BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE
ARRAYS USING PARTIAL RECONFIGURATION

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classified information.

Sachin Dhingra

Certificate of Approval:

Victor P. Nelson Charles E. Stroud, Chair
Professor Professor
Electrical and Computer Engineering Electrical and Computer Engineering

Vishwani D. Agrawal Stephen L. McFarland
Professor Acting Dean
Electrical and Computer Engineering Graduate School
BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE
ARRAYS USING PARTIAL RECONFIGURATION

Sachin Dhingra

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama
August 7, 2006
 iii
BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE
ARRAYS USING PARTIAL RECONFIGURATION

Sachin Dhingra

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.
The author reserves all publication rights.

 Signature of Author

 Date of Graduation

 iv
VITA

Sachin Dhingra, son of Baldev Raj and Anita Dhingra, was born on May 31, 1982
in Chandigarh, India. He graduated with a Bachelor of Engineering degree in Electronics
and Telecommunications Engineering in May 2003 from Maharashtra Institute of
Technology, University of Pune, India. After completion of his undergraduate degree, he
joined Electronic Projects Management, Canada as a Senior Test Technician in
November 2003. He entered the graduate program at Auburn University in August 2004.
While in pursuit of his Master of Science degree at Auburn University, he worked under
the guidance of Dr. Charles E. Stroud as a graduate student research assistant in the
Electrical and Computer Engineering Department.
 v
THESIS ABSTRACT
BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE
ARRAYS USING PARTIAL RECONFIGURATION

Sachin Dhingra
Master of Science, August 7, 2006
(B.E, University of Pune, India, 2003)

97 Typed Pages
Directed by Charles E. Stroud

Field Programmable Gate Arrays (FPGAs) are programmable logic devices that
can be used to implement virtually any digital circuit design. Built-In Self-Test (BIST) is
a testing approach that enables the device to test itself without any external test
equipment. The re-programmability feature of the FPGAs makes BIST a very attractive
approach for testing FPGAs because it eliminates any area or performance degradation
associated with BIST.
Traditional BIST for FPGAs suffers from long test times and large memory
storage requirements due to the slow configuration download speeds and the large
number of test configurations required to test the FPGAs. The work presented in this
thesis implements testing of logic resources of Xilinx Virtex/Spartan-II and Virtex-4
FPGAs with focus on reduction of test time and memory storage requirements using
 vi
techniques like dynamic partial reconfiguration and partial configuration memory
readback.
The total number of configurations required to completely test the logic resources
are 28 for Virtex/Spartan-II FPGAs and 24 for Virtex-4 FPGAs. A speed-up of 5.1 times
and 12.9 times in test time was achieved for Logic BIST for Virtex/Spartan-II and Virtex-
4 FPGAs respectively, using dynamic partial reconfiguration and partial configuration
memory readback. A reduction in configuration memory storage requirements was also
achieved using partial reconfiguration; this reduction was 3.2 times and 5.3 times for
Virtex/Spartan-II and Virtex-4 FPGAs respectively.

 vii
ACKNOWLEDGMENTS

I am indebted to Dr. Stroud for his support and advice throughout my research at
Auburn University. I would also like to thank Dr. Nelson and Dr. Agrawal for being on
my graduate committee and for their contribution to my thesis. I would like to
acknowledge my research colleagues Daniel, John, Jonathan, Lee, Srinivas, and Sudheer
for their help and inspirational discussions during my research. Finally, I would like to
express my deepest gratitude to my parents and my brother whose love and
encouragement is inspiring me to achieve my goals.

 viii
Style manual or journal used: IEEE (Institute of Electrical and Electronic
Engineers) Journal style
Computer software used: Microsoft
?
 Word
?
 2003, Microsoft
?
 Excel
?
 2003,
Microsoft
?
 Visio
?
 2003
 ix
TABLE OF CONTENTS
LIST OF FIGURES xi
LIST OF TABLES xiii
LIST OF ACRONYMS xiv
CHAPTER ONE: Introduction ... 1
1.1 Field Programmable Gate Arrays (FPGAs).. 1
1.2 Testing and BIST .. 3
1.3 FPGA BIST... 5
1.4 Xilinx FPGAs.. 7
1.5 Thesis Statement ... 7

CHAPTER TWO: Background... 9
2.1 FPGA Architectures.. 9
2.1.1 Configuration Memory ... 10
2.1.2 Programmable interconnects, IOBs, Memory and DSP 11
2.1.3 Programmable Logic Resources ... 12
2.2 Virtex/Spartan-II Architecture.. 14
2.3 Virtex-4 Architecture.. 18
2.4 FPGA Configuration... 23
2.4.1 Configuration Interface... 24
2.4.2 Configuration Process... 26
2.4.3 Configuration Memory Readback... 27
2.5 Prior Work in FPGA Testing .. 28
2.6 General BIST Architectures.. 30
2.7 BIST for Logic Resources of an FPGA .. 30
2.7.1 BIST Architecture... 31
2.7.2 Test Pattern Generation and Output Response Analysis 33
2.7.3 Configuration Schemes... 35
2.7.4 Results Retrieval ... 35
2.8 Restatement of Thesis Goals... 36

CHAPTER THREE: Logic BIST for Virtex/Spartan II ... 38
3.1 Introduction... 38
3.2 Virtex/Spartan-II PLB Architecture.. 38
 x
3.3 BIST Architecture... 39
3.4 Partial Reconfiguration ... 43
3.5 Partial Configuration Memory Readback ... 45
3.6 Logic BIST Configurations for Virtex/Spartan-II .. 45
3.6.1 Fault Model and Fault Coverage... 46
3.6.2 Configuration Details.. 47
3.7 Logic BIST Configuration Generation Process .. 49
3.8 Methods for Application of BIST... 50
3.9 Results... 51
3.10 Summary... 53

CHAPTER FOUR: Logic BIST for Virtex-4 ... 55
4.1 Introduction... 55
4.2 Virtex-4 Architecture.. 55
4.3 BIST Architecture... 56
4.4 Logic BIST Configurations for Virtex-4 .. 61
4.4.1 Fault Model and Fault Coverage... 61
4.4.2 Configuration Details.. 62
4.5 Timing Analysis.. 67
4.6 Logic BIST Configuration Generation Process .. 68
4.7 Methods for Application of BIST... 70
4.8 Results... 71
4.9 Summary... 73

CHAPTER FIVE: Summary and Conclusions ... 75
5.1 Thesis Summary and Main Contributions .. 75
5.2 Application to Embedded Processors ... 77
5.3 Areas for Future Research and Development ... 78

REFERENCES ... 79

 xi
LIST OF FIGURES
Figure 1.1 FPGA Architecture... 3
Figure 1.2 Basic BIST Architecture [6]... 4
Figure 1.3 BIST in FPGAs... 6
Figure 2.1 Configuration Memory Element... 10
Figure 2.2 Typical PLB Slice of a Xilinx FPGA... 13
Figure 2.3 Virtex/Spartan-II Architecture.. 15
Figure 2.4 PLB of a Xilinx Virtex series FPGA.. 16
Figure 2.5 Virtex/Spartan-II PLB Slice [8].. 17
Figure 2.6 Configuration memory structure of Virtex FPGAs.. 18
Figure 2.7 Virtex-4 Architecture.. 19
Figure 2.8 Diagram of a Xilinx Virtex-4 series FPGA PLB.. 20
Figure 2.9 Virtex-4 SliceL [10] ... 21
Figure 2.10 Virtex-4 SliceM [10] .. 22
Figure 2.11 Boundary Scan Architecture... 25
Figure 2.12 On-line BIST [6]... 30
Figure 2.13 BIST Architecture to test Logic Resources [3] .. 32
Figure 2.14 Output Response Analyzer... 34
Figure 3.1 Logic BIST Architecture for Virtex/Spartan-II FPGAs 41
Figure 3.2 Output Response Analyzers ... 42
Figure 3.3 Fault Coverage of a Virtex FPGA PLB slice ... 47
Figure 3.4 Test time speed-up and reduction in memory storage requirements.............. 52
Figure 4.1 Logic BIST Architecture for Virtex-4 FPGAs ... 57
Figure 4.2 ORAs in a Single PLB slice ... 58
Figure 4.3 Fault Coverage of a Virtex-4 PLB.. 62
Figure 4.4 Maximum BIST clock frequency vs. Device size.. 68
Figure 4.5 BIST Architecture in Virtex-4 FX FPGAs... 70
 xii
Figure 4.6 Test time speed-up and reduction in memory storage requirements.............. 72

 xiii
LIST OF TABLES
Table 2.1 Resources available in different FPGA families [8] [12] [9]........................... 14
Table 3.1 Configuration Details... 48
Table 3.2 Methods used for Logic BIST ... 51
Table 3.3 Speed-up vs. Device Size... 53
Table 4.1 Configuration Details... 63
Table 4.2 Methods used for Logic BIST ... 71
Table 4.3 Comparison of test time speed-up and reduction in memory storage
requirements of Virtex/Spartan-II and Virtex-4 FPGAs... 73
 xiv
LIST OF ACRONYMS
BIST Built-In Self Test
BSCAN Boundary SCAN
BUT Block Under Test
CPLD Complex Programmable Logic Device
CRC Cyclic Redundancy Check
CUT Circuit Under Test
DLL Delay Locked Loop
DSP Digital Signal Processor
FAR Frame Address Register
FDR Frame Data Register
FPGA Field Programmable Gate Array
GSR Global Set/Reset
IC Integrated Circuit
ID Identification
I/O Input Output
IOB Input Output Buffer
IP Intellectual Property
LFSR Linear Feedback Shift Register
LUT Look-Up Table
NCD Native Circuit Design
ORA Output Response Analyzer
PIP Programmable Interconnect Point
PLB Programmable Logic Block
PROM Programmable Read Only Memory
RAM Random Access Memory
ROM Read Only Memory
 xv
SRAM Static Random Access Memory
TCK Test Clock
TDI Test Data Input
TDO Test Data Output
TMS Test Mode Select
TPG Test Pattern Generator
VLSI Very Large Scale Integration
XDL Xilinx Design Language
 1
CHAPTER ONE
Introduction
Rapid advances in semiconductor processing technologies have allowed transistor
densities to double every two years; this phenomenon has led to new opportunities in
Very Large Scale Integration (VLSI) design and new challenges in design verification
and testing [1]. The growing complexity of design has made programmable logic devices
like Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic
Devices (CPLDs) some of the leading products in the semiconductor industry, as they
provide an easy way to implement and verify complex digital designs.
Every innovation in Integrated Circuit (IC) design is accompanied by new
challenges in testing. The test systems accordingly are becoming faster, more complex
and hence more expensive. Cost and time are two of the most important factors that
govern the development of any kind of test system. Built-In Self-Test (BIST) is one
technique which reduces the cost and time overheads involved in external test systems. It
is a technique that places a device?s testing function within the device itself [6].

1.1 Field Programmable Gate Arrays (FPGAs)
FPGAs are programmable logic devices that can be configured or programmed to
perform tasks specific to any digital application. The FPGAs gained popularity due to
 2
their flexibility and short time-to-market, making them ideal for prototyping systems and
low volume products. The design to be implemented in an FPGA is converted to a string
of bits called the configuration file using tools provided by the FPGA manufacturer. The
configuration file is used to program the memory elements inside the FPGA that control
the functionality of the programmable components of the FPGA to implement the
required design [2]. Traditionally, the entire configuration memory of an FPGA is
rewritten with configuration data if the design needs to be modified; this is called full
reconfiguration. Current FPGAs have the ability to be configured partially such that only
the section of the configuration memory that changes due to the design modifications is
rewritten with new configuration data. This configuration technique is known as partial
reconfiguration [13] [14].
An FPGA typically consists of an array of Programmable Logic Blocks (PLBs),
programmable interconnect network, Input/Output Buffers (IOBs) and embedded cores
like memory blocks. The PLBs form the logic resources of an FPGA and usually consist
of look-up tables, flip-flops and multiplexers. The programmable interconnect network is
comprised of wire segments and programmable switches that connect or disconnect the
wire segments. PLBs can be configured and connected to each other using the
programmable interconnect network to implement virtually any combinational or
sequential circuit. The IOBs are used to interface the circuit to the outside world [13]. A
current trend in FPGAs is to embed pre-designed Intellectual Property (IP) cores into the
FPGA. These IP cores include memory blocks like Random Access Memories (RAMs)
and Digital Signal Processor (DSP) blocks to improve application-specific performance.
Figure 1.1 shows the architecture of a typical FPGA.
 3

Programmable Logic
Block (PLB)
Programmable
Interconnect
Network
Input Output
Buffer (IOB)
Embedded Cores
(E.g. Memory)

 Figure 1.1 FPGA Architecture

1.2 Testing and BIST
A quality product can be delivered only if it has been tested thoroughly. Testing is
done to ensure fault-free operation of a circuit. In order to test any circuit, a mechanism is
needed to apply a set of input stimuli to the Circuit Under Test (CUT) and another
 4
mechanism is required to analyze or compare the output response with the response of a
known good circuit to determine whether the circuit is fault-free or faulty [5].
The input stimuli in case of external test systems are applied and the output
response is analyzed or compared externally. In case of BIST, the test system is
integrated within the system itself; the input stimuli are applied and the output response is
analyzed internally within the system. The BIST technique involves addition of extra
circuitry to an existing design. There are many variations in BIST depending on the CUT,
but they all have a common purpose, which is to generate test patterns and analyze the
output responses of the CUT [6]. A typical implementation of BIST consists of a Test
Pattern Generator (TPG) for the CUT, input isolation circuitry for isolation of the primary
inputs of the CUT during testing, an Output Response Analyzer (ORA) for verification of
proper operation of the CUT, and control circuitry for execution of the test procedure as
shown in Figure 1.2.

Figure 1.2 Basic BIST Architecture [6]

The external test approach is best suited for circuits that allow access to all the I/O
pins for testing. Over the past two to three decades, the number of I/O pins on most very
 5
large scale integration devices has increased by an order of magnitude while the number
of transistors has increased by as much as four orders of magnitude [6]. This has resulted
in reduced accessibility of the ICs; making external test systems more complicated and
expensive. BIST on the other hand is much simpler and inexpensive, as external test
equipment is absent. Moreover, BIST techniques can be used at any level of testing
ranging from manufacturing level testing to system level testing. Major drawbacks of the
BIST technique are additional design requirements, area overhead and performance
penalty [6]. The drawbacks of BIST are easily compensated by the advantages it offers.
BIST has been successfully implemented in many digital logic designs and finds special
use in testing of FPGAs.

1.3 FPGA BIST
The growing popularity of FPGAs in the VLSI industry has fueled research on
new methodologies for testing these FPGAs. The re-programmability of FPGAs makes
them harder to test as compared to regular structures. This is due to the fact that the
FPGA can be operated and connected in many ways internally; as a result, it must be
configured multiple times in order to be tested completely. But, due to the in-system re-
programmability of the FPGAs, they can be configured to test themselves [6]. The idea is
to program the BIST circuitry in a part of the FPGA and treat the rest of the FPGA as the
CUT. Once the CUT is completely tested, a reversal of roles takes place, as the part of the
FPGA used for BIST circuitry now becomes the CUT and vice versa. This process is
illustrated in Figure 1.3.

 6

Figure 1.3 BIST in FPGAs

The BIST circuit can be designed in a number of ways to provide high resolution
diagnostics for the FPGA, opening the door for fault-tolerant systems which was
previously not possible with external test systems [3]. Moreover, BIST implemented in
FPGAs does not suffer from any kind of area or performance overhead compared to
conventional BIST techniques, as the BIST circuitry can be easily replaced by re-
programming the FPGA with the system function after test [3].
Considerable work has been done in the area of BIST for FPGAs. Depending on
the resources to be tested, some of the PLBs of an FPGA are configured as Test Pattern
Generators and Output Response Analyzers, forming the BIST circuitry which tests the
targeted resources in the FPGA [7]. An FPGA is reconfigured repetitively for testing and,
as a result, a major portion of the time required to test the FPGAs is spent re-configuring
them, i.e. downloading BIST configuration data into the FPGA.
The majority of an FPGA is comprised of routing and logic resources [15]. So not
surprisingly, most of the research and development work done in the area of BIST for
 7
FPGAs has been for its logic and routing resources [3] [7] [17] [20] [23] [27]. A generic
approach cannot be used to completely test an FPGA since different fault models and test
techniques are used to test logic and routing resources. The work presented in this thesis
focuses on BIST for programmable logic resources only. Although considerable work has
been done in the area of BIST for logic resources of an FPGA, the BIST technique for the
testing logic resources presented in this thesis is most influenced by work described in [3]
and [7]. A BIST approach for testing the PLBs of ORCA series FPGAs was presented
along with a procedure for diagnosis and location of faulty PLBs in [3]. The BIST
technique presented in [3] was extended to Xilinx XC4000 and Spartan series FPGAs to
completely test their logic and routing resources in [7].

1.4 Xilinx FPGAs
The FPGAs used for the work presented in this thesis are Xilinx Virtex/Spartan-II
and Virtex-4 FPGAs. Virtex/Spartan-II family of FPGA devices consist of primarily an
array of PLBs, IOBs and memory blocks as shown in Figure 1.1 [8]. The Virtex-4 family
of FPGAs combine a traditional FPGA with embedded processors, multipliers and high
speed I/O interfaces in one package [9]. The architectural and operational features of
these FPGAs can be exploited for implementation of BIST to speed-up the test time and
also reduce the amount of memory required to store all the test configurations [16].

1.5 Thesis Statement
The research work presented in this thesis, primarily focuses on ways to improve
BIST implementation for programmable logic resources of FPGAs. This involves
 8
reduction in test time, improvement in diagnostic resolution and reduction in memory
storage requirements for BIST configurations. This work builds upon the previous work
done in the area described in [3] [7] [17] [18] [19] [29], extending to newer FPGA device
families using techniques like partial reconfiguration and partial configuration memory
readback. The target devices for this research are the Xilinx Virtex/Spartan-II and Virtex-
4 family of devices. Configurations for BIST for programmable logic of Virtex/Spartan-II
series FPGAs are developed along with methods to improve the test time. In case of the
Virtex-4 family of devices, a set of BIST configurations for PLBs is developed and using
architectural and operational features, further improvement in test time and reduction in
configuration memory storage requirements is achieved.
The thesis is organized as follows: Chapter 2 describes the previous work done in
the area of BIST for programmable logic resources and elaborates upon the architectures
of Virtex/Spartan-II and Virtex-4 FPGAs. Implementation and experimental results of
BIST for programmable logic resources in the Virtex/Spartan-II family of FPGAs is
described in Chapter 3. Chapter 4 presents the implementation of BIST for
programmable logic resources in the Virtex-4 FPGAs along with experimental results.
Chapter 5 concludes the thesis with suggestions for future work and a discussion
regarding the potential use of an embedded processor to assist in BIST.
 9
CHAPTER TWO
Background
This chapter covers the background knowledge required to understand the
research work presented in the following chapters. It begins with an overview of the
architectures and configuration process of the Virtex/Spartan-II and Virtex-4 FPGAs used
for the work presented in this thesis. This is followed by a discussion of prior work done
in FPGA testing and BIST for testing the programmable logic resources of an FPGA. The
chapter concludes with a restatement of the thesis goals.

2.1 FPGA Architectures
A typical FPGA consists of an array of PLBs, programmable interconnects, IOBs
and RAM cores. The PLB array is interleaved with RAM cores and IOBs are arranged on
the periphery as shown in Figure 1.1. Newer FPGAs have additional embedded cores like
DSP cores, embedded microprocessors, and high-speed I/O interface for better system
performance [13]. A design can be programmed into the FPGA by writing data to the
configuration memory of the FPGA. The configuration memory then defines the function
of the various programmable components of an FPGA. The following sub-sections
describe the major components of Xilinx Virtex/Spartan-II and Virtex-4 series FPGAs.

 10
2.1.1 Configuration Memory
All programmable devices have some kind of memory elements which connect or
break connections in a programmable device to establish the desired functionality. Figure
2.1 illustrates a memory element that determines the connection between two lines [2].

Figure 2.1 Configuration Memory Element

A memory element can be an anti-fuse, a floating-gate transistor, as in Read-Only
Memory (ROM)/Flash memory, or a Static RAM (SRAM) cell. Most modern FPGAs use
SRAM based memory elements which can be reprogrammed quickly in-system [2].
Xilinx Virtex/Spartan-II and Virtex-4 FPGAs are SRAM based, the drawback being
volatile configuration memory. This means that the FPGA needs to be configured with
the desired system function every time it is powered up, as the configuration memory
elements lose their data on loss of power [11]. The configuration memory is spread
across the entire device and is organized into smaller addressable segments called frames
in the case of Xilinx devices. The size of the configuration memory varies depending on
the size of the FPGA [11].
 11

2.1.2 Programmable Interconnects, IOBs, Memory and DSP
All components in the FPGAs are connected using some type of routing
resources; as a result the programmable interconnect network forms the biggest part of an
FPGA [10]. The programmable interconnect network consists of wire segments that are
connected or disconnected using Programmable Interconnect Points (PIPs), these PIPs
are essentially switches controlled by configuration memory bits. A collection of these
PIPs form a switch-matrix that is used in conjunction with wire segments to connect to
various components of the FPGA like PLBs and RAMs. The routing resources of an
FPGA are organized in a hierarchical manner that includes local, I/O, dedicated and
global routing resources. Local routing resources include internal wire segments of a
component for direct connections between adjacent components and switch matrices. I/O
routing resources connect the internal components of the FPGA to the IOBs. Dedicated
routing resources are used to implement high speed buses for better performance. Global
routing consists of buffered nets used to route high-fanout signals like clock and reset [8]
[9].
Over the years memory cores have become an integral part of the FPGA, as any
kind of modern digital design requires storage capability. The memory cores, also known
as BlockRAMs in Xilinx FPGAs, can be configured to operate in different modes
depending on the data width and the size of the memory required. The BlockRAM in
Xilinx FPGAs is a dual-port RAM that has two ports that can read and write to the
memory simultaneously. To connect the FPGAs to the outside world, IOBs are provided
which can be configured to be compatible with different IO standards, drive capabilities
 12
and speeds [10]. Newer FPGAs have specialized DSP cores to implement high
performance digital signal processing functions, these DSP cores typically consist of
dedicated multipliers, adders and accumulators [10].

2.1.3 Programmable Logic Resources
The PLBs of Xilinx FPGAs are divided into smaller units of logic called slices.
Each slice typically consists of a pair of logic cells, where a logic cell is comprised of a
Look-Up Table (LUT), a storage element, some carry logic circuitry and multiplexers.
Figure 2.2 illustrates a typical PLB slice of a Xilinx FPGAs. The LUT in Xilinx FPGAs
can also be used to implement a shift register or a small RAM (16-bit for a 4-input LUT);
these small RAMs are called distributed RAMs or Look-Up Table RAMs (LUT RAMs).
Virtex/Spartan-II FPGAs have two identical slices per PLB [8] [12], whereas a Virtex-4
PLB consists of two different kind of slices, named SliceL and SliceM. The LUTs in
SliceM can be used to implement LUT RAMs or shift registers, whereas LUTs in SliceL
do not have this feature [10]. A Virtex-4 PLB consists of two SliceLs and two SliceMs
for a total of four slices.

 13
LUT
RAM
LUT
RAM
Carry &
Control
Logic
Carry &
Control
Logic
Storage
Element
Storage
Element
G1
G2
G3
G4
F1
F2
F3
F4
BY
BX
Carry In
Carry Out
YB
Y
YQ
X
XQ
XB
Clock
Clock Enable
Set/Reset

Figure 2.2 Typical PLB Slice of a Xilinx FPGA

Table 2.1 shows the various resources available in Virtex/Spartan-II and Virtex-4
families of FPGAs. Although Spartan-II and Virtex are separate families of FPGAs,
Spartan-II is essentially derived from the Virtex architecture with fewer features and
lower performance for lower cost. The Virtex-4 family of FPGAs is sub-divided into
three sub-families:
? LX: for logic applications (higher logic resources)
? SX: for DSP applications (higher DSP resources)
? FX: for embedded applications (embedded processor, Rocket IO and Ethernet
cores)

 14
Table 2.1 Resources available in different FPGA families [8] [12] [9]
Resource Spartan-II Virtex Virtex-4 LX Virtex-4 SX Virtex-4 FX
Largest PLB
Array Size
(Rows x Columns)
28 x 42 64 x 96 192 x 116 128 x 48 192 x 84
PLBs 1,176 6,144 22,272 6,144 16,128
Logic slices 2,352 12,288 89,088 24,576 64,152
Distributed RAM 74 Kbits 384 Kbits 1,392 Kbits 384 Kbits 987 Kbits
BlockRAMs 56 Kbits 184 Kbits 6,048 Kbits 5,760 Kbits 9,936 Kbits
I/O pins 284 512 960 640 896
DSP cores - - 96 512 192

2.2 Virtex/Spartan-II Architecture
The architecture of a Virtex/Spartan-II FPGA is shown in Figure 2.3. An array of
PLBs and associated routing resources is at the core of the FPGA. A column of
BlockRAMs is placed at the east and west edges of the PLB array. The IOBs and the
Delay Locked Loops (DLL) for clocks are located at the periphery of the FPGA. The
BlockRAMs and PLBs are surrounded by additional routing resources, primarily used to
connect the internal resources of the FPGA to the I/O pins of the FPGA.

 15
DLL DLL
DLLDLL
IOBs
Bl
ockRA
M
s
PLBs
&
Interconnect
Network
IOBs
IOBs
IO
Bs
BlockR
AMs

Figure 2.3 Virtex/Spartan-II Architecture

A Virtex/Spartan-II PLB consists of a pair of identical slices which are connected
to a switch matrix as illustrated in Figure 2.4. The switch matrix is responsible for routing
the signals in and out of the PLB. These PLBs also feature a carry chain that spans the
entire column of PLBs. Each PLB slice has dedicated circuitry associated with the carry
chain to implement fast arithmetic functions like an adder using look-ahead carry.

 16

Figure 2.4 PLB of a Xilinx Virtex series FPGA

The internal architecture of a Virtex/Spartan-II PLB slice is illustrated in Figure
2.5. A single LUT of a Virtex/Spartan-II PLB can be used to implement any 4-input
combinational logic function. It can also operate as a 16x1-bit RAM. Two LUTs of a
PLB can be combined to form single-port 32x1-bit, 16x2-bit or a dual-port 16x1-bit
RAM. The storage element can be operated either as a positive or negative edge-triggered
flip-flop or as an active low or an active high level-sensitive latch. Storage elements have
control signals including set/reset and clock-enable that are shared by all storage elements
within a slice [8]. All four LUTs of the PLB can be combined using control logic and
multiplexers provided in the PLB slices to implement any combinational logic function of
up to six inputs. The PLBs feature dedicated logic like XOR gates and AND gates in
order to implement fast arithmetic logic.[8].

 17

Figure 2.5 Virtex/Spartan-II PLB Slice [8]

The configuration memory of Virtex/Spartan-II FPGAs is divided into frames.
The number frames per column of PLBs and associated routing is fixed at 48 frames as
shown in Figure 2.6. The frame size varies from 12 words of 32 bits each for the smallest
device to 39 words for the largest device in the Virtex family, depending on the number
of PLB rows in the FPGA. The IOB frames are on the edges of the FPGA followed by
the BlockRAM frames. The PLB frames also have some IOB configuration data at the
 18
start and end of the frame. The Centre column consists of frame data for global clocks
[32].

IOB Column (54 frames)
BRA
M
 Colum
n
 (91 fr
ames)
IOB Column (54 frames)
PLB Column (48 frames) PLB Column (48 frames) PLB Column (48 frames)
PLB Column (48 frames) PLB Column (48 frames) PLB Column (48 frames)
BRAM Column (91 frames)
Centr
e
 Column (8 frames
)

Figure 2.6 Configuration memory structure of Virtex FPGAs

2.3 Virtex-4 Architecture
The architecture of Virtex-4 FPGAs is different from Virtex/Spartan-II FPGAs, as
illustrated in Figure 2.7. The PLBs and routing resources are spread across the entire
FPGA. The I/O buffers are arranged in columns inside the FPGA, unlike Virtex/Spartan-
II FPGAs that have IOBs only on the edges of the FPGA. Columns of BlockRAMs and
DSP cores are interleaved with columns of PLBs. Virtex-4 FPGAs have up to 12 columns
of BlockRAMs and 8 columns of DSP cores. The Virtex-4 FX family also features up to
two embedded PowerPC cores.
 19

BlockRAMs
Bloc
kR
AMs
IO
B
s
IOBs
DSP cores
DSP cores

Figure 2.7 Virtex-4 Architecture

The PLB of a Virtex-4 FPGA is comprised of four slices, two SliceLs and two
SliceMs as shown in Figure 2.8. All four slices are interconnected and similar slices are
placed together in a column. Both pairs of slices have an independent carry chain
spanning the entire column. The LUTs of SliceM also feature a Shift Register and a RAM
mode of operation, consequently SliceMs feature a shift chain that can be used to
combine SliceMs in single or multiple PLBs to form a long shift register [10].

 20
Switch
Matrix
SliceM (2)
SliceM (0)
Carry
Chain M
SliceL (3)
SliceL (1)
Carry
Chain L
Shift
Chain

Figure 2.8 Diagram of a Xilinx Virtex-4 series FPGA PLB

The slices in Virtex-4 feature two 4-input LUTs, denoted F and G, two storage
elements, carry logic, multiplexers and some arithmetic gates. The LUTs can be used as a
4-input LUT, up to a 16-bit shift register (SliceM only) or a 16-bit LUT RAM (SliceM
only). The storage elements can be configured as positive or negative edge-triggered flip-
flops or active high or active low level-sensitive latches with clock-enable control
capability. They can be initialized to high or low value after download and set/reset
synchronously or asynchronously during operation. Multiplexers present in the slices are
used to cascade LUTs in multiple slices or PLBs to form up to 64x1 LUT RAM in a
single PLB or a 64-bit shift register using a single PLB (multiple PLBs can be cascaded
to form larger shift registers). A PLB has two carry chains that are directed vertically
upwards, the carry chain logic in the slices is used to implement look-ahead carry
functions. A pair of AND and XOR gates are provided in a slice as dedicated arithmetic
 21
gates for efficient utilization of the logic resources [10]. The internal architectures of
Virtex-4 SliceL and SliceM are illustrated in Figures 2.9 and 2.10, respectively.

Figure 2.9 Virtex-4 SliceL [10]
 22

Figure 2.10 Virtex-4 SliceM [10]

 23
The Configuration memory of a Virtex-4 FPGA is divided into frames of fixed
size of 41 words of 32 bits each. These frames span a fixed number of rows of an FPGA
column, unlike Virtex/Spartan-II frames that span the entire column. Frames are grouped
together to form blocks based on the resources defined by them, like PLBs or
BlockRAMs [11].

2.4 FPGA Configuration
A design is typically synthesized and converted to a configuration file or a
bitstream that is downloaded into the FPGA to implement the required design [2]. Several
interfaces are available to configure the FPGAs including Boundary Scan, dedicated
serial interface and dedicated parallel interface [11]. As the FPGA devices grow bigger,
the configuration file or bitstream size also grows. This leads to a longer time required to
download a design.
Partial reconfiguration is a technique used to reduce the time required to
reconfigure an FPGA. Once a full configuration for a design has been downloaded to the
FPGA, minor changes in the design result in small changes in the bitstream. So instead of
downloading the full bitstream, only parts of the bitstream that change are downloaded
using partial reconfiguration [29]. In case of Xilinx FPGAs, a frame is the smallest unit
of configuration memory that can be changed. One of the features of the newer FPGAs is
dynamic partial reconfiguration. This feature allows the user to retain the flip-flop
contents of the PLBs and IOBs during reconfiguration. Unused parts of FPGAs are
reconfigured while the FPGA is operational with the system function [14].

 24
2.4.1 Configuration Interface
There are three main configuration interfaces available in Xilinx FPGAs [11].
They are:
1. Master/Slave Serial interface
2. Master/Slave Parallel (SelectMAP) interface
3. Boundary Scan interface
The source of clock used for configuration determines whether the interface is in
master mode or slave mode. If the source for generation of the configuration clock is
external to the FPGA then the configuration mode is in slave mode. In master mode the
configuration clock is generated internally by the FPGA. The configuration interface to
be used for Xilinx FPGAs is determined by the value set on three mode pins of the FPGA
[11].
One bit is downloaded to the FPGA per clock cycle when the serial interface is
used. In case of the SelectMAP interface, configuration data is downloaded in parallel.
The configuration data can be both downloaded to the FPGA or read back from the
FPGA using the SelectMAP interface. The SelectMAP interface is capable of reading or
writing 8 or 32 bits per clock cycle in parallel, greatly reducing the configuration
download time as compared to the serial interface [11]. The third interface is known as
Boundary Scan [5] [30]. It was originally developed to test the integrity of the
connections between devices on a printed circuit board. Xilinx FPGAs make additional
use of the Boundary Scan interface to download to or read back from the FPGA
configuration memory [11].
 25
The Boundary Scan interface consists of a 4-pin Test Access Port (TAP), TAP
controller, instruction register and decoder, bypass register and Boundary Scan register as
shown in Figure 2.11.

Figure 2.11 Boundary Scan Architecture

The TAP controller consists of a finite state machine that is controlled by four
TAP pins, namely TCK (Test Clock), TMS (Test Mode Select), TDI (Test Data In) and
TDO (Test Data Out). Depending on the state of the TAP controller, instructions or data
 26
can be loaded into the Boundary Scan interface registers. All the IOBs are interconnected
to form a Boundary Scan register in test mode and test vectors are loaded to the IOBs
using TDI. Similarly TDO is used to read out the test results from the IOBs. The bypass
register is a single bit register used to put the device in bypass mode to access other
devices connected in the Boundary Scan chain. The instruction register and decoder are
used to execute the Boundary Scan test instructions [11]. Most of the current FPGAs
allow configuration download using the Boundary Scan interface. Xilinx FPGAs
implement Boundary Scan instructions that allow both configuration memory download
and readback by using configuration registers, like the frame data register and frame
address register. The configuration memory can be written using a CFGIN command and
read back using a CFGOUT command [11].
Xilinx also provides user access to the FPGA core from the Boundary Scan
interface via Boundary SCAN (BSCAN) modules in the FPGA. These user access
modules can be used to create internal Boundary Scan chains to implement user-defined
functions in an FPGA. The BSCAN modules have to be activated using Boundary Scan
commands before they can be used to perform a user function. All BSCAN modules
source the clock from the TCK pin in the Boundary Scan interface and the clock for a
given BSCAN module is enabled only when it is activated. BSCAN modules also consist
of output pins that indicate the status of the Boundary Scan interface [11] [32] [33].

2.4.2 Configuration Process
The configuration of a Xilinx FPGA is a multi-stage process. Before the
download of configuration data, the FPGA is initialized, which involves synchronization
 27
of the configuration interface logic of the FPGA with the configuration data to be
downloaded. It may also include clearing of the configuration memory. A Cyclic
Redundancy Check (CRC) is performed on the configuration data to check for errors
while data is downloaded to the configuration memory. The final step is known as the
startup sequence, it is a multi-step process that includes activation/de-activation of global
signals like global set/reset (GSR), global write-enable for all the RAMs and flip-flops in
the FPGA and global tri-state enable for all the IOBs [11].
For full configuration, all the frames in the FPGA are written with configuration
data, whereas for partial reconfiguration only the frames that change are rewritten. The
configuration process is similar for both methods except for the initialization. The
configuration memory is not cleared during initialization of the FPGA using partial
reconfiguration. During configuration download, the frame address register (FAR) is
written with the address of the frame to be written and 32-bit words of configuration data
are written to the specified frame in the configuration memory via the frame data register
(FDR) [11].

2.4.3 Configuration Memory Readback
Xilinx FPGAs allow the user to read back contents of the complete configuration
memory of the FPGA. This can be used to verify the configuration bits downloaded into
the FPGA. Instead of full configuration memory readback, parts of the configuration
memory can also be read back; this procedure is known as partial configuration memory
readback [14]. A frame is the smallest unit of configuration memory that can be read
using partial configuration memory readback. For reading a frame, the frame address is
 28
written in the FAR and the configuration data is read out from the FDR using an external
interface like SelectMAP or Boundary Scan [33]. Xilinx FPGAs are also capable of
capturing the contents of the BlockRAMs and flip-flops of the FPGA during
configuration memory readback [11]. In the case of Xilinx FPGAs, a CAPTURE module
needs to be instantiated in the design in order to perform configuration memory readback
[11] [33].

2.5 Prior Work in FPGA Testing
This section lists some of the work previously done in the area of FPGA testing.
Major work related to testing of logic resources of an FPGA is presented in [3] [7] [16]
[17] [18] [21] [22] [23] [24] [28]. Stroud et al. present a method to evaluate the number
of configurations required to test all the logic resources of an FPGA in [21]. The most
comprehensive works in testing of programmable logic resources using a BIST approach
were presented in [3] [7]. Reference [7] extends the work done in [3], which was done
using Lucent?s ORCA series FPGAs to Xilinx 4000 series FPGAs. Reference [3] also
describes an algorithm called MULTICELLO that can be used for diagnosis of faulty
PLBs in FPGAs. The work done in [3] and [7] laid the basis for the work presented in
this thesis.
Ideas were derived from work done in [17] [18] [19] to improve the BIST
approach to test logic resources for better diagnostic resolution and faster test times.
Abramovici et al. introduced a new concept of self-testing areas that are used to
implement BIST in small unused areas of the FPGA, while the rest of the FPGA is
operational with the system function in [17] [18]. This work inspired the use of dynamic
 29
partial reconfiguration to achieve test time speedup. A technique to test embedded cores
of SoCs that include regular structures like RAM and multiplier cores, using the FPGA
core, is explained in [19]. This work introduced the concept of circular comparison that
results in higher diagnostic resolution.
Reference [28] by Wang et al. presents an alternative technique to test logic
resources using BIST. A non-BIST based approach to test an FPGA that uses an external
Programmable Read Only Memory (PROM) to store the test configurations and test
vectors is presented in [22] by Huang et al. Reference [23] introduces another technique
to externally test the logic resources of Xilinx 3000, 4000 and 5000 series FPGAs.
References [7] [16] [17] [18] [20] [22] [24] [25] [26] [27] present some of the
work done in the area of FPGA interconnect testing. Reference [20] expands upon the
BIST technique used in [17] and [18] to test FPGA interconnects. Renovell et al. [25] and
Wang et al. [27] present techniques to externally test the interconnects of an FPGA. A
BIST approach to test the interconnects of an FPGA using small BIST structures known
as BISTERs is presented in [26] by Harris et al. Renovell et al. describe a technique to
test the Xilinx FPGAs by dividing the FPGA into separate arrays of logic and
interconnects and LUT RAMs in [24].
References [16] and [19] describe comprehensive work done in testing all the
resources of the FPGAs, including the embedded cores of FPGAs like RAMs and
multipliers. Stroud et al. presented a case study that uses Atmel?s FPGA based SoCs to
present the implementation of BIST to completely test the logic, interconnect and
memory resources of an FPGA [16].

 30
2.6 General BIST Architectures
There are two primary approaches for testing an FPGA using BIST. One approach
is to configure the complete FPGA with BIST circuitry to test itself and replace it with
the original system function after the device has been tested; this method is known as off-
line testing since the system function of the FPGA is halted to test the FPGA [6] [3]. This
scheme is discussed in detail in the next section. The other option is to keep the system
operational while testing unused portions of the FPGA by configuring them as Self
Testing AReas (STARs). These STARs are moved around the FPGA using dynamic
partial reconfiguration of the FPGA as shown in Figure 2.12. This scheme is called on-
line testing because the system is on-line or operational even when the device is being
tested [17] [18].

STAR STAR
System Fu
nction

Figure 2.12 On-line BIST [6]

2.7 BIST for Logic Resources of an FPGA
This thesis deals only with off-line testing of programmable logic resources,
hence the CUT in this case is the array of PLBs in the FPGA. BIST for testing logic
resources from here on shall be referred to as Logic BIST.

 31
2.7.1 BIST Architecture
BIST circuitry comprises Test Pattern Generators (TPGs) and Output Response
Analyzers (ORAs). The TPGs generate the test patterns required to test the PLBs. The
ORAs essentially compare the outputs of two identically configured PLBs under test, also
called Blocks Under Test (BUTs), and record any mismatch due to a fault. Since PLBs
are required to implement the BIST circuitry, all logic resources of an FPGA cannot be
tested simultaneously. If half of the PLBs can be configured as BUTs, then only two test
sessions are required to completely test all the PLBs. So, in the first session half of the
PLBs are configured as Blocks Under Test (BUTs) and the rest are configured as TPGs
and ORAs. In the second session they are swapped, i.e. the PLBs that were BUTs in first
session now become TPGs and ORAs and vice versa, as illustrated in Figure 2.13 [3][7].
The two test sessions are called West and East sessions depending on the location of the
TPGs, shown in Figure 2.13 (a) and (b) respectively. This scheme shows a column based
arrangement of BUTs, TPGs and ORAs, but it can also be row based and the two test
sessions are then called North and South sessions [3].
The BUTs are located in alternate columns of the FPGA with an ORA column
sandwiched between every two columns of the BUTs such that they compare the outputs
of the BUTs in the neighboring columns. The ORAs latch any mismatch between the
BUT outputs being compared as a result of a fault. The fault can be associated with either
of the two BUTs compared by the ORA. The ORAs are connected in a scan chain as
illustrated in Figure 2.13. The BIST results can be shifted out after the BUTs have been
tested using the scan chain [3]. To completely test the PLBs, they are reconfigured and
tested in different modes of operation while keeping the BIST architecture untouched. A
 32
test phase is a configuration that tests a PLB in a single mode of operation. A group of
test phases that test a PLB in all of it?s modes of operation form a test session [3]. The
PLBs are also tested in their LUT RAM mode of operation which tests the logic in the
PLBs associated with LUT RAMs [7] [37]. BIST results of faulty devices can then be
analyzed using MULTICELLO [3] to determine the exact location of the faulty PLB.

Co
lu
mn
 of
 ORAs
Co
lu
m
n
 o
f
 BU
T
s
Co
lu
mn
 of
 ORAs
Co
lu
m
n
 o
f
 BU
T
s
Co
lu
mn
 of
 ORAs
Co
lu
m
n
 o
f
 BU
T
s
Co
lu
m
n
 o
f
 BU
T
s
Co
lumn o
f
 ORA
s
Column of
BU
Ts
Co
lumn o
f
 ORA
s
Column of
BU
Ts
Co
lumn o
f
 ORA
s
Column of
BU
Ts
Column of
BU
Ts
Column of
TPGs
Column of TPGs

Figure 2.13 BIST Architecture to test Logic Resources [3]

It can be noticed from Figure 2.13 that BUTs in the edge columns of the BIST
architecture suffer from lower diagnostic resolution, as they are compared by only one
 33
ORA, whereas the rest of the BUTs are compared by two ORAs. Reference [19]
introduces a circular comparison technique that allows the comparison of every BUT by
two ORAs, thereby increasing the diagnostic resolution.

2.7.2 Test Pattern Generation and Output Response Analysis
As the number of inputs of a PLB is small, exhaustive test vectors can be used to
test them. A simple counter or a linear feedback shift register (LFSR) can be
implemented as a TPG using very few PLBs to generate exhaustive test vectors [5] [6].
An LFSR is more commonly used because it can generate pseudo-random patterns and
utilizes fewer gates as compared to a counter [6].
Two identical TPGs drive alternate columns of BUTs in the FPGA such that
every ORA compares the output response of BUTs that receive input patterns from two
different TPGs. This ensures that even if one of the PLBs used as a TPG is faulty, the
ORAs record a mismatch as both the TPGs generate different test patterns. Hence, using
two TPGs improves fault detection because if a single faulty TPG was driving all BUTs,
the ORAs would have never recorded a mismatch [3]. TPG loading is an issue in this
BIST architecture, since a large number of BUTs are connected to a single TPG. The
large loading on a TPG output limits the maximum operating frequency of the BIST
architecture. Solutions proposed are to either use drivers for TPG signals or split the
FPGA into smaller sections with independent pairs of TPGs that are tested in parallel [7].
Both the schemes limit TPG loading without increasing the number of configurations.
The comparison based approach has better fault detection capability compared to
signature analysis, as the response of the BUTs is not compacted. Instead it is compared,
 34
so unless there are equivalent faults in certain extremely rare cases the faults are
guaranteed to be detected [3]. A comparison based ORA is illustrated in Figure 2.14 (a).
It uses an XOR gate to detect any mismatch and the feedback from the flip-flop to the OR
gate latches a ?1? into the flip-flop in case of a mismatch. The multiplexer is used to form
a scan chain of ORAs in order to scan out the BIST results after every test phase [3]. A
good circuit is represented by a ?0? and a fault is indicated by a ?1? stored in the ORA
flip-flop. Configuration memory readback can be used instead of using a scan chain to
retrieve BIST results. Figure 2.14 (b) shows the ORA without the scan chain logic used
in this case [7].

MUX

Figure 2.14 Output Response Analyzer

 35
2.7.3 Configuration Schemes
The BIST approach described in the initial work [3] [7] uses complete
reconfiguration of an FPGA to switch between test phases. Full reconfiguration is highly
time consuming and in the case of Logic BIST, only the BUT configurations change from
one test phase to the next for a given test session. The use of partial reconfiguration to
reconfigure only the BUTs of the FPGA, to operate in a different mode of operation for a
given test session, was proposed in [29]. Partial reconfiguration reduces the memory
required to store the test configurations and leads to faster test times, since less
configuration data is downloaded into the FPGA per test phase.

2.7.4 Results Retrieval
After execution of a test phase the BIST results have to be read out of the ORAs
in the FPGA. As described in [3], the ORAs form a scan chain and the BIST results can
be shifted out using the Scanout signal shown in Figure 2.14 (a). The data input of the
ORA at the tail of the scan chain is tied to a ?1?, so there is a trail of ones at the end of the
BIST results scanned out which serves as an indicator for the end of the scan chain and
serves as a check for correct operation of the ORAs.
Most FPGAs have the ability to capture the contents of flip-flops in the PLBs during
configuration memory readback. This feature can be used to retrieve the BIST results
captured in the flip-flops of PLBs configured as ORAs by reading back the configuration
memory. Although configuration memory readback increases the testing time per test
phase it reduces the total number of test configurations and improves the diagnostic
resolution [7]. Due to the limited resources of some FPGA PLBs, not all outputs of a
 36
BUT can be observed in a single configuration, therefore there are multiple
configurations for every test phase. If configuration memory readback is used then the
scan chain to retrieve BIST results can eliminated from the ORA, making extra logic
resources available in the PLBs to be used as ORAs. The extra logic resources in the
ORAs make it possible in some FPGAs to compare all the BUT outputs in a single
configuration for a test phase. Figure 2.14 (b) illustrates the ORA without the scan chain
logic that is capable of comparing more BUT outputs and also has fewer control signals
than the ORA with the scan chain logic.

2.8 Restatement of Thesis Goals
A significant amount of work has been done in the area of Logic BIST for
FPGAs. As the technology advances and the feature sizes shrink, FPGAs grow larger in
size and feature many more capabilities, compared to their predecessors. The testing time
increases as the size of the FPGA grows, so new methods and architectural features have
to be used in order to keep the test times and the memory storage requirements to a
minimum.
The work presented in this thesis builds upon the work previously done in [3] [7]
[17] [19] [29] and introduces some new techniques to implement Logic BIST for newer
FPGA devices. As the majority of the time required for testing FPGAs using BIST is
spent on their reconfiguration, emphasis is put on techniques like partial reconfiguration
and partial configuration memory readback to reduce the test time and configuration
memory storage requirements for Logic BIST. This chapter introduced the basic concepts
and overview of the previous work done, required to understand the work presented in
 37
the following chapters. Chapter 3 presents the implementation of Logic BIST on
Virtex/Spartan II series FPGAs, along with the use of partial reconfiguration and partial
configuration memory readback to achieve speedup in test time and reduction in memory
storage requirements. Chapter 4 presents the implementation of Logic BIST for Virtex-4
FPGAs. The Logic BIST architecture was modified for Virtex-4 to achieve better
diagnostic resolution. In both cases, the PLB slices were modeled and, based on the
resultant fault simulations, Logic BIST configurations were developed to test the PLBs.
Chapter 5 concludes with a summary and suggestions for future improvements along with
a discussion regarding the use of an embedded processor for BIST.
 38
CHAPTER THREE
Logic BIST for Virtex/Spartan II
3.1 Introduction
This chapter discusses the implementation of Logic BIST for Xilinx Virtex and
Spartan-II FPGAs. The details regarding the Logic BIST architecture and test
configurations are described along with the fault coverage of the logic resources. The
methods to achieve speed-up in test time and reduction in memory storage requirements
are also discussed. These methods include techniques like partial reconfiguration and
partial configuration memory readback, which reduce the configuration download time
and BIST results retrieval time, respectively. The experimental results of all the methods
employed are presented with a summary and analysis of the results to conclude the
chapter. The work presented in this chapter is primarily the work presented in [31] with
some additional details.

3.2 Virtex/Spartan-II PLB Architecture
An overview of the Virtex/Spartan-II FPGA architecture was presented in Chapter
2. In this chapter, additional details regarding the internals of the PLB are provided.
Figure 2.8 shows the block diagram of a PLB slice of a Virtex/Spartan-II FPGA [8]. It
consists of two 4-input LUTs, F and G, that can also function as 16-bit LUT RAMs or
 39
16-bit shift registers. For the RAM or shift-register modes of operation, additional
circuitry is provided to generate the write enable signals. Two AND and two XOR gates
are provided in each PLB slice to efficiently implement arithmetic functions.
Multiplexers CY and input CIN are used to implement the carry chain logic. A slice has
two storage elements, FFX and FFY, which can be used either as flip-flops or as latches
to implement sequential circuits. Multiplexers DXMUX and DYMUX are provided to
choose the data input for the storage elements FFX and FFY, respectively. Multiplexers
F5 and F6 are used to combine LUTs to implement combinational logic functions with
five or six inputs using a single PLB [8].

3.3 BIST Architecture
Logic BIST for Virtex/Spartan-II builds upon previous work done on Lucent?s
ORCA and Xilinx 4000 series FPGAs, as described in [3] and [7], respectively. The
BIST approach is very similar to those described in [3] and [7], as illustrated in Figure
2.13. It is modified with focus on partial reconfiguration and partial configuration
memory readback.
The BIST architecture can be either row-oriented or column-oriented, but
column-oriented BIST architecture emerges as the more efficient BIST implementation
for Virtex/Spartan-II FPGAs for three major reasons. Firstly, the carry chain
implemented between the PLBs is implemented vertically upwards within each column,
so in order to test logic resources associated with the carry chain the BIST architecture
has to be column-oriented. Secondly, dedicated local routing is available for making
direct connections between horizontally adjacent PLBs [8]. Therefore it is easier to make
 40
BUT to ORA connections across rows in a column-oriented BIST architecture without
any routing issues. Lastly, the structure of the configuration memory is also column-
oriented. As mentioned earlier, configuration memory is comprised of frames and it takes
multiple frames to configure a column of PLBs and their associated routing in an FPGA,
as illustrated in the Figure 2.6. A column-oriented BIST architecture aids in reducing the
number of frames to be written using partial reconfiguration and read using partial
configuration memory readback for retrieval of BIST results.
Figure 3.1 illustrates the architecture of Logic BIST for Virtex/Spartan-II FPGAs.
Two identical TPGs are restricted to one column of the FPGA and alternate columns are
configured as ORAs and BUTs. The TPG is a 12-bit LFSR that generates pseudo-
exhaustive test vectors, providing identical vectors to both the slices of each PLB
configured as a BUT. Each TPG provides identical input patterns to alternate BUT
columns, which improves fault detection in case of a faulty TPG [3]. The ORAs compare
the outputs from the two neighboring BUTs that get identical test patterns from two
different TPGs. BIST results after testing are either scanned out or captured in the
configuration memory. Figure 3.1 (a) shows the ORAs connected in a scan chain that
allows scanning out of BIST results. Figure 3.1 (b) illustrates the architecture in which
the BIST results are captured in the configuration memory and retrieved using
configuration memory readback.

 41

Figure 3.1 Logic BIST Architecture for Virtex/Spartan-II FPGAs

Two test sessions are required to test all the logic resources. BUTs in each test
session are configured in different modes of operation in order to be tested completely;
these configurations are called test phases. In a PLB only 12 out of the 16 outputs can be
observed, as four outputs related to carry and multiplexer logic cannot be routed out of
the PLB. The limited logic resources of a PLB allow a maximum of five BUT outputs to
be observed by an ORA in a single configuration. Therefore a set of test phases has to be
repeated three times, each time looking at a different set of four BUT outputs for a total
 42
of twelve BUT outputs as shown in Figure 3.2 (a). This set of test phases is called a slice
test set. To retrieve the BIST results, if readback is used instead of implementing a scan
chain of ORAs, the ORA can be modified to compare six BUT outputs in a single
configuration as shown in Figure 3.2 (b), where the logic resources of an ORA previously
used for scan chain implementation are now used for comparing more BUT outputs. As a
result the number of slice test sets can be reduced from three to two, where one slice is
tested in each slice test set.

MUX
FFX
Data Out
Data Input
(from previous ORA)
BIST Clock
Scanout
Feedback
FFX
Data Out
BIST Clock
Feedback
(a)
(b)
BUT1 output 1
BUT2 output 1
BUT1 output 2
BUT2 output 2
BUT1 output 1
BUT2 output 1
BUT1 output 2
BUT2 output 2
BUT1 output 3
BUT2 output 3
BUT1 output 3
BUT2 output 3
BUT1 output 4
BUT2 output 4
BUT1 output 4
BUT2 output 4
BUT1 output 5
BUT2 output 5
BUT1 output 6
BUT2 output 6 G-LUT
F-LUT
G-LUT
F-LUT
G-LUT
F-LUT
G-LUT
F-LUT
Slice 1
Slice 2
Slice 1
Slice 1
Slice 2
Slice 1
Slice 2

Figure 3.2 Output Response Analyzers
 43
The Boundary Scan interface was used for the implementation of Logic BIST.
The frame address register is written with the address of the frame to be written or read
and 32-bit words of configuration data are written to or read from the frame data register,
depending on the operation being performed. Xilinx provides two user access registers in
Virtex/Spartan-II FPGAs that can be used by invoking a Boundary Scan module
(BSCAN_VIRTEX). For Logic BIST, user access register 1 was used to source the BIST
clock for BUTs, TPGs and ORAs from the Boundary Scan interface and user access
register 2 was used to generate a reset signal for all the TPGs and ORAs.
There are two test sessions: East and West, each testing half of the PLBs. To
completely test a PLB, except for the case when it is configured as LUT RAM, a total of
seven different test configurations of a PLB are required. Therefore the total number of
Logic BIST configurations depends on the method used for BIST results retrieval.
? Scan chain method: 2 sessions x 7 phases x 3 slice test sets = 42 configurations
? Readback method: 2 sessions x 7 phases x 2 slice test sets = 28 configurations

3.4 Partial Reconfiguration
Using partial reconfiguration, only BUT configurations are changed in a given
test session. Most of the 48 frames of a PLB column are associated with routing resources
rather than BUT configurations. So, in order to reconfigure the BUTs, a small number of
frames per PLB column in only the columns of BUTs have to be rewritten with new
configuration data. After the first test configuration is downloaded for a test session, the
rest of the configurations can be partial reconfigurations.
 44
The sequence in which the test configurations are applied is crucial for keeping
the partial reconfigurations small, as discussed in [29]. Since multiple slice test sets are
required for each test phase, three scenarios were investigated regarding the sequence of
configurations to be applied:
Scenario 1. For a given test session, the configuration of both the slices is kept fixed but
the BUT outputs compared by the ORAs are changed. Therefore each test
phase consists of two or three slice test sets, depending on the BIST results
retrieval technique used.
Scenario 2. For a given test session, the BUT outputs compared by the ORAs are kept
fixed and the configurations of both PLB slices are changed. Therefore each
slice test set consists of seven test phases.
Scenario 3. For a given test session, the BUT outputs compared by the ORAs are kept
fixed and the configuration of only the slice whose outputs are being
compared is changed, while maintaining the first configuration in the other
slice. Therefore each slice test set consists of seven test phases and each test
session has two or three slice test sets depending on the BIST results
retrieval method used.
Partial reconfiguration is not effective in reducing the configuration file size when
routing changes from one configuration to the next, as frames related to interconnects
comprise the majority of the total number of frames in the FPGA. Consequently, the third
scenario turns out to be most effective [29]. The sequence in which the test phases are
applied can also be optimized to reduce the difference between consecutive test
configurations, thereby reducing the partial reconfiguration file size.
 45

3.5 Partial Configuration Memory Readback
Partial configuration memory readback can be used instead of using full
configuration memory readback or scan chain to retrieve BIST results. Full configuration
memory readback reduces the number of slice test sets from three to two but it takes the
amount of time comparable to full configuration. On the other hand, scan chain
implementation only requires a few clock cycles (equal to the number of ORAs) to
retrieve BIST results, making it faster by a few orders of magnitude. This gap is greatly
reduced by using partial configuration memory readback. The ORAs are designed such
that the BIST results are stored in a single flip-flop of a PLB. This allows the BIST
results to be captured in only one frame per ORA column. So, a total of (M/2)-1 frames
are read back to retrieve BIST results, where M is the total number of PLB columns of
the FPGA.
The configuration bit generation tool provided by Xilinx is used to obtain a logic
allocation file. This file provides the information regarding the location of the
configuration memory bits that contain the data captured from the PLB flip-flops. The
location of each ORA flip-flop is defined in terms of the frame address and an offset
within the frame.

3.6 Logic BIST Configurations for Virtex/Spartan-II
The following subsections present the details regarding the implementation of
Logic BIST for Virtex/Spartan-II FPGAs.

 46
3.6.1 Fault Model and Fault Coverage
The PLB of a Virtex/Spartan-II FPGA consists of 2 identical slices, so a single
slice was modeled instead of modeling the entire PLB for fault simulations. The gate
level stuck-at fault model was considered for fault coverage. The logic in the slice related
to the RAM mode of operation of the LUTs was not considered, as faults in that logic
would get detected by a LUT RAM test presented in [37]. The storage elements of the
PLB were not tested in the asynchronous mode of operation, the reason for which is
discussed in the Section 3.6.2. A total of seven configurations are required to completely
test the PLB, not including the LUT RAMs and related logic. Cumulative fault coverage
was evaluated by simulating the complete fault list for the first test configuration and then
the list of undetected faults is used as the fault list for simulation of successive test
configurations. Individual fault coverage of each test configuration was evaluated by
using the complete fault list for simulation of all the test configurations. Both cumulative
and individual fault coverage are shown in Figure 3.3.
 47
0
10
20
30
40
50
60
70
80
90
100
1234567
BIST Configuration
Fau
l
t Cov
e
r
a
ge

%
Individual Fault Coverage
Cumulative Fault
Coverage

Figure 3.3 Fault Coverage of a Virtex FPGA PLB slice

3.6.2 Configuration Details
The details of the seven configurations of a Virtex Slice are summarized in Table
3.1. Some BUTs were diagnosed as faulty during Logic BIST when asynchronous reset
was used; the cause for this was attributed to timing skew in the TPG output signals
controlling the reset signal to the flip-flops, which introduced an uncertainty regarding
the value stored in the storage elements of the BUTs. This issue remained unresolved
during development for Virtex/Spartan-II FPGAs, but it was later resolved for Virtex-4,
which is discussed in Section 4.4.2.
 48
Table 3.1 Configuration Details
Configuration
Slice
Component
1 2 3 4 5 6 7
LUT 0000
xnor
/xor
xor
/xnor
xnor
/xor
xor
/xnor
xnor
/xor
xor
/xnor
LUT
F/G
MODE
shift
register
lut lut lut lut lut lut
MODE ff ff latch latch latch ff ff
X INIT 0 1 0 1 1 0 1
Y INIT 0 1 0 1 1 0 1
FF
X/Y
RESET sync sync async async async sync async
CY0G /
CY0F
prod g1/f1 prod 0 1 1 1
CYSELG /
CYSELF
g/f g/f 1 g/f g/f 1 1
GYMUX /
FXMUX
g/f f6/f5
gxor
/fxor
f6/f5 f6/f5
gxor
/fxor
gxor
/fxor
DYMUX /
DXMUX
I1 I0 I1 I1 I1 I0/I1 I0
YBMUX I1 I1 I1 I0 I1 I0 I0
BY / BX
byinv
/bxinv
by
/bx
byinv
/bxinv
0 1
by
/bx
by
/bx
SR srinv sr sr sr 1 0 1
CE ceinv 1 ce 0 1 1 1
CLK clk clkinv clk clkinv clk clkinv clk
CYINIT bx bx cin cin cin cin cin
Breakpoints
Cout on on on on off on on
Y on on on on off on on
XB on on on on off on on
F5 on on on on off on on
X on on on on off on on
REV USED on on on on off off on
SR on on on on off on on

 49
3.7 Logic BIST Configuration Generation Process
Two programs were developed to generate all the test configurations, referred to
as the template generation program and the template modification program. The design
is described in Xilinx Design Language (XDL), a netlist format used by Xilinx. The
template generation program generates a template file depending on the session and the
slice test set, where the BUTs are configured with Configuration 1 as summarized in
Table 3.1. The template file generated does not contain routing information as it
simplifies configuration file generation process. The template is converted from XDL
format to a Native Circuit Description (NCD) format that can be used by Xilinx CAD
tools for routing the design. The template is routed using Xilinx routing tools and
converted back to XDL format. The template modification program uses the routed
template configuration file and modifies only the BUT configurations while keeping the
routing fixed to generate all the other BIST configuration files. This approach results in
generation of small partial reconfiguration files as the routing structure remains fixed for
all test phases of a slice test set. The routed configuration files are used to generate the
configuration bitstreams that are downloaded to the FPGA.
The Xilinx routing tools try to swap input pins of the LUTs and modify the LUT
values to improve routability of the design. This is undesirable for the template
modification program as it assumes the routing of the template file to be without
modification of the LUT contents. Xilinx routing tools are prevented from swapping the
LUT inputs by configuring the LUTs as shift registers in the first configuration. It can
also be done by setting a ?no pin swap? option in FPGA Editor (a design editing tool by
Xilinx) for routing a design.
 50

3.8 Methods for Application of BIST
In this section, the methods used to speed up test time and reduce the
configuration storage requirements for Logic BIST are described. The following are the
various configuration download methods used:
FC - Full Configuration; partial reconfiguration is not used and all the test
configurations downloaded to the FPGA are full configurations.
PR
2
 - Partial Reconfiguration using Scenario 2 defined in Section 3.4; the first
configuration in a test session is a full configuration, followed by six partial
reconfigurations.
PR
3
 - Partial Reconfiguration using Scenario 3 defined in Section 3.4.
OPR - Optimized Partial Reconfiguration using Scenario 3 defined in Section 3.4; the
sequence in which the test configurations are applied was optimized to reduce the number
of different configuration frames between two consecutive test configurations.
The following are the ORA results retrieval techniques used for Logic BIST:
FCRB - Full Configuration memory ReadBack after each test configuration
SR - Scan chain Readback after each test configuration
SRE - Scan chain Readback at the end of a test session
PCRB - Partial Configuration memory ReadBack after each test configuration
PCRE - Partial Configuration memory Readback at the End of a test session
Scan chain readback (SR, SRE) involves the use of ORAs connected as a scan
chain, resulting in three slice test sets, whereas configuration memory readback (FCRB,
PCRB, PCRE) requires only two slice test sets. Dynamic partial reconfiguration is used
 51
for the methods SRE and PCRE; BIST results are retained until the end of a test session
and retrieved only after all the test phases have been applied. Readback at the end reduces
the diagnostic resolution of Logic BIST from a faulty PLB and its mode of operation
down to a faulty PLB. Table 3.2 summarizes all the methods used for Logic BIST.

Table 3.2 Methods used for Logic BIST
Method Configuration
BIST Results
Retrieval
Total Slice
test sets
Total number
of configurations
1 FC FCRB 2 28
2 FC SR 3 42
3 PR
2
SR 3 42
4 PR
3
SR 3 42
5 OPR SR 3 42
6 OPR SRE 3 42
7 OPR PCRB 2 28
8 OPR PCRE 2 28

3.9 Results
Experimental results regarding the test time and memory storage requirements for
implementation of Logic BIST are presented in this section. These results were obtained
by applying the Methods 1 through 8 described in Table 3.2 on a Spartan-II XC2S200
FPGA which has a PLB array of size 28x42. Figure 3.4 shows the speed-up in test time
and reduction in configuration memory storage requirements achieved.
It can be observed from the results that memory storage requirements are
increased by using a scan chain for ORAs but a speed-up is achieved compared to full
configuration memory readback. Partial configuration memory readback, although 40
times slower than scan chain for retrieval of BIST results, compensates for its lack of
speed by eliminating a slice test set thereby reducing the total number of test
 52
configurations from 42 to 28. The partial reconfiguration file sizes are also reduced by
changing the configuration of only the slice under test (Scenario 3) and by ordering the
test phases optimally. Retrieving the BIST results at the end of a test session rather than a
test phase provides further speed-up at the cost of reduced diagnostic resolution. The
actual test time using Boundary Scan (including all overhead related to the Boundary
Scan operation) was reduced from 113 seconds (Method 1) to 22 seconds (Method 8), a
speed-up of over 5 times. The configuration memory storage requirements were reduced
by a factor of 3.25 for a Spartan-II XC2S200 FPGA.

0
1
2
3
4
5
6
12345678
FC
(FCRB)
FC (SR) PR2
(SR)
PR3
(SR)
OPR
(SR)
OPR
(SRE)
OPR
(PCRB)
OPR
(PCRE)
Download (Readback) Approach
S
p
ee
d-
u
p
/
M
em
or
y
 Red
u
c
t
i
o
n
Total Test Time
Configuration Storage
2
3
3
3
3 3
2 2
number of sets of
configurations to
completely test PLB

Figure 3.4 Test time speed-up and reduction in memory storage requirements

 53
The effect of size of the device on speed-up is also evaluated using four different
devices in the Virtex/Spartan-II FPGA family. Method 5 is chosen for comparison as the
total test time in this case is a direct function of configuration file size since the time
required to apply test vectors and retrieve BIST results is negligible. Table 3.3 illustrates
the different speed-up values achieved, depending on the size of the device.

Table 3.3 Speed-up vs. Device Size
FPGA Array size Speed-up
XC2S15 (smallest) 8 ? 12 3.61
XC2S50/XCV50 16 ? 24 3.18
XC2S200/XVC200 28 ? 42 3.02
XCV1000 (largest) 64 ? 96 2.86

It is observed that the test time speed-up for Logic BIST drops by a small factor
for larger devices. The ratio of PLB configuration data to the total configuration data
increases as the size of the device increases. For Logic BIST, only the configuration of
PLBs changes. Therefore, relatively larger partial reconfiguration files are generated for
larger devices. This explains the reduction in test time speed-up for larger devices.

3.10 Summary
The architectural and operational features of Virtex/Spartan-II FPGAs were
exploited to successfully achieve test time speed-up and reduction in memory storage
requirements for Logic BIST configurations. Useful knowledge was gained from the
implementation of Logic BIST, partial reconfiguration and partial configuration memory
readback. Although the study was done using the Virtex/Spartan-II family of devices,
 54
these approaches are also valid for other FPGA devices. The knowledge gained was
applied to the Virtex-4 family of FPGAs discussed in the next chapter.
 55
CHAPTER FOUR
Logic BIST for Virtex-4
4.1 Introduction
This chapter presents the implementation of Logic BIST on the Virtex-4 family of
FPGAs. The architecture for Logic BIST is described along with the details of the test
configurations and their timing analysis. Experimental results are presented for the
methods used to achieve test time speed-up and reduction of configuration memory
storage requirements, followed by analysis of the results and a summary. The work
presented in this chapter is primarily the work presented in [34] with some additional
details.

4.2 Virtex-4 Architecture
An overview of Virtex-4 architecture was presented in Chapter 2. In this chapter
the details of FPGA resources relevant to Logic BIST are discussed. The PLB of a
Virtex-4 FPGA consists of two SliceMs and two SliceLs. SliceL is illustrated in Figure
2.9. A SliceL has two LUTs, F and G, and storage elements, FFX and FFY, which can be
configured as flip-flops or latches. Multiplexers CYINIT, CYMUXF and CYMUXG are
used to implement the carry chain logic that spans the entire column of PLBs. DYMUX
and DXMUX are used to select the input to the storage element. F5MUX and FSMUX
 56
combine the LUTs of a PLB to implement combinational logic functions with greater
than four inputs. A pair of AND and XOR gates are provided for arithmetic functions.
CLK, CE and SR inputs provide common control inputs clock, clock enable and set/reset,
respectively, for the storage elements FFX and FFY. The REV control places a logic
value opposite to that determined by set/reset control signal in the storage element [10].
SliceMs feature extra circuitry like the write signal generator (WSGEN) and multiplexers
(DIGMUX and DIFMUX) for shift register and RAM modes of operation of the LUTs.
SliceM is illustrated in Figure 2.10.
The DSP cores in Virtex-4 FPGAs are arranged in columns as shown in Figure
2.7. There are two DSP cores for every four rows of PLBs in a DSP column. A DSP core
consists of an 18x18-bit multiplier and a 48-bit adder/subtractor/accumulator, which can
be configured to operate in different modes of operation as described in [35].

4.3 BIST Architecture
The BIST architecture is similar to the one used for Virtex/Spartan-II FPGAs. It is
modified to exploit the architectural features of Virtex-4 to achieve higher diagnostic
resolution. A column-based architecture is used for Virtex-4 for reasons similar to Logic
BIST for Virtex/Spartan-II. Figure 4.1 illustrates the Logic BIST architecture for Virtex-4
FPGAs.
 57
TPG
BUT
BUT
BUT
BUT
ORA
ORA
ORA
ORA
BUT
BUT
BUT
BUT
ORA
ORA
ORA
ORA
BUT
BUT
BUT
BUT
TPG
BIST
Control
Flip-Flops with BIST results
ORA
ORA
ORA
ORA
DSP Core

Figure 4.1 Logic BIST Architecture for Virtex-4 FPGAs

The PLBs in the FPGA are divided into alternate columns of BUTs and ORAs,
where each BUT is compared by two ORAs. The outputs of the BUTs on the edge of the
FPGA are compared by the ORAs on the other edge of the FPGA. This leads to a
circular-comparison based BIST architecture as shown in Figure 4.3. This technique was
originally developed for testing BlockRAMs of Virtex and Virtex-II FPGAs in [19]. It
was possible to implement circular-comparison for Logic BIST because of the abundance
of routing resources in Virtex-4 FPGAs.
All the primary outputs of a Virtex-4 PLB can be routed through the storage
elements, this feature allows testing of all four slices of a PLB simultaneously by
monitoring only eight outputs per PLB (one output per storage element). A PLB slice is
divided into two halves, where each half can be used to implement an ORA that
compares only one BUT output as shown in Figure 4.2. So, a total of eight independent
ORAs are implemented in a PLB that compare the eight BUT outputs. This leads to better
 58
diagnostic resolution, as each mismatch recorded in an ORA flip-flop now points to the
exact half of a faulty PLB slice. This approach may increase the number of
configurations required to test a PLB slice, but since few PLB outputs are observed, all
slices are tested simultaneously and minimal routing changes are required to test the
entire PLB, reducing partial reconfiguration file sizes. This may not be the case with
other approaches that try to monitor all PLB outputs because they require multiple slice
test sets to test all the slices and may require more configurations to test the entire PLB.
FFY
Data Out
BIST Clock
Feedback
BUT1 output 1
BUT2 output 1
FFX
Data Out
BIST Clock
Feedback
BUT1 output 2
BUT2 output 2
G - LUT
F - LUT

Figure 4.2 ORAs in a Single PLB slice

The configuration memory of Virtex-4 FPGAs is also organized in frames
oriented vertically, but unlike Virtex/Spartan-II, the frame size is fixed. A single frame is
associated with a fixed number of PLBs in a column instead of the entire column of
PLBs. The data stored in the flip-flops of PLBs can be captured in the configuration
memory by instantiating a CAPTURE_VIRTEX4 module in the design. The
CAPTURE_VIRTEX4 module defines which clock edge is used to capture flip-flop data
and whether it is captured once or multiple times. Configuration memory readback is
used to retrieve the frames of configuration memory that contain the BIST results in the
 59
ORA flip-flops. For speed-up in test time, partial configuration memory readback can be
used instead of full configuration memory readback. A single frame of Virtex-4 captures
the values contained in all the flip-flops of PLBs associated with that frame. This reduces
the total number of frames to be read to retrieve BIST results, thereby improving the test
time. The total number of frames (F) needed to be read is given by:
F = (R ?16) ? (C ? 2) = R ? C ? 32
where, R is the number of rows and C is the number of columns of the PLB array under
test. In the case of the XC4VLX25-10 FPGA which has 96 rows and 28 columns, only 84
frames need to be read back to obtain BIST results, as compared to 6022 frames for full
configuration memory readback.
Traditionally, two TPGs are implemented using a column of PLBs [3]. The
availability of DSP cores in newer FPGAs allow the use of DSPs to implement TPGs
instead of the PLBs. This approach frees up a column of PLBs that are now used to
implement an extra column of ORAs for circular comparison as shown in Figure 4.1.
Since at least two DSPs are available for every four rows of PLBs, two TPGs are
implemented (one TPG in each DSP) for every four rows of BUTs. This solves the issue
of TPG loading and improves fault detection, as a faulty TPG only affects the testing of
four rows of BUTs rather than the entire FPGA. An exhaustive set of test patterns is
generated by initializing the accumulator of the DSP to zero and repeatedly adding a
prime number ?0x691? to its contents [36]. One drawback of this approach is that the test
patterns generated are not pseudo-random in nature, unlike the LFSR-based TPGs used
for Virtex/Spartan-II. The 12 TPG outputs are connected to the 12 inputs of each of the
four slices of a BUT, providing identical test vectors to all four slices of a PLB.
 60
Logic BIST for Virtex-4 also uses Boundary Scan to access the configuration
memory of the FPGA. The details of configuration download and readback procedures
are described in [11]. Boundary Scan is also used to control the operation of BIST by
means of the user access registers in the BSCAN modules. The Boundary Scan interface
in Virtex-4 FPGAs features four BSCAN modules, two of which are used to implement
Logic BIST. BSCAN module 1, when selected, enables BIST clock which is sourced
from the TCK pin of the TAP. BSCAN module 2, when selected, disables the BIST clock
and generates a reset signal that resets all the ORAs and TPGs.
Two test sessions (East and West) are required to test all the PLBs. In a given test
session, only the BUTs are reconfigured multiple times to be tested completely. After the
first configuration of a test session is downloaded, partial reconfiguration can be used to
download the rest of the test phases to reduce the configuration download time. To keep
the partial reconfiguration files small, the routing changes are kept to a minimum for a
given test session. The routing between TPGs and BUTs is kept fixed and the routing
between BUTs to ORAs is changed only once in a given test session. Virtex-4 allows
multiple frames with identical data to be written simultaneously, where the frame data is
loaded only once and the address in the FAR is changed. This feature helps reduce the
partial reconfiguration file size since the Logic BIST architecture is a regular structure
and all BUTs in most configurations are configured identically. The test time can be
further reduced at the price of reduced diagnostic resolution by using dynamic partial
reconfiguration as explained in Chapter 3. Using this approach the contents of the ORA
flip-flops are not cleared when the BUTs are reconfigured and the BIST results are
retrieved only at the end of a test session.
 61

4.4 Logic BIST Configurations for Virtex-4
A total of 12 BUT configurations are required to completely test the logic
resources of a PLB, excluding the circuitry associated with the LUT RAM mode of
operation of SliceMs. For the first ten configurations only outputs XQ and YQ,
associated with the storage elements FFX and FFY, respectively, are observed by the
ORAs, completely testing SliceLs. Two extra configurations are required to test the logic
circuitry associated with the shift register mode of SliceMs. In this case outputs X and Y
of all four slices are observed by the ORAs. These 12 configurations also test the carry
chain logic and the routing associated with it, along with the dedicated inter-slice routing.
Therefore the total number of configurations required to test all the PLBs in the FPGA =
2 (test sessions) x 12 (test phases) = 24.

4.4.1 Fault Model and Fault Coverage
The gate-level stuck-at fault model is used for fault coverage analysis. Some of
the slice inputs cannot be accessed by resources external to the PLB, as they are only
connected to the outputs of other slices in the PLB. Therefore, the complete PLB was
modeled with dedicated inter-slice routing instead of individual slice models, leading to a
more accurate fault coverage analysis. The cumulative and individual fault coverage of
the 12 Logic BIST configurations is shown in Figure 4.3.
 62
0
500
1000
1500
2000
2500
3000
12345678910112
BIST Configuration #
Faul
t
s

D
e
t
e
ct
ed
0
10
20
30
40
50
60
70
80
90
100
Faul
t
 C
o
ver
a
ge %
Individual FC
Cumulative FC

Figure 4.3 Fault Coverage of a Virtex-4 PLB

These 12 BIST configurations do not detect the logic resources of the PLB
associated with the LUT RAM mode of operation like the WSGEN component, as they
can be tested using the test for LUT RAMs [34]. The route-throughs in the PLB and
breakpoints associated with PLB outputs not monitored by the ORAs are also not tested.

4.4.2 Configuration Details
The details of the 12 test configurations are summarized in Table 4.1.

63
Table 4.1 Configuration Details
LUT F/G FF X/Y
Config
Slice
Type LUT MODE MODEINITSRRESET
CY0G
/
CY0F
GYMUX
/
FXMUX
DYMUX
/
DXMUX
BY
BX
/SR
/CE
CLK
YBMUX
/
XBMUX
CYINT
REV
USED
SliceM
xor
/xnor
shift
register
ff 0 0 sync
prod
/prod
fx/f5 yb/xb
non-
inv
non-
inv
clk I1 bx no
1
SliceL
xor
/xnor
lut ff 0 0 sync
prod
/prod
fx/f5 yb/xb
non-
inv
non-
inv
clk I1 bx no
SliceM
xnor
/xor
shift
register
ff 1 1 async g2/f2 gxor /fxor
ymux
/xmux
inv inv clkinv I1 bx no
2
SliceL
xnor
/xor
lut ff 1 1 async g2/f2 gxor /fxor
ymux
/xmux
inv inv clkinv I1 bx no
SliceM
xor
/xnor
lut latch 1 1 async g3/f3 fx/f5
ymux
/xmux
inv
/non-
inv
non-
inv
clk I1 bx no
3*
SliceL
xor
/xnor
lut latch 1 1 async g3/f3 fx/f5
ymux
/xmux
inv
/non-
inv
non-
inv
clk I1 bx no
SliceM
xnor
/xor
lut latch 0 0 async 0/0 fx/f5 yb/xb
non-
inv
non-
inv
clk I1 bx no
4
SliceL
xnor
/xor
lut latch 0 0 async 0/0 fx/f5 yb/xb
non-
inv
non-
inv
clk I1 bx no
SliceM
aaaa
/5555
lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes

5

SliceL
aaaa
/5555
lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes

64
LUT F/G FF X/Y
Config
Slice
Type LUT MODE MODEINITSRRESET
CY0G
/
CY0F
GYMUX
/
FXMUX
DYMUX
/
DXMUX
BY
BX
/SR
/CE
CLK
YBMUX
/
XBMUX
CYINT
REV
USED
SliceM
5555
/aaaa
lut ff 1 1 async g2/f2 gxor /fxor yb/xb
non-
inv
non-
inv
clkinv I1 bx no
6
SliceL
5555
/aaaa
lut ff 1 1 async g2/f2 gxor /fxor yb/xb
non-
inv
non-
inv
clkinv I1 bx no
SliceM
xor
/xnor
shift
register
latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no
7*
SliceL
xor
/xnor
shift
register
latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no
SliceM
xnor
/xor
shift
register
ff 1 0 sync by/bx fx/f5 y/x
non-
inv
non-
inv
clk I1 bx yes
8
SliceL
xnor
/xor
shift
register
ff 1 0 sync by/bx fx/f5 y/x
non-
inv
non-
inv
clk I1 bx yes
SliceM
xor
/xnor
lut ff 1 1 sync
prod
/prod
fx/f5 by/bx inv inv clk I1 cin no
9
SliceL
xor
/xnor
lut ff 1 1 sync
prod
/prod
fx/f5 by/bx inv inv clk I1 cin no
SliceM
xnor
/xor
lut ff 0 0 sync by/bx gxor /fxor yb/xb
non-
inv
non-
inv
clk I1 cin/bx no
10*
SliceL
xnor
/xor
lut ff 0 0 sync by/bx gxor /fxor yb/xb
non-
inv
non-
inv
clk I1 cin/bx no
SliceM ffff
shift
register
ff 0 0 sync by/bx fx/f5 yb/xb
non-
inv
non-
inv
clk I0 bx no
11
SliceL ffff
shift
register
ff 0 0 sync by/bx fx/f5 yb/xb
non-
inv
non-
inv
clk I0 bx no

65
LUT F/G FF X/Y
Config
Slice
Type LUT MODE MODEINITSRRESET
CY0G
/
CY0F
GYMUX
/
FXMUX
DYMUX
/
DXMUX
BY
BX
/SR
/CE
CLK
YBMUX
/
XBMUX
CYINT
REV
USED
SliceM 0000
shift
register
ff 0 0 sync by/bx fx/f5 yb/xb
non-
inv
non-
inv
clk I0 bx no
12
SliceL 0000
shift
register
ff 0 0 sync by/bx fx/f5 yb/xb
non-
inv
non-
inv
clk I0 bx no

* These configurations were modified for fault detection. In these configurations all BUTs in the PLB array are not
configured identically but all BUTs in a row of PLBs are configured identically.
 66
Faults related to the FSMUX of Slice 3 of a Virtex-4 PLB are not detected if all
the BUTs are configured identically. In order to detect those faults, Configuration 3 was
modified such that the Slice 2 of any two adjacent BUTs in a column are configured with
opposite value of BYINV multiplexer. Configurations 7 and 10 were also modified
similarly for a timing issue related to the carry chain, explained in the next section. In this
case the input of CYINIT multiplexer of Slices 0 and 1 is BX in alternate rows of BUTs
and CIN for the remaining BUTs. This is reversed in Configuration 10 to completely
testing the carry chain logic.
Due to the timing skew of TPG signals, some BUTs were diagnosed as faulty
during BIST when asynchronous reset was used, similar to Logic BIST for
Virtex/Spartan-II FPGAs described in Section 3.6.2. To resolve this issue for Virtex-4,
two corrective measures were taken. Firstly, appropriate clock edge or active level was
chosen for the storage element, of the BUTs. The clock edge or active level was chosen
such that the storage element depending on its mode of operation (latch or flip-flop), was
immune to timing skew. The storage element during BIST assumed a value defined by
either the REV or set/reset input of the storage element, whichever changed last due to
timing skew. So, the second corrective measure was to turn off the revused breakpoint
internal to the PLB slice to disconnect the REV input from the storage element. This
removed the contention between REV and set/reset inputs. The same techniques can be
applied to Logic BIST for Virtex/Spartan-II FPGAs.
Storage elements of the Virtex-4 PLB are not cleared if dynamic partial
reconfiguration is used or if CAPTURE_VIRTEX4 module is instantiated. This prohibits
the initialization of the storage elements of BUTs after a test configuration download. In
 67
order to test the PLB storage elements for initialization, two full configuration downloads
are required to initialize the PLB storage elements to both high and low states. This can
be achieved by using full configuration downloads for both Configuration 1 and
Configuration 2, as they initialize the storage elements to high and low states,
respectively.

4.5 Timing Analysis
Timing analysis was performed for all the test configurations implemented on the
XC4VLX25-10 FPGA. Depending on the data collected, two configurations with the
slowest and the fastest clock frequencies were chosen. These two configurations were
analyzed for timing on Virtex-4 FPGAs of different sizes with a speed grade of 10 (10
being the slowest and 12 being the fastest speed grade). Figure 4.4 shows the fastest and
the slowest clock frequencies at which the BIST configurations can operate for Virtex-4
FPGAs with different sizes.
It is noticed that the maximum clock frequency is a function of the number
columns of PLBs, instead of the product of the number of rows and columns of PLBs, as
was in the case of previous Logic BIST implementations [3]. This was achieved because
the timing issues due to TPG loading were resolved for Virtex-4 by using a pair of TPGs
for every four rows of BUTs. The maximum BIST clock frequency for the XC4VLX25-
10 FPGA, for the first ten configurations, ranges from 70 to 150 MHz.
A major timing issue was discovered in Configuration 10 which tests the carry
chain logic. The critical path for this configuration included the carry chain from the
lowest PLB to the uppermost PLB in a column of BUTs. The excessive delay introduced
 68
by the carry chain made the maximum clock frequency for Configuration 10 a function of
the product of the number of rows and columns of PLBs. To avoid this situation, the
carry chain was broken up as described in Section 4.4.2 which led to an increase in the
maximum BIST clock frequency for the XC4VLX25-10 device from 40MHz to 140
MHz.

0
50
100
150
200
30 40 50 60 70 80
FPGA Columns
F
r
eq
u
e
n
cy (
M
H
z
)
LX Fastest
LX Slowest
SX Fastest
SX Slowest
FX Fastest
FX Slowest

Figure 4.4 Maximum BIST clock frequency vs. Device size

4.6 Logic BIST Configuration Generation Process
Two parameterized C programs were developed for generation of the Logic BIST
configurations of any PLB array size for all Virtex-4 FPGAs. The template generation
program generates the template configuration in XDL format with a dummy BUT
Safe BIST clock
frequency range
Maximum BIST clock
frequency range
 69
configuration. The template configuration file is converted to an NCD format and routed
using Xilinx tools. The routed template configuration file is then converted back to XDL
format. The template modification program modifies the BUT configurations of the
routed template configuration to generate all of the first ten test configurations. To
generate the last two test configurations that test the SliceMs in shift register mode, both
BUT configurations and BUT to ORA routing (X and Y outputs are monitored instead of
XQ and YQ) of the routed template configuration are changed. Using this approach the
routing of BIST architecture remains fixed for all configurations except for Configuration
11, resulting in generation of smaller partial reconfiguration files.
The Logic BIST structure for Virtex-4 can be defined for the entire FPGA or a
portion of the PLB array. The number of columns in the PLB array to be tested has to be
an even number greater than or equal to four, in order to implement circular comparison
as shown in Figure 4.1. The presence of PowerPC core in Virtex-4 FX FPGAs
complicates the implementation of Logic BIST, as shown in Figure 4.5. In the case of the
West session the BUTs on the edge of the PowerPC core are compared by only one ORA
instead of two, thereby losing some diagnostic resolution similar to the BUTs on the edge
of Virtex/Spartan-II FPGA. But, for the East session the BUTs near the edges of the
PowerPC core are compared by three ORAs instead of two without losing any diagnostic
resolution.

 70

Figure 4.5 BIST Architecture in Virtex-4 FX FPGAs

4.7 Methods for Application of BIST
Various methods were used to evaluate the speed-up in test time and reduction in
the memory required to store the BIST configurations. The following methods were used
for configuration:
FC - Full Configuration
PR - Partial Reconfiguration using Scenario 3 defined in Section 3.4
Full configuration of all the BIST configurations was used in the first method;
partial reconfiguration was used for all other methods. For the first ten test configurations
ORAs monitor the XQ and YQ outputs of all four slices of a BUT, so the first
configuration is a full configuration download followed by nine partial reconfiguration
downloads, since there are no routing changes. For Configurations 11 and 12, ORAs
monitor X and Y outputs. This leads to a change in the BUT to ORA routing, so
Configuration 11 is again a full configuration download followed by a partial
reconfiguration download for Configuration 12. Optimal ordering of the test
configurations was investigated to minimize the difference between successive test
 71
configurations for Virtex-4. But the reduction in partial reconfiguration files generated
was negligible due to the organization of the configuration memory and multiple frame
write feature of Virtex-4 FPGAs.
The following readback techniques were used for retrieval of BIST results:
FCRB - Full Configuration memory ReadBack after each test configuration
PCRB - Partial Configuration memory ReadBack after each test configuration
PCRE - Partial Configuration memory Readback at the End of a test session
FCRB was used for the first method, PCRB and PCRE were used to achieve
speed-up in BIST results retrieval. It can be noticed that scan chain of ORAs was not
implemented to retrieve the BIST results. From Logic BIST for Virtex/Spartan-II, it was
observed that even though the scan chain is much faster for BIST results retrieval, it
increases the total number of test configurations, thereby increasing the total test time.
Table 4.2 summarizes all the methods used for Logic BIST in Virtex-4.

Table 4.2 Methods used for Logic BIST
Method Configuration
BIST Results
Retrieval
Total Slice
test sets
Total number
of configurations
1 FC FCRB 2 24
2 PR FCRB 2 24
3 PR PCRB 2 24
4 PR PCRE 2 24

4.8 Results
Logic BIST was implemented on a Virtex-4 XC4VLX25-10 device and the
results of application of the four methods described earlier for test time speed-up and
reduction in configuration memory storage requirements are shown in Figure 4.6. Method
 72
1 was used primarily as a benchmark of the test time and memory storage requirements
for comparison with speed-up techniques like partial reconfiguration and partial
configuration memory readback applied in the other methods. Method 2 shows the
improvements by using partial reconfiguration over full configuration. Method 3 shows
the improvement after using partial configuration memory readback over full
configuration memory readback to retrieve BIST results. The improvement due to
dynamic partial reconfiguration is shown in Method 4.

0
2
4
6
8
10
12
14
1234
FC (FCRB) PR (FCRB) PR (PCRB) PR (PCRE)
Method #
Speedup
Memory Reduction
S
p
e
e
du
p/
M
e
m
o
r
y
 R
e
duc
t
i
o
n

Figure 4.6 Test time speed-up and reduction in memory storage requirements

An overall speed-up of 12.9 is observed using PCRE and a net reduction of
memory storage requirements by a factor of 5.3 is achieved using partial reconfiguration.
 73
Methods 1, 3 and 4 for Virtex-4 can be compared to Methods 1, 7 and 8 used for
Virtex/Spartan-II. A comparison of the results is given in Table 4.3

Table 4.3 Comparison of test time speed-up and reduction in memory storage
requirements of Virtex/Spartan-II and Virtex-4 FPGAs
Test time speed-up Memory reduction
Method
Virtex/Spartan-II Virtex-4 Virtex/Spartan-II Virtex-4
1 1 1 1 1
3 4.6 8.9 3.2 5.3
4 5.1 12.9 3.2 5.3

It is clear from Table 4.3 that the test time speed-up and reduction in memory
storage requirements are better in Virtex-4 than in Virtex/Spartan-II FPGAs. The ability
to write multiple frames with identical configuration data greatly reduces the partial
reconfiguration time. The configuration memory is better organized, as configuration data
for similar components is grouped together; the result is that fewer frames need to be
written when BUTs are reconfigured. Test time speed-up using partial configuration
memory readback is also enhanced, as fewer frames are read to retrieve the BIST results
captured in the ORA flip-flops. Fewer frames are read because the contents of all the flip-
flops in a column of a fixed number of PLBs are captured in a single frame instead of
being spread across multiple frames.

4.9 Summary
Logic BIST for Virtex-4 showed considerable improvement in test time speed-up
and reduction in memory storage requirements over Virtex/Spartan-II. Suitable
 74
modifications were made to the BIST architecture to exploit architectural and operational
features of the Virtex-4 FPGA in order to achieve better diagnostic resolution, faster test
times and reduced memory storage requirements. Although the Logic BIST approach
discussed pertains to Xilinx FPGAs, this approach can be applied to other FPGAs that
support similar features, like partial reconfiguration and partial configuration memory
readback.
 75
CHAPTER FIVE
Summary and Conclusions
This thesis presented the testing of programmable logic resources in Xilinx
FPGAs using BIST. Logic BIST configurations were developed for Virtex/Spartan-II and
Virtex-4 FPGAs. Emphasis was put on techniques to improve the use of BIST for
FPGAs. These include speed-up in test times due to the slow FPGA configuration process
and reduction in memory storage requirements because of the large number of test
configurations. Different techniques depending on the architectural and operational
features of the FPGA were applied and their effects were studied for the speed-up in test
time and reduction in memory storage requirements. The following sections in this
chapter present a brief summary of the main contributions of the work presented in the
thesis. Areas for future work are also proposed, along with a short discussion regarding
the implementation of Logic BIST using embedded processors.

5.1 Thesis Summary and Main Contributions
The Logic BIST architecture was essentially derived from previous work done for
Lucent ORCA and Xilinx 4000 series FPGAs. The BIST architecture was modified for
Virtex/Spartan-II and Virtex-4 FPGAs to test their logic resources. The main contribution
 76
of the work presented in this thesis was investigation of different techniques to reduce the
test time and memory storage requirements for implementing Logic BIST.
A PLB slice of Virtex/Spartan-II FPGA was modeled for fault simulations, based
on which the test configurations were developed. Most of the test time is devoted to
configuration download rather than actual testing of the FPGA, so a reduction in the size
of configuration files is a logical way to reduce the test time. This was achieved by using
partial reconfiguration in a column-oriented Logic BIST architecture for Virtex/Spartan-
II FPGAs. The test configurations were applied in a specific order such that the size of
partial reconfiguration files was as small as possible. The scan chain method previously
used for retrieval of BIST results, although faster, increased the total number of
configurations required to test a PLB. Configuration memory readback was used instead
of using a scan chain. This reduced the total number of configurations but continued to
have a long test time as retrieval of BIST results was time consuming with full
configuration memory readback. Partial configuration memory readback was used to
overcome this issue and achieve the desired speed-up in BIST results retrieval time.
Dynamic partial reconfiguration was used to further reduce the BIST results retrieval
time by reading ORA contents at the end of a test session rather than a test phase. Two
?C? programs were developed to automate the generation of the Logic BIST
configurations.
For Virtex-4 FPGAs, three major changes were made to the Logic BIST
architecture. Firstly, the DSP cores were used instead of PLBs to implement TPGs. A
pair of TPGs was used for every four rows of BUTs, which greatly reduced the TPG
loading and hence improved the maximum BIST clock frequency. Secondly, circular
 77
comparison was implemented to improve the diagnostic resolution of BUTs on the edge
of the BIST architecture. Thirdly, the diagnostic resolution was further improved using
eight ORAs per PLB rather than one. The techniques used for test time speed-up and
reduction of memory storage requirements for Virtex/Spartan-II FPGAs were also
applied to the Virtex-4 FPGA. The results obtained were better for Virtex-4 due to the
enhanced architectural and operational features. The entire Virtex-4 PLB was modeled
for more accurate fault coverage analysis, based on which the test configurations were
developed. Two parameterized ?C? programs were developed to generate BIST
configurations for any size PLB array in any of the Virtex-4 FPGAs.

5.2 Application to Embedded Processors
The Logic BIST approach was also applied to Virtex-II Pro FPGAs using
embedded processors. Traditionally, an external source like a personal computer is used
to download BIST configurations and run BIST, which is slow. The embedded processor
can be used instead to internally run BIST and reconfigure BUTs [38]. This significantly
speeds up the test time, as the number of external downloads are reduced and BIST runs
at a much higher clock frequency [39]. For Xilinx FPGAs, the basic approach is to divide
the FPGA into two halves; one consists of the Logic BIST structure and the other consists
of the embedded processor. The embedded processor and the Logic BIST structure are
swapped, after one half of the FPGA has been completely tested, to test the entire FPGA.
The goal is to automate Logic BIST as much as possible using the embedded processor
and achieve test time speed-up. The work done on Virtex-II Pro indicated that the
 78
embedded processor and Logic BIST structure can be successfully integrated and the
processor can read and write to the configuration memory.

5.3 Areas for Future Research and Development
The next step to achieve speed-up is to use an embedded processor to assist Logic
BIST, as described in the previous section. Once a configuration is downloaded with a
BIST structure in one half and an embedded processor in the other, the processor should
be able to perform all the other functions for a test session, which include running BIST,
retrieval and analysis of BIST results, and reconfiguration of BUTs in different modes of
operation.
The current procedure for developing Logic BIST configurations is slow and
tedious. Work can be done to automate the process of fault simulation and generation of
BIST configurations by possibly using a generic BIST architecture described in a
Hardware Description Language that can be synthesized for a new FPGA architecture
with minor modifications. The work presented in this thesis was developed for Xilinx
FPGAs only. Similar work can be done for testing the logic resources of different FPGA
architectures from different FPGA manufacturers. The effects of the techniques used for
test time speed-up and better diagnostic resolution can also be explored for other FPGAs
and other programmable resources in FPGAs.
 79
REFERENCES
[1] B. Arnaldo, ?Systems on Chip: Evolutionary and Revolutionary Trends?, Proc. of
Intn?l Conf. on Computer Architecture, pp. 121-128, 2002.
[2] M.J.S. Smith, Application Specific Integrated Circuits, Addison-Wesley, 1997.
[3] M. Abramovici, C. Stroud, ?BIST-Based Test and Diagnosis of FPGA Logic
Blocks?, IEEE Trans. on VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001.
[4] K. Mori, H. Yamada, S. Takizawa, ?System on Chip Age?, Proc. of Intn?l Symp.
on VLSI Technology, Systems, and Applications, pp. K15-K20, 1993.
[5] M.L. Bushnell, V.D. Agrawal, Essentials of Electronics Testing for Digital,
Memory & Mixed Signal VLSI Circuits, Kluwer Academic Publishers, Boston,
MA, 2000.
[6] C. Stroud, A Designer?s Guide to Built-In Self-Test, Kluwer Academic Publishers,
Boston MA, 2002.
[7] C. Stroud, K. Leach, T. Slaughter, ?BIST for Xilinx 4000 and Spartan Series
FPGAs: A Case Study?, Proc. of Intn?l Test Conf., pp. 1258-1267, 2003.
[8] __, ?Virtex Field Programmable Gate Arrays?, Product Specification DS003-1,
Xilinx Inc., 2001.
[9] __, ?Virtex-4 Family Overview?, Product Specification DS-112, Xilinx Inc., 2005.
[10] __, ?Virtex-4 User Guide?, UG070, Xilinx Inc., 2005.
 80
[11] __, ?Virtex-4 Configuration Guide?, UG071, Xilinx Inc., 2005.
[12] __, ?Spartan-II 2.5V FPGA Family: Introduction and Ordering Information?, DS-
001, Xilinx Inc., 2004.
[13] J.M. Rabaey, A. Chandrakasan, B. Nikoli?, Digital Integrated Circuits: A Design
Perspective, 2
nd
 Edition, Pearson Education, 2003.
[14] __, ?Two Flows for Partial Reconfiguration: Module Based or Difference Based?,
Application Note XAPP290, Xilinx Inc., 2003.
[15] J. Rose, A.E. Gamal, A. Sangivanni-Vincentelli, ?Architecture of Field-
Programmable Gate Arrays?, Proc. of IEEE, Invited Paper, pp. 1013-1029, 1993.
[16] C. Stroud, J. Sunwoo, S. Garimella, J. Harris, ?Built-In Self-Test for System-on-
Chip: A Case Study?, Proc. of Intn?l Test Conf., pp.837-846, 2004.
[17] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, V. Verma, ?Using Roving
STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant
Applications?, Proc. of Intn?l. Test Conf., pp. 973-982, 1999.
[18] M. Abramovici, C. Stroud, B. Skaggs, J. Emmert, ?Improving On-Line BIST-
Based Diagnosis for Roving STARs?, Proc. of Intn?l On-Line Test Workshop, pp.
1-39, 2000.
[19] C. Stroud, S. Garimella, ?Built-in Self-test and Diagnosis of Multiple Embedded
Cores in SoCs?, Proc. of Intn'l Conf. on Embedded Systems and Applications, pp.
130-136, 2005.
[20] C. Stroud, S. Wijesuriya, C. Hamilton, M. Abramovici, ?Built-In Self-Test of
FPGA Interconnect?, Proc. of Intn?l Test Conf., pp. 404-411, 1998.
 81
[21] C. Stroud, P. Chen, S. Konala, M. Abramovici, ?Evaluation of FPGA Resources
for Built-In Self-Test of Programmable Logic Blocks?, Proc. of ACM Intn?l.
Symp. on FPGAs, pp. 107-113, 1996.
[22] W. K. Huang, F. Lombardi, ?An Approach to Testing Programmable/Configurable
Field Programmable Gate Arrays?, Proc. of VLSI Test Symp., pp. 450-455, 1996.
[23] W. K. Huang, F. J. Meyer, X. Chen, F. Lombardi, ?Testing Configurable LUT-
based FPGAs?, IEEE Trans. on VLSI Systems, pp. 276-283, 1998.
[24] M. Renovell, Y. Zorian, ?Different Experiments in Test Generation for Xilinx
FPGAs?, Proc. of Intn?l Test Conf., pp. 854-862, 2000.
[25] M. Renovell, J. Portal, J. Figueras, Y. Zorian, ?Testing the Interconnects of RAM-
based FPGAs?, IEEE Design and Test of Computers, vol. 15, pp. 45-50, 1998.
[26] I. G. Harris, R. Tessier, ?Interconnect Testing in Cluster-based FPGA
Architectures?, Proc. of Design Automation Conf., pp. 49-54, 2000.
[27] S. Wang, C. Huang, ?Testing and Diagnosis of Interconnect Structures in FPGAs?,
Proc. of Asian Test Symp. , pp. 283-287, 1998.
[28] S. Wang, T. Tsai, ?Test and Diagnosis of Faulty Logic Blocks in FPGAs?, Proc. of
Intn?l Conf. on Computer-Aided Design, pp. 722-727, 1997.
[29] A. Newalkar, ?Alternative Techniques for Built-In Self-Test of Field
Programmable Gate Arrays?, Master?s Thesis, Auburn University, 2005.
[30] IEEE Standards Board, 345 E. 47
th
 St. New York 10017, IEEE Standard Test
Access Port and Boundary-Scan Architecture, 1994. IEEE/ANSI Standard 1149.1-
1994.
 82
[31] S. Dhingra, S. Garimella, A. Newalkar, C. Stroud, ?Built-In Self-Test of Virtex
and Spartan II using Partial Reconfiguration?, Proc. of North Atlantic Test
Workshop, pp. 7-14, 2005.
[32] __, ?Virtex Series Configuration Architecture User Guide?, Application Note
XAPP151, Xilinx Inc., 2003.
[33] __, ?Virtex FPGA Series Configuration and Readback?, Application Note
XAPP138, Xilinx Inc., 2003.
[34] S. Dhingra, D. Milton, C. Stroud, ?BIST for Logic and Memory Resources in
Virtex-4 FPGAs?, Proc. of North Atlantic Test Workshop, pp. 19-27, 2006.
[35] __, ?XtremeDSP for Virtex-4 FPGAs User Guide?, UG073, Xilinx Inc., 2005
[36] S. Gupta, J. Rajski, J. Tyszer, ?Test Pattern Generation Based on Arithmetic
Operations?, Proc. of Intn?l Conf. on Computer-Aided Design, pp. 117-124, 1994
[37] S. Garimella, ?Built-In Self-Test for Regular for Regular Structure Embedded
Cores in System-on-Chip?, Master?s Thesis, Auburn University, 2005
[38] J. Sunwoo, C. Stroud, ?BIST of Configurable Cores in SoCs Using Embedded
Processor Dynamic Reconfiguration?, Proc. of Intn'l SoC Design Conf., pp. 174-
177, 2005
[39] C. Stroud, S. Garimella, J. Sunwoo, ?On-Chip BIST-Based Diagnosis of
Embedded Programmable Logic Cores in SoCs?, Proc. of ISCA Intn'l Conf. on
Computers and their Applications, pp. 308-313, 2005

