
BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE

ARRAYS USING PARTIAL RECONFIGURATION

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Sachin Dhingra

Certificate of Approval:

Victor P. Nelson Charles E. Stroud, Chair
Professor Professor
Electrical and Computer Engineering Electrical and Computer Engineering

Vishwani D. Agrawal Stephen L. McFarland
Professor Acting Dean
Electrical and Computer Engineering Graduate School

BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE

ARRAYS USING PARTIAL RECONFIGURATION

Sachin Dhingra

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
August 7, 2006

 iii

BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE

ARRAYS USING PARTIAL RECONFIGURATION

Sachin Dhingra

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

 Signature of Author

 Date of Graduation

 iv

VITA

Sachin Dhingra, son of Baldev Raj and Anita Dhingra, was born on May 31, 1982

in Chandigarh, India. He graduated with a Bachelor of Engineering degree in Electronics

and Telecommunications Engineering in May 2003 from Maharashtra Institute of

Technology, University of Pune, India. After completion of his undergraduate degree, he

joined Electronic Projects Management, Canada as a Senior Test Technician in

November 2003. He entered the graduate program at Auburn University in August 2004.

While in pursuit of his Master of Science degree at Auburn University, he worked under

the guidance of Dr. Charles E. Stroud as a graduate student research assistant in the

Electrical and Computer Engineering Department.

 v

THESIS ABSTRACT

BUILT-IN SELF-TEST OF LOGIC RESOURCES IN FIELD PROGRAMMABLE GATE

ARRAYS USING PARTIAL RECONFIGURATION

Sachin Dhingra

Master of Science, August 7, 2006
(B.E, University of Pune, India, 2003)

97 Typed Pages

Directed by Charles E. Stroud

Field Programmable Gate Arrays (FPGAs) are programmable logic devices that

can be used to implement virtually any digital circuit design. Built-In Self-Test (BIST) is

a testing approach that enables the device to test itself without any external test

equipment. The re-programmability feature of the FPGAs makes BIST a very attractive

approach for testing FPGAs because it eliminates any area or performance degradation

associated with BIST.

Traditional BIST for FPGAs suffers from long test times and large memory

storage requirements due to the slow configuration download speeds and the large

number of test configurations required to test the FPGAs. The work presented in this

thesis implements testing of logic resources of Xilinx Virtex/Spartan-II and Virtex-4

FPGAs with focus on reduction of test time and memory storage requirements using

 vi

techniques like dynamic partial reconfiguration and partial configuration memory

readback.

The total number of configurations required to completely test the logic resources

are 28 for Virtex/Spartan-II FPGAs and 24 for Virtex-4 FPGAs. A speed-up of 5.1 times

and 12.9 times in test time was achieved for Logic BIST for Virtex/Spartan-II and Virtex-

4 FPGAs respectively, using dynamic partial reconfiguration and partial configuration

memory readback. A reduction in configuration memory storage requirements was also

achieved using partial reconfiguration; this reduction was 3.2 times and 5.3 times for

Virtex/Spartan-II and Virtex-4 FPGAs respectively.

 vii

ACKNOWLEDGMENTS

I am indebted to Dr. Stroud for his support and advice throughout my research at

Auburn University. I would also like to thank Dr. Nelson and Dr. Agrawal for being on

my graduate committee and for their contribution to my thesis. I would like to

acknowledge my research colleagues Daniel, John, Jonathan, Lee, Srinivas, and Sudheer

for their help and inspirational discussions during my research. Finally, I would like to

express my deepest gratitude to my parents and my brother whose love and

encouragement is inspiring me to achieve my goals.

 viii

Style manual or journal used: IEEE (Institute of Electrical and Electronic

Engineers) Journal style

Computer software used: Microsoft® Word® 2003, Microsoft® Excel® 2003,

Microsoft® Visio® 2003

 ix

TABLE OF CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF ACRONYMS xiv

CHAPTER ONE: Introduction ... 1
1.1 Field Programmable Gate Arrays (FPGAs).. 1
1.2 Testing and BIST .. 3
1.3 FPGA BIST... 5
1.4 Xilinx FPGAs.. 7
1.5 Thesis Statement ... 7

CHAPTER TWO: Background... 9

2.1 FPGA Architectures.. 9
2.1.1 Configuration Memory ... 10
2.1.2 Programmable interconnects, IOBs, Memory and DSP 11
2.1.3 Programmable Logic Resources ... 12

2.2 Virtex/Spartan-II Architecture .. 14
2.3 Virtex-4 Architecture .. 18
2.4 FPGA Configuration... 23

2.4.1 Configuration Interface... 24
2.4.2 Configuration Process... 26
2.4.3 Configuration Memory Readback... 27

2.5 Prior Work in FPGA Testing .. 28
2.6 General BIST Architectures.. 30
2.7 BIST for Logic Resources of an FPGA .. 30

2.7.1 BIST Architecture... 31
2.7.2 Test Pattern Generation and Output Response Analysis 33
2.7.3 Configuration Schemes... 35
2.7.4 Results Retrieval ... 35

2.8 Restatement of Thesis Goals... 36

CHAPTER THREE: Logic BIST for Virtex/Spartan II ... 38

3.1 Introduction... 38
3.2 Virtex/Spartan-II PLB Architecture.. 38

 x

3.3 BIST Architecture... 39
3.4 Partial Reconfiguration ... 43
3.5 Partial Configuration Memory Readback ... 45
3.6 Logic BIST Configurations for Virtex/Spartan-II .. 45

3.6.1 Fault Model and Fault Coverage... 46
3.6.2 Configuration Details.. 47

3.7 Logic BIST Configuration Generation Process .. 49
3.8 Methods for Application of BIST... 50
3.9 Results... 51
3.10 Summary ... 53

CHAPTER FOUR: Logic BIST for Virtex-4 ... 55

4.1 Introduction... 55
4.2 Virtex-4 Architecture .. 55
4.3 BIST Architecture... 56
4.4 Logic BIST Configurations for Virtex-4 .. 61

4.4.1 Fault Model and Fault Coverage... 61
4.4.2 Configuration Details.. 62

4.5 Timing Analysis.. 67
4.6 Logic BIST Configuration Generation Process .. 68
4.7 Methods for Application of BIST... 70
4.8 Results... 71
4.9 Summary ... 73

CHAPTER FIVE: Summary and Conclusions ... 75

5.1 Thesis Summary and Main Contributions .. 75
5.2 Application to Embedded Processors ... 77
5.3 Areas for Future Research and Development ... 78

REFERENCES ... 79

 xi

LIST OF FIGURES

Figure 1.1 FPGA Architecture... 3

Figure 1.2 Basic BIST Architecture [6]... 4

Figure 1.3 BIST in FPGAs... 6

Figure 2.1 Configuration Memory Element... 10

Figure 2.2 Typical PLB Slice of a Xilinx FPGA... 13

Figure 2.3 Virtex/Spartan-II Architecture.. 15

Figure 2.4 PLB of a Xilinx Virtex series FPGA.. 16

Figure 2.5 Virtex/Spartan-II PLB Slice [8].. 17

Figure 2.6 Configuration memory structure of Virtex FPGAs .. 18

Figure 2.7 Virtex-4 Architecture.. 19

Figure 2.8 Diagram of a Xilinx Virtex-4 series FPGA PLB.. 20

Figure 2.9 Virtex-4 SliceL [10] ... 21

Figure 2.10 Virtex-4 SliceM [10] .. 22

Figure 2.11 Boundary Scan Architecture... 25

Figure 2.12 On-line BIST [6]... 30

Figure 2.13 BIST Architecture to test Logic Resources [3] .. 32

Figure 2.14 Output Response Analyzer ... 34

Figure 3.1 Logic BIST Architecture for Virtex/Spartan-II FPGAs 41

Figure 3.2 Output Response Analyzers ... 42

Figure 3.3 Fault Coverage of a Virtex FPGA PLB slice ... 47

Figure 3.4 Test time speed-up and reduction in memory storage requirements 52

Figure 4.1 Logic BIST Architecture for Virtex-4 FPGAs ... 57

Figure 4.2 ORAs in a Single PLB slice ... 58

Figure 4.3 Fault Coverage of a Virtex-4 PLB.. 62

Figure 4.4 Maximum BIST clock frequency vs. Device size .. 68

Figure 4.5 BIST Architecture in Virtex-4 FX FPGAs... 70

 xii

Figure 4.6 Test time speed-up and reduction in memory storage requirements 72

 xiii

LIST OF TABLES

Table 2.1 Resources available in different FPGA families [8] [12] [9]........................... 14

Table 3.1 Configuration Details... 48

Table 3.2 Methods used for Logic BIST ... 51

Table 3.3 Speed-up vs. Device Size... 53

Table 4.1 Configuration Details... 63

Table 4.2 Methods used for Logic BIST ... 71

Table 4.3 Comparison of test time speed-up and reduction in memory storage

requirements of Virtex/Spartan-II and Virtex-4 FPGAs... 73

 xiv

LIST OF ACRONYMS

BIST Built-In Self Test

BSCAN Boundary SCAN

BUT Block Under Test

CPLD Complex Programmable Logic Device

CRC Cyclic Redundancy Check

CUT Circuit Under Test

DLL Delay Locked Loop

DSP Digital Signal Processor

FAR Frame Address Register

FDR Frame Data Register

FPGA Field Programmable Gate Array

GSR Global Set/Reset

IC Integrated Circuit

ID Identification

I/O Input Output

IOB Input Output Buffer

IP Intellectual Property

LFSR Linear Feedback Shift Register

LUT Look-Up Table

NCD Native Circuit Design

ORA Output Response Analyzer

PIP Programmable Interconnect Point

PLB Programmable Logic Block

PROM Programmable Read Only Memory

RAM Random Access Memory

ROM Read Only Memory

 xv

SRAM Static Random Access Memory

TCK Test Clock

TDI Test Data Input

TDO Test Data Output

TMS Test Mode Select

TPG Test Pattern Generator

VLSI Very Large Scale Integration

XDL Xilinx Design Language

 1

CHAPTER ONE

Introduction

Rapid advances in semiconductor processing technologies have allowed transistor

densities to double every two years; this phenomenon has led to new opportunities in

Very Large Scale Integration (VLSI) design and new challenges in design verification

and testing [1]. The growing complexity of design has made programmable logic devices

like Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic

Devices (CPLDs) some of the leading products in the semiconductor industry, as they

provide an easy way to implement and verify complex digital designs.

Every innovation in Integrated Circuit (IC) design is accompanied by new

challenges in testing. The test systems accordingly are becoming faster, more complex

and hence more expensive. Cost and time are two of the most important factors that

govern the development of any kind of test system. Built-In Self-Test (BIST) is one

technique which reduces the cost and time overheads involved in external test systems. It

is a technique that places a device’s testing function within the device itself [6].

1.1 Field Programmable Gate Arrays (FPGAs)

FPGAs are programmable logic devices that can be configured or programmed to

perform tasks specific to any digital application. The FPGAs gained popularity due to

 2

their flexibility and short time-to-market, making them ideal for prototyping systems and

low volume products. The design to be implemented in an FPGA is converted to a string

of bits called the configuration file using tools provided by the FPGA manufacturer. The

configuration file is used to program the memory elements inside the FPGA that control

the functionality of the programmable components of the FPGA to implement the

required design [2]. Traditionally, the entire configuration memory of an FPGA is

rewritten with configuration data if the design needs to be modified; this is called full

reconfiguration. Current FPGAs have the ability to be configured partially such that only

the section of the configuration memory that changes due to the design modifications is

rewritten with new configuration data. This configuration technique is known as partial

reconfiguration [13] [14].

An FPGA typically consists of an array of Programmable Logic Blocks (PLBs),

programmable interconnect network, Input/Output Buffers (IOBs) and embedded cores

like memory blocks. The PLBs form the logic resources of an FPGA and usually consist

of look-up tables, flip-flops and multiplexers. The programmable interconnect network is

comprised of wire segments and programmable switches that connect or disconnect the

wire segments. PLBs can be configured and connected to each other using the

programmable interconnect network to implement virtually any combinational or

sequential circuit. The IOBs are used to interface the circuit to the outside world [13]. A

current trend in FPGAs is to embed pre-designed Intellectual Property (IP) cores into the

FPGA. These IP cores include memory blocks like Random Access Memories (RAMs)

and Digital Signal Processor (DSP) blocks to improve application-specific performance.

Figure 1.1 shows the architecture of a typical FPGA.

 3

Programmable Logic
Block (PLB)

Programmable
Interconnect

Network

Input Output
Buffer (IOB)Embedded Cores

(E.g. Memory)

 Figure 1.1 FPGA Architecture

1.2 Testing and BIST

A quality product can be delivered only if it has been tested thoroughly. Testing is

done to ensure fault-free operation of a circuit. In order to test any circuit, a mechanism is

needed to apply a set of input stimuli to the Circuit Under Test (CUT) and another

 4

mechanism is required to analyze or compare the output response with the response of a

known good circuit to determine whether the circuit is fault-free or faulty [5].

The input stimuli in case of external test systems are applied and the output

response is analyzed or compared externally. In case of BIST, the test system is

integrated within the system itself; the input stimuli are applied and the output response is

analyzed internally within the system. The BIST technique involves addition of extra

circuitry to an existing design. There are many variations in BIST depending on the CUT,

but they all have a common purpose, which is to generate test patterns and analyze the

output responses of the CUT [6]. A typical implementation of BIST consists of a Test

Pattern Generator (TPG) for the CUT, input isolation circuitry for isolation of the primary

inputs of the CUT during testing, an Output Response Analyzer (ORA) for verification of

proper operation of the CUT, and control circuitry for execution of the test procedure as

shown in Figure 1.2.

Figure 1.2 Basic BIST Architecture [6]

The external test approach is best suited for circuits that allow access to all the I/O

pins for testing. Over the past two to three decades, the number of I/O pins on most very

 5

large scale integration devices has increased by an order of magnitude while the number

of transistors has increased by as much as four orders of magnitude [6]. This has resulted

in reduced accessibility of the ICs; making external test systems more complicated and

expensive. BIST on the other hand is much simpler and inexpensive, as external test

equipment is absent. Moreover, BIST techniques can be used at any level of testing

ranging from manufacturing level testing to system level testing. Major drawbacks of the

BIST technique are additional design requirements, area overhead and performance

penalty [6]. The drawbacks of BIST are easily compensated by the advantages it offers.

BIST has been successfully implemented in many digital logic designs and finds special

use in testing of FPGAs.

1.3 FPGA BIST

The growing popularity of FPGAs in the VLSI industry has fueled research on

new methodologies for testing these FPGAs. The re-programmability of FPGAs makes

them harder to test as compared to regular structures. This is due to the fact that the

FPGA can be operated and connected in many ways internally; as a result, it must be

configured multiple times in order to be tested completely. But, due to the in-system re-

programmability of the FPGAs, they can be configured to test themselves [6]. The idea is

to program the BIST circuitry in a part of the FPGA and treat the rest of the FPGA as the

CUT. Once the CUT is completely tested, a reversal of roles takes place, as the part of the

FPGA used for BIST circuitry now becomes the CUT and vice versa. This process is

illustrated in Figure 1.3.

 6

Figure 1.3 BIST in FPGAs

The BIST circuit can be designed in a number of ways to provide high resolution

diagnostics for the FPGA, opening the door for fault-tolerant systems which was

previously not possible with external test systems [3]. Moreover, BIST implemented in

FPGAs does not suffer from any kind of area or performance overhead compared to

conventional BIST techniques, as the BIST circuitry can be easily replaced by re-

programming the FPGA with the system function after test [3].

Considerable work has been done in the area of BIST for FPGAs. Depending on

the resources to be tested, some of the PLBs of an FPGA are configured as Test Pattern

Generators and Output Response Analyzers, forming the BIST circuitry which tests the

targeted resources in the FPGA [7]. An FPGA is reconfigured repetitively for testing and,

as a result, a major portion of the time required to test the FPGAs is spent re-configuring

them, i.e. downloading BIST configuration data into the FPGA.

The majority of an FPGA is comprised of routing and logic resources [15]. So not

surprisingly, most of the research and development work done in the area of BIST for

 7

FPGAs has been for its logic and routing resources [3] [7] [17] [20] [23] [27]. A generic

approach cannot be used to completely test an FPGA since different fault models and test

techniques are used to test logic and routing resources. The work presented in this thesis

focuses on BIST for programmable logic resources only. Although considerable work has

been done in the area of BIST for logic resources of an FPGA, the BIST technique for the

testing logic resources presented in this thesis is most influenced by work described in [3]

and [7]. A BIST approach for testing the PLBs of ORCA series FPGAs was presented

along with a procedure for diagnosis and location of faulty PLBs in [3]. The BIST

technique presented in [3] was extended to Xilinx XC4000 and Spartan series FPGAs to

completely test their logic and routing resources in [7].

1.4 Xilinx FPGAs

The FPGAs used for the work presented in this thesis are Xilinx Virtex/Spartan-II

and Virtex-4 FPGAs. Virtex/Spartan-II family of FPGA devices consist of primarily an

array of PLBs, IOBs and memory blocks as shown in Figure 1.1 [8]. The Virtex-4 family

of FPGAs combine a traditional FPGA with embedded processors, multipliers and high

speed I/O interfaces in one package [9]. The architectural and operational features of

these FPGAs can be exploited for implementation of BIST to speed-up the test time and

also reduce the amount of memory required to store all the test configurations [16].

1.5 Thesis Statement

The research work presented in this thesis, primarily focuses on ways to improve

BIST implementation for programmable logic resources of FPGAs. This involves

 8

reduction in test time, improvement in diagnostic resolution and reduction in memory

storage requirements for BIST configurations. This work builds upon the previous work

done in the area described in [3] [7] [17] [18] [19] [29], extending to newer FPGA device

families using techniques like partial reconfiguration and partial configuration memory

readback. The target devices for this research are the Xilinx Virtex/Spartan-II and Virtex-

4 family of devices. Configurations for BIST for programmable logic of Virtex/Spartan-II

series FPGAs are developed along with methods to improve the test time. In case of the

Virtex-4 family of devices, a set of BIST configurations for PLBs is developed and using

architectural and operational features, further improvement in test time and reduction in

configuration memory storage requirements is achieved.

The thesis is organized as follows: Chapter 2 describes the previous work done in

the area of BIST for programmable logic resources and elaborates upon the architectures

of Virtex/Spartan-II and Virtex-4 FPGAs. Implementation and experimental results of

BIST for programmable logic resources in the Virtex/Spartan-II family of FPGAs is

described in Chapter 3. Chapter 4 presents the implementation of BIST for

programmable logic resources in the Virtex-4 FPGAs along with experimental results.

Chapter 5 concludes the thesis with suggestions for future work and a discussion

regarding the potential use of an embedded processor to assist in BIST.

 9

CHAPTER TWO

Background

This chapter covers the background knowledge required to understand the

research work presented in the following chapters. It begins with an overview of the

architectures and configuration process of the Virtex/Spartan-II and Virtex-4 FPGAs used

for the work presented in this thesis. This is followed by a discussion of prior work done

in FPGA testing and BIST for testing the programmable logic resources of an FPGA. The

chapter concludes with a restatement of the thesis goals.

2.1 FPGA Architectures

A typical FPGA consists of an array of PLBs, programmable interconnects, IOBs

and RAM cores. The PLB array is interleaved with RAM cores and IOBs are arranged on

the periphery as shown in Figure 1.1. Newer FPGAs have additional embedded cores like

DSP cores, embedded microprocessors, and high-speed I/O interface for better system

performance [13]. A design can be programmed into the FPGA by writing data to the

configuration memory of the FPGA. The configuration memory then defines the function

of the various programmable components of an FPGA. The following sub-sections

describe the major components of Xilinx Virtex/Spartan-II and Virtex-4 series FPGAs.

 10

2.1.1 Configuration Memory

All programmable devices have some kind of memory elements which connect or

break connections in a programmable device to establish the desired functionality. Figure

2.1 illustrates a memory element that determines the connection between two lines [2].

Figure 2.1 Configuration Memory Element

A memory element can be an anti-fuse, a floating-gate transistor, as in Read-Only

Memory (ROM)/Flash memory, or a Static RAM (SRAM) cell. Most modern FPGAs use

SRAM based memory elements which can be reprogrammed quickly in-system [2].

Xilinx Virtex/Spartan-II and Virtex-4 FPGAs are SRAM based, the drawback being

volatile configuration memory. This means that the FPGA needs to be configured with

the desired system function every time it is powered up, as the configuration memory

elements lose their data on loss of power [11]. The configuration memory is spread

across the entire device and is organized into smaller addressable segments called frames

in the case of Xilinx devices. The size of the configuration memory varies depending on

the size of the FPGA [11].

 11

2.1.2 Programmable Interconnects, IOBs, Memory and DSP

All components in the FPGAs are connected using some type of routing

resources; as a result the programmable interconnect network forms the biggest part of an

FPGA [10]. The programmable interconnect network consists of wire segments that are

connected or disconnected using Programmable Interconnect Points (PIPs), these PIPs

are essentially switches controlled by configuration memory bits. A collection of these

PIPs form a switch-matrix that is used in conjunction with wire segments to connect to

various components of the FPGA like PLBs and RAMs. The routing resources of an

FPGA are organized in a hierarchical manner that includes local, I/O, dedicated and

global routing resources. Local routing resources include internal wire segments of a

component for direct connections between adjacent components and switch matrices. I/O

routing resources connect the internal components of the FPGA to the IOBs. Dedicated

routing resources are used to implement high speed buses for better performance. Global

routing consists of buffered nets used to route high-fanout signals like clock and reset [8]

[9].

Over the years memory cores have become an integral part of the FPGA, as any

kind of modern digital design requires storage capability. The memory cores, also known

as BlockRAMs in Xilinx FPGAs, can be configured to operate in different modes

depending on the data width and the size of the memory required. The BlockRAM in

Xilinx FPGAs is a dual-port RAM that has two ports that can read and write to the

memory simultaneously. To connect the FPGAs to the outside world, IOBs are provided

which can be configured to be compatible with different IO standards, drive capabilities

 12

and speeds [10]. Newer FPGAs have specialized DSP cores to implement high

performance digital signal processing functions, these DSP cores typically consist of

dedicated multipliers, adders and accumulators [10].

2.1.3 Programmable Logic Resources

The PLBs of Xilinx FPGAs are divided into smaller units of logic called slices.

Each slice typically consists of a pair of logic cells, where a logic cell is comprised of a

Look-Up Table (LUT), a storage element, some carry logic circuitry and multiplexers.

Figure 2.2 illustrates a typical PLB slice of a Xilinx FPGAs. The LUT in Xilinx FPGAs

can also be used to implement a shift register or a small RAM (16-bit for a 4-input LUT);

these small RAMs are called distributed RAMs or Look-Up Table RAMs (LUT RAMs).

Virtex/Spartan-II FPGAs have two identical slices per PLB [8] [12], whereas a Virtex-4

PLB consists of two different kind of slices, named SliceL and SliceM. The LUTs in

SliceM can be used to implement LUT RAMs or shift registers, whereas LUTs in SliceL

do not have this feature [10]. A Virtex-4 PLB consists of two SliceLs and two SliceMs

for a total of four slices.

 13

LUT
RAM

LUT
RAM

Carry &
Control
Logic

Carry &
Control
Logic

Storage
Element

Storage
Element

G1
G2
G3
G4

F1
F2
F3
F4

BY

BX

Carry In

Carry Out
YB
Y

YQ

X

XQ

XB

Clock
Clock Enable

Set/Reset

Figure 2.2 Typical PLB Slice of a Xilinx FPGA

Table 2.1 shows the various resources available in Virtex/Spartan-II and Virtex-4

families of FPGAs. Although Spartan-II and Virtex are separate families of FPGAs,

Spartan-II is essentially derived from the Virtex architecture with fewer features and

lower performance for lower cost. The Virtex-4 family of FPGAs is sub-divided into

three sub-families:

• LX: for logic applications (higher logic resources)

• SX: for DSP applications (higher DSP resources)

• FX: for embedded applications (embedded processor, Rocket IO and Ethernet

cores)

 14

Table 2.1 Resources available in different FPGA families [8] [12] [9]

Resource Spartan-II Virtex Virtex-4 LX Virtex-4 SX Virtex-4 FX
Largest PLB
Array Size
(Rows x Columns)

28 x 42 64 x 96 192 x 116 128 x 48 192 x 84

PLBs 1,176 6,144 22,272 6,144 16,128
Logic slices 2,352 12,288 89,088 24,576 64,152
Distributed RAM 74 Kbits 384 Kbits 1,392 Kbits 384 Kbits 987 Kbits
BlockRAMs 56 Kbits 184 Kbits 6,048 Kbits 5,760 Kbits 9,936 Kbits
I/O pins 284 512 960 640 896
DSP cores - - 96 512 192

2.2 Virtex/Spartan-II Architecture

The architecture of a Virtex/Spartan-II FPGA is shown in Figure 2.3. An array of

PLBs and associated routing resources is at the core of the FPGA. A column of

BlockRAMs is placed at the east and west edges of the PLB array. The IOBs and the

Delay Locked Loops (DLL) for clocks are located at the periphery of the FPGA. The

BlockRAMs and PLBs are surrounded by additional routing resources, primarily used to

connect the internal resources of the FPGA to the I/O pins of the FPGA.

 15

DLL DLL

DLLDLL

IOBs

B
lockR

A
M

s
PLBs

&
Interconnect

Network

IO
B

s

IOBs

IO
B

s

B
lo

ck
R

A
M

s

Figure 2.3 Virtex/Spartan-II Architecture

A Virtex/Spartan-II PLB consists of a pair of identical slices which are connected

to a switch matrix as illustrated in Figure 2.4. The switch matrix is responsible for routing

the signals in and out of the PLB. These PLBs also feature a carry chain that spans the

entire column of PLBs. Each PLB slice has dedicated circuitry associated with the carry

chain to implement fast arithmetic functions like an adder using look-ahead carry.

 16

Figure 2.4 PLB of a Xilinx Virtex series FPGA

The internal architecture of a Virtex/Spartan-II PLB slice is illustrated in Figure

2.5. A single LUT of a Virtex/Spartan-II PLB can be used to implement any 4-input

combinational logic function. It can also operate as a 16x1-bit RAM. Two LUTs of a

PLB can be combined to form single-port 32x1-bit, 16x2-bit or a dual-port 16x1-bit

RAM. The storage element can be operated either as a positive or negative edge-triggered

flip-flop or as an active low or an active high level-sensitive latch. Storage elements have

control signals including set/reset and clock-enable that are shared by all storage elements

within a slice [8]. All four LUTs of the PLB can be combined using control logic and

multiplexers provided in the PLB slices to implement any combinational logic function of

up to six inputs. The PLBs feature dedicated logic like XOR gates and AND gates in

order to implement fast arithmetic logic.[8].

 17

Figure 2.5 Virtex/Spartan-II PLB Slice [8]

The configuration memory of Virtex/Spartan-II FPGAs is divided into frames.

The number frames per column of PLBs and associated routing is fixed at 48 frames as

shown in Figure 2.6. The frame size varies from 12 words of 32 bits each for the smallest

device to 39 words for the largest device in the Virtex family, depending on the number

of PLB rows in the FPGA. The IOB frames are on the edges of the FPGA followed by

the BlockRAM frames. The PLB frames also have some IOB configuration data at the

 18

start and end of the frame. The Centre column consists of frame data for global clocks

[32].

IO
B

 C
ol

um
n

(5
4

fra
m

es
)

B
R

AM
 C

ol
um

n
(9

1
fra

m
es

)

IO
B

 C
ol

um
n

(5
4

fra
m

es
)

P
LB

 C
ol

um
n

(4
8

fra
m

es
)

P
LB

 C
ol

um
n

(4
8

fra
m

es
)

P
LB

 C
ol

um
n

(4
8

fra
m

es
)

PL
B

C
ol

um
n

(4
8

fra
m

es
)

PL
B

C
ol

um
n

(4
8

fra
m

es
)

PL
B

C
ol

um
n

(4
8

fra
m

es
)

B
R

A
M

 C
ol

um
n

(9
1

fra
m

es
)

C
en

tre
 C

ol
um

n
(8

 fr
am

es
)

Figure 2.6 Configuration memory structure of Virtex FPGAs

2.3 Virtex-4 Architecture

The architecture of Virtex-4 FPGAs is different from Virtex/Spartan-II FPGAs, as

illustrated in Figure 2.7. The PLBs and routing resources are spread across the entire

FPGA. The I/O buffers are arranged in columns inside the FPGA, unlike Virtex/Spartan-

II FPGAs that have IOBs only on the edges of the FPGA. Columns of BlockRAMs and

DSP cores are interleaved with columns of PLBs. Virtex-4 FPGAs have up to 12 columns

of BlockRAMs and 8 columns of DSP cores. The Virtex-4 FX family also features up to

two embedded PowerPC cores.

 19

B
lo

ck
R

A
M

s

B
lockR

A
M

s
IO

B
s

IO
B

s

D
SP

 c
or

es

D
SP cores

Figure 2.7 Virtex-4 Architecture

The PLB of a Virtex-4 FPGA is comprised of four slices, two SliceLs and two

SliceMs as shown in Figure 2.8. All four slices are interconnected and similar slices are

placed together in a column. Both pairs of slices have an independent carry chain

spanning the entire column. The LUTs of SliceM also feature a Shift Register and a RAM

mode of operation, consequently SliceMs feature a shift chain that can be used to

combine SliceMs in single or multiple PLBs to form a long shift register [10].

 20

Switch
Matrix

SliceM (2)

SliceM (0)

Carry
Chain M

SliceL (3)

SliceL (1)

Carry
Chain L

Shift
Chain

Figure 2.8 Diagram of a Xilinx Virtex-4 series FPGA PLB

The slices in Virtex-4 feature two 4-input LUTs, denoted F and G, two storage

elements, carry logic, multiplexers and some arithmetic gates. The LUTs can be used as a

4-input LUT, up to a 16-bit shift register (SliceM only) or a 16-bit LUT RAM (SliceM

only). The storage elements can be configured as positive or negative edge-triggered flip-

flops or active high or active low level-sensitive latches with clock-enable control

capability. They can be initialized to high or low value after download and set/reset

synchronously or asynchronously during operation. Multiplexers present in the slices are

used to cascade LUTs in multiple slices or PLBs to form up to 64x1 LUT RAM in a

single PLB or a 64-bit shift register using a single PLB (multiple PLBs can be cascaded

to form larger shift registers). A PLB has two carry chains that are directed vertically

upwards, the carry chain logic in the slices is used to implement look-ahead carry

functions. A pair of AND and XOR gates are provided in a slice as dedicated arithmetic

 21

gates for efficient utilization of the logic resources [10]. The internal architectures of

Virtex-4 SliceL and SliceM are illustrated in Figures 2.9 and 2.10, respectively.

Figure 2.9 Virtex-4 SliceL [10]

 22

Figure 2.10 Virtex-4 SliceM [10]

 23

The Configuration memory of a Virtex-4 FPGA is divided into frames of fixed

size of 41 words of 32 bits each. These frames span a fixed number of rows of an FPGA

column, unlike Virtex/Spartan-II frames that span the entire column. Frames are grouped

together to form blocks based on the resources defined by them, like PLBs or

BlockRAMs [11].

2.4 FPGA Configuration

A design is typically synthesized and converted to a configuration file or a

bitstream that is downloaded into the FPGA to implement the required design [2]. Several

interfaces are available to configure the FPGAs including Boundary Scan, dedicated

serial interface and dedicated parallel interface [11]. As the FPGA devices grow bigger,

the configuration file or bitstream size also grows. This leads to a longer time required to

download a design.

Partial reconfiguration is a technique used to reduce the time required to

reconfigure an FPGA. Once a full configuration for a design has been downloaded to the

FPGA, minor changes in the design result in small changes in the bitstream. So instead of

downloading the full bitstream, only parts of the bitstream that change are downloaded

using partial reconfiguration [29]. In case of Xilinx FPGAs, a frame is the smallest unit

of configuration memory that can be changed. One of the features of the newer FPGAs is

dynamic partial reconfiguration. This feature allows the user to retain the flip-flop

contents of the PLBs and IOBs during reconfiguration. Unused parts of FPGAs are

reconfigured while the FPGA is operational with the system function [14].

 24

2.4.1 Configuration Interface

There are three main configuration interfaces available in Xilinx FPGAs [11].

They are:

1. Master/Slave Serial interface

2. Master/Slave Parallel (SelectMAP) interface

3. Boundary Scan interface

The source of clock used for configuration determines whether the interface is in

master mode or slave mode. If the source for generation of the configuration clock is

external to the FPGA then the configuration mode is in slave mode. In master mode the

configuration clock is generated internally by the FPGA. The configuration interface to

be used for Xilinx FPGAs is determined by the value set on three mode pins of the FPGA

[11].

One bit is downloaded to the FPGA per clock cycle when the serial interface is

used. In case of the SelectMAP interface, configuration data is downloaded in parallel.

The configuration data can be both downloaded to the FPGA or read back from the

FPGA using the SelectMAP interface. The SelectMAP interface is capable of reading or

writing 8 or 32 bits per clock cycle in parallel, greatly reducing the configuration

download time as compared to the serial interface [11]. The third interface is known as

Boundary Scan [5] [30]. It was originally developed to test the integrity of the

connections between devices on a printed circuit board. Xilinx FPGAs make additional

use of the Boundary Scan interface to download to or read back from the FPGA

configuration memory [11].

 25

The Boundary Scan interface consists of a 4-pin Test Access Port (TAP), TAP

controller, instruction register and decoder, bypass register and Boundary Scan register as

shown in Figure 2.11.

Figure 2.11 Boundary Scan Architecture

The TAP controller consists of a finite state machine that is controlled by four

TAP pins, namely TCK (Test Clock), TMS (Test Mode Select), TDI (Test Data In) and

TDO (Test Data Out). Depending on the state of the TAP controller, instructions or data

 26

can be loaded into the Boundary Scan interface registers. All the IOBs are interconnected

to form a Boundary Scan register in test mode and test vectors are loaded to the IOBs

using TDI. Similarly TDO is used to read out the test results from the IOBs. The bypass

register is a single bit register used to put the device in bypass mode to access other

devices connected in the Boundary Scan chain. The instruction register and decoder are

used to execute the Boundary Scan test instructions [11]. Most of the current FPGAs

allow configuration download using the Boundary Scan interface. Xilinx FPGAs

implement Boundary Scan instructions that allow both configuration memory download

and readback by using configuration registers, like the frame data register and frame

address register. The configuration memory can be written using a CFGIN command and

read back using a CFGOUT command [11].

Xilinx also provides user access to the FPGA core from the Boundary Scan

interface via Boundary SCAN (BSCAN) modules in the FPGA. These user access

modules can be used to create internal Boundary Scan chains to implement user-defined

functions in an FPGA. The BSCAN modules have to be activated using Boundary Scan

commands before they can be used to perform a user function. All BSCAN modules

source the clock from the TCK pin in the Boundary Scan interface and the clock for a

given BSCAN module is enabled only when it is activated. BSCAN modules also consist

of output pins that indicate the status of the Boundary Scan interface [11] [32] [33].

2.4.2 Configuration Process

The configuration of a Xilinx FPGA is a multi-stage process. Before the

download of configuration data, the FPGA is initialized, which involves synchronization

 27

of the configuration interface logic of the FPGA with the configuration data to be

downloaded. It may also include clearing of the configuration memory. A Cyclic

Redundancy Check (CRC) is performed on the configuration data to check for errors

while data is downloaded to the configuration memory. The final step is known as the

startup sequence, it is a multi-step process that includes activation/de-activation of global

signals like global set/reset (GSR), global write-enable for all the RAMs and flip-flops in

the FPGA and global tri-state enable for all the IOBs [11].

For full configuration, all the frames in the FPGA are written with configuration

data, whereas for partial reconfiguration only the frames that change are rewritten. The

configuration process is similar for both methods except for the initialization. The

configuration memory is not cleared during initialization of the FPGA using partial

reconfiguration. During configuration download, the frame address register (FAR) is

written with the address of the frame to be written and 32-bit words of configuration data

are written to the specified frame in the configuration memory via the frame data register

(FDR) [11].

2.4.3 Configuration Memory Readback

Xilinx FPGAs allow the user to read back contents of the complete configuration

memory of the FPGA. This can be used to verify the configuration bits downloaded into

the FPGA. Instead of full configuration memory readback, parts of the configuration

memory can also be read back; this procedure is known as partial configuration memory

readback [14]. A frame is the smallest unit of configuration memory that can be read

using partial configuration memory readback. For reading a frame, the frame address is

 28

written in the FAR and the configuration data is read out from the FDR using an external

interface like SelectMAP or Boundary Scan [33]. Xilinx FPGAs are also capable of

capturing the contents of the BlockRAMs and flip-flops of the FPGA during

configuration memory readback [11]. In the case of Xilinx FPGAs, a CAPTURE module

needs to be instantiated in the design in order to perform configuration memory readback

[11] [33].

2.5 Prior Work in FPGA Testing

This section lists some of the work previously done in the area of FPGA testing.

Major work related to testing of logic resources of an FPGA is presented in [3] [7] [16]

[17] [18] [21] [22] [23] [24] [28]. Stroud et al. present a method to evaluate the number

of configurations required to test all the logic resources of an FPGA in [21]. The most

comprehensive works in testing of programmable logic resources using a BIST approach

were presented in [3] [7]. Reference [7] extends the work done in [3], which was done

using Lucent’s ORCA series FPGAs to Xilinx 4000 series FPGAs. Reference [3] also

describes an algorithm called MULTICELLO that can be used for diagnosis of faulty

PLBs in FPGAs. The work done in [3] and [7] laid the basis for the work presented in

this thesis.

Ideas were derived from work done in [17] [18] [19] to improve the BIST

approach to test logic resources for better diagnostic resolution and faster test times.

Abramovici et al. introduced a new concept of self-testing areas that are used to

implement BIST in small unused areas of the FPGA, while the rest of the FPGA is

operational with the system function in [17] [18]. This work inspired the use of dynamic

 29

partial reconfiguration to achieve test time speedup. A technique to test embedded cores

of SoCs that include regular structures like RAM and multiplier cores, using the FPGA

core, is explained in [19]. This work introduced the concept of circular comparison that

results in higher diagnostic resolution.

Reference [28] by Wang et al. presents an alternative technique to test logic

resources using BIST. A non-BIST based approach to test an FPGA that uses an external

Programmable Read Only Memory (PROM) to store the test configurations and test

vectors is presented in [22] by Huang et al. Reference [23] introduces another technique

to externally test the logic resources of Xilinx 3000, 4000 and 5000 series FPGAs.

References [7] [16] [17] [18] [20] [22] [24] [25] [26] [27] present some of the

work done in the area of FPGA interconnect testing. Reference [20] expands upon the

BIST technique used in [17] and [18] to test FPGA interconnects. Renovell et al. [25] and

Wang et al. [27] present techniques to externally test the interconnects of an FPGA. A

BIST approach to test the interconnects of an FPGA using small BIST structures known

as BISTERs is presented in [26] by Harris et al. Renovell et al. describe a technique to

test the Xilinx FPGAs by dividing the FPGA into separate arrays of logic and

interconnects and LUT RAMs in [24].

References [16] and [19] describe comprehensive work done in testing all the

resources of the FPGAs, including the embedded cores of FPGAs like RAMs and

multipliers. Stroud et al. presented a case study that uses Atmel’s FPGA based SoCs to

present the implementation of BIST to completely test the logic, interconnect and

memory resources of an FPGA [16].

 30

2.6 General BIST Architectures

There are two primary approaches for testing an FPGA using BIST. One approach

is to configure the complete FPGA with BIST circuitry to test itself and replace it with

the original system function after the device has been tested; this method is known as off-

line testing since the system function of the FPGA is halted to test the FPGA [6] [3]. This

scheme is discussed in detail in the next section. The other option is to keep the system

operational while testing unused portions of the FPGA by configuring them as Self

Testing AReas (STARs). These STARs are moved around the FPGA using dynamic

partial reconfiguration of the FPGA as shown in Figure 2.12. This scheme is called on-

line testing because the system is on-line or operational even when the device is being

tested [17] [18].

S
TA

R

S
TA

R

S
ys

te
m

 F
un

ct
io

n

Figure 2.12 On-line BIST [6]

2.7 BIST for Logic Resources of an FPGA

This thesis deals only with off-line testing of programmable logic resources,

hence the CUT in this case is the array of PLBs in the FPGA. BIST for testing logic

resources from here on shall be referred to as Logic BIST.

 31

2.7.1 BIST Architecture

BIST circuitry comprises Test Pattern Generators (TPGs) and Output Response

Analyzers (ORAs). The TPGs generate the test patterns required to test the PLBs. The

ORAs essentially compare the outputs of two identically configured PLBs under test, also

called Blocks Under Test (BUTs), and record any mismatch due to a fault. Since PLBs

are required to implement the BIST circuitry, all logic resources of an FPGA cannot be

tested simultaneously. If half of the PLBs can be configured as BUTs, then only two test

sessions are required to completely test all the PLBs. So, in the first session half of the

PLBs are configured as Blocks Under Test (BUTs) and the rest are configured as TPGs

and ORAs. In the second session they are swapped, i.e. the PLBs that were BUTs in first

session now become TPGs and ORAs and vice versa, as illustrated in Figure 2.13 [3][7].

The two test sessions are called West and East sessions depending on the location of the

TPGs, shown in Figure 2.13 (a) and (b) respectively. This scheme shows a column based

arrangement of BUTs, TPGs and ORAs, but it can also be row based and the two test

sessions are then called North and South sessions [3].

The BUTs are located in alternate columns of the FPGA with an ORA column

sandwiched between every two columns of the BUTs such that they compare the outputs

of the BUTs in the neighboring columns. The ORAs latch any mismatch between the

BUT outputs being compared as a result of a fault. The fault can be associated with either

of the two BUTs compared by the ORA. The ORAs are connected in a scan chain as

illustrated in Figure 2.13. The BIST results can be shifted out after the BUTs have been

tested using the scan chain [3]. To completely test the PLBs, they are reconfigured and

tested in different modes of operation while keeping the BIST architecture untouched. A

 32

test phase is a configuration that tests a PLB in a single mode of operation. A group of

test phases that test a PLB in all of it’s modes of operation form a test session [3]. The

PLBs are also tested in their LUT RAM mode of operation which tests the logic in the

PLBs associated with LUT RAMs [7] [37]. BIST results of faulty devices can then be

analyzed using MULTICELLO [3] to determine the exact location of the faulty PLB.

C
ol

um
n

of
 O

R
A

s

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 O

R
A

s

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 O

R
A

s

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 O

R
As

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 O

R
As

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 O

R
As

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 B

U
Ts

C
ol

um
n

of
 T

P
G

s

C
ol

um
n

of
 T

P
G

s

Figure 2.13 BIST Architecture to test Logic Resources [3]

It can be noticed from Figure 2.13 that BUTs in the edge columns of the BIST

architecture suffer from lower diagnostic resolution, as they are compared by only one

 33

ORA, whereas the rest of the BUTs are compared by two ORAs. Reference [19]

introduces a circular comparison technique that allows the comparison of every BUT by

two ORAs, thereby increasing the diagnostic resolution.

2.7.2 Test Pattern Generation and Output Response Analysis

As the number of inputs of a PLB is small, exhaustive test vectors can be used to

test them. A simple counter or a linear feedback shift register (LFSR) can be

implemented as a TPG using very few PLBs to generate exhaustive test vectors [5] [6].

An LFSR is more commonly used because it can generate pseudo-random patterns and

utilizes fewer gates as compared to a counter [6].

Two identical TPGs drive alternate columns of BUTs in the FPGA such that

every ORA compares the output response of BUTs that receive input patterns from two

different TPGs. This ensures that even if one of the PLBs used as a TPG is faulty, the

ORAs record a mismatch as both the TPGs generate different test patterns. Hence, using

two TPGs improves fault detection because if a single faulty TPG was driving all BUTs,

the ORAs would have never recorded a mismatch [3]. TPG loading is an issue in this

BIST architecture, since a large number of BUTs are connected to a single TPG. The

large loading on a TPG output limits the maximum operating frequency of the BIST

architecture. Solutions proposed are to either use drivers for TPG signals or split the

FPGA into smaller sections with independent pairs of TPGs that are tested in parallel [7].

Both the schemes limit TPG loading without increasing the number of configurations.

The comparison based approach has better fault detection capability compared to

signature analysis, as the response of the BUTs is not compacted. Instead it is compared,

 34

so unless there are equivalent faults in certain extremely rare cases the faults are

guaranteed to be detected [3]. A comparison based ORA is illustrated in Figure 2.14 (a).

It uses an XOR gate to detect any mismatch and the feedback from the flip-flop to the OR

gate latches a ‘1’ into the flip-flop in case of a mismatch. The multiplexer is used to form

a scan chain of ORAs in order to scan out the BIST results after every test phase [3]. A

good circuit is represented by a ‘0’ and a fault is indicated by a ‘1’ stored in the ORA

flip-flop. Configuration memory readback can be used instead of using a scan chain to

retrieve BIST results. Figure 2.14 (b) shows the ORA without the scan chain logic used

in this case [7].

M
U

X

Figure 2.14 Output Response Analyzer

 35

2.7.3 Configuration Schemes

The BIST approach described in the initial work [3] [7] uses complete

reconfiguration of an FPGA to switch between test phases. Full reconfiguration is highly

time consuming and in the case of Logic BIST, only the BUT configurations change from

one test phase to the next for a given test session. The use of partial reconfiguration to

reconfigure only the BUTs of the FPGA, to operate in a different mode of operation for a

given test session, was proposed in [29]. Partial reconfiguration reduces the memory

required to store the test configurations and leads to faster test times, since less

configuration data is downloaded into the FPGA per test phase.

2.7.4 Results Retrieval

After execution of a test phase the BIST results have to be read out of the ORAs

in the FPGA. As described in [3], the ORAs form a scan chain and the BIST results can

be shifted out using the Scanout signal shown in Figure 2.14 (a). The data input of the

ORA at the tail of the scan chain is tied to a ‘1’, so there is a trail of ones at the end of the

BIST results scanned out which serves as an indicator for the end of the scan chain and

serves as a check for correct operation of the ORAs.

Most FPGAs have the ability to capture the contents of flip-flops in the PLBs during

configuration memory readback. This feature can be used to retrieve the BIST results

captured in the flip-flops of PLBs configured as ORAs by reading back the configuration

memory. Although configuration memory readback increases the testing time per test

phase it reduces the total number of test configurations and improves the diagnostic

resolution [7]. Due to the limited resources of some FPGA PLBs, not all outputs of a

 36

BUT can be observed in a single configuration, therefore there are multiple

configurations for every test phase. If configuration memory readback is used then the

scan chain to retrieve BIST results can eliminated from the ORA, making extra logic

resources available in the PLBs to be used as ORAs. The extra logic resources in the

ORAs make it possible in some FPGAs to compare all the BUT outputs in a single

configuration for a test phase. Figure 2.14 (b) illustrates the ORA without the scan chain

logic that is capable of comparing more BUT outputs and also has fewer control signals

than the ORA with the scan chain logic.

2.8 Restatement of Thesis Goals

A significant amount of work has been done in the area of Logic BIST for

FPGAs. As the technology advances and the feature sizes shrink, FPGAs grow larger in

size and feature many more capabilities, compared to their predecessors. The testing time

increases as the size of the FPGA grows, so new methods and architectural features have

to be used in order to keep the test times and the memory storage requirements to a

minimum.

The work presented in this thesis builds upon the work previously done in [3] [7]

[17] [19] [29] and introduces some new techniques to implement Logic BIST for newer

FPGA devices. As the majority of the time required for testing FPGAs using BIST is

spent on their reconfiguration, emphasis is put on techniques like partial reconfiguration

and partial configuration memory readback to reduce the test time and configuration

memory storage requirements for Logic BIST. This chapter introduced the basic concepts

and overview of the previous work done, required to understand the work presented in

 37

the following chapters. Chapter 3 presents the implementation of Logic BIST on

Virtex/Spartan II series FPGAs, along with the use of partial reconfiguration and partial

configuration memory readback to achieve speedup in test time and reduction in memory

storage requirements. Chapter 4 presents the implementation of Logic BIST for Virtex-4

FPGAs. The Logic BIST architecture was modified for Virtex-4 to achieve better

diagnostic resolution. In both cases, the PLB slices were modeled and, based on the

resultant fault simulations, Logic BIST configurations were developed to test the PLBs.

Chapter 5 concludes with a summary and suggestions for future improvements along with

a discussion regarding the use of an embedded processor for BIST.

 38

CHAPTER THREE

Logic BIST for Virtex/Spartan II

3.1 Introduction

This chapter discusses the implementation of Logic BIST for Xilinx Virtex and

Spartan-II FPGAs. The details regarding the Logic BIST architecture and test

configurations are described along with the fault coverage of the logic resources. The

methods to achieve speed-up in test time and reduction in memory storage requirements

are also discussed. These methods include techniques like partial reconfiguration and

partial configuration memory readback, which reduce the configuration download time

and BIST results retrieval time, respectively. The experimental results of all the methods

employed are presented with a summary and analysis of the results to conclude the

chapter. The work presented in this chapter is primarily the work presented in [31] with

some additional details.

3.2 Virtex/Spartan-II PLB Architecture

An overview of the Virtex/Spartan-II FPGA architecture was presented in Chapter

2. In this chapter, additional details regarding the internals of the PLB are provided.

Figure 2.8 shows the block diagram of a PLB slice of a Virtex/Spartan-II FPGA [8]. It

consists of two 4-input LUTs, F and G, that can also function as 16-bit LUT RAMs or

 39

16-bit shift registers. For the RAM or shift-register modes of operation, additional

circuitry is provided to generate the write enable signals. Two AND and two XOR gates

are provided in each PLB slice to efficiently implement arithmetic functions.

Multiplexers CY and input CIN are used to implement the carry chain logic. A slice has

two storage elements, FFX and FFY, which can be used either as flip-flops or as latches

to implement sequential circuits. Multiplexers DXMUX and DYMUX are provided to

choose the data input for the storage elements FFX and FFY, respectively. Multiplexers

F5 and F6 are used to combine LUTs to implement combinational logic functions with

five or six inputs using a single PLB [8].

3.3 BIST Architecture

Logic BIST for Virtex/Spartan-II builds upon previous work done on Lucent’s

ORCA and Xilinx 4000 series FPGAs, as described in [3] and [7], respectively. The

BIST approach is very similar to those described in [3] and [7], as illustrated in Figure

2.13. It is modified with focus on partial reconfiguration and partial configuration

memory readback.

The BIST architecture can be either row-oriented or column-oriented, but

column-oriented BIST architecture emerges as the more efficient BIST implementation

for Virtex/Spartan-II FPGAs for three major reasons. Firstly, the carry chain

implemented between the PLBs is implemented vertically upwards within each column,

so in order to test logic resources associated with the carry chain the BIST architecture

has to be column-oriented. Secondly, dedicated local routing is available for making

direct connections between horizontally adjacent PLBs [8]. Therefore it is easier to make

 40

BUT to ORA connections across rows in a column-oriented BIST architecture without

any routing issues. Lastly, the structure of the configuration memory is also column-

oriented. As mentioned earlier, configuration memory is comprised of frames and it takes

multiple frames to configure a column of PLBs and their associated routing in an FPGA,

as illustrated in the Figure 2.6. A column-oriented BIST architecture aids in reducing the

number of frames to be written using partial reconfiguration and read using partial

configuration memory readback for retrieval of BIST results.

Figure 3.1 illustrates the architecture of Logic BIST for Virtex/Spartan-II FPGAs.

Two identical TPGs are restricted to one column of the FPGA and alternate columns are

configured as ORAs and BUTs. The TPG is a 12-bit LFSR that generates pseudo-

exhaustive test vectors, providing identical vectors to both the slices of each PLB

configured as a BUT. Each TPG provides identical input patterns to alternate BUT

columns, which improves fault detection in case of a faulty TPG [3]. The ORAs compare

the outputs from the two neighboring BUTs that get identical test patterns from two

different TPGs. BIST results after testing are either scanned out or captured in the

configuration memory. Figure 3.1 (a) shows the ORAs connected in a scan chain that

allows scanning out of BIST results. Figure 3.1 (b) illustrates the architecture in which

the BIST results are captured in the configuration memory and retrieved using

configuration memory readback.

 41

Figure 3.1 Logic BIST Architecture for Virtex/Spartan-II FPGAs

Two test sessions are required to test all the logic resources. BUTs in each test

session are configured in different modes of operation in order to be tested completely;

these configurations are called test phases. In a PLB only 12 out of the 16 outputs can be

observed, as four outputs related to carry and multiplexer logic cannot be routed out of

the PLB. The limited logic resources of a PLB allow a maximum of five BUT outputs to

be observed by an ORA in a single configuration. Therefore a set of test phases has to be

repeated three times, each time looking at a different set of four BUT outputs for a total

 42

of twelve BUT outputs as shown in Figure 3.2 (a). This set of test phases is called a slice

test set. To retrieve the BIST results, if readback is used instead of implementing a scan

chain of ORAs, the ORA can be modified to compare six BUT outputs in a single

configuration as shown in Figure 3.2 (b), where the logic resources of an ORA previously

used for scan chain implementation are now used for comparing more BUT outputs. As a

result the number of slice test sets can be reduced from three to two, where one slice is

tested in each slice test set.

M
U

X

FFX

Data Out

Data Input
(from previous ORA)

BIST Clock

Scanout

Feedback

FFX

Data Out

BIST Clock

Feedback

(a)

(b)

BUT1 output 1
BUT2 output 1

BUT1 output 2
BUT2 output 2

BUT1 output 1
BUT2 output 1
BUT1 output 2
BUT2 output 2

BUT1 output 3
BUT2 output 3

BUT1 output 3
BUT2 output 3

BUT1 output 4
BUT2 output 4

BUT1 output 4
BUT2 output 4

BUT1 output 5
BUT2 output 5
BUT1 output 6
BUT2 output 6 G-LUT

F-LUT

G-LUT

F-LUT

G-LUT
F-LUT

G-LUT

F-LUT

Slice 1

Slice 2

Slice 1

Slice 1

Slice 2

Slice 1
Slice 2

Figure 3.2 Output Response Analyzers

 43

The Boundary Scan interface was used for the implementation of Logic BIST.

The frame address register is written with the address of the frame to be written or read

and 32-bit words of configuration data are written to or read from the frame data register,

depending on the operation being performed. Xilinx provides two user access registers in

Virtex/Spartan-II FPGAs that can be used by invoking a Boundary Scan module

(BSCAN_VIRTEX). For Logic BIST, user access register 1 was used to source the BIST

clock for BUTs, TPGs and ORAs from the Boundary Scan interface and user access

register 2 was used to generate a reset signal for all the TPGs and ORAs.

There are two test sessions: East and West, each testing half of the PLBs. To

completely test a PLB, except for the case when it is configured as LUT RAM, a total of

seven different test configurations of a PLB are required. Therefore the total number of

Logic BIST configurations depends on the method used for BIST results retrieval.

• Scan chain method: 2 sessions x 7 phases x 3 slice test sets = 42 configurations

• Readback method: 2 sessions x 7 phases x 2 slice test sets = 28 configurations

3.4 Partial Reconfiguration

Using partial reconfiguration, only BUT configurations are changed in a given

test session. Most of the 48 frames of a PLB column are associated with routing resources

rather than BUT configurations. So, in order to reconfigure the BUTs, a small number of

frames per PLB column in only the columns of BUTs have to be rewritten with new

configuration data. After the first test configuration is downloaded for a test session, the

rest of the configurations can be partial reconfigurations.

 44

The sequence in which the test configurations are applied is crucial for keeping

the partial reconfigurations small, as discussed in [29]. Since multiple slice test sets are

required for each test phase, three scenarios were investigated regarding the sequence of

configurations to be applied:

Scenario 1. For a given test session, the configuration of both the slices is kept fixed but

the BUT outputs compared by the ORAs are changed. Therefore each test

phase consists of two or three slice test sets, depending on the BIST results

retrieval technique used.

Scenario 2. For a given test session, the BUT outputs compared by the ORAs are kept

fixed and the configurations of both PLB slices are changed. Therefore each

slice test set consists of seven test phases.

Scenario 3. For a given test session, the BUT outputs compared by the ORAs are kept

fixed and the configuration of only the slice whose outputs are being

compared is changed, while maintaining the first configuration in the other

slice. Therefore each slice test set consists of seven test phases and each test

session has two or three slice test sets depending on the BIST results

retrieval method used.

Partial reconfiguration is not effective in reducing the configuration file size when

routing changes from one configuration to the next, as frames related to interconnects

comprise the majority of the total number of frames in the FPGA. Consequently, the third

scenario turns out to be most effective [29]. The sequence in which the test phases are

applied can also be optimized to reduce the difference between consecutive test

configurations, thereby reducing the partial reconfiguration file size.

 45

3.5 Partial Configuration Memory Readback

Partial configuration memory readback can be used instead of using full

configuration memory readback or scan chain to retrieve BIST results. Full configuration

memory readback reduces the number of slice test sets from three to two but it takes the

amount of time comparable to full configuration. On the other hand, scan chain

implementation only requires a few clock cycles (equal to the number of ORAs) to

retrieve BIST results, making it faster by a few orders of magnitude. This gap is greatly

reduced by using partial configuration memory readback. The ORAs are designed such

that the BIST results are stored in a single flip-flop of a PLB. This allows the BIST

results to be captured in only one frame per ORA column. So, a total of (M/2)-1 frames

are read back to retrieve BIST results, where M is the total number of PLB columns of

the FPGA.

The configuration bit generation tool provided by Xilinx is used to obtain a logic

allocation file. This file provides the information regarding the location of the

configuration memory bits that contain the data captured from the PLB flip-flops. The

location of each ORA flip-flop is defined in terms of the frame address and an offset

within the frame.

3.6 Logic BIST Configurations for Virtex/Spartan-II

The following subsections present the details regarding the implementation of

Logic BIST for Virtex/Spartan-II FPGAs.

 46

3.6.1 Fault Model and Fault Coverage

The PLB of a Virtex/Spartan-II FPGA consists of 2 identical slices, so a single

slice was modeled instead of modeling the entire PLB for fault simulations. The gate

level stuck-at fault model was considered for fault coverage. The logic in the slice related

to the RAM mode of operation of the LUTs was not considered, as faults in that logic

would get detected by a LUT RAM test presented in [37]. The storage elements of the

PLB were not tested in the asynchronous mode of operation, the reason for which is

discussed in the Section 3.6.2. A total of seven configurations are required to completely

test the PLB, not including the LUT RAMs and related logic. Cumulative fault coverage

was evaluated by simulating the complete fault list for the first test configuration and then

the list of undetected faults is used as the fault list for simulation of successive test

configurations. Individual fault coverage of each test configuration was evaluated by

using the complete fault list for simulation of all the test configurations. Both cumulative

and individual fault coverage are shown in Figure 3.3.

 47

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7
BIST Configuration

Fa
ul

t C
ov

er
ag

e
 %

Individual Fault Coverage

Cumulative Fault
Coverage

Figure 3.3 Fault Coverage of a Virtex FPGA PLB slice

3.6.2 Configuration Details

The details of the seven configurations of a Virtex Slice are summarized in Table

3.1. Some BUTs were diagnosed as faulty during Logic BIST when asynchronous reset

was used; the cause for this was attributed to timing skew in the TPG output signals

controlling the reset signal to the flip-flops, which introduced an uncertainty regarding

the value stored in the storage elements of the BUTs. This issue remained unresolved

during development for Virtex/Spartan-II FPGAs, but it was later resolved for Virtex-4,

which is discussed in Section 4.4.2.

 48

Table 3.1 Configuration Details

Configuration Slice
Component 1 2 3 4 5 6 7

LUT 0000 xnor
/xor

xor
/xnor

xnor
/xor

xor
/xnor

xnor
/xor

xor
/xnor

LUT
F/G

MODE shift
register lut lut lut lut lut lut

MODE ff ff latch latch latch ff ff
X INIT 0 1 0 1 1 0 1
Y INIT 0 1 0 1 1 0 1

FF
X/Y

RESET sync sync async async async sync async

CY0G /
CY0F prod g1/f1 prod 0 1 1 1

CYSELG /
CYSELF g/f g/f 1 g/f g/f 1 1

GYMUX /
FXMUX g/f f6/f5 gxor

/fxor f6/f5 f6/f5 gxor
/fxor

gxor
/fxor

DYMUX /
DXMUX I1 I0 I1 I1 I1 I0/I1 I0

YBMUX I1 I1 I1 I0 I1 I0 I0

BY / BX byinv
/bxinv

by
/bx

byinv
/bxinv 0 1 by

/bx
by
/bx

SR srinv sr sr sr 1 0 1
CE ceinv 1 ce 0 1 1 1

CLK clk clkinv clk clkinv clk clkinv clk

CYINIT bx bx cin cin cin cin cin
Breakpoints

Cout on on on on off on on
Y on on on on off on on

XB on on on on off on on
F5 on on on on off on on
X on on on on off on on

REV USED on on on on off off on
SR on on on on off on on

 49

3.7 Logic BIST Configuration Generation Process

Two programs were developed to generate all the test configurations, referred to

as the template generation program and the template modification program. The design

is described in Xilinx Design Language (XDL), a netlist format used by Xilinx. The

template generation program generates a template file depending on the session and the

slice test set, where the BUTs are configured with Configuration 1 as summarized in

Table 3.1. The template file generated does not contain routing information as it

simplifies configuration file generation process. The template is converted from XDL

format to a Native Circuit Description (NCD) format that can be used by Xilinx CAD

tools for routing the design. The template is routed using Xilinx routing tools and

converted back to XDL format. The template modification program uses the routed

template configuration file and modifies only the BUT configurations while keeping the

routing fixed to generate all the other BIST configuration files. This approach results in

generation of small partial reconfiguration files as the routing structure remains fixed for

all test phases of a slice test set. The routed configuration files are used to generate the

configuration bitstreams that are downloaded to the FPGA.

The Xilinx routing tools try to swap input pins of the LUTs and modify the LUT

values to improve routability of the design. This is undesirable for the template

modification program as it assumes the routing of the template file to be without

modification of the LUT contents. Xilinx routing tools are prevented from swapping the

LUT inputs by configuring the LUTs as shift registers in the first configuration. It can

also be done by setting a ‘no pin swap’ option in FPGA Editor (a design editing tool by

Xilinx) for routing a design.

 50

3.8 Methods for Application of BIST

In this section, the methods used to speed up test time and reduce the

configuration storage requirements for Logic BIST are described. The following are the

various configuration download methods used:

FC - Full Configuration; partial reconfiguration is not used and all the test

configurations downloaded to the FPGA are full configurations.

PR2 - Partial Reconfiguration using Scenario 2 defined in Section 3.4; the first

configuration in a test session is a full configuration, followed by six partial

reconfigurations.

PR3 - Partial Reconfiguration using Scenario 3 defined in Section 3.4.

OPR - Optimized Partial Reconfiguration using Scenario 3 defined in Section 3.4; the

sequence in which the test configurations are applied was optimized to reduce the number

of different configuration frames between two consecutive test configurations.

The following are the ORA results retrieval techniques used for Logic BIST:

FCRB - Full Configuration memory ReadBack after each test configuration

SR - Scan chain Readback after each test configuration

SRE - Scan chain Readback at the end of a test session

PCRB - Partial Configuration memory ReadBack after each test configuration

PCRE - Partial Configuration memory Readback at the End of a test session

Scan chain readback (SR, SRE) involves the use of ORAs connected as a scan

chain, resulting in three slice test sets, whereas configuration memory readback (FCRB,

PCRB, PCRE) requires only two slice test sets. Dynamic partial reconfiguration is used

 51

for the methods SRE and PCRE; BIST results are retained until the end of a test session

and retrieved only after all the test phases have been applied. Readback at the end reduces

the diagnostic resolution of Logic BIST from a faulty PLB and its mode of operation

down to a faulty PLB. Table 3.2 summarizes all the methods used for Logic BIST.

Table 3.2 Methods used for Logic BIST

Method Configuration BIST Results
Retrieval

Total Slice
test sets

Total number
of configurations

1 FC FCRB 2 28
2 FC SR 3 42
3 PR2 SR 3 42
4 PR3 SR 3 42
5 OPR SR 3 42
6 OPR SRE 3 42
7 OPR PCRB 2 28
8 OPR PCRE 2 28

3.9 Results

Experimental results regarding the test time and memory storage requirements for

implementation of Logic BIST are presented in this section. These results were obtained

by applying the Methods 1 through 8 described in Table 3.2 on a Spartan-II XC2S200

FPGA which has a PLB array of size 28x42. Figure 3.4 shows the speed-up in test time

and reduction in configuration memory storage requirements achieved.

It can be observed from the results that memory storage requirements are

increased by using a scan chain for ORAs but a speed-up is achieved compared to full

configuration memory readback. Partial configuration memory readback, although 40

times slower than scan chain for retrieval of BIST results, compensates for its lack of

speed by eliminating a slice test set thereby reducing the total number of test

 52

configurations from 42 to 28. The partial reconfiguration file sizes are also reduced by

changing the configuration of only the slice under test (Scenario 3) and by ordering the

test phases optimally. Retrieving the BIST results at the end of a test session rather than a

test phase provides further speed-up at the cost of reduced diagnostic resolution. The

actual test time using Boundary Scan (including all overhead related to the Boundary

Scan operation) was reduced from 113 seconds (Method 1) to 22 seconds (Method 8), a

speed-up of over 5 times. The configuration memory storage requirements were reduced

by a factor of 3.25 for a Spartan-II XC2S200 FPGA.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

FC
(FCRB)

FC (SR) PR2
(SR)

PR3
(SR)

OPR
(SR)

OPR
(SRE)

OPR
(PCRB)

OPR
(PCRE)

Download (Readback) Approach

Sp
ee

d-
up

/M
em

or
y

R
ed

uc
tio

n

Total Test Time
Configuration Storage

2
3

3
3

3 3

2 2
number of sets of
configurations to

completely test PLB

Figure 3.4 Test time speed-up and reduction in memory storage requirements

 53

The effect of size of the device on speed-up is also evaluated using four different

devices in the Virtex/Spartan-II FPGA family. Method 5 is chosen for comparison as the

total test time in this case is a direct function of configuration file size since the time

required to apply test vectors and retrieve BIST results is negligible. Table 3.3 illustrates

the different speed-up values achieved, depending on the size of the device.

Table 3.3 Speed-up vs. Device Size

FPGA Array size Speed-up
XC2S15 (smallest) 8 × 12 3.61
XC2S50/XCV50 16 × 24 3.18

XC2S200/XVC200 28 × 42 3.02
XCV1000 (largest) 64 × 96 2.86

It is observed that the test time speed-up for Logic BIST drops by a small factor

for larger devices. The ratio of PLB configuration data to the total configuration data

increases as the size of the device increases. For Logic BIST, only the configuration of

PLBs changes. Therefore, relatively larger partial reconfiguration files are generated for

larger devices. This explains the reduction in test time speed-up for larger devices.

3.10 Summary

The architectural and operational features of Virtex/Spartan-II FPGAs were

exploited to successfully achieve test time speed-up and reduction in memory storage

requirements for Logic BIST configurations. Useful knowledge was gained from the

implementation of Logic BIST, partial reconfiguration and partial configuration memory

readback. Although the study was done using the Virtex/Spartan-II family of devices,

 54

these approaches are also valid for other FPGA devices. The knowledge gained was

applied to the Virtex-4 family of FPGAs discussed in the next chapter.

 55

CHAPTER FOUR

Logic BIST for Virtex-4

4.1 Introduction

This chapter presents the implementation of Logic BIST on the Virtex-4 family of

FPGAs. The architecture for Logic BIST is described along with the details of the test

configurations and their timing analysis. Experimental results are presented for the

methods used to achieve test time speed-up and reduction of configuration memory

storage requirements, followed by analysis of the results and a summary. The work

presented in this chapter is primarily the work presented in [34] with some additional

details.

4.2 Virtex-4 Architecture

An overview of Virtex-4 architecture was presented in Chapter 2. In this chapter

the details of FPGA resources relevant to Logic BIST are discussed. The PLB of a

Virtex-4 FPGA consists of two SliceMs and two SliceLs. SliceL is illustrated in Figure

2.9. A SliceL has two LUTs, F and G, and storage elements, FFX and FFY, which can be

configured as flip-flops or latches. Multiplexers CYINIT, CYMUXF and CYMUXG are

used to implement the carry chain logic that spans the entire column of PLBs. DYMUX

and DXMUX are used to select the input to the storage element. F5MUX and FSMUX

 56

combine the LUTs of a PLB to implement combinational logic functions with greater

than four inputs. A pair of AND and XOR gates are provided for arithmetic functions.

CLK, CE and SR inputs provide common control inputs clock, clock enable and set/reset,

respectively, for the storage elements FFX and FFY. The REV control places a logic

value opposite to that determined by set/reset control signal in the storage element [10].

SliceMs feature extra circuitry like the write signal generator (WSGEN) and multiplexers

(DIGMUX and DIFMUX) for shift register and RAM modes of operation of the LUTs.

SliceM is illustrated in Figure 2.10.

The DSP cores in Virtex-4 FPGAs are arranged in columns as shown in Figure

2.7. There are two DSP cores for every four rows of PLBs in a DSP column. A DSP core

consists of an 18x18-bit multiplier and a 48-bit adder/subtractor/accumulator, which can

be configured to operate in different modes of operation as described in [35].

4.3 BIST Architecture

The BIST architecture is similar to the one used for Virtex/Spartan-II FPGAs. It is

modified to exploit the architectural features of Virtex-4 to achieve higher diagnostic

resolution. A column-based architecture is used for Virtex-4 for reasons similar to Logic

BIST for Virtex/Spartan-II. Figure 4.1 illustrates the Logic BIST architecture for Virtex-4

FPGAs.

 57

TPG

BUT

BUT

BUT

BUT

ORA

ORA

ORA

ORA

BUT

BUT

BUT

BUT

ORA

ORA

ORA

ORA

BUT

BUT

BUT

BUT

TPG

BIST
Control

Flip-Flops with BIST results

ORA

ORA

ORA

ORA

DSP Core

Figure 4.1 Logic BIST Architecture for Virtex-4 FPGAs

The PLBs in the FPGA are divided into alternate columns of BUTs and ORAs,

where each BUT is compared by two ORAs. The outputs of the BUTs on the edge of the

FPGA are compared by the ORAs on the other edge of the FPGA. This leads to a

circular-comparison based BIST architecture as shown in Figure 4.3. This technique was

originally developed for testing BlockRAMs of Virtex and Virtex-II FPGAs in [19]. It

was possible to implement circular-comparison for Logic BIST because of the abundance

of routing resources in Virtex-4 FPGAs.

All the primary outputs of a Virtex-4 PLB can be routed through the storage

elements, this feature allows testing of all four slices of a PLB simultaneously by

monitoring only eight outputs per PLB (one output per storage element). A PLB slice is

divided into two halves, where each half can be used to implement an ORA that

compares only one BUT output as shown in Figure 4.2. So, a total of eight independent

ORAs are implemented in a PLB that compare the eight BUT outputs. This leads to better

 58

diagnostic resolution, as each mismatch recorded in an ORA flip-flop now points to the

exact half of a faulty PLB slice. This approach may increase the number of

configurations required to test a PLB slice, but since few PLB outputs are observed, all

slices are tested simultaneously and minimal routing changes are required to test the

entire PLB, reducing partial reconfiguration file sizes. This may not be the case with

other approaches that try to monitor all PLB outputs because they require multiple slice

test sets to test all the slices and may require more configurations to test the entire PLB.

FFY

Data Out

BIST Clock

Feedback

BUT1 output 1
BUT2 output 1

FFX

Data Out

BIST Clock

Feedback

BUT1 output 2
BUT2 output 2

G - LUT

F - LUT

Figure 4.2 ORAs in a Single PLB slice

The configuration memory of Virtex-4 FPGAs is also organized in frames

oriented vertically, but unlike Virtex/Spartan-II, the frame size is fixed. A single frame is

associated with a fixed number of PLBs in a column instead of the entire column of

PLBs. The data stored in the flip-flops of PLBs can be captured in the configuration

memory by instantiating a CAPTURE_VIRTEX4 module in the design. The

CAPTURE_VIRTEX4 module defines which clock edge is used to capture flip-flop data

and whether it is captured once or multiple times. Configuration memory readback is

used to retrieve the frames of configuration memory that contain the BIST results in the

 59

ORA flip-flops. For speed-up in test time, partial configuration memory readback can be

used instead of full configuration memory readback. A single frame of Virtex-4 captures

the values contained in all the flip-flops of PLBs associated with that frame. This reduces

the total number of frames to be read to retrieve BIST results, thereby improving the test

time. The total number of frames (F) needed to be read is given by:

F = (R ÷16) × (C ÷ 2) = R × C ÷ 32

where, R is the number of rows and C is the number of columns of the PLB array under

test. In the case of the XC4VLX25-10 FPGA which has 96 rows and 28 columns, only 84

frames need to be read back to obtain BIST results, as compared to 6022 frames for full

configuration memory readback.

Traditionally, two TPGs are implemented using a column of PLBs [3]. The

availability of DSP cores in newer FPGAs allow the use of DSPs to implement TPGs

instead of the PLBs. This approach frees up a column of PLBs that are now used to

implement an extra column of ORAs for circular comparison as shown in Figure 4.1.

Since at least two DSPs are available for every four rows of PLBs, two TPGs are

implemented (one TPG in each DSP) for every four rows of BUTs. This solves the issue

of TPG loading and improves fault detection, as a faulty TPG only affects the testing of

four rows of BUTs rather than the entire FPGA. An exhaustive set of test patterns is

generated by initializing the accumulator of the DSP to zero and repeatedly adding a

prime number ‘0x691’ to its contents [36]. One drawback of this approach is that the test

patterns generated are not pseudo-random in nature, unlike the LFSR-based TPGs used

for Virtex/Spartan-II. The 12 TPG outputs are connected to the 12 inputs of each of the

four slices of a BUT, providing identical test vectors to all four slices of a PLB.

 60

Logic BIST for Virtex-4 also uses Boundary Scan to access the configuration

memory of the FPGA. The details of configuration download and readback procedures

are described in [11]. Boundary Scan is also used to control the operation of BIST by

means of the user access registers in the BSCAN modules. The Boundary Scan interface

in Virtex-4 FPGAs features four BSCAN modules, two of which are used to implement

Logic BIST. BSCAN module 1, when selected, enables BIST clock which is sourced

from the TCK pin of the TAP. BSCAN module 2, when selected, disables the BIST clock

and generates a reset signal that resets all the ORAs and TPGs.

Two test sessions (East and West) are required to test all the PLBs. In a given test

session, only the BUTs are reconfigured multiple times to be tested completely. After the

first configuration of a test session is downloaded, partial reconfiguration can be used to

download the rest of the test phases to reduce the configuration download time. To keep

the partial reconfiguration files small, the routing changes are kept to a minimum for a

given test session. The routing between TPGs and BUTs is kept fixed and the routing

between BUTs to ORAs is changed only once in a given test session. Virtex-4 allows

multiple frames with identical data to be written simultaneously, where the frame data is

loaded only once and the address in the FAR is changed. This feature helps reduce the

partial reconfiguration file size since the Logic BIST architecture is a regular structure

and all BUTs in most configurations are configured identically. The test time can be

further reduced at the price of reduced diagnostic resolution by using dynamic partial

reconfiguration as explained in Chapter 3. Using this approach the contents of the ORA

flip-flops are not cleared when the BUTs are reconfigured and the BIST results are

retrieved only at the end of a test session.

 61

4.4 Logic BIST Configurations for Virtex-4

A total of 12 BUT configurations are required to completely test the logic

resources of a PLB, excluding the circuitry associated with the LUT RAM mode of

operation of SliceMs. For the first ten configurations only outputs XQ and YQ,

associated with the storage elements FFX and FFY, respectively, are observed by the

ORAs, completely testing SliceLs. Two extra configurations are required to test the logic

circuitry associated with the shift register mode of SliceMs. In this case outputs X and Y

of all four slices are observed by the ORAs. These 12 configurations also test the carry

chain logic and the routing associated with it, along with the dedicated inter-slice routing.

Therefore the total number of configurations required to test all the PLBs in the FPGA =

2 (test sessions) x 12 (test phases) = 24.

4.4.1 Fault Model and Fault Coverage

The gate-level stuck-at fault model is used for fault coverage analysis. Some of

the slice inputs cannot be accessed by resources external to the PLB, as they are only

connected to the outputs of other slices in the PLB. Therefore, the complete PLB was

modeled with dedicated inter-slice routing instead of individual slice models, leading to a

more accurate fault coverage analysis. The cumulative and individual fault coverage of

the 12 Logic BIST configurations is shown in Figure 4.3.

 62

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12
BIST Configuration #

Fa

ul
ts

 D
et

ec
te

d

0

10
20

30
40

50

60
70

80
90

100

Fa
ul

t C
ov

er
ag

e
 %

Individual FC
Cumulative FC

Figure 4.3 Fault Coverage of a Virtex-4 PLB

These 12 BIST configurations do not detect the logic resources of the PLB

associated with the LUT RAM mode of operation like the WSGEN component, as they

can be tested using the test for LUT RAMs [34]. The route-throughs in the PLB and

breakpoints associated with PLB outputs not monitored by the ORAs are also not tested.

4.4.2 Configuration Details

The details of the 12 test configurations are summarized in Table 4.1.

63

Table 4.1 Configuration Details

LUT F/G FF X/Y
Config Slice

Type LUT MODE MODEINITSRRESET

CY0G
/

CY0F

GYMUX
/

FXMUX

DYMUX
/

DXMUX
BY

BX
/SR
/CE

CLK
YBMUX

/
XBMUX

CYINT REV
USED

SliceM xor
/xnor

shift
register ff 0 0 sync prod

/prod fx/f5 yb/xb non-
inv

non-
inv clk I1 bx no

1
SliceL xor

/xnor lut ff 0 0 sync prod
/prod fx/f5 yb/xb non-

inv
non-
inv clk I1 bx no

SliceM xnor
/xor

shift
register ff 1 1 async g2/f2 gxor /fxor ymux

/xmux inv inv clkinv I1 bx no
2

SliceL xnor
/xor lut ff 1 1 async g2/f2 gxor /fxor ymux

/xmux inv inv clkinv I1 bx no

SliceM xor
/xnor lut latch 1 1 async g3/f3 fx/f5 ymux

/xmux

inv
/non-
inv

non-
inv clk I1 bx no

3*

SliceL xor
/xnor lut latch 1 1 async g3/f3 fx/f5 ymux

/xmux

inv
/non-
inv

non-
inv clk I1 bx no

SliceM xnor
/xor lut latch 0 0 async 0/0 fx/f5 yb/xb non-

inv
non-
inv clk I1 bx no

4
SliceL xnor

/xor lut latch 0 0 async 0/0 fx/f5 yb/xb non-
inv

non-
inv clk I1 bx no

SliceM aaaa
/5555 lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes

5

SliceL aaaa
/5555 lut ff 0 1 sync 1/1 fx/f5 yb/xb inv inv clkinv I1 bx yes

64

LUT F/G FF X/Y
Config Slice

Type LUT MODE MODEINITSRRESET

CY0G
/

CY0F

GYMUX
/

FXMUX

DYMUX
/

DXMUX
BY

BX
/SR
/CE

CLK
YBMUX

/
XBMUX

CYINT REV
USED

SliceM 5555
/aaaa lut ff 1 1 async g2/f2 gxor /fxor yb/xb non-

inv
non-
inv clkinv I1 bx no

6
SliceL 5555

/aaaa lut ff 1 1 async g2/f2 gxor /fxor yb/xb non-
inv

non-
inv clkinv I1 bx no

SliceM xor
/xnor

shift
register latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no

7*
SliceL xor

/xnor
shift

register latch 0 0 async g3/f3 gxor /fxor yb/xb inv inv clk I1 bx/cin no

SliceM xnor
/xor

shift
register ff 1 0 sync by/bx fx/f5 y/x non-

inv
non-
inv clk I1 bx yes

8
SliceL xnor

/xor
shift

register ff 1 0 sync by/bx fx/f5 y/x non-
inv

non-
inv clk I1 bx yes

SliceM xor
/xnor lut ff 1 1 sync prod

/prod fx/f5 by/bx inv inv clk I1 cin no
9

SliceL xor
/xnor lut ff 1 1 sync prod

/prod fx/f5 by/bx inv inv clk I1 cin no

SliceM xnor
/xor lut ff 0 0 sync by/bx gxor /fxor yb/xb non-

inv
non-
inv clk I1 cin/bx no

10*
SliceL xnor

/xor lut ff 0 0 sync by/bx gxor /fxor yb/xb non-
inv

non-
inv clk I1 cin/bx no

SliceM ffff shift
register ff 0 0 sync by/bx fx/f5 yb/xb non-

inv
non-
inv clk I0 bx no

11
SliceL ffff shift

register ff 0 0 sync by/bx fx/f5 yb/xb non-
inv

non-
inv clk I0 bx no

65

LUT F/G FF X/Y
Config Slice

Type LUT MODE MODEINITSRRESET

CY0G
/

CY0F

GYMUX
/

FXMUX

DYMUX
/

DXMUX
BY

BX
/SR
/CE

CLK
YBMUX

/
XBMUX

CYINT REV
USED

SliceM 0000 shift
register ff 0 0 sync by/bx fx/f5 yb/xb non-

inv
non-
inv clk I0 bx no

12
SliceL 0000 shift

register ff 0 0 sync by/bx fx/f5 yb/xb non-
inv

non-
inv clk I0 bx no

* These configurations were modified for fault detection. In these configurations all BUTs in the PLB array are not

configured identically but all BUTs in a row of PLBs are configured identically.

 66

Faults related to the FSMUX of Slice 3 of a Virtex-4 PLB are not detected if all

the BUTs are configured identically. In order to detect those faults, Configuration 3 was

modified such that the Slice 2 of any two adjacent BUTs in a column are configured with

opposite value of BYINV multiplexer. Configurations 7 and 10 were also modified

similarly for a timing issue related to the carry chain, explained in the next section. In this

case the input of CYINIT multiplexer of Slices 0 and 1 is BX in alternate rows of BUTs

and CIN for the remaining BUTs. This is reversed in Configuration 10 to completely

testing the carry chain logic.

Due to the timing skew of TPG signals, some BUTs were diagnosed as faulty

during BIST when asynchronous reset was used, similar to Logic BIST for

Virtex/Spartan-II FPGAs described in Section 3.6.2. To resolve this issue for Virtex-4,

two corrective measures were taken. Firstly, appropriate clock edge or active level was

chosen for the storage element, of the BUTs. The clock edge or active level was chosen

such that the storage element depending on its mode of operation (latch or flip-flop), was

immune to timing skew. The storage element during BIST assumed a value defined by

either the REV or set/reset input of the storage element, whichever changed last due to

timing skew. So, the second corrective measure was to turn off the revused breakpoint

internal to the PLB slice to disconnect the REV input from the storage element. This

removed the contention between REV and set/reset inputs. The same techniques can be

applied to Logic BIST for Virtex/Spartan-II FPGAs.

Storage elements of the Virtex-4 PLB are not cleared if dynamic partial

reconfiguration is used or if CAPTURE_VIRTEX4 module is instantiated. This prohibits

the initialization of the storage elements of BUTs after a test configuration download. In

 67

order to test the PLB storage elements for initialization, two full configuration downloads

are required to initialize the PLB storage elements to both high and low states. This can

be achieved by using full configuration downloads for both Configuration 1 and

Configuration 2, as they initialize the storage elements to high and low states,

respectively.

4.5 Timing Analysis

Timing analysis was performed for all the test configurations implemented on the

XC4VLX25-10 FPGA. Depending on the data collected, two configurations with the

slowest and the fastest clock frequencies were chosen. These two configurations were

analyzed for timing on Virtex-4 FPGAs of different sizes with a speed grade of 10 (10

being the slowest and 12 being the fastest speed grade). Figure 4.4 shows the fastest and

the slowest clock frequencies at which the BIST configurations can operate for Virtex-4

FPGAs with different sizes.

It is noticed that the maximum clock frequency is a function of the number

columns of PLBs, instead of the product of the number of rows and columns of PLBs, as

was in the case of previous Logic BIST implementations [3]. This was achieved because

the timing issues due to TPG loading were resolved for Virtex-4 by using a pair of TPGs

for every four rows of BUTs. The maximum BIST clock frequency for the XC4VLX25-

10 FPGA, for the first ten configurations, ranges from 70 to 150 MHz.

A major timing issue was discovered in Configuration 10 which tests the carry

chain logic. The critical path for this configuration included the carry chain from the

lowest PLB to the uppermost PLB in a column of BUTs. The excessive delay introduced

 68

by the carry chain made the maximum clock frequency for Configuration 10 a function of

the product of the number of rows and columns of PLBs. To avoid this situation, the

carry chain was broken up as described in Section 4.4.2 which led to an increase in the

maximum BIST clock frequency for the XC4VLX25-10 device from 40MHz to 140

MHz.

0

50

100

150

200

30 40 50 60 70 80
FPGA Columns

Fr
eq

ue
nc

y
(M

H
z)

LX Fastest
LX Slowest
SX Fastest
SX Slowest
FX Fastest
FX Slowest

Figure 4.4 Maximum BIST clock frequency vs. Device size

4.6 Logic BIST Configuration Generation Process

Two parameterized C programs were developed for generation of the Logic BIST

configurations of any PLB array size for all Virtex-4 FPGAs. The template generation

program generates the template configuration in XDL format with a dummy BUT

Safe BIST clock
frequency range

Maximum BIST clock
frequency range

 69

configuration. The template configuration file is converted to an NCD format and routed

using Xilinx tools. The routed template configuration file is then converted back to XDL

format. The template modification program modifies the BUT configurations of the

routed template configuration to generate all of the first ten test configurations. To

generate the last two test configurations that test the SliceMs in shift register mode, both

BUT configurations and BUT to ORA routing (X and Y outputs are monitored instead of

XQ and YQ) of the routed template configuration are changed. Using this approach the

routing of BIST architecture remains fixed for all configurations except for Configuration

11, resulting in generation of smaller partial reconfiguration files.

The Logic BIST structure for Virtex-4 can be defined for the entire FPGA or a

portion of the PLB array. The number of columns in the PLB array to be tested has to be

an even number greater than or equal to four, in order to implement circular comparison

as shown in Figure 4.1. The presence of PowerPC core in Virtex-4 FX FPGAs

complicates the implementation of Logic BIST, as shown in Figure 4.5. In the case of the

West session the BUTs on the edge of the PowerPC core are compared by only one ORA

instead of two, thereby losing some diagnostic resolution similar to the BUTs on the edge

of Virtex/Spartan-II FPGA. But, for the East session the BUTs near the edges of the

PowerPC core are compared by three ORAs instead of two without losing any diagnostic

resolution.

 70

Figure 4.5 BIST Architecture in Virtex-4 FX FPGAs

4.7 Methods for Application of BIST

Various methods were used to evaluate the speed-up in test time and reduction in

the memory required to store the BIST configurations. The following methods were used

for configuration:

FC - Full Configuration

PR - Partial Reconfiguration using Scenario 3 defined in Section 3.4

Full configuration of all the BIST configurations was used in the first method;

partial reconfiguration was used for all other methods. For the first ten test configurations

ORAs monitor the XQ and YQ outputs of all four slices of a BUT, so the first

configuration is a full configuration download followed by nine partial reconfiguration

downloads, since there are no routing changes. For Configurations 11 and 12, ORAs

monitor X and Y outputs. This leads to a change in the BUT to ORA routing, so

Configuration 11 is again a full configuration download followed by a partial

reconfiguration download for Configuration 12. Optimal ordering of the test

configurations was investigated to minimize the difference between successive test

 71

configurations for Virtex-4. But the reduction in partial reconfiguration files generated

was negligible due to the organization of the configuration memory and multiple frame

write feature of Virtex-4 FPGAs.

The following readback techniques were used for retrieval of BIST results:

FCRB - Full Configuration memory ReadBack after each test configuration

PCRB - Partial Configuration memory ReadBack after each test configuration

PCRE - Partial Configuration memory Readback at the End of a test session

FCRB was used for the first method, PCRB and PCRE were used to achieve

speed-up in BIST results retrieval. It can be noticed that scan chain of ORAs was not

implemented to retrieve the BIST results. From Logic BIST for Virtex/Spartan-II, it was

observed that even though the scan chain is much faster for BIST results retrieval, it

increases the total number of test configurations, thereby increasing the total test time.

Table 4.2 summarizes all the methods used for Logic BIST in Virtex-4.

Table 4.2 Methods used for Logic BIST

Method Configuration BIST Results
Retrieval

Total Slice
test sets

Total number
of configurations

1 FC FCRB 2 24
2 PR FCRB 2 24
3 PR PCRB 2 24
4 PR PCRE 2 24

4.8 Results

Logic BIST was implemented on a Virtex-4 XC4VLX25-10 device and the

results of application of the four methods described earlier for test time speed-up and

reduction in configuration memory storage requirements are shown in Figure 4.6. Method

 72

1 was used primarily as a benchmark of the test time and memory storage requirements

for comparison with speed-up techniques like partial reconfiguration and partial

configuration memory readback applied in the other methods. Method 2 shows the

improvements by using partial reconfiguration over full configuration. Method 3 shows

the improvement after using partial configuration memory readback over full

configuration memory readback to retrieve BIST results. The improvement due to

dynamic partial reconfiguration is shown in Method 4.

0

2

4

6

8

10

12

14

1 2 3 4

FC (FCRB) PR (FCRB) PR (PCRB) PR (PCRE)
Method #

Speedup
Memory Reduction

Sp
ee

du
p/

M
em

or
y

R
ed

uc
tio

n

Figure 4.6 Test time speed-up and reduction in memory storage requirements

An overall speed-up of 12.9 is observed using PCRE and a net reduction of

memory storage requirements by a factor of 5.3 is achieved using partial reconfiguration.

 73

Methods 1, 3 and 4 for Virtex-4 can be compared to Methods 1, 7 and 8 used for

Virtex/Spartan-II. A comparison of the results is given in Table 4.3

Table 4.3 Comparison of test time speed-up and reduction in memory storage

requirements of Virtex/Spartan-II and Virtex-4 FPGAs

Test time speed-up Memory reduction Method Virtex/Spartan-II Virtex-4 Virtex/Spartan-II Virtex-4
1 1 1 1 1
3 4.6 8.9 3.2 5.3
4 5.1 12.9 3.2 5.3

It is clear from Table 4.3 that the test time speed-up and reduction in memory

storage requirements are better in Virtex-4 than in Virtex/Spartan-II FPGAs. The ability

to write multiple frames with identical configuration data greatly reduces the partial

reconfiguration time. The configuration memory is better organized, as configuration data

for similar components is grouped together; the result is that fewer frames need to be

written when BUTs are reconfigured. Test time speed-up using partial configuration

memory readback is also enhanced, as fewer frames are read to retrieve the BIST results

captured in the ORA flip-flops. Fewer frames are read because the contents of all the flip-

flops in a column of a fixed number of PLBs are captured in a single frame instead of

being spread across multiple frames.

4.9 Summary

Logic BIST for Virtex-4 showed considerable improvement in test time speed-up

and reduction in memory storage requirements over Virtex/Spartan-II. Suitable

 74

modifications were made to the BIST architecture to exploit architectural and operational

features of the Virtex-4 FPGA in order to achieve better diagnostic resolution, faster test

times and reduced memory storage requirements. Although the Logic BIST approach

discussed pertains to Xilinx FPGAs, this approach can be applied to other FPGAs that

support similar features, like partial reconfiguration and partial configuration memory

readback.

 75

CHAPTER FIVE

Summary and Conclusions

This thesis presented the testing of programmable logic resources in Xilinx

FPGAs using BIST. Logic BIST configurations were developed for Virtex/Spartan-II and

Virtex-4 FPGAs. Emphasis was put on techniques to improve the use of BIST for

FPGAs. These include speed-up in test times due to the slow FPGA configuration process

and reduction in memory storage requirements because of the large number of test

configurations. Different techniques depending on the architectural and operational

features of the FPGA were applied and their effects were studied for the speed-up in test

time and reduction in memory storage requirements. The following sections in this

chapter present a brief summary of the main contributions of the work presented in the

thesis. Areas for future work are also proposed, along with a short discussion regarding

the implementation of Logic BIST using embedded processors.

5.1 Thesis Summary and Main Contributions

The Logic BIST architecture was essentially derived from previous work done for

Lucent ORCA and Xilinx 4000 series FPGAs. The BIST architecture was modified for

Virtex/Spartan-II and Virtex-4 FPGAs to test their logic resources. The main contribution

 76

of the work presented in this thesis was investigation of different techniques to reduce the

test time and memory storage requirements for implementing Logic BIST.

A PLB slice of Virtex/Spartan-II FPGA was modeled for fault simulations, based

on which the test configurations were developed. Most of the test time is devoted to

configuration download rather than actual testing of the FPGA, so a reduction in the size

of configuration files is a logical way to reduce the test time. This was achieved by using

partial reconfiguration in a column-oriented Logic BIST architecture for Virtex/Spartan-

II FPGAs. The test configurations were applied in a specific order such that the size of

partial reconfiguration files was as small as possible. The scan chain method previously

used for retrieval of BIST results, although faster, increased the total number of

configurations required to test a PLB. Configuration memory readback was used instead

of using a scan chain. This reduced the total number of configurations but continued to

have a long test time as retrieval of BIST results was time consuming with full

configuration memory readback. Partial configuration memory readback was used to

overcome this issue and achieve the desired speed-up in BIST results retrieval time.

Dynamic partial reconfiguration was used to further reduce the BIST results retrieval

time by reading ORA contents at the end of a test session rather than a test phase. Two

‘C’ programs were developed to automate the generation of the Logic BIST

configurations.

For Virtex-4 FPGAs, three major changes were made to the Logic BIST

architecture. Firstly, the DSP cores were used instead of PLBs to implement TPGs. A

pair of TPGs was used for every four rows of BUTs, which greatly reduced the TPG

loading and hence improved the maximum BIST clock frequency. Secondly, circular

 77

comparison was implemented to improve the diagnostic resolution of BUTs on the edge

of the BIST architecture. Thirdly, the diagnostic resolution was further improved using

eight ORAs per PLB rather than one. The techniques used for test time speed-up and

reduction of memory storage requirements for Virtex/Spartan-II FPGAs were also

applied to the Virtex-4 FPGA. The results obtained were better for Virtex-4 due to the

enhanced architectural and operational features. The entire Virtex-4 PLB was modeled

for more accurate fault coverage analysis, based on which the test configurations were

developed. Two parameterized ‘C’ programs were developed to generate BIST

configurations for any size PLB array in any of the Virtex-4 FPGAs.

5.2 Application to Embedded Processors

The Logic BIST approach was also applied to Virtex-II Pro FPGAs using

embedded processors. Traditionally, an external source like a personal computer is used

to download BIST configurations and run BIST, which is slow. The embedded processor

can be used instead to internally run BIST and reconfigure BUTs [38]. This significantly

speeds up the test time, as the number of external downloads are reduced and BIST runs

at a much higher clock frequency [39]. For Xilinx FPGAs, the basic approach is to divide

the FPGA into two halves; one consists of the Logic BIST structure and the other consists

of the embedded processor. The embedded processor and the Logic BIST structure are

swapped, after one half of the FPGA has been completely tested, to test the entire FPGA.

The goal is to automate Logic BIST as much as possible using the embedded processor

and achieve test time speed-up. The work done on Virtex-II Pro indicated that the

 78

embedded processor and Logic BIST structure can be successfully integrated and the

processor can read and write to the configuration memory.

5.3 Areas for Future Research and Development

The next step to achieve speed-up is to use an embedded processor to assist Logic

BIST, as described in the previous section. Once a configuration is downloaded with a

BIST structure in one half and an embedded processor in the other, the processor should

be able to perform all the other functions for a test session, which include running BIST,

retrieval and analysis of BIST results, and reconfiguration of BUTs in different modes of

operation.

The current procedure for developing Logic BIST configurations is slow and

tedious. Work can be done to automate the process of fault simulation and generation of

BIST configurations by possibly using a generic BIST architecture described in a

Hardware Description Language that can be synthesized for a new FPGA architecture

with minor modifications. The work presented in this thesis was developed for Xilinx

FPGAs only. Similar work can be done for testing the logic resources of different FPGA

architectures from different FPGA manufacturers. The effects of the techniques used for

test time speed-up and better diagnostic resolution can also be explored for other FPGAs

and other programmable resources in FPGAs.

 79

REFERENCES

[1] B. Arnaldo, “Systems on Chip: Evolutionary and Revolutionary Trends”, Proc. of

Intn’l Conf. on Computer Architecture, pp. 121-128, 2002.

[2] M.J.S. Smith, Application Specific Integrated Circuits, Addison-Wesley, 1997.

[3] M. Abramovici, C. Stroud, “BIST-Based Test and Diagnosis of FPGA Logic

Blocks”, IEEE Trans. on VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001.

[4] K. Mori, H. Yamada, S. Takizawa, “System on Chip Age”, Proc. of Intn’l Symp.

on VLSI Technology, Systems, and Applications, pp. K15-K20, 1993.

[5] M.L. Bushnell, V.D. Agrawal, Essentials of Electronics Testing for Digital,

Memory & Mixed Signal VLSI Circuits, Kluwer Academic Publishers, Boston,

MA, 2000.

[6] C. Stroud, A Designer’s Guide to Built-In Self-Test, Kluwer Academic Publishers,

Boston MA, 2002.

[7] C. Stroud, K. Leach, T. Slaughter, “BIST for Xilinx 4000 and Spartan Series

FPGAs: A Case Study”, Proc. of Intn’l Test Conf., pp. 1258-1267, 2003.

[8] __, “Virtex Field Programmable Gate Arrays”, Product Specification DS003-1,

Xilinx Inc., 2001.

[9] __, “Virtex-4 Family Overview”, Product Specification DS-112, Xilinx Inc., 2005.

[10] __, “Virtex-4 User Guide”, UG070, Xilinx Inc., 2005.

 80

[11] __, “Virtex-4 Configuration Guide”, UG071, Xilinx Inc., 2005.

[12] __, “Spartan-II 2.5V FPGA Family: Introduction and Ordering Information”, DS-

001, Xilinx Inc., 2004.

[13] J.M. Rabaey, A. Chandrakasan, B. Nikolić, Digital Integrated Circuits: A Design

Perspective, 2nd Edition, Pearson Education, 2003.

[14] __, “Two Flows for Partial Reconfiguration: Module Based or Difference Based”,

Application Note XAPP290, Xilinx Inc., 2003.

[15] J. Rose, A.E. Gamal, A. Sangivanni-Vincentelli, “Architecture of Field-

Programmable Gate Arrays”, Proc. of IEEE, Invited Paper, pp. 1013-1029, 1993.

[16] C. Stroud, J. Sunwoo, S. Garimella, J. Harris, “Built-In Self-Test for System-on-

Chip: A Case Study”, Proc. of Intn’l Test Conf., pp.837-846, 2004.

[17] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, V. Verma, “Using Roving

STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant

Applications”, Proc. of Intn’l. Test Conf., pp. 973-982, 1999.

[18] M. Abramovici, C. Stroud, B. Skaggs, J. Emmert, “Improving On-Line BIST-

Based Diagnosis for Roving STARs”, Proc. of Intn’l On-Line Test Workshop, pp.

1-39, 2000.

[19] C. Stroud, S. Garimella, “Built-in Self-test and Diagnosis of Multiple Embedded

Cores in SoCs”, Proc. of Intn'l Conf. on Embedded Systems and Applications, pp.

130-136, 2005.

[20] C. Stroud, S. Wijesuriya, C. Hamilton, M. Abramovici, “Built-In Self-Test of

FPGA Interconnect”, Proc. of Intn’l Test Conf., pp. 404-411, 1998.

 81

[21] C. Stroud, P. Chen, S. Konala, M. Abramovici, “Evaluation of FPGA Resources

for Built-In Self-Test of Programmable Logic Blocks”, Proc. of ACM Intn’l.

Symp. on FPGAs, pp. 107-113, 1996.

[22] W. K. Huang, F. Lombardi, “An Approach to Testing Programmable/Configurable

Field Programmable Gate Arrays”, Proc. of VLSI Test Symp., pp. 450-455, 1996.

[23] W. K. Huang, F. J. Meyer, X. Chen, F. Lombardi, “Testing Configurable LUT-

based FPGAs”, IEEE Trans. on VLSI Systems, pp. 276-283, 1998.

[24] M. Renovell, Y. Zorian, “Different Experiments in Test Generation for Xilinx

FPGAs”, Proc. of Intn’l Test Conf., pp. 854-862, 2000.

[25] M. Renovell, J. Portal, J. Figueras, Y. Zorian, “Testing the Interconnects of RAM-

based FPGAs”, IEEE Design and Test of Computers, vol. 15, pp. 45-50, 1998.

[26] I. G. Harris, R. Tessier, “Interconnect Testing in Cluster-based FPGA

Architectures”, Proc. of Design Automation Conf., pp. 49-54, 2000.

[27] S. Wang, C. Huang, “Testing and Diagnosis of Interconnect Structures in FPGAs”,

Proc. of Asian Test Symp. , pp. 283-287, 1998.

[28] S. Wang, T. Tsai, “Test and Diagnosis of Faulty Logic Blocks in FPGAs”, Proc. of

Intn’l Conf. on Computer-Aided Design, pp. 722-727, 1997.

[29] A. Newalkar, “Alternative Techniques for Built-In Self-Test of Field

Programmable Gate Arrays”, Master’s Thesis, Auburn University, 2005.

[30] IEEE Standards Board, 345 E. 47th St. New York 10017, IEEE Standard Test

Access Port and Boundary-Scan Architecture, 1994. IEEE/ANSI Standard 1149.1-

1994.

 82

[31] S. Dhingra, S. Garimella, A. Newalkar, C. Stroud, “Built-In Self-Test of Virtex

and Spartan II using Partial Reconfiguration”, Proc. of North Atlantic Test

Workshop, pp. 7-14, 2005.

[32] __, “Virtex Series Configuration Architecture User Guide”, Application Note

XAPP151, Xilinx Inc., 2003.

[33] __, “Virtex FPGA Series Configuration and Readback”, Application Note

XAPP138, Xilinx Inc., 2003.

[34] S. Dhingra, D. Milton, C. Stroud, “BIST for Logic and Memory Resources in

Virtex-4 FPGAs”, Proc. of North Atlantic Test Workshop, pp. 19-27, 2006.

[35] __, “XtremeDSP for Virtex-4 FPGAs User Guide”, UG073, Xilinx Inc., 2005

[36] S. Gupta, J. Rajski, J. Tyszer, “Test Pattern Generation Based on Arithmetic

Operations”, Proc. of Intn’l Conf. on Computer-Aided Design, pp. 117-124, 1994

[37] S. Garimella, “Built-In Self-Test for Regular for Regular Structure Embedded

Cores in System-on-Chip”, Master’s Thesis, Auburn University, 2005

[38] J. Sunwoo, C. Stroud, “BIST of Configurable Cores in SoCs Using Embedded

Processor Dynamic Reconfiguration”, Proc. of Intn'l SoC Design Conf., pp. 174-

177, 2005

[39] C. Stroud, S. Garimella, J. Sunwoo, “On-Chip BIST-Based Diagnosis of

Embedded Programmable Logic Cores in SoCs”, Proc. of ISCA Intn'l Conf. on

Computers and their Applications, pp. 308-313, 2005

