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Abstract

A k-star is a complete bipartite graph K1,k, and a hypergraph G = (X, E) is a hyperstar

with center C if C ⊆
⋂
E∈E

E. Given (hyper)graphs G and H, an H-decomposition of G

is a partition of the edges of G into copies of H. In this work, we investigate different

decomposition-like properties of stars and hyperstars. We discuss maximum packings of

λKn with k-stars, embeddings of partial k-star decompositions of Kn, and decompositions

of complete hypergraphs and complete uniform hypergraphs into hyperstars with center-size

1.

We characterize the number of edges in a maximum packing of λKn with k-stars for the

cases λ = 1 for any n, and λ > 1 for n ≥ 2k. For the case where λ > 1 with n < 2k we give

partial results. Our main result for an embedding of a partial k-star decomposition of Kn is

a small embedding in which the number of new vertices depends only on k. The question of

decomposing both complete hypergraphs and complete uniform hypergraphs into hyperstars

has already been solved by Lonc [9], but we give an alternative proof.
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Chapter 1

Introduction

Let N denote the set of non-negative integers {0, 1, 2, . . . }. A graph, G, is a pair

(V (G), E(G)) where V (G) is a set whose elements are called vertices, and E(G) (whose

elements are called edges) is a collection of 1- or 2-element subsets of V (G). The 1-element

subsets included in E(G) are called loops. We call G a multigraph if E(G) is a multiset, i.e.

E(G) contains repeated elements. The standard way to represent a vertex is by a dot, and

edges are represented by curves connecting dots. In figure 1.1 the black edges {1, 2} and

{2, 3} are 2-elements subsets of the vertex set {1, 2, 3, 4}. The red edge {2} is a loop, and

the blue edge {3, 4} is a repeated edge. It is also possible for a vertex not to be included in

any edges, in which case the vertex is called isolated.

1

2 3

4

Figure 1.1: A multigraph.

An edge is said to be incident with all vertices that are endpoints of it. The degree of a

vertex v ∈ G, denoted by dG(v), is the number of edges that are incident with that vertex

(loops count as 2). If it is clear from the context what the graph G is, then we shorten the

notation to d(v).

There are many important classes of graphs. Here are a few that are studied in this work.

The complete graph on n vertices, denoted Kn, is a graph with n vertices such that any pair
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of distinct vertices are joined by exactly one edge. We can generalize the complete graph by

defining the λ-fold complete graph on n vertices, denoted λKn, to be a graph on n vertices

such that any pair of distinct vertices are joined by exactly λ edges. A bipartite graph is

defined to be a graph without any cycles of odd length. Notice that a bipartite graph has

the property that its vertices can be partitioned into two sets A and B such that there are

no edges with both endpoints in one set in the partition. The complete bipartite graph with

parts size n and m, denoted Kn,m, is a bipartite graph with bipartition (M,N) with |M | = m

and |N | = n whose edge set is all edges with one end in M and one end in N . The graph that

plays a central role in this work is the k-star, denoted Sk. A k-star is a complete bipartite

graph with one part size 1 and one part size k. In figure 1.2 the blue vertex is called the

center of the star. The other vertices are called pendant.

k vertices

Figure 1.2: A k-star.

An orientation on a graph is an assignment of exactly one direction to each edge of

the graph. This can be represented as an arrow on each edge (see figure 1.3). An edge

that has been oriented is referred to as a directed edge, or sometimes called an arc. For a

given directed edge, the vertex which the arrow is pointing away from is called the tail and

the vertex which the arrow is pointing towards is called the head. A graph in which all of

the edges have been oriented is called a digraph. Similarly to how we defined the degree

of a vertex, we define the outdegree of a vertex v in a digraph G, denoted d+G(v), to be the
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number of directed edges in G that have tail v. If the graph being referred to is clear from

the context then we shorten the notation to d+(v).

Tail Head

Figure 1.3: A directed edge, or arc.

A structure of central importance to the field of design theory is called a graph de-

composition. Let G and H be two graphs. We define an H-decomposition of G to be a

partition of the edges of G into copies of H. This is sometimes read as “a decomposition of

G into H’s”. Graph decompositions have been widely studied for many different classes of

graphs. In this work we will be studying problems related to decomposing complete graphs

into k-stars. The problem of decomposing a complete graph into k-stars has been settled

since 1979, and is stated as theorem 1.1. It should be noted that in 1975, Yamomoto et al.

[13] independently published the result for λ = 1.

Theorem 1.1. (Tarsi [11]) Let n, k, λ ∈ N. There is a k-star decomposition of λKn if and

only if

1. λn(n− 1) ≡ 0 (mod 2k)

2. n ≥ 2k for λ = 1

3. n ≥ k + 1 for λ even

4. n ≥ k + 1 + k
λ

for λ ≥ 3 odd.

After characterizing the complete graphs that can be decomposed into k-stars, we next

ask which complete bipartite graphs have this property. This problem was solved in much

more generality by Hoffman and Liatti [7] in 1995. They actually characterized which com-

plete bipartite graphs can be decomposed into a given (smaller) complete bipartite graph.

As a k-star is a complete bipartite graph, their result solves our problem.
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Theorem 1.2. (D.G. Hoffman and Liatti [7]) Let a, b, n,m be positive integers. Let g =

gcd(a, b), e, f be non-negative integers satisfying ae− bf = g and let h = ae+ bf . For each

integer x, let:

α(x) =

⌈
xf

a

⌉
, β(x) =

⌊xe
b

⌋
, and γ(x) =

x

ab
.

Then there is a Ka,b-decomposition of Kn,m if and only if the following conditions are true:

ab|nm

g|n and α(n) ≤ β(n)

g|m and α(m) ≤ β(m)

nα(m) +mα(n) ≤ hγ(nm) ≤ nβ(m) +mβ(n)

The fact that theorem 1.2 can be used to characterize those complete bipartite graphs

which can be decomposed into k-stars is not trivial, and requires proof. This result is

presented as corollary 1.3.

Corollary 1.3. Kn,m has a k-star decomposition if and only if

1. k|mn, and

2. if k > m then k|n and

if k > n then k|m.

Proof. We apply theorem 1.2 with a = 1 and b = k. We get g = 1, which yields that e = 1,

f = 0 and h = 1. So for each integer x we have α(x) = 0, β(x) = bx
k
c and γ(x) = x

k
. The

conditions are now:

k|nm

1|n and 0 ≤
⌊n
k

⌋
1|m and 0 ≤

⌊m
k

⌋
0 ≤ nm

k
≤ n

⌊m
k

⌋
+m

⌊n
k

⌋

4



The first condition is the same as condition (1) as stated in the theorem. The middle two

conditions are trivially satisfied, so we need to show the following:

If k > m then k|n, and

if k > n then k|m

⇐⇒

0 ≤ nm

k
≤ n

⌊m
k

⌋
+m

⌊n
k

⌋
To show this, we examine the latter inequality. Let n = kp + s where 0 ≤ s < k, and

m = kq + r where 0 ≤ r < k. So we have

nm

k
≤ n

⌊m
k

⌋
+m

⌊n
k

⌋
(kp+ s)(kq + r)

k
≤ (kp+ s)

⌊
kq + r

k

⌋
+ (kq + r)

⌊
kp+ s

k

⌋
kpq + sq + pr +

sr

k
≤ kpq + sq + kpq + pr

sr ≤ k2pq

But we know that rs < k2, so we only require

If either p = 0 or q = 0, then either r = 0 or s = 0

But m,n > 0 so:

If p = 0 then r = 0, and if q = 0 then s = 0, which is another way of saying: If k > m then

k|n, and if k > n then k|m.

Thus far, all of the results deal with decomposing graphs into k-stars. That is, all of

the stars have the same size. A natural generalization is to ask when we can decompose

a graph into stars of different sizes. Theorem 1.4 characterizes those complete graphs that

can be decomposed into stars with prescribed sizes m1,m2, . . . ,m`. This result turns out

to be very useful when we study structures called maximum packings (defined in chapter

5



2). It is interesting to note that this wasn’t published until 1996, roughly 20 years after the

publication of the solution to the case where all stars have the same size.

Theorem 1.4. (Lin and Shyu [8]) Let m1 ≥ m2 ≥ · · · ≥ m` be nonnegative integers

with n ≥ 2m1. Necessary and sufficient conditions for Kn to be decomposed into stars

Sm1 , Sm2 , . . . , Sm`
are

(i)
∑̀
i=1

mi =

(
n

2

)
and

(ii)

p∑
i=1

mi ≤
p∑
i=1

(n− i) for p = 1, 2, . . . , n− 1.

We now turn to the topic of computational complexity. We are interested in the decision

question: Given a graph G and an integer k > 1, can G be decomposed into k-stars? To this

end, we state the well-known result of Dor and Tarsi [2], published in 1997.

Theorem 1.5. (Dor and Tarsi [2]) Given graphs G and H, deciding whether G has an H-

decomposition is NP-complete whenever H contains a connected component with 3 or more

edges.

Therefore, our problem of deciding whether a given graph G has a k-star decomposition

is NP-complete whenever k ≥ 3. However, the complexity can be reduced given a little more

information. To this end, we define the central function of a k-star decomposition of a graph

G to be a function c : V (G) → N such that for each v ∈ V (G), c(v) gives the number of

k-stars centered at the vertex v. Hoffman [6] showed that the following decision question

can be decided in polynomial time: Given a graph G and a central function c : V (G)→ N,

does G have a k-star decomposition with central function c ?

Given a graph G and a subset S of V (G), let ε(S) denote the number of edges with both

ends in S.

Theorem 1.6. (D.G. Hoffman [6]) Let k ∈ N, G = (V,E) be a loopless graph, and c : V →

N. Then there is a k-star decomposition of G with central function c if and only if

6



1. k
∑
v∈G

c(v) = ε(G)

2. For all {x, y} ∈
(
V
2

)
, µ(xy) ≤ c(x) + c(y)

3. For all S ⊆ V , k
∑
v∈S

c(v) ≤ ε(S) +
∑
x∈S
y∈V \S

min(c(x), µ(xy))

where
(
V
2

)
denotes the set of 2-element subsets of V , and µ(xy) denotes the number of edges

with one endpoint x and the other endpoint y.
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Chapter 2

Packing λKn with k-stars

The problem of decomposing λKn into k-stars has been solved. So if a k-star decom-

position isn’t possible, then how close can we get? This question gives rise to the following

definition. Given graphs G and H, we define an H-packing of G to be a partition of the edges

of G into some copies of H along with a set of edges L, called the leave. An H-packing is

sometimes referred to as a partial H-decomposition. An H-packing is called maximum when

|L| is minimum, or equivalently, if the H-packing contains as many copies of H as possible.

Our main question for this chapter is: Given λ, n, k ∈ N how many edges are in the leave

of a maximum packing of λKn with k-stars? In some cases, we will not only answer this

question, but characterize what the leave graph looks like. We break it into two major cases:

λ = 1 and λ > 1.

2.1 The case when λ = 1

Lemma 2.1. Let n, k ∈ N where n ≥ 2k. Then there are
⌊(n

2

)
k

⌋
stars in a maximum packing

of Kn with k-stars. Moreover, it is possible to have the leave graph be a star of size less than

k.

Proof. We must show that conditions (i) and (ii) hold from Theorem 1.4 with m1 = m2 =

· · · = m`−1 = k and m` =
(
n
2

)
− k(`− 1) where ` =

⌊(n
2

)
k

⌋
+ 1. To verify (i) we see that

∑̀
i=1

mi =
`−1∑
i=1

mi +m` = k(`− 1) +

(
n

2

)
− k(`− 1) =

(
n

2

)

8



To show (ii) let p ∈ {1, . . . , n− 1}. First, note that ` ≥ n− 1. To see this, suppose, to the

contrary, that ` < n−1. Then we have that
∑̀
i=1

mi < k(n−2)+

(
n

2

)
−k(n−1) =

(
n

2

)
−k,

which contradicts (i). For p = 1, 2, . . . , n − 1 we have that ` ≥ p, and upon examining

condition (ii), we need to show that

p∑
i=1

mi ≤
p∑
i=1

(n− i)

pk ≤ pn− p(p+ 1)

2
p(p+ 1)

2
≤ pn− pk

We have

p(p+ 1)

2
≤ pn

2
≤ p(n− k) = pn− pk

where the first inequality holds because p + 1 ≤ n and the second inequality holds because

n/2 ≤ n−k. Thus, (ii) holds and we conclude that Kn can be decomposed into `−1 k-stars

and one star of size smaller than k.

Lemma 2.1 shows that for n ≥ 2k a maximum packing of Kn with k-stars has less than

k edges in the leave. However, it does not prove that the only configuration of these leave

edges is a star, but merely finds a maximum packing with this (very desirable) property. It

is not known to the author what other types of graphs the leave might be. On the contrary,

lemma 2.3 exactly characterizes the leave graph of a maximum packing for the case when

n < 2k. We must first state the results for the trivial cases.

Lemma 2.2. Let n, k ∈ N with n ≤ k. Then there are 0 stars in a maximum packing of Kn

with k-stars. Moreover, the leave must be Kn.

Proof. If n ≤ k then there are no k-stars in Kn, because a k-star has k + 1 vertices. So a

maximum packing with k-stars has no stars in it, and the leave is Kn.
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Lemma 2.3. Let n, k ∈ N with k < n < 2k. There are 2n − 2k − 1 stars in a maximum

packing of Kn with k-stars. Moreover, the leave graph must be K2k−n+1.

Proof. The crucial observation we make is that when n < 2k, we can have at most one star

centered at any given vertex. To see this, note that a star which is centered at vertex α

must contain edges of the form αx for k other vertices x. Having 2 stars centered at α would

require |V (Kn) \ {α}| ≥ 2k, however we know that |V (Kn) \ {α}| < 2k− 1. Thus, there can

be at most one star centered at vertex α. In figure 2.1 there are n− 1 total vertices on the

right side of the graph.

k

< k

α

V (Kn) \ {α}

Figure 2.1: At most one star centered at each vertex.

Now, let b be the number of k-stars in a maximum packing of Kn. For notational purposes,

we partition the vertices of Kn into two sets B and N , where B is the set of vertices that

are the center of a star, and N is the set of vertices that are not the center of any star. It

may be useful to note that |B| = b and |N | = n− b. Let v ∈ B, then there are k edges used

in the star centered at v. These edges can be of two types: either one endpoint is v and the

other endpoint is in B, or one endpoint is v and the other endpoint is in N . (See figure 2.2).

10



B

N

Figure 2.2: The different types of edges used in stars.

This argument holds for every v ∈ B, so we get the inequality

bk ≤
(
b

2

)
+ b(n− b)

b(k − n+ b) ≤ b(b− 1)

2

2(k − n+ b) ≤ b− 1

b ≤ 2n− 2k − 1

In a maximum packing we have b maximum. Therefore, if we can find a construction which

achieves equality, i.e. b = 2n − 2k − 1, then we know it must be the best possible. We

will find such a construction by finding an orientation of the edges within B as well as the

edges with one endpoint in B and the other endpoint in N . The edges with both endpoints

in N can’t be used in any star, as there are no stars centered in N , so we need not orient

them. In the construction, a star with center v ∈ B will be guaranteed by d+(v) = k in the

orientation. The pendant vertices of the star are the heads of the arcs with tail v.

The construction: First, take a regular tournament on B, where for each v ∈ B we have

d+(v) =
b− 1

2
= n − k − 1. Note that we can always find such a regular tournament

because B is a complete graph on an odd number of vertices. Also, notice that k − n+ b =

k − n + (2n − 2k − 1) = n − k − 1, so for any given v ∈ B we have used the least possible

11



number of edges in B for the star centered at v. Therefore, for this star we must use all

n − b edges with one endpoint at v and the other endpoint in N . So the next step in the

construction is to orient all of the edges with one endpoint in B and the other endpoint in

N so that their tails are in B and their heads are in N .

We have that n − b = 2k − n + 1, so for each v ∈ B, d+(v) = (n − k − 1) + (n − b) =

n− k− 1 + 2k−n+ 1 = k. Thus, we have exactly one star centered at each vertex in B. We

have oriented all edges in Kn except those with both endpoints in N , and hence the leave is

K2k−n+1.

Now that we have studied maximum packings of Kn, we can study these structures for

higher values of λ.

2.2 The case when λ > 1

When λ > 1 we have a higher density of edges to deal with, but we also have considerably

more freedom to center multiple stars at a vertex. While this allows for more creative

constructions, it also complicates the problem of finding a maximum packing. Perhaps that

is why the author finds the first main result of the section (theorem 2.5) both elegant and

surprising.

2.2.1 What to do when λ > 1 and n ≥ 2k

First we need a definition. A multistar, denoted S(λ1, . . . , λn), is a star with n pendant

vertices in which there are λi edges incident with the ith pendant vertex. A multistar is

called edge-balanced if max
i 6=j
|λi−λj| ≤ 1. The following lemma will help us to prove theorem

2.5.

Lemma 2.4. If n ≥ k then the edge-balanced multistar S(λ1, . . . , λn) has a maximum packing

with k-stars in which the leave is a star of size less than k.

12



Proof. Let S = S(λ1, . . . , λn) be an edge-balanced multistar {v1, . . . , vn}. The edge-balanced

property implies that there can only be two distinct edge multiplicities. To justify this,

assume that there are three distinct edges multiplicities. So there are three distinct integers

i, j and k such that λj < λk < λ`. But then λ`−λj > 1, contradicting our assumption. Thus,

there are only two values for the edges multiplicities, and they must be exactly one apart. So

for each 1 ≤ i ≤ n, λi ∈ {λ, λ+1} for some λ ∈ N. We can assume without loss of generality

that λ1 ≥ λ2 ≥ · · · ≥ λn. To obtain the desired decomposition, for 0 ≤ t ≤
⌊ |E(S)|

k

⌋
− 1

we remove the stars with pendant vertices vtk+1, vtk+2, . . . , vtk+k where the subscripts are

considered mod n. This method of removing stars ensures that at each step, what remains

is an edge-balanced multistar. Therefore, after the last star is removed we are left with an

edge-balanced multistar with multiplicities 0 and 1, which is a star of size smaller than k.

Theorem 2.5. Let λ, n, k ∈ N with n ≥ 2k. Then there are
⌊λ(n

2

)
k

⌋
stars in a maximum

packing of λKn with k-stars. Moreover, it is possible to have the leave graph be a star of size

smaller than k.

Proof. We first view λKn as λ different copies of Kn, but all on the same vertex set

{v0, v1, . . . , vn−1}. Let b =
⌊(n

2

)
k

⌋
be the number of stars that are in a maximum pack-

ing of Kn. On each copy of Kn we apply lemma 2.1 with m1 = m2 = · · · = mb = k

and mb+1 =
(
n
2

)
− bk to obtain a maximum packing with leave a star of size mb+1. We

denote the leave star in the ith copy of Kn by Si. It is important to note that we have

the freedom to choose the center and pendant vertices of Si in each copy of Kn. To

this end, for each 0 ≤ i ≤ λ − 1 let Si have central vertex vn−1 and pendant vertices

vimb+1
, vimb+1+1, . . . , v(i+1)mb+1−1 (note that the subscripts are considered mod n − 1). (See

figure 2.3). This ensures that Si+1 begins where Si ends, i.e. that the leave edges are dis-

tributed over the vertices v0, . . . , vn−2 as evenly as possible.

So we end up with an edge-balanced multistar centered at vn−1, to which we can apply

lemma 2.4 to obtain a maximum packing of with k-stars. Since the rest of the edges of λKn

are already partitioned into k-stars, the leave of the maximum packing of the edge-balanced

13



S0 S1 Sλ−1

Figure 2.3: Strategic placement of the leave stars in order to build an edge-balanced multi-
star.

multistar is the leave of the maximum packing of λKn. And we know that this leave is a

star of size less than k; thus, we obtain the desired maximum packing.

2.2.2 Partial Results for when λ > 1 and n < 2k

We will first take care of the trivial cases with an analog of lemma 2.2.

Lemma 2.6. Let λ, n, k ∈ N with n ≤ k. Then there are 0 stars in a maximum packing of

λKn with k-stars. Moreover, the leave must be λKn.

Proof. A k-star requires k+1 vertices. Therefore, we have no k-stars in λKn. So a maximum

packing must have leave λKn.

Our first partial result deals with the smallest non-trivial case, which is when there are

k + 1 vertices.

Theorem 2.7. Let λ, n, k ∈ N with λ > 1 and n = k + 1. If λ is even then λKn can be

decomposed into k-stars. If λ is odd then there are k
(λ− 1

2

)
+
λ+ 1

2
stars in a maximum

packing of λKn with k-stars. Moreover, the leave graph must be Kk.

Proof. Case 1: λ is even.

In this case we need only check conditions (1) and (3) from Theorem 1.1, which will guaran-

tee a decomposition. Condition (3) is trivially satisfied since in this case n = k + 1 ≥ k + 1.

To show condition (1) we will substitute n = k + 1 to obtain λn(n − 1) = λ(k + 1)k. We

14



have that λ is even, so 2k|λ(k + 1)k, and thus (1) holds.

Case 2: λ is odd.

First, notice that every k-star must contain every vertex, since n = k + 1. For any vertex

v ∈ V (Kn), let c(v) denote the number of k-stars centered at v. Now, for any two vertices,

u, v ∈ V (Kn), there are λ total edges between u and v, so c(u) + c(v) ≤ λ. This leads us

to note that there can be at most one vertex, w ∈ V (Kn), such that c(w) >
λ

2
. We claim

that the number of k-stars is maximum when c(w) =
λ+ 1

2
, and for every vertex u 6= w,

c(u) =
λ− 1

2
(see figure 2.4).

k verts.

w

λ+ 1

2

λ− 1

2
centered

centered

Figure 2.4: The number of k-stars centered at each vertex.

To show that this claim is true, first notice that all of the vertices in V (Kn) \ {w} have the

maximum number of k-stars centered at them. The only parameter that can change is c(w).

If c(w) increases by 1, then we would have to decrease c(u) by one for every u 6= w. But this

would result in a net decrease of k-stars. So a maximum packing has the central function

shown in figure 2.4. Now we must show that such a packing is possible.

The center of a star completely determines that star, since every vertex must be included in

it. So we remove
λ+ 1

2
stars centered at w. For each u ∈ V (Kn) \ {w}, we remove

λ− 1

2

stars centered at u. Between u and w we have used
λ+ 1

2
+
λ− 1

2
= λ edges. Between u

and v ∈ V (Kn) \ {w}, for u 6= v, we have used
λ− 1

2
+
λ− 1

2
= λ − 1 edges. So we have

exactly one edge left between any two vertices in V (Kn) \ {w}, and since there are exactly k

15



of these vertices our leave is a complete graph on k vertices. Our leave of Kk is represented

as the blue vertices in figure 2.4. Thus we have obtained the desired maximum packing.

Our next partial result concerns the largest number of vertices that we can have before

the more general theorems take over. This is when there are 2k − 1 vertices, but first we

need a lemma.

Lemma 2.8. Let n, k ∈ N with n = 2k − 1. There are
⌊(n

2

)
k

⌋
stars in a maximum packing

of Kn with k-stars. Moreover, the leave graph is a single edge.

Proof. We begin by investigating the upper bound on the number of stars in a maximum

packing of Kn.

(
n

2

)
=

(2k − 1)(2k − 2)

2
=

4k2 − 6k + 2

2
= 2k2 − 3k + 1 = k(2k − 3) + 1

The number of edges is 1 (mod k), so if we can find a construction that has 2k − 3 stars

then we know it is a maximum packing. To this end, we group the vertices of Kn into two

sets, A and B. We let |A| = 2k − 3 and |B| = 2, recognizing that |A⋃B| = 2k − 1 = n,

so in fact A and B form a partition of the vertices of Kn. We wish to find a construction

where each vertex of A is the center of exactly one k-star. Take a regular tournament on

A, the existence of which was justified in the proof of lemma 2.3. Now for each v ∈ A we

have, from the regular tournament, that d+(v) =
2k − 3− 1

2
= k − 2. Next, we orient all of

the edges between A and B with tails in A and heads in B. This adds 2 to the outdegree of

every vertex in A, making d+(v) = k. (See figure 2.5).
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A

B

k − 2 edges

Figure 2.5: How the stars are constructed.

Every vertex in A has outdegree k so there is a star centered at each of them. The regular

tournament ensures that we use every edge with both ends in A in a k-star, while the

orientation on the edges between A and B ensures that we use all edges of that type. The

only edges we haven’t used are those with both ends in B. There is only one edge of that

type, since |B| = 2. Thus, our leave is a single edge, and we have the desired maximum

packing.

It is important to note that in the proof of lemma 2.8, the set B is arbitrary. Thus we

have control over which edge is the leave edge.

Theorem 2.9. Let λ ∈ N and k > 1 be an integer. For n = 2k − 1, a maximum packing of

λKn with k-stars has as its leave a loopless graph with λ (mod k) edges.

Proof. We first view λKn as λ copies of Kn, each on the same vertex set. Now, on each copy

of Kn we apply lemma 2.8 to obtain a k-star decomposition in which the leave has a single

edge. We have the freedom to choose which edge becomes the leave edge. Let λ = kr + s

where r, s ∈ N and 0 ≤ s ≤ k − 1. In kr of the copies of Kn we will choose the leave edge

to have one fixed endpoint u ∈ V (Kn). The other endpoints of the edges will be the next

k vertices in Kn. We take care to make sure that each one of these edges has multiplicity

r (see figure 2.6). Clearly r ≤ λ since k > 1 and s ≥ 0, so the multiplicity won’t exceed λ.
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This edge-balanced multistar can be trivially decomposed into r copies of Sk.

u

multiplicity r

k vertices

Figure 2.6: Organizing the leave edges into an edge-balanced multistar.

There are s more edges in the leave that we are free to arrange however we want, so long

as they form a subgraph of λKn. Note that s ≡ λ (mod k), thus we obtain the desired

leave.

18



Chapter 3

Embedding Partial k-star Decompositions

In this chapter we will investigate how to extend a partial decomposition to a decom-

position. Given graphs G and H, let A be a partial H-decomposition of G – also called an

H-packing of G. Let B be a partial H-decomposition of a graph G′. Then B is called an

embedding of A if A ⊆ B and G is a subgraph of G′. We are interested in the specific case

when H is a k-star, and G and G′ are complete graphs. We would also like to find the small-

est possible graph G′. So our main question becomes: Given a partial k-star decomposition

of Kn, find the smallest integer, t, in which we can embed the partial decomposition into a

decomposition of Kn+t.

3.1 A Balanced Embedding

It was previously noted that k-stars correspond to orientations in which the center of

the star is the tail of every edge (see figure 3.1). Therefore, in order to construct embeddings

we will first give some results on the existence of certain types of orientations.

⇐⇒0

1

2

k

1

2

k

0

Figure 3.1: A k-star corresponds to an orientation.
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Let Z denote the set of integers. If f : V (G) → Z is a function, then let f(S) denote∑
v∈S

f(v). Recall that for any subset S ⊆ V (G), ε(S) denotes the number of edges with both

ends in S.

We now define a well-known operation that can be performed on the edge set of a graph.

Given a graph G, and some edge e of G, the graph G\e is the graph with vertex set V (G) and

edge set E(G) \ {e}. This operation is called “deletion by e,” and the new graph obtained

is referred to as “G delete e”.

Lemma 3.1. (D.G. Hoffman [5]) Let G be any graph and f : V (G) → Z. Then G has

an orientation in which each vertex v ∈ V (G) has outdegree f(v) if and only if for every

S ⊆ V (G),

ε(S) ≤ f(S)

with equality if S = V (G).

Proof. First we will discuss the necessity. Let S ⊆ V (G) and f be defined as stated above.

Every edge with both ends in S must be oriented, which means that each such edge con-

tributes exactly 1 to the outdegree of some vertex in S. So the largest possible number of

edges with both ends in S which can be oriented is f(S). Therefore, the inequality holds.

As for the case when S = V (G), we must have all of the edges in G oriented, which means

f(S) ≤ ε(S), and equality follows.

Next, we turn to sufficiency. Suppose the conditions on f and G hold. Let v ∈ V (G), then

we note that ε({v}) is the number of loops at v. So 0 ≤ ε({v}) ≤ f(v). We will continue by

induction on ε(G). If ε(G) = 0, then f(G) = 0. So f(v) = 0 for every v ∈ V (G), thus there

are no edges to orient and we are done. Let e ∈ E(G) have endpoints u and v.

Case 1: u = v, i.e. e is a loop. Let G′ = G \ e and define f ′ : V (G′)→ N by

f ′(x) =

 f(v)− 1 if x = v

f(x) if x 6= v.
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So we get that for every S ⊆ V (G)

∑
x∈S

f ′(x) =

 f(S)− 1 if v ∈ S

f(S) if v /∈ S
and ε′(S) =

 ε(S)− 1 if v ∈ S

ε(S) if v /∈ S

where ε′(S) denotes the number of edges in G′ with both ends in S. So f ′ satisfies the

hypotheses for G′ which means that G′ has an orientation with d+G′(v) = f ′(v) for every

v ∈ G′. Now, orient e the only way possible, which produces the desired orientation on G.

Case 2: u 6= v, i.e. e is not a loop. For A ⊆ V (G), we define A to be critical if ε(A) = f(A).

Claim 3.2. Let A and B be critical, then

(I) A
⋂
B is critical,

(II) A
⋃
B is critical, and

(III) No edge of G has one end in A \B and the other end in B \ A.

Proof of claim: Assume A and B are critical. We make the following definitions, a :=

f(A \B), b := f(B \A), c := f(A
⋂
B), α1 is the number of edges with both ends in A \B,

α2 is the number of edges with one end in A \B and one end in A
⋂
B, β1 is the number of

edges with both ends in B, β2 is the number of edges with one end in B \ A and one end

in A
⋂
B, γ is the number of edges with both ends in A

⋂
B, and δ is the number of edges

with one end in A\B and one end in B \A. (See figure 3.2). We get the following equations

A Ba b

c

δ

α1 β1

α2 β2
γ

Figure 3.2: Different types of edges.
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and inequalities since f satisfies the hypotheses of the lemma and A and B are critical

α1 ≤ a (EQ1)

β1 ≤ b (EQ2)

γ ≤ c (EQ3)

α1 + α2 + γ = a+ c (EQ4)

β1 + β2 + γ = b+ c (EQ5)

α1 + α2 + β1 + β2 + γ + δ ≤ a+ b+ c (EQ6)

From (EQ4) and (EQ5) we get α1 + α2 = a + c− γ and β1 + β2 = b + c + γ, which we can

substitute into (EQ6) to get

α1 + α2 + β1 + β2 + γ + δ ≤ a+ b+ c

a+ c− γ + b+ c− γ + γ + δ ≤ a+ b+ c

c− γ + δ ≤ 0

c+ δ ≤ γ (EQ7)

But δ counts some number of edges, which forces δ ≥ 0. Combining this fact with (EQ3)

and (EQ7) we obtain

c ≤ c+ δ ≤ γ ≤ c.

So it must be the case that both γ = c and δ = 0. These two equations prove (I) and (III)

from Claim 3.2, respectively. We also have that α1+α2+β1+β2+γ = a+c+b+c−γ = a+b+c,

and thus (II) is true. Therefore, we have proven Claim 3.2.

Back to the proof of Case 2. Again, let G′ = G \ e. Try orienting e with tail u and head v.
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Define f ′ on V (G′) as follows:

f ′(x) =

 f(u)− 1 if x = u

f(x) if x 6= u.

Let S ⊆ V (G), and we are interested in when the inequality ε′(S) ≤ f ′(S) is true. Notice

that ε(S) ≤ f(S), and both

ε′(S) =

 ε(S)− 1 if u, v ∈ S

ε(S) otherwise
and f ′(S) =

 f(S)− 1 if u ∈ S

f(S) if u /∈ S.

The only situation in which ε′(S) > f ′(S) is when u ∈ S, v /∈ S, and S is critical in G. So if

our choice of orienting e with tail u and head v results in failure of our desired inequality, then

we find a critical set S in G which contains u and not v. The argument works symmetrically

if we choose to orient e with tail v and head u. In that case we find a critical set T in G

which contains v and not u. It can’t be the case that both choices fail, because that would

result in two critical sets S and T in which there is an edge with one end, u, in S \ T and

one end, v, in T \ S. Thus, we can find an orientation of e which results in ε′(S) ≤ f ′(S).

Using our inductive hypothesis we get an orientation on G′, and then by adding e back in –

oriented appropriately – we find our desired orientation on G.

We now turn our attention towards complete graphs. Lemma 3.3 gives conditions for

a complete graph on n + t vertices with a hole of size n to obtain an orientation in which

the vertices have prescribed outdegrees (see figure 3.3). This will allow us to embed partial

k-star decompositions by considering them as being removed from a complete graph, thereby

creating a hole. The function d will serve as the “patch” for the hole.
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NT

No Edges

in N

d+(u) = d0

d+(v) = d(v)

Figure 3.3: The orientation guaranteed by Lemma 3.3.

Lemma 3.3. Let G be a graph whose vertex set is partitioned into sets N and T , and a pair

of distinct vertices in G are adjacent if and only if they are not both in N . Let |T | = t and

|N | = n, d : N → N and d0 ∈ N. Then G has an orientation in which each vertex v ∈ N

has outdegree d(v) and each vertex in T has outdegree d0 if and only if

(i) ∀v ∈ N d(v) ≤ t, and

(ii) td0 +
∑
v∈N

d(v) =

(
t

2

)
+ tn.

Proof. Assume G has such an orientation. To show (i) let v ∈ N . The only edges which can

be oriented outwards from v are of the form vx where x ∈ T . There are only t such vertices

in T , so d(v) ≤ t. To show (ii) we note that the LHS counts the total number of edges in G

by counting all of the outdegrees of the vertices, while the RHS counts the total number of

edges in G because we have a complete graph on t vertices along with a complete bipartite

graph with parts of size t and n.

Now assume that (i) and (ii) hold. We will apply lemma 3.1 with

f(v) =

 d(v) for v ∈ N

d0 for v ∈ T.
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Let S ⊆ V (G). Then S = I
⋃
J where I = S

⋂
T and J = S

⋂
N , and we will say that

|I| = i and |J | = j. We have that ε(S) =

(
i

2

)
+ ij and

∑
v∈S

f(v) = d0i+ d(J), so we get the

following:

ε(S) ≤
∑
v∈S

f(v) ⇐⇒
(
i

2

)
+ ij ≤ d0i+ d(J) (A)

⇐⇒ 0 ≤ −1

2
i2 + (d0 + j − 1

2
)i+ d(J)

The last inequality involves a concave-down quadratic in i, so we need only check the end-

points. When i = 0 we get

(
0

2

)
+ 0 ≤ d(J), which is true. When i = t we first note that

td0 + d(J) = tn+

(
t

2

)
−
∑
v∈N\J

d(v). And, to show that (A) holds, we must show that

(
t

2

)
+ tj ≤ d0t+ d(J)(

t

2

)
+
∑
v∈J

t ≤ tn+

(
t

2

)
−
∑
v∈N\J

d(v)

∑
v∈J

t+
∑
v∈N\J

d(v) ≤ tn

and we have that ∑
v∈J

t+
∑
v∈N\J

d(v) ≤
∑
v∈J

t+
∑
v∈N\J

t =
∑
v∈N

t = tn

The above line shows that (A) is true. Now we must show that equality holds when S =

V (G), in which case we get

ε(S) =

(
t

2

)
+ tn =︸︷︷︸

by(ii)

td0 +
∑
v∈N

d(v) =
∑
v∈S

f(v)
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The next theorem is our first result on embeddings. The type of decomposition con-

structed is sometimes referred to as “balanced” because the number of k-stars centered at

each vertex is the same. We will utilize the tools we have developed for orientations to prove

it.

Theorem 3.4. Given a partial k-star decomposition of Kn and some d0 ∈ N such that

d0 ≥
n− 1

k
, the partial decomposition can be embedded into a k-star decomposition of Kn+t

where t = 2kd0 − n+ 1 and every vertex has d0 k-stars centered at it.

Proof. Let c : V (Kn)→ N be the central function of the partial k-star decomposition of Kn.

We must choose t such that Kn+t has a k-star decomposition. The number of edges in Kn+t

must equal the sum of the edges used in all of the stars, and we obtain the following:

(
n+ t

2

)
= (n+ t)kd0

(n+ t)(n+ t− 1)

2
= (n+ t)kd0

n+ t− 1 = 2kd0

t = 2kd0 + 1− n

Let V (Kn) = {v1, . . . , vn}. Notice that ∀v ∈ Kn the maximum number of k-stars that

can be centered at v is bn− 1

k
c, so we can assume that the partial decomposition of Kn is

maximal, i.e. the number of edges incident with v which are not used in the partial k-star

decomposition is less than k. Take an arbitrary orientation of the edges in the compliment

of the partial k-star decomposition of Kn. Let f : V (Kn) → N be defined such that f(v)

equals the outdegree of v in this orientation. Notice that ∀v ∈ V (Kn) f(v) < k, because the

partial decomposition is maximal.

Let G be the graph with vertex partition N = {v1, . . . , vn} and T = {vn+1, . . . , vn+t}, and

two vertices are adjacent in G if and only if they are not both in N . An orientation of G
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such that every vertex in N has outdegree k(d0 − c(v)) − f(v) and every vertex in T has

outdegree kd0 corresponds to an orientation of Kn+t such that every vertex has outdegree

kd0. Thus, finding such an orientation implies embedding our partial decomposition of Kn

into a decomposition of Kn+t. We must apply lemma 3.3 with d(v) = k(d0−c(v))−f(v) and

the outdegree in T being kd0. To show (i), note that d(v) is maximum when kc(v) + f(v) is

minimum, and this value might be 0. Thus, d(v) ≤ kd0. Now, by assumption we have:

n− 1

k
≤ d0

0 ≤ kd0 + 1− n

kd0 ≤ 2kd0 + 1− n

Hence, d(v) ≤ kd0 ≤ 2kd0 + 1− n = t and (i) is true. To show (ii):

tkd0 +
∑
v∈N

d(v) = tkd0 +
∑
v∈N

k(d0 − c(v))− f(v)

= tkd0 + k
∑
v∈N

d0 −
∑
v∈N

(kc(v) + f(v))

= tkd0 + nkd0 −
(
n

2

)
=

(
n+ t

2

)
−
(
n

2

)
=

(
t

2

)
+ tn

Hence, (ii) is true. Our orientation is guaranteed by lemma 3.3.
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3.2 A Small Embedding

The main goal of this section is to produce an embedding of a partial k-star decomposi-

tion in which the number of new vertices depends only on k. We would also like the number

of new vertices to be as small as possible. To this end, we make the following definition. Let

G and H be graphs. If G and H have disjoint vertex sets, then let G ∨H denote the graph

with vertex set V (G)
⋃
V (H) and edge set E(G)

⋃
E(H)

⋃{uv : u ∈ V (G) and v ∈ V (H)}.

The first lemma is an embedding of a partial system into another partial system. While it

is not the main result that we desire, it is a step in the right direction because the number

of new vertices depends only on k. The construction also shrinks the leave down into a

manageable number of vertices.

Lemma 3.5. Any partial k-star decomposition of Kn can be embedded into a partial k-star

decomposition of Kn+2k−1 in such a way that the new leave is restricted to the 2k − 1 new

vertices.

Proof. Let B be a partial k-star decomposition of Kn with leave L. Let T be a complete

graph on 2k− 1 vertices, and let G = Kn ∨T . Our goal is to build another collection, B′, of

k-stars in G that can be put together with B to form our embedding. We can assume that B

is maximal, i.e. that every degree in L is at most k− 1. (If there were some vertex v ∈ V (L)

with degree k or more, then we could center another k-star at v and include that star in the

collection B′.) Now, place an arbitrary orientation on the edges of L. For each v ∈ L, use

k− dL(v) edges going from Kn to T with tails at v to form a k-star, and include this star in

B′. (See figure 3.4.) Note that this is possible because dL(v) ≤ k− 1 and |V (T )| = 2k− 1.
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v
Kn

T

L

Figure 3.4: Extending the orientation of the leave to k-stars.

Now, let w ∈ T . For the rest of the edges with one end at w and the other end in Kn that

haven’t been used, orient them with tail at w. Form as many k-stars as possible with these

edges, and include these edges in B′. We will have some number i < k of them left over.

(See figure 3.5.)

Kn

T

k ki

w

Figure 3.5: Using almost all edges between Kn and T .

At this point we have d+(w) = i < k. We also have the edges with both ends in T yet

to use in k-stars. To this end, take a regular tournament on T . Notice that now d+(w) =

i+
2k − 2

2
= i+ k− 1. We will use as many of these edges as possible in k-stars and include

them in B′. If i ≥ 1 then we can center at least one more k-star at w. In this case we will

have used all the edges with one end in Kn and the other end in T . Otherwise, i = 0 and all

of these edges were used in the previous steps. We now have the partial k-star decomposition

B
⋃

B′ of Kn ∨ T , whose leave is a subset of T .
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The following is a generalization of theorem 3.4, but we tailor it to make it useful for

theorem 3.9. The major difference is that lemma 3.6 does not require that we begin with a

partial k-star decomposition, but only that our number of edges is a multiple of k. Let Z+

denote the set of positive integers.

Lemma 3.6. Fix n, k ∈ Z+. Let N be a complete graph on n vertices with a subgraph L

which has the property that k divides |E(N) \ E(L)|. Let f : V (N)→ N and g : V (L)→ N

be functions such that
∑
v∈N

kf(v) + g(v) =

(
n

2

)
. For each d0 ∈ N such that

(i) For every v ∈ V (N) kf(v) + g(v) ≤ kd0, and

(ii) For every v ∈ V (N) n− 1− kf(v)− g(v) ≤ kd0

then Kt∨N has a k-star decomposition where t = 2kd0−n+ 1 and every vertex has d0 stars

centered at it.

Proof. Let G be the graph with vertex set V (Kt)
⋃
V (N) and edge set E(Kt ∨N) \ E(N).

For every v ∈ N , define the function d : V (N) → N such that d(v) = d0k − kf(v) − g(v).

Note that from condition (i) we obtain that for every v ∈ N

0 ≤ kd0 − kf(v)− g(v) = d(v)

Thus, d(v) is non-negative. Notice that a k-star decomposition of Kt ∨ N in which every

vertex has d0 stars centered at it corresponds to an orientation of G in which every vertex

in V (Kt) has outdegree kd0 and every vertex in V (N) has outdegree d(v).

We must choose t with the property that Kt ∨N has a k-star decomposition, so the number
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of edges must be divisible by k. Thus, we obtain that

(
n+ t

2

)
= (n+ t)kd0

(n+ t)(n+ t− 1)

2
= (n+ t)kd0

n+ t− 1 = 2kd0

t = 2kd0 + 1− n

By adding together the inequalities of conditions (i) and (ii) we get

kf(v) + g(v) + n− 1− kf(v)− g(v) ≤ kd0 + kd0

0 ≤ 2kd0 − n+ 1 = t

Thus, t is non-negative. Now we must show that d satisfies the conditions of lemma 3.3. By

applying condition (ii) we see that for every v ∈ G

n− 1− kf(v)− g(v) ≤ kd0

−kf(v)− g(v) ≤ kd0 + n− 1

kd0 − kf(v)− g(v) ≤ 2kd0 + n− 1

d(v) ≤ t
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To see the condition on the total number of edges:

tkd0 +
∑
v∈N

d(v) = tkd0 +
∑
v∈N

(kd0 − kf(v)− g(v))

= tkd0 + nkd0 −
∑
v∈N

(kf(v) + g(v))

= (n+ t)kd0 −
(
n

2

)
=

(
n+ t

2

)
−
(
n

2

)
=

(
t

2

)
+ tn

Therefore, both conditions of lemma 3.3 are satisfied and G has the desired orientation.

For the rest of this chapter we will use the following notation:

k∗ :=

 k if k is odd

2k if k is even

We now state some results on the periodic nature of

(
n

2

)
(mod k). This will assist us with

obtaining a small embedding.

Lemma 3.7. For every n ∈ Z+, the equivalence

(
n

2

)
≡
(
n+ p

2

)
(mod k) has smallest

non-negative integer solution p = k∗.

Proof. We first expand each side of the equivalence to obtain

n(n− 1)

2
≡ (n+ p)(n+ p− 1)

2
(mod k)

n(n− 1) ≡ (n+ p)(n+ p− 1) (mod 2k)

n2 − n ≡ n2 + 2np+ p2 − n− p (mod 2k)

0 ≡ 2np+ p2 − p (mod 2k)
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So for all n ∈ Z+ we require that 2k|p(p+ 2n− 1), which implies that

2k|p gcd{p+ 2n− 1 : n ∈ Z+}

To find the gcd we notice that {p + 2n − 1 : n ∈ Z+} = {p + 1, p + 3, p + 5, . . . }. So

gcd{p+ 2n− 1 : n ∈ Z+} = gcd{p+ 1, p+ 3, p+ 5, . . . } =

 2 if p is odd

1 if p is even

Thus, we require that

2k divides

 2p if p is odd

p if p is even

If p is even, then the smallest value is p = 2k. If p is odd, then there is no solution for k

even, but if k is odd then the smallest value is p = k.

Corollary 3.8. If x ≡ n− 1 (mod k∗) then

(
x

2

)
≡
(
n+ 2k − 1

2

)
(mod k)

Proof. Assume that x ≡ n− 1 (mod k∗).

We have from Lemma 3.7 that

(
n− 1

2

)
(mod k) is periodic with period k∗. So, no matter

the parity of k, we have

(
x

2

)
(mod k) ≡

(
n− 1

2

)
(mod k) ≡

(
n− 1 + 2k

2

)
(mod k).

Recall that we defined k∗ =

 k if k is odd

2k if k is even
.

Theorem 3.9. A partial k-star decomposition of Kn can be embedded into a k-star decom-

position of Kn+s where s ≤ 6k + k∗ − 4

Proof. Let N be a complete graph on n vertices with a partial k-star decomposition A. So

A is a set of edge-disjoint copies of k-stars in N .
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Step 1: Apply lemma 3.5 to embed A into a partial k-star decomposition, B, of N ∨M

where M is a complete graph on 2k − 1 vertices. Note that B is guaranteed to have the

property that its leave is contained in M .

Step 2: Choose a set, X, of x vertices from V (N ∨M) with the following properties:

(a) V (M) ⊆ X

(b) x ≡ n− 1 (mod k∗)

(c) x is minimum with respect to the above properties.

N

M

Leave

X

Figure 3.6: Choosing the set, X, of vertices.

Notice that by applying Corollary 3.8 to condition (b) we have that

(
x

2

)
≡
(
n+ 2k − 1

2

)
(mod k). Let B denote the edges which are not used in copies of k-stars in B. We also have

that B ⊆ E(M) ⊆ E(X), which means that

(
x

2

)
− |B| ≡

(
n+ 2k − 1

2

)
− |B| (mod k) ⇐⇒(

x

2

)
≡
(
n+ 2k − 1

2

)
(mod k).

Since B is a partial k-star decomposition we have that

(
n+ 2k − 1

2

)
−|B| ≡ 0 (mod k). So

condition (b) guarantees that

(
x

2

)
− |B| ≡ 0 (mod k).

Step 3: We will embed the partial k-star decomposition on X into a k-star decomposition
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of a complete graph. Let L denote the leave. Let g : V (L) → N represent the outdegrees

of an arbitrary orientation on E(L). Since we have condition (b), we can define a function

f : V (X) → N such that
∑
v∈X

kf(v) = |E(X) \ E(L)| and for each v ∈ X we have kf(v) +

g(v) ≤ x− 1. In order to apply lemma 3.6 with d0 ≥
x− 1

k
we note that for every v ∈ V (X)

kf(v) + g(v) ≤ x− 1 ≤ x− 1

k
k ≤ d0k,

which implies that

x− 1− kf(v)− g(v) ≤ x− 1 ≤ d0k.

Thus, the partial k-star decomposition on X can be embedded into a k-star decomposition

on T ∨X where T is a complete graph on t vertices.

Step 4: Finish the decomposition. The only thing we have left to show is that we can

decompose the complete bipartite graph whose vertices come from T and V (N) \ V (X),

which we will call Y , into k-stars.

N

M

X

T

Y

Figure 3.7: A k-star decomposition of the remaining bipartite graph with partition (T,Y).

Let y = |V (N)
⋂
V (X)|, and we have that x = y + 2k − 1. From corollary 1.3 we see that

this complete bipartite graph has a decomposition into k-stars if and only if the following
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two conditions hold:

k|t(n− y)

and

If k > (n− y) then k|t, and if k > t then k|(n− y)

To show the first condition, we note n− y = n− x + 2k − 1 = (n− 1)− x + 2k, and recall

that x ≡ n − 1 (mod 2k). Therefore, n − 1 − x ≡ 0 (mod 2k). Hence, k|(n − y), which

implies that k|t(n − y). To show the second condition, we first note that if k > t then

we’re done, because k|(n− y). Also, due also to the fact that k|(n− y), it can’t be the case

that k > (n− y) so the second part of the second condition is trivially satisfied. Thus, our

complete bipartite graph can be decomposed into k-stars, and this finishes the embedding.

Step 5: Count the total number of vertices. The smallest value for t is achieved when

d0 = dx− 1

k
e, so

t = 2kd0 − x+ 1 ≤ 2k(
x− 1 + k

k
)− x+ 1 = 2k + x− 1.

Also, from condition (b) we have

x ≤ 2k − 1 + k∗ − 1

which means that

t ≤ 4k + k∗ − 3

We have n+ 2k − 1 + t total vertices, and

n+ 2k − 1 + t ≤ n+ 6k + k∗ − 4
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Chapter 4

Hyperstar Decompositions of Hypergraphs

4.1 What is a hyperstar?

The results in this section are all joint work with M. A. Bahmanian [1]. They have

previously been obtained by Lonc [10], but we give an alternative proof.

In order to define what a hyperstar is we must first define a hypergraph. A hypergraph is a

pair (X, E) where X is a set and E is a collection of subsets of X. We refer to the elements

of X as vertices and the elements of E as hyperedges. Note that a graph is, in fact, a

hypergraph where the size of each edge is 2 – allowing that loops be considered as multisets.

A multigraph is also a hypergraph where E is considered as a multiset. A hypergraph can

also have multi-hyperedges, which means that a hyperedge can be repeated multiple times.

Figure 4.1 is a hypergraph with vertex set {1, 2, 3, 4, 5, 6, 7, 8}, with a repeated edge {1, 2, 3},

and a loop {8}.

1

2

3

4
5 6

7
8

Figure 4.1: A hypergraph.

We can now define a hyperstar, which is a generalization of a star. A hypergraph G = (X, E)

is a hyperstar with center C if C ⊆
⋂
E∈E

E. The size of G is |E| and we say that G has center
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size |C|. A hyperstar of size k with center C is denoted by Sk(C). For brevity, Sk(v) denotes

Sk({v}), and Sk denotes a hyperstar of size k and center size 1. A hyperstar can have more

than one center, for example the hyperstar in figure 4.2 has centers {3, 4}, {3}, {4} and ∅.

An interesting distinction between stars and hyperstars is that the edges of a hyperstar can

intersect outside of the center. The edges {3, 4, 5, 6} and {3, 4, 6, 7} in the hyperstar in figure

4.2 have the vertex 6 in their intersection, but 6 is not in any center of the hyperstar.

1

2
3 4

5

6
7

Figure 4.2: A hyperstar of size 3 with center size 2.

We can define a decomposition of a hypergraph much like how we defined it for a graph.

Let G = (X, E) be a hypergraph and let H = {Hi}i∈I be a family of hypergraphs where

Hi = (Xi, Ei). We say that G has an H-decomposition if {Ei : i ∈ I} partitions E and each

Ei forms an isomorphic copy of Hi.

For a positive integer r and a set Y , P(Y ) denotes the set of all subsets of Y and

Pr(Y ) denotes the set of all r-subsets of Y . Let G = (X, E) be a hypergraph, and let

C ⊆
⋃
E∈E

P(E). For every T ⊆ C we define the set

T (E ,C ) = {E ∈ E : P(E)
⋂

C ⊆ T}.

The collection C will play the role of the set of centers of hyperstars in the desired hyperstar

decomposition. For each T ⊆ C the relationship of the set T (E ,C ) with the hyperstar

decomposition is a bit more subtle. Therefore, we will examine this set via an example.
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(See example 4.1). For any given T ⊆ C , the set T (E ,C ) is the set of all hyperedges whose

intersection with C is a subset of T – this includes hyperedges whose intersection with C is

empty, as the empty set is always a subset of T .

Example 4.1. Examining T (E ,C ) where G = K3
6 , C = {{1}, {2}, {3, 4}}, and T =

{{2}, {3, 4}}.

1

2

3

4

5

6

T

Figure 4.3: Determining whether a hyperedge is an element of T (E ,C ) or not.

The orange vertices are the vertices covered by C . The way we can determine if a

hyperedge is in T (E ,C ) or not is by looking at the intersection of P(E) with C . This

intersection will consist of subsets of vertices, and if these are all elements of T (blue subsets)

then the edge is in T (E ,C ). In figure 4.3 the green edges are in T (E ,C ) and the red edges

are not. This information is presented in table 4.1.

E P(E)
⋂

C Element of T (E ,C )?
{1, 2, 3} {{1}, {2}} no
{2, 3, 5} {{2}} yes
{3, 5, 6} ∅ yes

Table 4.1: Categorizing the edges of figure 4.3.

This concludes the example.

Now we turn back to hyperstar decompositions. We will need the following theorem

which gives necessary and sufficient conditions for a hypergraph to be decomposed into
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hyperstars with given sizes and centers. This is the result in which the set T (E ,C ) realizes

its full potential.

Theorem 4.2. (Lonc [9]) Let G = (V, E) be a hypergraph. Let C ⊆
⋃
E∈E

P(E), and δ : C →

Z+ be a function. Then G has an {Sδ(C)(C) : C ∈ C }-decomposition if and only if

(i) P(E)
⋂

C 6= ∅ for all E ∈ E,

(ii) |E| =
∑
C∈C

δ(C), and

(iii) |T (E ,C )| ≤
∑
C∈T

δ(C) for all T ⊆ C .

For the proof we refer the reader to Lonc [9], but we remark that the proof relies on a

clever application of Hall’s Marriage Theorem, which is a classical result in graph theory. It

deals with finding matchings in bipartite graphs. A matching in a graph is a set of edges

which have no common endpoints. Let G be a bipartite graph with bipartition (A,B). A

matching in G saturating A is a matching in which each vertex of A is incident with exactly

one edge. Hall’s Theorem can be used to characterize those bipartite graphs which have a

perfect matching, which is defined to be a matching which saturates all of the vertices. We

state this theorem for the reader’s mathematical enjoyment:

Theorem 4.3. (P. Hall [3])

Let G be a finite bipartite graph with vertex bipartition (A,B). Then G has a matching

saturating A if and only if for every subset S ⊆ A, |S| ≤ |N(S)|.

where N(S) – called the neighbor set of S – denotes the set of vertices which are adjacent

to at least one vertex in S. Note that when |A| = |B| we get a matching saturating both A

and B, which is a perfect matching. The original formulation of Hall’s theorem was stated

in the language of systems of distinct representatives. This result has been extended by M.

Hall [4] to include an infinite number of sets.
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4.2 Decomposing Complete Uniform Hypergraphs into Hyperstars

The complete m-uniform hypergraph on n vertices, denoted Km
n , is a hypergraph with

n vertices which has as its edge set all m-subsets of its vertices.

We start with a technical lemma which aids in the proof of the main result of this section:

Lemma 4.4. Let n, ` be positive integers with ` ≥ n + 1. Suppose m1 ≥ · · · ≥ m` is a

sequence of positive integers such that for k = 1, . . . , n− 1

∑̀
i=1

mi =

(
n

m

)
and

k∑
i=1

mi ≤
(
n

m

)
−
(
n− k
m

)
.

If m′1 ≥ · · · ≥ m′`−1 is a rearrangement of m1, . . . ,mn−1,mn + m`, . . . ,m`−1, then for k =

1, . . . , n− 1
`−1∑
i=1

m′i =

(
n

m

)
and

k∑
i=1

m′i ≤
(
n

m

)
−
(
n− k
m

)
.

Proof. It is obvious that
`−1∑
i=1

m′i =
∑̀
i=1

mi =

(
n

m

)
. Suppose m′t = mn + m` where t ≤ n. It

is easy to see that

m′i =

 mi for i = 1, . . . , t− 1

mi−1 for i = t+ 1, . . . , n.

Therefore, for j < t, we have

j∑
i=1

m′i =

j∑
i=1

mi ≤
(
n

m

)
−
(
n− j
m

)
. Now, suppose to the

contrary that there is some j with t ≤ j ≤ n− 1, such that

j∑
i=1

m′i ≥
(
n

m

)
−
(
n− j
m

)
+ 1.
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Then we have

2mn ≥ mn +m` = m′t =

j∑
i=1

m′i −
j−1∑
i=1

mi

≥
(
n

m

)
−
(
n− j
m

)
+ 1−

(
n

m

)
+

(
n− j + 1

m

)
=

(
n− j
m− 1

)
+ 1.

But

(
n

m

)
=

`−1∑
i=1

m′i =

j∑
i=1

m′i +m′j+1 + · · ·+m′`−1

≥
(
n

m

)
−
(
n− j
m

)
+ 1 + (mj + · · ·+mn−1) + (mn+1 + · · ·+m`−1)

≥
(
n

m

)
−
(
n− j
m

)
+ 1 + (n− j)mn + (mn+1 + · · ·+m`−1)

≥
(
n

m

)
−
(
n− j
m

)
+ 1 +

1

2
(n− j)

((
n− j
m− 1

)
+ 1

)
. (M1)

Now we show that

1

2
(n− j)

((
n− j
m− 1

)
+ 1

)
+ 1 >

(
n− j
m

)
. (M2)

This together with (M1) implies that

(
n

m

)
>

(
n

m

)
, a contradiction. Let p = n − j. Note

that since j ≤ n− 1, we have p ≥ 1. To prove (M2) it is enough to show that

p

(
p

m− 1

)
+ p+ 1 ≥ 2

(
p

m

)
.
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If p ≤ 2m − 1 then

(
p

m

)
≤
(

p

m− 1

)
which implies p

(
p

m− 1

)
+ p + 1 ≥ 2

(
p

m

)
. If

p > 2m− 1, then because m ≥ 2 we have the following sequence of inequalities:

p(m− 2) + 2(m− 1) +
(p+ 1)m!

p(p− 1) . . . (p−m+ 2)
≥ 0 ⇐⇒

pm+
(p+ 1)m!

p(p− 1) . . . (p−m+ 2)
≥ 2(p−m+ 1) ⇐⇒

pmp(p− 1) . . . (p−m+ 2) + (p+ 1)m! ≥ 2p(p− 1) . . . (p−m+ 1) ⇐⇒

p

(
p(p− 1) . . . (p−m+ 2)

(m− 1)!

)
+ p+ 1 ≥ 2

(
p(p− 1) . . . (p−m+ 1)

m!

)
⇐⇒

p

(
p

m− 1

)
+ p+ 1 ≥ 2

(
p

m

)
.

This completes the proof.

Theorem 4.5. Let m1 ≥ · · · ≥ m` be positive integers. Then Km
n can be decomposed into

hyperstars Sm1 , . . . ,Sm`
if and only if

(i) ` ≥ n−m+ 1,

(ii)
∑̀
i=1

mi =

(
n

m

)
, and

(iii)
k∑
i=1

mi ≤
(
n

m

)
−
(
n− k
m

)
for k = 1, . . . , `− 1.

Proof. Let Km
n = (V, E) where V = {v1, . . . , vn}. There are two cases:

Case 1: ` ≤ n. Let C = {{v1}, . . . , {v`}}, and let δ : C → Z+ be a function with

δ({vi}) = mi for 1 ≤ i ≤ `. By Theorem 4.2, there is an {Smi
(vi) : {vi} ∈ C , 1 ≤ i ≤ `}-

decomposition of Km
n if and only if

(1) P(E)
⋂

C 6= ∅ for all E ∈ E ,

(2) |E| =
∑
{vi}∈C

δ({vi}), and

(3) |T (E ,C )| ≤
∑
{vi}∈T

δ({vi}) for every T ⊆ C .
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It is easy to see that

(
n

m

)
= |E| and

∑
{vi}∈C

δ({vi}) =
∑̀
i=1

mi and thus (2) and (ii) are

equivalent. Now, we show that (1) and (i) are equivalent. If (i) holds, then we have |P1(V )\

C | ≤ n− (n−m+ 1) = m− 1, so there can be no edge which does not meet C . Suppose (1)

holds. If by contrary ` < n−m+ 1, then there are at least n− (n−m) = m vertices which

are not in {v1, . . . , v`}. These m vertices form an edge E with the property P(E)
⋂

C = ∅,

a contradiction. Therefore (1) and (i) are equivalent.

Now we show that (3) and (iii) are equivalent. Let T ⊆ C with |T | = j. Since C

is a set of singletons we have that T (E ,C ) = {E ∈ E : P1(E)
⋂

C ⊆ T}, which means

that T (E ,C ) = {E ∈ E : P1(E)
⋂

(C \ T ) = ∅} = {E ∈ E : E
⋂

(
⋃

(C \ T )) = ∅}. Thus

T (E ,C ) induces a complete m-uniform hypergraph on n−(`−j) = n−`+j vertices. Hence,

|T (E ,C )| =
(
n− `+ j

m

)
. Assume that (3) holds and let j ∈ {1, . . . , `− 1}. By (3) we have

that for all T ⊆ C with |T | = j

(
n− `+ j

m

)
= |T (E ,C )| ≤

∑
{vi}∈T

δ({vi}) =
∑
{vi}∈T

mi.

Taking T = {{v`−j+1}, . . . , {v`}} produces

(
n− `+ j

m

)
≤

∑̀
i=`−j+1

mi =

(
n

m

)
−

`−j∑
i=1

mi.

Thus,

`−j∑
i=1

mi ≤
(
n

m

)
−
(
n− `+ j

m

)
. Setting k = `−j implies that

k∑
i=1

mi ≤
(
n

m

)
−
(
n− k
m

)
for k = 1, . . . , ` − 1. Now, assume that (iii) holds and let T ⊆ C with |T | = j. Then (iii)

yields
`−j∑
i=1

mi ≤
(
n

m

)
−
(
n− `+ j

m

)
=

(
n

m

)
− |T (E ,C )|.

So

|T (E ,C )| ≤
(
n

m

)
−

`−j∑
i=1

mi =
∑̀

i=`−j+1

mi ≤
∑
{vi}∈T

δ({vi})
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where the last inequality holds because the mi’s form a decreasing sequence. Therefore (iii)

and (3) are equivalent.

Case 2: ` ≥ n+1. First suppose that Km
n can be decomposed into hyperstars Sm1 , . . . ,Sm`

.

The necessity of (i) and (ii) is sufficiently obvious. By combining all the stars at the same

center, one can obtain a decomposition of Km
n into hyperstars Sm′′

1
, . . . ,Sm′′

n
, where m′′1 ≥

· · · ≥ m′′n, and each m′′i , 1 ≤ i ≤ n, is obtained by adding some of the mj’s, 1 ≤ j ≤ `.

Therefore by Case 1, it is necessary that for k = 1, . . . , n− 1

k∑
i=1

mi ≤
k∑
i=1

m′′i ≤
(
n

m

)
−
(
n− k
m

)
.

Now assume (i)–(iii). Apply Lemma 4.4 `−n times to the sequence m1, . . . ,m` to obtain

a new sequence m′1 ≥ · · · ≥ m′n of positive integers with the property that for k = 1, . . . , n−1

n∑
i=1

m′i =

(
n

m

)
and

k∑
i=1

m′i ≤
(
n

m

)
−
(
n− k
m

)
.

Applying Case 1 to m′1, . . . ,m
′
n with C = {{v1}, . . . , {vn}}, we obtain an {Sm′

i
: 1 ≤ i ≤ n}-

decomposition of Km
n . Note that each m′i is a sum of at least one of the mj’s. So for each

i ∈ {1, . . . , n}, Sm′
i

can be split into hyperstars with sizes in the set {m1, . . . ,m`}. Also, note

that m1, . . . ,m` are each included as a summand for some m′i, which means that for each

i ∈ {1, . . . , `}, Smi
is a hyperstar in our decomposition. Thus, we have an {Smi

: 1 ≤ i ≤ `}

decomposition.

It is worth noting that Theorem 4.5 implies the result of Lin and Shyu, which is presented

as Theorem 1.4 in this work.

Corollary 4.6. Let m1 ≥ · · · ≥ m` be positive integers. Then Kn can be decomposed into

stars Sm1 , . . . , Sm`
if and only if

(1) ` ≥ n− 1,
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(2)
∑̀
i=1

mi =

(
n

2

)
, and

(3)
k∑
i=1

mi ≤
k∑
i=1

(n− i) for k = 1, 2, . . . , n− 1.

Proof. Apply Theorem 4.5 with m = 2. There are obvious equivalencies between (i) and

(1), and between (ii) and (2). To show that (iii) and (3) are equivalent notice that for

k = 1, . . . , n− 1 we have:

k∑
i=1

mi ≤
(
n

2

)
−
(
n− k

2

)
=

(
k

2

)
+ k(n− k) = nk − k(k + 1)

2
=

k∑
i=1

(n− i).

Hence, (iii) and (3) are equivalent.

4.3 Decomposing Complete Hypergraphs into Hyperstars

The complete hypergraph on n vertices has as its edge set all non-empty subsets of an

n-set. The number of hyperedges in this hypergraph is 2n−1. The main result of this section

is much like the main result of the last section, namely, the result for complete m-uniform

hypergraphs.

Theorem 4.7. Let m1 ≤ · · · ≤ m` be positive integers. Then the hypergraph G = (V,P(V )\

∅) with |V | = n can be decomposed into hyperstars Sm1 , . . . ,Sm`
if and only if

(i) ` ≥ n,

(ii)
∑̀
i=1

mi = 2n − 1, and

(iii)
k∑
i=1

mi ≥ 2k − 1 for k = 1, 2, . . . , n− 1.

Proof. Let V = {v1, . . . , vn} and C = {{v1}, . . . , {vn}}. There are two cases:

Case 1: ` = n. Let δ({vi}) = mi for each i = 1, . . . , n. By Theorem 4.2 there is an

{Smi
: 1 ≤ i ≤ n}-decomposition of G if and only if
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(1) P(E)
⋂

C 6= ∅ for all E ∈ E ,

(2) |E| =
∑
C∈C

δ(C), and

(3) |T (E ,C )| ≤
∑
C∈T

δ(C) for all T ⊆ C .

The equivalence of (1) and (i) is due to the fact that we have all of the hyperedges of size

1 in our hypergraph. Thus, every vertex must be the center of at least one hyperstar. The

equivalence of (2) and (ii) is due to the fact that |E| = 2n− 1. Now, let T ⊆ C with |T | = k.

It is easy to see that |T (E ,C )| = 2k − 1, since T (E ,C ) = {E ∈ E : P1(E)
⋂

C ⊆ T} =

{E ∈ E : P1(E) ⊆ T}. By the same reasoning used in the proof of Case 1 of Theorem 4.5

we have (3) is equivalent with (iii).

Case 2: ` ≥ n+ 1. First suppose that G can be decomposed into hyperstars Sm1 , . . . ,Sm`
.

The necessity of (i) and (ii) is obvious. By combining all the stars at the same center, one

can obtain a decomposition of G into hyperstars Sm′′
1
, . . . ,Sm′′

n
, where m′′1 ≥ · · · ≥ m′′n, and

each m′′i , 1 ≤ i ≤ n, is obtained by adding some of the mj’s, 1 ≤ j ≤ `. Therefore by

Case 1, it is necessary that for k = 1, 2, . . . , n − 1,
k∑
i=1

m′′i ≥ 2k − 1 which is equivalent to

n∑
i=k+1

mi ≤
n∑

i=k+1

m′′i ≤ 2n − 2k. Thus,
k∑
i=1

mi ≥ 2k − 1 for k = 1, 2, . . . , n− 1.

Now assume (i)–(iii). Let m′1 ≤ · · · ≤ m′`−1 be a rearrangement of m1 +m2,m3, . . . ,m`.

It is easy to see that

m′i =

 mi+2 for i = 1, . . . , t− 1

mi+1 for i = t+ 1, . . . , `− 1.

It is clear that
`−1∑
i=1

m′i =
∑̀
i=1

mi = 2n − 1.

Notice that for every i ∈ {1, . . . , ` − 1} we have that m′i ≥ mi. Thus, for every k ∈

{1, . . . , n− 1} we get
k∑
i=1

m′i ≥
k∑
i=1

mi ≥ 2k − 1.
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Again, we can use lemma 4.4 ` − n times to obtain an appropriate sequence of m′i’s which

produces an {Sm′
i

: 1 ≤ i ≤ n}-decomposition of our complete hypergraph. All we have

left to do is to split the hyperstar centered at each vertex into an appropriate number of

hyperstars of smaller sizes. The rest of the proof is analogous to the proof of Case 2 of

Theorem 4.7.

As mentioned earlier, Lonc [10] obtained these results in 1992. His method of proof

involved looking at packings and coverings of hypergraphs with hyperstars. He then used

these structures to find the results of theorems 4.5 and 4.7.
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Chapter 5

Concluding Remarks

We present a brief summary of the main results and open problems from each chapter.

From chapter 2:

Result 1. Let n, k ∈ N with n ≥ 2k. Then there are
⌊(n

2

)
k

⌋
stars in a maximum packing

of Kn with k-stars. Moreover, it is possible to have the leave graph be a star of size smaller

than k.

Result 2. Let n, k ∈ N with k < n < 2k. Then there are 2n − 2k − 1 stars in a maximum

packing of Kn with k-stars. Moreover, the leave graph must be K2k−n+1.

Result 3. Let λ, n, k ∈ N with n ≥ 2k. Then there are
⌊λ(n

2

)
k

⌋
stars in a maximum packing

of λKn with k-stars. Moreover, it is possible to have the leave graph be a star of size smaller

than k.

Result 4. Let λ, n, k ∈ N with λ > 1 and n = k+1. If λ is even then λKn can be decomposed

into k-stars. If λ is odd then there are k
(λ− 1

2

)
+
λ+ 1

2
stars in a maximum packing of

λKn with k-stars. Moreover, the leave graph must be Kk.

Result 5. Let λ, n, k ∈ N with λ > 1 and n = 2k − 1. Then there are
⌊λ(n

2

)
k

⌋
stars in

a maximum packing of λKn with k-stars. Moreover, the leave can be any subgraph of λKn

which has λ (mod k) edges.

For some of the above cases we have characterized the leave graph(s), but for some cases

only the number of stars and at least one configuration of the leave is known. The astute

reader will notice that there is a gap in the full solution of this problem. We must confront

the following:
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Open Problem 1. Given λ, n, k ∈ N such that λ > 1 and k + 2 ≤ n ≤ 2k − 2, find a

maximum packing of λKn with k-stars.

The author suggests attacking open problem 1 via orientations. There is a natural

generalization of this question where we allow stars of different sizes. This is analogous to

generalizing the theorem of Yamomoto [13] and Tarsi [12] to the theorem of Lin and Shyu

[8]. We present it as an open problem.

Open Problem 2. Given m1,m2, . . . ,m` ∈ Z+ and λ, n ∈ N, characterize the leave graph

of a maximum packing of λKn with stars of sizes m1,m2, . . . ,m`.

In chapter 3 our quest was to find a small embedding of a partial k-star decomposition

of Kn which depended only on k. We achieved that feat, and here we state the main result.

Result 6. A partial k-star decomposition of Kn can be embedded into a k-star decomposition

of Kn+s where s ≤

 7k − 4 if k is odd

8k − 4 if k is even
.

The satisfying part of this result is that the number of new vertices depends only on k.

The embedding is on a relatively small number of vertices; however, this is not the smallest

possible number. The author believes that it can be reduced. The methods used in this work

may be of some use in reducing the number of new vertices, namely, relaxing the “balanced”

condition of theorem 3.4. We note that any decomposition of Kn+s requires(
n+ s

2

)
≡ 0 (mod k). Combining this with the periodic nature of

(
n

2

)
(mod k) (lemma

3.7) gives a good estimate for the smallest possible value of s to be about 2k.

Open Problem 3. Given a partial k-star decomposition of Kn, find an embedding into a

k-star decomposition of Kn+s where s is no more than approximately 2k.

In chapter 4 we provided alternative proofs to some results obtained by Lonc [9]. Recall

that we denote a hyperstar of size mi with center size 1 by Smi
.

Result 7. Let m1 ≥ · · · ≥ m` be positive integers. Then the complete m-uniform hypergraph

on n vertices, Km
n , can be decomposed into hyperstars Sm1 , . . . ,Sm`

if and only if
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(i) ` ≥ n−m+ 1,

(ii)
∑̀
i=1

mi =

(
n

m

)
, and

(iii)
k∑
i=1

mi ≤
(
n

m

)
−
(
n− k
m

)
for k = 1, . . . , `− 1.

Recall that the complete hypergraph on n vertices is defined to be a hypergraph on n

vertices whose edge set is all non-empty subsets of those vertices.

Result 8. Let m1 ≤ · · · ≤ m` be positive integers. Then the complete hypergraph on n

vertices can be decomposed into hyperstars Sm1 , . . . ,Sm`
if and only if

(i) ` ≥ n,

(ii)
∑̀
i=1

mi = 2n − 1, and

(iii)
k∑
i=1

mi ≥ 2k − 1 for k = 1, 2, . . . , n− 1.

It is easy to generalize this problem by allowing hyperstars with different center sizes.

However, it should be noted that even allowing centers of size 2 greatly complicates the

problem. The author would suggest first looking into the following problem:

Open Problem 4. Given m1,m2, . . . ,m`, find necessary and sufficient conditions for the

complete multipartite uniform hypergraph to obtain a decomposition into hyperstars of sizes

m1,m2, . . . ,m` with centers of size 1.

The above problem is more complicated than those problems solved in results 7 and 8,

but it seems to be easier than allowing larger centers.

It is the author’s decision to omit a summary of the results of chapter 5 to avoid the

cycle of length ℵ0 that would ensue.
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