved around the FPGA using dynamic 
partial reconfiguration of the FPGA as shown in Figure 2.12. This scheme is called on-
line testing because the system is on-line or operational even when the device is being 
tested [17] [18]. 
 
STAR STAR
System Fu
nction
 
Figure 2.12  On-line BIST [6] 
 
2.7 BIST for Logic Resources of an FPGA 
This thesis deals only with off-line testing of programmable logic resources, 
hence the CUT in this case is the array of PLBs in the FPGA. BIST for testing logic 
resources from here on shall be referred to as Logic BIST.  
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2.7.1 BIST Architecture 
BIST circuitry comprises Test Pattern Generators (TPGs) and Output Response 
Analyzers (ORAs). The TPGs generate the test patterns required to test the PLBs. The 
ORAs essentially compare the outputs of two identically configured PLBs under test, also 
called Blocks Under Test (BUTs), and record any mismatch due to a fault. Since PLBs 
are required to implement the BIST circuitry, all logic resources of an FPGA cannot be 
tested simultaneously. If half of the PLBs can be configured as BUTs, then only two test 
sessions are required to completely test all the PLBs. So, in the first session half of the 
PLBs are configured as Blocks Under Test (BUTs) and the rest are configured as TPGs 
and ORAs. In the second session they are swapped, i.e. the PLBs that were BUTs in first 
session now become TPGs and ORAs and vice versa, as illustrated in Figure 2.13 [3][7]. 
The two test sessions are called West and East sessions depending on the location of the 
TPGs, shown in Figure 2.13 (a) and (b) respectively. This scheme shows a column based 
arrangement of BUTs, TPGs and ORAs, but it can also be row based and the two test 
sessions are then called North and South sessions [3]. 
The BUTs are located in alternate columns of the FPGA with an ORA column 
sandwiched between every two columns of the BUTs such that they compare the outputs 
of the BUTs in the neighboring columns. The ORAs latch any mismatch between the 
BUT outputs being compared as a result of a fault. The fault can be associated with either 
of the two BUTs compared by the ORA. The ORAs are connected in a scan chain as 
illustrated in Figure 2.13. The BIST results can be shifted out after the BUTs have been 
tested using the scan chain [3]. To completely test the PLBs, they are reconfigured and 
tested in different modes of operation while keeping the BIST architecture untouched. A 
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test phase is a configuration that tests a PLB in a single mode of operation. A group of 
test phases that test a PLB in all of it?s modes of operation form a test session [3]. The 
PLBs are also tested in their LUT RAM mode of operation which tests the logic in the 
PLBs associated with LUT RAMs [7] [37]. BIST results of faulty devices can then be 
analyzed using MULTICELLO [3] to determine the exact location of the faulty PLB. 
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Figure 2.13  BIST Architecture to test Logic Resources [3] 
 
It can be noticed from Figure 2.13 that BUTs in the edge columns of the BIST 
architecture suffer from lower diagnostic resolution, as they are compared by only one 
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ORA, whereas the rest of the BUTs are compared by two ORAs. Reference [19] 
introduces a circular comparison technique that allows the comparison of every BUT by 
two ORAs, thereby increasing the diagnostic resolution. 
 
2.7.2 Test Pattern Generation and Output Response Analysis 
As the number of inputs of a PLB is small, exhaustive test vectors can be used to 
test them. A simple counter or a linear feedback shift register (LFSR) can be 
implemented as a TPG using very few PLBs to generate exhaustive test vectors [5] [6]. 
An LFSR is more commonly used because it can generate pseudo-random patterns and 
utilizes fewer gates as compared to a counter [6].  
Two identical TPGs drive alternate columns of BUTs in the FPGA such that 
every ORA compares the output response of BUTs that receive input patterns from two 
different TPGs. This ensures that even if one of the PLBs used as a TPG is faulty, the 
ORAs record a mismatch as both the TPGs generate different test patterns. Hence, using 
two TPGs improves fault detection because if a single faulty TPG was driving all BUTs, 
the ORAs would have never recorded a mismatch [3]. TPG loading is an issue in this 
BIST architecture, since a large number of BUTs are connected to a single TPG. The 
large loading on a TPG output limits the maximum operating frequency of the BIST 
architecture. Solutions proposed are to either use drivers for TPG signals or split the 
FPGA into smaller sections with independent pairs of TPGs that are tested in parallel [7]. 
Both the schemes limit TPG loading without increasing the number of configurations. 
The comparison based approach has better fault detection capability compared to 
signature analysis, as the response of the BUTs is not compacted. Instead it is compared, 
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so unless there are equivalent faults in certain extremely rare cases the faults are 
guaranteed to be detected [3]. A comparison based ORA is illustrated in Figure 2.14 (a). 
It uses an XOR gate to detect any mismatch and the feedback from the flip-flop to the OR 
gate latches a ?1? into the flip-flop in case of a mismatch. The multiplexer is used to form 
a scan chain of ORAs in order to scan out the BIST results after every test phase [3]. A 
good circuit is represented by a ?0? and a fault is indicated by a ?1? stored in the ORA 
flip-flop. Configuration memory readback can be used instead of using a scan chain to 
retrieve BIST results. Figure 2.14 (b) shows the ORA without the scan chain logic used 
in this case [7]. 
 
MUX
 
Figure 2.14  Output Response Analyzer 
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2.7.3 Configuration Schemes 
The BIST approach described in the initial work [3] [7] uses complete 
reconfiguration of an FPGA to switch between test phases. Full reconfiguration is highly 
time consuming and in the case of Logic BIST, only the BUT configurations change from 
one test phase to the next for a given test session. The use of partial reconfiguration to 
reconfigure only the BUTs of the FPGA, to operate in a different mode of operation for a 
given test session, was proposed in [29]. Partial reconfiguration reduces the memory 
required to store the test configurations and leads to faster test times, since less 
configuration data is downloaded into the FPGA per test phase.  
 
2.7.4 Results Retrieval 
After execution of a test phase the BIST results have to be read out of the ORAs 
in the FPGA. As described in [3], the ORAs form a scan chain and the BIST results can 
be shifted out using the Scanout signal shown in Figure 2.14 (a). The data input of the 
ORA at the tail of the scan chain is tied to a ?1?, so there is a trail of ones at the end of the 
BIST results scanned out which serves as an indicator for the end of the scan chain and 
serves as a check for correct operation of the ORAs.  
Most FPGAs have the ability to capture the contents of flip-flops in the PLBs during 
configuration memory readback. This feature can be used to retrieve the BIST results 
captured in the flip-flops of PLBs configured as ORAs by reading back the configuration 
memory. Although configuration memory readback increases the testing time per test 
phase it reduces the total number of test configurations and improves the diagnostic 
resolution [7]. Due to the limited resources of some FPGA PLBs, not all outputs of a 
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BUT can be observed in a single configuration, therefore there are multiple 
configurations for every test phase. If configuration memory readback is used then the 
scan chain to retrieve BIST results can eliminated from the ORA, making extra logic 
resources available in the PLBs to be used as ORAs. The extra logic resources in the 
ORAs make it possible in some FPGAs to compare all the BUT outputs in a single 
configuration for a test phase. Figure 2.14 (b) illustrates the ORA without the scan chain 
logic that is capable of comparing more BUT outputs and also has fewer control signals 
than the ORA with the scan chain logic. 
  
2.8 Restatement of Thesis Goals 
A significant amount of work has been done in the area of Logic BIST for 
FPGAs. As the technology advances and the feature sizes shrink, FPGAs grow larger in 
size and feature many more capabilities, compared to their predecessors. The testing time 
increases as the size of the FPGA grows, so new methods and architectural features have 
to be used in order to keep the test times and the memory storage requirements to a 
minimum. 
The work presented in this thesis builds upon the work previously done in [3] [7] 
[17] [19] [29] and introduces some new techniques to implement Logic BIST for newer 
FPGA devices. As the majority of the time required for testing FPGAs using BIST is 
spent on their reconfiguration, emphasis is put on techniques like partial reconfiguration 
and partial configuration memory readback to reduce the test time and configuration 
memory storage requirements for Logic BIST. This chapter introduced the basic concepts 
and overview of the previous work done, required to understand the work presented in 
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the following chapters. Chapter 3 presents the implementation of Logic BIST on 
Virtex/Spartan II series FPGAs, along with the use of partial reconfiguration and partial 
configuration memory readback to achieve speedup in test time and reduction in memory 
storage requirements. Chapter 4 presents the implementation of Logic BIST for Virtex-4 
FPGAs. The Logic BIST architecture was modified for Virtex-4 to achieve better 
diagnostic resolution. In both cases, the PLB slices were modeled and, based on the 
resultant fault simulations, Logic BIST configurations were developed to test the PLBs. 
Chapter 5 concludes with a summary and suggestions for future improvements along with 
a discussion regarding the use of an embedded processor for BIST. 
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CHAPTER THREE 
Logic BIST for Virtex/Spartan II 
3.1 Introduction 
This chapter discusses the implementation of Logic BIST for Xilinx Virtex and 
Spartan-II FPGAs. The details regarding the Logic BIST architecture and test 
configurations are described along with the fault coverage of the logic resources. The 
methods to achieve speed-up in test time and reduction in memory storage requirements 
are also discussed. These methods include techniques like partial reconfiguration and 
partial configuration memory readback, which reduce the configuration download time 
and BIST results retrieval time, respectively. The experimental results of all the methods 
employed are presented with a summary and analysis of the results to conclude the 
chapter. The work presented in this chapter is primarily the work presented in [31] with 
some additional details. 
 
3.2 Virtex/Spartan-II PLB Architecture 
An overview of the Virtex/Spartan-II FPGA architecture was presented in Chapter 
2. In this chapter, additional details regarding the internals of the PLB are provided. 
Figure 2.8 shows the block diagram of a PLB slice of a Virtex/Spartan-II FPGA [8]. It 
consists of two 4-input LUTs, F and G, that can also function as 16-bit LUT RAMs or  
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16-bit shift registers. For the RAM or shift-register modes of operation, additional 
circuitry is provided to generate the write enable signals. Two AND and two XOR gates 
are provided in each PLB slice to efficiently implement arithmetic functions. 
Multiplexers CY and input CIN are used to implement the carry chain logic. A slice has 
two storage elements, FFX and FFY, which can be used either as flip-flops or as latches 
to implement sequential circuits. Multiplexers DXMUX and DYMUX are provided to 
choose the data input for the storage elements FFX and FFY, respectively. Multiplexers 
F5 and F6 are used to combine LUTs to implement combinational logic functions with 
five or six inputs using a single PLB [8]. 
 
3.3 BIST Architecture 
Logic BIST for Virtex/Spartan-II builds upon previous work done on Lucent?s 
ORCA and Xilinx 4000 series FPGAs, as described in [3] and [7], respectively. The 
BIST approach is very similar to those described in [3] and [7], as illustrated in Figure 
2.13. It is modified with focus on partial reconfiguration and partial configuration 
memory readback. 
The BIST architecture can be either row-oriented or column-oriented, but 
column-oriented BIST architecture emerges as the more efficient BIST implementation 
for Virtex/Spartan-II FPGAs for three major reasons. Firstly, the carry chain 
implemented between the PLBs is implemented vertically upwards within each column, 
so in order to test logic resources associated with the carry chain the BIST architecture 
has to be column-oriented. Secondly, dedicated local routing is available for making 
direct connections between horizontally adjacent PLBs [8]. Therefore it is easier to make 
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BUT to ORA connections across rows in a column-oriented BIST architecture without 
any routing issues. Lastly, the structure of the configuration memory is also column-
oriented. As mentioned earlier, configuration memory is comprised of frames and it takes 
multiple frames to configure a column of PLBs and their associated routing in an FPGA, 
as illustrated in the Figure 2.6. A column-oriented BIST architecture aids in reducing the 
number of frames to be written using partial reconfiguration and read using partial 
configuration memory readback for retrieval of BIST results.  
Figure 3.1 illustrates the architecture of Logic BIST for Virtex/Spartan-II FPGAs. 
Two identical TPGs are restricted to one column of the FPGA and alternate columns are 
configured as ORAs and BUTs. The TPG is a 12-bit LFSR that generates pseudo-
exhaustive test vectors, providing identical vectors to both the slices of each PLB 
configured as a BUT. Each TPG provides identical input patterns to alternate BUT 
columns, which improves fault detection in case of a faulty TPG [3]. The ORAs compare 
the outputs from the two neighboring BUTs that get identical test patterns from two 
different TPGs. BIST results after testing are either scanned out or captured in the 
configuration memory. Figure 3.1 (a) shows the ORAs connected in a scan chain that 
allows scanning out of BIST results. Figure 3.1 (b) illustrates the architecture in which 
the BIST results are captured in the configuration memory and retrieved using 
configuration memory readback. 
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Figure 3.1  Logic BIST Architecture for Virtex/Spartan-II FPGAs 
 
Two test sessions are required to test all the logic resources. BUTs in each test 
session are configured in different modes of operation in order to be tested completely; 
these configurations are called test phases. In a PLB only 12 out of the 16 outputs can be 
observed, as four outputs related to carry and multiplexer logic cannot be routed out of 
the PLB. The limited logic resources of a PLB allow a maximum of five BUT outputs to 
be observed by an ORA in a single configuration. Therefore a set of test phases has to be 
repeated three times, each time looking at a different set of four BUT outputs for a total 
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of twelve BUT outputs as shown in Figure 3.2 (a). This set of test phases is called a slice 
test set. To retrieve the BIST results, if readback is used instead of implementing a scan 
chain of ORAs, the ORA can be modified to compare six BUT outputs in a single 
configuration as shown in Figure 3.2 (b), where the logic resources of an ORA previously 
used for scan chain implementation are now used for comparing more BUT outputs. As a 
result the number of slice test sets can be reduced from three to two, where one slice is 
tested in each slice test set. 
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Figure 3.2  Output Response Analyzers 
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The Boundary Scan interface was used for the implementation of Logic BIST. 
The frame address register is written with the address of the frame to be written or read 
and 32-bit words of configuration data are written to or read from the frame data register, 
depending on the operation being performed. Xilinx provides two user access registers in 
Virtex/Spartan-II FPGAs that can be used by invoking a Boundary Scan module 
(BSCAN_VIRTEX). For Logic BIST, user access register 1 was used to source the BIST 
clock for BUTs, TPGs and ORAs from the Boundary Scan interface and user access 
register 2 was used to generate a reset signal for all the TPGs and ORAs. 
There are two test sessions: East and West, each testing half of the PLBs. To 
completely test a PLB, except for the case when it is configured as LUT RAM, a total of 
seven different test configurations of a PLB are required. Therefore the total number of 
Logic BIST configurations depends on the method used for BIST results retrieval. 
? Scan chain method: 2 sessions x 7 phases x 3 slice test sets = 42 configurations 
? Readback method: 2 sessions x 7 phases x 2 slice test sets = 28 configurations 
 
3.4 Partial Reconfiguration 
Using partial reconfiguration, only BUT configurations are changed in a given 
test session. Most of the 48 frames of a PLB column are associated with routing resources 
rather than BUT configurations. So, in order to reconfigure the BUTs, a small number of 
frames per PLB column in only the columns of BUTs have to be rewritten with new 
configuration data. After the first test configuration is downloaded for a test session, the 
rest of the configurations can be partial reconfigurations. 
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The sequence in which the test configurations are applied is crucial for keeping 
the partial reconfigurations small, as discussed in [29]. Since multiple slice test sets are 
required for each test phase, three scenarios were investigated regarding the sequence of 
configurations to be applied: 
Scenario 1. For a given test session, the configuration of both the slices is kept fixed but 
the BUT outputs compared by the ORAs are changed. Therefore each test 
phase consists of two or three slice test sets, depending on the BIST results 
retrieval technique used. 
Scenario 2. For a given test session, the BUT outputs compared by the ORAs are kept 
fixed and the configurations of both PLB slices are changed. Therefore each 
slice test set consists of seven test phases. 
Scenario 3. For a given test session, the BUT outputs compared by the ORAs are kept 
fixed and the configuration of only the slice whose outputs are being 
compared is changed, while maintaining the first configuration in the other 
slice. Therefore each slice test set consists of seven test phases and each test 
session has two or three slice test sets depending on the BIST results 
retrieval method used. 
Partial reconfiguration is not effective in reducing the configuration file size when 
routing changes from one configuration to the next, as frames related to interconnects 
comprise the majority of the total number of frames in the FPGA. Consequently, the third 
scenario turns out to be most effective [29]. The sequence in which the test phases are 
applied can also be optimized to reduce the difference between consecutive test 
configurations, thereby reducing the partial reconfiguration file size. 
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3.5 Partial Configuration Memory Readback 
Partial configuration memory readback can be used instead of using full 
configuration memory readback or scan chain to retrieve BIST results. Full configuration 
memory readback reduces the number of slice test sets from three to two but it takes the 
amount of time comparable to full configuration. On the other hand, scan chain 
implementation only requires a few clock cycles (equal to the number of ORAs) to 
retrieve BIST results, making it faster by a few orders of magnitude. This gap is greatly 
reduced by using partial configuration memory readback. The ORAs are designed such 
that the BIST results are stored in a single flip-flop of a PLB. This allows the BIST 
results to be captured in only one frame per ORA column. So, a total of (M/2)-1 frames 
are read back to retrieve BIST results, where M is the total number of PLB columns of 
the FPGA. 
The configuration bit generation tool provided by Xilinx is used to obtain a logic 
allocation file. This file provides the information regarding the location of the 
configuration memory bits that contain the data captured from the PLB flip-flops. The 
location of each ORA flip-flop is defined in terms of the frame address and an offset 
within the frame. 
 
3.6 Logic BIST Configurations for Virtex/Spartan-II 
The following subsections present the details regarding the implementation of 
Logic BIST for Virtex/Spartan-II FPGAs. 
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3.6.1 Fault Model and Fault Coverage 
The PLB of a Virtex/Spartan-II FPGA consists of 2 identical slices, so a single 
slice was modeled instead of modeling the entire PLB for fault simulations. The gate 
level stuck-at fault model was considered for fault coverage. The logic in the slice related 
to the RAM mode of operation of the LUTs was not considered, as faults in that logic 
would get detected by a LUT RAM test presented in [37]. The storage elements of the 
PLB were not tested in the asynchronous mode of operation, the reason for which is 
discussed in the Section 3.6.2. A total of seven configurations are required to completely 
test the PLB, not including the LUT RAMs and related logic. Cumulative fault coverage 
was evaluated by simulating the complete fault list for the first test configuration and then 
the list of undetected faults is used as the fault list for simulation of successive test 
configurations. Individual fault coverage of each test configuration was evaluated by 
using the complete fault list for simulation of all the test configurations. Both cumulative 
and individual fault coverage are shown in Figure 3.3. 
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Figure 3.3  Fault Coverage of a Virtex FPGA PLB slice 
 
3.6.2 Configuration Details 
The details of the seven configurations of a Virtex Slice are summarized in Table 
3.1. Some BUTs were diagnosed as faulty during Logic BIST when asynchronous reset 
was used; the cause for this was attributed to timing skew in the TPG output signals 
controlling the reset signal to the flip-flops, which introduced an uncertainty regarding 
the value stored in the storage elements of the BUTs. This issue remained unresolved 
during development for Virtex/Spartan-II FPGAs, but it was later resolved for Virtex-4, 
which is discussed in Section 4.4.2. 
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Table 3.1  Configuration Details 
Configuration 
Slice 
Component 
1 2 3 4 5 6 7 
LUT 0000 
xnor 
/xor 
xor 
/xnor 
xnor 
/xor 
xor 
/xnor 
xnor 
/xor 
xor 
/xnor 
LUT 
F/G 
MODE 
shift 
register
lut lut lut lut lut lut 
MODE ff ff latch latch latch ff ff 
X INIT 0 1 0 1 1 0 1 
Y INIT 0 1 0 1 1 0 1 
FF 
X/Y 
RESET sync sync async async async sync async
CY0G  /  
CY0F 
prod g1/f1 prod 0 1 1 1 
CYSELG /  
CYSELF 
g/f g/f 1 g/f g/f 1 1 
GYMUX / 
FXMUX 
g/f f6/f5 
gxor 
/fxor 
f6/f5 f6/f5 
gxor 
/fxor 
gxor 
/fxor 
DYMUX / 
DXMUX 
I1 I0 I1 I1 I1 I0/I1 I0 
YBMUX I1 I1 I1 I0 I1 I0 I0 
BY / BX 
byinv 
/bxinv 
by 
/bx 
byinv 
/bxinv
0 1 
by 
/bx 
by 
/bx 
SR srinv sr sr sr 1 0 1 
CE ceinv 1 ce 0 1 1 1 
CLK clk clkinv clk clkinv clk clkinv clk 
CYINIT bx bx cin cin cin cin cin 
Breakpoints  
Cout on on on on off on on 
Y on on on on off on on 
XB on on on on off on on 
F5 on on on on off on on 
X on on on on off on on 
REV USED on on on on off off on 
SR on on on on off on on 
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3.7 Logic BIST Configuration Generation Process  
Two programs were developed to generate all the test configurations, referred to 
as the template generation program and the template modification program. The design 
is described in Xilinx Design Language (XDL), a netlist format used by Xilinx. The 
template generation program generates a template file depending on the session and the 
slice test set, where the BUTs are configured with Configuration 1 as summarized in 
Table 3.1. The template file generated does not contain routing information as it 
simplifies configuration file generation process. The template is converted from XDL 
format to a Native Circuit Description (NCD) format that can be used by Xilinx CAD 
tools for routing the design. The template is routed using Xilinx routing tools and 
converted back to XDL format. The template modification program uses the routed 
template configuration file and modifies only the BUT configurations while keeping the 
routing fixed to generate all the other BIST configuration files. This approach results in 
generation of small partial reconfiguration files as the routing structure remains fixed for 
all test phases of a slice test set. The routed configuration files are used to generate the 
configuration bitstreams that are downloaded to the FPGA. 
The Xilinx routing tools try to swap input pins of the LUTs and modify the LUT 
values to improve routability of the design. This is undesirable for the template 
modification program as it assumes the routing of the template file to be without 
modification of the LUT contents. Xilinx routing tools are prevented from swapping the 
LUT inputs by configuring the LUTs as shift registers in the first configuration. It can 
also be done by setting a ?no pin swap? option in FPGA Editor (a design editing tool by 
Xilinx) for routing a design.  
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3.8 Methods for Application of BIST  
In this section, the methods used to speed up test time and reduce the 
configuration storage requirements for Logic BIST are described. The following are the 
various configuration download methods used: 
FC  - Full Configuration; partial reconfiguration is not used and all the test 
configurations downloaded to the FPGA are full configurations. 
PR
2
  - Partial Reconfiguration using Scenario 2 defined in Section 3.4; the first 
configuration in a test session is a full configuration, followed by six partial 
reconfigurations. 
PR
3
  - Partial Reconfiguration using Scenario 3 defined in Section 3.4. 
OPR  - Optimized Partial Reconfiguration using Scenario 3 defined in Section 3.4; the 
sequence in which the test configurations are applied was optimized to reduce the number 
of different configuration frames between two consecutive test configurations. 
The following are the ORA results retrieval techniques used for Logic BIST: 
FCRB  - Full Configuration memory ReadBack after each test configuration 
SR  - Scan chain Readback after each test configuration 
SRE  - Scan chain Readback at the end of a test session 
PCRB  - Partial Configuration memory ReadBack after each test configuration 
PCRE  - Partial Configuration memory Readback at the End of a test session 
Scan chain readback (SR, SRE) involves the use of ORAs connected as a scan 
chain, resulting in three slice test sets, whereas configuration memory readback (FCRB, 
PCRB, PCRE) requires only two slice test sets. Dynamic partial reconfiguration is used 
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for the methods SRE and PCRE; BIST results are retained until the end of a test session 
and retrieved only after all the test phases have been applied. Readback at the end reduces 
the diagnostic resolution of Logic BIST from a faulty PLB and its mode of operation 
down to a faulty PLB. Table 3.2 summarizes all the methods used for Logic BIST. 
 
Table 3.2  Methods used for Logic BIST 
Method Configuration 
BIST Results 
Retrieval 
Total Slice 
test sets 
Total number 
of configurations 
1 FC FCRB 2 28 
2 FC SR 3 42 
3 PR
2 
SR 3 42 
4 PR
3 
SR 3 42 
5 OPR SR 3 42 
6 OPR SRE 3 42 
7 OPR PCRB 2 28 
8 OPR PCRE 2 28 
 
3.9 Results  
Experimental results regarding the test time and memory storage requirements for 
implementation of Logic BIST are presented in this section. These results were obtained 
by applying the Methods 1 through 8 described in Table 3.2 on a Spartan-II XC2S200 
FPGA which has a PLB array of size 28x42. Figure 3.4 shows the speed-up in test time 
and reduction in configuration memory storage requirements achieved. 
It can be observed from the results that memory storage requirements are 
increased by using a scan chain for ORAs but a speed-up is achieved compared to full 
configuration memory readback. Partial configuration memory readback, although 40 
times slower than scan chain for retrieval of BIST results, compensates for its lack of 
speed by eliminating a slice test set thereby reducing the total number of test 
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configurations from 42 to 28. The partial reconfiguration file sizes are also reduced by 
changing the configuration of only the slice under test (Scenario 3) and by ordering the 
test phases optimally. Retrieving the BIST results at the end of a test session rather than a 
test phase provides further speed-up at the cost of reduced diagnostic resolution. The 
actual test time using Boundary Scan (including all overhead related to the Boundary 
Scan operation) was reduced from 113 seconds (Method 1) to 22 seconds (Method 8), a 
speed-up of over 5 times. The configuration memory storage requirements were reduced 
by a factor of 3.25 for a Spartan-II XC2S200 FPGA. 
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The effect of size of the device on speed-up is also evaluated using four different 
devices in the Virtex/Spartan-II FPGA family. Method 5 is chosen for comparison as the 
total test time in this case is a direct function of configuration file size since the time 
required to apply test vectors and retrieve BIST results is negligible. Table 3.3 illustrates 
the different speed-up values achieved, depending on the size of the device. 
 
Table 3.3  Speed-up vs. Device Size 
FPGA Array size Speed-up 
XC2S15 (smallest) 8 ? 12 3.61 
XC2S50/XCV50 16 ? 24 3.18 
XC2S200/XVC200 28 ? 42 3.02 
XCV1000 (largest) 64 ? 96 2.86 
 
It is observed that the test time speed-up for Logic BIST drops by a small factor 
for larger devices. The ratio of PLB configuration data to the total configuration data 
increases as the size of the device increases. For Logic BIST, only the configuration of 
PLBs changes. Therefore, relatively larger partial reconfiguration files are generated for 
larger devices. This explains the reduction in test time speed-up for larger devices.  
 
3.10 Summary 
The architectural and operational features of Virtex/Spartan-II FPGAs were 
exploited to successfully achieve test time speed-up and reduction in memory storage 
requirements for Logic BIST configurations. Useful knowledge was gained from the 
implementation of Logic BIST, partial reconfiguration and partial configuration memory 
readback. Although the study was done using the Virtex/Spartan-II family of devices, 
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these approaches are also valid for other FPGA devices. The knowledge gained was 
applied to the Virtex-4 family of FPGAs discussed in the next chapter. 
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CHAPTER FOUR 
Logic BIST for Virtex-4 
4.1 Introduction 
This chapter presents the implementation of Logic BIST on the Virtex-4 family of 
FPGAs. The architecture for Logic BIST is described along with the details of the test 
configurations and their timing analysis. Experimental results are presented for the 
methods used to achieve test time speed-up and reduction of configuration memory 
storage requirements, followed by analysis of the results and a summary. The work 
presented in this chapter is primarily the work presented in [34] with some additional 
details. 
 
4.2 Virtex-4 Architecture 
An overview of Virtex-4 architecture was presented in Chapter 2. In this chapter 
the details of FPGA resources relevant to Logic BIST are discussed. The PLB of a 
Virtex-4 FPGA consists of two SliceMs and two SliceLs. SliceL is illustrated in Figure 
2.9. A SliceL has two LUTs, F and G, and storage elements, FFX and FFY, which can be 
configured as flip-flops or latches. Multiplexers CYINIT, CYMUXF and CYMUXG are 
used to implement the carry chain logic that spans the entire column of PLBs. DYMUX 
and DXMUX are used to select the input to the storage element. F5MUX and FSMUX 
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combine the LUTs of a PLB to implement combinational logic functions with greater 
than four inputs. A pair of AND and XOR gates are provided for arithmetic functions. 
CLK, CE and SR inputs provide common control inputs clock, clock enable and set/reset, 
respectively, for the storage elements FFX and FFY. The REV control places a logic 
value opposite to that determined by set/reset control signal in the storage element [10]. 
SliceMs feature extra circuitry like the write signal generator (WSGEN) and multiplexers 
(DIGMUX and DIFMUX) for shift register and RAM modes of operation of the LUTs. 
SliceM is illustrated in Figure 2.10. 
The DSP cores in Virtex-4 FPGAs are arranged in columns as shown in Figure 
2.7. There are two DSP cores for every four rows of PLBs in a DSP column. A DSP core 
consists of an 18x18-bit multiplier and a 48-bit adder/subtractor/accumulator, which can 
be configured to operate in different modes of operation as described in [35].  
 
4.3 BIST Architecture 
The BIST architecture is similar to the one used for Virtex/Spartan-II FPGAs. It is 
modified to exploit the architectural features of Virtex-4 to achieve higher diagnostic 
resolution. A column-based architecture is used for Virtex-4 for reasons similar to Logic 
BIST for Virtex/Spartan-II. Figure 4.1 illustrates the Logic BIST architecture for Virtex-4 
FPGAs. 
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Figure 4.1  Logic BIST Architecture for Virtex-4 FPGAs 
 
The PLBs in the FPGA are divided into alternate columns of BUTs and ORAs, 
where each BUT is compared by two ORAs. The outputs of the BUTs on the edge of the 
FPGA are compared by the ORAs on the other edge of the FPGA. This leads to a 
circular-comparison based BIST architecture as shown in Figure 4.3. This technique was 
originally developed for testing BlockRAMs of Virtex and Virtex-II FPGAs in [19]. It 
was possible to implement circular-comparison for Logic BIST because of the abundance 
of routing resources in Virtex-4 FPGAs.  
All the primary outputs of a Virtex-4 PLB can be routed through the storage 
elements, this feature allows testing of all four slices of a PLB simultaneously by 
monitoring only eight outputs per PLB (one output per storage element). A PLB slice is 
divided into two halves, where each half can be used to implement an ORA that 
compares only one BUT output as shown in Figure 4.2. So, a total of eight independent 
ORAs are implemented in a PLB that compare the eight BUT outputs. This leads to better 
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diagnostic resolution, as each mismatch recorded in an ORA flip-flop now points to the 
exact half of a faulty PLB slice. This approach may increase the number of 
configurations required to test a PLB slice, but since few PLB outputs are observed, all 
slices are tested simultaneously and minimal routing changes are required to test the 
entire PLB, reducing partial reconfiguration file sizes. This may not be the case with 
other approaches that try to monitor all PLB outputs because they require multiple slice 
test sets to test all the slices and may require more configurations to test the entire PLB. 
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Feedback
BUT1 output 2
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G - LUT
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Figure 4.2  ORAs in a Single PLB slice 
 
The configuration memory of Virtex-4 FPGAs is also organized in frames 
oriented vertically, but unlike Virtex/Spartan-II, the frame size is fixed. A single frame is 
associated with a fixed number of PLBs in a column instead of the entire column of 
PLBs. The data stored in the flip-flops of PLBs can be captured in the configuration 
memory by instantiating a CAPTURE_VIRTEX4 module in the design. The 
CAPTURE_VIRTEX4 module defines which clock edge is used to capture flip-flop data 
and whether it is captured once or multiple times. Configuration memory readback is 
used to retrieve the frames of configuration memory that contain the BIST results in the 
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ORA flip-flops. For speed-up in test time, partial configuration memory readback can be 
used instead of full configuration memory readback. A single frame of Virtex-4 captures 
the values contained in all the flip-flops of PLBs associated with that frame. This reduces 
the total number of frames to be read to retrieve BIST results, thereby improving the test 
time. The total number of frames (F) needed to be read is given by: 
F = (R ?16) ? (C ? 2) = R ? C ? 32 
where, R is the number of rows and C is the number of columns of the PLB array under 
test. In the case of the XC4VLX25-10 FPGA which has 96 rows and 28 columns, only 84 
frames need to be read back to obtain BIST results, as compared to 6022 frames for full 
configuration memory readback. 
Traditionally, two TPGs are implemented using a column of PLBs [3]. The 
availability of DSP cores in newer FPGAs allow the use of DSPs to implement TPGs 
instead of the PLBs. This approach frees up a column of PLBs that are now used to 
implement an extra column of ORAs for circular comparison as shown in Figure 4.1. 
Since at least two DSPs are available for every four rows of PLBs, two TPGs are 
implemented (one TPG in each DSP) for every four rows of BUTs. This solves the issue 
of TPG loading and improves fault detection, as a faulty TPG only affects the testing of 
four rows of BUTs rather than the entire FPGA. An exhaustive set of test patterns is 
generated by initializing the accumulator of the DSP to zero and repeatedly adding a 
prime number ?0x691? to its contents [36]. One drawback of this approach is that the test 
patterns generated are not pseudo-random in nature, unlike the LFSR-based TPGs used 
for Virtex/Spartan-II. The 12 TPG outputs are connected to the 12 inputs of each of the 
four slices of a BUT, providing identical test vectors to all four slices of a PLB. 
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Logic BIST for Virtex-4 also uses Boundary Scan to access the configuration 
memory of the FPGA. The details of configuration download and readback procedures 
are described in [11]. Boundary Scan is also used to control the operation of BIST by 
means of the user access registers in the BSCAN modules. The Boundary Scan interface 
in Virtex-4 FPGAs features four BSCAN modules, two of which are used to implement 
Logic BIST. BSCAN module 1, when selected, enables BIST clock which is sourced 
from the TCK pin of the TAP. BSCAN module 2, when selected, disables the BIST clock 
and generates a reset signal that resets all the ORAs and TPGs. 
Two test sessions (East and West) are required to test all the PLBs. In a given test 
session, only the BUTs are reconfigured multiple times to be tested completely. After the 
first configuration of a test session is downloaded, partial reconfiguration can be used to 
download the rest of the test phases to reduce the configuration download time. To keep 
the partial reconfiguration files small, the routing changes are kept to a minimum for a 
given test session. The routing between TPGs and BUTs is kept fixed and the routing 
between BUTs to ORAs is changed only once in a given test session. Virtex-4 allows 
multiple frames with identical data to be written simultaneously, where the frame data is 
loaded only once and the address in the FAR is changed. This feature helps reduce the 
partial reconfiguration file size since the Logic BIST architecture is a regular structure 
and all BUTs in most configurations are configured identically. The test time can be 
further reduced at the price of reduced diagnostic resolution by using dynamic partial 
reconfiguration as explained in Chapter 3. Using this approach the contents of the ORA 
flip-flops are not cleared when the BUTs are reconfigured and the BIST results are 
retrieved only at the end of a test session. 
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4.4 Logic BIST Configurations for Virtex-4 
A total of 12 BUT configurations are required to completely test the logic 
resources of a PLB, excluding the circuitry associated with the LUT RAM mode of 
operation of SliceMs. For the first ten configurations only outputs XQ and YQ, 
associated with the storage elements FFX and FFY, respectively, are observed by the 
ORAs, completely testing SliceLs. Two extra configurations are required to test the logic 
circuitry associated with the shift register mode of SliceMs. In this case outputs X and Y 
of all four slices are observed by the ORAs. These 12 configurations also test the carry 
chain logic and the routing associated with it, along with the dedicated inter-slice routing. 
Therefore the total number of configurations required to test all the PLBs in the FPGA = 
2 (test sessions) x 12 (test phases) = 24. 
 
4.4.1 Fault Model and Fault Coverage 
The gate-level stuck-at fault model is used for fault coverage analysis. Some of 
the slice inputs cannot be accessed by resources external to the PLB, as they are only 
connected to the outputs of other slices in the PLB. Therefore, the complete PLB was 
modeled with dedicated inter-slice routing instead of individual slice models, leading to a 
more accurate fault coverage analysis. The cumulative and individual fault coverage of 
the 12 Logic BIST configurations is shown in Figure 4.3. 
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Figure 4.3  Fault Coverage of a Virtex-4 PLB 
 
These 12 BIST configurations do not detect the logic resources of the PLB 
associated with the LUT RAM mode of operation like the WSGEN component, as they 
can be tested using the test for LUT RAMs [34]. The route-throughs in the PLB and 
breakpoints associated with PLB outputs not monitored by the ORAs are also not tested. 
 
4.4.2 Configuration Details 
The details of the 12 test configurations are summarized in Table 4.1. 
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Table 4.1  Configuration Details 
LUT F/G FF X/Y 
Config 
Slice 
Type LUT MODE MODEINITSRRESET
CY0G 
/ 
CY0F
GYMUX 
/ 
FXMUX
DYMUX 
/ 
DXMUX
BY
BX  
/SR  
/CE
CLK
YBMUX 
/  
XBMUX
CYINT
REV 
USED
SliceM 
xor 
/xnor 
shift 
register 
ff 0 0 sync 
prod 
/prod
fx/f5 yb/xb 
non-
inv 
non-
inv
clk I1 bx no 
1 
SliceL 
xor 
/xnor 
lut ff 0 0 sync 
prod 
/prod
fx/f5 yb/xb 
non-
inv 
non-
inv
clk I1 bx no 
SliceM 
xnor 
/xor 
shift 
register 
ff 1 1 async g2/f2 gxor /fxor
ymux 
/xmux 
inv inv clkinv I1 bx no 
2 
SliceL 
xnor 
/xor 
lut ff 1 1 async g2/f2 gxor /fxor
ymux 
/xmux 
inv inv clkinv I1 bx no 
SliceM 
xor 
/xnor 
lut latch 1 1 async g3/f3 fx/f5 
ymux 
/xmux 
inv 
/non-
inv 
non-
inv
clk I1 bx no 
3* 
SliceL 
xor 
/xnor 
lut latch 1 1 async g3/f3 fx/f5 
ymux 
/xmux 
inv 
/non-
inv 
non-
inv
clk I1 bx no 
SliceM 
xnor 
/xor 
lut latch 0 0 async 0/0 fx/f5 yb/xb 
non-
inv 
non-
inv
clk I1 bx no 
4 
SliceL 
xnor 
/xor 
lut latch 0 0 async 0/0 fx/f5 yb/xb 
non-
inv 
non-
inv
clk I1 bx no 
SliceM 
aaaa 
/5555 
lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes 
 
 
5 
 
 
SliceL 
aaaa 
/5555 
lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes 
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LUT F/G FF X/Y 
Config 
Slice 
Type LUT MODE MODEINITSRRESET
CY0G 
/ 
CY0F
GYMUX 
/ 
FXMUX
DYMUX 
/ 
DXMUX
BY
BX  
/SR  
/CE
CLK
YBMUX 
/  
XBMUX
CYINT
REV 
USED
SliceM 
5555 
/aaaa 
lut ff 1 1 async g2/f2 gxor /fxor yb/xb 
non-
inv 
non-
inv
clkinv I1 bx no 
6 
SliceL 
5555 
/aaaa 
lut ff 1 1 async g2/f2 gxor /fxor yb/xb 
non-
inv 
non-
inv
clkinv I1 bx no 
SliceM 
xor 
/xnor 
shift 
register 
latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no 
7* 
SliceL 
xor 
/xnor 
shift 
register 
latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no 
SliceM 
xnor 
/xor 
shift 
register 
ff 1 0 sync by/bx fx/f5 y/x 
non-
inv 
non-
inv
clk I1 bx yes 
8 
SliceL 
xnor 
/xor 
shift 
register 
ff 1 0 sync by/bx fx/f5 y/x 
non-
inv 
non-
inv
clk I1 bx yes 
SliceM 
xor 
/xnor 
lut ff 1 1 sync 
prod 
/prod
fx/f5 by/bx inv inv clk I1 cin no 
9 
SliceL 
xor 
/xnor 
lut ff 1 1 sync 
prod 
/prod
fx/f5 by/bx inv inv clk I1 cin no 
SliceM 
xnor 
/xor 
lut ff 0 0 sync by/bx gxor /fxor yb/xb 
non-
inv 
non-
inv
clk I1 cin/bx no 
10* 
SliceL 
xnor 
/xor 
lut ff 0 0 sync by/bx gxor /fxor yb/xb 
non-
inv 
non-
inv
clk I1 cin/bx no 
SliceM ffff 
shift 
register 
ff 0 0 sync by/bx fx/f5 yb/xb 
non-
inv 
non-
inv
clk I0 bx no 
11 
SliceL ffff 
shift 
register 
ff 0 0 sync by/bx fx/f5 yb/xb 
non-
inv 
non-
inv
clk I0 bx no 
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LUT F/G FF X/Y 
Config 
Slice 
Type LUT MODE MODEINITSRRESET
CY0G 
/ 
CY0F
GYMUX 
/ 
FXMUX
DYMUX 
/ 
DXMUX
BY
BX  
/SR  
/CE
CLK
YBMUX 
/  
XBMUX
CYINT
REV 
USED
SliceM 0000 
shift 
register 
ff 0 0 sync by/bx fx/f5 yb/xb 
non-
inv 
non-
inv
clk I0 bx no 
12 
SliceL 0000 
shift 
register 
ff 0 0 sync by/bx fx/f5 yb/xb 
non-
inv 
non-
inv
clk I0 bx no 
 
* These configurations were modified for fault detection. In these configurations all BUTs in the PLB array are not 
configured identically but all BUTs in a row of PLBs are configured identically.   
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Faults related to the FSMUX of Slice 3 of a Virtex-4 PLB are not detected if all 
the BUTs are configured identically. In order to detect those faults, Configuration 3 was 
modified such that the Slice 2 of any two adjacent BUTs in a column are configured with 
opposite value of BYINV multiplexer. Configurations 7 and 10 were also modified 
similarly for a timing issue related to the carry chain, explained in the next section. In this 
case the input of CYINIT multiplexer of Slices 0 and 1 is BX in alternate rows of BUTs 
and CIN for the remaining BUTs. This is reversed in Configuration 10 to completely 
testing the carry chain logic. 
Due to the timing skew of TPG signals, some BUTs were diagnosed as faulty 
during BIST when asynchronous reset was used, similar to Logic BIST for 
Virtex/Spartan-II FPGAs described in Section 3.6.2. To resolve this issue for Virtex-4, 
two corrective measures were taken. Firstly, appropriate clock edge or active level was 
chosen for the storage element, of the BUTs. The clock edge or active level was chosen 
such that the storage element depending on its mode of operation (latch or flip-flop), was 
immune to timing skew. The storage element during BIST assumed a value defined by 
either the REV or set/reset input of the storage element, whichever changed last due to 
timing skew. So, the second corrective measure was to turn off the revused breakpoint 
internal to the PLB slice to disconnect the REV input from the storage element. This 
removed the contention between REV and set/reset inputs. The same techniques can be 
applied to Logic BIST for Virtex/Spartan-II FPGAs. 
Storage elements of the Virtex-4 PLB are not cleared if dynamic partial 
reconfiguration is used or if CAPTURE_VIRTEX4 module is instantiated. This prohibits 
the initialization of the storage elements of BUTs after a test configuration download. In 
 67
order to test the PLB storage elements for initialization, two full configuration downloads 
are required to initialize the PLB storage elements to both high and low states. This can 
be achieved by using full configuration downloads for both Configuration 1 and 
Configuration 2, as they initialize the storage elements to high and low states, 
respectively. 
 
4.5 Timing Analysis 
Timing analysis was performed for all the test configurations implemented on the 
XC4VLX25-10 FPGA. Depending on the data collected, two configurations with the 
slowest and the fastest clock frequencies were chosen. These two configurations were 
analyzed for timing on Virtex-4 FPGAs of different sizes with a speed grade of 10 (10 
being the slowest and 12 being the fastest speed grade). Figure 4.4 shows the fastest and 
the slowest clock frequencies at which the BIST configurations can operate for Virtex-4 
FPGAs with different sizes.  
It is noticed that the maximum clock frequency is a function of the number 
columns of PLBs, instead of the product of the number of rows and columns of PLBs, as 
was in the case of previous Logic BIST implementations [3]. This was achieved because 
the timing issues due to TPG loading were resolved for Virtex-4 by using a pair of TPGs 
for every four rows of BUTs. The maximum BIST clock frequency for the XC4VLX25-
10 FPGA, for the first ten configurations, ranges from 70 to 150 MHz. 
A major timing issue was discovered in Configuration 10 which tests the carry 
chain logic. The critical path for this configuration included the carry chain from the 
lowest PLB to the uppermost PLB in a column of BUTs. The excessive delay introduced 
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by the carry chain made the maximum clock frequency for Configuration 10 a function of 
the product of the number of rows and columns of PLBs. To avoid this situation, the 
carry chain was broken up as described in Section 4.4.2 which led to an increase in the 
maximum BIST clock frequency for the XC4VLX25-10 device from 40MHz to 140 
MHz.  
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Figure 4.4  Maximum BIST clock frequency vs. Device size 
 
4.6 Logic BIST Configuration Generation Process  
Two parameterized C programs were developed for generation of the Logic BIST 
configurations of any PLB array size for all Virtex-4 FPGAs. The template generation 
program generates the template configuration in XDL format with a dummy BUT 
Safe BIST clock  
frequency range 
Maximum BIST clock  
frequency range 
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configuration. The template configuration file is converted to an NCD format and routed 
using Xilinx tools. The routed template configuration file is then converted back to XDL 
format. The template modification program modifies the BUT configurations of the 
routed template configuration to generate all of the first ten test configurations. To 
generate the last two test configurations that test the SliceMs in shift register mode, both 
BUT configurations and BUT to ORA routing (X and Y outputs are monitored instead of 
XQ and YQ) of the routed template configuration are changed. Using this approach the 
routing of BIST architecture remains fixed for all configurations except for Configuration 
11, resulting in generation of smaller partial reconfiguration files. 
The Logic BIST structure for Virtex-4 can be defined for the entire FPGA or a 
portion of the PLB array. The number of columns in the PLB array to be tested has to be 
an even number greater than or equal to four, in order to implement circular comparison 
as shown in Figure 4.1. The presence of PowerPC core in Virtex-4 FX FPGAs 
complicates the implementation of Logic BIST, as shown in Figure 4.5. In the case of the 
West session the BUTs on the edge of the PowerPC core are compared by only one ORA 
instead of two, thereby losing some diagnostic resolution similar to the BUTs on the edge 
of Virtex/Spartan-II FPGA. But, for the East session the BUTs near the edges of the 
PowerPC core are compared by three ORAs instead of two without losing any diagnostic 
resolution. 
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Figure 4.5  BIST Architecture in Virtex-4 FX FPGAs 
 
4.7 Methods for Application of BIST  
Various methods were used to evaluate the speed-up in test time and reduction in 
the memory required to store the BIST configurations. The following methods were used 
for configuration: 
FC  - Full Configuration 
PR  - Partial Reconfiguration using Scenario 3 defined in Section 3.4 
Full configuration of all the BIST configurations was used in the first method; 
partial reconfiguration was used for all other methods. For the first ten test configurations 
ORAs monitor the XQ and YQ outputs of all four slices of a BUT, so the first 
configuration is a full configuration download followed by nine partial reconfiguration 
downloads, since there are no routing changes. For Configurations 11 and 12, ORAs 
monitor X and Y outputs. This leads to a change in the BUT to ORA routing, so 
Configuration 11 is again a full configuration download followed by a partial 
reconfiguration download for Configuration 12. Optimal ordering of the test 
configurations was investigated to minimize the difference between successive test 
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configurations for Virtex-4. But the reduction in partial reconfiguration files generated 
was negligible due to the organization of the configuration memory and multiple frame 
write feature of Virtex-4 FPGAs. 
The following readback techniques were used for retrieval of BIST results: 
FCRB  - Full Configuration memory ReadBack after each test configuration 
PCRB  - Partial Configuration memory ReadBack after each test configuration 
PCRE  - Partial Configuration memory Readback at the End of a test session 
FCRB was used for the first method, PCRB and PCRE were used to achieve 
speed-up in BIST results retrieval. It can be noticed that scan chain of ORAs was not 
implemented to retrieve the BIST results. From Logic BIST for Virtex/Spartan-II, it was 
observed that even though the scan chain is much faster for BIST results retrieval, it 
increases the total number of test configurations, thereby increasing the total test time. 
Table 4.2 summarizes all the methods used for Logic BIST in Virtex-4. 
 
Table 4.2  Methods used for Logic BIST 
Method Configuration 
BIST Results 
Retrieval 
Total Slice 
test sets 
Total number 
of configurations 
1 FC FCRB 2 24 
2 PR FCRB 2 24 
3 PR PCRB 2 24 
4 PR PCRE 2 24 
 
4.8 Results  
Logic BIST was implemented on a Virtex-4 XC4VLX25-10 device and the 
results of application of the four methods described earlier for test time speed-up and 
reduction in configuration memory storage requirements are shown in Figure 4.6. Method 
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1 was used primarily as a benchmark of the test time and memory storage requirements 
for comparison with speed-up techniques like partial reconfiguration and partial 
configuration memory readback applied in the other methods. Method 2 shows the 
improvements by using partial reconfiguration over full configuration. Method 3 shows 
the improvement after using partial configuration memory readback over full 
configuration memory readback to retrieve BIST results. The improvement due to 
dynamic partial reconfiguration is shown in Method 4. 
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Figure 4.6  Test time speed-up and reduction in memory storage requirements 
 
An overall speed-up of 12.9 is observed using PCRE and a net reduction of 
memory storage requirements by a factor of 5.3 is achieved using partial reconfiguration. 
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Methods 1, 3 and 4 for Virtex-4 can be compared to Methods 1, 7 and 8 used for 
Virtex/Spartan-II. A comparison of the results is given in Table 4.3 
 
Table 4.3  Comparison of test time speed-up and reduction in memory storage 
requirements of Virtex/Spartan-II and Virtex-4 FPGAs 
Test time speed-up Memory reduction 
Method 
Virtex/Spartan-II Virtex-4 Virtex/Spartan-II Virtex-4 
1 1 1 1 1 
3 4.6 8.9 3.2 5.3 
4 5.1 12.9 3.2 5.3 
 
It is clear from Table 4.3 that the test time speed-up and reduction in memory 
storage requirements are better in Virtex-4 than in Virtex/Spartan-II FPGAs. The ability 
to write multiple frames with identical configuration data greatly reduces the partial 
reconfiguration time. The configuration memory is better organized, as configuration data 
for similar components is grouped together; the result is that fewer frames need to be 
written when BUTs are reconfigured. Test time speed-up using partial configuration 
memory readback is also enhanced, as fewer frames are read to retrieve the BIST results 
captured in the ORA flip-flops. Fewer frames are read because the contents of all the flip-
flops in a column of a fixed number of PLBs are captured in a single frame instead of 
being spread across multiple frames.  
  
4.9 Summary 
Logic BIST for Virtex-4 showed considerable improvement in test time speed-up 
and reduction in memory storage requirements over Virtex/Spartan-II. Suitable 
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modifications were made to the BIST architecture to exploit architectural and operational 
features of the Virtex-4 FPGA in order to achieve better diagnostic resolution, faster test 
times and reduced memory storage requirements. Although the Logic BIST approach 
discussed pertains to Xilinx FPGAs, this approach can be applied to other FPGAs that 
support similar features, like partial reconfiguration and partial configuration memory 
readback. 
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CHAPTER FIVE 
Summary and Conclusions 
This thesis presented the testing of programmable logic resources in Xilinx 
FPGAs using BIST. Logic BIST configurations were developed for Virtex/Spartan-II and 
Virtex-4 FPGAs. Emphasis was put on techniques to improve the use of BIST for 
FPGAs. These include speed-up in test times due to the slow FPGA configuration process 
and reduction in memory storage requirements because of the large number of test 
configurations. Different techniques depending on the architectural and operational 
features of the FPGA were applied and their effects were studied for the speed-up in test 
time and reduction in memory storage requirements. The following sections in this 
chapter present a brief summary of the main contributions of the work presented in the 
thesis. Areas for future work are also proposed, along with a short discussion regarding 
the implementation of Logic BIST using embedded processors.  
 
5.1 Thesis Summary and Main Contributions 
The Logic BIST architecture was essentially derived from previous work done for 
Lucent ORCA and Xilinx 4000 series FPGAs. The BIST architecture was modified for 
Virtex/Spartan-II and Virtex-4 FPGAs to test their logic resources. The main contribution 
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of the work presented in this thesis was investigation of different techniques to reduce the 
test time and memory storage requirements for implementing Logic BIST. 
A PLB slice of Virtex/Spartan-II FPGA was modeled for fault simulations, based 
on which the test configurations were developed. Most of the test time is devoted to 
configuration download rather than actual testing of the FPGA, so a reduction in the size 
of configuration files is a logical way to reduce the test time. This was achieved by using 
partial reconfiguration in a column-oriented Logic BIST architecture for Virtex/Spartan-
II FPGAs. The test configurations were applied in a specific order such that the size of 
partial reconfiguration files was as small as possible. The scan chain method previously 
used for retrieval of BIST results, although faster, increased the total number of 
configurations required to test a PLB. Configuration memory readback was used instead 
of using a scan chain. This reduced the total number of configurations but continued to 
have a long test time as retrieval of BIST results was time consuming with full 
configuration memory readback. Partial configuration memory readback was used to 
overcome this issue and achieve the desired speed-up in BIST results retrieval time. 
Dynamic partial reconfiguration was used to further reduce the BIST results retrieval 
time by reading ORA contents at the end of a test session rather than a test phase. Two 
?C? programs were developed to automate the generation of the Logic BIST 
configurations. 
For Virtex-4 FPGAs, three major changes were made to the Logic BIST 
architecture. Firstly, the DSP cores were used instead of PLBs to implement TPGs. A 
pair of TPGs was used for every four rows of BUTs, which greatly reduced the TPG 
loading and hence improved the maximum BIST clock frequency. Secondly, circular 
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comparison was implemented to improve the diagnostic resolution of BUTs on the edge 
of the BIST architecture. Thirdly, the diagnostic resolution was further improved using 
eight ORAs per PLB rather than one. The techniques used for test time speed-up and 
reduction of memory storage requirements for Virtex/Spartan-II FPGAs were also 
applied to the Virtex-4 FPGA. The results obtained were better for Virtex-4 due to the 
enhanced architectural and operational features. The entire Virtex-4 PLB was modeled 
for more accurate fault coverage analysis, based on which the test configurations were 
developed. Two parameterized ?C? programs were developed to generate BIST 
configurations for any size PLB array in any of the Virtex-4 FPGAs. 
 
5.2 Application to Embedded Processors 
The Logic BIST approach was also applied to Virtex-II Pro FPGAs using 
embedded processors. Traditionally, an external source like a personal computer is used 
to download BIST configurations and run BIST, which is slow. The embedded processor 
can be used instead to internally run BIST and reconfigure BUTs [38]. This significantly 
speeds up the test time, as the number of external downloads are reduced and BIST runs 
at a much higher clock frequency [39]. For Xilinx FPGAs, the basic approach is to divide 
the FPGA into two halves; one consists of the Logic BIST structure and the other consists 
of the embedded processor. The embedded processor and the Logic BIST structure are 
swapped, after one half of the FPGA has been completely tested, to test the entire FPGA. 
The goal is to automate Logic BIST as much as possible using the embedded processor 
and achieve test time speed-up. The work done on Virtex-II Pro indicated that the 
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embedded processor and Logic BIST structure can be successfully integrated and the 
processor can read and write to the configuration memory. 
 
5.3 Areas for Future Research and Development 
The next step to achieve speed-up is to use an embedded processor to assist Logic 
BIST, as described in the previous section. Once a configuration is downloaded with a 
BIST structure in one half and an embedded processor in the other, the processor should 
be able to perform all the other functions for a test session, which include running BIST, 
retrieval and analysis of BIST results, and reconfiguration of BUTs in different modes of 
operation. 
The current procedure for developing Logic BIST configurations is slow and 
tedious. Work can be done to automate the process of fault simulation and generation of 
BIST configurations by possibly using a generic BIST architecture described in a 
Hardware Description Language that can be synthesized for a new FPGA architecture 
with minor modifications. The work presented in this thesis was developed for Xilinx 
FPGAs only. Similar work can be done for testing the logic resources of different FPGA 
architectures from different FPGA manufacturers. The effects of the techniques used for 
test time speed-up and better diagnostic resolution can also be explored for other FPGAs 
and other programmable resources in FPGAs.  
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