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Field Programmable Gate Arrays (FPGAs) are programmable logic devices that 

can be used to implement virtually any digital circuit design. Built-In Self-Test (BIST) is 

a testing approach that enables the device to test itself without any external test 

equipment. The re-programmability feature of the FPGAs makes BIST a very attractive 

approach for testing FPGAs because it eliminates any area or performance degradation 

associated with BIST.  

Traditional BIST for FPGAs suffers from long test times and large memory 

storage requirements due to the slow configuration download speeds and the large 

number of test configurations required to test the FPGAs. The work presented in this 

thesis implements testing of logic resources of Xilinx Virtex/Spartan-II and Virtex-4 

FPGAs with focus on reduction of test time and memory storage requirements using 
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techniques like dynamic partial reconfiguration and partial configuration memory 

readback. 

The total number of configurations required to completely test the logic resources 

are 28 for Virtex/Spartan-II FPGAs and 24 for Virtex-4 FPGAs. A speed-up of 5.1 times 

and 12.9 times in test time was achieved for Logic BIST for Virtex/Spartan-II and Virtex-

4 FPGAs respectively, using dynamic partial reconfiguration and partial configuration 

memory readback. A reduction in configuration memory storage requirements was also 

achieved using partial reconfiguration; this reduction was 3.2 times and 5.3 times for 

Virtex/Spartan-II and Virtex-4 FPGAs respectively. 
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CHAPTER ONE 

Introduction 

Rapid advances in semiconductor processing technologies have allowed transistor 

densities to double every two years; this phenomenon has led to new opportunities in 

Very Large Scale Integration (VLSI) design and new challenges in design verification 

and testing [1]. The growing complexity of design has made programmable logic devices 

like Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic 

Devices (CPLDs) some of the leading products in the semiconductor industry, as they 

provide an easy way to implement and verify complex digital designs. 

Every innovation in Integrated Circuit (IC) design is accompanied by new 

challenges in testing. The test systems accordingly are becoming faster, more complex 

and hence more expensive. Cost and time are two of the most important factors that 

govern the development of any kind of test system. Built-In Self-Test (BIST) is one 

technique which reduces the cost and time overheads involved in external test systems. It 

is a technique that places a device’s testing function within the device itself [6]. 

 

1.1 Field Programmable Gate Arrays (FPGAs)  

FPGAs are programmable logic devices that can be configured or programmed to 

perform tasks specific to any digital application. The FPGAs gained popularity due to 
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their flexibility and short time-to-market, making them ideal for prototyping systems and 

low volume products. The design to be implemented in an FPGA is converted to a string 

of bits called the configuration file using tools provided by the FPGA manufacturer. The 

configuration file is used to program the memory elements inside the FPGA that control 

the functionality of the programmable components of the FPGA to implement the 

required design [2]. Traditionally, the entire configuration memory of an FPGA is 

rewritten with configuration data if the design needs to be modified; this is called full 

reconfiguration. Current FPGAs have the ability to be configured partially such that only 

the section of the configuration memory that changes due to the design modifications is 

rewritten with new configuration data. This configuration technique is known as partial 

reconfiguration [13] [14]. 

An FPGA typically consists of an array of Programmable Logic Blocks (PLBs), 

programmable interconnect network, Input/Output Buffers (IOBs) and embedded cores 

like memory blocks. The PLBs form the logic resources of an FPGA and usually consist 

of look-up tables, flip-flops and multiplexers. The programmable interconnect network is 

comprised of wire segments and programmable switches that connect or disconnect the 

wire segments. PLBs can be configured and connected to each other using the 

programmable interconnect network to implement virtually any combinational or 

sequential circuit. The IOBs are used to interface the circuit to the outside world [13]. A 

current trend in FPGAs is to embed pre-designed Intellectual Property (IP) cores into the 

FPGA. These IP cores include memory blocks like Random Access Memories (RAMs) 

and Digital Signal Processor (DSP) blocks to improve application-specific performance. 

Figure 1.1 shows the architecture of a typical FPGA.  
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Programmable Logic
Block (PLB)

Programmable 
Interconnect

Network

Input Output
Buffer (IOB)Embedded Cores

(E.g. Memory)  

  Figure 1.1  FPGA Architecture 

 

1.2 Testing and BIST 

A quality product can be delivered only if it has been tested thoroughly. Testing is 

done to ensure fault-free operation of a circuit. In order to test any circuit, a mechanism is 

needed to apply a set of input stimuli to the Circuit Under Test (CUT) and another 
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mechanism is required to analyze or compare the output response with the response of a 

known good circuit to determine whether the circuit is fault-free or faulty [5]. 

The input stimuli in case of external test systems are applied and the output 

response is analyzed or compared externally. In case of BIST, the test system is 

integrated within the system itself; the input stimuli are applied and the output response is 

analyzed internally within the system. The BIST technique involves addition of extra 

circuitry to an existing design. There are many variations in BIST depending on the CUT, 

but they all have a common purpose, which is to generate test patterns and analyze the 

output responses of the CUT [6]. A typical implementation of BIST consists of a Test 

Pattern Generator (TPG) for the CUT, input isolation circuitry for isolation of the primary 

inputs of the CUT during testing, an Output Response Analyzer (ORA) for verification of 

proper operation of the CUT, and control circuitry for execution of the test procedure as 

shown in Figure 1.2. 

 

 

Figure 1.2  Basic BIST Architecture [6] 

 

The external test approach is best suited for circuits that allow access to all the I/O 

pins for testing. Over the past two to three decades, the number of I/O pins on most very 
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large scale integration devices has increased by an order of magnitude while the number 

of transistors has increased by as much as four orders of magnitude [6]. This has resulted 

in reduced accessibility of the ICs; making external test systems more complicated and 

expensive. BIST on the other hand is much simpler and inexpensive, as external test 

equipment is absent. Moreover, BIST techniques can be used at any level of testing 

ranging from manufacturing level testing to system level testing. Major drawbacks of the 

BIST technique are additional design requirements, area overhead and performance 

penalty [6]. The drawbacks of BIST are easily compensated by the advantages it offers. 

BIST has been successfully implemented in many digital logic designs and finds special 

use in testing of FPGAs. 

 

1.3 FPGA BIST 

The growing popularity of FPGAs in the VLSI industry has fueled research on 

new methodologies for testing these FPGAs. The re-programmability of FPGAs makes 

them harder to test as compared to regular structures. This is due to the fact that the 

FPGA can be operated and connected in many ways internally; as a result, it must be 

configured multiple times in order to be tested completely. But, due to the in-system re-

programmability of the FPGAs, they can be configured to test themselves [6]. The idea is 

to program the BIST circuitry in a part of the FPGA and treat the rest of the FPGA as the 

CUT. Once the CUT is completely tested, a reversal of roles takes place, as the part of the 

FPGA used for BIST circuitry now becomes the CUT and vice versa. This process is 

illustrated in Figure 1.3. 
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Figure 1.3  BIST in FPGAs 

 

The BIST circuit can be designed in a number of ways to provide high resolution 

diagnostics for the FPGA, opening the door for fault-tolerant systems which was 

previously not possible with external test systems [3]. Moreover, BIST implemented in 

FPGAs does not suffer from any kind of area or performance overhead compared to 

conventional BIST techniques, as the BIST circuitry can be easily replaced by re-

programming the FPGA with the system function after test [3].  

Considerable work has been done in the area of BIST for FPGAs. Depending on 

the resources to be tested, some of the PLBs of an FPGA are configured as Test Pattern 

Generators and Output Response Analyzers, forming the BIST circuitry which tests the 

targeted resources in the FPGA [7]. An FPGA is reconfigured repetitively for testing and, 

as a result, a major portion of the time required to test the FPGAs is spent re-configuring 

them, i.e. downloading BIST configuration data into the FPGA.  

The majority of an FPGA is comprised of routing and logic resources [15]. So not 

surprisingly, most of the research and development work done in the area of BIST for 
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FPGAs has been for its logic and routing resources [3] [7] [17] [20] [23] [27]. A generic 

approach cannot be used to completely test an FPGA since different fault models and test 

techniques are used to test logic and routing resources. The work presented in this thesis 

focuses on BIST for programmable logic resources only. Although considerable work has 

been done in the area of BIST for logic resources of an FPGA, the BIST technique for the 

testing logic resources presented in this thesis is most influenced by work described in [3] 

and [7]. A BIST approach for testing the PLBs of ORCA series FPGAs was presented 

along with a procedure for diagnosis and location of faulty PLBs in [3].  The BIST 

technique presented in [3] was extended to Xilinx XC4000 and Spartan series FPGAs to 

completely test their logic and routing resources in [7].  

 
1.4 Xilinx FPGAs 

The FPGAs used for the work presented in this thesis are Xilinx Virtex/Spartan-II 

and Virtex-4 FPGAs. Virtex/Spartan-II family of FPGA devices consist of primarily an 

array of PLBs, IOBs and memory blocks as shown in Figure 1.1 [8]. The Virtex-4 family 

of FPGAs combine a traditional FPGA with embedded processors, multipliers and high 

speed I/O interfaces in one package [9]. The architectural and operational features of 

these FPGAs can be exploited for implementation of BIST to speed-up the test time and 

also reduce the amount of memory required to store all the test configurations [16].  

 

1.5 Thesis Statement 

The research work presented in this thesis, primarily focuses on ways to improve 

BIST implementation for programmable logic resources of FPGAs. This involves 
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reduction in test time, improvement in diagnostic resolution and reduction in memory 

storage requirements for BIST configurations. This work builds upon the previous work 

done in the area described in [3] [7] [17] [18] [19] [29], extending to newer FPGA device 

families using techniques like partial reconfiguration and partial configuration memory 

readback. The target devices for this research are the Xilinx Virtex/Spartan-II and Virtex-

4 family of devices. Configurations for BIST for programmable logic of Virtex/Spartan-II 

series FPGAs are developed along with methods to improve the test time. In case of the 

Virtex-4 family of devices, a set of BIST configurations for PLBs is developed and using 

architectural and operational features, further improvement in test time and reduction in 

configuration memory storage requirements is achieved.  

The thesis is organized as follows: Chapter 2 describes the previous work done in 

the area of BIST for programmable logic resources and elaborates upon the architectures 

of Virtex/Spartan-II and Virtex-4 FPGAs. Implementation and experimental results of 

BIST for programmable logic resources in the Virtex/Spartan-II family of FPGAs is 

described in Chapter 3.  Chapter 4 presents the implementation of BIST for 

programmable logic resources in the Virtex-4 FPGAs along with experimental results. 

Chapter 5 concludes the thesis with suggestions for future work and a discussion 

regarding the potential use of an embedded processor to assist in BIST. 
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CHAPTER TWO 

Background 

This chapter covers the background knowledge required to understand the 

research work presented in the following chapters. It begins with an overview of the 

architectures and configuration process of the Virtex/Spartan-II and Virtex-4 FPGAs used 

for the work presented in this thesis. This is followed by a discussion of prior work done 

in FPGA testing and BIST for testing the programmable logic resources of an FPGA. The 

chapter concludes with a restatement of the thesis goals. 

 

2.1 FPGA Architectures 

A typical FPGA consists of an array of PLBs, programmable interconnects, IOBs 

and RAM cores. The PLB array is interleaved with RAM cores and IOBs are arranged on 

the periphery as shown in Figure 1.1. Newer FPGAs have additional embedded cores like 

DSP cores, embedded microprocessors, and high-speed I/O interface for better system 

performance [13]. A design can be programmed into the FPGA by writing data to the 

configuration memory of the FPGA. The configuration memory then defines the function 

of the various programmable components of an FPGA. The following sub-sections 

describe the major components of Xilinx Virtex/Spartan-II and Virtex-4 series FPGAs. 
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2.1.1 Configuration Memory 

All programmable devices have some kind of memory elements which connect or 

break connections in a programmable device to establish the desired functionality. Figure 

2.1 illustrates a memory element that determines the connection between two lines [2].  

 

 

Figure 2.1  Configuration Memory Element 

 

A memory element can be an anti-fuse, a floating-gate transistor, as in Read-Only 

Memory (ROM)/Flash memory, or a Static RAM (SRAM) cell. Most modern FPGAs use 

SRAM based memory elements which can be reprogrammed quickly in-system [2]. 

Xilinx Virtex/Spartan-II and Virtex-4 FPGAs are SRAM based, the drawback being 

volatile configuration memory. This means that the FPGA needs to be configured with 

the desired system function every time it is powered up, as the configuration memory 

elements lose their data on loss of power [11]. The configuration memory is spread 

across the entire device and is organized into smaller addressable segments called frames 

in the case of Xilinx devices. The size of the configuration memory varies depending on 

the size of the FPGA [11]. 
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2.1.2 Programmable Interconnects, IOBs, Memory and DSP 

All components in the FPGAs are connected using some type of routing 

resources; as a result the programmable interconnect network forms the biggest part of an 

FPGA [10]. The programmable interconnect network consists of wire segments that are 

connected or disconnected using Programmable Interconnect Points (PIPs), these PIPs 

are essentially switches controlled by configuration memory bits. A collection of these 

PIPs form a switch-matrix that is used in conjunction with wire segments to connect to 

various components of the FPGA like PLBs and RAMs. The routing resources of an 

FPGA are organized in a hierarchical manner that includes local, I/O, dedicated and 

global routing resources. Local routing resources include internal wire segments of a 

component for direct connections between adjacent components and switch matrices. I/O 

routing resources connect the internal components of the FPGA to the IOBs. Dedicated 

routing resources are used to implement high speed buses for better performance. Global 

routing consists of buffered nets used to route high-fanout signals like clock and reset [8] 

[9].  

Over the years memory cores have become an integral part of the FPGA, as any 

kind of modern digital design requires storage capability. The memory cores, also known 

as BlockRAMs in Xilinx FPGAs, can be configured to operate in different modes 

depending on the data width and the size of the memory required. The BlockRAM in 

Xilinx FPGAs is a dual-port RAM that has two ports that can read and write to the 

memory simultaneously. To connect the FPGAs to the outside world, IOBs are provided 

which can be configured to be compatible with different IO standards, drive capabilities 
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and speeds [10]. Newer FPGAs have specialized DSP cores to implement high 

performance digital signal processing functions, these DSP cores typically consist of 

dedicated multipliers, adders and accumulators [10]. 

 

2.1.3 Programmable Logic Resources 

The PLBs of Xilinx FPGAs are divided into smaller units of logic called slices. 

Each slice typically consists of a pair of logic cells, where a logic cell is comprised of a 

Look-Up Table (LUT), a storage element, some carry logic circuitry and multiplexers. 

Figure 2.2 illustrates a typical PLB slice of a Xilinx FPGAs. The LUT in Xilinx FPGAs 

can also be used to implement a shift register or a small RAM (16-bit for a 4-input LUT); 

these small RAMs are called distributed RAMs or Look-Up Table RAMs (LUT RAMs). 

Virtex/Spartan-II FPGAs have two identical slices per PLB [8] [12], whereas a Virtex-4 

PLB consists of two different kind of slices, named SliceL and SliceM. The LUTs in 

SliceM can be used to implement LUT RAMs or shift registers, whereas LUTs in SliceL 

do not have this feature [10]. A Virtex-4 PLB consists of two SliceLs and two SliceMs 

for a total of four slices.  
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Figure 2.2  Typical PLB Slice of a Xilinx FPGA 

 

Table 2.1 shows the various resources available in Virtex/Spartan-II and Virtex-4 

families of FPGAs. Although Spartan-II and Virtex are separate families of FPGAs, 

Spartan-II is essentially derived from the Virtex architecture with fewer features and 

lower performance for lower cost. The Virtex-4 family of FPGAs is sub-divided into 

three sub-families: 

• LX: for logic applications (higher logic resources) 

• SX: for DSP applications (higher DSP resources) 

• FX: for embedded applications (embedded processor, Rocket IO and Ethernet 

cores) 
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Table 2.1  Resources available in different FPGA families [8] [12] [9] 

Resource Spartan-II Virtex Virtex-4 LX Virtex-4 SX Virtex-4 FX
Largest PLB  
Array Size 
(Rows x Columns) 

28 x 42 64 x 96 192 x 116 128 x 48 192 x 84 

PLBs 1,176 6,144 22,272 6,144 16,128 
Logic slices 2,352 12,288 89,088 24,576 64,152 
Distributed RAM 74 Kbits 384 Kbits 1,392 Kbits 384 Kbits 987 Kbits 
BlockRAMs 56 Kbits 184 Kbits 6,048 Kbits 5,760 Kbits 9,936 Kbits 
I/O pins 284 512 960 640 896 
DSP cores - - 96 512 192 

 

2.2 Virtex/Spartan-II Architecture 

The architecture of a Virtex/Spartan-II FPGA is shown in Figure 2.3. An array of 

PLBs and associated routing resources is at the core of the FPGA. A column of 

BlockRAMs is placed at the east and west edges of the PLB array. The IOBs and the 

Delay Locked Loops (DLL) for clocks are located at the periphery of the FPGA. The 

BlockRAMs and PLBs are surrounded by additional routing resources, primarily used to 

connect the internal resources of the FPGA to the I/O pins of the FPGA. 
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Figure 2.3  Virtex/Spartan-II Architecture 

 

A Virtex/Spartan-II PLB consists of a pair of identical slices which are connected 

to a switch matrix as illustrated in Figure 2.4. The switch matrix is responsible for routing 

the signals in and out of the PLB. These PLBs also feature a carry chain that spans the 

entire column of PLBs. Each PLB slice has dedicated circuitry associated with the carry 

chain to implement fast arithmetic functions like an adder using look-ahead carry.  
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Figure 2.4  PLB of a Xilinx Virtex series FPGA 

 

The internal architecture of a Virtex/Spartan-II PLB slice is illustrated in Figure 

2.5. A single LUT of a Virtex/Spartan-II PLB can be used to implement any 4-input 

combinational logic function. It can also operate as a 16x1-bit RAM. Two LUTs of a 

PLB can be combined to form single-port 32x1-bit, 16x2-bit or a dual-port 16x1-bit 

RAM. The storage element can be operated either as a positive or negative edge-triggered 

flip-flop or as an active low or an active high level-sensitive latch. Storage elements have 

control signals including set/reset and clock-enable that are shared by all storage elements 

within a slice [8]. All four LUTs of the PLB can be combined using control logic and 

multiplexers provided in the PLB slices to implement any combinational logic function of 

up to six inputs. The PLBs feature dedicated logic like XOR gates and AND gates in 

order to implement fast arithmetic logic.[8]. 
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Figure 2.5  Virtex/Spartan-II PLB Slice [8] 

 

The configuration memory of Virtex/Spartan-II FPGAs is divided into frames. 

The number frames per column of PLBs and associated routing is fixed at 48 frames as 

shown in Figure 2.6. The frame size varies from 12 words of 32 bits each for the smallest 

device to 39 words for the largest device in the Virtex family, depending on the number 

of PLB rows in the FPGA. The IOB frames are on the edges of the FPGA followed by 

the BlockRAM frames. The PLB frames also have some IOB configuration data at the 
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start and end of the frame. The Centre column consists of frame data for global clocks 

[32].  
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Figure 2.6  Configuration memory structure of Virtex FPGAs 

 

2.3 Virtex-4 Architecture 

The architecture of Virtex-4 FPGAs is different from Virtex/Spartan-II FPGAs, as 

illustrated in Figure 2.7. The PLBs and routing resources are spread across the entire 

FPGA. The I/O buffers are arranged in columns inside the FPGA, unlike Virtex/Spartan-

II FPGAs that have IOBs only on the edges of the FPGA. Columns of BlockRAMs and 

DSP cores are interleaved with columns of PLBs. Virtex-4 FPGAs have up to 12 columns 

of BlockRAMs and 8 columns of DSP cores. The Virtex-4 FX family also features up to 

two embedded PowerPC cores. 
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Figure 2.7  Virtex-4 Architecture 

  

The PLB of a Virtex-4 FPGA is comprised of four slices, two SliceLs and two 

SliceMs as shown in Figure 2.8. All four slices are interconnected and similar slices are 

placed together in a column. Both pairs of slices have an independent carry chain 

spanning the entire column. The LUTs of SliceM also feature a Shift Register and a RAM 

mode of operation, consequently SliceMs feature a shift chain that can be used to 

combine SliceMs in single or multiple PLBs to form a long shift register [10]. 
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Figure 2.8  Diagram of a Xilinx Virtex-4 series FPGA PLB 

 

The slices in Virtex-4 feature two 4-input LUTs, denoted F and G, two storage 

elements, carry logic, multiplexers and some arithmetic gates. The LUTs can be used as a 

4-input LUT, up to a 16-bit shift register (SliceM only) or a 16-bit LUT RAM (SliceM 

only). The storage elements can be configured as positive or negative edge-triggered flip-

flops or active high or active low level-sensitive latches with clock-enable control 

capability. They can be initialized to high or low value after download and set/reset 

synchronously or asynchronously during operation. Multiplexers present in the slices are 

used to cascade LUTs in multiple slices or PLBs to form up to 64x1 LUT RAM in a 

single PLB or a 64-bit shift register using a single PLB (multiple PLBs can be cascaded 

to form larger shift registers). A PLB has two carry chains that are directed vertically 

upwards, the carry chain logic in the slices is used to implement look-ahead carry 

functions. A pair of AND and XOR gates are provided in a slice as dedicated arithmetic 
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gates for efficient utilization of the logic resources [10]. The internal architectures of 

Virtex-4 SliceL and SliceM are illustrated in Figures 2.9 and 2.10, respectively. 

 

 

Figure 2.9  Virtex-4 SliceL [10] 
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Figure 2.10  Virtex-4 SliceM [10] 
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The Configuration memory of a Virtex-4 FPGA is divided into frames of fixed 

size of 41 words of 32 bits each. These frames span a fixed number of rows of an FPGA 

column, unlike Virtex/Spartan-II frames that span the entire column. Frames are grouped 

together to form blocks based on the resources defined by them, like PLBs or 

BlockRAMs [11]. 

 

2.4 FPGA Configuration 

A design is typically synthesized and converted to a configuration file or a 

bitstream that is downloaded into the FPGA to implement the required design [2]. Several 

interfaces are available to configure the FPGAs including Boundary Scan, dedicated 

serial interface and dedicated parallel interface [11]. As the FPGA devices grow bigger, 

the configuration file or bitstream size also grows. This leads to a longer time required to 

download a design.  

Partial reconfiguration is a technique used to reduce the time required to 

reconfigure an FPGA. Once a full configuration for a design has been downloaded to the 

FPGA, minor changes in the design result in small changes in the bitstream. So instead of 

downloading the full bitstream, only parts of the bitstream that change are downloaded 

using partial reconfiguration [29]. In case of Xilinx FPGAs, a frame is the smallest unit 

of configuration memory that can be changed. One of the features of the newer FPGAs is 

dynamic partial reconfiguration. This feature allows the user to retain the flip-flop 

contents of the PLBs and IOBs during reconfiguration. Unused parts of FPGAs are 

reconfigured while the FPGA is operational with the system function [14]. 
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2.4.1 Configuration Interface 

There are three main configuration interfaces available in Xilinx FPGAs [11]. 

They are: 

1. Master/Slave Serial interface 

2. Master/Slave Parallel (SelectMAP) interface 

3. Boundary Scan interface 

The source of clock used for configuration determines whether the interface is in 

master mode or slave mode. If the source for generation of the configuration clock is 

external to the FPGA then the configuration mode is in slave mode. In master mode the 

configuration clock is generated internally by the FPGA. The configuration interface to 

be used for Xilinx FPGAs is determined by the value set on three mode pins of the FPGA 

[11].  

One bit is downloaded to the FPGA per clock cycle when the serial interface is 

used. In case of the SelectMAP interface, configuration data is downloaded in parallel. 

The configuration data can be both downloaded to the FPGA or read back from the 

FPGA using the SelectMAP interface. The SelectMAP interface is capable of reading or 

writing 8 or 32 bits per clock cycle in parallel, greatly reducing the configuration 

download time as compared to the serial interface [11]. The third interface is known as 

Boundary Scan [5] [30]. It was originally developed to test the integrity of the 

connections between devices on a printed circuit board. Xilinx FPGAs make additional 

use of the Boundary Scan interface to download to or read back from the FPGA 

configuration memory [11].  
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The Boundary Scan interface consists of a 4-pin Test Access Port (TAP), TAP 

controller, instruction register and decoder, bypass register and Boundary Scan register as 

shown in Figure 2.11. 

 

 

Figure 2.11  Boundary Scan Architecture 

 

The TAP controller consists of a finite state machine that is controlled by four 

TAP pins, namely TCK (Test Clock), TMS (Test Mode Select), TDI (Test Data In) and 

TDO (Test Data Out). Depending on the state of the TAP controller, instructions or data 
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can be loaded into the Boundary Scan interface registers. All the IOBs are interconnected 

to form a Boundary Scan register in test mode and test vectors are loaded to the IOBs 

using TDI. Similarly TDO is used to read out the test results from the IOBs. The bypass 

register is a single bit register used to put the device in bypass mode to access other 

devices connected in the Boundary Scan chain. The instruction register and decoder are 

used to execute the Boundary Scan test instructions [11]. Most of the current FPGAs 

allow configuration download using the Boundary Scan interface. Xilinx FPGAs 

implement Boundary Scan instructions that allow both configuration memory download 

and readback by using configuration registers, like the frame data register and frame 

address register. The configuration memory can be written using a CFGIN command and 

read back using a CFGOUT command [11]. 

Xilinx also provides user access to the FPGA core from the Boundary Scan 

interface via Boundary SCAN (BSCAN) modules in the FPGA. These user access 

modules can be used to create internal Boundary Scan chains to implement user-defined 

functions in an FPGA. The BSCAN modules have to be activated using Boundary Scan 

commands before they can be used to perform a user function. All BSCAN modules 

source the clock from the TCK pin in the Boundary Scan interface and the clock for a 

given BSCAN module is enabled only when it is activated. BSCAN modules also consist 

of output pins that indicate the status of the Boundary Scan interface [11] [32] [33]. 

 

2.4.2 Configuration Process 

The configuration of a Xilinx FPGA is a multi-stage process. Before the 

download of configuration data, the FPGA is initialized, which involves synchronization 
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of the configuration interface logic of the FPGA with the configuration data to be 

downloaded. It may also include clearing of the configuration memory. A Cyclic 

Redundancy Check (CRC) is performed on the configuration data to check for errors 

while data is downloaded to the configuration memory. The final step is known as the 

startup sequence, it is a multi-step process that includes activation/de-activation of global 

signals like global set/reset (GSR), global write-enable for all the RAMs and flip-flops in 

the FPGA and global tri-state enable for all the IOBs [11].  

For full configuration, all the frames in the FPGA are written with configuration 

data, whereas for partial reconfiguration only the frames that change are rewritten. The 

configuration process is similar for both methods except for the initialization. The 

configuration memory is not cleared during initialization of the FPGA using partial 

reconfiguration. During configuration download, the frame address register (FAR) is 

written with the address of the frame to be written and 32-bit words of configuration data 

are written to the specified frame in the configuration memory via the frame data register 

(FDR) [11].  

 

2.4.3 Configuration Memory Readback 

Xilinx FPGAs allow the user to read back contents of the complete configuration 

memory of the FPGA. This can be used to verify the configuration bits downloaded into 

the FPGA. Instead of full configuration memory readback, parts of the configuration 

memory can also be read back; this procedure is known as partial configuration memory 

readback [14]. A frame is the smallest unit of configuration memory that can be read 

using partial configuration memory readback. For reading a frame, the frame address is 
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written in the FAR and the configuration data is read out from the FDR using an external 

interface like SelectMAP or Boundary Scan [33]. Xilinx FPGAs are also capable of 

capturing the contents of the BlockRAMs and flip-flops of the FPGA during 

configuration memory readback [11]. In the case of Xilinx FPGAs, a CAPTURE module 

needs to be instantiated in the design in order to perform configuration memory readback 

[11] [33]. 

 

2.5 Prior Work in FPGA Testing 

This section lists some of the work previously done in the area of FPGA testing. 

Major work related to testing of logic resources of an FPGA is presented in [3] [7] [16] 

[17] [18] [21] [22] [23] [24] [28]. Stroud et al. present a method to evaluate the number 

of configurations required to test all the logic resources of an FPGA in [21]. The most 

comprehensive works in testing of programmable logic resources using a BIST approach 

were presented in [3] [7]. Reference [7] extends the work done in [3], which was done 

using Lucent’s ORCA series FPGAs to Xilinx 4000 series FPGAs. Reference [3] also 

describes an algorithm called MULTICELLO that can be used for diagnosis of faulty 

PLBs in FPGAs. The work done in [3] and [7] laid the basis for the work presented in 

this thesis.  

Ideas were derived from work done in [17] [18] [19] to improve the BIST 

approach to test logic resources for better diagnostic resolution and faster test times. 

Abramovici et al. introduced a new concept of self-testing areas that are used to 

implement BIST in small unused areas of the FPGA, while the rest of the FPGA is 

operational with the system function in [17] [18]. This work inspired the use of dynamic 
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partial reconfiguration to achieve test time speedup. A technique to test embedded cores 

of SoCs that include regular structures like RAM and multiplier cores, using the FPGA 

core, is explained in [19]. This work introduced the concept of circular comparison that 

results in higher diagnostic resolution. 

Reference [28] by Wang et al. presents an alternative technique to test logic 

resources using BIST. A non-BIST based approach to test an FPGA that uses an external 

Programmable Read Only Memory (PROM) to store the test configurations and test 

vectors is presented in [22] by Huang et al. Reference [23] introduces another technique 

to externally test the logic resources of Xilinx 3000, 4000 and 5000 series FPGAs. 

References [7] [16] [17] [18] [20] [22] [24] [25] [26] [27] present some of the 

work done in the area of FPGA interconnect testing. Reference [20] expands upon the 

BIST technique used in [17] and [18] to test FPGA interconnects. Renovell et al. [25] and 

Wang et al. [27] present techniques to externally test the interconnects of an FPGA. A 

BIST approach to test the interconnects of an FPGA using small BIST structures known 

as BISTERs is presented in [26] by Harris et al. Renovell et al. describe a technique to 

test the Xilinx FPGAs by dividing the FPGA into separate arrays of logic and 

interconnects and LUT RAMs in [24]. 

References [16] and [19] describe comprehensive work done in testing all the 

resources of the FPGAs, including the embedded cores of FPGAs like RAMs and 

multipliers. Stroud et al. presented a case study that uses Atmel’s FPGA based SoCs to 

present the implementation of BIST to completely test the logic, interconnect and 

memory resources of an FPGA  [16].  
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2.6 General BIST Architectures 

There are two primary approaches for testing an FPGA using BIST. One approach 

is to configure the complete FPGA with BIST circuitry to test itself and replace it with 

the original system function after the device has been tested; this method is known as off-

line testing since the system function of the FPGA is halted to test the FPGA [6] [3]. This 

scheme is discussed in detail in the next section. The other option is to keep the system 

operational while testing unused portions of the FPGA by configuring them as Self 

Testing AReas (STARs). These STARs are moved around the FPGA using dynamic 

partial reconfiguration of the FPGA as shown in Figure 2.12. This scheme is called on-

line testing because the system is on-line or operational even when the device is being 

tested [17] [18]. 
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Figure 2.12  On-line BIST [6] 

 

2.7 BIST for Logic Resources of an FPGA 

This thesis deals only with off-line testing of programmable logic resources, 

hence the CUT in this case is the array of PLBs in the FPGA. BIST for testing logic 

resources from here on shall be referred to as Logic BIST.  
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2.7.1 BIST Architecture 

BIST circuitry comprises Test Pattern Generators (TPGs) and Output Response 

Analyzers (ORAs). The TPGs generate the test patterns required to test the PLBs. The 

ORAs essentially compare the outputs of two identically configured PLBs under test, also 

called Blocks Under Test (BUTs), and record any mismatch due to a fault. Since PLBs 

are required to implement the BIST circuitry, all logic resources of an FPGA cannot be 

tested simultaneously. If half of the PLBs can be configured as BUTs, then only two test 

sessions are required to completely test all the PLBs. So, in the first session half of the 

PLBs are configured as Blocks Under Test (BUTs) and the rest are configured as TPGs 

and ORAs. In the second session they are swapped, i.e. the PLBs that were BUTs in first 

session now become TPGs and ORAs and vice versa, as illustrated in Figure 2.13 [3][7]. 

The two test sessions are called West and East sessions depending on the location of the 

TPGs, shown in Figure 2.13 (a) and (b) respectively. This scheme shows a column based 

arrangement of BUTs, TPGs and ORAs, but it can also be row based and the two test 

sessions are then called North and South sessions [3]. 

The BUTs are located in alternate columns of the FPGA with an ORA column 

sandwiched between every two columns of the BUTs such that they compare the outputs 

of the BUTs in the neighboring columns. The ORAs latch any mismatch between the 

BUT outputs being compared as a result of a fault. The fault can be associated with either 

of the two BUTs compared by the ORA. The ORAs are connected in a scan chain as 

illustrated in Figure 2.13. The BIST results can be shifted out after the BUTs have been 

tested using the scan chain [3]. To completely test the PLBs, they are reconfigured and 

tested in different modes of operation while keeping the BIST architecture untouched. A 
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test phase is a configuration that tests a PLB in a single mode of operation. A group of 

test phases that test a PLB in all of it’s modes of operation form a test session [3]. The 

PLBs are also tested in their LUT RAM mode of operation which tests the logic in the 

PLBs associated with LUT RAMs [7] [37]. BIST results of faulty devices can then be 

analyzed using MULTICELLO [3] to determine the exact location of the faulty PLB. 

 

C
ol

um
n 

of
 O

R
A

s

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 O

R
A

s

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 O

R
A

s

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 O

R
As

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 O

R
As

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 O

R
As

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 B

U
Ts

C
ol

um
n 

of
 T

P
G

s

C
ol

um
n 

of
 T

P
G

s

 

Figure 2.13  BIST Architecture to test Logic Resources [3] 

 

It can be noticed from Figure 2.13 that BUTs in the edge columns of the BIST 

architecture suffer from lower diagnostic resolution, as they are compared by only one 
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ORA, whereas the rest of the BUTs are compared by two ORAs. Reference [19] 

introduces a circular comparison technique that allows the comparison of every BUT by 

two ORAs, thereby increasing the diagnostic resolution. 

 

2.7.2 Test Pattern Generation and Output Response Analysis 

As the number of inputs of a PLB is small, exhaustive test vectors can be used to 

test them. A simple counter or a linear feedback shift register (LFSR) can be 

implemented as a TPG using very few PLBs to generate exhaustive test vectors [5] [6]. 

An LFSR is more commonly used because it can generate pseudo-random patterns and 

utilizes fewer gates as compared to a counter [6].  

Two identical TPGs drive alternate columns of BUTs in the FPGA such that 

every ORA compares the output response of BUTs that receive input patterns from two 

different TPGs. This ensures that even if one of the PLBs used as a TPG is faulty, the 

ORAs record a mismatch as both the TPGs generate different test patterns. Hence, using 

two TPGs improves fault detection because if a single faulty TPG was driving all BUTs, 

the ORAs would have never recorded a mismatch [3]. TPG loading is an issue in this 

BIST architecture, since a large number of BUTs are connected to a single TPG. The 

large loading on a TPG output limits the maximum operating frequency of the BIST 

architecture. Solutions proposed are to either use drivers for TPG signals or split the 

FPGA into smaller sections with independent pairs of TPGs that are tested in parallel [7]. 

Both the schemes limit TPG loading without increasing the number of configurations. 

The comparison based approach has better fault detection capability compared to 

signature analysis, as the response of the BUTs is not compacted. Instead it is compared, 
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so unless there are equivalent faults in certain extremely rare cases the faults are 

guaranteed to be detected [3]. A comparison based ORA is illustrated in Figure 2.14 (a). 

It uses an XOR gate to detect any mismatch and the feedback from the flip-flop to the OR 

gate latches a ‘1’ into the flip-flop in case of a mismatch. The multiplexer is used to form 

a scan chain of ORAs in order to scan out the BIST results after every test phase [3]. A 

good circuit is represented by a ‘0’ and a fault is indicated by a ‘1’ stored in the ORA 

flip-flop. Configuration memory readback can be used instead of using a scan chain to 

retrieve BIST results. Figure 2.14 (b) shows the ORA without the scan chain logic used 

in this case [7]. 
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Figure 2.14  Output Response Analyzer 
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2.7.3 Configuration Schemes 

The BIST approach described in the initial work [3] [7] uses complete 

reconfiguration of an FPGA to switch between test phases. Full reconfiguration is highly 

time consuming and in the case of Logic BIST, only the BUT configurations change from 

one test phase to the next for a given test session. The use of partial reconfiguration to 

reconfigure only the BUTs of the FPGA, to operate in a different mode of operation for a 

given test session, was proposed in [29]. Partial reconfiguration reduces the memory 

required to store the test configurations and leads to faster test times, since less 

configuration data is downloaded into the FPGA per test phase.  

 

2.7.4 Results Retrieval 

After execution of a test phase the BIST results have to be read out of the ORAs 

in the FPGA. As described in [3], the ORAs form a scan chain and the BIST results can 

be shifted out using the Scanout signal shown in Figure 2.14 (a). The data input of the 

ORA at the tail of the scan chain is tied to a ‘1’, so there is a trail of ones at the end of the 

BIST results scanned out which serves as an indicator for the end of the scan chain and 

serves as a check for correct operation of the ORAs.  

Most FPGAs have the ability to capture the contents of flip-flops in the PLBs during 

configuration memory readback. This feature can be used to retrieve the BIST results 

captured in the flip-flops of PLBs configured as ORAs by reading back the configuration 

memory. Although configuration memory readback increases the testing time per test 

phase it reduces the total number of test configurations and improves the diagnostic 

resolution [7]. Due to the limited resources of some FPGA PLBs, not all outputs of a 
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BUT can be observed in a single configuration, therefore there are multiple 

configurations for every test phase. If configuration memory readback is used then the 

scan chain to retrieve BIST results can eliminated from the ORA, making extra logic 

resources available in the PLBs to be used as ORAs. The extra logic resources in the 

ORAs make it possible in some FPGAs to compare all the BUT outputs in a single 

configuration for a test phase. Figure 2.14 (b) illustrates the ORA without the scan chain 

logic that is capable of comparing more BUT outputs and also has fewer control signals 

than the ORA with the scan chain logic. 

  

2.8 Restatement of Thesis Goals 

A significant amount of work has been done in the area of Logic BIST for 

FPGAs. As the technology advances and the feature sizes shrink, FPGAs grow larger in 

size and feature many more capabilities, compared to their predecessors. The testing time 

increases as the size of the FPGA grows, so new methods and architectural features have 

to be used in order to keep the test times and the memory storage requirements to a 

minimum. 

The work presented in this thesis builds upon the work previously done in [3] [7] 

[17] [19] [29] and introduces some new techniques to implement Logic BIST for newer 

FPGA devices. As the majority of the time required for testing FPGAs using BIST is 

spent on their reconfiguration, emphasis is put on techniques like partial reconfiguration 

and partial configuration memory readback to reduce the test time and configuration 

memory storage requirements for Logic BIST. This chapter introduced the basic concepts 

and overview of the previous work done, required to understand the work presented in 
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the following chapters. Chapter 3 presents the implementation of Logic BIST on 

Virtex/Spartan II series FPGAs, along with the use of partial reconfiguration and partial 

configuration memory readback to achieve speedup in test time and reduction in memory 

storage requirements. Chapter 4 presents the implementation of Logic BIST for Virtex-4 

FPGAs. The Logic BIST architecture was modified for Virtex-4 to achieve better 

diagnostic resolution. In both cases, the PLB slices were modeled and, based on the 

resultant fault simulations, Logic BIST configurations were developed to test the PLBs. 

Chapter 5 concludes with a summary and suggestions for future improvements along with 

a discussion regarding the use of an embedded processor for BIST. 
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CHAPTER THREE 

Logic BIST for Virtex/Spartan II 

3.1 Introduction 

This chapter discusses the implementation of Logic BIST for Xilinx Virtex and 

Spartan-II FPGAs. The details regarding the Logic BIST architecture and test 

configurations are described along with the fault coverage of the logic resources. The 

methods to achieve speed-up in test time and reduction in memory storage requirements 

are also discussed. These methods include techniques like partial reconfiguration and 

partial configuration memory readback, which reduce the configuration download time 

and BIST results retrieval time, respectively. The experimental results of all the methods 

employed are presented with a summary and analysis of the results to conclude the 

chapter. The work presented in this chapter is primarily the work presented in [31] with 

some additional details. 

 

3.2 Virtex/Spartan-II PLB Architecture 

An overview of the Virtex/Spartan-II FPGA architecture was presented in Chapter 

2. In this chapter, additional details regarding the internals of the PLB are provided. 

Figure 2.8 shows the block diagram of a PLB slice of a Virtex/Spartan-II FPGA [8]. It 

consists of two 4-input LUTs, F and G, that can also function as 16-bit LUT RAMs or  
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16-bit shift registers. For the RAM or shift-register modes of operation, additional 

circuitry is provided to generate the write enable signals. Two AND and two XOR gates 

are provided in each PLB slice to efficiently implement arithmetic functions. 

Multiplexers CY and input CIN are used to implement the carry chain logic. A slice has 

two storage elements, FFX and FFY, which can be used either as flip-flops or as latches 

to implement sequential circuits. Multiplexers DXMUX and DYMUX are provided to 

choose the data input for the storage elements FFX and FFY, respectively. Multiplexers 

F5 and F6 are used to combine LUTs to implement combinational logic functions with 

five or six inputs using a single PLB [8]. 

 

3.3 BIST Architecture 

Logic BIST for Virtex/Spartan-II builds upon previous work done on Lucent’s 

ORCA and Xilinx 4000 series FPGAs, as described in [3] and [7], respectively. The 

BIST approach is very similar to those described in [3] and [7], as illustrated in Figure 

2.13. It is modified with focus on partial reconfiguration and partial configuration 

memory readback. 

The BIST architecture can be either row-oriented or column-oriented, but 

column-oriented BIST architecture emerges as the more efficient BIST implementation 

for Virtex/Spartan-II FPGAs for three major reasons. Firstly, the carry chain 

implemented between the PLBs is implemented vertically upwards within each column, 

so in order to test logic resources associated with the carry chain the BIST architecture 

has to be column-oriented. Secondly, dedicated local routing is available for making 

direct connections between horizontally adjacent PLBs [8]. Therefore it is easier to make 
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BUT to ORA connections across rows in a column-oriented BIST architecture without 

any routing issues. Lastly, the structure of the configuration memory is also column-

oriented. As mentioned earlier, configuration memory is comprised of frames and it takes 

multiple frames to configure a column of PLBs and their associated routing in an FPGA, 

as illustrated in the Figure 2.6. A column-oriented BIST architecture aids in reducing the 

number of frames to be written using partial reconfiguration and read using partial 

configuration memory readback for retrieval of BIST results.  

Figure 3.1 illustrates the architecture of Logic BIST for Virtex/Spartan-II FPGAs. 

Two identical TPGs are restricted to one column of the FPGA and alternate columns are 

configured as ORAs and BUTs. The TPG is a 12-bit LFSR that generates pseudo-

exhaustive test vectors, providing identical vectors to both the slices of each PLB 

configured as a BUT. Each TPG provides identical input patterns to alternate BUT 

columns, which improves fault detection in case of a faulty TPG [3]. The ORAs compare 

the outputs from the two neighboring BUTs that get identical test patterns from two 

different TPGs. BIST results after testing are either scanned out or captured in the 

configuration memory. Figure 3.1 (a) shows the ORAs connected in a scan chain that 

allows scanning out of BIST results. Figure 3.1 (b) illustrates the architecture in which 

the BIST results are captured in the configuration memory and retrieved using 

configuration memory readback. 
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Figure 3.1  Logic BIST Architecture for Virtex/Spartan-II FPGAs 

 

Two test sessions are required to test all the logic resources. BUTs in each test 

session are configured in different modes of operation in order to be tested completely; 

these configurations are called test phases. In a PLB only 12 out of the 16 outputs can be 

observed, as four outputs related to carry and multiplexer logic cannot be routed out of 

the PLB. The limited logic resources of a PLB allow a maximum of five BUT outputs to 

be observed by an ORA in a single configuration. Therefore a set of test phases has to be 

repeated three times, each time looking at a different set of four BUT outputs for a total 
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of twelve BUT outputs as shown in Figure 3.2 (a). This set of test phases is called a slice 

test set. To retrieve the BIST results, if readback is used instead of implementing a scan 

chain of ORAs, the ORA can be modified to compare six BUT outputs in a single 

configuration as shown in Figure 3.2 (b), where the logic resources of an ORA previously 

used for scan chain implementation are now used for comparing more BUT outputs. As a 

result the number of slice test sets can be reduced from three to two, where one slice is 

tested in each slice test set. 
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Figure 3.2  Output Response Analyzers 
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The Boundary Scan interface was used for the implementation of Logic BIST. 

The frame address register is written with the address of the frame to be written or read 

and 32-bit words of configuration data are written to or read from the frame data register, 

depending on the operation being performed. Xilinx provides two user access registers in 

Virtex/Spartan-II FPGAs that can be used by invoking a Boundary Scan module 

(BSCAN_VIRTEX). For Logic BIST, user access register 1 was used to source the BIST 

clock for BUTs, TPGs and ORAs from the Boundary Scan interface and user access 

register 2 was used to generate a reset signal for all the TPGs and ORAs. 

There are two test sessions: East and West, each testing half of the PLBs. To 

completely test a PLB, except for the case when it is configured as LUT RAM, a total of 

seven different test configurations of a PLB are required. Therefore the total number of 

Logic BIST configurations depends on the method used for BIST results retrieval. 

• Scan chain method: 2 sessions x 7 phases x 3 slice test sets = 42 configurations 

• Readback method: 2 sessions x 7 phases x 2 slice test sets = 28 configurations 

 

3.4 Partial Reconfiguration 

Using partial reconfiguration, only BUT configurations are changed in a given 

test session. Most of the 48 frames of a PLB column are associated with routing resources 

rather than BUT configurations. So, in order to reconfigure the BUTs, a small number of 

frames per PLB column in only the columns of BUTs have to be rewritten with new 

configuration data. After the first test configuration is downloaded for a test session, the 

rest of the configurations can be partial reconfigurations. 
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The sequence in which the test configurations are applied is crucial for keeping 

the partial reconfigurations small, as discussed in [29]. Since multiple slice test sets are 

required for each test phase, three scenarios were investigated regarding the sequence of 

configurations to be applied: 

Scenario 1. For a given test session, the configuration of both the slices is kept fixed but 

the BUT outputs compared by the ORAs are changed. Therefore each test 

phase consists of two or three slice test sets, depending on the BIST results 

retrieval technique used. 

Scenario 2. For a given test session, the BUT outputs compared by the ORAs are kept 

fixed and the configurations of both PLB slices are changed. Therefore each 

slice test set consists of seven test phases. 

Scenario 3. For a given test session, the BUT outputs compared by the ORAs are kept 

fixed and the configuration of only the slice whose outputs are being 

compared is changed, while maintaining the first configuration in the other 

slice. Therefore each slice test set consists of seven test phases and each test 

session has two or three slice test sets depending on the BIST results 

retrieval method used. 

Partial reconfiguration is not effective in reducing the configuration file size when 

routing changes from one configuration to the next, as frames related to interconnects 

comprise the majority of the total number of frames in the FPGA. Consequently, the third 

scenario turns out to be most effective [29]. The sequence in which the test phases are 

applied can also be optimized to reduce the difference between consecutive test 

configurations, thereby reducing the partial reconfiguration file size. 



 45

 

3.5 Partial Configuration Memory Readback 

Partial configuration memory readback can be used instead of using full 

configuration memory readback or scan chain to retrieve BIST results. Full configuration 

memory readback reduces the number of slice test sets from three to two but it takes the 

amount of time comparable to full configuration. On the other hand, scan chain 

implementation only requires a few clock cycles (equal to the number of ORAs) to 

retrieve BIST results, making it faster by a few orders of magnitude. This gap is greatly 

reduced by using partial configuration memory readback. The ORAs are designed such 

that the BIST results are stored in a single flip-flop of a PLB. This allows the BIST 

results to be captured in only one frame per ORA column. So, a total of (M/2)-1 frames 

are read back to retrieve BIST results, where M is the total number of PLB columns of 

the FPGA. 

The configuration bit generation tool provided by Xilinx is used to obtain a logic 

allocation file. This file provides the information regarding the location of the 

configuration memory bits that contain the data captured from the PLB flip-flops. The 

location of each ORA flip-flop is defined in terms of the frame address and an offset 

within the frame. 

 

3.6 Logic BIST Configurations for Virtex/Spartan-II 

The following subsections present the details regarding the implementation of 

Logic BIST for Virtex/Spartan-II FPGAs. 
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3.6.1 Fault Model and Fault Coverage 

The PLB of a Virtex/Spartan-II FPGA consists of 2 identical slices, so a single 

slice was modeled instead of modeling the entire PLB for fault simulations. The gate 

level stuck-at fault model was considered for fault coverage. The logic in the slice related 

to the RAM mode of operation of the LUTs was not considered, as faults in that logic 

would get detected by a LUT RAM test presented in [37]. The storage elements of the 

PLB were not tested in the asynchronous mode of operation, the reason for which is 

discussed in the Section 3.6.2. A total of seven configurations are required to completely 

test the PLB, not including the LUT RAMs and related logic. Cumulative fault coverage 

was evaluated by simulating the complete fault list for the first test configuration and then 

the list of undetected faults is used as the fault list for simulation of successive test 

configurations. Individual fault coverage of each test configuration was evaluated by 

using the complete fault list for simulation of all the test configurations. Both cumulative 

and individual fault coverage are shown in Figure 3.3. 
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Figure 3.3  Fault Coverage of a Virtex FPGA PLB slice 

 

3.6.2 Configuration Details 

The details of the seven configurations of a Virtex Slice are summarized in Table 

3.1. Some BUTs were diagnosed as faulty during Logic BIST when asynchronous reset 

was used; the cause for this was attributed to timing skew in the TPG output signals 

controlling the reset signal to the flip-flops, which introduced an uncertainty regarding 

the value stored in the storage elements of the BUTs. This issue remained unresolved 

during development for Virtex/Spartan-II FPGAs, but it was later resolved for Virtex-4, 

which is discussed in Section 4.4.2. 
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Table 3.1  Configuration Details 

Configuration Slice 
Component 1 2 3 4 5 6 7 

LUT 0000 xnor 
/xor 

xor 
/xnor 

xnor 
/xor 

xor 
/xnor 

xnor 
/xor 

xor 
/xnor 

LUT 
F/G 

MODE shift 
register lut lut lut lut lut lut 

MODE ff ff latch latch latch ff ff 
X INIT 0 1 0 1 1 0 1 
Y INIT 0 1 0 1 1 0 1 

FF 
X/Y 

RESET sync sync async async async sync async

CY0G  /  
CY0F prod g1/f1 prod 0 1 1 1 

CYSELG /  
CYSELF g/f g/f 1 g/f g/f 1 1 

GYMUX / 
FXMUX g/f f6/f5 gxor 

/fxor f6/f5 f6/f5 gxor 
/fxor 

gxor 
/fxor 

DYMUX / 
DXMUX I1 I0 I1 I1 I1 I0/I1 I0 

YBMUX I1 I1 I1 I0 I1 I0 I0 

BY / BX byinv 
/bxinv 

by 
/bx 

byinv 
/bxinv 0 1 by 

/bx 
by 
/bx 

SR srinv sr sr sr 1 0 1 
CE ceinv 1 ce 0 1 1 1 

CLK clk clkinv clk clkinv clk clkinv clk 

CYINIT bx bx cin cin cin cin cin 
Breakpoints  

Cout on on on on off on on 
Y on on on on off on on 

XB on on on on off on on 
F5 on on on on off on on 
X on on on on off on on 

REV USED on on on on off off on 
SR on on on on off on on 
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3.7 Logic BIST Configuration Generation Process  

Two programs were developed to generate all the test configurations, referred to 

as the template generation program and the template modification program. The design 

is described in Xilinx Design Language (XDL), a netlist format used by Xilinx. The 

template generation program generates a template file depending on the session and the 

slice test set, where the BUTs are configured with Configuration 1 as summarized in 

Table 3.1. The template file generated does not contain routing information as it 

simplifies configuration file generation process. The template is converted from XDL 

format to a Native Circuit Description (NCD) format that can be used by Xilinx CAD 

tools for routing the design. The template is routed using Xilinx routing tools and 

converted back to XDL format. The template modification program uses the routed 

template configuration file and modifies only the BUT configurations while keeping the 

routing fixed to generate all the other BIST configuration files. This approach results in 

generation of small partial reconfiguration files as the routing structure remains fixed for 

all test phases of a slice test set. The routed configuration files are used to generate the 

configuration bitstreams that are downloaded to the FPGA. 

The Xilinx routing tools try to swap input pins of the LUTs and modify the LUT 

values to improve routability of the design. This is undesirable for the template 

modification program as it assumes the routing of the template file to be without 

modification of the LUT contents. Xilinx routing tools are prevented from swapping the 

LUT inputs by configuring the LUTs as shift registers in the first configuration. It can 

also be done by setting a ‘no pin swap’ option in FPGA Editor (a design editing tool by 

Xilinx) for routing a design.  
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3.8 Methods for Application of BIST  

In this section, the methods used to speed up test time and reduce the 

configuration storage requirements for Logic BIST are described. The following are the 

various configuration download methods used: 

FC  - Full Configuration; partial reconfiguration is not used and all the test 

configurations downloaded to the FPGA are full configurations. 

PR2  - Partial Reconfiguration using Scenario 2 defined in Section 3.4; the first 

configuration in a test session is a full configuration, followed by six partial 

reconfigurations. 

PR3  - Partial Reconfiguration using Scenario 3 defined in Section 3.4. 

OPR  - Optimized Partial Reconfiguration using Scenario 3 defined in Section 3.4; the 

sequence in which the test configurations are applied was optimized to reduce the number 

of different configuration frames between two consecutive test configurations. 

The following are the ORA results retrieval techniques used for Logic BIST: 

FCRB  - Full Configuration memory ReadBack after each test configuration 

SR  - Scan chain Readback after each test configuration 

SRE  - Scan chain Readback at the end of a test session 

PCRB  - Partial Configuration memory ReadBack after each test configuration 

PCRE  - Partial Configuration memory Readback at the End of a test session 

Scan chain readback (SR, SRE) involves the use of ORAs connected as a scan 

chain, resulting in three slice test sets, whereas configuration memory readback (FCRB, 

PCRB, PCRE) requires only two slice test sets. Dynamic partial reconfiguration is used 
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for the methods SRE and PCRE; BIST results are retained until the end of a test session 

and retrieved only after all the test phases have been applied. Readback at the end reduces 

the diagnostic resolution of Logic BIST from a faulty PLB and its mode of operation 

down to a faulty PLB. Table 3.2 summarizes all the methods used for Logic BIST. 

 

Table 3.2  Methods used for Logic BIST 

Method Configuration BIST Results 
Retrieval 

Total Slice 
test sets 

Total number 
of configurations 

1 FC FCRB 2 28 
2 FC SR 3 42 
3 PR2 SR 3 42 
4 PR3 SR 3 42 
5 OPR SR 3 42 
6 OPR SRE 3 42 
7 OPR PCRB 2 28 
8 OPR PCRE 2 28 

 

3.9 Results  

Experimental results regarding the test time and memory storage requirements for 

implementation of Logic BIST are presented in this section. These results were obtained 

by applying the Methods 1 through 8 described in Table 3.2 on a Spartan-II XC2S200 

FPGA which has a PLB array of size 28x42. Figure 3.4 shows the speed-up in test time 

and reduction in configuration memory storage requirements achieved. 

It can be observed from the results that memory storage requirements are 

increased by using a scan chain for ORAs but a speed-up is achieved compared to full 

configuration memory readback. Partial configuration memory readback, although 40 

times slower than scan chain for retrieval of BIST results, compensates for its lack of 

speed by eliminating a slice test set thereby reducing the total number of test 
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configurations from 42 to 28. The partial reconfiguration file sizes are also reduced by 

changing the configuration of only the slice under test (Scenario 3) and by ordering the 

test phases optimally. Retrieving the BIST results at the end of a test session rather than a 

test phase provides further speed-up at the cost of reduced diagnostic resolution. The 

actual test time using Boundary Scan (including all overhead related to the Boundary 

Scan operation) was reduced from 113 seconds (Method 1) to 22 seconds (Method 8), a 

speed-up of over 5 times. The configuration memory storage requirements were reduced 

by a factor of 3.25 for a Spartan-II XC2S200 FPGA. 
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The effect of size of the device on speed-up is also evaluated using four different 

devices in the Virtex/Spartan-II FPGA family. Method 5 is chosen for comparison as the 

total test time in this case is a direct function of configuration file size since the time 

required to apply test vectors and retrieve BIST results is negligible. Table 3.3 illustrates 

the different speed-up values achieved, depending on the size of the device. 

 

Table 3.3  Speed-up vs. Device Size 

FPGA Array size Speed-up 
XC2S15 (smallest) 8 × 12 3.61 
XC2S50/XCV50 16 × 24 3.18 

XC2S200/XVC200 28 × 42 3.02 
XCV1000 (largest) 64 × 96 2.86 

 

It is observed that the test time speed-up for Logic BIST drops by a small factor 

for larger devices. The ratio of PLB configuration data to the total configuration data 

increases as the size of the device increases. For Logic BIST, only the configuration of 

PLBs changes. Therefore, relatively larger partial reconfiguration files are generated for 

larger devices. This explains the reduction in test time speed-up for larger devices.  

 

3.10 Summary 

The architectural and operational features of Virtex/Spartan-II FPGAs were 

exploited to successfully achieve test time speed-up and reduction in memory storage 

requirements for Logic BIST configurations. Useful knowledge was gained from the 

implementation of Logic BIST, partial reconfiguration and partial configuration memory 

readback. Although the study was done using the Virtex/Spartan-II family of devices, 
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these approaches are also valid for other FPGA devices. The knowledge gained was 

applied to the Virtex-4 family of FPGAs discussed in the next chapter. 
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CHAPTER FOUR 

Logic BIST for Virtex-4 

4.1 Introduction 

This chapter presents the implementation of Logic BIST on the Virtex-4 family of 

FPGAs. The architecture for Logic BIST is described along with the details of the test 

configurations and their timing analysis. Experimental results are presented for the 

methods used to achieve test time speed-up and reduction of configuration memory 

storage requirements, followed by analysis of the results and a summary. The work 

presented in this chapter is primarily the work presented in [34] with some additional 

details. 

 

4.2 Virtex-4 Architecture 

An overview of Virtex-4 architecture was presented in Chapter 2. In this chapter 

the details of FPGA resources relevant to Logic BIST are discussed. The PLB of a 

Virtex-4 FPGA consists of two SliceMs and two SliceLs. SliceL is illustrated in Figure 

2.9. A SliceL has two LUTs, F and G, and storage elements, FFX and FFY, which can be 

configured as flip-flops or latches. Multiplexers CYINIT, CYMUXF and CYMUXG are 

used to implement the carry chain logic that spans the entire column of PLBs. DYMUX 

and DXMUX are used to select the input to the storage element. F5MUX and FSMUX 
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combine the LUTs of a PLB to implement combinational logic functions with greater 

than four inputs. A pair of AND and XOR gates are provided for arithmetic functions. 

CLK, CE and SR inputs provide common control inputs clock, clock enable and set/reset, 

respectively, for the storage elements FFX and FFY. The REV control places a logic 

value opposite to that determined by set/reset control signal in the storage element [10]. 

SliceMs feature extra circuitry like the write signal generator (WSGEN) and multiplexers 

(DIGMUX and DIFMUX) for shift register and RAM modes of operation of the LUTs. 

SliceM is illustrated in Figure 2.10. 

The DSP cores in Virtex-4 FPGAs are arranged in columns as shown in Figure 

2.7. There are two DSP cores for every four rows of PLBs in a DSP column. A DSP core 

consists of an 18x18-bit multiplier and a 48-bit adder/subtractor/accumulator, which can 

be configured to operate in different modes of operation as described in [35].  

 

4.3 BIST Architecture 

The BIST architecture is similar to the one used for Virtex/Spartan-II FPGAs. It is 

modified to exploit the architectural features of Virtex-4 to achieve higher diagnostic 

resolution. A column-based architecture is used for Virtex-4 for reasons similar to Logic 

BIST for Virtex/Spartan-II. Figure 4.1 illustrates the Logic BIST architecture for Virtex-4 

FPGAs. 



 57

TPG

BUT

BUT

BUT

BUT

ORA

ORA

ORA

ORA

BUT

BUT

BUT

BUT

ORA

ORA

ORA

ORA

BUT

BUT

BUT

BUT

TPG

BIST 
Control

Flip-Flops with BIST results

ORA

ORA

ORA

ORA

DSP Core

 

Figure 4.1  Logic BIST Architecture for Virtex-4 FPGAs 

 

The PLBs in the FPGA are divided into alternate columns of BUTs and ORAs, 

where each BUT is compared by two ORAs. The outputs of the BUTs on the edge of the 

FPGA are compared by the ORAs on the other edge of the FPGA. This leads to a 

circular-comparison based BIST architecture as shown in Figure 4.3. This technique was 

originally developed for testing BlockRAMs of Virtex and Virtex-II FPGAs in [19]. It 

was possible to implement circular-comparison for Logic BIST because of the abundance 

of routing resources in Virtex-4 FPGAs.  

All the primary outputs of a Virtex-4 PLB can be routed through the storage 

elements, this feature allows testing of all four slices of a PLB simultaneously by 

monitoring only eight outputs per PLB (one output per storage element). A PLB slice is 

divided into two halves, where each half can be used to implement an ORA that 

compares only one BUT output as shown in Figure 4.2. So, a total of eight independent 

ORAs are implemented in a PLB that compare the eight BUT outputs. This leads to better 
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diagnostic resolution, as each mismatch recorded in an ORA flip-flop now points to the 

exact half of a faulty PLB slice. This approach may increase the number of 

configurations required to test a PLB slice, but since few PLB outputs are observed, all 

slices are tested simultaneously and minimal routing changes are required to test the 

entire PLB, reducing partial reconfiguration file sizes. This may not be the case with 

other approaches that try to monitor all PLB outputs because they require multiple slice 

test sets to test all the slices and may require more configurations to test the entire PLB. 
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Figure 4.2  ORAs in a Single PLB slice 

 

The configuration memory of Virtex-4 FPGAs is also organized in frames 

oriented vertically, but unlike Virtex/Spartan-II, the frame size is fixed. A single frame is 

associated with a fixed number of PLBs in a column instead of the entire column of 

PLBs. The data stored in the flip-flops of PLBs can be captured in the configuration 

memory by instantiating a CAPTURE_VIRTEX4 module in the design. The 

CAPTURE_VIRTEX4 module defines which clock edge is used to capture flip-flop data 

and whether it is captured once or multiple times. Configuration memory readback is 

used to retrieve the frames of configuration memory that contain the BIST results in the 
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ORA flip-flops. For speed-up in test time, partial configuration memory readback can be 

used instead of full configuration memory readback. A single frame of Virtex-4 captures 

the values contained in all the flip-flops of PLBs associated with that frame. This reduces 

the total number of frames to be read to retrieve BIST results, thereby improving the test 

time. The total number of frames (F) needed to be read is given by: 

F = (R ÷16) × (C ÷ 2) = R × C ÷ 32 

where, R is the number of rows and C is the number of columns of the PLB array under 

test. In the case of the XC4VLX25-10 FPGA which has 96 rows and 28 columns, only 84 

frames need to be read back to obtain BIST results, as compared to 6022 frames for full 

configuration memory readback. 

Traditionally, two TPGs are implemented using a column of PLBs [3]. The 

availability of DSP cores in newer FPGAs allow the use of DSPs to implement TPGs 

instead of the PLBs. This approach frees up a column of PLBs that are now used to 

implement an extra column of ORAs for circular comparison as shown in Figure 4.1. 

Since at least two DSPs are available for every four rows of PLBs, two TPGs are 

implemented (one TPG in each DSP) for every four rows of BUTs. This solves the issue 

of TPG loading and improves fault detection, as a faulty TPG only affects the testing of 

four rows of BUTs rather than the entire FPGA. An exhaustive set of test patterns is 

generated by initializing the accumulator of the DSP to zero and repeatedly adding a 

prime number ‘0x691’ to its contents [36]. One drawback of this approach is that the test 

patterns generated are not pseudo-random in nature, unlike the LFSR-based TPGs used 

for Virtex/Spartan-II. The 12 TPG outputs are connected to the 12 inputs of each of the 

four slices of a BUT, providing identical test vectors to all four slices of a PLB. 
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Logic BIST for Virtex-4 also uses Boundary Scan to access the configuration 

memory of the FPGA. The details of configuration download and readback procedures 

are described in [11]. Boundary Scan is also used to control the operation of BIST by 

means of the user access registers in the BSCAN modules. The Boundary Scan interface 

in Virtex-4 FPGAs features four BSCAN modules, two of which are used to implement 

Logic BIST. BSCAN module 1, when selected, enables BIST clock which is sourced 

from the TCK pin of the TAP. BSCAN module 2, when selected, disables the BIST clock 

and generates a reset signal that resets all the ORAs and TPGs. 

Two test sessions (East and West) are required to test all the PLBs. In a given test 

session, only the BUTs are reconfigured multiple times to be tested completely. After the 

first configuration of a test session is downloaded, partial reconfiguration can be used to 

download the rest of the test phases to reduce the configuration download time. To keep 

the partial reconfiguration files small, the routing changes are kept to a minimum for a 

given test session. The routing between TPGs and BUTs is kept fixed and the routing 

between BUTs to ORAs is changed only once in a given test session. Virtex-4 allows 

multiple frames with identical data to be written simultaneously, where the frame data is 

loaded only once and the address in the FAR is changed. This feature helps reduce the 

partial reconfiguration file size since the Logic BIST architecture is a regular structure 

and all BUTs in most configurations are configured identically. The test time can be 

further reduced at the price of reduced diagnostic resolution by using dynamic partial 

reconfiguration as explained in Chapter 3. Using this approach the contents of the ORA 

flip-flops are not cleared when the BUTs are reconfigured and the BIST results are 

retrieved only at the end of a test session. 
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4.4 Logic BIST Configurations for Virtex-4 

A total of 12 BUT configurations are required to completely test the logic 

resources of a PLB, excluding the circuitry associated with the LUT RAM mode of 

operation of SliceMs. For the first ten configurations only outputs XQ and YQ, 

associated with the storage elements FFX and FFY, respectively, are observed by the 

ORAs, completely testing SliceLs. Two extra configurations are required to test the logic 

circuitry associated with the shift register mode of SliceMs. In this case outputs X and Y 

of all four slices are observed by the ORAs. These 12 configurations also test the carry 

chain logic and the routing associated with it, along with the dedicated inter-slice routing. 

Therefore the total number of configurations required to test all the PLBs in the FPGA = 

2 (test sessions) x 12 (test phases) = 24. 

 

4.4.1 Fault Model and Fault Coverage 

The gate-level stuck-at fault model is used for fault coverage analysis. Some of 

the slice inputs cannot be accessed by resources external to the PLB, as they are only 

connected to the outputs of other slices in the PLB. Therefore, the complete PLB was 

modeled with dedicated inter-slice routing instead of individual slice models, leading to a 

more accurate fault coverage analysis. The cumulative and individual fault coverage of 

the 12 Logic BIST configurations is shown in Figure 4.3. 
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Figure 4.3  Fault Coverage of a Virtex-4 PLB 

 

These 12 BIST configurations do not detect the logic resources of the PLB 

associated with the LUT RAM mode of operation like the WSGEN component, as they 

can be tested using the test for LUT RAMs [34]. The route-throughs in the PLB and 

breakpoints associated with PLB outputs not monitored by the ORAs are also not tested. 

 

4.4.2 Configuration Details 

The details of the 12 test configurations are summarized in Table 4.1. 
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Table 4.1  Configuration Details 

LUT F/G FF X/Y 
Config Slice 

Type LUT MODE MODEINITSRRESET

CY0G 
/ 

CY0F

GYMUX 
/ 

FXMUX

DYMUX 
/ 

DXMUX
BY

BX  
/SR  
/CE

CLK
YBMUX 

/  
XBMUX

CYINT REV 
USED

SliceM xor 
/xnor 

shift 
register ff 0 0 sync prod 

/prod fx/f5 yb/xb non-
inv 

non-
inv clk I1 bx no 

1 
SliceL xor 

/xnor lut ff 0 0 sync prod 
/prod fx/f5 yb/xb non-

inv 
non-
inv clk I1 bx no 

SliceM xnor 
/xor 

shift 
register ff 1 1 async g2/f2 gxor /fxor ymux 

/xmux inv inv clkinv I1 bx no 
2 

SliceL xnor 
/xor lut ff 1 1 async g2/f2 gxor /fxor ymux 

/xmux inv inv clkinv I1 bx no 

SliceM xor 
/xnor lut latch 1 1 async g3/f3 fx/f5 ymux 

/xmux 

inv 
/non-
inv 

non-
inv clk I1 bx no 

3* 

SliceL xor 
/xnor lut latch 1 1 async g3/f3 fx/f5 ymux 

/xmux 

inv 
/non-
inv 

non-
inv clk I1 bx no 

SliceM xnor 
/xor lut latch 0 0 async 0/0 fx/f5 yb/xb non-

inv 
non-
inv clk I1 bx no 

4 
SliceL xnor 

/xor lut latch 0 0 async 0/0 fx/f5 yb/xb non-
inv 

non-
inv clk I1 bx no 

SliceM aaaa 
/5555 lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes  

 
5 
 
 

SliceL aaaa 
/5555 lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes 
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LUT F/G FF X/Y 
Config Slice 

Type LUT MODE MODEINITSRRESET

CY0G 
/ 

CY0F

GYMUX 
/ 

FXMUX

DYMUX 
/ 

DXMUX
BY

BX  
/SR  
/CE

CLK
YBMUX 

/  
XBMUX

CYINT REV 
USED

SliceM 5555 
/aaaa lut ff 1 1 async g2/f2 gxor /fxor yb/xb non-

inv 
non-
inv clkinv I1 bx no 

6 
SliceL 5555 

/aaaa lut ff 1 1 async g2/f2 gxor /fxor yb/xb non-
inv 

non-
inv clkinv I1 bx no 

SliceM xor 
/xnor 

shift 
register latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no 

7* 
SliceL xor 

/xnor 
shift 

register latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no 

SliceM xnor 
/xor 

shift 
register ff 1 0 sync by/bx fx/f5 y/x non-

inv 
non-
inv clk I1 bx yes 

8 
SliceL xnor 

/xor 
shift 

register ff 1 0 sync by/bx fx/f5 y/x non-
inv 

non-
inv clk I1 bx yes 

SliceM xor 
/xnor lut ff 1 1 sync prod 

/prod fx/f5 by/bx inv inv clk I1 cin no 
9 

SliceL xor 
/xnor lut ff 1 1 sync prod 

/prod fx/f5 by/bx inv inv clk I1 cin no 

SliceM xnor 
/xor lut ff 0 0 sync by/bx gxor /fxor yb/xb non-

inv 
non-
inv clk I1 cin/bx no 

10* 
SliceL xnor 

/xor lut ff 0 0 sync by/bx gxor /fxor yb/xb non-
inv 

non-
inv clk I1 cin/bx no 

SliceM ffff shift 
register ff 0 0 sync by/bx fx/f5 yb/xb non-

inv 
non-
inv clk I0 bx no 

11 
SliceL ffff shift 

register ff 0 0 sync by/bx fx/f5 yb/xb non-
inv 

non-
inv clk I0 bx no 
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LUT F/G FF X/Y 
Config Slice 

Type LUT MODE MODEINITSRRESET

CY0G 
/ 

CY0F

GYMUX 
/ 

FXMUX

DYMUX 
/ 

DXMUX
BY

BX  
/SR  
/CE

CLK
YBMUX 

/  
XBMUX

CYINT REV 
USED

SliceM 0000 shift 
register ff 0 0 sync by/bx fx/f5 yb/xb non-

inv 
non-
inv clk I0 bx no 

12 
SliceL 0000 shift 

register ff 0 0 sync by/bx fx/f5 yb/xb non-
inv 

non-
inv clk I0 bx no 

 

* These configurations were modified for fault detection. In these configurations all BUTs in the PLB array are not 

configured identically but all BUTs in a row of PLBs are configured identically.   
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Faults related to the FSMUX of Slice 3 of a Virtex-4 PLB are not detected if all 

the BUTs are configured identically. In order to detect those faults, Configuration 3 was 

modified such that the Slice 2 of any two adjacent BUTs in a column are configured with 

opposite value of BYINV multiplexer. Configurations 7 and 10 were also modified 

similarly for a timing issue related to the carry chain, explained in the next section. In this 

case the input of CYINIT multiplexer of Slices 0 and 1 is BX in alternate rows of BUTs 

and CIN for the remaining BUTs. This is reversed in Configuration 10 to completely 

testing the carry chain logic. 

Due to the timing skew of TPG signals, some BUTs were diagnosed as faulty 

during BIST when asynchronous reset was used, similar to Logic BIST for 

Virtex/Spartan-II FPGAs described in Section 3.6.2. To resolve this issue for Virtex-4, 

two corrective measures were taken. Firstly, appropriate clock edge or active level was 

chosen for the storage element, of the BUTs. The clock edge or active level was chosen 

such that the storage element depending on its mode of operation (latch or flip-flop), was 

immune to timing skew. The storage element during BIST assumed a value defined by 

either the REV or set/reset input of the storage element, whichever changed last due to 

timing skew. So, the second corrective measure was to turn off the revused breakpoint 

internal to the PLB slice to disconnect the REV input from the storage element. This 

removed the contention between REV and set/reset inputs. The same techniques can be 

applied to Logic BIST for Virtex/Spartan-II FPGAs. 

Storage elements of the Virtex-4 PLB are not cleared if dynamic partial 

reconfiguration is used or if CAPTURE_VIRTEX4 module is instantiated. This prohibits 

the initialization of the storage elements of BUTs after a test configuration download. In 
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order to test the PLB storage elements for initialization, two full configuration downloads 

are required to initialize the PLB storage elements to both high and low states. This can 

be achieved by using full configuration downloads for both Configuration 1 and 

Configuration 2, as they initialize the storage elements to high and low states, 

respectively. 

 

4.5 Timing Analysis 

Timing analysis was performed for all the test configurations implemented on the 

XC4VLX25-10 FPGA. Depending on the data collected, two configurations with the 

slowest and the fastest clock frequencies were chosen. These two configurations were 

analyzed for timing on Virtex-4 FPGAs of different sizes with a speed grade of 10 (10 

being the slowest and 12 being the fastest speed grade). Figure 4.4 shows the fastest and 

the slowest clock frequencies at which the BIST configurations can operate for Virtex-4 

FPGAs with different sizes.  

It is noticed that the maximum clock frequency is a function of the number 

columns of PLBs, instead of the product of the number of rows and columns of PLBs, as 

was in the case of previous Logic BIST implementations [3]. This was achieved because 

the timing issues due to TPG loading were resolved for Virtex-4 by using a pair of TPGs 

for every four rows of BUTs. The maximum BIST clock frequency for the XC4VLX25-

10 FPGA, for the first ten configurations, ranges from 70 to 150 MHz. 

A major timing issue was discovered in Configuration 10 which tests the carry 

chain logic. The critical path for this configuration included the carry chain from the 

lowest PLB to the uppermost PLB in a column of BUTs. The excessive delay introduced 
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by the carry chain made the maximum clock frequency for Configuration 10 a function of 

the product of the number of rows and columns of PLBs. To avoid this situation, the 

carry chain was broken up as described in Section 4.4.2 which led to an increase in the 

maximum BIST clock frequency for the XC4VLX25-10 device from 40MHz to 140 

MHz.  
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Figure 4.4  Maximum BIST clock frequency vs. Device size 

 

4.6 Logic BIST Configuration Generation Process  

Two parameterized C programs were developed for generation of the Logic BIST 

configurations of any PLB array size for all Virtex-4 FPGAs. The template generation 

program generates the template configuration in XDL format with a dummy BUT 

Safe BIST clock  
frequency range 

Maximum BIST clock  
frequency range 
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configuration. The template configuration file is converted to an NCD format and routed 

using Xilinx tools. The routed template configuration file is then converted back to XDL 

format. The template modification program modifies the BUT configurations of the 

routed template configuration to generate all of the first ten test configurations. To 

generate the last two test configurations that test the SliceMs in shift register mode, both 

BUT configurations and BUT to ORA routing (X and Y outputs are monitored instead of 

XQ and YQ) of the routed template configuration are changed. Using this approach the 

routing of BIST architecture remains fixed for all configurations except for Configuration 

11, resulting in generation of smaller partial reconfiguration files. 

The Logic BIST structure for Virtex-4 can be defined for the entire FPGA or a 

portion of the PLB array. The number of columns in the PLB array to be tested has to be 

an even number greater than or equal to four, in order to implement circular comparison 

as shown in Figure 4.1. The presence of PowerPC core in Virtex-4 FX FPGAs 

complicates the implementation of Logic BIST, as shown in Figure 4.5. In the case of the 

West session the BUTs on the edge of the PowerPC core are compared by only one ORA 

instead of two, thereby losing some diagnostic resolution similar to the BUTs on the edge 

of Virtex/Spartan-II FPGA. But, for the East session the BUTs near the edges of the 

PowerPC core are compared by three ORAs instead of two without losing any diagnostic 

resolution. 
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Figure 4.5  BIST Architecture in Virtex-4 FX FPGAs 

 

4.7 Methods for Application of BIST  

Various methods were used to evaluate the speed-up in test time and reduction in 

the memory required to store the BIST configurations. The following methods were used 

for configuration: 

FC  - Full Configuration 

PR  - Partial Reconfiguration using Scenario 3 defined in Section 3.4 

Full configuration of all the BIST configurations was used in the first method; 

partial reconfiguration was used for all other methods. For the first ten test configurations 

ORAs monitor the XQ and YQ outputs of all four slices of a BUT, so the first 

configuration is a full configuration download followed by nine partial reconfiguration 

downloads, since there are no routing changes. For Configurations 11 and 12, ORAs 

monitor X and Y outputs. This leads to a change in the BUT to ORA routing, so 

Configuration 11 is again a full configuration download followed by a partial 

reconfiguration download for Configuration 12. Optimal ordering of the test 

configurations was investigated to minimize the difference between successive test 
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configurations for Virtex-4. But the reduction in partial reconfiguration files generated 

was negligible due to the organization of the configuration memory and multiple frame 

write feature of Virtex-4 FPGAs. 

The following readback techniques were used for retrieval of BIST results: 

FCRB  - Full Configuration memory ReadBack after each test configuration 

PCRB  - Partial Configuration memory ReadBack after each test configuration 

PCRE  - Partial Configuration memory Readback at the End of a test session 

FCRB was used for the first method, PCRB and PCRE were used to achieve 

speed-up in BIST results retrieval. It can be noticed that scan chain of ORAs was not 

implemented to retrieve the BIST results. From Logic BIST for Virtex/Spartan-II, it was 

observed that even though the scan chain is much faster for BIST results retrieval, it 

increases the total number of test configurations, thereby increasing the total test time. 

Table 4.2 summarizes all the methods used for Logic BIST in Virtex-4. 

 
Table 4.2  Methods used for Logic BIST 

Method Configuration BIST Results 
Retrieval 

Total Slice 
test sets 

Total number 
of configurations 

1 FC FCRB 2 24 
2 PR FCRB 2 24 
3 PR PCRB 2 24 
4 PR PCRE 2 24 

 

4.8 Results  

Logic BIST was implemented on a Virtex-4 XC4VLX25-10 device and the 

results of application of the four methods described earlier for test time speed-up and 

reduction in configuration memory storage requirements are shown in Figure 4.6. Method 
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1 was used primarily as a benchmark of the test time and memory storage requirements 

for comparison with speed-up techniques like partial reconfiguration and partial 

configuration memory readback applied in the other methods. Method 2 shows the 

improvements by using partial reconfiguration over full configuration. Method 3 shows 

the improvement after using partial configuration memory readback over full 

configuration memory readback to retrieve BIST results. The improvement due to 

dynamic partial reconfiguration is shown in Method 4. 
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Figure 4.6  Test time speed-up and reduction in memory storage requirements 

 

An overall speed-up of 12.9 is observed using PCRE and a net reduction of 

memory storage requirements by a factor of 5.3 is achieved using partial reconfiguration. 
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Methods 1, 3 and 4 for Virtex-4 can be compared to Methods 1, 7 and 8 used for 

Virtex/Spartan-II. A comparison of the results is given in Table 4.3 

 

Table 4.3  Comparison of test time speed-up and reduction in memory storage 

requirements of Virtex/Spartan-II and Virtex-4 FPGAs 

Test time speed-up Memory reduction Method Virtex/Spartan-II Virtex-4 Virtex/Spartan-II Virtex-4 
1 1 1 1 1 
3 4.6 8.9 3.2 5.3 
4 5.1 12.9 3.2 5.3 

 

It is clear from Table 4.3 that the test time speed-up and reduction in memory 

storage requirements are better in Virtex-4 than in Virtex/Spartan-II FPGAs. The ability 

to write multiple frames with identical configuration data greatly reduces the partial 

reconfiguration time. The configuration memory is better organized, as configuration data 

for similar components is grouped together; the result is that fewer frames need to be 

written when BUTs are reconfigured. Test time speed-up using partial configuration 

memory readback is also enhanced, as fewer frames are read to retrieve the BIST results 

captured in the ORA flip-flops. Fewer frames are read because the contents of all the flip-

flops in a column of a fixed number of PLBs are captured in a single frame instead of 

being spread across multiple frames.  

  

4.9 Summary 

Logic BIST for Virtex-4 showed considerable improvement in test time speed-up 

and reduction in memory storage requirements over Virtex/Spartan-II. Suitable 
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modifications were made to the BIST architecture to exploit architectural and operational 

features of the Virtex-4 FPGA in order to achieve better diagnostic resolution, faster test 

times and reduced memory storage requirements. Although the Logic BIST approach 

discussed pertains to Xilinx FPGAs, this approach can be applied to other FPGAs that 

support similar features, like partial reconfiguration and partial configuration memory 

readback. 
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CHAPTER FIVE 

Summary and Conclusions 

This thesis presented the testing of programmable logic resources in Xilinx 

FPGAs using BIST. Logic BIST configurations were developed for Virtex/Spartan-II and 

Virtex-4 FPGAs. Emphasis was put on techniques to improve the use of BIST for 

FPGAs. These include speed-up in test times due to the slow FPGA configuration process 

and reduction in memory storage requirements because of the large number of test 

configurations. Different techniques depending on the architectural and operational 

features of the FPGA were applied and their effects were studied for the speed-up in test 

time and reduction in memory storage requirements. The following sections in this 

chapter present a brief summary of the main contributions of the work presented in the 

thesis. Areas for future work are also proposed, along with a short discussion regarding 

the implementation of Logic BIST using embedded processors.  

 

5.1 Thesis Summary and Main Contributions 

The Logic BIST architecture was essentially derived from previous work done for 

Lucent ORCA and Xilinx 4000 series FPGAs. The BIST architecture was modified for 

Virtex/Spartan-II and Virtex-4 FPGAs to test their logic resources. The main contribution 
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of the work presented in this thesis was investigation of different techniques to reduce the 

test time and memory storage requirements for implementing Logic BIST. 

A PLB slice of Virtex/Spartan-II FPGA was modeled for fault simulations, based 

on which the test configurations were developed. Most of the test time is devoted to 

configuration download rather than actual testing of the FPGA, so a reduction in the size 

of configuration files is a logical way to reduce the test time. This was achieved by using 

partial reconfiguration in a column-oriented Logic BIST architecture for Virtex/Spartan-

II FPGAs. The test configurations were applied in a specific order such that the size of 

partial reconfiguration files was as small as possible. The scan chain method previously 

used for retrieval of BIST results, although faster, increased the total number of 

configurations required to test a PLB. Configuration memory readback was used instead 

of using a scan chain. This reduced the total number of configurations but continued to 

have a long test time as retrieval of BIST results was time consuming with full 

configuration memory readback. Partial configuration memory readback was used to 

overcome this issue and achieve the desired speed-up in BIST results retrieval time. 

Dynamic partial reconfiguration was used to further reduce the BIST results retrieval 

time by reading ORA contents at the end of a test session rather than a test phase. Two 

‘C’ programs were developed to automate the generation of the Logic BIST 

configurations. 

For Virtex-4 FPGAs, three major changes were made to the Logic BIST 

architecture. Firstly, the DSP cores were used instead of PLBs to implement TPGs. A 

pair of TPGs was used for every four rows of BUTs, which greatly reduced the TPG 

loading and hence improved the maximum BIST clock frequency. Secondly, circular 
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comparison was implemented to improve the diagnostic resolution of BUTs on the edge 

of the BIST architecture. Thirdly, the diagnostic resolution was further improved using 

eight ORAs per PLB rather than one. The techniques used for test time speed-up and 

reduction of memory storage requirements for Virtex/Spartan-II FPGAs were also 

applied to the Virtex-4 FPGA. The results obtained were better for Virtex-4 due to the 

enhanced architectural and operational features. The entire Virtex-4 PLB was modeled 

for more accurate fault coverage analysis, based on which the test configurations were 

developed. Two parameterized ‘C’ programs were developed to generate BIST 

configurations for any size PLB array in any of the Virtex-4 FPGAs. 

 

5.2 Application to Embedded Processors 

The Logic BIST approach was also applied to Virtex-II Pro FPGAs using 

embedded processors. Traditionally, an external source like a personal computer is used 

to download BIST configurations and run BIST, which is slow. The embedded processor 

can be used instead to internally run BIST and reconfigure BUTs [38]. This significantly 

speeds up the test time, as the number of external downloads are reduced and BIST runs 

at a much higher clock frequency [39]. For Xilinx FPGAs, the basic approach is to divide 

the FPGA into two halves; one consists of the Logic BIST structure and the other consists 

of the embedded processor. The embedded processor and the Logic BIST structure are 

swapped, after one half of the FPGA has been completely tested, to test the entire FPGA. 

The goal is to automate Logic BIST as much as possible using the embedded processor 

and achieve test time speed-up. The work done on Virtex-II Pro indicated that the 



 78

embedded processor and Logic BIST structure can be successfully integrated and the 

processor can read and write to the configuration memory. 

 

5.3 Areas for Future Research and Development 

The next step to achieve speed-up is to use an embedded processor to assist Logic 

BIST, as described in the previous section. Once a configuration is downloaded with a 

BIST structure in one half and an embedded processor in the other, the processor should 

be able to perform all the other functions for a test session, which include running BIST, 

retrieval and analysis of BIST results, and reconfiguration of BUTs in different modes of 

operation. 

The current procedure for developing Logic BIST configurations is slow and 

tedious. Work can be done to automate the process of fault simulation and generation of 

BIST configurations by possibly using a generic BIST architecture described in a 

Hardware Description Language that can be synthesized for a new FPGA architecture 

with minor modifications. The work presented in this thesis was developed for Xilinx 

FPGAs only. Similar work can be done for testing the logic resources of different FPGA 

architectures from different FPGA manufacturers. The effects of the techniques used for 

test time speed-up and better diagnostic resolution can also be explored for other FPGAs 

and other programmable resources in FPGAs.  



 79

REFERENCES

[1] B. Arnaldo, “Systems on Chip: Evolutionary and Revolutionary Trends”, Proc. of 

Intn’l Conf. on Computer Architecture, pp. 121-128, 2002. 

[2] M.J.S. Smith, Application Specific Integrated Circuits, Addison-Wesley, 1997. 

[3] M. Abramovici, C. Stroud, “BIST-Based Test and Diagnosis of FPGA Logic 

Blocks”, IEEE Trans. on VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001. 

[4] K. Mori, H. Yamada, S. Takizawa, “System on Chip Age”, Proc. of Intn’l Symp. 

on VLSI Technology, Systems, and Applications, pp. K15-K20, 1993. 

[5] M.L. Bushnell, V.D. Agrawal, Essentials of Electronics Testing for Digital, 

Memory & Mixed Signal VLSI Circuits, Kluwer Academic Publishers, Boston, 

MA, 2000. 

[6] C. Stroud, A Designer’s Guide to Built-In Self-Test, Kluwer Academic Publishers, 

Boston MA, 2002. 

[7] C. Stroud, K. Leach, T. Slaughter, “BIST for Xilinx 4000 and Spartan Series 

FPGAs: A Case Study”, Proc. of Intn’l Test Conf., pp. 1258-1267, 2003. 

[8] __, “Virtex Field Programmable Gate Arrays”, Product Specification DS003-1, 

Xilinx Inc., 2001. 

[9] __, “Virtex-4 Family Overview”, Product Specification DS-112, Xilinx Inc., 2005. 

[10] __, “Virtex-4 User Guide”, UG070, Xilinx Inc., 2005.  



 80

[11] __, “Virtex-4 Configuration Guide”, UG071, Xilinx Inc., 2005. 

[12] __, “Spartan-II 2.5V FPGA Family: Introduction and Ordering Information”, DS-

001, Xilinx Inc., 2004. 

[13] J.M. Rabaey, A. Chandrakasan, B. Nikolić, Digital Integrated Circuits: A Design 

Perspective, 2nd Edition, Pearson Education, 2003. 

[14] __, “Two Flows for Partial Reconfiguration: Module Based or Difference Based”, 

Application Note XAPP290, Xilinx Inc., 2003. 

[15] J. Rose, A.E. Gamal, A. Sangivanni-Vincentelli, “Architecture of Field-

Programmable Gate Arrays”, Proc. of IEEE, Invited Paper, pp. 1013-1029, 1993. 

[16] C. Stroud, J. Sunwoo, S. Garimella, J. Harris, “Built-In Self-Test for System-on-

Chip: A Case Study”, Proc. of Intn’l Test Conf., pp.837-846, 2004. 

[17] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, V. Verma, “Using Roving 

STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant 

Applications”, Proc. of Intn’l. Test Conf., pp. 973-982, 1999. 

[18] M. Abramovici, C. Stroud, B. Skaggs, J. Emmert, “Improving On-Line BIST-

Based Diagnosis for Roving STARs”, Proc. of Intn’l On-Line Test Workshop, pp. 

1-39, 2000. 

[19] C. Stroud, S. Garimella, “Built-in Self-test and Diagnosis of Multiple Embedded 

Cores in SoCs”, Proc. of Intn'l Conf. on Embedded Systems and Applications, pp. 

130-136, 2005. 

[20] C. Stroud, S. Wijesuriya, C. Hamilton, M. Abramovici, “Built-In Self-Test of 

FPGA Interconnect”, Proc. of Intn’l Test Conf., pp. 404-411, 1998. 



 81

[21] C. Stroud, P. Chen, S. Konala, M. Abramovici, “Evaluation of FPGA Resources 

for Built-In Self-Test of Programmable Logic Blocks”, Proc. of ACM Intn’l. 

Symp. on FPGAs, pp. 107-113, 1996. 

[22] W. K. Huang, F. Lombardi, “An Approach to Testing Programmable/Configurable 

Field Programmable Gate Arrays”, Proc. of VLSI Test Symp., pp. 450-455, 1996. 

[23] W. K. Huang, F. J. Meyer, X. Chen, F. Lombardi, “Testing Configurable LUT-

based FPGAs”, IEEE Trans. on VLSI Systems, pp. 276-283, 1998. 

[24] M. Renovell, Y. Zorian, “Different Experiments in Test Generation for Xilinx 

FPGAs”, Proc. of Intn’l Test Conf., pp. 854-862, 2000. 

[25] M. Renovell, J. Portal, J. Figueras, Y. Zorian, “Testing the Interconnects of RAM-

based FPGAs”, IEEE Design and Test of Computers, vol. 15, pp. 45-50, 1998. 

[26] I. G. Harris, R. Tessier, “Interconnect Testing in Cluster-based FPGA 

Architectures”, Proc. of Design Automation Conf., pp. 49-54, 2000. 

[27] S. Wang, C. Huang, “Testing and Diagnosis of Interconnect Structures in FPGAs”, 

Proc. of Asian Test Symp. , pp. 283-287, 1998.  

[28] S. Wang, T. Tsai, “Test and Diagnosis of Faulty Logic Blocks in FPGAs”, Proc. of 

Intn’l Conf. on Computer-Aided Design, pp. 722-727, 1997. 

[29] A. Newalkar, “Alternative Techniques for Built-In Self-Test of Field 

Programmable Gate Arrays”, Master’s Thesis, Auburn University, 2005. 

[30] IEEE Standards Board, 345 E. 47th St. New York 10017, IEEE Standard Test 

Access Port and Boundary-Scan Architecture, 1994. IEEE/ANSI Standard 1149.1-

1994. 



 82

[31] S. Dhingra, S. Garimella, A. Newalkar, C. Stroud, “Built-In Self-Test of Virtex 

and Spartan II using Partial Reconfiguration”, Proc. of North Atlantic Test 

Workshop, pp. 7-14, 2005. 

[32] __, “Virtex Series Configuration Architecture User Guide”, Application Note 

XAPP151, Xilinx Inc., 2003. 

[33] __, “Virtex FPGA Series Configuration and Readback”, Application Note 

XAPP138, Xilinx Inc., 2003. 

[34] S. Dhingra, D. Milton, C. Stroud, “BIST for Logic and Memory Resources in 

Virtex-4 FPGAs”, Proc. of North Atlantic Test Workshop, pp. 19-27, 2006. 

[35] __, “XtremeDSP for Virtex-4 FPGAs User Guide”, UG073, Xilinx Inc., 2005 

[36] S. Gupta, J. Rajski, J. Tyszer, “Test Pattern Generation Based on Arithmetic 

Operations”, Proc. of Intn’l Conf. on Computer-Aided Design, pp. 117-124, 1994 

[37] S. Garimella, “Built-In Self-Test for Regular for Regular Structure Embedded 

Cores in System-on-Chip”, Master’s Thesis, Auburn University, 2005 

[38] J. Sunwoo, C. Stroud, “BIST of Configurable Cores in SoCs Using Embedded 

Processor Dynamic Reconfiguration”, Proc. of Intn'l SoC Design Conf., pp. 174-

177, 2005 

[39] C. Stroud, S. Garimella, J. Sunwoo, “On-Chip BIST-Based Diagnosis of 

Embedded Programmable Logic Cores in SoCs”, Proc. of ISCA Intn'l Conf. on 

Computers and their Applications, pp. 308-313, 2005 

 


