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Abstract

This dissertation is mainly concerned with the rank-based estimation of model pa-

rameters in complex regression models: a general nonlinear regression model and a semi-

parametric regression model with missing responses. For the estimation of nonlinear regres-

sion parameters, we consider weighted generalized-signed-rank estimators. The generaliza-

tion allows us to study rank estimators as well as popular estimators such as the least squares

and least absolute deviations estimators. However, the generalization by itself does not give

bounded influence estimators. Added weights provide estimators with bounded influence

function. We establish conditions needed for the consistency and asymptotic normality of

the proposed estimator and discuss how weight functions can be chosen to achieve bounded

influence function of the estimator. Real life examples and Monte Carlo simulation experi-

ments demonstrate that the proposed estimator is robust, efficient, and useful in detecting

outliers in nonlinear regression. For the estimation of the linear regression parameter of a

semi-parametric model with missing response, we propose imputed rank estimators under

simple imputation and imputation by inverse probability. It is shown that these rank es-

timators have favorable asymptotic properties. Moreover, it is demonstrated that the rank

estimators perform better than the classical least squares estimator under heavy tailed error

distributions and cases containing contamination while they are generally comparable to the

least squares estimator under normal error. Moreover, rank estimators with inverse proba-

bility imputation are superior than their least squares counterpart when the proportion of

missing data is large. This makes rank estimation extremely appealing for situations where

we encounter high rates of missing information.
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Chapter 1

Introduction

1.1 Backround

The historical approach to fitting linear and nonlinear models of the form:

yi = f(xi,β0) + εi, i = 1, · · · , n,

for some generic function f (linear or nonlinear), proceeds by finding coefficient estimate

β̂ of β0 that minimizes the sum of squared errors:
∑n

i=1(yi − f(xi,β))2 . Such estimators,

known as least squares estimators, are computationally simple and possess general optimality

properties. However, the optimality can be lost due to the existence of even a single extreme

outlier data point. This problem is seen with the sample mean, ȳ, which is itself the least

squares solution to the model yi = β0 + εi. To overcome this problem, we briefly survey

a few approaches that have been taken to develop estimators of the β coefficients that are

not as easily affected as the least-squares estimators. Two methods have been investigated:

one is a generalization of least-squares estimation called M-estimation, and the other is the

so-called rank based estimation methods referred to as rank-based regression methods. For

each of these two approaches a first method was developed to downweight outlier data points,

but was later shown to be susceptible to high leverage points (outliers in the x space) in

regression problems, and newer methods have emerged to address both outlier and leverage

problems.

One approach that has been used to lessen the impact of outliers in linear and nonlinear

models is to use the least abolute deviation also known as the L1 regression, that is, finding

coefficient estimates β̂ that minimize
∑n

i=1 |yi − f(xi,β)|. A further generalization to this,
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was made by Huber in the 1960s. He obatained the so-called M-estimators by minimizing∑n
i=1 ρ

(
yi−f(xi,β)

σ̂i

)
, where ρ(·) is a symmetric function and σ̂i is an estimate of the standard

devaition of the errors εi. It was shown that these M-estimators have the advantage of

downweighting outliers while retaining efficiency when compared to least squares estimators.

However, the original M-estimators can be affected by leverage points (outliers in the x space)

in regression problems. A type of M-estimator developed to protect against aoutliers and

leverage points, is the least trimmed squares estimator that minimizes
∑k

i=1

(
yi−f(xi,β)

)2

(i)
,

where k ≤ n. This estimator ignores the largest n − k residuals. However, the fact that it

does not use the entire data results in a loss of efficiency. More recently, Yohai and others

have developed extensions of these methods, called MM estimators, that protect against

both outliers and leverage points while retaining efficiency.

At the time when Huber and others were developing the theory of M-estimators, methods

based on ranking were known as R-estimation and were used for simple problems such

as estimating location and scale or making location comparisons for two-sample problems.

They were not considered to be generalizable to linear and nonlinear models. Later Jaeckel,

Hettmansperger, McKean and others showed that rank-based estimators could also be cast

as estimators obtained by minimizing
∑n

i=1 a
(
R(zi(β))

)
zi(β), where R(zi(β)) is the rank of

zi(β) = yi − f(xi,β) and a(·) some score function. The rank-based estimators, sometimes

called Wilcoxon estimators, can be used for any general linear model, and have been shown

to have high efficiency compared to least squares estimators. However, these rank-based

estimators, can also be affected by leverage points in regression problems. A weighted

Wilcoxon (WW) method were later developed to take care of leverage points and shown to

possess highly efficient.
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1.2 Contribution

The first part of this Ph.D dissertation is concerned with the study of conditions suf-

ficient for strong consistency of a class of estimators of parameters of nonlinear regres-

sion models. The study considers continuous functions depending on a vector of param-

eters and a set of random regressors. The estimators chosen are minimizers of a gener-

alized form of the signed-rank norm, that is, minimizing 1
n

∑n
i=1 an(i)ρ(|z(β)|(i)), where

zi(β) = yi − f(xi,β) and |z(β)|(i) is the ith ordered value among |z1(β)|, . . . , |zn(β)|. The

function ρ : R+ → R+ is continuous and strictly increasing. The numbers an(i) are scores

generated as an(i) = ϕ+(i/(n + 1)), for some bounded score function ϕ+ : (0, 1)→ R+ that

has at most a finite number of discontinuities. The generalization allows to make consistency

statements about minimizers of a wide variety of norms including the L1 and L2 norms. By

implementing trimming, it is shown that high breakdown estimates can be obtained based

on the proposed dispersion function.

The second part of this dissertation is motivated by the fact that almost all the methods

discussed above fail to take care of outliers and high leverage points in regression problems.

The generalization of the signed-rank norm (above) allows us to include popular estimators

such as the least squares and least absolute deviations estimators but by itself does not give

bounded influence estimators. To address this problem, we considered weighted forms of the

generalized signed-rank estimators and measured the robustness of these estimators using

their influence functions. Carefully chosen weights result in estimators with bounded influ-

ence function. Also conditions needed for the consistency and asymptotic normality of the

proposed estimator are established and discussions about how weight functions can be cho-

sen to achieve bounded influence function of the estimator are provided. Real life examples

and Monte Carlo simulation experiments demonstrate the robustness and efficiency of the

proposed estimator. Finally, an example showing that the weighted signed-rank estimators

can be useful to detect outliers in nonlinear regression is provided.

3



The last part of this thesis, considered a robust estimation for the missing data problem

in regression analysis as an application of the weighted signed-rank estimation method intro-

duced above. In this particular case, important work has been done in the estimation of the

regression parameters involving the least squares method and eventually the M-estimation

method in the literature. As pointed out by many authors, for non-normal error distributions

or in the case of uncontrolled designs, the least squares method may not provide suitable es-

timators. To this end, we consider the linear semi-parametric regression model with missing

response at random, that is, yi = x′iβ + g(Ti) + εi, i = 1 · · ·n, where the yi’s are missing at

random, xi’s and Ti’s are fully observed. Based on the rank objective function, we provide

estimators of β and g simultaneously, using the usual nonparametric kernel estimation. Also,

under some suitable conditions, we show that the obtained estimator of β is
√
n-consistent

and also satisfies the normal approximation property. To illustrate this case a simulation

study is conducted and shows that the rank estimator behaves better than the least squares

estimator when dealing with missing response problem.

4



Chapter 2

On the Consistency of a Class of Nonlinear Regression Estimators

2.1 Introduction

Over the last twenty five years considerable work has been done on robust procedures

for linear models. Several classes of robust estimates have been proposed for these models.

One such class is the generalized signed-rank class of estimates. This class uses an objective

function which depends on the choice of a score function, ϕ+. If ϕ+ is monotone then the

objective function is a norm and the geometry of the resulting robust analysis, (estimation,

testing, and confidence procedures), is similar to that of the geometry of the traditional

least squares (LS) analysis; see McKean and Schrader (1980). Generally this robust analysis

is highly efficient relative to the LS analysis; see the monograph by Hettmansperger and

McKean (1998) for a discussion of this analysis. For the simple location model, if Wilcoxon

scores, ϕ+(u) = u, are used then this estimate is the famous Hodges-Lehmann estimate

while if sign scores are used, ϕ+(u) ≡ 1, it is the sample median. If the monotonicity of

ϕ+ is relaxed then high breakdown estimates can be obtained; see Hössjer (1994). Thus

the signed-rank family of robust estimates for the linear model contain estimates which

range from highly efficient to those with high breakdown and they generalize traditional

nonparametric procedures in the simple location problem.

Many interesting problems, though, are nonlinear in nature. Traditional procedures

based on LS estimation have been used for years. Since these LS procedures for nonlinear

models use the Euclidean norm they are as easily interpreted as their linear model counter-

parts. The asymptotic theory for nonlinear LS has been developed by Jennrich (1969) and

Wu (1981), among others. In this chapter, we propose a nonlinear analysis based on the

signed-rank objective function. The objective function is a norm if ϕ+ is monotone; hence,
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the estimates are easily interpretable. We keep our development quite general, though, to

include nonlinear estimates based on Hössjer-type estimates also. Hence our estimates in-

clude the nonlinear extensions of the signed-rank Wilcoxon estimate and the L1 estimate as

well as the extensions of high breakdown linear model estimates. Thus we offer a rich family

of estimates from which to select for nonlinear models.

In Section 2.2 we present our family of estimates for nonlinear models. In Section 2.3,

we show that these estimates are strongly consistent under certain assumptions. We discuss

these assumptions, contrasting them with assumptions for current existing estimates. The

same section contains a general discussion of interesting special cases such as the L1 and the

Wilcoxon. Section 2.4 discusses the conditions needed to achieve positive breakdown of our

estimator.

2.2 Definition and Existence

Consider the following general regression model

yi = f(xi,θ0) + ei, 1 ≤ i ≤ n (2.1)

where θ0 ∈ Θ is a vector of parameters, xi ∈ X is a vector of independent variables, and

f is a real-valued function defined on X×Θ. Let V = {(y1,x1), . . . , (yn,xn)} be the set of

sample data points. Note that V ⊂ V ≡ R× X.

We shall assume that Θ is compact, θ0 is an interior point of Θ, and f(x,θ) is a

continuous function of θ for each x ∈ X and a measurable function of x for each θ ∈ Θ.

We define the estimator of θ0 to be any vector θ minimizing

Dn(V,θ) =
1

n

n∑
i=1

an(i)ρ(|z(θ)|(i)) (2.2)

6



where zi(θ) = yi − f(xi,θ) and |z(θ)|(i) is the ith ordered value among |z1(θ)|, . . . , |zn(θ)|.

The function ρ : R+ → R+ is continuous and strictly increasing. The numbers an(i) are

scores generated as an(i) = ϕ+(i/(n+1)), for some bounded score function ϕ+ : (0, 1)→ R+

that has at most a finite number of discontinuities.

This estimator will be denoted by θ̂n.

Because Dn(V,θ) is continuous in θ, Lemma 2 of Jennrich (1969) implies the existence

of a minimizer of Dn(V,θ).

We adopt Doob’s (1994) convention and denote by Lp, 1 ≤ p ≤ ∞, the space of

measurable functions h : (0, 1) → R for which |h|p is integrable for 1 ≤ p < ∞ and the

space of essentially bounded measurable functions for p = ∞. The Lp norm of h is ‖h‖p ≡

{
∫
|h|p}1/p for 1 ≤ p <∞ and ‖h‖∞ ≡ ess sup |h| for p =∞. All integrals are with respect

to Lebesgue measure on (0, 1). The range of integration will be assumed to be (0, 1) unless

specified otherwise.

2.3 Consistency

Let (Ω,F , P ) be a probability space. For i = 1, . . . , n, assume that xi and ei = yi −

f(xi;θ0) are independent random variables (carried by (Ω,F , P )) with distributions H and

G, respectively. We shall write x, e and |z(θ)| for x1, e1 and |z1(θ)| respectively. Let G̃θ

denotes the distribution of |z(θ)| and we will assume

A1: P (f(x;θ) = f(x;θ0)) < 1 for any θ 6= θ0;

A2: for 1 ≤ q ≤ ∞, assume there exists a function h such that |ρ(G−1
θ (y))| ≤ h(y), ∀ θ ∈ Θ

with E[hq(Y )] <∞ and,

A3: G has a density g that is symmetric about 0 and strictly decreasing on R+.

As usual, we let a.s. convergence, denote almost sure convergence, i.e., pointwise con-

vergence everywhere except for possibly an event in F of probability 0.

7



Theorem 1. Under A1 - A3, θ̂n
a.s.−−→ θ0.

Before giving the proof of this theorem, let us discuss some related lemmas and corol-

laries that will be used in the proof.

Let ξ(1), . . . , ξ(n) be order statistics from a sample of n i.i.d. uniform(0, 1) random

variables. Let Jn : (0, 1) → R, n = 1, 2, . . . be Lebesgue measurable functions and let

g : (0, 1) → R be a Borel measurable function. Define gn(t) ≡ g(ξ([nt]+1)). In the defining

expression for the function Dn(V,θ), (2.2), let G̃θ dnote the cdf of |z(θ)|. Then we can

express Dn(V,θ) as

Dn(V,θ) =
1

n

n∑
i=1

an(i)(ρ ◦ G̃−1
θ )(ξ(i)). (2.3)

The following is Corollary 2.1 of van Zwet (1980) in the notation of this paper and is

given for completeness.

Lemma 1 (van Zwet). Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, and suppose that Jn ∈ Lp for

n = 1, 2, . . ., g ∈ Lq, and there exists a function J ∈ Lp such that limn→∞
∫ t

0
Jn =

∫ t
0
J for

all t ∈ (0, 1). If either

(i) 1 < p ≤ ∞ and supn ‖Jn‖p <∞, or

(ii) p = 1 and {Jn : n = 1, 2, . . .} is uniformly integrable,

then
∫
Jngn

a.s−→
∫
Jg.

For our purposes let Jn(t) =
∑n

i=1 ϕ
+(i/(n+ 1))I((i−1)/n,i/n](t) for i = 1, . . . , n where IA

is the indicator of the set A and take J = ϕ+. Notice that Jn is a step function and thus

the uniform integrability condition in assumption (ii) of Lemma 1 becomes

lim
α→∞

sup
n

1

n

∑
i∈Aα

|ϕ+(i/(n+ 1))| = 0,

8



where Aα = {i : |ϕ+(i/(n + 1))| > α}. This condition is satisfied if we have convergence

in L1 of Jn [cf. also Doob (1994), Theorem VI.18]. To this end, we will marginally violate

assumption (ii) of Lemma 1 and assume that

sup
n
‖Jn‖p ≡ sup

n

{ 1

n

n∑
i=1

|ϕ+(i/(n+ 1))|p
}1/p

<∞ (2.4)

for 1 ≤ p ≤ ∞. Notice also that

1

n

[nt]∑
i=1

ϕ+(i/(n+ 1)) ≤
∫ t

0

Jn ≤
1

n

[nt]+1∑
i=1

ϕ+(i/(n+ 1)).

Taking the limit as n → ∞ we obtain that limn→∞
∫ t

0
Jn =

∫ t
0
ϕ+ for all t ∈ (0, 1) provided

that ϕ+ has at most a finite number of discontinuities. Thus if ϕ+ satisfies (2.4) and g ∈ Lq

all the conditions of Lemma 1 hold. The following corollary is a special case of this result.

Corollary 1. Let W1, . . . ,Wn be a random sample from a distribution F with support on

R+. Let ρ : R+ → R+ be a continuous Borel measurable function. Suppose, for 1 ≤ p, q ≤ ∞

with 1/p+ 1/q = 1, E[ρ(W )]q <∞ and ‖ϕ+‖p <∞. Then

Tn ≡ n−1

n∑
i=1

ϕ+(i/(n+ 1))ρ(W(i))
a.s.−−→

∫
(ϕ+) (ρ ◦ F−1) <∞.

A formal proof of Corollary 1 may be constructed along the lines described in the

paragraph preceding it with the function g defined as ρ ◦ F−1. It will not be included here

for the sake of brevity.

Lemma 2. Under assumptions A1 - A3

Dn(V,θ)
a.s.−−→ µ(θ) a.e. V, uniformly for all θ ∈ Θ, (2.5)
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where µ : Θ→ R is a function satisfying

inf
θ∈Θ∗

µ(θ) > µ(θ0), (2.6)

for any Θ∗ a closed subset of Θ not containing θ0.

Proof. The a.s. pointwise convergence of Dn(V,θ) follows from expression (2.3) and Corol-

lary 1, which also furnishes the function

µ(θ) ≡
∫

(ϕ+) (ρ ◦ G̃−1
θ ) <∞ . (2.7)

Then under A1 - A3, Theorem 2 of Jennrich (1969) gives (2.5).

To establish (2.6) we follow a similar strategy as in Hössjer (1994). Under A1 and A3

for any s > 0, for θ 6= θ0,

G̃θ(s) = P (|e− {f(x;θ)− f(x;θ0)}| ≤ s)

= Ex{Pe(|e− {f(x;θ)− f(x;θ0)}| ≤ s|x)}

< Ex{Pe(|e| ≤ s)} = G̃θ0(s)

Since µ is a continuous function depending on θ only through ρ◦G̃−1
θ and since ρ is a strictly

increasing function, it follows that µ(θ) > µ(θ0) whenever θ 6= θ0. Thus for any θ ∈ Θ∗, we

have a µ∗ ∈ R such that µ(θ) > µ∗ > µ(θ0). Then it follows from the compactness of Θ∗

that infθ∈Θ∗ µ(θ) > µ(θ0).

Lemma 3. Let {hn} be a sequence of continuous functions defined on a compact set Θ ⊂ Rp

and that converges uniformly to h. Then {hn} is equicontinuous on Θ.

Proof. Since {hn} converges uniformly to h, for any ε > 0, there exists an N ∈ N such that

|hn(θ) − h(θ)| < ε/3 for all n ≥ N . The function h being continuous on a compact set, it
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is uniformly continuous. Thus there exists some δ > 0 such that for all θ,θ′ ∈ Θ such that

‖θ − θ′‖ < δ, we have |h(θ) − h(θ′)| < ε/3. Then for all n ≥ N and for all θ,θ′ ∈ Θ such

that ‖θ − θ′‖ < δ, we have

|hn(θ)− hn(θ′)| ≤ |hn(θ)− h(θ)|+ |hn(θ′)− h(θ′)|+ |h(θ)− h(θ′)| < ε .

Also, by uniform continuity of {hn}, for any fixed n ∈ {1, . . . , N − 1}, there exists a

δn > 0 such that for all θ,θ′ ∈ Θ with ‖θ− θ′‖ < δn, we have |hn(θ)− hn(θ′)| < ε. Now set

δ′ = min{δ1, . . . , δN−1}. Then for all n ∈ {1, . . . , N−1} and all θ,θ′ ∈ Θ with ‖θ−θ′‖ < δ′,

we have |hn(θ)− hn(θ′)| < ε.

Therefore, setting ∆ = min{δ, δ′}, for all n ∈ N and all θ,θ′ ∈ Θ with ‖θ − θ′‖ < ∆,

we have |hn(θ)− hn(θ′)| < ε.

Proof of Theorem 1. By Lemma 1 of Wu (1981), to establish the consistency of θ̂n, it is

sufficient to show that

lim inf
n→∞

inf
θ∈Θ∗

(
Dn(V,θ)−Dn(V,θ0)

)
> 0 a.s. (2.8)

for any Θ∗ a closed subset of Θ not containing θ0. But

lim inf
n→∞

inf
θ∈Θ∗

(
Dn(V,θ)−Dn(V,θ0)

)
≥ lim inf

n→∞
inf

θ∈Θ∗
An(V,θ)+

inf
θ∈Θ∗

B(θ,θ0) + lim inf
n→∞

Cn(V,θ0), (2.9)

where An(V,θ) = Dn(V,θ) − µ(θ), B(θ,θ0) = µ(θ) − µ(θ0), and Cn(V,θ0) = µ(θ0) −

Dn(V,θ0).

As a result of Corollary 1, lim infn→∞Cn(V,θ0) = 0 a.s. Due to Lemma 2 we have

infθ∈Θ∗ B(θ,θ0) > 0. For the statement given in (2.8) to hold, it suffices to show is that

lim infn→∞ infθ∈Θ∗ An(V,θ) = 0 a.s. Again by Lemma 2, An(V,θ)
a.s.−−→ 0 uniformly for all
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θ ∈ Θ∗. Also An(V,θ), being continuous on a compact set Θ∗, is uniformly continuous on

Θ∗. Then An(V,θ) is equicontinuous on Θ∗ a.e. V by Lemma 3. Thus ∀ ε > 0 there exists

a δ > 0 such that ∀ θ, θ′ ∈ Θ∗,

if ‖θ − θ′‖ < δ then |An(V,θ)− An(V,θ′)| < ε, a.e. V, ∀ n ∈ N. (2.10)

Let Dθ′ = {θ : ‖θ − θ′‖ < δ}, for θ′ ∈ Θ∗. Then Dθ′ , θ′ ∈ Θ∗, forms an open covering of

Θ∗. But Θ∗ is compact, hence there is a finite subcovering Dθ′j
, j = 1, . . . ,m which covers

Θ∗. Let θ∗ be an arbitrary point in Θ∗. Then for some j = 1, . . . ,m, θ∗ ∈ Dθ′j
. Hence,

‖θ∗ − θ′j‖ < δ. Thus by (2.10)

|An(V,θ∗)− An(V,θ′j)| < ε, a.e. V, ∀ n ∈ N .

That is,

An(V,θ′j)− ε < An(V,θ∗) < An(V,θ′j) + ε, a.e. V, ∀ n ∈ N

which implies that

min
1≤j≤m

An(V,θ′j)− ε < An(V,θ∗) < max
1≤j≤m

An(V,θ′j) + ε, a.e. V, ∀ n ∈ N .

Since, θ∗ is arbitrary, we have

min
1≤j≤m

An(V,θ′j)− ε < inf
θ∗∈Θ∗

{An(V,θ∗)} < max
1≤j≤m

An(V,θ′j) + ε, a.e. V, ∀ n ∈ N .

Now take lim inf of all three parts as n→∞. Since the functions min and max are contin-

uous, we have

0− ε ≤ lim inf
n→∞

inf
θ∗∈Θ∗

{An(V,θ∗)} ≤ 0 + ε a.s.

Since ε was arbitrary, we have lim infn→∞ infθ∗∈Θ∗{An(V,θ∗)} = 0 a.s. The proof is com-

plete.
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Remark 1. Assumption A1 is a very weak condition needed for θ0 to be identified. The

linear version of A1 was given by Hössjer (1994) as P (|θ′x| = 0) < 1 under the assumption

that θ0 = 0.

Remark 2. Since ‖ϕ+‖p < ∞ for p such that 1/p + 1/q = 1, then A2 puts h and ϕ+ in

conjugate spaces when p ∈ (1,∞). Hölder’s inequality ensures that the product (ϕ+)(ρ◦ G̃−1
θ )

is integrable. Furthermore, if ρ is a convex function, an application of Minkowski’s inequality

yields

{E[ρ(|z(θ)|)]q}1/q ≤ {E[ρ(|e|)q]}1/q + {E[ρ(|f(x;θ)− f(x;θ0)|)q]}1/q.

Thus separate conditions on e and f are sufficient for E[ρ(|z(θ)|)q] <∞.

Remark 3. Condition A3 admits a wide variety of error distributions examples of which are

the normal, double exponential and Cauchy distributions with location parameter equal to 0.

Some Corollaries

Next some special cases of interest are considered. We consider the L1, least squares,

signed-rank Wilcoxon, and their trimmed variations. All these cases involve a convex ρ and

hence Remark 2 is directly applicable. Trimming is implemented by "chopping-off" the ends

of the score generating function, ϕ+ [cf Hössjer (1994)]. The proofs follow from Theorem 1

in a straightforward manner.

Least Squares, Least Trimmed Squares

Let IA(ω) be a function such that IA(ω) = 1 if ω ∈ A and IA(ω) = 0 otherwise. Let

ϕ+(u) = I(α,β)(u) for 0 ≤ α < β ≤ 1 and ρ(w) = w2 for w ≥ 0. In the case where α = 0

and β = 1 the dispersion function given by (2.2) is the least squares dispersion function. If

0 < α < β < 1, then the dispersion function becomes the least trimmed squares dispersion.

13



The following corollary gives the sufficient conditions for the strong consistency of the least

squares estimator by taking p = q = 2 in Theorem 1.

Corollary 2. If

B1: P (f(x;θ) = f(x;θ0)) < 1 for any θ 6= θ0,

B2: E(e2) <∞ and E([f(x;θ)− f(x;θ0)]2) <∞ for all θ ∈ Θ, and

B3: G has a density g that is symmetric about 0 and strictly decreasing on R+,

then the least squares (least trimmed squares) estimator is strongly consistent for θ0.

Jennrich (1969) establishes the strong consistency of the least squares estimator under

some assumptions. His assumptions in the notation of this paper are

J1: E([f(x;θ)− f(x;θ0)]2) = 0 if and only if θ = θ0,

J2: E(e2) <∞ and E([f(x;θ)− f(x;θ0)]2) <∞ for all θ ∈ Θ, and

J3: E(e) = 0.

Assumptions B2 and J2 are identical. B3 and J3, while not generally comparable, are

identical in most practical situations where a symmetric, unimodal error density is assumed.

Proceeding to compare B1 and J1, assume that B1 fails to hold, that is there exists a

point θ′ 6= θ0 in Θ such that P (f(x;θ′) = f(x;θ0)) = 1. This implies that E([f(x;θ′) −

f(x;θ0)]2) = 0. Thus J1 fails. The converse is also immediate. Hence our assumptions

reduce to the assumptions of Jennrich (1969) in the case of least squares.

For linear models, the consistency of the least trimmed squares estimator is established

by Víšek (2006). He considers the estimator to be nonlinear, since a subset of the data is con-

sidered, and establishes consistency using two different approaches: (1) using an asymptotic

linearity argument and (2) using the uniform law of large numbers of Andrews (1987). The

conditions given in Víšek (2006) are general; however, our approach establishes consistency

for a much larger class of models and estimators.
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L1, Trimmed Absolute Deviations

The L1 estimator corresponds to the case where ϕ+ ≡ 1 and ρ(w) = w for w ≥ 0.

A situation similar to the least trimmed squares estimator holds for the trimmed absolute

deviations estimator. The sufficient conditions for the strong consistency of the L1 and

trimmed absolute deviations estimators can be found from Theorem 1 by taking p =∞ and

q = 1. These are given in the following corollary.

Corollary 3. If

C1: P (f(x;θ) = f(x;θ0)) < 1 for any θ 6= θ0,

C2: E(|e|) <∞ and E(|f(x;θ)− f(x;θ0)|) <∞ for all θ ∈ Θ, and

C3: G has a density g that is symmetric about 0 and strictly decreasing on R+,

then the L1 (trimmed absolute deviations) estimator is strongly consistent for θ0.

We next compare the result in Corollary 3 with the one given by Oberhofer (1982).

Oberhofer proves the weak consistency by imposing the following conditions.

O1: If Θ∗ is a closed set not containing θ0, then there exist numbers ε > 0 and n0 such that

for all n ≥ n0

inf
θ∈Θ∗

n−1

n∑
i=1

|li(θ)|min{G(|li(θ)|/2)− 1/2 , 1/2−G(−|li(θ)|/2)} ≥ ε.

for all such Θ∗ where li(θ) = f(xi;θ)− f(xi;θ0).

O2: E(|e|) <∞ and E([f(x;θ)− f(x;θ0)]2) <∞ for all θ ∈ Θ, and

O3: G(0) = 1/2.

Here O3 is weaker than C3. However, O2 is stronger than C2. Following similar contra-

positive arguments as in the least squares case, we can easily show that O1 is also stronger

15



than C1 (see also Oberhofer (1982) p. 318). For a detailed discussion of this and sufficient

conditions for O1, the reader is referred to Oberhofer (1982).

Signed-Rank Wilcoxon

Set ϕ+(u) = u for 0 < u < 1 and ρ(w) = w for w ≥ 0. The following corollary gives the

sufficient conditions for the strong consistency of the signed-rank Wilcoxon estimator. The

proof is analogous to the proof of Corollary 3 and thus omitted.

Corollary 4. If

D1: P (f(x;θ) = f(x;θ0)) < 1 for any θ 6= θ0,

D2: for some r ≥ 1, E(|e|r) <∞ and E(|f(x;θ)− f(x;θ0)|r) <∞ for all θ ∈ Θ, and

D3: G has a density g that is symmetric about 0 and strictly decreasing on R+,

then the signed-rank Wilcoxon estimator is strongly consistent for θ0.

Remark 4. Normal Scores

The frequently used normal scores are generated by

ϕ+(u) = Φ−1
(u+ 1

2

)
,

for u ∈ (0, 1) where Φ represents the standard normal distribution function. These scores

were first proposed by Fraser (1957). Since ϕ+ needs to be bounded for our approach to

work, our results do not directly extend to the case of normal scores. However, we may use

Winsorized normal scores such as

ϕ+(u) =


Φ−1(−k), if u < −2k − 1;

Φ−1(u+1
2

), if −2k − 1 ≤ u < 2k − 1;

Φ−1(k), if u ≥ 2k − 1 .
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Usually we take k = 4.

2.4 Breakdown Point

One of the virtues of the estimators discussed in this paper is that they allow for trim-

ming. This in turn provides us with estimates that are robust when one or more of the

model assumptions are violated. In this section we will consider the breakdown point of our

estimator as a measure of its robustness. Assuming that the true value of the parameter to

be estimated is in the interior of the parameter space Θ, breakdown represents a severe form

of inconsistency in that the estimator converges to a point on the boundary of Θ instead of

θ0.

Recall that V = {(x1, y1), ..., (xn, yn)} ⊂ V denotes the sample data points. Let Vm be

the set of all data sets obtained by replacing any m points in V by arbitrary points. The

finite sample breakdown point of an estimator θ̂ is defined as [see Donoho and Huber (1983)]

ε∗n(θ̂,V) = min
1≤m≤n

{
m

n
: sup

Z∈Vm
|θ̂(Z)− θ̂(V)| =∞

}
, (2.11)

where θ̂(V) is the estimate obtained based on the sample V. In nonlinear regression, how-

ever, this definition of the breakdown point fails since ε∗ is not invariant to nonlinear repa-

rameterizations. For a discussion of this see Stromberg and Ruppert (1992). We will adopt

the definition of breakdown point for nonlinear models given by Stromberg and Ruppert

(1992). The definition proceeds by defining finite sample upper and lower breakdown points,

ε+ and ε−, which depend on the regression model, f . For any x0 ∈ X, the upper and lower

breakdown points are defined as

ε+(f, θ̂,V,x0) =


min0≤m≤n

{
m
n

: supZ∈Vm f(x0, θ̂(Z)) = supθ f(x0,θ)
}

if supθ f(x0,θ) > f(x0, θ̂),

1 otherwise,

(2.12)
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and

ε−(f, θ̂,V,x0) =


min0≤m≤n

{
m
n

: infZ∈Vm f(x0, θ̂(Z)) = infθ f(x0,θ)
}

if infθ f(x0,θ) < f(x0, θ̂),

1 otherwise .

(2.13)

Let

ε(f, θ̂,V,x0) = min{ε+(f, θ̂,V,x0), ε−(f, θ̂,V,x0)}.

The finite sample breakdown point is now defined as

ε(f, θ̂,V) = inf
x0∈X

{
ε(f, θ̂,V,x0)

}
. (2.14)

The finite sample upper and lower breakdown points are defined analogously by replacing ε

by ε+ and ε−, respectively, in the above definition. Stromberg and Ruppert (1992) also show

that ε = ε∗ in the case of a linear regression (i.e. f(x,θ) = x′θ) and ε = n−1 for nonlinear

least squares regression as expected.

Assume the scores an(i) are nonnegative and

k = max{i : an(i) > 0}

where k ≥ [n/2] + 1. Here [b] stands for the greatest integer less than or equal to b. This

forces at least the first half of the ordered absolute residuals to contribute to the dispersion

function. In light of this, the dispersion function may be written as

Dn(V,θ) =
1

n

k∑
i=1

an(i)ρ(|z(θ)|(i))

The following theorem is a version of Theorem 3 of Stromberg and Ruppert (1992). We

impose the same conditions but give the result in terms of k. The results given are for upper
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breakdown. Analogues for lower breakdown are straightforward. The proof is obtained by

replacing med1≤i≤n with n−1
∑k

i=1 and m with n − k in Stromberg and Ruppert’s (1992)

proof of Theorem 3. In the following, #(A) denotes the cardinality of the set A.

Theorem 2. Assume for some fixed x0 there exist τk ⊂ {i : 1 ≤ i ≤ n} where #(τk) =

2n− [n/2]− k such that

lim
M↑∞

{
inf

{θ:f(x,θ)>M}
{ inf
i∈τk

f(xi,θ)}
}

= sup
θ
f(x0,θ)

Then

ε+(f, θ̂,V,x0) ≥ n− k + 1

n
.

Theorem 2 establishes that even when the regression function f lies on the boundary

for a portion of the data, the bias of the estimator of θ0 remains within reasonable bounds

if trimming is implemented. The following corollary gives the asymptotic (as n → ∞)

breakdown point of θ̂n.

Corollary 5. Let α = sup{u : ϕ+(u) > 0}. The asymptotic breakdown point of θ̂n is at least

1− α.

This is reminiscent of the breakdown point of a linear function of order statistics which

is equal to the smaller one of the two fractions of mass at either ends of the distribution

which receive weights equal to zero (Hampel, 1971). The same result obtained in Corollary 5

was given by Hampel (1971) for one-sample location estimators based on linear functions of

order statistics (see sec. 7 (i) of Hampel (1971)).

Consider the class of models with the form f(x,θ) = g(β0 + β1x), where (β0, β1) ∈ R2

and g(t) is monotone increasing in t. This class of models is considered by Stromberg and

Ruppert (1992) and contains popular models like the logistic regression model g(β0, β1x) =

{1 + exp(−(β0 + β1x))}−1. A breakdown point of 1−α can be achieved if θ̂n is obtained via

a minimization of (2.2) with an(i) = ϕ+(i/(n+ 1)) such that α = sup{u : ϕ+(u) > 0}.
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Remark 5. A definition of breakdown based on ’badness measures’ which includes the defini-

tion given by Stromberg and Ruppert (1992) was given by Sakata and White (1995). Under

our assumptions this definition reduces to the one used in the current paper as shown in

Theorem 2.3 of Sakata and White (1995).
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Chapter 3

Bounded Influence Nonlinear Signed-Rank Regression

3.1 Introduction

As in the previous chapter, let us consider the following nonlinear regression model

yi = f(xi,θ0) + ei, 1 ≤ i ≤ n , (3.1)

where θ0 ∈ Θ is a vector of parameters, xi is a vector of independent variables in a vector

space X, and f is a real-valued function defined on X×Θ. Let V = {(y1,x1), . . . , (yn,xn)}

be the set of sample data points. Note that V ⊂ V ≡ R × X. We shall assume that Θ

is compact, θ0 is an interior point of Θ, and f(x,θ) is a twice continuously differentiable

function of θ for each x ∈ X and a measurable function of x for each θ ∈ Θ. The errors ei

are assumed to be iid with a distribution function G.

The asymptotic normality of the least squares (LS) estimator of θ0 has been discussed

in Jennrich (1969), Wu (1981), and Wang (1996) among others. The asymptotic normality

of the least absolute deviations (LAD) estimator of θ0 is discussed in Wang (1995). However,

as pointed out in Haupt and Oberhofer (2009), the treatment of Wang (1995) and Wang

(1996) were missing some necessary global conditions. The estimator that will be introduced

in this chapter is based on a generalized form of the signed-rank objective function. It

provides a unified treatment of a class of estimators including those considered in Wang

(1995) and Wang (1996). Moreover, we show how a weight functions can be incorporated

to obtain estimators with bounded influence function (Hampel, 1974). Simply stated, the

influence function represents the amount of change in the estimator caused by infinitesimal
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contamination in the data. Thus it is a measure of the sensitivity of an estimator to outliers

and it is desired that this function be bounded.

Rank-based estimators of linear models (where f(x,θ0) = x′θ0 in (3.1)) have been

studied extensively. Jaeckel (1972) gave a general class of rank estimators for linear regression

parameters that are efficient and robust to outliers in the response space. These include the

Wilcoxon estimator which is equal to the median of pairwise slopes (Yj − Yi)/(xj − xi) for

the case of simple linear regression. These estimators, however, were found to be sensitive to

outliers in the x direction (Hettmansperger et al., 2000; Hettmansperger and McKean, 1998);

thus having an unbounded influence function. Sievers (1983) introduced weighted Wilcoxon

estimators that were later shown to possess a bounded influence function by Naranjo and

Hettmansperger (1994). Chang et al. (1999) provided one-step estimators that have high

breakdown point based on the weighted Wilcoxon pseudonorm, where the weights depend

on a robust and consistent estimator of θ0.

The signed-rank (SR) estimator of the slope parameter in the linear model is also ef-

ficient and robust to outliers in the y direction but sensitive to outliers in the x direction

(Hettmansperger et al., 2000). As the Wilcoxon estimator, the SR estimator is suitable

when dealing with datasets from studies with controlled designs. However, it may be ad-

versely affected when exploring datasets based on uncontrolled studies. To address the lack

of robustness in the x direction, Tableman (1990) provided a one step signed-rank estima-

tor for the linear model that has a bounded influence function. The results of Tableman

(1990) were motivated by the work of Krasker and Welsch (1982) who gave a class of M -

estimators with bounded influence function for linear regression estimation. A framework

similar to Tableman (1990) has been investigated by Wiens and Zhou (1994) who provided

bounded-influence rank estimators in the linear model using a general form of the SR objec-

tive function. They also show how the efficiency can be optimized by appropriate choices of

scores and weights under a boundedness constraint on the influence function.
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For the general nonlinear model given in (3.1), Abebe and McKean (2007) studied

the asymptotic properties of the Wilcoxon estimator of θ0. Just as in linear models, this

estimator was shown to be efficient but sensitive to local changes in the direction of x.

Jurečková (2008) also studied the asymptotic properties of the rank estimator of θ0 in (3.1).

Her approach takes advantage of the asymptotic equivalence of regression quantiles and

regression rank scores to provide rank scores based on the regression function. The approach

results in a restricted set of scores. Also, the resulting estimator does not possess a bounded

influence function.

In this chapter, we propose a class of rank-based estimators of θ0 in (3.1) based on the

minimization of a weighted signed-rank objective function. In contrast with the approach

of Abebe and McKean (2007) and Jurečková (2008), this approach allows for a set of scores

generated by any nondecreasing bounded score function that has at most a finite number of

discontinuities. Also, by utilizing the theory of Sobolev spaces, this approach removes certain

restrictive assumptions such as compactness of X, Lipschitz continuity of the regression

function, boundedness of the first derivative of the density of the error distribution that

were needed in the work of Jurečková (2008). Our objective function is very general. For

instance, the LS objective function is a special case of our objective function. However, the

objective function of Jurečková (2008) does not include the LS objective function. We also

show how Krasker-Welsch type weights (Krasker and Welsch, 1982) can be defined based on

the regression function f to result in a bounded influence function. Moreover, simulation

studies show that the proposed weighted estimators are also efficient attaining a relative

efficiency of .955 versus least squares when G is Gaussian.

Other robust approaches to nonlinear regression include Stromberg (1993) who provided

computational algorithms for computing high breakdown nonlinear regression parameters

using the least median of squares (Rousseeuw, 1984) and MM (Yohai, 1987) estimators.

Stromberg (1995) establishes the consistency of the least trimmed squares (LTS) estimator
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for the nonlinear model in (3.1). The LTS was shown to have a high breakdown point by

Stromberg and Ruppert (1992).

For linear models, the estimator proposed in this chapter can be regarded as a general-

ization of the objective function of Tableman (1990) to include other norms such as weighted

LAD and LS. Moreover, since we do not restrict ourselves to the linear model, not only is it

an extension of signed rank estimators for the linear model to the nonlinear regression case,

but it is also a generalization of LAD and LS type estimators for the nonlinear regression

model.

The remainder of the chapter is organized as follows. Our proposed estimator is given

in Section 3.2. Section 3.2 also contains asymptotic and robustness results concerning the

proposed weighted estimator. Section 3.3 gives the results using plug-in estimator of the

weights based on a consistent estimator of the regression parameter. Real data and sim-

ulation examples are given in Section 3.4. Section 3.5 provides a discussion. Proofs and

technical results are given in the appendix.

3.2 Weighted SR Estimator

Consider the signed-rank (SR) estimator, θ̂S, of θ0 in equation (3.1) that minimizes

T+
n (θ) =

∑n
i=1Ri|zi(θ)|, where zi(θ) = yi − f(xi,θ) and Ri = #{j : |zj(θ)| ≤ |zi(θ)|} is

the rank of |zi(θ)|, i = 1, . . . , n. The least squares (LS) and least absolute deviation (LAD)

estimators of θ0 minimize
∑n

i=1 z
2
i (θ) and

∑n
i=1 |zi(θ)|, respectively. It is well known that

the LS estimator is sensitive to outliers in both x and y directions while the SR and LAD

estimators are sensitive to outliers in the x-direction. There is clearly a need for a method

that is not sensitive to outliers in both x and y directions. We obtain this by considering a

weighted form of the SR estimator.

24



We define the weighted SR (WSR) estimator θ̂n of θ0 to be any vector θ minimizing

Dn(V, w,θ) =
1

n

n∑
i=1

w(xi,θ0)an(i)ρ(|z(θ)|(i)) (3.2)

where zi(θ) = yi − f(xi,θ) and |z(θ)|(i) is the ith ordered value among |z1(θ)|, . . . , |zn(θ)|.

The function ρ : R+ → R+ is continuous and strictly increasing. The numbers an(i) are

scores generated as an(i) = ϕ+(i/(n + 1)), for some bounded and non-decreasing score

function ϕ+ : (0, 1)→ R+ that has at most a finite number of discontinuities. The function

w : X ×Θ → R+ is a continuous weight function. Because Dn(V, w,θ) is continuous in θ,

Lemma 2 of Jennrich (1969) implies the existence of a minimizer of Dn(V, w,θ).

It is clear that weighted LS and LAD are special cases of WSR. Weighted LS is obtained

by taking ϕ+ ≡ 1 and ρ(t) = t2, t ≥ 0 while weighted LAD is obtained by taking ϕ+ ≡ 1 and

ρ(t) = t. In our analyses, however, LS and LAD refer to the unweighted versions obtained

by taking w ≡ 1.

In the following, we will establish the asymptotic properties of θ̂n and discuss how

weights can be used to obtain a bounded influence function. As given in (3.2), the weights

depend on the unknown true parameter θ0. This will make our derivations cleaner. However,

to be of practical use, the weights would have to be estimated. In Section 3.3, we will discuss

a plug-in estimator of the weights based on a consistent estimator of θ0 and how estimators

based on these estimated weights have the same asymptotic properties as their counterparts

based on ’true’ weights.

3.2.1 Preliminaries

The following definitions and notations will be used throughout this paper. Let Ω be

a domain. We denote by Lp(Ω, P ), 1 ≤ p ≤ ∞, the space of P -measurable functions on Ω

for which
∫

Ω

|h|pdP < ∞ with the usual modification for p = ∞. C∞(Ω) is the space of

smooth(infinitely differentiable) functions defined in Ω, D(Ω) is the space of smooth functions

25



with compact support in Ω and L1
loc(Ω) is the space of locally integrable functions in Ω; that

is, functions that are integrable in any compact subset of Ω. Let α = (α1, ..., αn) ∈ Nn
0 ,

N0 = N ∪ {0}, be a multi-index. The differential operator is defined as

Dα
θ =

∂|α|

∂θα1
1 ...∂θαnn

,

where |α| =
∑n

i=1 αi and θ = (θ1, ..., θn). Let Γ ∈ L1
loc(Ω). Given α ∈ Nn

0 , a function

η ∈ L1
loc(Ω) is called the αth-weak derivative of Γ if for all ψ ∈ D(Ω)

∫
Ω

ΓDα
uψdu = (−1)|α|

∫
Ω

ηψdu ,

and we put η = Dα
θΓ.

As an example, consider Γ(u) = |u|. Clearly, Γ is not differentiable in the usual sense

at 0. But Γ ∈ L1
loc(R), Γ is weakly differentiable and Γ

′
(u) = sgn(u).

Let m ∈ N0 and 1 ≤ p ≤ ∞. The Sobolev space denoted by Wm,p(Ω) is defined as

Wm,p(Ω) = {Γ ∈ Lp(Ω) : Dα
θΓ ∈ Lp(Ω) with |α| ≤ m} .

Given a function K ∈ L1 such that
∫
Rn
K(x)dx = 1, let Kδ(x) = δ−nK(x/δ). The family of

functions {Kδ, δ > 0}, is called a mollifier with kernel K and Kδ is known as the Friedrichs’

mollifier. Some important facts related to Sobolev spaces that may be useful in our discussion

are listed below without proofs. A detailed discussion of these can be found in Brezis (1983)

and Adams (1975).

(S1) Kδ ∈ C∞(Rn), supp(Kδ) = {x ∈ Rn : ‖x‖ ≤ δ}, Kδ ≥ 0, and
∫
Rn
Kδ(x)dx = 1. Here

supp(Kδ) denotes the support of Kδ.
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(S2) (Regularization Theorem)

Let Kδ be a Friedrichs’ mollifier. If Γ ∈ L1
loc(Rn), then the convolution product

Γ ∗Kδ(x) =

∫
Rn

Γ(x− y)Kδ(y)dy

exists for all x ∈ Rn. Moreover, Γ ∗Kδ ∈ C∞(Rn), supp(Γ ∗Kδ) ⊂ supp(Γ) + B′(0, δ)

where B′(0, δ) = {x ∈ Rn : ‖x‖ ≤ δ}, Dα(Γ ∗ Kδ) = DαKδ ∗ Γ and supp(DαKδ) ⊂

supp(Kδ). Also if M is a compact set of points of continuity of Γ, then Γ ∗Kδ → Γ

uniformly onM as δ → 0.

(S3) Let Kδ be a Friedrichs’ mollifier. Let Γ ∈ Wm,p(Ω) for 1 ≤ p ≤ ∞. Then, Γ ∗Kδ → Γ

in Lp(Ω) and Γ ∗Kδ → Γ in Wm,p(ω) as δ → 0 for all ω ⊂⊂ Ω. ω ⊂⊂ Ω means ω is

open, the closure of ω, ω̄ is compact and ω̄ ⊂ Ω.

3.2.2 Consistency

Let (Ω′,F , P ) be a probability space. For i = 1, . . . , n, assume that xi and ei =

yi − f(xi;θ0) are independent random variables (carried by (Ω′,F , P )) with distributions

H and G, respectively. Setting G̃θ to denote the distribution of |z(θ)|, we can rewrite

Dn(V, w,θ) as

Dn(V, w,θ) =
1

n

n∑
i=1

w(xi,θ0)an(i)(ρ ◦ G̃−1
θ )(ξ(i))

where ξ(i) are order statistics from the uniform U(0, 1) distribution.

Theorem 3. Let

(I1) P (f(x;θ) = f(x;θ0)) < 1 for any θ 6= θ0,

(I2) w ∈ Lp(X×Θ) and there exists a function h ∈ Lq(V) such that |ρ(G̃−1
θ (v))| ≤ h(v), for

all θ ∈ Θ and all 1 ≤ p, q ≤ ∞ such that 1/p+ 1/q = 1, and

(I3) G has a density g that is symmetric about 0 and strictly decreasing on R+.
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Then θ̂n
a.s.−−→ θ0.

Before giving the proof, we state the following lemma without proof. The proof of this

Lemma may be constructed following Lemma 2.

Lemma 4. Under assumptions (A1)− (A3), Dn(V, w,θ)
a.s.−−→ µ(θ) a.e. V, uniformly for all

θ ∈ Θ, where µ : Θ → R is a function satisfying inf
θ∈Θ∗

µ(θ) > µ(θ0) for any Θ∗ a closed

subset of Θ not containing θ0.

Proof. By Lemma 1 of Wu (1981), to establish the consistency of θ̂n, it is sufficient to show

that

lim inf
n→∞

inf
θ∈Θ∗

(
Dn(V, w,θ)−Dn(V, w,θ0)

)
> 0 a.s. (3.3)

for any Θ∗ a closed subset of Θ not containing θ0. To that end letAn(V, w,θ) = Dn(V, w,θ)−

µ(θ), B(θ,θ0) = µ(θ)− µ(θ0), and Cn(V, w,θ0) = µ(θ0)−Dn(V, w,θ0).

By Lemma 2, we have An(V, w,θ)
a.s.−−→ 0 uniformly for all θ ∈ Θ∗, inf

θ∈Θ∗
B(θ,θ0) > 0,

and lim inf
n→∞

Cn(V, w,θ0) = 0 a.s. For the statement given in (3.3) to hold, it suffices to show

that lim inf
n→∞

inf
θ∈Θ∗

An(V, w,θ) = 0 a.s. An(V, w,θ), being uniformly convergent and continu-

ous on a compact set Θ∗, is equicontinuous on Θ∗ a.e. V. This gives lim inf
n→∞

inf
θ∗∈Θ∗

{An(V, w,θ∗)} = 0

a.s. and the proof is complete.

Assumption (I1) is a very weak condition needed for θ0 to be identified. The linear

version of (I1) was given by Hössjer (1994) as P (|θ′x| = 0) < 1 for any θ 6= 0 under the

assumption that θ0 = 0. Since ϕ+ is bounded, by (I2), we have ‖wϕ+‖p <∞. Moreover, (I2)

and Hölder’s inequality ensure that the product (wϕ+)(ρ ◦ G̃−1
θ ) is integrable. (I3) admits

a wide variety of error distributions examples of which are the normal, double exponential

and Cauchy distributions with location parameter equal to 0.
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3.2.3 Asymptotic Normality

Write Γθ(t) = ρ[G̃−1
θ (t)] and λi = w(xi,θ0)an(Rξi) where Rξi , i = 1, ..., n are the rank

of ξ1, ..., ξn. Then (3.2) can be written as

Dn(V, w,θ) =
1

n

n∑
i=1

w(xi,θ0)an(i)(ρ ◦ G̃−1
θ )(ξ(i)) =

1

n

n∑
i=1

λiΓθ(ξi) .

By (I2), ‖λi‖p < ∞ for 1 ≤ p ≤ ∞. Now set Ψn(θ) = Dα
θDn(V,w,θ) and φθ(t) = Dα

θΓθ(t)

for |α| = 1. Since the dependence of φθ on y is only through z(θ), we will suppress y in the

notation and write φθ(x). Now denote the n × p matrix X∗ by X∗ =
(
φθ0(x1), ..., φθ0(xn)

)
and define hnii to be the ith diagonal component of X∗(X∗TX∗)−1X∗T . Now θ̂n is a zero of

Ψn(θ) =
1

n

n∑
i=1

λiφθ(ξi). (3.4)

Thus θ̂n can be seen as a weighted M -estimator with weights λ1, . . . , λn. So, under some

conditions, the asymptotic theory of the weighted M -estimation can be applied.

In addition to (I1) - (I3), consider the following conditions:

(I4) θ → Γθ(t) is a map in W 3,p(B), where B is a neighborhood of θ0 for every fixed t.

(I5) There exist functions ψα ∈ W 2,p(V) such that |Dα
θφθ(t)| ≤ ψα(t) for every θ ∈ B and

|α| ≤ 2.

(I6) Aθ0 = E
[
w(x,θ0)ϕ+(ξ) [Dα

θφθ(ξ)]θ=θ0

]
, where ξ ∼ U(0, 1), is a positive definite matrix

for |α| = 1.

(I7) lim
n→∞

max
1≤i≤n

hnii → 0

Example 1. The assumptions above allow us to define certain types of hybrid estimators

which may be constructed in the interest of efficiency and robustness. One such estimator is

one that behaves like an LS estimator for small absolute residuals and like an LAD estimator
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for large absolute residuals. As an illustration, let us consider the one-dimensional case with

Θ = [a, b] ∪ [b, c], where a < b < c are real numbers, and define

ρ(|z(θ)|) =


z2(θ), θ ∈ [a, b]

|z(θ)|+ z2(b)− |z(b)|, θ ∈ [b, c] .

This function ρ is strictly increasing and continuous as a function of θ but not differentiable in

the usual sense at θ = b. The test function ψ ∈ D(Θ) has to satisfy ψ(a) = ψ(b) = ψ(c) = 0.

Using the definition of the weak derivative γ of ρ satisfies

∫
Θ

ρ(|z(θ)|)ψ′(θ)dθ = −
∫

Θ

γ(θ)ψ(θ)dθ .

But

∫
Θ

ρ(|z(θ)|)ψ′(θ)dθ =

∫ b

a

z2(θ)ψ′(θ)dθ +

∫ c

b

|z(θ)|ψ′(θ)dθ

= −
[∫ b

a

2z(θ)ḟ(θ, x)ψ(θ)dθ +

∫ c

b

sgn(z(θ))ḟ(θ, x)ψ(θ)dθ

]
= −

∫
Θ

[
2z(θ)ḟ(θ, x)I[a,b](θ) + sgn(z(θ))ḟ(θ, x)I[b,c](θ)

]
ψ(θ)dθ

where the second equality is from integration by parts and ḟ(θ, x) = ∂f(θ, x)/∂θ. Thus

γ(θ) = 2z(θ)ḟ(θ, x)I[a,b](θ) + sgn(z(θ))ḟ(θ, x)I[b,c] .

Higher order derivatives can be computed similarly. In this case, (I4) and (I5) are satisfied as

long as f and its higher order derivatives (up to order 3) are bounded by integrable functions.

Particularly, assumption (I4) allows us to include a large variety of generalized functions

that are not differentiable in the usual sense. The typical example is the absolute valued

function given by x→ |x| that includes the LAD and SR estimators, is not differentiable in

the usual sence but is locally integrable, and therefore, weakly differentiable. It can be seen
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that none of the computions above can be done without assumption (I4). Assumption (I5)

ensures the integrability of (wϕ+) (Dα
θφθ) for any α such that |α| ≤ 2 for which the SLLN can

be applied (see remark below). Aθ0 in assumption (I6) denotes the limiting Hessian matrix.

(I7) is a common assumption known as Noether’s condition that ensures the asymptotic

normality of Ψn(θ0).

Remark 6. Under (I1), (I2), and (I3), Lemma 2 in the appendix gives the pointwise almost

sure convergence of Dn(V, w,θ) for any θ ∈ Θ. If in addition (I5) holds, then we have

[Dα
θDn(V, w,θ)]θ=θ0

a.s.−−→ µα(θ0) a.e. V, where µα(θ0) ≡ E
[
w(x,θ0)ϕ+(ξ) [Dα

θφθ(ξ)]θ=θ0

]
for any α such that |α| ≤ 3.

The following theorem gives the asymptotic normality of θ̂n. The approach of the proof

is similar to that given in van der Vaart (1998) for M -estimators.

Theorem 4. Under assumptions (I1)− (I7),

√
n(θ̂n − θ0)

D−→ N(0, A−1
θ0

Σθ0A
−1
θ0

),

where Σθ0 = E
[
w(x,θ0)ϕ+(ξ)φθ0(ξ)(φθ0(ξ))

T
]
.

Proof. By (I4), θ → Γθ is a map in W 3,p(B), properties (S1) – (S3) imply that D(B̄) is

dense in Wm,p(B), where B̄ is the closure of B. Thus, in the the following, we may assume

without loss of generality that Γθ ∈ D(B̄).

Implementing the Taylor expansion at θ0 of Ψn(θ), we get

0 = Ψn(θ̂n) = Ψn(θ0) + Ψ̇n(θ0)(θ̂n − θ0) +
1

2
(θ̂n − θ0)

′
Ψ̈n(γn)(θ̂n − θ0)

where γn is a point between θ0 and θ̂n, Ψ̇n(θ0) =
[
Dα

θΨn(θ)
]
θ=θ0

for |α| = 1 and

Ψ̈n(θ0) =
[
Dα

θΨn(θ)
]
θ=θ0

for |α| = 2.

Now using (I7) and by an application of the Cramér-Wold device (Serfling, 1980) and

the central limit theorem for linear combinations of functions of order statistics (Hájek and
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Šidák, 1967),
√
nΨn(θ0) converges to a multivariate normal distribution with mean 0 and

covariance matrix Σθ0 . Also Ψ̇n(θ0) converges almost surely to Aθ0 (see Remark 6) and

hence in probability. By (I4) and Theorem 3, lim
n→∞

P ({γn ∈ B}) = 1. So under the event

{γn ∈ B},

‖Ψ̈n(γn)‖ ≤ C
1

n

n∑
i=1

w(xi,θ0)ψ(ξi)

where C stands for the bound of the score function. The right hand side of the above

inequality is bounded in probability by the law of large numbers for n sufficiently large.

These and the consistency of θ̂n for θ0 give

−Ψn(θ0) =
[
Aθ0 + op(1) +

1

2
(θ̂n − θ0)Op(1)

]
(θ̂n − θ0) =

(
Aθ0 + op(1)

)
(θ̂n − θ0)

since (θ̂n − θ0)Op(1) = op(1)Op(1) → 0 in probability. Also with probability tending to 1,

the matrix Aθ0 + op(1) is invertible. Thus,

√
n(θ̂n − θ0) = −

√
n
(
Aθ0 + op(1)

)−1
Ψn(θ0) = −

√
nA−1

θ0
Ψn(θ0) + op(1) . (3.5)

The proof is complete by an application of Slutsky’s lemma and noting that
√
nΨn(θ0) is

asymptotically normal.

In general, for estimators with w ≡ 1 and ρ(t) = t, we can simplify the asymptotic

covariance matrix of
√
nθ̂n to obtain τ 2

ϕ+

{
E[∇f(x;θ0)∇f(x;θ0)T ]

}−1, where

τ 2
ϕ+ =

∫ 1

0
{ϕ+(u)}2du(∫ 1

0
ϕ+(u)ϕ+

g (u)du
)2 ,

with ϕ+
g (u) = −g′(G−1(u+1

2
))/g(G−1(u+1

2
)). It is easy to show that τ 2

ϕ+ = {2g(0)}2 for

the LAD estimator and τ 2
ϕ+ =

(√
12
∫∞
−∞{g(t)}2dt

)−2

for the SR estimator. The asymptotic

covariance matrix of the LS estimator is σ2
{
E[∇f(x;θ0)∇f(x;θ0)T ]

}−1, where σ2 =
∫
u2dG

is the error variance.
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For Θ ⊂ Rp, two estimators can be compared using the asymptotic relative efficiency

(ARE), which is the reciprocal of ratio of their asymptotic covariance matrices to the power

1/p (Serfling, 1980). The evaluation of the ARE is very complicated in general. We consider

a simulation study with G taken to be the t distribution in Section 3.4. The ARE may be

determined in closed form for comparing the simpler estimators such as SR versus LS or

LAD for some error distributions such as the Cauchy, logistic, and normal. These are the

same as those for comparing the signed-rank, the sign, and the t test in the location problem

and are studied extensively in Hettmansperger and McKean (1998).

3.2.4 Robustness

In this section, we discuss conditions needed for the boundedness of the influence func-

tion. If we can write

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

Λ(θ0; yi,xi) + op(1) ,

then the influence function of θ̂n at a given point (y0,x0) is Λ(θ0; y0,x0) (e.g. Corollary

3.5.7 of Hettmansperger and McKean (1998)). However, by equation (3.5) in the appendix

we have
√
n(θ̂n − θ0) =

1√
n

n∑
i=1

(−λi)A−1
θ0
φθ0(xi) + op(1) .

Thus Λ(θ0; y0,x0) = −λ(x0, y0)A−1
θ0
φθ0(x0), where λ(x0, y0) = w(x0)ϕ+(G(z(θ0)). Assume

that

(I8) : there exists a constant M > 0 such that ‖w(x)φθ0(x)‖ ≤M .

Note that from the boundedness of the score function ϕ+, for (I8) to hold, it suffices that

‖w(x)φθ0(x)‖ be bounded as a function of x. This is the same condition as Assumption 8 of

Coakley and Hettmansperger (1993) for φθ0(x) = x corresponding to f(x,θ0) = x′θ0. Thus,
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the choice of weights discussed in Section 6.1 of Coakley and Hettmansperger (1993) may

be extended to our case.

Theorem 5. Under (I1)− (I8), θ̂n has a bounded influence function.

3.3 Weight Specification

Based on the work of Giltinan et al. (1986) and Simpson et al. (1992) for the linear

model, one may set

w(x,θ0) = min
[
1,

η

d(x,θ0)

]
(3.6)

where d(x,θ0) = (x∗ −mx∗)
TC−1

x∗ (x∗ −mx∗) is a robust Mahalanobis distance, with mx∗

and Cx∗ being robust estimates of location and covariance of x∗ = φθ0(x), respectively and

η being some positive constant. As it can be seen from its definition, the weight function

depends on the true parameter θ0. So, in our study, we will consider plug-in estimators

of d(x,θ0) based on strongly consistent estimators of θ0. As Coakley and Hettmansperger

(1993) we will take resistant distances for d(x,θ0) that use location and scale estimates based

on the minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE) of

Rousseeuw (1984) and Rousseeuw (1985), respectively. A discussion of these and other high

breakdown estimators in the multivariate case is given in Hubert et al. (2008).

Analogous to Tableman (1990) and Krasker and Welsch (1982), one may use the weight

function w(x,θ0) in (4.13) by setting

d(x,θ0) = x∗TB−1
θ0

x∗, with Bθ0 = Ex,y

[
w2(x,θ0)

(
ϕ+[2G(z(θ0))− 1]

)2
x∗Tx∗

]

x∗ = φθ0(x) and η = M/ζ for ζ such that sup
t

[ϕ+(t)] = ζ. The difficulty in using this weight

function for the nonlinear regression model is on estimating d(x,θ0) for which the expression

of Bθ0 depends on the weight function w(x,θ0). So we face a situation where we have to

solve an implicit value problem. For linear models, however, since d(x,θ0) can be specified
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free of model parameters (see for example Section 6 of Coakley and Hettmansperger, 1993).

An iterative scheme for computing d(x,θ0) can be found in Krasker and Welsch (1982)

and in Section 2 of Tableman (1990), and, under some suitable extra conditions (like the

invertibility of the score function ϕ), one may extend the iterative computation of d(x,θ0)

to the nonlinear case. Another weight function is that considered by Wiens and Zhou (1994)

and uses d(xi,θ0) that is equivalent to ‖A−1
θ0

x∗i ‖−1, where ‖ · ‖ is the Euclidean norm.

3.3.1 Plug-in Estimator of the Weight

Let θ̃n be the minimizer of Dn(V, w,θ) with w ≡ 1; that is, the unweighted estimator

of θ0. θ̂S given at the beginning of Section 3.2 is one such estimator. Under (A1) − (A7),

θ̃n
a.s.−−→ θ0 as n → ∞. Hence θ̃n = θ0 + o(1) w.p. 1. Denote by w̃ = w(xi, θ̃n), λ̃i =

w(xi, θ̃n)ϕ+
(

Ri
n+1

)
and Ψ̃n(θ) =

1

n

n∑
i=1

λ̃iφθ(ξi) where λ̃(x0, y0) = w(x0, θ̃)ϕ+
(
G(z(θ0))

)
.

Set ̂̂θn = Argminθ∈Θ D̃n(V, w̃,θ), where D̃n(V, w̃,θ) = 1
n

∑n
i=1w(xi, θ̃)an(i)(ρ ◦ G̃−1

θ )(ξ(i)).

The following theorem shows that ̂̂θn and θ̂n have the same asymptotic properties.

Theorem 6. Under (I2), Ψ̃n(θ0) = Ψn(θ0) + o(1) w.p.1.

Proof. From the fact that θ̃ = θ0 +o(1) w.p.1 and by the continuity of the weight function w,

we have w(xi, θ̃) = w(xi,θ0) + o(1) w.p.1. Now using this fact in the expression of Ψ̃n(θ0),

we get

Ψ̃n(θ0) = Ψn(θ0) + o(1)× 1

n

n∑
i=1

ϕ+
( Ri

n+ 1

)
φθ0(ξi) .

Set ∆n(θ0) = 1
n

∑n
i=1 ϕ

+
(
Ri
n+1

)
φθ0(ξi). Then, under (A2), by the SLLN for functions of order

statistics (Van Zwet, 1980), we have

∆n(θ0)
a.s.−−→ E[ϕ+(ξ)φθ0(ξ)] <∞ ,

where ξ ∼ U(0, 1). Thus ∆n(θ0) is bounded in probability and hence o(1) × ∆n(θ0) → 0

w.p.1 as n→∞. Therefore Ψ̃n(θ0) = Ψn(θ0) + o(1) w.p.1.
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Theorem 7. Under (I1)− (I7),

√
n(
̂̂
θn − θ̂n) = op(1) .

Proof. As in the proof of Theorem 4, the Taylor expansion of Ψ̃n(
̂̂
θn) about θ0 gives

0 = Ψ̃n(
̂̂
θn) = Ψ̃n(θ0) + ˙̃Ψn(θ0)(

̂̂
θn − θ0) +

1

2
(
̂̂
θn − θ0)

′ ¨̃Ψn(βn)(
̂̂
θn − θ0) ,

where βn lies on the line segment joining ̂̂θn and θ0. Also under the assumptions of Theorem

6, one can show that ˙̃Ψn(θ0) = Ψ̇n(θ0)+o(1) w.p.1. Now the fact that w(xi, θ̃) = w(xi,θ0)+

o(1) w.p.1 and the SLLN of functions of the order statistics, we have ˙̃Ψn(θ0)
a.s.−−→ Aθ0 . Note

that under (A1)− (A3), ̂̂θn a.s.−−→ θ0. From this and assumption (I4), lim
n→∞

P ({βn ∈ B}) = 1.

So under the event {βn ∈ B}, ¨̃Ψn(βn) is bounded in probability. Hence

√
n(
̂̂
θn − θ0) = −

√
nA−1

θ0
Ψ̃n(θ0) + op(1)

=
1√
n

n∑
i=1

(−λ̃i)A−1
θ0
φθ0(xi) + op(1)

=
1√
n

n∑
i=1

(−λi)A−1
θ0
φθ0(xi) + o(1)× A−1

θ0

1√
n

n∑
i=1

φθ0(xi) + op(1) ,

where the last equality follows from λ̃i = λi + o(1) w.p.1 by the continuity of the weight

function and the boundedness of ϕ+. Clearly, by the central limit theorem,
1√
n

n∑
i=1

φθ0(xi)

converges to a normal distribution, thus bounded in probability. Therefore

√
n(
̂̂
θn − θ0) =

1√
n

n∑
i=1

(−λi)A−1
θ0
φθ0(xi) + op(1). (3.7)

Now combining (3.5) and (3.7) yield
√
n(
̂̂
θn − θ̂n) = op(1).
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Remark 7. Theorem 4 and Theorem 7 show that ̂̂θn has the asymptotic Gaussian distribu-

tion given in Theorem 4. Moreover, from equation 3.7 in the appendix gives

√
n(
̂̂
θn − θ0) =

1√
n

n∑
i=1

(−λi)A−1
θ0
φθ0(xi) + op(1) .

Thus, ̂̂θn has the same influence function as θ̂n.

3.4 Examples

All analyses in this section were performed using the R software environment (R Devel-

opment Core Team, 2009). Estimates were found by means of the “nonlinear minimization

subject to box constraints” algorithm (Gay, 1983, 1984) implemented in the function nlminb

in the “stats” package of R with a range of starting values. We use weight functions based on

robust Mahalanobis distances. MCD estimates of location and covariance were found using

the fast MCD algorithm of Rousseeuw and Van Driessen (1999). Both MCD and MVE are

implemented in the R function cov.rob in the package “MASS”. For simplicity, all WSR

estimators considered in the following use ϕ+(u) = u and ρ(t) = t. In this case θ̃ = θ̂s.

3.4.1 Monte Carlo Simulation

Exponential Regression

Consider the one-parameter exponential regression model

yi = eθ0xi + εi , i = 1, . . . , 25 . (3.8)

We took x1, . . . , x25 to be iid N(0, 1). We then performed B = 1000 iterations where in each

iteration ε1, . . . , ε25 were randomly generated from the N(0, .01) distribution and y1, . . . , y25

were computed as yi = exi+εi. That is, the true value of θ0 was taken to be 1. We considered

two cases: an outlier in the y-direction by adding 50 to y20 and an outlier in the x-direction
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by adding 5 to x20. In each of the B repetitions we estimated θ0 (giving θ̂(1), . . . , θ̂(B)) using

LS, LAD, SR, and WSR. For WSR estimation, we used the weight function

w(x, θ̃) = min

{
1,
χ2
.95(1)

d(x, θ̃)

}

where χ2
.95(1) is the 95% percentile point of the χ2(1) distribution and d(x, θ̃) =

∑n
i=1 σ

2(xie
θ̃xi−

µ)2. Here θ̃ is the SR estimate of θ0 whereas µ and σ2 are the MCD center and variance,

respectively, of xeθ̃x. As the estimated value of θ0, we took B−1
∑
θ̂(i) and as the estimate

of the MSE, we took B−1
∑

(θ̂(i) − θ0)2. The results are given in Table 3.1.

Table 3.1: Average Estimates(MSEs) of θ0 = 1 in 1000 simulated samples
LS LAD SR WSR

y-outlier -3.766(22.7108) .999(.0001) .999(.0001) .973(.0031)
x-outlier .233(.5878) .342(.4327) .264(.5413) .993(.0001)

From Table 3.1, it is clear that the LS estimate is affected rather adversely by the

presence of the y-outlier. We can also observe that the LS, LAD, and SR estimates are

affected by the x-outlier while the WSR estimate remained close to θ0 = 1 in both cases.

Figure 3.1 gives the plots of the fitted curves obtained using LS, LAD, SR, and WSR. It is

clear from the plot that the WSR fit is not affected by either the outlying x or the outlying

y values.

A Study of Relative Efficiency

It is well known that in linear models the relative efficiency (RE) of the signed rank

estimator to the least squares estimator is 3/π ≈ .955 when G is the normal distribution.

This RE increases with the heaviness of the tail of the error distribution. To study this for

nonlinear models, we considered a simulation experiment involving the Michaelis-Menten and

Gompertz functions. The Michaelis-Menten function describes the relation between velocity
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Figure 3.1: Plot of fitted exponential curves including WSR
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of reaction f(x) of an enzyme with substrate concentration x. It is given by

f(x,θ) =
αx

β + x
,

where θ = (α, β), α is the maximum velocity of the reaction and β is the half-saturation

constant. On the other hand the Gompertz model is defined by

f(x,θ) = α exp{µeβx}

where θ = (α, β, µ) is the vector of parameters of interest. One of the applications of this

function is for modeling growth of tumors. In fact, tumors are cellular populations growing in

a confined space where the availability of nutrients is limited. In this situation, f(x) denotes

the tumor size, α the carrying capacity, i.e., the maximum size that can be reached with the

available nutrients, µ = ln f(0)
α

, where f(0) is the tumor size at the starting observation time

and β is the growth rate of the tumor.

For both models, n = 100 values of x were generated at random from the standard

exponential distribution. Then for each of B = 2000 repetitions, n random errors ε were
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generated from the t distribution with d degrees of freedom and n values of y = f(x,θ) + ε

were computed. This was done for degrees of freedom d ranging from 3 to 102 in steps of 3.

The t distribution is ideal for simulating varying tail thicknesses as it provides distributions

from the Cauchy (d = 1) to the normal (d = ∞). We are interested in estimating the

parameter β in both models. The weighting scheme used for WSR estimation is the same

as the one in the previous Monte Carlo experiment (MCD along with a χ2
.95 cutoff).

Figure 3.2 contains the plot of degrees of freedom versus the estimated relative efficiency

given by ratios of estimated MSEs. The top dashed horizontal line is at 3/π and the bottom

dashed horizontal line is at 2/π. These values are the theoretical asymptotic relative efficien-

cies of SR versus LS and LAD versus LS, respectively, for the linear model. Estimators with

relative efficiencies above the solid line are more efficient than the LS estimator. The plot

shows that the SR and WSR estimators are more efficient than the LAD estimator. More-

over, we observe that the relative efficiencies approach the theoretical values under normality

as the degree of freedom increases. We can also see that LAD, SR, and WSR estimators

are more efficient than the LS estimator for heavy tailed error distributions. SR and WSR

provide similar estimates of relative efficiency.

Figure 3.2: Relative Efficiency
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3.4.2 Real Data

We now consider the Lakes Data given in Stromberg (1993). The data were collected

from 29 lakes in Florida. Three variables were collected on each lake. The response is the

mean annual nitrogen concentration (y). The predictors are the average influent nitrogen

concentration (x1) and the water retention time (x2). The model recommended by the

investigator is

yi =
x1i

1 + αxβ2i
+ εi , i = 1, . . . , 29 .

We fit the model using LS, LAD, SR, and WSR. For the weighted SR, we used the weight

function

w(x) = min

{
1,
χ2
.95(2)

d(x, θ̃)

}
.

We computed two versions of WSR. WSR1 uses weights where d(x, θ̃) is taken to be the

robust Mahalanobis distance constructed using the MVE estimates of the center and covari-

ance of ∇θf(x, θ̃) with f(x,θ) = x1/(1 +αxβ2 ), θ = (α, β), and x = (x1, x2). WSR2 has the

same setup as WSR1 except that it uses weights based on classical Mahalanobis distances.

We take θ̃ to be the SR estimate of θ. The results obtained taking θ̃ as LS or LAD estimates

are similar and hence not reported. Table 3.2 gives the estimates of the parameters, standard

errors, and scale.

Table 3.2: Parameter estimates for Lakes Data
Method Parameter Estimate SE Z p-value Scale

LS α 5.08423 1.93891 2.62220 0.00874 1.2637
β 1.27852 0.35334 3.61835 0.00030

LAD α 3.88311 0.79337 4.89443 0.00000 1.0046
β 1.29880 0.23082 5.62686 0.00000

SR α 5.09126 1.66082 3.06551 0.00217 1.3877
β 1.22612 0.29373 4.17432 0.00003

WSR α 0.88588 0.58543 1.51320 0.13023 1.2904
β 0.39018 0.17357 2.24799 0.02458
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For the original data, it is apparent from Table 3.2 that WSR1 gives estimates that are

quite different from the other methods. The residual diagnostic plots given in Figure 3.3 can

help us determine which of the results is the most appropriate. The figure contains plot of

residuals from the fitted models versus x1 (left panel) and residuals versus ŷ (right panel).

The plots for LAD and SR (not shown) are very similar to those of LS. We observe that

all plots of residuals versus x1 identify two potential outliers (denoted by solid squares) in

the x1 direction. However, these observations do not stand out as aberrant in the residual

versus fits plot for LS whereas WSR2 identifies only one of them as a potential outlier. The

WSR1 fit clearly identifies the two points as outliers. Stromberg (1993) also identifies the

same points using the high breakdown least median of squares and MM estimators. The

residual plot of WSR1 given in Figure 3.3 and that of MM given in Stromberg (1993) are

quite similar. The “Outliers Removed” part of Table 3.2 gives the estimates and standard

errors after removing the two outliers identified by WSR1. The estimates due to the different

methods are quite similar to each other.

We removed the one outlier identified by WSR2 and refit all the models. LS, SR,

and LAD fail to identify the remaining one outlier. However, WSR2 identifies the outlier.

This indicates a potential masking problem associated with using the classical Mahalanobis

distance in the weights. This is very much the same masking problem one faces when using

hat matrix weights in linear regression. This issue is discussed in Wiens & Du (2000). In this

case, the use of robust Mahalanobis distances appears to be a good solution to the masking

problem.

3.5 Discussion

In this article, we proposed a rank-based analysis of nonlinear regression models. Our

study uses a weighted generalized signed-rank dispersion function. The generalized signed-

rank dispersion function results in a class of estimators including the signed-rank, least

squares, and least absolute deviations estimators. These estimators do not have bounded
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influence functions. The influence function of LAD and LS are unbounded in both response

and design spaces while the that of the signed-rank is unbounded in design space. Thus, the

signed-rank estimation procedure may not be suitable for studies with uncontrolled designs.

Added weights allow us to construct estimators with bounded influence. However, it is

rather complicated to use the proposed weights directly since they cannot be expressed free

of the regression parameter for nonlinear models. Our solution is to replace the regression

parameter by its consistent estimator in the weight function. This results in estimators

that are asymptotically equivalent to those in which the weights are based on the unknown

true value of the parameter. The unweighted versions of our estimators are consistent;

hence, they can be used to estimate the weights. We recommend weight functions that are

based on robust Mahalanobis distances using robust estimates of location and covariance of

the Jacobian matrix of the regression function. They are explicitly defined and are simple

to construct. Moreover, as our simulation studies demonstrate, the weighted signed-rank

estimators with weights based on robust Mahalanobis distances are efficient as well as robust.

It is also shown that these weighted estimators can be useful in detecting outliers in nonlinear

regression.
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s

Figure 3.3: Residual plot versus x1 and fitted values for Lakes data
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Chapter 4

Rank Regression with Missing Response

4.1 Introduction

The problem of missing data is nowadays in the center of almost all statistical studies.

It occurs in a wide array of application areas for several reasons. Among the reasons are:

• a sensor in a remote sensor network may be damaged and cease to transmit data

• certain regions of a gene microarray may fail to yield measurements of the underlying

gene expressions due to scratches, finger prints, or manufacturing defects

• in a clinical trial, participants may drop out during the course of the study leading to

missing observations at subsequent time points

• all applicable tests while diagnosing a patient may not be ordered by a doctor

• users of a recommender system rate extremely small fraction of available books, movies,

or songs, leading to massive amount of missing data.

Also, data may be missing because equipment malfunctioned, the weather was terrible, or

people got sick, or the data were not entered correctly. The type of missingness to be

considered in this chapter is the missing response in the context of regression analysis that

often arise in various experimental settings such as market research surveys, medical studies,

opinion polls and socioeconomic investigations.

The statistical investigation of such a problem is a very difficult task since in most

cases, missing data themselves contain either little or no information about the missing

data mechanism (MDM). Fundamentally and most commonly used assumption about the
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MDM is the MAR assumption discussed in Rubin (1976). The idea behind MAR is that the

probability that a response variable is observed can depend only on the values of those other

variables that have been observed. The scientific literature provides extensive studies and

effective computational methods for handling missing data under the MAR assumption.

4.2 Model Definition

Consider the linear semi-parametric regression model

Yi = Xτ
i β + g(Ti) + εi, 1 ≤ i ≤ n , (4.1)

where β ∈ B is a vector of parameters, Xi’s are i.i.d p-variable random covariate vectors,

Ti’s are i.i.d univariable random covariates defined on [0, 1], the function g : [0, 1] → R is

unknown and the model errors εi are independent with conditional mean zero given the

covariates. Also, 0 < E(ε2
i |Zi) < ∞ with Zi = (Xi, Ti). In this paper, we are interested in

inference on the true value β0 of the parameter β, when there are missing responses in the

linear semi-parametric model (4.1).

This model has captured a lot of attention in recent years. An application of (4.1) to

mouthwash experiment was given by Speckman (1988). An example using (4.1) is provided in

Green and Silverman (1994). The least squares estimation approach of the setting discussed

above was studied by Wang and Sun (2007). A semi-parametric mixed model for analyzing

the CD4 cell count in HIV seroconverters was studied by Zeger and Diggle (1994). Model

4.1 has also been applied in several fields such as biometrics, see Gray (1994), econometrics

and others. For complete data setting, this model has been extensively studied by many

authors such as Heckman (1986), Speckman (1988), Robinson (1988), Rice (1986) among

others. In the framework of model (4.1), Wang et al. (2004) developed inference tools in

missing response case for the mean of Y based on the least squares estimation approach

and under the MAR assumption. The historical method for constructing confidence interval
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for the true mean of Y is the empirical likelihood method introduced by Owen (1990). As

pointed out by many authors, this method has many advantages over others methods such

as those based in normal approximations or the bootstrap (Hall and La Scala, 1990). Many

authors have studied this framework including Kitamura (1997), Peng (2004), Wang et al.

(2004), Xue and Zhu (2007b), Xue and Zhu (2007a), Xue and Zhu (2006), Wang and Rao

(2002a), Sun et al. (2009), Chen and Hall (1993) among others.

When dealing with missing data, the main approach is to impute a plausible value for

each missing datum and then analyze the results as if they were complete. In most of the

regression problems, the commonly used approaches include linear regression imputation

(Healy and Westmacott, 1956), nonparametric kernel regression imputation (Cheng, 1994;

Wang and Rao, 2002b), semi-parametric regression imputation (Wang and Sun, 2007), among

others. Wang and Sun (2007) also considered the semi-parametric regression imputation

approach to estimate the true mean of Y .

The other well known approach for handling missing data is the inverse probability

weighting. This approach has gained considerable attention as a way to deal with missing

data problems. For a discussion of this approach, see Wang et al. (1997), Robins et al.

(1994), Wang et al. (2004), Zhao et al. (1996) and references therein. As pointed out by

Wang and Sun (2007), for missing problems, the inverse probability weighting approach

usually depends on high dimensional smoothing for estimating the completely unknown

propensity score function, leading to the well known problem of "curse of dimensionality"

that may restrict to use of the resulting estimator. One way to avoid such a problem is to

use the inverse marginal probability weighted method suggested by Wang et al. (2004).

4.3 Estimation

In model (4.1), consider the case where some values of Y in the sample of size n may

be missing, but X and T are fully observed. That is, we obtain the following incomplete
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observations

(Yi, δi, Xi, Ti), i = 1, 2, ..., n

from (4.1), where Xi’s and Ti’s are observed, and,

δi =

 0, Yi is missing;

1, otherwise.

We assume that Y is missing at random (MAR). The MAR assumption implies that δ and

Y are conditionally independent given X and T . That is P (δ = 1|Y,X, T ) = P (δ = 1|X,T ).

As discussed above, this is a common assumption for statistical analysis with missing data

and is reasonable in many practical situations, see Little and Rubin (1987).

Let us introduce the following notations: Z = (X,T ), σ2(Z) = E(ε2|Z), ∆(z) = P (δ =

1|Z = z) and Γ(t) = P (δ = 1|T = t). Consider the following rank objective function,

DC
n (β) =

1

n

n∑
i=1

ϕ
(R(ei(β))

n+ 1

)
ei(β), (4.2)

where ei(β) = δiεi and R(ei(β)) is the ith rank of ei(β). Note that in the expression of DC
n (β)

in (4.2), β and g are unknown. Also, E[ei(β)|Zi] = 0 by the MAR assumption.

So, before dealing with the estimation of β0, let us consider first step of the estimation

of g based on the complete data, that is, estimating g as a known function of t but unknown

with respect to β. As discussed in Wang et al., pre-multiplying (4.1) by the observation

indicator, we have

δiYi = δiX
τ
i β + δig(Ti) + δiεi,

and taking conditional expectations given T , we have

E[δiYi|Ti = t] = E[δiXi|Ti = t]β + E[δi|Ti = t]g(t), (4.3)
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from which, it follows that

gC1 (t) =
E[δX|T = t]

E[δ|T = t]
and gC2 (t) =

E[δY |T = t]

E[δ|T = t]
.

and so

g(t) = gC2 (t)− gC1 (t)β. (4.4)

Let K(·) be a kernel function and bn be a bandwidth sequence such that bn → 0 as n→∞.

Define weights as

WC
nj(t) =

K(
t−Tj
bn

)∑n
j=1 δjK(

t−Tj
bn

)
.

Then g̃C1n(t) =
n∑
j=1

δjW
C
nj(t)Xj and g̃C2n(t) =

n∑
j=1

δjW
C
nj(t)Yj are strongly consistent estimators

of gC1 (t) and gC2 (t), respectively. Now, define D̃C
n by

D̃C
n (β) =

1

n

n∑
i=1

ϕ
(R(νni(β))

n+ 1

)
νni(β) (4.5)

where νin(β) = δi[(Yi − g̃C2n(Ti)) − (Xi − g̃C1n(Ti))
τβ]. Clearly, from the fact that g̃C1n(t) =

n∑
j=1

δjW
C
nj(t)Xj and g̃C2n(t) =

n∑
j=1

δjW
C
nj(t)Yj are strongly consistent estimators of gC1 (t) and

gC2 (t) respectively, it can be shown that νin(β) → ei(β) in distribution as n → ∞. Define

the rank estimator based on complete data as

β̃Cϕ = Argmin
β∈B

D̃C
n (β) .

Below, we will study the asymptotic properties of rank estimators of β0, some of which are

defined later. The required assumptions are given and discussed in Section 4.4.

Theorem 8. Under assumptions (J1)− (J7) except (J4),

lim
n→∞

sup
β∈B
|D̃C

n (β)−DC
n (β)| = 0
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Proof. In this proof, L is taken to be an arbitrary positive constant not necessarily the same.

By the mean value Theorem, there exists αn(i) such that

ϕ
(R(νni(β))

n+ 1

)
− ϕ

(R(ei(β))

n+ 1

)
= ϕ′(αn(i))

(R(νni(β))

n+ 1
− R(ei(β))

n+ 1

)

∣∣∣D̃C
n (β)−DC

n (β)
∣∣∣ =

∣∣∣ 1
n

n∑
i=1

[
ϕ
(R(νni(β))

n+ 1

)
νni(β)− ϕ

(R(ei(β))

n+ 1

)
ei(β)

]∣∣∣
=

∣∣∣ 1
n

n∑
i=1

[
ϕ
(R(νni(β))

n+ 1

)
νni(β)

+ {ϕ′(αn(i))
(R(νni(β))

n+ 1
− R(ei(β))

n+ 1

)
− ϕ

(R(νni(β))

n+ 1

)
}ei(β)

]∣∣∣
Also, by uniform continuity of ϕ (since ϕ′ is bounded with bound L > 0) and for fix n, one

can choose ε(n) = ξ(n)
L+1

> 0 , such that for ξ(n)→ 0 as n→∞ and

∣∣∣R(νni(β))

n+ 1
− R(ei(β))

n+ 1

∣∣∣ ≤ ξ(n) =⇒
∣∣∣ϕ(R(νni(β))

n+ 1

)
− ϕ

(R(ei(β))

n+ 1

)∣∣∣ < ε(n).

From this, we have,

∣∣∣D̃C
n (β)−DC

n (β)
∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣ϕ(R(νni(β))

n+ 1

)∣∣∣|νni(β)− ei(β)|

+
1

n

n∑
i=

|ϕ′(αn(i))|
∣∣∣R(νni(β))

n+ 1
− R(ei(β))

n+ 1

∣∣∣|ei(β)|

From the boundedness of ϕ, there exists a constant L > 0 such that
∣∣∣ϕ(R(νni(β))

n+ 1

)∣∣∣ ≤ L.

Note that νni(β) − ei(β) = δi[gn(Ti) − g(Ti)] where gn(t) = g̃C2n(t) − (g̃C1n(t))τβ. Also, note

that supβ∈B |gn(t)− g(t)| → 0 as n→ 0. This can be seen from the fact that gn(t)− g(t) =

(g̃C2n(t)− gC2 (t))− (g̃C1n(t)− gC1 (t))τβ and then,

sup
β∈B
|gn(t)− g(t)| ≤ |g̃C2n(t)− gC2 (t))|+ sup

β∈B
‖β‖‖g̃C1n(t)− gC1 (t))‖ → 0 (4.6)
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since g̃C2n(t)− gC2 (t)→ 0 and g̃C1n(t)− gC1 (t)→ 0 w.p. 1 as n→∞. This implies that

sup
β∈B

∣∣∣D̃C
n (β)−DC

n (β)
∣∣∣ ≤ L

n

n∑
i=1

sup
β∈B
|νni(β)− ei(β)|+ ξ(n)

L

n

n∑
i=

sup
β∈B
|ei(β)|

Now,

1

n

n∑
i=1

sup
β∈B
|νni(β)− ei(β)| ≤ 1

n

n∑
i=1

sup
β∈B
|gn(Ti)− g(Ti)|

=

∫ 1

0

sup
β∈B
|gn(t)− g(t)|dmn(t)

where mn(t) =
n∑
i=1

I(Ti ≤ t). Applying the Dominated Convergence Theorem, it is easily

seen that ∫ 1

0

sup
β∈B
|gn(t)− g(t)|dmn(t)→ 0 as n→∞.

On the other hand, by the strong law of large numbers,

1

n

n∑
i=

sup
β∈B
|ei(β)| → E

[
sup
β∈B
|e|
]
<∞.

Therefore,

lim
n→∞

sup
β∈B
|D̃C

n (β)−DC
n (β)| = 0

Remark 8. This theorem implies that in the neighborhood of the true parameter β0, β̃Cϕ

and the minimizer of DC
n (β) are equivalent. Under some mild-conditions, β̃Cϕ is a strongly

consistent estimator of β0; that is, β̃Cϕ → β0 w.p.1. Also, β̃Cϕ is a
√
n-consistent estimator

of β0, that is,
√
n(β̃Cϕ − β0) = Op(1). For reference to these facts, please see Hettmansperger

and McKean (1998).
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For i = 1, . . . , n, by imputation (j = 1) and inverse probability (j = 2), define Ỹijn by

Ỹijn =

 δiYi +
(
1− δi

)(
Xτ
i β̃

C
ϕ + ĝCn (Ti)

)
, if j = 1;

δi
Γ̂(Ti)

Yi +
(
1− δi

Γ̂(Ti)

)(
Xτ
i β̃

C
ϕ + ĝCn (Ti)

)
, if j = 2,

where, ĝCn (t) = g̃C2n(t)− (g̃C1n(t))τ β̃Cϕ , Γ̂(t) =
n∑
j=1

ωnj(t)δj, with

ωnj(t) =
Ω(

t−Tj
hn

)∑n
j=1 Ω(

t−Tj
hn

)
.

Ω is a kernel function and hn a bandwidth sequence satisfying hn → 0 as n→∞. If we set,

Yij =

 δiYi +
(
1− δi

)(
Xτ
i β + g(Ti)

)
, if j = 1;

δi
∆(Zi)

Yi +
(
1− δi

∆(Zi)

)(
Xτ
i β + g(Ti)

)
, if j = 2,

(4.7)

under the MAR assumption,

E(Yi1|Zi) = E[δiYi +
(
1− δi

)(
Xτ
i β + g(Ti)

)
|Zi] = Xτ

i β + g(Ti).

Thus Yi1 = Xτ
i β + g(Ti) + ei, with E(ei|Zi) = 0. Also, for the inverse probability case and

under the MAR condition, we have

E
[ δi

∆(Zi)
Yi+

(
1− δi

∆(Zi)

)(
Xτ
i β+g(Ti)

)∣∣∣Zi] = E
[ δi

Γ(Ti)
Yi+

(
1− δi

Γ(Ti)

)(
Xτ
i β+g(Ti)

)∣∣∣Zi]

and

E
[ δi

Γ(Ti)
Yi +

(
1− δi

Γ(Ti)

)(
Xτ
i β + g(Ti)

)∣∣∣Zi] = Xτ
i β + g(Ti) .

Thus Yi2 = Xτ
i β + g(Ti) + ηi, with E(ηi|Zi) = 0.
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Also, taking the conditional expectation of (4.1) with respect to T , we have

E[Yi|Ti = t] = E[Xτ
i |Ti = t]β + g(t), (4.8)

Let g1(t) = E[X|T = t] and gj2(t) = E[Y |T = t] = E[Yij|T = t], j = 1, 2. This suggests that

g(t) = g2(t)− g1(t)τβ. (4.9)

Let

Wnj(t) =
M(

t−Tj
kn

)∑n
j=1M(

t−Tj
kn

)
.

where M is a kernel function and kn is a bandwidth sequence (kn → 0 as n → ∞). Define

ĝ1n(t) =
n∑
k=1

Wnk(t)Xk and ĝj2n(t) =
n∑
k=1

Wnk(t)Ỹkjn. Under some mild conditions, it can be

shown that ĝ1n(t)→ g1(t) and ĝj2n(t)→ gj2(t) with probability 1.

Theorem 9. Under assumptions (J5)− (J9) and Remark 8

|gn(t)− ĝCn (t)| → 0 as n→∞ w.p 1.

Proof.

|gn(t)− ĝCn (t)| = |g̃n(t)− g(t) + g(t)− ĝCn (t)|

≤ |gn(t)− g(t)|+ |g(t)− ĝCn (t)|

Clearly, from (4.6), |gn(t)− g(t)| → 0 w.p.1 as n→∞. Then, to complete the proof, we just

need to show that |g(t)− ĝCn (t)| → 0 w.p.1 as n→∞. Indeed,

g(t)− ĝCn (t) = gC2 (t)− (gC1 (t))τβ −
(
g̃C2n(t)− (g̃C1n(t))τβ0

)
= (gC2 (t)− g̃C2n(t)) + (g̃C1n(t)− g̃C1 (t))τβ0 + (g̃C1 (t))τ (β̃Cϕ − β0)

53



Then, |g(t)− ĝCn (t)| ≤ |gC2 (t)− g̃C2n(t)|+ ‖g̃C1n(t)− g̃C1 (t)‖‖β0‖+ ‖g̃C1n(t)‖‖β̃Cϕ − β0‖. Clearly,

|gC2 (t) − g̃C2n(t)| → 0 and |gC1 (t) − g̃C1n(t)| → 0 w.p.1 by consistency. g̃C1n(t) is bounded since

it converges. Then, ‖g̃C1n(t)‖‖β̃Cϕ − β0‖ → 0 w.p.1 since β̃Cϕ − β0 → 0 w.p.1. as n → ∞.

Therefore,

|gn(t)− ĝCn (t)| → 0 as n→∞ w.p 1.

Set

vijn (β) = Ỹijn − ĝj2n(Ti)−
(
Xi − ĝ1n(Ti)

)τ
β .

Now, based on simple imputation, the rank estimator β̂Iϕ of β0 is defined by β̂Iϕ = Argmin
β∈B

DI
n(β)

with DI
n(β) defined by

DI
n(β) =

1

n

n∑
i=1

ϕ
(RI(vi1n (β))

n+ 1

)
vi1n (β) ,

where RI(vi1n (β)) is the ith rank of vi1n (β). Now letting SIn(β) = −∇DI
n(β), we have

SIn(β) =
1

n

n∑
i=1

ϕ
(RI(vi1n (β))

n+ 1

)(
Xi − g̃1n(Ti)

)
. (4.10)

On the other hand, based on the inverse probability, the rank estimator β̂IPϕ of β0, is defined

by β̂IPϕ = Argmin
β∈B

DIP
n (β) with

DIP
n (β) =

1

n

n∑
i=1

ϕ
(RIP (vi2n (β))

n+ 1

)
vi2n (β) ,

where RIP (v2
in(β)) is the ith rank of vi2n (β). Letting SIPn (β) = −∇DIP

n (β), we have

SIPn (β) =
1

n

n∑
i=1

ϕ
(RIP (vi2n )

n+ 1

)(
Xi − g̃1n(Ti)

)
(4.11)

54



Note that ĝ1n(Ti) is a p-vector and the estimation of gj2, involves all the Yi’s, making

{vijn (β0)}ni=1 to be a set of dependent random variables. Also if we set G1
in and G2

in to denote

distribution functions of vi1n (β0) and vi2n (β0) respectively, it can be easily shown that

G1
i (s) = lim

n→∞
G1
in(s) = lim

n→∞
P (vi1n (β0) ≤ s)

and

G2
i (s) = lim

n→∞
G2
in(s) = lim

n→∞
P (vi2n (β0) ≤ s),

where G1
i and G2

i are conditional distribution functions of ei and ηi given Zi, respectively.

4.4 Assumptions

The following assumptions were used above to motivate the theory leading to the def-

inition of the rank estimators β̂Iϕ and β̂IPϕ . They will be useful in studying the asymptotic

properties of the rank estimators β̂Iϕ and β̂IPϕ .

(J1) P (Xτβ = Xτβ0) < 1 for any β 6= β0,

(J2) ϕ is a bounded, twice continuously differentiable score function with bounded deriva-

tives, defined on (0, 1), and, satisfying:

∫ 1

0

ϕ(u)du = 0 and

∫ 1

0

ϕ2(u)du = 1

(J3) The cumulative distribution H of Y given Z is symmetric about 0 and has a corre-

sponding density h that is absolutely continuous with finite Fisher information, i.e.,

I(h) =

∫ ∞
−∞

[h′(ε)
h(ε)

]2

h(ε)dε <∞. Define γϕ =

∫ 1

0

ϕ(u)ϕH(u)du, where ϕH(u) =
h′(H−1(u))

h(H−1(u))
.
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(J4) DefineX∗ = X−g̃1n(T ). Assume that
1

n
XτX → Σ,

1

n
G̃τ
nG̃n → G and

1

n

(
G̃τ
nX +XτG̃n

)
→ B,

for some positive definite matrices Σ, G and B. Also, assume that

P (‖X∗‖ ≥ cn) = oP (dn) for dn → 0 as cn →∞.

(J5) inft Γ(t) > 0, infz ∆(z) > 0 and the density of T , say m(t), exits and satisfies

0 < inf
t
m(t) ≤ sup

t
m(t) <∞.

Also Γ(·) has bounded derivatives.

(J6) gC1 (·), gC2 (·), g1(·), and gj2(·) have continuous derivatives at t and bounded derivatives

up to order 2.

(J7) The kernels K(·), Ω(·) and M(·) are regular kernels of order r(> 2).

(J8) The bandwidth bn, hn and kn satisfy the following conditions:

i.) nknbn →∞, nb4r
n → 0, nk4r

n → 0 and b2
n/kn → 0

ii.) nhn →∞ and nh4r
n → 0

iii.) C(log n/n)γ < hn, bn, kn < ζn, for any C > 0, γ = 1 − 2/p, p > 2 and ζn not

necessarily the same for the three bandwidths such that C(log n/n)γ < ζn < 1

satisfying ζn → 0 as n→∞.

(J9) sup
t
E[‖X‖p|T = t] <∞ and sup

t
E[|Y |p|T = t] <∞ for p > 2.

Remark 9. Assumption (J1) stands for the identifiability condition and together with (J2),

ensures the consistency of the resulting estimator. (J5), (J6), (J7), (J8) and (J9) are stan-

dard assumptions for nonparametric regression problems. Specifically (J5) ensures the non

missingnesss with probability 1 anywhere in the domain of Z. Assumption iii.) in (J8) and
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(J9) ensure the uniform consistency of the Nadaraya Watson estimator used to the true un-

known function g, for more discussion see Einmahl and Mason (2005). As pointed out by

Xue (2009), the assumption P (‖X∗‖ ≥ cn) = op(dn) for dn → 0 as cn → ∞ in (J4) is

commonly used for avoiding the boundary problem. This assumption is also used by Zhu

and Fang (1996) and Wang and Rao (2002a). For a class of distributions that satisfy this

assumption, see discussion in Xue (2009). (J1), (J2), (J3) and (J4) together with others

assumptions listed above, ensure the asymptotic normality of the resulting estimator. For

practical issue, the optimal bandwidth can be chosen to lie in the interval [a.n−1/5, b.n−1/5]

for 0 < a < b < ∞. See Einmahl and Mason (2005) for more discussion. Most of regular

kernels in (J7) satisfy assumption (C6) of Xue (2009) or Wang and Sun (2007).

4.5 Asymptotic Normality

Put X = (X1, · · · , Xn)τ and G̃n = (g̃1n(T1), · · · , g̃1n(Tn))τ two matrices given by

X =



X11 · · · X1n

X21 · · · X2n

Xp1 · · · Xpn


G̃n =



g̃11n(T1) · · · g̃1pn(T1)

g̃11n(T2) · · · g̃1pn(T2)

g̃11n(Tn) · · · g̃1pn(Tn)


.

For simplicity, set Dl
n = DI

n, Sln = SIn for l = I and Dl
n = DIP

n , Sln = SIPn for l = IP . Now,

as discussed in Hettmansperger and McKean (1998), if we set

M l
n(β) = (2γϕ)−1X∗τX∗(β − β0)− (β − β0)τSln(β0) +Dl

n(β0),

we obtain the following result called asymptotic quadraticity which was proved by Jaeckel

(1972).
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Theorem 10. Under assumptions (J1)− (J6), ∀ε > 0 and C > 0,

lim
n→∞

Pβ0

[
max

‖β−β0‖≤ C√
n

|Dl
n(β)−M l

n(β)| ≥ ε
]

= 0

This result provides a quadratic approximation of Dl
n byM l

n and leads to the asymptotic

linearity derived by Jureckova (1971) and is displayed as follows.

Theorem 11. Under (J1)− (J9), for any C > 0 and ε > 0,

lim
n→∞

Pβ0

[
sup

‖β−β0‖≤n−1/2C

∥∥∥n−1/2[Sln(β)− Sln(β0)] + n−1/2γ−1
ϕ X∗τX∗(β − β0)

∥∥∥ ≥ ε
]

= 0

Proofs of Theorem 10 and Theorem 11 can be constructed in a straightforward manner

along the lines discussed in Hettmansperger and McKean (1998) for the linear model setting.

Therefore, for the sake of brevity, they will not be included here.

Theorem 12. Under assumptions (J1) − (J9),
√
nSln(β0) ≈ Np(0,Σjn)

D−→ Np(0,Vj) where

j = 1 for l = I and j = 2 for l = IP . Vj = lim
n→∞

Σjn.

Before giving the proof of Theorem 12, consider the following notation from Brunner

and Denker (1994). Set

λin = Xi − ĝ1n(Ti), Jjn(s) =
1

n

n∑
i=1

Gj
in(s), Ĵjn(s) =

1

n

n∑
i=1

I(vi1n (β0) ≤ s),

Fjn(s) =
1

n

n∑
i=1

λinG
j
in(s), F̂jn(s) =

1

n

n∑
i=1

λinI(vijn (β0) ≤ s)

and T ln(β0) =
Sln(β0)

α(n)
− E

[Sln(β0)

α(n)

]
.

Lemma 5 (Brunner and Denker (1994)). Suppose that M0n
γ ≤ m1(n) ≤ M1n

γ for some

constants 0 < M0 ≤ M1 < ∞ and γ > 0, and that ζjn ≥ Cna for some constant a, C ∈ R,
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where

Ujn =

∫
ϕ(Jjn(s))(F̂jn − Fjn)(ds) +

∫
ϕ′(Jjn(s))(Ĵjn(s)− Jjn(s))Fjn(ds).

and ζjn is the minimum eigenvalue of V ar(Ujn). Then nW−1
jn T

l
n(β0) is asymptotically stan-

dard multivariate normal, provided ϕ is twice continuously differentiable, with bounded second

derivative and γ < (a+ 1)/2.

Proof of Theorem 12. Assume that max
1≤i≤n

‖λin‖ = α(n) <∞. From the setting defined above,

Sln(β0) =
1

n

n∑
i=1

ϕ
(Rl(vijn (β0))

n+ 1

)(
Xi − ĝ1n(Ti)

)
=

∫
ϕ
( n

n+ 1
Ĵjn

)
dFjn

Now define

Λn = n2E[(T ln(β0))(T ln(β0))τ ], Bjn = −
∫

(F̂jn − Fjn)dϕ(Jjn) +

∫
(Ĵjn − Jjn)

dFjn
dJjn

dϕ(Jjn)

and Wjn = n2V ar(Bjn). From the fact that β0 = Argmin
β∈B

E(Dl
n(β)), it can be seen that

E[Sln(β0)] = 0. This implies that E[T ln(β0)] = 0 and T ln(β0) =
Sln(β0)

α(n)
. Now under assump-

tion (J2) and by Brunner and Denker (1994), for Theorem 12 to hold, it suffices to check

if conditions of Lemma 5 are satisfied. To that end, the fact that V ar(εi|Zi) > 0, there

exists ε > 0 such that the minimum eigenvalue of V ar(Bjn), say µjn satisfies µjn > εnb, for

0 < b < 1/2. This is obtained under the assumption that ςjn/n → ∞ putting µjn → ∞

as n → ∞, see Brunner and Denker (1994) for more discussion. Again by Brunner and

Denker (1994), Ujn = nBjn and then, V ar(Ujn) = n2V ar(Bjn). Thus, ξjn = n2µjn ≥ εn2+b.

Hence, putting a = 2 + b, γ = 1, M0 = M1 and C = ε, conditions of Lemma 5 are satis-

fied. This, shows that nW−1
jn T

l
n(β0) is asymptotically multivariate standard normal. There-

fore
√
nSln(β0) is asymptotically multivariate normal with mean 0 and covariance matrix

Σjn =
α(n)√
n

Wjn.
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Remark 10. For l = I or l = IP , note that by definition of β̂lϕ, Sln(β̂lϕ) = 0. Also,

from the fact that M l
n is a quadratic function of β, it is uniquely minimized by β̃lϕ =

γϕ
(
X∗τX∗

)−1
Sln(β0). Assumption (J4) ensures that

1

n

(
X∗τX∗

)
→ Σ∗ as n → ∞ for some

positive definite matrix Σ∗. Then, under the assumptions of Theorem 11,
√
n(β̂lϕ − β̃lϕ) =

op(1). The proof of this claim can also be constructed along the lines given in Hettmansperger

and McKean (1998). Moreover, conditioning on Z and using the SLLN, SIn(β0)→ 0 w.p.1.

The following theorem gives a practical way of estimating the covariance matrix Σjn =
α(n)√
n

Wjn.

Theorem 13. Suppose that assumptions (J1)− (J9) hold and let j = 1 for l = I and j = 2

for l = IP . Define

Ẑ l
j =

n∑
i=1

λinϕ
(R(vijn (β̂lϕ))

n+ 1

)
+

1

n

n∑
i=1

λinϕ
′
(R(vijn (β̂lϕ))

n+ 1

)
R(vijn (β̂lϕ))

= nSln(β̂lϕ) +
1

n

n∑
i=1

λinϕ
′
(R(vijn (β̂lϕ))

n+ 1

)
R(vijn (β̂lϕ))

=
1

n

n∑
i=1

λinϕ
′
(R(vijn (β̂lϕ))

n+ 1

)
R(vijn (β̂lϕ)),

since Sln(β̂lϕ) = 0. Then, Ŵjn = [Ẑ l
j −E(Z l

j)][Ẑ
l
j −E(Z l

j)]
τ →Wjn (positive definite) in the

L2-norm as n→∞, where

Z l
j = n

∫
ϕ(Jjn(t))F̂jn(dt) +

∫
ϕ′(Jjn(t))Ĵjn(t)Fjn(dt)

= nSln(β0) +
1

n

n∑
i=1

λinϕ
′
(R(vijn (β0))

n+ 1

)
R(vijn (β0))

Proof. By Theorem 4.1 of Brunner and Denker (1994), to prove this theorem it is sufficient

to prove that lim
n→∞

n

ςjn
= 0, where ςjn represents the minimum eigenvalue of Wjn. This is

obtained from the fact that µjn ≥ εnb for 0 < b < 1/2.
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Note that E[Sln(β0)] = 0. Then, conditioning on Z, we have,

E[Z l
j] =

1

n

n∑
i=1

λinE
[
ϕ′
(R(vijn (β0))

n+ 1

)
R(vijn (β0))

]
=

n∑
i=1

λin

∫
ϕ′(Gj

in(u))dGj
in(u)

≈
n∑
i=1

λin

∫
ϕ′(Gj

i (u))dGj
i (u)

≈
( n∑
i=1

λin

)∫
ϕ′(Gj(u))dGj(u)

where

Gj(u) =

 ∆(z)H(u), if j = 1;
∆(z)
Γ(t)

H(u), if j = 2.

For either j = 1 or j = 2, considering the change of variables, say, s = ∆(z)H(u) or

s =
∆(z)

Γ(t)
H(u), we get ∫

ϕ′(Gj(u))dGj(u) =

∫
ϕ′(s)ds

Hence,

E[Z l
j] ≈

( n∑
i=1

λin

)∫
ϕ′(s)ds

Theorem 14. Under assumptions (J1)− (J6), we have

√
n(β̂lϕ − β0)

D−→ N(0, γ2
ϕΣ−1

j ).

where

Σj = Σ∗−1VjΣ
∗−1 .

The proof of this Theorem is obtained by combining results of Theorem 11, Lemma 12

and the discussion in Remark 10.
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4.6 Estimation of the function g

As it can seen from the discussion in section 2, function g is not fully estimated. In

estimating β0, the first step of the estimation of g was used by setting it as a known function

of t but unknown as a function of β throughout the estimates of g1 and gj2. As soon as the

estimated values β̂ϕ of β0 are obtained, one can now obtain the estimated function ĝn of g

accordingly to the estimated value of β0 by putting:

ĝn(t) = ĝj2n(t)− ĝ1n(t)β̂lϕ

where j = 1 for l = I and j = 2 for l = IP .

Theorem 15. Under assumptions (J1) − (J9), we have ĝn(t) − g(t) = o(1) with probability

1.

Proof. By definition of ĝn(t), we have

ĝn(t)−g(t) = ĝj2n(t)−g2(t)−
(
ĝ1n(t)−g1(t)

)τ
(β̂ϕ−β0)−(g1(t))τ (β̂ϕ−β0)−

(
ĝ1n(t)−g1(t)

)τ
β0

This implies that,

|ĝn(t)−g(t)| ≤ |ĝj2n(t)−g2(t)|+‖ĝ1n(t)−g1(t)‖‖β̂ϕ−β0‖+‖(g1(t))‖‖β̂ϕ−β0‖+‖ĝ1n(t)−g1(t)‖‖β0‖
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We continue the proof with j = 1 and similar argument can be used to derive that of j = 2.

By definition of ĝ1
2n(t),

ĝ1
2n(t)− g2(t) =

n∑
i=1

Wni(t)Ỹi1n − g2(t)

=
n∑
i=1

Wni(t)[δiYi +
(
1− δi

)(
Xτ
i β̃

C
ϕ + ĝCn (Ti)

)
− g2(t)]

=
n∑
i=1

Wni(t)(Yi1 − g2(t)) +
n∑
i=1

Wni(t)(1− δi)Xτ
i (β̃Cϕ − β0)

+
n∑
i=1

Wni(t)(1− δi)(ĝCn − g(t)).

Note that E[Yi1|Ti = t] = g2(t) and E[‖(1 − δi)Xi‖|Ti] < ∞. Then, under mild-conditions,

we have, |
n∑
i=1

Wni(t)Yi1 − g2(t)| → 0 w.p.1 and by Theorem 9,

|ĝCn − g(t)| → 0 w.p.1.

Also, conditioning on T and using the SLLN, we have

n∑
i=1

Wni(t)(1− δi)Xi → E[‖(1− δ)X‖|T ] w.p.1.

Hence,
n∑
i=1

Wni(t)(1− δi)Xi = O(1). From the fact that β̃Cϕ − β0 = o(1), we have

ĝ1
2n(t)− g2(t)→ 0 w.p.1.

Using the same argument, it can be shown that ĝ1n(t)− g1(t)→ 0 w.p.1. Combining these

facts with Remark 10 completes the proof.
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4.7 Bandwidth Selection

An important issue when dealing with kernel estimation, is the selection of an appro-

priate bandwidth sequence. In the nonparametric regression literature, this problem has

been studied extensively. The common approach used in selecting the bandwidth, is the

delete-one cross-validation rule. This approach consists in minimizing the "leave-one-out"

version of objective function evaluated at the estimator of β0 as a function the bandwidth

h. That is, bn, hn and kn may be obtained by minimizing

n∑
i=1

ϕ
(R(û−i(h))

n+ 1

)
û−i(h),

where

û−i(h) =


ν−i,n(β̃Cϕ , h), for bn;

v−i,jn (β̂lϕ, h), for kn .

δi − Γ̂−i(Ti, h), for for hn.

with ν−i,n(β̃Cϕ , h), v−i,jn (β̂lϕ, h) and δi−Γ̂−i(Ti, h) being the "leave-one-out" versions of νi,n(β̃Cϕ ),

vijn (β̂lϕ), δi − Γ̂(Ti), respectively, in which bn, kn, hn are replaced by h.

4.8 Simulation

To fully understand the optimality properties of the proposed approach, we will consider

the finite sample behavior of the estimator. To do so, a simulation study is conducted. The

model used in the simulation is given by

Y = β0x+ g(T ) + ε

with x generated from a normal distribution with mean 1 and variance 1. The random errors

ε are generated from the contaminated normal distribution CN(γ, σ) = (1 − γ)N(0, 1) +
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γN(0, σ2) with different degrees of contamination and the t-distribution with various degrees

of freedom. The kernels K(·) and M(·) were taken to be the Epanechnikov Kernel

K(t) = M(t) = 0.75(1− t2)I(|t| ≤ 1).

Based on assumption (J8), all the three bandwidths bn, kn and hn were taken to be propor-

tional to n−1/5. Two simulation scenarios were considered. In Scenario 1, the true g was

taken to be 0 and T =
i

n2
, for i = 1, · · · , n and for z = (x, t), three cases were considered:

• Case 1: ∆(z) = 0.8 + 0.2|x− 1| if |x− 1| ≤ 1, and 0.95 elsewhere.

• Case 2: ∆(z) = 0.9− 0.2|x− 1| if |x− 1| ≤ 4.5, and 0.1 elsewhere.

• Case 3: ∆(z) is taken to be a sequence of proportions of missingness starting from 0%

to 50% with steps of 10%.

In Scenario 2, the true g was taken to be g(t) = (sin(2πt2))1/3 and T is generated from

the uniform distribution U [0, 1/4]. One more case is added to the three previous.

• Case 4: ∆(z) = 0.9−0.2(|x−1|+ |t−0.5|) if |x−1|+ |t−0.5| ≤ 1.5, and 0.8 elsewhere.

In all the cases, δ was generated from the Bernoulli(∆(z)) distribution. Under both scenarios

β is estimated using simple imputation (SI) and based on the inverse probability procedure

where Ω(t) is chosen in two ways. First, as defined above, we take it to be kernel (Ker),

that is Ω(t) = M(t), and secondly by taking it to be the logistic function (Log) given

by Ω(t) =
1

1 + e−t
as in Müller (2009). From 5000 simulations, the MSEs of the resulting

rank (R) estimator of β0 are reported and are compared to those of the least squares (LS)

estimator of β0. Figures 4.1 – 4.17 contain the results of the simulation experiments.

4.9 Results and Discussion

The results of the simulation experiment are described below:
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Figure 4.1: Scenario 1, Case 1: MSE vs Proportion of Contamination and t-df
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Figure 4.2: Scenario 1, Case 2: MSE vs Proportion of Contamination and t-df
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Figure 4.3: Scenario 1, Case 3: MSE vs Proportion of Missing Data for SI under contaminated
normal error distribution
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Figure 4.4: Scenario 1, Case 3: MSE vs Proportion of Missing Data for SI under t error
distribution
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Figure 4.5: Scenario 1, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Ker) under contaminated normal error distribution
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Figure 4.6: Scenario 1, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Ker) under t error distribution
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Figure 4.7: Scenario 1, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Log) under contaminated normal error distribution
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Figure 4.8: Scenario 1, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Log) under t error distribution
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Figure 4.9: Scenario 2, Case 1: MSE vs Proportion of Contamination and t-df
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Figure 4.10: Scenario 2, Case 2: MSE vs Proportion of Contamination and t-df
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Figure 4.11: Scenario 2, Case 3: MSE vs Proportion of Missing Data for SI under contami-
nated normal error distribution
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Figure 4.12: Scenario 2, Case 3: MSE vs Proportion of Missing Data for SI under t error
distribution
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Figure 4.13: Scenario 2, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Ker) under contaminated normal error distribution
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Figure 4.14: Scenario 2, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Ker) under t error distribution
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Figure 4.15: Scenario 2, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Log) under contaminated normal error distribution
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Figure 4.16: Scenario 2, Case 3: MSE vs Proportion of Missing Data for inverse probability
(Log) under t error distribution
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Scenario 1:

Case 1: For the case of the CN distribution, the R estimator becomes more and more

superior to LS when the proportion of contamination increased. The same is true

under the t distribution with the R becoming superior to LS as the degrees of

freedom decrease (heavier tails). The MSEs are generally larger for the logistic

case in the contaminated normal case but smaller in the t distribution case.

Case 2: Once again R is increasingly superior to LS as the contamination increases

or as the tail-thickness of the distribution increases. For CN distribution, (SI)

generally does worse than (Log) and (Ker) and for t distribution (Log) does worse

than (Ker) and (SI).

Case 3: Under (SI), R performs comparably to LS under normality (CN(0, 3)) or tails

close to the tails of the normal distribution (CN(.01, 3) and t30) but, as in the

previous cases, does much better under heavy tails or larger contamination. What

is additionally notable under (Ker) and (Log) is that R consistently outperforms

LS when the proportion of missing data is large, even under normality.

Scenario 2:

Case 1: Similar to Scenario 1, Case 1.

Case 2: Similar to Scenario 1, Case 2.

Case 3: Similar patterns are observed as in Case 3 or Scenario 1. There are, however,

some notable differences. Under Scenario 1, for the (SI) case, R and LS were

comparable under normality. Under Scenario 2, LS is clearly superior to R.

Under Scenario 1, for the (Ker) case, R does better than LS when the proportion

of missing increases. This is no longer the case when the t degree of increases

where R and LS are comparable. A similar observation can be made for the

(Log) case.
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Case 4: Similar to Case 2.

The first take-home message is that R performs better under heavy tailed error distributions

and cases containing contaminations. It is generally comparable to LS under normal error.

The second take-home message is that R with inverse probability imputation does better than

its LS counterpart when the proportion of missing data is large. This makes R estimation

extremely appealing for situations where we encounter high rates of missing information.

We finish this section by giving an alternative approach to defining rank estimators under

responses missing at random. The theory follows from the above theorems in a (mostly)

straightforward manner.

4.10 Empirical log-likelihood approach

Setting

ηij(β) = ϕ
(Rl(vijn (β))

n+ 1

)(
Xi − g̃1n(Ti)

)
for j = 1, 2. One can define the empirical log-likelihood function of β as follows

Lijn (β) = −2 sup
(p1,...,pn)∈(0,1)n

{ n∑
i=1

log(npi) :
n∑
i=1

pi = 1,
n∑
i=1

piηij = 0
}
, j = 1, 2.

Now take λ ∈ Rd for which the following equation holds:

1

n

n∑
i=1

ηij(β)

1 + λτηij(β)
= 0. (4.12)

From this, Lijn (β) can be rewritten as

Lijn (β) = 2
n∑
i=1

log
(
1 + λτηij(β)

)
. (4.13)

Consider the matrix Anj defined by Anj =
1

n

n∑
i=1

ηij(β0)ητij(β0). Clearly from the fact that

E(εi|Zi) = 0 and E(ε2
i |Zi) < ∞, Anj → Vj as n → ∞. Based on Theorem 12, we have
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max
1≤n
‖ηij(β0)‖ = oP (cn) for some cn. Also, ϕ being bounded, implies that there exists a

positive constant C such that cn = Cα(n). Hence, one can obtain the asymptotic distribution

of Lijn (β) at the true parameter. This is given in the following theorem.

Theorem 16. Under the assumptions (J1)− (J9), we have

Lijn (β0)
D−→ χ2

p

The proof of this Theorem is obtained by putting together Theorem 12 and Slutsky’s

Lemma.

Remark 11. Note that considering the right hand side of (4.13) as a function of λ and

performing the Taylor expansion of order 1 at ηij(β0) and using (4.12), we obtain

Lijn (β0) =
A−1
nj

n

( n∑
i=1

ητij(β0)
)( n∑

i=1

ηij(β0)
)

(1 + op(1)).

Setting

Lijn (β0) =
A−1
nj

n

( n∑
i=1

ητij(β0)
)( n∑

i=1

ηij(β0)
)

= nA−1
nj

(
Sln(β0)

)τ
Sln(β0),

we see that for n large enough, Lijn (β0) ≈ Lijn (β0). Hence, Lijn (β0)
D−→ χ2

p. Now putting

β∗ϕ = Argmax
β∈B

{−Lijn (β)}, the maximum empirical likelihood estimator of β0, we have follow-

ing theorem.

Theorem 17. Under the assumptions (J1)− (J9),

√
n(β∗ϕ − β0)

D−→ N(0, γ2
ϕΣ−1

j ),
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Figure 4.17: Scenario 2, Case 4: MSE vs Proportion of Contamination and t-df
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