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Abstract

A detachment of a graph H is a graph obtained from H by splitting some or all of its
vertices into more than one vertex. If g is a function from V(H) into N, then a g-detachment
of H is a detachment of H in which each vertex u of H splits into g(u) vertices. H is an
amalgamation of G if there exists a function ¢ called an amalgamation function from V(G)
onto V(H) and a bijection ¢’ : E(G) — E(H) such that e joining v and v is in E(G) iff ¢/(e)
joining ¢(u) and ¢(v) is in E(H).

We prove that for a given edge-colored graph there exists a detachment so that the result
is a graph in which the edges are shared among the vertices in ways that are fair with respect
to several notions of balance (such as between pairs of vertices, degrees of vertices in both
the graph and in each color class, etc.). The connectivity of color classes is also addressed.
Most results in the literature on amalgamations focus on the detachments of amalgamated
complete graphs and complete multipartite graphs. Many such results follow as immediate
corollaries to the main result, which addresses amalgamations of graphs in general.

We exhibit some applications of this result in Hamiltonian decomposition of several
families of graphs, and also we show that many known graph decomposition results can be
obtained by a short proof using the main theorem. We study the companion embedding
problems with many applications.

We then extend various results by Hilton, Nash-Williams and Rodger to hypergraphs.
Such extensions provide a powerful tool to generalizes Baranyai’s Theorems, and related
results by Berge and Johnson.

We study several hypergraph embedding problems which will extend results of Brouwer,

Schrijver, Baranyai, Haggkvist and Hellgren.
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In connection with Baranyai-Katona conjecture, we provide necessary and sufficient
conditions for a complete uniform hypergraph to be connected factorizable, answering a

question by Katona.
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Chapter 1

What are graph amalgamations?

1.1 Introduction

Edouard Lucas (1842-1891), the inventor of the Towers of Hanoi problem, discussed
the probléme de ronde that asked the following [64]: Given 2n + 1 people, is it possible to
arrange them around a single table on n successive nights so that nobody is seated next to
the same person on either side more than once? This problem is equivalent to a Hamiltonian
decomposition of Ks,,1; that is partitioning the edge set of Ks,,; into spanning cycles. A
solution to this problem for n = 3 is illustrated in Figure 1.1, which is due to Walecki. This

can be easily generalized to any complete graph by “rotating” an initial cycle.

Figure 1.1: Walecki Construction

In 1984, Hilton [44] suggested a different approach to solving this problem, one of which

is useful for solving another family of problems as well. He first fused all the vertices of K,



(this is called amalgamation) which results in having ( ) loops incident with a vertex. Then
he shared the loops evenly between different color classes. (In this dissertation, the i color
class of GG is defined to be the spanning subgraph of G that contains precisely the edges
colored i.) Finally he reversed the fusion by splitting the single vertex into n vertices (this
is called detachment), so that each color class is a Hamiltonian cycle. This is illustrated in

Figure 1.2 for K. It is not obvious how we can detach the loops so that each color class is a

V2
vr U3 vr
amalgamatlon@edve coloring %/ detachment
L N ]
21 loops
V4
U6 Vg
Us

Figure 1.2: Hamiltonian decomposition of K

Hamiltonian cycle. The second problem that Hilton solved was an embedding problem [44].
Given an edge-coloring of K,,, in which each color class is a path, he used amalgamations to
extend this coloring to an edge-coloring of K, ,, so that each color class is a Hamiltonian
cycle in K4y, (so m + n must be odd). The idea is to add a new vertex, say u to K,,
incident with (g) loops so that there are n edges between this vertex and every other vertex.
Let us call this graph K}. (In fact K is an amalgamation of K,,, in which all further n
vertices are contracted in one point.) One can easily color all the edges incident with u so
that the valency of u for each color class is exactly 2n. Finally by detaching u into n vertices,
say uq,...,u, and sharing the edges of each color class incident with u among uy,...,u,

as evenly as possible and ensuring that each color class is connected, provides the desired



outcome: a Hamiltonian decomposition of K,,.,. This is illustrated for m = 5,n = 2 in

Figure 1.3. To provide more explanation, first we give some definitions.

Figure 1.3: Embedding a path decomposition of K5 into a Hamiltonian decomposition of K

Throughout this dissertation, all graphs are finite and undirected (possibly with loops
and multiple edges). The letters G and H denote graphs. Sets may contain repeated elements
(so are really multisets). Each edge is represented by a 2-element multisubset of the vertex
set; in particular {u,u} represents a loop on the vertex u. A k-edge-coloring of a graph G is
a mapping f : E(G) — C, where C'is a set of k colors (often we use C' = {1,...,k}). It is
often convenient to have empty color classes, so we do not require f to be surjective.

In this dissertation, x ~ y means |y| < x < [y], {(u) denotes the number of loops
incident with vertex u, d(u) denotes the degree of vertex u (loops are considered to contribute
two to the degree of the incident vertex), the subgraph of G induced by the edges colored
j is denoted by G(j), w(G) is the number of components of G, the multiplicity of a pair
of vertices u, v of G, denoted by m(u,v), is the number of edges joining v and v in G, K,
denotes the complete graph with n vertices, and K,, _,, denotes the complete multipartite
graph each part having m vertices. If we replace every edge of G by A multiple edges, then
we denote the new graph by AG.

Informally speaking, amalgamating a finite graph G can be thought of as taking G,
partitioning its vertices, then for each element of the partition squashing the vertices to

form a single vertex in the amalgamated graph H. Any edge incident with an original vertex



in G is then incident with the corresponding new vertex in H, and any edge joining two
vertices that are squashed together in G' becomes a loop on the new vertex in H.

More precisely, H is an amalgamation of G if there exists a function ¢ called an amal-
gamation function from V(G) onto V(H) and a bijection ¢' : E(G) — E(H) such that e
joining w and v is in E(G) if and only if ¢'(e) joining ¢(u) and ¢(v) is in E(H); We write
¢(G) = H. In particular, this requires that e be a loop in H if and only if, in G, it either
is a loop or joins distinct vertices u, v, such that ¢(u) = ¢(v). (Note that ¢’ is completely
determined by ¢.) Associated with ¢ is the number function n : V(H) — N defined by
n(v) = ¢~ (v)], for each v € V(H). We also shall say that G is a detachment of H in which

each vertex v of H splits (with respect to ¢) into the vertices in ¢~!({v}) (see Figure 1.4).

amalgamation
——

Figure 1.4: A graph G with one of its amalgamations H

A detachment of H is, intuitively speaking, a graph obtained from H by splitting some
or all of its vertices into more than one vertex (see Figure 1.5). If n is a function from V (H)
into N, then an n-detachment of H is a detachment of H in which each vertex u of H splits
into n(u) vertices. In other words, G is an n-detachment of H if there exists an amalgamation
function ¢ of G onto H such that |¢~'({u})| = n(u) for every u € V(H). Some authors refer
to detachments as disentanglements (see [58, 60, 61]).

Since two graphs G and H related in the above manner have an obvious bijection

between the edges, an edge-coloring of G or H, naturally induces an edge-coloring on the



G H

Figure 1.5: A graph G with one of its detachments H

other graph. Hence an amalgamation of a graph with colored edges is a graph with colored
edges.

One of the most useful properties that one can obtain using the techniques described
here, is that many graph parameters (such as colors, degrees, multiple edges) can be simul-

taneously shared evenly during the detachment process. This is often the most desirable

property.

Theorem 1.1. (Bahmanian, Rodger [5, Theorem 3.1)) Let H be a k-edge-colored graph
and let n be a function from V(H) into N such that for each v € V(H), n(v) = 1 implies
ly(v) = 0. Then there exists a loopless n-detachment G of H in which each v € V(H) is

detached into vy, . .., Uy, such that G satisfies the following conditions:
(A1) dg(u;) ~ dg(u)/n(u) for each uwe V(H) and 1 <i < n(u);
(A2) dagy(us) ~ dugy(u)/n(u) for eachue V(H), 1 <i<n(u), and 1 < j <k;

(A3) mg(ui,uy) ~ EH(U)/(”(QU)) for each we V(H) with n(u) =2 and 1 < i < < n(u);



(Ad) mey)(wi, uy) ~ €H(j)(u)/("(2“)) for each w € V(H) with n(u) = 2, 1 <i < < n(u),

and 1 < j < k;

(AB) mg(us,vy) ~ mg(u,v)/(n(u)n(v)) for every pair of distinct vertices uw,v € V(H), 1 <

i <n(u), and 1 <i' < n(v);

(A6) ma( (wi, vi) ~ mug) (u,v)/(n(u)n(v)) for every pair of distinct vertices u,v € V(H),

I1<i<nu), 1< <n), and1 <j <k

(A7) If for some j, 1 < j < k, du(j(u)/n(u) is even for each v € V(H), then w(G(j)) =

w(H(j)).

The proof uses edge-coloring techniques and will be given in the next chapter. An edge-
coloring of a multigraph is (i) equalized if the number of edges colored with any two colors
differs by at most one, (ii) balanced if for each pair of vertices, among the edges joining the
pair, the number of edges of each color differs by at most one from the number of edges of
each other color, and (iii) equitable if, among the edges incident with each vertex, the number
of edges of each color differs by at most one from the number of edges of each other color. In
(80, 81, 82, 83] de Werra studied balanced equitable edge-coloring of bipartite graphs. The

following result is used to prove Theorem 1.1.

Theorem 1.2. Fuvery bipartite graph has a balanced, equitable and equalized k-edge-coloring
for each k € N.

Here we show that this result is simply a consequence of Nash-Williams lemma. A
family o7 of sets is laminar if, for every pair A, B of sets belonging to <7, either A c B, or
Bc A orAnB=a.

Lemma 1.3. (Nash-Williams [70, Lemma 2|) If o/, % are two laminar families of subsets
of a finite set S, and n € N, then there exist a subset A of S such that for every P € of U A,
|An P|~|P|/n.



Proof of Theorem 1.2. Let B be a bipartite graph with vertex bipartition {V;,V5}. For
1 = 1,2 define the laminar set L; to consist of the following sets of subsets of edges of B:
(i) The edges between each pair of vertices v; € Vi and vy € V3, (ii) For each v € Vj, the
edges incident with v, (iii) All the edges in B. Applying Lemma 1.3 with n = k provides
one color class. Remove these edges then reapply Lemma 1.3, with n = k — 1 to get the
second class. Recursively proceeding in this way provides the k-edge-coloring of B. It is
straightforward to see that this produces the result by observing that the edges in subsets
defined in (i), (ii) and (iii) guarantee that the k-edge-coloring is balanced, equitable, and

equalized respectively. O

1.2 Applications

In this section we demonstrate the power of Theorem 1.1. The results are not new, and
many follow from earlier, more restrictive versions of Theorem 1.1. But the point of this

section is to give the reader a feel for how amalgamations can be used.

Theorem 1.4. (Walecki [64]) \K, is Hamiltonian decomposable (with a 1-factor leave, re-

spectively) if and only if A(n — 1) is even (odd, respectively).

Proof. The necessity is obvious. To prove the sufficiency, let H be a graph with V/(H) = {v},
((v) = A(3) and n(v) = n , and let k = |A(n — 1)/2]. Color the loops so that {z;(v) = n,
for 1 < j <k (and lypi1)(v) = n/2, if A(n — 1) is odd). Applying Theorem 1.1 completes
the proof. O

The following result is essentially proved in [44], but the result is stated in less general

terms.

Theorem 1.5. (Hilton [44]) A k-edge-colored K, can be embedded into a Hamiltonian de-
composition of K,,4n (with a 1-factor leave, respectively) if and only if (m +n — 1) is even
(odd, respectively), k = [(m +n —1)/2|, and each color class of K,, (except one color class,

say k, respectively) is a collection of at most n disjoint paths, (color class k consists of paths

7



of length at most 1, at most n of which are of length 0, respectively), where isolated vertices

in each color class are to be counted as paths of length 0.

Proof. The necessity is obvious. To prove the sufficiency, let p; < n be the number of paths
colored i, 1 < i < k. Form a graph H by adding a new vertex u to K, so that {(u) = (;‘),
m(u,v) = n for each v € V(K,,), and n(u) = n. Color the new edges incident with vertices in
K, so that dyjy(v) = 2 forv e V(K,,), 1 < j <k (if m+nis even, do it so that dyg(v) =1
for v e V(K,,); so at most n such edges are incident with u by necessary conditions). Clearly,
each color appears on an even number of such edges (except possibly color & when m + n is
odd). Color the loops so that dgj)(u) = 2n for 1 < j < k (if m+n is even, then the coloring

must be so that dg s (u) = n). This is possible since each color appears on (2n —2p;)/2 >0

loops. Now applying Theorem 1.1 completes the proof. O

A similar result can be obtained for embedding AK,, into a Hamiltonian decomposition

of AK,,, 1. A more general problem is the following enclosing problem

Problem 1. Find necessary and sufficient conditions for enclosing an edge-colored NK,,

into a Hamiltonian decomposition of kK, +n for X < u.

An (rq,...,rg)-factorization of a graph G is a partition (decomposition) {F7y,..., Fi} of
E(G) in which F; is an ri-factor for ¢ = 1,... k. The following is a corollary of a strong
result of Johnson [51] in which each color class can have a specified edge-connectivity. A

special case of this is proved by Johnstone in [52].

Theorem 1.6. \K, is (rq,...,rg)-factorizable if and only if r;n is even for 1 <i <k, and
Zle ri = AMn—1). Moreover, for 1 <i < k each r;-factor can be guaranteed to be connected

if i is even.

Proof. The necessity is obvious. To prove the sufficiency, start from the graph H as in the
proof of Theorem 1.4, but color the loops so that £y ;y(v) = nr;/2 for 1 < j < k. Then apply

Theorem 1.1. O



The following result was proved for the special case 1 = ... =ry = rin [3, 74].

Theorem 1.7. A k-edge-coloring of K, can be embedded into an (ry,. ..
,T)-factorization of Kp,yy if and only if r;(m+n) is even for 1 <i <k, Zle ri=m+n—1,
di,.i)(V) < 1o for each v € V(K,,), 1 < i < k, and some permutation o € Sy, and

[E(Kn ()] 2 o (m —1)/2.

Proof. The necessity is obvious. To prove the sufficiency, start from the graph H as in the
proof of Theorem 1.5. Color the new edges incident with vertices in K, so that dgj)(v) =
To(j) forv e V(K,,), 1 < j < k. Then color the loops incident with u so that dg ;) (u) = rs¢ym
for 1 < j < k (the last necessary condition guarantees that the number of required loops is

non-negative), and apply Theorem 1.1. O

Problem 2. Find necessary and sufficient conditions for enclosing an edge-colored NK,, into

an (11, ...,7x)-factorization of pKpin for A < p.

The case A = i can be obtained by altering the proof of Theorem 1.7 slightly.

Some of the above results can be easily generalized to complete multipartite graphs.

is Hamiltonian decomposable (with a 1-

m

Theorem 1.8. (Laskar, Auerbach [57]) AK,,, .
factor leave, respectively) if and only if ny = -+ = n,, := n, and An(m — 1) is even (odd,

respectively).

Proof. The necessity is obvious. To prove the sufficiency, consider the graph H := A\n’K,,,
and n : V(H) — N with n(v) = n for each v € V(H). Using Theorem 1.6, find a connected

2n-factorization of H and apply Theorem 1.1. O

Another very nice requirement that one can ask of a Hamiltonian decomposition of a
complete multipartite graph is that it be fair; that is, in each Hamiltonian cycle, the number
of edges between each pair of parts is within one of the number of edges between each other
pair of parts. This result can be proved by being more careful in the construction of the

edge-coloring of the graph H described in the proof of Theorem 2.5; ensure that for each

9



color class the number of edges between each pair of vertices in H is within 1 of the number
of edges between each other pair of vertices (one could think of this color class as being

“equimultiple”). Leach and Rodger [59] used this approach to prove that

Theorem 1.9. K,,, ... s fair Hamiltonian decomposable if and only if ny = --- = ny, :=n,

and n(m — 1) is even.

Problem 3. Find necessary and sufficient conditions for enclosing a k-edge-colored \K,,, .. »,.
into a (fair) Hamiltonian decomposition of ki, . forn; <mnj, 1 <i<m <m', and

A< p.

Theorem 1.10. AK,, . s (r1,...,1)-factorizable if and only if ny = -+ = n,, 1= n,

m

rinm is even for 1 < i<k, and 3¥_ r; = An(m — 1).

Proof. The necessity is obvious. To prove the sufficiency, use Theorem 1.6 to find an
(nry, ..., nrg)-factorization of the graph H described in the proof of Theorem 1.8; then

apply Theorem 1.1. 0

Problem 4. Find necessary and sufficient conditions for enclosing a k-edge-colored NK,,, ..

M

/
(¥

: o . ,
into an (r1,...,rx)-factorization of pEy e, forng <ng, 1 <i<m <m/, and A < .

The Oberwolfach problem OP(r{*, ..., ri*) asks whether or not it is possible to partition
the edge set of K,,, n odd, or K,, with a 1-factor removed when n is even, into isomorphic 2-

factors such that each 2-factor consists of a; cycles of length r;, 1 < j < k,andn = Z?=1

ria;.
In [46] some new solutions to the Oberwolfach problem are given using the amalgamation

technique.
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Chapter 2

Multiply Balanced Edge Colorings of Multigraphs

2.1 Introduction

In this chapter, a theorem is proved that generalizes several existing amalgamation
results in various ways. The main aim is to disentangle a given edge-colored amalgamated
graph so that the result is a graph in which the edges are shared out among the vertices
in ways that are fair with respect to several notions of balance (such as between pairs of
vertices, degrees of vertices in the both graph and in each color class, etc). The connectivity
of color classes is also addressed. Most results in the literature on amalgamations focus
on the disentangling of amalgamated complete graphs and complete multipartite graphs.
Many such results follow as immediate corollaries to the main result in this chapter, which
addresses amalgamations of graphs in general, allowing for example the final graph to have
multiple edges. A new corollary (see Chapter 3) of the main theorem is the settling of the
existence of Hamilton decompositions of the family of graphs K (ay, . .., a,; A, pt); such graphs
arose naturally in statistical settings.

A graph is said to be: (i) almost regular if there is an integer d such that every vertex
has degree d or d + 1, (ii) equimultiple if there is an integer d such that every pair of vertices
has multiplicity d or d + 1, (iii) P-almost-regular (where P = {P;,..., P.} is a partition of
V(G)) if for 1 < ¢ < r, there is an integer d; such that each vertex in P, has degree d; or
d; + 1.

The main goal of this chapter is to prove Theorem 2.1. Informally, it states that for
a given k-edge-colored graph H and a function n : V(H) — N, there exists a loopless 7-
detachment G of H with amalgamation function ¢ : V(G) — V(H), n being the number

function associated with ¢, such that: (i) G and each of its color classes are P-almost-regular
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where P = {¢~'(v) : v € V(H)}, (ii) the subgraph of G induced by ¢~!(v) is equimultiple
for each v € V(H), as are each of its color classes, (iii) the bipartite subgraph of G formed
by the edges joining vertices in ¢~!(u) to the vertices in ¢~!(v) is equimultiple for every pair
of distinct u,v € V(H), as are each of its color classes, and (iv) under certain conditions,
the subgraph induced by each color class can be guaranteed to have the same number of
components in G as in H. The conditions (ii) and (iii) can be used to force G to be
multigraphs of interest, such as AK,,, \K,, ., or K(ai,...,ay; A, i) (for the definition of
K(ay,...,ap; A, ), see Chapter 3). As in previous results, condition (iv) is especially useful
in the context of Hamiltonian decompositions, since it can be used to force connected color
classes in H to remain connected in G.

A Hamiltonian decomposition of a graph G is a partition of the edges of GG into sets,
each of which induces a spanning cycle. Hamiltonian decompositions have been studied since
1892, when Walecki [64] proved the classic result that K, is Hamiltonian decomposable if
and only if n is odd. In 1976 Laskar and Auerbach [57] settled the existence of Hamiltonian
decomposition of the complete multipartite graph K,, ,, and of K,, ., — F where F'is a
1-factor. Nash-Williams [67] conjectured that every 2k-regular graph with at most 4k + 1
vertices has a Hamiltonian decomposition.

Several techniques have been used for finding Hamiltonian decompositions. The tech-
nique of vertex amalgamation, which was developed in the 1980s by Hilton and Rodger
[44, 48], has proved to be very powerful in constructing Hamiltonian decompositions of var-
ious classes of graphs, especially in obtaining embedding results; see also [47, 51, 70, 74].
Buchanan [28] used amalgamations to prove that for any 2-factor U of K,,, n odd, K, — E(U)
admits a Hamiltonian decomposition. Rodger and Leach [58] solved the corresponding exis-
tence problem for complete bipartite graphs, and obtained a solution for complete multipar-
tite graphs when U has no small cycles [60]. See also [23, 66] for different approach to solve
this problem. Detachments of graphs have also been studied in [18, 49], generalizing some

results of Nash-Williams [68, 69].
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The main theorem of this chapter, Theorem 2.1, not only generalizes several well-known
graph amalgamation results, (for example, in [44, 48, 58, 61, 74], Theorem 1, Theorem 1,
Theorem 3.1, Theorem 2.1 and Theorem 2.1 respectively all follow as immediate corol-
laries)), but also provides the right tool to find necessary and sufficient conditions for
K(ay,...,ap; A, 1) to be Hamiltonian decomposable, as shown in Theorem 3.4. The lat-
ter graph, K(ai,...,ap; A, p), is of particular interest to statisticians, who consider group
divisible designs with two associate classes, beginning over 50 years ago with the work of
Bose and Shimamoto [22]. Recently, partitions of the edges of K(ay,...,a,; A, ) into sets,
each of which induces a cycle of length m, have been extensively studied for small values of m
[37, 38, 39]. Theorem 3.4 provides a companion to this work, settling the problem completely
for longest (i.e. Hamiltonian) cycles with a really neat proof. When a; = ... = a, = a, we
denote K(ay,...,ay; \, ) by K(a®; A, u). Using Theorem 2.1, in Chapter 4 we will provide
conditions under which one can embed an edge-colored K (a®;\, ;) into an edge-colored
K(a"*"); X\, i) such that every color class of K(a®);\, ) induces a Hamiltonian cycle.
However obtaining such results will be much more complicated than for companion results
for simple graphs, with a complete solution unlikely to be found in the near future.

We describe terminology and notation in Section 2.2. Then we prove the main result in

Section 2.3.

2.2 Terminology and More Definitions

In this thesis, R denotes the set of real numbers, N denotes the set of positive integers,
and Zj denotes the set of integers {1,...,k}. If f is a function from a set X into a set
Y and y € Y, then f~'(y) denotes the set {r € X : f(z) = y}, and f~![y] denotes {z €
X : f(x) = y}\{y}. If z,y are real numbers, then |x| and [z] denote the integers such that
r—1<|z] <z <[z] <x+1, and x ~ y means |y| < = < [y]. We observe that for
T, Y, 2, X1, ... Tp € R a,b,c€Z, and n € N: (i) a ~ x implies a € {|z|, [z]}, (ii) z ~ y implies

x/n ~ y/n (iii) the relation ~ is transitive (but not symmetric), (iv) z; ~ = for 1 <i < n
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implies (3, x;)/n ~ x, (v) z ~ y and y < a implies x < a, and (vi) a = b — ¢ and ¢ ~ «,
implies a ~ b — z. These properties of ~ will be used in Section 2.3 when required without
further explanation.

If G is a k-edge-colored graph, and if u,v € V(G) and A, B ¢ V(G) with AnB = &, then
m(A, B) denotes the total number of edges joining vertices in A to vertices in B. We refer
to m(A, B) as the multiplicity of pair A, B, naturally generalizing the multiplicity m(u,v) of
a pair of vertices u, v as used in [19]. In particular by m(u, A) we mean m({u}, A). If G1, G,
are subgraphs of G with V(G;) = A and V(G3) = B, then we let m(G1, G) denote m(A, B),
and m(u, Gy) denote m({u}, A). The neighborhood of vertex v, written N(v), denotes the

set of all vertices adjacent to v (not including v).

2.3 Main Theorem

The main theorem below describes some strong properties that can be guaranteed to be
satisfied by some detachment G of a given edge-colored graph H. Condition (A1) addresses
the issue of P-almost-regularity (where P is a partition of V(G)), while conditions (A3) and
(A5) address the equimultiplicity issue in G. Conditions (A1), (A3) and (A5) have companion
conditions (A2), (A4) and (A6), respectively, that restricts the graphs considered to the color

classes of G. Condition (A7) addresses the connectivity issue of each color class of G.

Theorem 2.1. (Bahmanian, Rodger [5, Theorem 3.1]) Let H be a k-edge-colored graph and
let n be a function from V(H) into N such that for each w € V(H), n(w) = 1 implies
ly(w) = 0. Then there exists a loopless n-detachment G of H with amalgamation function
v V(G) - V(H), n being the number function associated with 1, such that G satisfies the

following conditions:
(A1) dg(u) ~ dg(w)/n(w) for each w e V(H) and each u € ¥~ (w);

(A2) dgi(u) ~ dyg)(w)/n(w) for each w e V(H), each ue ' (w) and each j € Zy;
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(A3) mg(u,u’) ~ €H(w)/("(;”)) for each w e V(H) with n(w) = 2 and every pair of distinct

vertices u,u’ € ¥~ (w);

(A4) mg(u,v') ~ EH(j)(w)/("(zw)) for each w e V(H) with n(w) = 2, every pair of distinct

vertices u,u' € v~ (w) and each j € Zy;

(A5) mg(u,v) ~ my(w, z)/(n(w)n(z)) for every pair of distinct vertices w,z € V(H), each
ue P Hw) and each v e Ppi(2);

(A6) may)(u,v) ~ muy(w, 2)/(n(w)n(z)) for every pair of distinct vertices w,z € V(H),

each u € Y~ (w), each v e ™1 (2) and each j € Zy;

(A7) If for some j € Zy, du(jy(w)/n(w) is an even integer for each w € V(H), then w(G(j)) =

w(H(j)).

Remark 2.2. All existing results in [44, 48, 58, 61, 74] study amalgamations for complete
graphs or complete multipartite graphs. In these papers, Theorem 1, Theorem 1, Theorem
3.1, Theorem 2.1, and Theorem 2.1 respectively are all immediate corollaries of Theorem
2.3. Other results in the literature may have another focus, most notably in [51, 70, 74]
where the edge-connectivity of each color class is specified; such results are not generalized

by Theorem 2.3.

Proof. Let H = (V, E) and let n = }; (n(v) — 1). Our proof consists of the following major
parts. First we shall describe the c;ri:truction of a sequence of graphs Hy = H, Hy, ..., H,,
where H; is an amalgamation of H;,; (so H;y; is a detachment of H;) for 0 < i <n —1
with amalgamation function v; that combines a vertex with amalgamation number 1 with
one other vertex. To construct each H;,; from H; we will use two bipartite graphs B;, B;.
Then we will observe some properties of B;. We will show that these properties will impose
conditions on H;,q in terms of H;. The relations between H;,; and H; lead to conditions

relating each H;, 1 < i < n to the initial graph H. This will then show that H,, satisfies the

conditions (A1)-(AT7), so we can let G = H,,.
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Initially we let Hy = H,n9 = n, and we let 1y be the identity function from V into V.
Now assume that Hy = (Vp, Ey), ..., H; = (V;, E;) and vy, . . ., ¥; have been defined for some
7> 0. Also assume that n9: Vo — N,...,n;, : V; > N have been defined for some ¢ > 0 such
that for each j = 0,...,7 and each y € V}, n;(y) = 1 implies £y, (y) = 0. Let o; = 1g... ;.
If ¢ = n, we terminate the construction, letting G = H,, and ¢ = ¢,. Otherwise, we can
select a vertex y of H; such that n;(y) = 2. H;;; is formed from H; by detaching a vertex
vi41 with amalgamation number 1 from y.

To decide which edge (and loop) to detach from y and to move to v;;1, we construct
two sequences of bipartite graphs By, ..., B,—1 and B(,..., B!, together with a sequence
Fy, Fy, ..., F,_; of sets of edges (possibly including loops) with F; ¢ E(B}) fori =0,...,n—
1; each edge in F; corresponds to an edge in H; which will have one end detached from y
and joined to v;;1 when forming H;, .

Let ¢;1,...,cy and L£; be distinct vertices which do not belong to V;. Let B; be a

bipartite graph whose vertex bipartition is {Q;, W;}, where

Qi = {ca,...,cix} and W; = Ny, (y) v {L;},

and whose edge set is

BB) - U teaw)U( U e Lddes L),
)

{y,u}eE(H;(j) {y,y}eE(H;(5))
y#u

Intuitively speaking, for each color j € Z; and each vertex u € W;\{£;} an edge is placed
between ¢;; and u in B; for each edge in H,(j) joining y to u. Moreover, two edges are placed

between ¢;; and £; in B; for each loop incident with y in H;(j). This is shown in Figure 2.1.
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B — Color1

— — — Color 2
—=.= Color 3
Figure 2.1: Construction of B; from H;
For B; we have
du,j(y)  if v = ¢;; for some j € Z,

mpy,(y,v) otherwise.

By Theorem 1.2 we can give B; an equalized, equitable and balanced 7;(y)-edge-coloring

IC;. Since K; is equitable, for each 1 < r < n;(y), we have

du, () /ni(y)  if v = ¢;; for some j € Zy,
o (V) > 20y, (y)/mily)  ifv=1L (2.2)

mu,(y,v)/n:(y) otherwise.

Now let T; be formed by a subgraph of B; induced by the edges colored 1 and 2. Since

n;(y) = 2, this is always possible. For each color j € Z; for which

for all v e V;,dp,(j)(v)/ni(v) is an even integer, (2.3)
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define a;; = dp,jy(v)/ni(y). By (2.2) for each color class r of IC;, dp,(ry(cij) =~ du,j)(y)/n:(y).
Therefore since two color classes of K; are chosen to form T;, if (2.3) is satisfied, then
dr,(cij) = 2dm, ) (y)/mi(y) = 20u;.

Let B! be the bipartite graph whose vertex bipartition is {Q’, W;}, obtained by splitting
all the vertices ¢;; in T; for each j € Zj, for which condition (2.3) holds, into «a;; vertices
Cijls - Cijay all of degree 2 as described in (M1)-(M2) below. (We don’t split vertices c;;
in T; for j € Zj, for which condition (2.3) does not hold; but they and their incident edges

remain in B.)

(M1) First, as many of ¢; ;;’s 1 <t < «;; as possible are joined by 2 edges to the same vertex

in W;

(M2) Then, among all ¢;;+'s 1 < t < «a;; with valency less than 2, as many of them as
possible are incident with two edges that correspond to edges in H;(j) that join y to

vertices that are both in the same component of H;(j)\{y}.

Qg

For each j € Z; that satisfies condition (2.3), we let C;; = |J {cij+}. Otherwise, we let
t=1

Cij = {cij}. By Theorem 1.2, we can give B an equalized, equitable and balanced 2-edge-

coloring K. This gives us two color classes either of which can be chosen to be Fj, say the

edges colored 1 are chosen. Since K; is equitable, we have

r

du,jy(y)/mi(y)  if v = ¢ for j € Zy, for which (2.3) does not hold

1 if v € C;; for j € Zy, for which (2.3) holds

dB/(l)(’U) S ' (24)
20m,(y)/nily)  ifv=1L

my, (y,v)/n;(y) otherwise.

\

Now we let

Aij:( U {y,v})U( U {y,y})

{c,v}eF; {c,L;}EF;
CECij ceCij
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and

By=( U twe)U( U ).

{c,v}eF; {¢,L;}EF;
ceCij CECij

where v;,1 is a vertex which does not belong to V;. Let V;.1 = V; U {v;;1}, and let 1,41 be

a function from V;,; onto V; such that

y ifv =104
¢i+1(U) =

v otherwise.

Let H;y1 = (Viy1, Eiyq) be the 1, 1-detachment of H; such that for each j € Zy
E(H;11(5)) = (E(H;(7))\Aiy) v Bij,

and By = Us_, E(Hiia(5)).

Intuitively speaking, H;.; is formed as follows. Each edge {c,v} € F; with ¢ € C;; and
v e W;\{L;} directly corresponds to an edge {y,v} in H;(j); replace {y,v} with the edge
{v,v;11} colored j in H; 1. So in forming H;,1(j) from H;(j) the end of this edge is detached
from v and joined to the new vertex v;,; instead. Moreover, we remove m Bg(l)(Cij, L;) loops
colored j incident with y in H; and we replace them with mBg(l)(Cij,Ei) edges colored j
joining y to w41 in Hiyi. Note that since K is balanced, n;(y) > 2 and [dp/(L:)/2] <
[dg,(L;)/2] = lm,(y), at most half of the edges in B incident with £; are colored 1, so there
are indeed m BI(1) (Cij, L;) loops incident with y in H; (recall that each loop in H; corresponds

to two edges in BY).
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Obviously, 1,1 is an amalgamation function from H; . into H;. Let 1,1 be the function

from V;, 1 into N such that

1 if v=1v;41
Niv1(v) = ni(v) =1 ifv=y
n;i(v) otherwise.

We now check that B!, described above, satisfies the following conditions for each color

] € Ly :

(P1) mpyy(Cij, Li) ~ 20,5y (y) /m:(y);

(P2) mp)(Cij,v) ~ mu,)(y,v)/ni(y) for each v e Wi\{L;};
(P3) mp ) (Q; Wi) ~ du, (y)/mi(y);

(P4) mp;)(Cijs Wi) ~ da, ) (y) /mi(y)-

In order to prove (P1) and (P2) first we show that

mBg (Cij, U)

There are two cases:
e Case 1: C;; = {¢;;}. Since K is balanced,

mBQ (Cij,U) mBg (Cij,U>
mp;1)(Cijs v) = mp)(cij, v) = 5 = 5

Qg

o Case 2. C; = U {cij+}- By (M1), among all vertices in C;;, there are exactly
=1
|mp: (Cij,v)/2] vertices of degree 2 which are joined to v (at most one vertex in Cj;

is joined to v by one edge). Since K/ is balanced(or equitable), among these vertices
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of degree 2, exactly one of them is joined to v by an edge colored 1. Therefore

Qi

mB;(Cz’jav)
mp(1) CZQ7U ZmB’(l Cijt, U %72 .

Clearly mp (Cij, v) = mr,(cij, v) = mp,q)(cij, v) +mp,2)(cij, v). If v = L;, from the definition
of B; it follows that mp,(cij, £i) = 20m,(;)(y). Since K; is balanced, for each 1 < r < 7;(y)

we have mp, (i, £i) ~ 205, (y)/m:(y). Therefore

m ’(Czycl) mr, C’i'aﬁ’i 2€ i(J
mpa (CU’E) = 2] = Tl(2j ) ~ I;EJy))(y)

This proves (P1).
Now let v € W;\{£;}. From the definition of B; it follows that mp, (¢;j,v) = mu,(;)(y,v).

Since IC; is balanced, for each 1 < r < 7;(y) we have mp,)(ci;,v) ~ mm,;)(y,v)/1:(y).

Therefore
mB;(Ci‘7U) m 3 Cij, U mH@ 1 (y7v)
mp:1)(Cij, v) ~ 5 = T(QJ ) ~ 77(]()y .
This proves (P2).
Since K} is equalized, mp; 1) (Q;, Wi) = [E(B;(1))| = mp (Q;, W;)/2. Clearly mp (Q;, W) =

|E(B})| = mp,(Qs, Wi) = mp,a)(Qs, Ws) +mp,2)(Qi, W;). From the definition of B, it follows
that mp,(Q;, W;) = |E(B;)| = du,(y). Since K; is equalized, for each 1 < r < n;(y) we have
mp, ) (Qi, Wi) = [E(Bi(r))| ~ dp,(y)/mi(y). Therefore

mpi (QZ’W> 9 - 92 ~ n(y) :

This proves (P3).

In order to prove (P4), there are two cases:
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e Case 1: C;; = {c;;}. From (2.4) it follows that

dHi(j)(y>

mp ) (Cij, Wi) = mpy (cij, Wi) = dpyy(ci) = n:(y)

Qg Qg

e Case 2: Cjj = | {cij¢}. In this case mpi)(Cij, Wi) = Z mp:1)(Cije, Wi). From (2.4)

t=1

it follows that

Qij
Yy
G 9 = $41 - - 210

This proves (P4).

Most of the conditions that H;,; must satisfy, are numerical, and we consider them
first. The reader who is more interested in the connectivity issue, namely property (A7),
may wish to jump to the consideration of conditions (D1)-(D2) on the last three pages of

this section.

Using (2.4) and (P1)-(P4), now we show that H;,, described above, satisfies the fol-

lowing conditions:
(BY) la (y) ~ L, (y)(iv1(y) — 1) /mi(y);
(B2) L, )W) ~ Lo,y () (s (y) — 1)/mi(y) for each j € Zy;

(B?’) (1) dHH»l (y>/ni+l(y) ~ de (y)/ni(y>a
(i) dm, (vier) ~ da, (y)/0:(y);

(B4) For each j € Zy,

(1) day )W)/ M2 (W) ~ di iy (9)/mi(y),

(ii) A,y ( )(Uz+1) ~ dp,( ( )/mi(y);

(B5) For each v € Ny, (y)

(i) mm, (y’ U)/m+1(?/) ~ mm, (y> U)/ni(y)a
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(11> mHi+1(Ui+17 U) ~ MH; (yv U)/ni(y>v
(iii) MH; 11 (ya Ui+1)/77i+1(y) ~ EH@' (y)/(niéy));

(B6) For each v € Ny, (y), and each j € Zy,

(1) M)W, 0) /i (y) ~ m, () (Y, v) /n:(y),

(i) mu,,, @) (Vie,v) = muy, (Y, 0)/mi(y),

(i) 0z, ) (U Vien) M1 () =~ La iy () (7).

Note that 7;+1(y) = m:(y) — 1. Let us fix v € Ny, (y), and j € Z.

From the construction of Hii, we have lg, ,(y) = lu,(y) — dpy(Li). By (2.4),

dB;(l)(ﬁi) ~ 2€Hi(y)/77i(y). Hence

~ 20m,(y) _ e () n(y) —2) _ Le(y) (i (y) — 1)
mi(y) mi(y) mi(y) '

€Hi+1 (y) ~ gHz (y)

This completes the proof of (B1).

Clearly, Cu, ., () (y) = L) () —mpy) (Cij, Li). By (P1), mpry(Cij, Li) ~ 20,05y (y)/m:(y).-

Hence

20p,(; U, i(Y) —2)  Luy iv1(y) — 1
b () ~ Loy () — né y))(y) _ <>(y7)h(z7y§y) ) _ ()(y)T(:@)(y) )

This completes the proof of (B2).
Construction of H;, follows that, dp, ., (y) = dg,(y) —mp)(Q;, Wi), and dg,,, (viy1) =

mp ) (@, Wi). By (P3), mp1y(Qi, Wi) ~ dg,(y)/n:(y). Hence

Cdu () _ A, W)i(y) =) _ da,(y)nin(y)
1i(y) 1i(y) 1i(y)

dHi+1 (y> ~ de (y>

and dg,, ,

(vi+1) ~ dg,(y)/n:(y). This completes the proof of (B3).
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From the construction of H;y1, we have that du,,,;)(y) = du.)(y) — msa)(Cij, W),

and dp,, ) (vi+1) = mpy)(Cij, Wi). By (P4), mp1)(Cij, Wi) = d,()(y)/mi(y). Hence

dr)®) _ dmo@ i) = 1) _ dug) @)mia(y)
mi(y) mi(y) mi(y)

dHi+1(j)(y) ~ dHi(j)(y) - )
and dp,,,(;)(Vi+1) ~ du,)(y)/ni(y). This completes the proof of (B4).

It is easy to see thatu mHiJrl(yvU) = mHi(yuv) - mB;(l)( ;,U) = MmHm; (y,v) - dB;(l) (U)u

and mg,,, (Vit1,v) = dp1y(v). By (2.4), dpqy(v) = mg,(y,v)/n:(y). Hence

o (9.0) ~ m (y,0) — ) (@ 0)00y) = 1) om0y )
o o m(y) m(y) mly)

and my,,, (Viy1,v) ~ mp,(y,v)/n:(y). Moreover, mp, , (y, vit1) = mB;a)(QQ, L) = dB;(n(ﬁz)-
By (2.4), dpy1)(Li) = 20m,(y)/mi(y). Therefore my,,, (y,vie1) ~ 20u,(y)/ni(y). Hence

MH; (yavi+l) ~ 2€Hi(y) _ gHz(y)
Mi1(y) mi()ninaly) (W)

This completes the proof of (B5).
Finally, from the construction of H; 1, mu, ,;)(y,v) = mu,)(y, v) — mp)(Cij,v), and

M, ) (Vie1,v) = mp)(Cijy v). By (P2), mp1)(Cij, v) ~ mu, ;) (y,v)/mi(y). Hence

~ oo (1. v) — M) (Y5 0) Gy (Y 0)(0(Y) — 1) my (y, 0)nisa (y)
mH¢+1(y7U) ~ Hi(])<y’ ) nl(y) ni(y> nZ(y) 7

and mp, ., (;)(Vis1,v) ~ mp, ) (y,v)/ni(y). Moreover, my, ,;)(y, vir1) = mpy)(Cij, £i). By

(P1), mpy1)(Cij, £i) = 2Lm,)(y)/mi(y). Therefore muy,, ) (y; vir1) ~ 2u,((y)/ni(y). Hence
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mu ) (Y vie)  2mnY) g ()

Yy
Ni+1(y) h i (Y)Ni+1(y) (méy)) .

This completes the proof of (B6).

Recall that ¢; = g ...1;, that ¢y : V — V', and that ¢; : V; — V;_; for i > 0. Therefore
@i+ Vi — V and thus ¢; ' : V — V;. Now we use (B1)-(B6) to prove that for 0 < i < n, H;

satisfies the following conditions:
(C1) (1) Lo, (w)/ (")) ~ Ly (w)/ (") for each w e V with n(w) = 2, ni(w) = 2,
(i) Ly, (w) =Ly, (v,) =0 for each w € V with n;(w) = 1 and each 1 < r < ;

(C2) KHi(j)(w)/("i(Qw)) ~ €H(j)(w)/("(;”)) for each w € V' with n(w) = 2, n;(w) = 2 and each

J € Ly;

(C3) For each weV

(i) da,(w)/mi(w) ~ dg(w)/n(w),

(ii) dy,(v,) ~ dy(w)/n(w) for each v, € ¢; ! [w];
(C4) For each w € V and each j € Z

(1) da,y(w)/ni(w) = dg)(w)/n(w),

(ii) dm,j)(vr) = dug(w)/n(w) for each v, € ¢; 'w];
(C5) For each weV

(i) myg, (w,v.)/mi(w) =~ €H(w)/("(;”)) for each v, € ;' [w],

(i) mpy, (v, vs) & EH(w)/("(g“)) for every pair of distinct vertices v,, v, € o; *[w];
(C6) For each w e V, and each j € Zy

() M) (w,v,) /mi(w) ~ Ly (w)/ ("8 for each v, € ¢} '[w],
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(i) mm,jy(vr, vs) & €H(j)(w)/("(;”)) for every pair of distinct vertices v,, v, € ©; *[w];
(C7) For every pair of distinct vertices w,z € V

(1) mu, (w, 2)/(m(w)ni(2)) ~ mu(w, 2)/(n(w)n(z)),

(ii) mu, (vp, vs) ~ my(w, 2)/(n(w)n(z)) for each v, € ¢; ! [w] and each v, € ¢; ![2],
(i) m, (w, v5)/mi(w) ~ mp (w, 2)/(n(w)n(2)) for each v, € o7 [2];

(C8) For every pair of distinct vertices w, z € V', and each j € Zj,

(1) mu (w, 2)/(mi(w)mi(2)) ~ mag) (w, 2)/ (n(w)n(2)),

(i) mu, ) (vr, vs) & mug(w, 2)/(n(w)n(z)) for each v, € ¢; H{w] and each v, € @; *[2],
(i) 7,y (w, vs) /mi(w) ~ mpgy(w, 2)/(n(w)n(z)) for each v, € @; ![z].

Let w, z be an arbitrary pair of distinct vertices of V', and let j € Z;. We prove (C1)-(C8) by
induction. Let us first verify (C1)-(C8) for i = 0. Recall that Hy = H, and ny(w) = n(w).

If n(w) = 2, obviously EHO(w)/(”ng)) = EH(w)/(”(;”)). If n(w) = 1, by hypothesis of
Theorem 2.1, ¢y (w) = 0. This proves (C1) for i = 0. (C2) can be proved in a similar way.
Obviously dg, (w)/no(w) = dg(w)/n(w) and (C3)(ii) is obvious, so this proves (C3) for i = 0.
The proof for (C4) is similar and (C5)-(C8) are sufficiently obvious.

Now we will show that if H; satisfies the conditions (C1) - (C8) for some i < n, then
H;yq (formed from H; by detaching v;,; from the vertex y) satisfies these conditions by
replacing ¢ with i + 1; we denote the corresponding conditions for H;,; by (C1)-(C8)". If
Niv1(w) = ni(w), then (C1)’-(C6)" are obviously true. So we just check (C1)-(C6)" in the
case where w = y. Also if ;. 1(w) = n;(w) and 1;11(2) = 1;(2), then (C7)’-(C8)" are clearly
true. So in order to prove (C7)" - (C8)" we shall assume that either 7,41 (w) = n;(w) — 1
or n;41(2) = n;(2) = 1. (so y € {w, z}; the asymmetry in condition (iii) of (C7)" and (C8)’

prevents us from assuming that w = y.)

(CL)" I niva(y) = 2, by (BL) la,,, (y) ~ L, (y) (i1 (y) —1)/mi(y), and by (C1)(i) of the induc-
tion hypothesis, ¢y, (y)/("’éy)) ~ £H(y)/("(2y)). Also note that (méy)) = ni(y)(mi(y)—1)/2.
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(C4)'

Therefore

EHi+1(y) ~ EHi(y>(ni+l(y) — 1) _ EH@'(?J) ~ gH(.U)
(mg(zﬁ) (n¢+§(y))ni(y) (méy)) (77(231))

This proves (C1)'(i).
Clearly ly,,,(viy1) = 0 and {y,,, (v;) = €y, (v,) = 0 for each 1 < r < i. Therefore
Cr,,,(v;) = 0 for each 1 <7 < i+ 1. Also if 1,41(y) = 1, by (B1) £p,,,(y) = 0. This

proves (C1)'(ii).

The proof is similar to the proof of (C1)'(i), following from (B2) and (C2) of the

induction hypothesis.

By (B3)(i), du.,, (v)/ni+1(y) = dr,(y)/mi(y), and by (C3)(i) of the induction hypothesis,

du.(y)/mi(y) ~ du(y)/n(y). Therefore

dHi+1(y) N du(y)

~

i1 (y) n(y)

This proves (C3)'(i).

By (B3)(ii), du,,,(vi+1) ~ du,(y)/ni(y), and by (C3)(ii) of the induction hypothesis,
du, (v.) ~ dy(y)/n(y) for each v, € ¢; [y]. Since in forming H; ; no edge is detached
from v, for each v, € ¢;'[y], we have dp,,,(v,) = dg,(v.). Therefore dy,  (v,) ~

di(y)/n(y) for each v, € ;! [y]. This proves (C3)'(ii).

The proof is similar to the proof of (C3)’, following from (B4) and (C4) of the induction

hypothesis.
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(C5)" By (B5)(i), mu,., (y, vr) /i (y) ~ mug, (y, vr) /mi(y) for each v, € o7 *[y]. By (C5)(i) of
the induction hypothesis, mgy, (y, v.)/n:(y) =~ EH(y)/(”(Qy)) for each v, € ; *[y]. There-

fore

mHi+1(y7Ur) ~ gH(?J)
Ni+1(y) ("(Qy))

for each Uy € 90;1[y] MOI‘eOVGI', by (B5)(111) mHi+1 (Z/avz‘ﬂ)/m’ﬂ(y) ~ 6H1<y>/(méy))7
and by (C1)(i) of the induction hypothesis, (g, (y) ~ {x(y) (mgy))/(ngy))‘ Therefore

ma (Y, v0)  a@)("Y)  tuly)
Nis1(y) (n(Qy)) (m-éy)) (n(Qy)) '

This proves (C5)'(i).

By (B5)(ii), mu,  , (vit1,vr) ~ mp, (y,v.)/ni(y) for each v, € ¢; '[y]. By (C5)(i) of the

induction hypothesis, mg, (y, v.)/n:(y) ~ Cu(y)/ (”(Qy)) for each v, € ;' [y]. Therefore

mm;, (Ui-i-la Ur) ~

for each v, € ¢; '[y]. By (C5)(ii) of the induction hypothesis, my, (v,, vs) ~ €H(y)/("(2y))

for every pair of distinct vertices v,,v, € ¢; '[y]. Since in forming H;,; no edge is

detached from v, for each v, € ;' [y], we have my;, 1 (vr,v5) = mpy, (vy, vs). Therefore

MH; ('UT’a US) ~

for every pair of distinct vertices v, v, € ¢;.';[y]. This proves (C5)/(ii).

(C6)" The proof is similar to the proof of (C5)’, following from (B6) and (C6) of the induction

hypothesis.

(C7)" If 2z ¢ Ny(w) then my(w, z) = 0 and (C7)" is trivial. So we assume that z € Ny (w).
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(1) H nipa(w) = mi(w) —1 (so w = y), by (B5)(1) mu,,, (y, 2)/mi+1(y) ~ mu,(y, 2)/mi(y),
and since 1;11(2) = 1;(2), we have mu, , (Y, 2)/(Niv1(Y)ni+1(2)) ~ mu, (y, 2)/(0:(y)ni(2)).
By (C7)(i) of the induction hypothesis, my, (v, 2)/(n;(y)n:(2)) ~ mu(y, z)/(n(y)n(z)).

Therefore

?)

MH;, (y> Z) ~ mH(?/a
Nis1(Y)nir1(2) n(y)n(z)

The other case, 1;11(2) = n:(z) — 1), is similar. This proves (C7)'(i).

(ii) By (C7)(ii) of the induction hypothesis mgy, (v, vs) ~ mg(w, z)/(n(w)n(z)) for each
v, € ¢; ' [w] and each v, € p; '[2] = ;4[2]. Since in forming H;; no edge is detached
from v, and v, for each v, € ¢; '[w] and each v, € ¢; '[2], we have mpy, (v, v,) =
mir, (vy,vs). Therefore mpg,,, (vr, vs) & mp(w, 2)/(n(w)n(z)) for each v, € ¢; '[w] and
each v, € @i [2]. I misa(y) = mi(y) — 1 (so w = y), by (B5)(ii) ma,,, (vig1,05) ~
ma, (y,vs)/mi(y) for each vy € ;i '[2] = ¢ii[2]. By (C7)(iii) of induction hypothesis,

m, (Y, vs)/mi(y) ~ mu(y, 2)/(n(y)n(2)). So
mHi+1(Ui+17 Us) ~

The other case, 1;11(2) = 1n:(z) — 1, is similar. This proves (C7)’(ii).

(iid) 71 (y) = m(y) =1 (sow = y), then by (B5)(1) ma, ., (y, vs)/Mis1 (y) ~ m, (y, vs) /mi(y)
for each v € ¢; '[2] = ;. [2]. But by (C7)(iii) of induction hypothesis, m, (v, vs)/n:(y) ~

mu(y, 2)/(n(y)n(z)) for each v, € ; '[2]. Therefore

?)

mm;, (y, Us) . mpg (y

~

——y ")

for each v, € p;4[2]. If nip1(2) = mi(2) — 1 (so z = y), then since in forming H;,,
no edge is detached from v for each v, € ¢; '[y], we have mp,,, (w,vs) = mg, (w, v)

for each vy € ¢; '[y]. Therefore mp,,, (w, vs)/Mip1(w) = mu, (w,vs)/n;(w) for each
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vs € ¢; '[y]. Moreover, by (B5)(ii) mu,, ,(w,vis1) ~ mpy,(w,y)/ni(y). Therefore
Mt (0, 0550) 2 ()~ 7 (w, )/ (ns(w)(y))- By (CT)(3) of induction hypothe-
sis, mu, (w, y)/(n:(w)ni(y)) = mu(w,y)/(n(w)n(y)). Hence

mHm(@U, Vit1) ~ mp(w,y)
Nig1(w) n(w)n(y)

This proves (C7)"(iii).

(C8)" The proof is similar to the proof of (C7)’, following from (B6) and (C8) of the induction

hypothesis.

As a result of (C1)-(C8), we prove that G is loopless, and satisfies conditions (A1)-(A6) of
Theorem 2.1. Recall that H,, = G, ¢, = 9, and n,(w) = 1 for each w € V. Let w, z be an
arbitrary pair of distinct vertices of V', and let j € Z;. Now in (C1)-(C8) we let i = n. From
C1(ii) it is immediate that G is loopless.

From (C3)(i) it follows that dy, (w)/n,(w) ~ dg(w)/n(w), so dg(w) ~ dgy(w)/n(w).
From (C3)(ii), dg, (v,) ~ dg(w)/n(w) for each v, € ¢ 1[w], so dg(v,) ~ dg(w)/n(w) for each
v, € 7 [w]. Therefore G satisfies (A1).

From (C5)(i) it follows that my, (w,v,)/n,(w) ~ EH(w)/(”(;”)) for each v, € o, {w], so
me(w,v,) ~ KH(w)/("(Qw)) for each v, € Y~ w]. From (C5)(ii), my, (v, vs) ~ €H(w)/("(2w))
for every pair of distinct vertices v,., vs € @, [w], so mg(v,., vs) ~ L (w)/ (77(2“’ )) for every pair
of distinct vertices v,,vs € ¥ ![w]. Therefore G satisfies (A3).

From (C7)(i) it follows that mp, (w, 2)/(n (w)na(2)) ~ ma(w, 2)/(n(w)n(2)), so ma(w, 2) ~
mp(w, 2)/(n(w)n(z)).  From (CT)(ii), mm, (vr,vs) ~ mu(w,2)/(n(w)n(z)) for each v, €
o t[w] and each v, € ¢ 1[z], so mg(v,, vs) ~ my(w, 2)/(n(w)n(z)) for each v, € Y~ [w] and
each v, € ¥~ 1[z]. From (C7)(iii) it follows that mg, (v, 2)/n.(2) ~ mg(w,2)/(n(w)n(z))
for each v, € ¢ {w], so mg(v,,2) ~ myg(w, z)/(n(w)n(z)) for each v, € Yv~w]. From
(CT)(iid), ma, (w,vs)/mm(w) ~ mp(w, 2)/(n(w)n(2)) for each v, € e'[2], so ma(w, vs) ~
mu(w, 2)/(n(w)n(z)) for each vy € ~1[z]. Therefore G satisfies (A5).
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A similar argument shows that G satisfies (A2), (A4), (A6). In order to prove that G
satisfies the last condition (A7) of Theorem 2.1, it suffices to show that if for some j € Zy,

dp, () (v)/ni(v) is even for all v € V;, then
(D1) dpu,,,)(v)/nis1(v) is an even integer for all v € Vi1, and

(D2) w(Hiy1(j)) = w(H(j))-

For then, if for each v € V(H) = Vi, du)(v)/m(v) = duye)(v)/m0(v) is an even integer, then
it follows inductively that for each 0 < r < n and each v € V,, dy,j(v)/n,(v) is an even

integer and

w(Hy(j)) = w(Ho(7))-

Therefore w(G(j)) = w(Hn(j)) = w(Ho(j)) = w(H(j)). This will complete the proof of
Theorem 2.1.

So we now establish (D1) and (D2). Let j € Z; be a color for which for all v € V,
dp,j)(v)/ni(v) is an even integer. Recall that y is the vertex for which ;11 (y) = n:(y) — 1.

To establish (D1), there are three cases to consider:

o Case 1: v ¢ {y,vi41}. Clearly dy,,,;(v) = du,y(v) and n;41(v) = n;(v). So

du, 1 )(V)/Mis1(v) = du,(jy(v)/ni(v) which is an even integer.

e Case 2: v =y. From (B4)(i), it follows that dg,,,;)(y)/Mi+1(y) = du,)(y)/n:(y) which

is an even integer.

e Case 3: v = v;y1. From (B4)(ii), it follows that dp, ) (vit1) = du,)(y)/m:(y) which

is an even integer.

This proves (D1).
In order to prove (D2), let H/(j) be the component of H;(j) which contains y. It is
enough to show that w(H},(j)) = w(H!(j)). Let wi; = w(H!(j)\{y}) andlet I';;1,. .., T jw,;

be the vertex sets of the components of HY(j)\{y}. Note that I';;, is a subset of V(B;),

31



Lija Lija

1,J,Wij 1,J,Wij

HY 4 (9)

Figure 2.2: Detachment of H/(j) into HY,,(j)

of V(T;), and of V(B;) for 1 < r < w;j. Since dy,(j)(v)/n;(v) is an even integer for each
v e Vj, it follows that dp,(;)(v) is an even integer for each v € V;. Therefore H;(j) is an even
graph (all vertices are of even degree). Since dp,;)(y) is even, so is dp,;j)(y) — 20w, ;) (y)-
Since H;(j) is an even graph, and the sum of the degree of the vertices in any graph must
be even, it follows that my,q)(y,Lij:) = mp,(cij, Lije) is even for 1 < t < w;;. (In fact
every edge cut in H;(j) is even.) Now from (M2) it follows that for each ¢, 1 < t < wyj,

mp)(Cij, Lije) ~ mp(Cij, i j4)/2. There are two cases to consider:
o Case 1: mr,(cij,I'ijt) = mp,(cij, Iiji). In this case we have

mp; (Cij, Viga) _ mr ey, Ly mpg, (cij, Ui j
mp1)(Cijs Lije) = . ; LA l ; Jit) — Bi( ; mt)‘
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o Case 2: mp,(¢ij, i je) < mp,(cij, i j4). In this case we have

mp: (Cijvri,j,t) _ mTi(CijaFi,j,t> < mBi(Cijari,j,t>
2 2 2 )

mp1)(Cij, Dijie) =

Therefore in both cases mBg(l)(Cij,Fm,t) < mp,(¢ij, L j4)/2 for 1 <t < w;;. This is shown
in Figure 2.2. This means, at most half of the edges joining y to I';;;, 1 < t < w;;, are
moved to v;y1 in forming H;,;. So from each vertex u # wv;;1 in Hiyﬂ(j), there is a path
of edges colored j from u to y. Moreover, v;, is either adjacent with y or is adjacent with
another vertex in HY, (), so vi41 is also joined to y by a path of edges colored j. Therefore

w(H! (7)) = w(H(j)). This proves (D2) and the proof of Theorem 2.1 is complete. 0O
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Chapter 3

Hamiltonian Decomposition of K (nq, ..., m,; A, i)

Let ny,...,n, € Ny and \,p e NuU {0}. Let G = K(ny,..., ny; A, 1) denote a graph
with m parts, the i** part having size n;, in which multiplicity of each pair of vertices in
the same part (in different parts) is A (u, respectively). In other words, G is a graph with
m parts Vi, ..., V,,, with |V;| = n; for 1 < i < m, mg(u,v) = X for every pair of distinct
vertices u,v € V; for 1 <i < m, and mg(u,v) = pfor each ue V;,veV; for 1 <i < j <m.

When ny = ... = n,, = n, we denote K(ni,...,nm; A\ p) by K(n™: X\ u). In [5],
we settled the existence of Hamiltonian decomposition for K (ni,...,n,; A, u), a graph of
particular interest to statisticians, who consider group divisible designs with two associate

classes.
Example 3.1. Figure 3.1 illustrates a Hamiltonian decomposition of K(2;2,1).

In this chapter, we present a constructive proof of this existence and we also solve the
companion problem; that is the Hamiltonian decompositions problem for K (ny, ..., nu,; A, i)
when it is a regular graph of odd degree (see [9]). The details are provided in order that the
reader may become more familiar with the nuances of using amalgamations.

A graph G is said to be even if all of its vertices have even degree. Let k be a positive
integer. We say that G has an evenly-equitable k-edge-coloring if G has a k-edge-coloring
for which, for each v € V(G)

(i) dg@)(v) is even for 1 <7 <k, and

(ii) |dg(i) (U) — dg(j)(v)| € {0,2} for 1 < 1,7 < k.
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Figure 3.1: A Hamiltonian Decomposition of K(2();2,1)

We need the following theorem of Hilton [43]. (It may help to recall that the definition
of k-edge-coloring allows some color classes to be empty. It is also worth noting that the

following theorem is true even if the graph contains loops.)

Theorem 3.2. (Hilton [43, Theorem 8]) Each finite even graph has an evenly-equitable

k-edge-coloring for each positive integer k.

3.1 Hamiltonian Decomposition of K(nj...,n,; A, pu)

Walecki’s construction for Hamiltonian decomposition of K,, and K,, — F' where F is a

1-factor [64], easily provides the following result:

Theorem 3.3. The graph \K,, is Hamiltonian decomposable if and only if N(n — 1) is an

even integer.
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Using this result, together with Theorem 3.2 and Theorem 2.1, now we are able to find
necessary and sufficient conditions for K(nj...,n,; A, 1) to be Hamiltonian decomposable.

Let us first look at some trivial cases:

(i) If m =1, then G = AK,,, which by Theorem 3.3, is Hamiltonian decomposable if and

only if A(ny — 1) is even.

(i) If m > 1,u = 0, then G = | J AK,,,. Clearly G is disconnected and so is not Hamiltonian
i=1
decomposable.

(iii) If n;, = 1 for 1 < i < m, then G = pK,, which is Hamiltonian decomposable if and

only if pu(m — 1) is even.

(iv) If A = p, then G = MK, +..4pn,, which is Hamiltonian decomposable if and only if
A(D, n; — 1) is even.
i=1

We exclude the above four cases from our theorem:

Theorem 3.4. (Bahmanian, Rodger [5, Theorem 4.3]) Let m > 1, A = 0, and p > 1, with
A # i be integers. Let ny, ..., ny, be positive integers withny < ... < n,,, and n,, = 2. Then
G = K(ny,...,nm; A\, p) is Hamiltonian decomposable if and only if the following conditions

are satisfied:

(i) ni =nj:=n forl <i<j<m;

(ii)) AM(n —1) + pn(m — 1) is an even integer;
(ili) A < pn(m —1).

Proof. Let s = >, n;. To prove the necessity, suppose G is Hamiltonian decomposable.
i=1

For v e V;; 1 < i < m, we have dg(v) = A(n; — 1) + p(s — n;). Since G is Hamiltonian

decomposable, it is regular. So we have A\(n; — 1) 4+ p(s — n;) = A(n; — 1) + pu(s — n;) for

every pair 1 < i < j < m. Equivalently A(n; — n;) = p(n; —n;). So (A — p)(n; —n;) =0
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and since A # 1, we have n; = n; := n for every pair 1 <14 < j < m. So we can assume that
G = K(n™; X\, ). Therefore s = mn and dg(v) = A(n—1)+u(mn—n) = A(n—1)+pun(m—1).

Now by the Hamiltonian decomposability of GG, the degree of each vertex

A(n —1) + pn(m — 1) is an even integer.

By the preceding paragraph, the number of Hamiltonian cycles of G is %()\(n -1) +
un(m — 1)). Let us say that an edge is pure if both of its endpoints belong to the same
part. Each Hamiltonian cycle passes through every vertex of every part exactly once. Hence

each Hamiltonian cycle contains at most (n — 1) pure edges from each part. Since the total

number of pure edges in each part is )\(g), we have

So,
An(n—1) - (n—1)
2 2

(A(n—1) + pun(m —1)).

Since n > 1, it implies that A\n < A(n — 1) + pn(m — 1). Thus A < pn(m — 1). Therefore
conditions (i)-(iii) are necessary. Note that the necessity of condition (iii) can also be seen
as an edge-connectivity issue. Of course G has edge-connectivity at most un?(m — 1), as
deleting all the edges incident with vertices in a fixed part disconnects the graph. Since G has
a Hamiltonian decomposition, it clearly has degree equal to its edge-connectivity. Therefore,
the degree of G, namely A(n — 1) + un(m — 1), is at most un?*(m — 1).

To prove the sufficiency, suppose conditions (i)-(iii) are satisfied and let H be a graph
with [V(H)| = m,ly(y) = A(}) for every y € V(H), and my(y,z) = pun? for every pair
y,z € V(H) and let n be a function from V(H) into N with n(y) = n for all y € V(H). We
note that H is (An(n— 1)+ un?(m —1))-regular. It is easy to see that H is an amalgamation

of G. In what follows we shall find an appropriate edge-coloring for H and then we shall
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apply Theorem 2.1, to show that H has a n-detachment G in which every color class induces
a Hamiltonian cycle.

Let H* be the spanning subgraph of H whose edges are the non-loop edges of H. It
is easy to see that H* =~ un?K,,. We claim that un(m — 1) is even. To see this, suppose
un(m — 1) is odd; then a is odd and A\(n — 1) is even. But then A(n — 1) + un(m — 1) is
odd, contradicting condition (ii) of the theorem. Therefore pun*(m — 1) is even and thus by
Theorem 3.3, H* is Hamiltonian decomposable.

Since un?K,, is un*(m — 1)-regular, it is decomposable into un?(m — 1)/2 Hamiltonian
cycles by Theorem 3.3. Now define k = (A(n—1) + pn(m—1))/2. From (ii), k is an integer.

Now since n > 1 and un(m — 1) > A, we have the following sequence of equivalences:

m—=1)(un(m—-1)=A) =20< unim—-1)n—-1)—A(n—-1)>20<

- pun?(m — 1) _ A(n —1) + un(m — 1)‘

2 2

pn*(m —1) = Xn—1) — un(m — 1) = 0

Hence, the number of Hamiltonian cycles in H* is at least k. Now let Cy, ..., Cy be k arbitrary
Hamilton cycles of a Hamiltonian decomposition of H*. Let K* be a (partial) k-edge-coloring
of H* such that all edges of each cycle C; are colored i, for each i € Z;. Now let H** be the
spanning subgraph of H whose edges are all the edges of H that are uncolored in H*. Recall
that H is 2nk-regular, so for each v € V(H™*) we have dy+«(v) = 2nk — 2k = 2(n — 1)k.
Therefore H** is an even graph and so by Theorem 3.2 it has an evenly-equitable edge-
coloring K** with k colors 1,...,k (Note that we are using the same colors we used to
color edges of H*). Therefore for each j, 1 < j < k, and for each y € V(H**), we have
dixx(jy(y) = 2(n — 1)k/k = 2(n — 1). Now we can define the edges coloring IC : E(H) — Zy

for H as below:

K*(e)  if e € E(H*)\E(H™),
K(e) — () (H*)\E(H*)
K**(e) if ee E(H*).
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So for each j € Zj, for each y € V(H), we have dp)(y) = 2+ 2(n — 1) = 2n. Note that
since all edges of each Hamiltonian cycle C; are colored j, 1 < j < k, each color class H(j)
is connected.

So we have a k-edge-colored graph H for which, for each y,z € V(H),y # z, and
each j € Zy, n(y) = n = 2, lu(y) = X(3), mu(y,z) = pun?, du(y) = 2nk, dag(y) = 2n,
w(H(j)) = 1.

Now by Theorem 2.1 there exists a loopless n-detachment G* of H with amalgamation
function ¢ : V(G*) — V(H), n being the number function associated with ¢, such that for

each y,z € V(H),y # z, and each j € Z;, the following conditions are satisfied:
o mgx(u,u’) = A(Z)/(Z) = ) for every pair of distinct vertices u,u’ € ¥~ (y);
e mgx(u,v) = un?/(nn) = p for each u € ¥~ (y) and each v € Yv=1(2);
o dgx(j)(u) = 2n/n = 2 for each u € Y~ (y);
o wW(G*()) = w(H(})) = 1, since dug(5)/n(y) = 2n/n = 2.

From the first two conditions it follows that G* =~ K (n(™): \, u) = G. The last two conditions
tells us that each color class is 2-regular and connected, respectively; that is each color class
is a Hamiltonian cycle. So we obtained a Hamiltonian decomposition of K (n(™; X, 1) and

the proof is complete. O

Remark 3.5. We may prove the necessity of condition (iii) of Theorem 3.4 by a different
counting argument. Let us say an edge is mixed if its endpoints are from different parts of
G. Each Hamiltonian cycle starts from a vertex of a part V; for some 1 < i < m and it will
pass through every part at least once and it will eventually come back to the initial vertex
in V;. Hence each Hamiltonian cycle contains at least m mixed edges. On the other hand,
the total number of mixed edges is un? (g‘) Therefore,

1’ (7;) > m%()\(n 1) 4 pnlm —1)).
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So,

pun*m(m — 1) - m(A(n —1) + un(m — 1))
2 ~ 2 '

It implies that, pn(m —1)(n —1) = A(n — 1) = 0, so (n — 1)(un(m — 1) — X) = 0 and since

n > 1, we have A < un(m — 1).

Remark 3.6. Observe that the equality in condition (iii) of Theorem 3.4 holds if and only

if for each Hamiltonian decomposition, each Hamiltonian cycle contains exactly (n— 1) pure

edges from every part, and exactly m mixed edges.

3.2 Hamiltonian Decomposition of K (ni,...,n,; A, u) with a 1-factor leave

Let us first look at some trivial cases:

(i) If m = 1, then G = AK,,, which by Theorem 1.4, is decomposable into Hamiltonian

cycles and a single 1-factor if and only if A(n; — 1) is odd.

(ii) If m > 1, p =0, then G = | J AK,,,. Clearly G is disconnected it does not have any
=1

)

Hamiltonian cycle.

(iii) If n; = 1for 1 <i < m, then G = pK,, which is decomposable into Hamiltonian cycles

and a single 1-factor if and only if pu(m — 1) is odd.

(iv) If A = p, then G = AK,,,4...1n,, Which is decomposable into Hamiltonian cycles and a

single 1-factor if and only if A(>] n; — 1) is even.
i=1

(v) fA=0,and n; = n for 1 <i<m, then G = puKp, . . . pn which is decomposable into
—_——

Hamiltonian cycles and a single 1-factor if and only if pun(m — 1) is odd (see [57]).
We exclude the above five cases from our theorem:

Theorem 3.7. Let m > 1. Let ny,...,n, be positive integers with ny < ... < n,,, and
Ny = 2, and A\, = 1 with A # p. Then G = K(ny,...,nm; A\, p) is decomposable into

Hamiltonian cycles and a single 1-factor if and only if the following conditions are satisfied:
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(i) n; =nj:=n forl <i<j<m
(ii) Mn —1) 4+ pn(m — 1) is an odd integer;
(ili) A<pun(m—1) ifn =3, and A — 1 < 2u(m — 1) otherwise.

Proof. Let s = >.*, n;. To prove the necessity, suppose G is Hamiltonian decomposable.
For v e V;, 1 < ¢ < m, we have dg(v) = A(n; — 1) + pu(s — n;). Since G is Hamiltonian
decomposable, it is regular. So we have A(n; — 1) + pu(s —n;) = A(n; — 1) + pu(s — ny) for
1 <i<j<m. Itfollows that n, = n; :=n for 1 <¢ < j < m. So we can assume that
G = K(n'™; X, 1). Therefore dg(v) = AM(n — 1) 4+ un(m — 1). Now since G is decomposable

into Hamiltonian cycles and a single 1-factor

A(n —1) + pun(m — 1) is an odd integer.

By the preceding paragraph, the number of Hamiltonian cycles of G is ()\(n - 1)+
pn(m — 1) — 1)/2. Let us say that an edge is pure if both of its endpoints belong to the
same part. Each Hamiltonian cycle passes through every vertex of every part exactly once.
Hence each Hamiltonian cycle contains at most n — 1 pure edges from each part. Since the
total number of pure edges in each part is )\(72‘), and a 1-factor contains at most |a/2| pure

edges from each part, we have

)\(n) < (n— 1)()\(71— 1) +pn(m—1)—1) + [gj

2 2
So,

—1 —1

Anfn — 1) < (n )()\(n —1) +pn(m—1)—1) + [EJ

2 2 2

Since n > 1, it implies that
2151
)\né)\(n—l)%—un(m—l)—l%—m.
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It follows that if n is odd, then we have A < un(m — 1), and if n > 2 is even, then we have
A< pn(m—1)+1/(n—1), which is equivalent to A < un(m — 1). Moreover, if n = 2, then
we have A — 1 < 2u(m — 1). Therefore conditions (i)-(iii) are necessary.

To prove the sufficiency, suppose conditions (i)-(iii) are satisfied. We first solve the
special case of n = 2. Since A+ 2u(m—1) is odd, sois A. Also A—1 < 2u(m —1). Therefore,
by Theorem 3.4, K(2(™; X — 1, ) is Hamiltonian decomposable. Adding an edge to each
part of K(2(™; X — 1,u) (which is a I-factor) will form K(2™; X, 1). Thus we obtain a
decomposition of K (2(™); X, 1) into Hamiltonian cycles and a single 1-factor. To prove the
sufficiency for n > 3, let H be a graph with [V (H)| = m, {y(y) = A(3) for every y € V(H),
and my(y,z) = un? for every pair y,2 € V(H) and let 5 be a function from V(H) into N
with n(y) = n for all y € V(H). Now define k = (A(n — 1) + pn(m — 1) — 1)/2. From
(ii), k is an integer. We note that H is (2k + 1)n-regular. In what follows we shall find an
appropriate edge-coloring for H and then we shall apply Theorem 2.1, to show that H has
an 7n-detachment G in which every color class except one induces a Hamiltonian cycle, the
exceptional color class being a -factor.

Let H* be the spanning subgraph of H whose edges are the non-loop edges of H. It is
easy to see that H* ~ un?K,,. We shall find a (k + 1)-edge-coloring for H. There are two

cases to consider, but first we observe that:

(n=1)(pn(m—1)—A) >0 <

unim—1)n—-1)—A(n—-1) =20 <
(3.1)
pni(m —1) = AXn—1) —un(m —1) >0 —
un*(m —1) - An —1) + pn(m — 1).

=

2 2

e Case 1: n is even. It follows that un®(m — 1) is even and thus by Theorem 1.4,

H* is decomposable into Mfmfl

) Hamiltonian cycles. Now since n > 1, and since by

(iii) un(m — 1) = A, by (3.1) it follows that the number of Hamiltonian cycles in H*
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is greater than k. Now let Cy,...,Cy be k arbitrary Hamilton cycles of a Hamiltonian
decomposition of H*. Let K* be a (partial) k-edge-coloring of H* such that all edges
of each cycle C; are colored i, for each 1 < < k. Now let £ be a spanning subgraph
of H in which every vertex is incident with n/2 loops (observe that A(}) = n/2); so
the graph L consists only of loops. Now let H** be the spanning subgraph of H whose
edges are all edges in E(H)\E(L) that are uncolored in H*. Recall that H is (2k+1)n-
regular, so for each v € V(H**) we have dysx(v) = (2k+1)n—2k—2(n/2) = 2k(n—1).
Therefore H** is an even graph and so by Theorem 3.2 it has an evenly-equitable
edge-coloring K** with k colors 1,...,k (Note that we are using the same colors we
used to color edges of H*). Therefore for each j, 1 < j < k, and for each y € V(H**),
we have dpx+(j)(y) = 2(n — 1)k/k = 2(n — 1). Now we can define the (k + 1)-edges

coloring K for H as below:

K*(e) if e e E(H*)\E(H*),
K(e) :==1 K**(e) ifee E(H*™),
k+1 ifee EB(L).

So for each y € V(H),

2n—1)+2=2n if1<j<k,
dug)(y) =
2(n/2) =n if j=k+1.

Case 2: n is odd. Since A\(n — 1) is even, and by (ii), A(n — 1) + un(m — 1) is odd,
it follows that un(m — 1) is odd. So un?*(m — 1) is odd. Thus by Theorem 1.4, H* is

decomposable into (pn?(m — 1) — 1)/2 Hamiltonian cycles and a single 1-factor F.

By (3.1), it follows that

un?(m —1) —1 - A(n—1) +pn(m—1) -1 _

= k.
2 2
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Hence, the number of Hamiltonian cycles in H* is at least k. Now let Cy,...,Cx be
k arbitrary Hamilton cycles of a Hamiltonian decomposition of H*. Let K* be a
(partial) k-edge-coloring of H* such that all edges of each cycle C; are colored i, for
each 1 < i < k, and the single 1-factor F' is colored k£ + 1. Now let £ be a spanning
subgraph of H in which every vertex is incident with (n — 1)/2 loops (observe that
A(5) = (n—1)/2). Now let H** be the spanning subgraph of H whose edges are all
edges in F(H)\F(L) that are uncolored in H*. Recall that H is (2k 4+ 1)n-regular, so
for each v € V(H**) we have dy+«(v) = 2k +1)n —2k —1—-2(n—1)/2 = 2k(n — 1).
Therefore H** is an even graph and so by Theorem 3.2 it has an evenly-equitable
edge-coloring K** with k colors 1,...,k (Note that we are using the same colors we
used to color edges of H*). Therefore for each j, 1 < j < k, and for each y € V/(H**),
we have dys+(;)(y) = 2(n — 1)k/k = 2(n — 1). Now we can define the (k + 1)-edges

coloring K for H as below:

K*(e) if ee B(H*)\E(H*),
K(e) =14 K*(e) ifee E(H*),
k+1 ifee B(L).

So for each y € V(H),

2ln—1)+2=2n ifl1<j<k,
dr()(y) =
1+2(n—1)/2=n ifj=k+1.

Note that since all edges of each Hamiltonian cycle C; are colored j, 1 < j < k, each color
class H(j) is connected for 1 < j < k. Therefore in both cases, we have a (k+1)-edge-colored

k
graph H for which, foreach y,z e V(H),y # z,n(y) =n = 2, ly(y) = A(g), my(y, 2) = pun?,
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dy(y) = 2k + 1)n, w(H(j)) =1 for each 1 < j < k, and

2n it 1 <5 <k,
dug)(y) =
n o ifj=k+ 1

Now by Theorem 2.1, there exists a loopless n-detachment G* of H in which each v e V(H)
is detached into vy, ..., v, such that for each u,v € V(H),u # v the following conditions

are satisfied:

o mgx (U, uy) = )\(g)/(g) = \for 1 <7 <4 <n(u);

o mgx(uy,vy) = pn?/ =pfor 1 <i<n(u) and 1 < i’ < n(v);

2n/n =2 if1<j<k,
de(jy(u;i) for 1 <i < n(u);
w(

nn=1 ifj=k+1,
° 1)) =

= 1 for each 1 < j < k, since du(;(u)/n(u) = 2n/n = 2 for

1<j<k

From the first two conditions it follows that G' = K (n(™; X, u). The last two conditions tells
us that each color class 1 < j < k is 2-regular and connected respectively; that is each color
class 1 < j < k is a Hamiltonian cycle. Furthermore, the color class k + 1 is 1-regular. So we

obtained a decomposition of K (n™); X, 1) into Hamiltonian cycles and a single 1-factor. [
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Chapter 4
Embedding an Edge-colored K (a®; \, i) into a Hamiltonian Decomposition of
K (a5 A, )

4.1 Introduction

Recall that K (a®;\, i) is a graph with p parts, each part having size a, in which the
multiplicity of each pair of vertices in the same part (in different parts) is A (i, respectively).
In this chapter we consider the following embedding problem: When can a graph decom-
position of K(a®; ), 1) be extended to a Hamiltonian decomposition of K (a®*"; X, ) for
r > 0?7 A general result is proved, which is then used to solve the embedding problem for
all r > ﬁ + 3;’%1. The problem is also solved when r is as small as possible in two different
senses, namely when » = 1 and when r = ﬁ —p+ 1

Let G = (V, E) be a graph and let H = {H,},c; be a family of graphs where H; = (V}, E;).
We say that G has an H-decomposition if {E; : i € I} partitions F and each E; induces
an isomorphic copy of H;. Graph decomposition in general has been studied for many
classes of graphs. The decomposition of a graph into paths [79], cycles [76] or stars [78§]
has been of special interest over the years. Of particular interest is the decomposition of
a graph into Hamiltonian cycles; that is a Hamiltonian Decomposition. In 1892 Walecki
[64] proved the classic result that the complete graph K, is decomposable into Hamiltonian
cycles if and only if n is odd. Laskar and Auerbach [57] settled the existence of Hamiltonian
decomposition of the complete multipartite graph K,, .. Alspach, Gavlas, and éajna
[1, 76, 77] collectively solved the problem of decomposing the complete graph into isomorphic
cycles, but the problem remains open for different cycle lengths.

Another challenge is the companion embedding problem:
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Let H = {H}ic; and H* = {H}};c; be two families of graphs. Given a graph G
with an H-decomposition and a graph G* which is a supergraph of G (or G is a subgraph
of G*), under what circumstances one can extend the H-decomposition of G into an H*-
decomposition of G*? In other words, given an edge-coloring of G (that can be considered
as a decomposition when each color class induces a graph in H), is it possible to extend this
coloring to an edge-coloring of G* so that each color class of G* induces a graph in H*?

In this direction, Hilton [44] found necessary and sufficient conditions for a decom-
position of K,, to be embedded into a Hamiltonian decomposition of K,,,,, which later
was generalized by Nash-Williams [70]. Hilton and Rodger [48] considered the embedding of
Hamiltonian decompositions for complete multipartite graphs. For embedding factorizations
see [47, 74], where the connectivity of the graphs in H* is one defining property. We also note
that embedding problems first were studied for latin squares by M. Hall [41]. For extensions
of Hall’s theorem see [2, 3, 63].

The graph K (ay, ..., a,; A, ) is of particular interest to statisticians, who consider group
divisible designs with two associate classes, beginning over 50 years ago with the work of
Bose and Shimamoto [22]. Decompositions of K(ay,...,ay; A, ) into cycles of length m
have been studied for small values of m [37, 38, 39]. Recently, Bahmanian and Rodger have
settled the existence problem completely for longest (i.e. Hamiltonian) cycles in [5]. In this
chapter, we study conditions under which one can embed a decomposition of K (a®;\, )
into a Hamiltonian decomposition of K (a®*™); A, i) for r > 0. Our proof is largely based on

our results in [5] (see Theorem 2.1).

4.2 Amalgamation and Graph Embedding

Recall that a detachment of H is, intuitively speaking, a graph G obtained from H by
splitting some or all of its vertices into more than one vertex. That is, to each vertex « of
H there corresponds a subset V,, of V(G) such that an edge joining two vertices a and 3 in

H will join some element of V,, to some element of Vz. If 7 is a function from V(H) into
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N (the set of positive integers), then an n-detachment of H is a detachment of H in which
each vertex u of H splits into n(u) vertices. For a more precise definition of amalgamation
and detachment, we refer the reader to Chapter 1.

Since two graphs G and H related in the above manner have an obvious bijection
between the edges, an edge-coloring of G or H, naturally induces an edge-coloring on the
other graph. Hence an amalgamation of a graph with colored edges is a graph with colored
edges.

The technique of vertex amalgamation, which was developed in the 1980s by Rodger
and Hilton, has proved to be very powerful in decomposing of various classes of graphs. For
a survey about the method of amalgamation and embedding partial edge-colorings we refer
the reader to [4]. In [5], the authors proved a general detachment theorem for multigraphs.

For the purpose of this chapter we use a very special case of this theorem as follows:

Theorem 4.1. Let H be a k-edge-colored graph all of whose color classes are connected, and
let n be a function from V(H) into N such that for each v € V(H): (i) n(v) = 1 implies
lg(v) = 0, (ii) duy(v)/n(v) is an even integer for 1 < j < k, (iii) ("(2”)) divides (g (v),
and (iv) n(v)n(w) divides mg(v,w) for each w € V(H)\{v}. Then there exists a loopless
n-detachment G of H in which each v € V(H) is detached into vi, ..., vyw), all of whose

color classes are connected, and for ve V(H):
(i) ma(vi,vy) = €H(U)/("(2”)) for 1 <i<id <nv) ifnlv) =2,

(il) mg(vi, wy) = my(v,w)/(n(v)n(w)) forw e V(H)\{v}, 1 <i<nv) and1 <i' < n(w),

and
(iil) dag)(vi) = duggy(v)/n(v) for 1 <i<n(v) and 1 < j < k.

Here is our main result:
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Theorem 4.2. (Bahmanian, Rodger [10, Theorem 2]) Let G = K(a®; X\, ) with a > 1,

A0, p=1, A#p, r=1, and let w; = w(G(j)). For 1< j <k, define
s;j=w; (modr) withl<s;<r, (4.1)

and suppose
k
Z sj = kr — pa® (r) (4.2)
j=1 2

Then a k-edge-coloring of G can be embedded into a Hamiltonian decomposition of G* =

K(a®*): X\ p) if and only if:
(i) k= (Ma—1)+ palp+r—1))/2,
(i) A<palp+r—1),
(iii) Ewvery component of G(j) is a path (possibly of length 0) for 1 < j <k, and
(iv) w; <ar for1 <j<k.

Proof. By Theorem 3.4, for K (a®*); X\, 1) to be Hamiltonian decomposable, conditions (i)
and (ii) are necessary and sufficient. (Condition (i) follows since k must be dg«(v)/2. Con-
dition (ii) follows since each Hamiltonian cycle must use at least p + r mixed edges, so there
must be sufficiently many mixed edges for all pure edges to be used.) For 1 < j < k, for
G(j) to be extendable to a Hamiltonian cycle in K (a®): )\ i), the degree of each vertex
has to be at most 2, and thus every component must be a path. Moreover, since each new
vertex can link together two disjoint paths, the number of components of every color class
can not exceed the number of new vertices, ar. This proves the necessity of (i)—(iv).

Let G = (V, E), and let u be a vertex distinct from vertices in V. Define the new graph
Gy = (Vi, Ey) with Vi = V U {u} by adding to G the vertex u incident with ua? (g) loops,
and adding par edges between u and each vertex v in V' (see Figure 4.1). Note that for each

veV, dg, (v) =ANa—1)+pa(lp—1)+par = ANa—1) + pa(p+r—1) = 2k. Now we extend
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G

Figure 4.1: Gy and its detachment G,

the k-edge-coloring of G to a (k + 1)-edge-coloring of G as follows:
(A1) Each edge in G has the same color as it does in Gy,

(A2) For every v € V, color the par edges between v and w so that dg,(;)(v) = 2 for
1 < j < k. Since dg(jy(v) < 2 for 1 < j < k, and since dg, (v) = 2k, this can be
done. Notice that for every component of G(j) (which is a path), exactly two edges
(from end points of the path) are connected to u; so at this point dg,jy(u) = 2w; for

1<j<k

(A3) For 1 < j <k color r—s; (= 0) loops with j. This coloring of loops can be done, since

by condition (2) of the theorem we have:

Moreover we color the remaining Z?Zl sj — kr + pa? (;) (> 0) loops with the new color

k+ 1. Thus for 1 < j <k,

deygy(u) = 2w; + 2(r — s5) = 2r + 2(w; — s;),

20



and dGl(k+1)( u) = 2(2] L85 — kr + pa®(} )) By (1) dg,(j)(u) is an even multiple of

rfor 1 < j < k. Now to show that dg,(x+1)(u) is an even multiple of r, first we show

that ijl wj = pa’pr/2.

S e = Y - IEGG))
= kpa — |E]

= pa(Ma—1)+ palp+r—1))/2—pa(Ma—1) + pa(p — 1)) /2

= pa’pr/2.

Notice that pa(p + r — 1) is even, since otherwise, in particular a would be odd, so k

would not be an integer. Thus,

dey (k) (u) = 22 Wit palr(r —1)
= pa’pr + pa*r(r —1)

,ua2r(p +r—1)

0 (mod 2r).
Let by,...,bgs1 be even integers such that dg, ;) (u) = b;r for 1 < j < k+ 1. Note that
for 1 < j < k, we have

— g, -1
bj/2=1+u<1+[ar

. |<1+(a—1)=

Since each component of G(7) is joined to u in G1(7), each color class of GG; is connected.
Let 1 be a function from V; into N such that n(v) = 1 for each v € V| and n(u) = r. Now by
Theorem 4.1, there exists an n-detachment G, of GG1, all of whose color classes are connected,

(see Figure 4.1) in which w is detached into r new vertices wuy, ..., u, such that:

(a) ma,(wi,uy) = pa®(})/(}) = pa?, for 1 <i < <
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(b) mg,(u;,v) = par/r = pa for each v € V and each i, 1 < i < r;
(¢) dayy(u;) = bjr/r =b;for 1 <i<randl<j<k+1

We observe that dg,(u;) = ap(pa) + (r — Dpa® = pa*(p+r —1) for 1 < i < r, and is
even. Note that by (c), da,(j)(u;) = da,jy(ur) and is even for 1 < i < i’ < r, and we
know that dg,(u;) < 2ka for 1 < i < r. Therefore, since G(k + 1) is an even graph, (so
it has a 2-factorization), we can recolor each 2-factor of color class k£ + 1 with a color j,
1 < j < k such that dg,(w) < 2a. We let b,...,b) be even integers such that in the
resulting edge-coloring of (3 obtained from recoloring the color class k + 1, dg,j)(u) = bir
for1 <j<k.

Now we define the new graph G3 by adding )\(;) loops on every vertex u; in G, for

1 < i < r (see Figure 4.2). We extend the k-edge-coloring of Gy to a k-edge-coloring of G

Figure 4.2: G3

such that:

(B1) Each edge in G5 has the same color at it does in G3,
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(B2) For 1 <i<randl<j<k, there are a — /2 (> 0) loops incident with u; colored j.

This is possible, for the following reason:

k L&
Za—b’/? = ka—§;dg2(j)(u1)

7j=1

= ka— %dgz(ul)

1
= ka— §,ua2(p+r— 1)

= g()\(a — 1)+ palp+r—1)) — %uaz(p+ r—1)
— g)\(a— 1) = lg, (ur).

Since for 1 < j < k, Go(7) is a connected spanning subgraph of G(j), G3(7) is also connected.
Let 1’ be a function from V3 into N such that n/(v) = 1 for each v € V', and n'(u;) = a for
1 < i < r. Now by Theorem 4.1, there exists an n'-detachment G, of G3, all of whose color
classes are connected, in which wu; is detached into a new vertices wu;1, ..., u;, for 1 <i <r

such that:

o ma,(uj,uiy) = A3)/(5) =Aforl1<i<rand1<j<j <q

o mg, (uwij, uyy) = pa*/a® = p for 1 < '<rand 1< j<j <a
o mg,(uij,v) = paja = p for each v € V and for 1 < ¢ < r; and
o da,jy(uir) =2a/a=2for 1 <i<r 1<i<a.

Therefore G4, = K(a®*); X\, 11), and each color class in G4 is a Hamiltonian cycle, so the

proof is complete. ]

A natural perspective of this embedding problem is to keep a,p, A and pu fixed, and ask

for which values of r the embedding is possible. The following result completely settles this

AMa—1)+pa(p—1)

question for all r > pala—1)
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Theorem 4.3. (Bahmanian, Rodger [10, Theorem 3]) Let G = K(a®; \, ) with a > 1,

A=0, u=1, A#pu, and

AMa—1) + pa(p — 1).

D (4.3)

r =

Then a k-edge-coloring of G can be embedded into a Hamiltonian decomposition of K (a®*™); X, 1)

if and only if (i)—(iv) of Theorem 4.2 are satisfied.

Proof. 1t is enough to show that (4.3) implies (4.2). Since s; = 1 for 1 < j <k, Z§:1 s; = k.

Thus, if we show that k > kr — ua® (;), we are done. This is true by the following sequence

k(r —1) < pa® (;)

(r—=1)(Ma—1)+palp+r—1)) < pa’r(r—1)

of equivalences:

(A

Ma—=1) <palar —p—r+1) = pa(r(a—1)— (p— 1))
)

Ma—1)/(pa) <r(a—1) = (p—1
AMa—1) + pa(p —1)
pa(a—1)

r =

O

Another immediate corollary of Theorem 4.2 is the following complete solution to the

embedding problem when r = 1:

Corollary 4.4. Let G = K(a®;\,p) witha > 1, A >0, p =1, X # p. Then a k-edge-

coloring of G can be embedded into a Hamiltonian decomposition of K(a®*V;\ u) if and

only if:
(i) k= (Ma—1) + pap)/2,
(ii) A < pap,

(iii) Ewvery component of G(j) is a path (possibly of length 0) for 1 < j <k, and
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(iv) wj <a for1 <j<k.

Proof. Since r = 1, we have s; = ... = s, = 1,80 k = Z?Zl s; =k — ,uaz(é) = k, and thus

condition (4.2) of Theorem 4.2 is satisfied. O

Proposition 4.5. Whenever A < pa and p < a, the embedding problem s completely solved

for all values of r = 1.

Proof. Condition 4.3 can be rewritten as r > ﬁ + i—j. Since we are assuming that A\ < ua

p—1

= < 2. Therefore the result follows from Theorem 4.3 and

A
and p < a, we have ik

Corollary 4.4. O

Example 4.6. A k-edge-coloring of K(10();2,5) can be embedded into a Hamiltonian

decomposition of K (10(*7);2.5) for r > 1 if and only if (i)—(iv) of Theorem 4.2 are satisfied.

The following result completely settles the embedding problem for the smallest value of
r in another sense, namely with respect to the inequality (ii) of Theorem 4.2; so it settles the
case where \ = pa(p + r — 1), or equivalently where r = ﬁ — p+ 1. The proof is similar to
that of Theorem 4.2, so only an outline of the proof is provided, the details being omitted.
The proof of the necessity of condition (ii) of Theorem 4.2 shows that, in a Hamiltonian
decomposition of K (a®;\a(p + r — 1), ), each Hamiltonian cycle contains exactly a — 1

pure edges from each part, and exactly p + r mixed edges.

Theorem 4.7. (Bahmanian, Rodger [10, Theorem 4]) Let a > 1 and r,;un = 1. A k-edge-
coloring of G = K (a®; pa(p +r — 1), 1) can be embedded into a Hamiltonian decomposition

Of GF — K(CL(IH_T); ua(p +r— 1),#) Zf and only Zf
(i) k=pa®(p+r—1)/2,
(ii) Every component of G(j) is a path (possibly of length 0) for 1 < j <k,

(iii) G(j) has exactly a — 1 pure edges from each part, and at most p — 1 mized edges for

1<j<k, and
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(iv) wj <r for1 <j<k.

Proof. The necessity of (i)-(iii) follows as described in Theorem 4.2. Let m; be the number
of mixed edges in G(j). To extend each component P of G(j) to a Hamiltonian cycle in G*,
two mixed edges have to join P to the new vertices, and since each Hamiltonian cycle in G*

contains exactly p + r mixed edges, we have that
mj+2wj<p+7‘. (44)

Since G(j) is a collection of paths, for 1 < j < k, we have |V(G(j))| = |E(G(3))| + w;.

Therefore ap = m; + p(a — 1) + w; and thus
m; 4+ wj = p. (4.5)

Combining (4.4) and (4.5) implies (iv).

To prove sufficiency, we define the graph G as it is defined in Theorem 4.2. We extend
the k-edge-coloring of G to a k-edge-coloring of G such that dg, ;) (v) = 2 for each v e V
and 1 < j < k. This is possible by the same argument as in Theorem 4.2. At this point
de,(jy(u) = 2w; < 2r for 1 < j < k. So we can color the loops incident with u such that
de, ) (u) = 2r for 1 < j <k, simply by assigning the color j to r — w; loops.

Now we detach the vertex u into r new vertices uq, ..., u, to obtain the new graph G,
(as we did in the proof of Theorem 4.2). Note that dg,;)(u;) = 2r/r = 2foreach i, 1 <i<r
and each 7, 1 < 7 < k. Now we define the new graph G3 by adding a — 1 loops of color j,
1 < j <k, on every vertex u; in G, for each i, 1 <i <. So we have dg,(j)(u;) = 2a. Using
Theorem 4.1, detach each vertex u; into a new vertices wu;1, ..., u;, for 1 < i < r, to obtain

the new graph G4 in which, G4(j) is connected and dg,(j)(uwir) = 2a/a = 2 for 1 < j <k,

1 <i<r, 1< <a. This completes the proof. O
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Chapter 5

Detachments of Amalgamated 3-uniform Hypergraphs : Factorization Consequences

5.1 Introduction

A detachment of a hypergraph .# is, informally speaking, a hypergraph obtained from
Z by splitting some or all of its vertices into more than one vertex. If ¢ is a detachment of
Z , then .Z is an amalgamation of 4. Amalgamating ¢, intuitively speaking, can be thought
of as taking ¢, partitioning its vertices, then for each element of the partition squashing the
vertices to form a single vertex in the amalgamated hypergraph .. We shall give more
precise definition for amalgamation and detachment in Section 5.2.

Perhaps the most interesting use of amalgamations has been to prove embedding results;
see, for example [2, 3, 47, 51, 70, 74]. Detachments of graphs have also been studied in
[18, 49], generalizing some results of Nash-Williams [69, 68]. For a survey about the method
of amalgamation and embedding partial edge-colorings we refer the reader to [4].

Most of the results in graph amalgamation have used edge-coloring techniques due to
de Werra [80, 81, 82, 83], however Nash-Williams [70] proved a lemma (see Lemma 1.3) to
generalize theorems of Hilton and Rodger. In this chapter we apply Nash-Williams technique
to produce a general detachment theorem for 3-uniform hypergraphs (see Theorem 5.3).
This result is not only a substantial generalization of previous amalgamation theorems,
but also yields several consequences on factorizations of complete 3-uniform multipartite
(multi)hypergraphs. To demonstrate the power of our detachment theorem, we show that

the complete 3-uniform n-partite multi-hypergraph AK3 \....m,, can be expressed as the union

,m

G0 ... 09, of k edge-disjoint factors, where for i = 1,...,k, ¥, is r;-regular, if and only if:

(i) m; =m; :=mforall 1 <i,j <k,
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(ii) 3 | rymn for each i, 1 <i < k, and

(iit) 3,7 = A(")m?
It is expected that Theorem 5.3 can be used to provide conditions under which one
can embed a k-edge-colored complete 3-uniform hypergraph K2 into an edge-colored K3

n+m

such that " color class of K3

o +m induces an r;-factor for ¢ = 1,..., k. However obtaining

such results will require more advanced edge-coloring techniques and it will be much more
complicated than for companion results for simple graphs, with a complete solution unlikely
to be found in the near future (see [11]).

In connection with Kirkman’s famous Fifteen Schoolgirls Problem [56], Sylvester re-
marked in 1850 that the complete 3-uniform hypergraph with 15 vertices, is 1-factorizable.
Several generalizations of this problem were solved during the last 70 years (see for exam-
ple [71, 73, 15, 16]). It was Baranyai, who died tragically in his youth, who settled this
120-year-old problem (1-factorization of complete uniform hypergraphs) ingeniously [15, 16].

Baranyai’s proof actually yields a method for constructing a 1-factorization recursively.
However, this approach would not be very efficient and its complexity is exponential [53].
Baranyi’s original theorem was spurred by Peltesohn’s result [71] which was a direct con-
struction, and it was polynomial time to implement. Brouwer and Schrijver gave an elegant
proof for 1-factorizations of the complete uniform hypergraph for which the algorithm is
more efficient [25]. Our construction leads to an algorithm similar to that of Brouwer and
Schrijver. This is discussed briefly in Section 5.6, but for more details we refer the reader to
Chapter 10.

Notation and more precise definitions will be given in Section 5.2. Any undefined term
may be found in [20]. In Section 5.3, we state our main result and we postpone its proof to
Section 5.5. In Section 5.4, we exhibit some applications of our result by providing several
factorization theorems for 3-uniform (multi)hypergraphs. The key idea used in proving the
main theorem is short and is given in 5.5.1. The rest of Section 5.5 is devoted to the

verification of all conditions in Theorem 5.3.
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5.2 Notation and More Precise Definitions

For the purpose of this chapter, a hypergraph ¢ is an ordered quintuple (V(¥), E(¥), H(¥),
¥, ¢) where V(¥),E(¥), H(¥) are disjoint finite sets, ¢ : H(¥) — V(¥) is a function and
¢: H(9Y) — E(9) is a surjection. Elements of V(¥), E(¥), H(¥) are called vertices, hyper-
edges and hinges of ¢, respectively. A vertex v and hinge h are said to be incident with
each other if ¥(h) = v. A hyperedge e and hinge h are said to be incident with each other
if ¢(h) = e. A hinge h is said to attach the hyperedge ¢(h) to the vertex v (h). In this
manner, the vertex ¢(h) and the hyperedge ¥ (h) are said to be incident with each other.
If e e E(¥), and e is incident with n hinges hq, ..., h, for some n € N, then the hyperedge
e is said to join (not necessarily distinct) vertices ©¥(hy),...,¥(h,). If v € V(¥), then the
number of hinges incident with v is called the degree of v and is denoted by dg(v).

The number of vertices incident with a hyperedge e, denoted by |e|, is called the size of
e. If le] = 1 then e is called a loop. If for all hyperedges e of 4, |e| < 2 and |¢p~'(e)| = 2,
then ¢ is a graph. If n > 1 and ey, ..., e, are n distinct hyperedges of ¢, incident with the
same set of vertices, then e, ..., e, is said to be multiple hyperedges. A multi-hypergraph is
a hypergraph with multiple hyperedges.

Thus a hypergraph, in the sense of our definition is a generalization of a finite hypergraph
as usually defined, but for convenience, we imagine each hyperedge of a hypergraph to be
attached to the vertices which it joins by in-between objects called hinges. In fact if for every
edge e, |e| = |¢~!(e)|, then our definition is essentially the same as the usual definition. One
can think of a hypergraph as a bipartite multigraph, where E forms one class, V forms
other class, and the hinges H form the edges. A hypergraph may be drawn as a set of
points representing the vertices. An edge is represented by a simple closed curve enclosing
its incident vertices. A hinge is represented by a small line attached to the vertex incident

with it (see Figure 5.1).
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Example 5.1. Let % = (V,E, H,¢,¢), with V = {v; : 1 <i <7}, F = {ey,eq,e3}, H =
{hi : 1 <4 < 9}, such that ¢(h1) = vi,¥(ha) = ¥(hs) = v2,¥(ha) = v3,¥(hs) = P(he) =
U(hr) = va,¥(hs) = vs,¥(hg) = vs and ¢(h1) = e1,d(h2) = ¢(hs) = ¢(ha) = d(hs) =
¢(he) = e2,0(hr) = ¢(hs) = d(hy) = es. Moreover |er| = 1, [ez] = [es] = 3, and d(v1) =
d(vs) = d(vs) = d(vg) = 1,d(ve) = 4,d(v4) = 3,d(v7) = 0.

€1

F

Figure 5.1: Representation of a hypergraph .7

Throughout this chapter, the letters .% and ¢ denote hypergraphs (possibly with loops
and multiple hyperedges). The set of hinges of ¥ which are incident with a vertex v
(a hyperedge e), is denoted by H(¥4,v) (H(¥,e), respectively). Thus if e € E(¥), then
H(%,e) = ¢ e). IfveV(Z), then H(Y,v) =y (v), and |H(Z,v)| is the degree d(v) of
v. If S'is a subset of V(¥) or E(¥), then H(¥,S) denotes the set of those hinges of ¢ which
are incident with an element of S. If S} < V(¥) and Sy, < E(¥), then H(¥, S1,53) denotes
H(94,5)nH(Y,S;). IfveV(¥4)and S ¢ E(¥), then H(¥,v,S) denotes H(¥4,{v},S). To
avoid ambiguity, subscripts may be used to indicate the hypergraph in which hypergraph-
theoretic notation should be interpreted — for example, dy(v).

Let ¢4 be a hypergraph in which each hyperedge is incident with exactly three hinges.
If w,v,w are three (not necessarily distinct) vertices of ¢4, then V(u, v, w) denotes the set of
hyperedges which are incident with u, v, w. For each hyperedge e incident with three hinges

h1, ha, hs there are three possibilities (see Figure 5.2):
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(i) e is incident with exactly one vertex w. In this case w is incident with hq, ho, hy. We

denote V(u,u,u) by V(u?).

(ii) e is incident with exactly two distinct vertices u,v. In this case one of the vertices, say
w is incident with two hinges, say hi, he and v is incident with h3. We denote V (u, u, v)

by V(u?,v).
(iii) e is incident with three distinct vertices w, v and w.

For multiplicity we use m(.) rather than |V(.)|. A hypergraph ¢ is said to be k-uniform

() (i (i)

Figure 5.2: The three types of edges in a hypergraph ¢ in which |H(¥,¢e)| = 3 for every
edge e

if e| = |H(¥,e)| = k for each e € E(¥4). A k-uniform hypergraph with n vertices is said
to be complete, denoted by K¥ if every k distinct vertices are incident within one edge. A
3-uniform hypergraph with vertex partition {V;,...,V,,} with |V;| = m; fori =1,...,n, is
said to be (i) n-partite, if every edge is incident with at most one vertex of each part, and (ii)

complete n-partite, denoted by Kf’nl if it is n-partite and every three distinct vertices

from three different parts are incident.
If we replace every hyperedge of &4 by A (> 2) multiple hyperedges, then we denote the

new (multi) hypergraph by AY. A k-hyperedge-coloring of ¢ is a mapping K : E(9) — C,
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where C'is a set of k colors (often we use C' = {1,...,k}), and the hyperedges of one color
form a color class. The sub-hypergraph of ¢ induced by the color class j is denoted by ¥4(j).

A hypergraph ¢ is said to be (i) regular if there is an integer d such that every vertex has
degree d, and (ii) k-regular if every vertex has degree k. A factor of ¢ is a regular spanning
sub-hypergraph of 4. A k-factor is a k-regular factor. A factorization is a decomposi-
tion (partition) of E(¥) into factor(s). Let 71,...,7; be (not necessarily distinct) positive
integers. An (r,...,7r)-factorization is a factorization in which there is one r;-factor for
i=1,..., k. An (r)-factorization is called simply an r-factorization. A hypergraph ¢ is said
to be factorizable if it has a factorization. The definition for k-factorizable and (rq,...,71)-
factorizable hypergraphs is similar.

If # = (V,E,H,v,¢) is a hypergraph and V¥ is a function from V onto a set W, then
we shall say that the hypergraph ¢ = (W, E, H, Vo1, ¢) is an amalgamation of % and that
F is a detachment of ¢. In this manner, ¥ is called an amalgamation function, and ¥ is
the W-amalgamation of .%. Associated with W is the number function g : W — N defined
by g(w) = [T (w)|, for each w € W, and we shall say that .# is a g-detachment of 4.
Intuitively speaking, a g-detachment of ¢ is obtained by splitting each u € V(¥¢) into g(u)
vertices. Thus .# and ¢ have the same hyperedges and hinges, and each vertex v of ¥ is
obtained by identifying those vertices of .# which belong to the set ¥~1(v). In this process,
a hinge incident with a vertex u and a hyperedge e in .% becomes incident with the vertex
U(u) and the edge e in 4. Since two hypergraphs .# and ¢ related in the above manner have
the same hyperedges, coloring the hyperedges of one of them is the same thing as coloring the
hyperedges of the other. Hence an amalgamation of a hypergraph with colored hyperedges

is a hypergraph with colored hyperedges.

Example 5.2. Let .# be the hypergraph of Example 5.1. Let U : V' — {w, wq, w3, wy} be
the function with W(vy) = U(v;) = wy, W(vg) = wq, ¥(v3) = V(vy) = w3, V(vs) = VU(vg) =

wy. The hypergraph ¢ in Figure 5.3 is the W-amalgamation of .%.
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€1

9 es

Figure 5.3: Amalgamation ¢ of the hypergraph .# in Example 5.1

5.3 Statement of the Main Theorem

In the remainder of this chapter, all hypergraphs are either 3-uniform or are amalgama-

tions of 3-uniform hypergraphs. That is, for every hypergraph .%# we have
1 <le| < |H(F,e)| =3 for every e in .Z. (5.1)

Therefore every edge is of one the types shown in Figure 5.2. For g : V(%) — N, we define
the symmetric function g : V3(.#) — N such that for distinct z,y,z € V(F), g(z,z,z) =
(g(;)), g(z,x,y) = (g(;))g(y), and §(z,y,z) = g(x)g(y)g(2). Also we assume that for each
r e V(Z), g(x) < 2 implies mgz(2%) = 0, and g(x) = 1 implies m#(2%,y) = 0 for every

ye V(F).

Theorem 5.3. Let .7 be a k-hyperedge-colored hypergraph and let g be a function from V (F)
into N. Then there exists a 3-uniform g-detachment & (possibly with multiple hyperedges) of
F with amalgamation function W : V(4) — V(F), g being the number function associated

with VU, such that 9 satisfies the following conditions:
(A1) dy(u) ~ dz(x)/g(x) for each x € V(F) and each u € ¥ (z);

(A2) dyj)(u) ~ dg@(x)/g(z) for each x € V(F), each uwe U~ (x) and each j € {1,... k};
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(AB) mg(u,v,w) ~ mg(x,y,z)/g(x,y,z) fOT Every x,Y,z € V(y) with g(l‘) > 3 fo =
y =z, and g(x) = 2 if {x,y, z}| = 2, and every triple of distinct vertices u, v, w with

we U Hz), ve U (y) and we U1(2);

(A4) mg(j)(u,v,w) ~ my(])(z,y,Z)/g(z,y,Z) fO’f’ every x,Y,z € V(ﬁ) with g(l’) = 3 Zf
x=y =z and g(x) = 2 if |{x,y, z}| = 2, every triple of distinct vertices u,v,w with

uwe U (x), ve U l(y) and we V~1(2) and each j € {1,... k}.

5.4 Factorization Consequences

Throughout this section n > 3. It is easy to see that every factorizable hypergraph must
be regular. If ¢4 is a 3-uniform hypergraph with an r-factor, since each edge contributes 3
to the sum of the degree of all vertices in an r-factor, 7|V (%)| must be divisible by 3.

5.4.1 Factorizations of \K?

We first note that AK3 is A(",')-regular, and |E(AK2)| = A(}). Throughout this

section, .% is a hypergraph consisting of a single vertex = and )\(g‘) loops incident with x,

and g : V(F) — N is a function with g(x) = n. Note that AK? is a g-detachment of .#.
Theorem 5.4. AK3 is (ry,...,r)-factorizable if and only if

(i) 3| mn for each i, 1 <i <k, and

(i) Xari = A(" )

Proof. Suppose first that AK3 is (ry,...,r)-factorizable. The existence of each r;-factor
implies that 3 | rn for each i, 1 < ¢ < k. Since each r;-factor is an r;-regular spanning

sub-hypergraph and \K?3 is A(”;l)—regular, we must have Zle r, = )\(”gl).
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Now assume (i)—(ii). We find a k-hyperedge-coloring for .# such that mg ;) (z*) = r;n/3

for each j € {1,...,k}. It is possible, because

k
rin n
megy(a®) = )] 5= gzrj

1 j=1 j=1

k
j=

Now by Theorem 5.3, there exists a 3-uniform g-detachment ¢ of .# with n vertices, say
U1, ..., 0, such that by (A2) dgg)(v;) = ryn/n = r; for each i = 1,...,n and each j €
{1,...,k}; and by (A3) mg (v, vs,vy) = )\(g)/(g) = A for distinct r,s,t, 1 < r,s,t < n.

Therefore ¢ =~ AK3 and each color class i is an r;-factor for i = 1,... k. O

5.4.2 Factorizations of K}

yeeesMn
We denote Kp, . by K}, (s0 we don’t write the under-brace when it is not am-
—_——

biguous). We first note that AK3, _,, is a A(";")m?-regular hypergraph with nm vertices and
A(5)m® edges. Throughout this section, .# = Am*K? with vertex set V(F) = {z1,...,2,},

and g : V(%) — N is a function with g(z;) = m for i = 1,...,n. We observe that AK?,

yee TV

is a g-detachment of .%.

Theorem 5.5. \K?3 is (r1, ..., rg)-factorizable if and only if

mi,...,m
(i) m;=m;:=m forl1 <i<j<mn,
(ii) 3 | rymn for eachi, 1 <1<k, and
k n—

(i) Y, = A(",")m?.

Proof. Suppose first that )\KS%_ is r-factorizable (so it is regular). Let u and v be

—yMn

two vertices from two different parts, say p and ¢** parts respectively. Then we have the

following sequence of equivalences:

65



d(u) = d(v) —

21<i<j<n mim; = 21<i<j<n m;m; —
1,J#P 1,74
my Z;sisn m; + Zl<i<j<n mgm; = mpzlsisn m; + Zl<i<j<n m;m; —
i#p,q i,j¢{p.q} i#Ppq i,j¢{p.q}

My Zléién mi = mpElsisn m; Rand

i7#D,q i#D,q
(my, —my) ZKK" m; =0 —

1#D,q

my = My := m. (n = 3)

This proves (i). The existence of each r;-factor implies that 3 | r;mn for each i, 1 <i <

k. Since each r;-factor is an r;-regular spanning sub-hypergraph and Kglm is A(";l)mz—
regular, we must have 3¢ r; = A" ym?.

Now assume (i)—(iii). Since 3 | ;mn for each i, 1 <i < k and Zle mr; = )\("gl)mg, by
Theorem 5.4, F is (mry, ..., mr)-factorizable. Therefore we can find a k-hyperedge-coloring
for .# such that

dzg(x) =r;m Vje{l,... k}.

Now by Theorem 5.3, there exists a 3-uniform g-detachment & of .# with mn vertices, say
xij, 1 <i<n, 1 <j<m(za,..., T, are obtained by splitting x; into m vertices for
i =1,...,n) such that by (A2) dy(wi;) = rem/m =1y foreach i =1,...,n, j =1,...,m,
and each t € {1,...,k}; by (A3) mg(xi;, xij, 7)) = 0 for ¢ = 1...,n and distinct 7, j', 5",
1<4,7.,7" <m,if m = 3; by (A3) mg(zj, zij, xyjn) = 0 for distinct 4,7, 1 < 4,9 < n and
distinct 7,7, 1 < j, 5/, 7" < m, if m = 2; and by (A3) mg(xj, xijr, Tinjr) = dm?/(mmm) = X\
for distinct 4,4,i", 1 <4,7,7" < n and 1 < 4,5, ;" < m. Therefore 4 =~ XK} and each

color class i is an r;-factor for each i € {1,..., k}. O
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5.5 Proof of the Main Theorem

Recall that x ~ y means |y| < = < [y]. We observe that for x,y € R, a,b,c € Z, and
n € N (i) a ~ x implies a € {|z|,[x]|}, (ii)) = ~ y implies x/n ~ y/n (iii) the relation ~ is
transitive (but not symmetric), and (vi) @ = b — ¢ and ¢ ~ z, implies a ~ b — x. These
properties of &~ will be used in this section when required without further explanation.

Let % = (V,E,H,¢,¢). Let n = >, ,(9(v) —1). Our proof of Theorem 5.3 consists
of the following major parts. First, in Section 5.5.1 we shall describe the construction of
a sequence Fy = %, F1,...,.%, of hypergraphs where .%; is an amalgamation of .%;,; (so
Fiv1 is a detachment of .%;) for 0 < i < n— 1 with amalgamation function ®; that combines
a vertex with amalgamation number 1 with one other vertex. To construct each .%;,; from
Z; we will use two laminar families o7 and %;. In Section 5.5.2 we shall observe some
properties of .%; .1 in terms of .%;. As we will see in Section 5.5.3, the relations between
Fiv1 and Z; lead to conditions relating each .%;, 1 < i < n to the initial hypergraph .%#.
Finally, in Section 5.5.4 we will show that .%,, satisfies the conditions (A1)—(A4), so we can

let 4 = .%,,.

5.5.1 Construction of ¢

Initially we let %y = % and gy = g, and we let ®( be the identity function from V into
V. Now assume that #y = (Vy, Eo, Ho, Vo, ¢0), - - -, Fi = (Vi, Ei, Hy, 1, ¢;) and Py, ..., D,

have been defined for some ¢ > 0. Also assume that go: Vo — N, ..., g; : Vi = N have been
defined such that for each j = 0,...,7 and each z € V}, g;(2) < 2 implies mz,(2°) = 0, and

gj(z) = 1 implies m g, (z*,y) = 0 for every y € V;. Let ¥; = ®;...®;. If i = n, we terminate
the construction, letting 4 = .%, and ¥ = V,,.

If i < n, we can select a vertex a of .%#; such that g;(a) > 2. As we will see, %, is
formed from .%; by detaching a vertex v;,; with amalgamation number 1 from a.

Let Hyy = H(Z(j),a) for j = 1,...,k. If e € E; incident with o, we let H; =

H(Z(j),a,e) for j = 1,... k. Recall that by (5.1), |[H;| < 3. Intuitively speaking, H; is
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the set of all hinges which are incident with a and a hyperedge colored j, and H{; is a subset

of H;; consisting of only those hinges incident with a single hyperedge e colored j. Now let

o = {H(ZFi,a)}
{Hila - ,sz}

{Hf :eeV(a®,y),yeVi,1<j <k} (5.2)
Note that

{Hf :eeV(a®y),yeV,1<j<k} = {Hj:eeV(’),1<j<k}

U {HS:eeV(aty),ye Vi\{a},1<j <k}

Ifu,v eV let H = H(F;,V(a,u,v)) and HY = H(F(j), o, V(a,u,v)) for j =1,... k.

Now let

PB; = {H" :u,veV}

U {Hj ruwveVi,1<j<k} (5.3)

It is easy to see that both 7 and %; are laminar families of subsets of H(.%;, «). Then, by

Lemma 1.3, there exists a subset Z; of H(.%;, a) such that
|Z; n P| ~ |P|/gi(a), for every P e o U ;. (5.4)

Let v;41 be a vertex which does not belong to V; and let V;;1 = V; U {v;11}. Let ®;,; be the
function from V;;; onto V; such that ®;.;(v) = v for every v € V; and ®;41(v;41) = . Let
Fiy1 be the detachment of .%; under ®;,1 (%; is the ®,;,1-amalgamation of .%#;, ) such that

V(%H) = Viq1, and
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H(c%ﬂ,viﬂ) = Z;, H(c%ﬂ,a) = H(%,a)\Zi. (5-5)

In fact, .%; 1 is obtained from .%; by splitting « into two vertices o and v;;1 in such a
way that hinges which were incident with « in .%; become incident in .%;,; with « or v; 4
according as they do not or do belong to Z;, respectively. Obviously, ¥; is an amalgamation
function from .%;,; into .%;. Let g;+1 be the function from V;; into N, such that g;11(v;41) =
1,gi11(a) = gi(a) — 1, gi11(v) = g;(v) for every v € V;\{a}. This finishes the construction
of %;.1. Now, we explore some relations between .%;,; and .%;. In the remainder of this
chapter, d;(.), m;(.), d(.), and m(.) will denote dz,(.), mz,(.), dz(.), and mz(.), respectively.
5.5.2 Relations Between .%;,; and .%;

The hypergraph .%; 1, described in 5.5.1, satisfies the following conditions:

(B1) disa(a) = di(a)gin(@)/gi(a);
(B2) dit1(vis1) = di(a)/gi(a);
(B3) miy1(a,v?) ~ mi(a,v?)gi1(a)/gi(a) for each v € Vi\{a};
(B4) miy1(vig1,v?) ~ mi(a,v?)/gi(a) for each v € Vi\{a};
(B5) myy1(a, u,v) ~ my(a, u,v)gi41(a)/gi() for every pair of distinct vertices u, v € V;\{a};
(B6) mit1(vig1, u,v) ~ my(a, u,v)/gi() for every pair of distinct vertices u,v € V;\{a};
(B7) mis1(v2,,v) = 0 for each v € Vi\{a};
(B8) myy1(a, vip1,v) ~ 2mi(a?,v)/gi(a) for each v € V;\{a};
(B9) misi(a?,v) ~ mi(a?,v)(giv1(a) — 1)/gi(a) for each v € V)\{a};
(B10) mis1(vdi1) = mis1(viiy, ) = 0;

(B11) miy1(a®) ~ mi(a®)(gir1(a) — 2)/gi(@);

69



(B12) mi+1(’02‘+1, 042) X BmZ(a?’)/gl(a)

Proof. Since H(%;,«) € o, from (5.5) it follows that

div1(vie1) = [H(Fio,vin)l = |Zi] = |Zi 0 H(F, 0)
~ |H(F,a)l/gi(a) = di(a)/gia),
dipi(a) = [H(Fip,0)| = [H(F, a)| = |Zi]
~ di(a) —di(a)/gi(a) = (gi(e) — 1)di(@)/gi()
= di(@)gir1(a)/gi(a).

This proves (B1) and (B2).
If v e V;\{a}, then H!" € %B; and so

mir1(Vig1,v?) = |Z; 0 HPY| =~ [H”|/g:(a) = mi(a,v*)/gi(a),
mici(o,v?) = |[H| = |Z; 0 HP| ~ my(a, v%) — my(a, v?)/gi()
= (gi(a) = Dm;(a, v*)/gi()

= mi(aavz)gwrl(o‘)/gi(o‘)'

This proves (B3) and (B4) (see Figure 5.4(i)).

If u,v are a pair of distinct vertices in V;\{a}, then H*” € %; and so

Mi1(vig, u,v) = |Z; 0 H| ~ |H"|/gi(a) = my(a, u,v)/gi(c),

mipi(,u,0) = [H"| —|Z; 0 H|

2

mi(aa U, U) - mi<a7 U, U)/gi(a>
= (gi(a) = )mi(e, u,v)/gi()

= mi(av u, U>gi+1(a>/gi(a)‘

This proves (B5) and (B6) (see Figure 5.4(ii)).
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If v € Vi\{a}, and e € V z,;)(o?,v), then H; € o, so

12 0 H| ~ | Hglfoi(0) = 2/gi(a) < 1.

Therefore either |Z; n Hf;| = 1 and consequently e € V7, (viy1,,v) or Z; n H; = @ and

consequently e € Vg, (o2, v). Therefore

Vg,

i1 (Ui2+1v U) = 9.

This proves (B7) (see Figure 5.4(iii)). Moreover, since H{* € %;

/ N\

Y\

(i)

e
N

—~
—-
~—

(iii)

Figure 5.4: The four possibilities for detachment of a single edge incident with «

~J
—_




misi(e,vip,v) = |Z 0 HY®| ~ [H|/gi(a) = 2mi(e?,v)/gi(a),
mi1(a®,v) = my(a®,v) —|Z; 0 H™|

mi(a®,v) — 2mi(a, u, v)/gi(c)

= (gi(@) = 2)mi(a®,v)/gi()

= mi(a® v)(gipa(a) —1)/gi().

2

This proves (B8) and (B9). We note that from (B9) it follows that if g;;1(car) = 1, then
mi+1(0é2,’0) = 0.

If e is a loop in .%(j) incident with a, (so gi(a) = 3,) then Hf; € <. So

|Zi n Hig| ~ [H|/gi(a) = 3/gi(a) < 1.

Therefore either |Z; n H;| = 1 and consequently e € Vg, (0 vi41) or Z; 0 Hf; = @ and

consequently e € V., (a?). Therefore

Vyi+1 ('U?Jrl) = vyz‘ﬂ (Uz'2+1> Oé) = .

This proves (B10) (see Figure 5.4(iv)). Moreover,

mir1(0® vip1) = |Zi 0 HY| ~ |H|/g:() = 3m;(a®)/gi(a),
mi1(0®) = m(e®) — |Z; 0 HP| = mi(a®) — 3mi(a?)/gi(a)

= (g:(e) = 3)mi(a?)/gi() = mi(a®)(gis1 (@) — 2)/gila).

This proves (B11) and (B12). We may note that from (B11) it follows that if g;11(a) = 2,

then m;1(a?®) = 0. O

A similar statement can be proved for every color class: Let us fix j € {1,...,k}, and let

u, v be a pair of distinct vertices in V;\{a}. The colored version of (B7) and (B10) is trivial.
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Since H;; € o, H' € %;, H" € B;, H" € %;, H* € %;, respectively, we can obtain a
colored version for (B1) and (B2), (B3) and (B4), (B5) and (B6), (B8) and (B9), and (B11)

and (B12), respectively.

5.5.3 Relations Between .%; and .

Recall that ¥; = ®y...P;, that &5 : V — V, and that &; : V; — V;_; for i > 0.
Therefore ¥, : V; — V and thus ‘11;1 V=V
Now we use (B1)—(B12) to prove that the hypergraph .%; satisfies the following condi-

tionsfor 0 <1< n:

(D1) di(x)/g:(z) ~ d(x)/g(x) for each z € V;
(D2) di(v,) ~ d(z)/g(x) for each x € V and each v, € ¥; ![z];

(D3) my(2®)/(%L) ~ m(2)/(*D) for each x € V with g(z) > 3 if g;(x) > 3, and m;(2°) = 0

otherwise;
(D4) m;(v3) = 0 for each x € V and each v, € U, '[x];

(D5) mi(:)sz,vr)/(gi(x)) ~ m(x?’)/(g(;)) for each z € V with g(x) > 3 and each v, € ¥;'[z] if

2

gi(r) = 2, and m;(2?,v,) = 0 otherwise;

(D6) mi(z,v,,vs)/gi(x) ~ m(x?’)/(g(;)) for each z € V with g(x) > 3 and every pair of

. . . -1 .
distinct vertices v, vs € ¥, " [z];

(D7) m;(vy, v, 0;) ~ m(x?’)/(g(x)) for each x € V with g(z) > 3 and every triple of distinct

3
vertices v,, vs, v, € U5 [x];

(D8) m ( )gZ ,y)/((g(x))g(y)) for every pair of distinct vertices z,y €

V with g(z) > 2 if gl( ) = 2, and m;(2?%,y) = 0 otherwise;

(D9) my(a?, vt)/(gigw)) ~ m(x?, y)/((g(;))g(y)) for every pair of distinct vertices x,y € V with

g(x) = 2 and each v; € U; '[y] if g;(z) = 2, and m;(z%, v;) = 0 otherwise;
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(D10) my(z, v, y)/(gi(7)gi(y)) ~ m(z?, y)/((g(;))g(y)) for every pair of distinct vertices x,y €
V with g(x) > 2 and each v, € U; [x];

(D11) my(z, v, v0)/gi(x) ~ m(:)sz,y)/((ggm))g(y)) for every pair of distinct vertices z,y € V

with g(x) = 2, each v, € U, '[x] and each v, € U; [y];

(D12) m;(vy,vs,y)/9:(y) =~ m(z2,y)/((g(;))g(y)) for every pair of distinct vertices z,y € V

with g(x) = 2 and every pair of distinct vertices v,, v, € U; '[x];

(D13) m;(v,,vs,v1) ~ m(xz,y)/((g(;))g(y)) for every pair of distinct vertices x,y € V with

g(x) = 2, every pair of distinct vertices v,,v, € U [x] and each v, € ¥; [y];

(D14) my(z,y,2)/(9:(x)g9:(y)g:(2)) = m(x,y, z)/(g(x)g(y)g(z)) for every triple of distinct ver-

tices x,y,z € V;

(D15) myi(z,y,v)/(g9:(x)g:(y)) =~ m(x,y, 2)/(9(x)g(y)g(z)) for every triple of distinct vertices

x,y,2 €V and each v; € ¥; '[2];

(D16) m;(z,vs,vy)/g:(x) ~ m(z,y, 2)/(9(x)g(y)g(z)) for every triple of distinct vertices z, y, z €
V, each v, € U, '[y] and each v, € U;[z];

(D17) m;(vp,vs,v) = m(z,y, 2)/(9(x)g(y)g(z)) for every triple of distinct vertices x,y,z € V,

each v, € U;'[z], each v, € U '[y] and each v; € U [z].

Proof. Let x,y, z be an arbitrary triple of distinct vertices of V. We prove (D1)-(D17) by
induction. To verify (D1)—(D17) for i = 0, recall that %y = .%, and go(x) = g(x).
Obviously do(z)/go(x) = d(z)/g(z), and this proves (D1) for i = 0. (D2) is trivial. If
g(z) = 3, obviously mg(2*)/(*{")) = m(2®)/(*?), and if g(x) < 2, by hypothesis of Theorem
5.3, m(x®) = 0. This proves (D3) for i = 0. The proof of (D4)—(D17) for i = 0 is similar and
can be verified easily.
Now we will show that if .%; satisfies the conditions (D1)—-(D17) for some i < n, then

Fiv1 (formed from .%; by detaching v;4; from the vertex «) satisfies these conditions by
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replacing ¢ with 7 + 1; we denote the corresponding conditions for .%;; by (D1)—(D17)". If
gi+1(z) = gi(x), then (D1)’'~(D7)" are obviously true. So we just check (D1)—(D7)" in the
case where z = a. Also if g;41(x) = g;(z) and g;41(y) = gi(y), then (D8)'~(D13)" are clearly
true. So in order to prove (D8)'—(D13)’, we shall assume that either g;11(z) = ¢i(z) — 1
or giy1(y) = gi(y) — 1 (so a € {z,y}). Similarly, if giy1(z) = 6:i(y), 9i11(y) = gi(y), and
gi+1(2) = gi(2), then (D14)'~(D17)" are true. Therefore to prove (D14)—(D17)" we shall
assume that either g;y1(z) = gi(z) — 1 or gis1(y) = gi(y) — 1 or gir1(2) = gi(z) — 1 (so

a€{x,y,z}).

(D1) By (B1), dit1(a)/gis1(a) ~ di(a)/gi(a)), and by (D1) of the induction hypothesis
di()/gi;(a) ~ d(a)/g(cr). Therefore

dip1(a) BY) di(@) @) d()

~

~ ~

gir1() gi(a) 9(a)
This proves (D1)".

(D2)" By (B2), di11(vit1) ~ di(@)/gi(a), and by (D1) of the induction hypothesis d;(«)/g; () ~

d(a)/g(a). Therefore
(B2) d;(a) (1) d(a)

dip1(vig1) = ~

gila)  gla)

Since in forming .%;,1 no hyperedge is detached from v, for each v, € @;l[a], we have
div1(v,) = di(v,). By (D2) of the induction hypothesis d;(v,) ~ d(a)/g(a) for each
v, € U a]. Therefore

di+1(vr) = di<vr) N

for each v, € ¥; ![a]. This proves (D2)".

75



(D3)" Suppose g(a) = 3. If g;11(a) = 3, by (B11)

mis1(a?) (BL1) m;(a®)(giz1(a) — 2)
(gwé(a)) gi() (gi+é(a))
mi(a®)(gini(a) —2)
9i(@)gi+1(a)(giv1(a) — 1)(gis1(a) —2)/6

m;(a?)

Since g; (@) = 4 > 3, by (D3) of the induction hypothesis m;(a®)/(%'™) ~ m(a®)/ ().

Therefore
mis1(a?) (B11) m;(a?) (D3) m(a?)

e ) e

If giv1(a) < 3, by (B11) m;y1(a®) = 0. This proves (D3)’.

(D4)" By (B10), m;.1(vi,) = 0. Moreover, m;;1(v3) = m;(v?) = 0 for each 1 < r <. This

proves (D4)’.

(D5)" Suppose g(a) = 3. If g;11(a) = 2, by (B12)

mip1(a?, vis1) (B%lz) 3m;(a?)
(QH;(Q)) gi(a) (gig(a))
_ 3m;(a?)
9i(a@)giv1(a)(giv1(a) —1)/2
 m(a?)
BT

Since g;(a) = 3, by (D3) of the induction hypothesis m;(a®)/(%\) ~ m(a®)/(*).

Therefore
miy1(a?, vig) (B12) m;(a?) (D3) m(a’)

(gi+é(0¢)) (giga)) (g(;)) ’

76



(D6)’

By (B9) for each v, € ¥; '[a]

misa (0% vr) - (39 mz<a2 vr><9z+l<a> D)

(gig(a)) = o) (% (@)

)
mZ(O‘ vy)(git1(a) — 1)
9i(@)giv1(a)(giv1(a) —1)/2

mi(a ) ,UT’)
C)

Since g;(a) = 3 > 2, by (D5) of the induction hypothesis we have mi(a2,vr)/(gi(a)) ~

m(a?)/(?$) for each v, € ¥; '[a]. Therefore

mig1(?, ve) B9 mi(a?,v,) 05) m(a?)

(gi+;(0¢)) - (Qi (206)) - (g(?f’l))

for each v, € U;'[a]. If gi11(a) = 1, by (B9) it follows that m;i(a?,v,) = 0 for each

v, € U [a]. This proves (D5)".

Suppose g(a) = 3 and v,, v, are a pair of distinct vertices in ¥; '[a]. From (B5) it
follows that m; 1(a, vy, vs)/giv1(a) ~ my(a, v, vs)/g:(a). By (D6) of the induction

hypothesis m;(c, v, v5)/gi() =~ m(« ( ) Therefore

mi+1(a, Ur, US) (]’15) mi(a7 () US) (D6 m(a3>

~ IS

Giv1() gi(a) (g(a))

From (B8) it follows that

M1 (@, v, vi1) B8 2mi(a?,v)  my(a®,v,)

Giv1() - gi(@)giz1(a) (91’(20!))

By (D5) of the induction hypothesis m;(a?,v,)/(%{") ~ m(a?)/(*®). Therefore

Mg (0, vp, vig1) B8) my(a®, v,) (05) m(a?)
gir1(a) (gigl)) (g(sa))
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This proves (D6)’.

(D7)" Suppose g(a) = 3 and v,,v,,v; are a triple of distinct vertices in W;'[a]. Since
in forming %1 no hyperedge is detached from wv,,vs, vy, we have m; (v, vs,vy) =

m;(v., vs,vy). But by (D7) of the induction hypothesis, m;(v,, vs, v;) &~ m(ag)/(g(??‘)).

Therefore

o7 m(a?
mi+1(vr> Vs, Ut) = mi(vr’ Us» Ut) = (g<(a))> ‘
3

By (B6) m;i1(vy, vs, vi1) & mi(a, v, vs)/gi(a). By (D6) of the induction hypothesis

m;(a, vy, vs)/gi(a) ~ m(a?’)/(g(;)). Therefore

(36) 4 (@, vy, ) (D6) m(a?)
mi—i—l('UT’a Vs, Ui-i—l) ~
g9i(@) (g(a))

This proves (D7)’

(D8)" Case 1: If g;,1(x) = g;(x) — 1 (so z = ), by (B9) m;1(a?,v) ~ mi(a?,y)(gii1(a) —
1)/gi(«) which is 0 if g;11(a) = 1. If g;11 () = 2, by (B9)

mis1(a?,y) (li?) mi (e, y)(giv1(e) — 1)
(g”é(a)) Gi+1(y) gi(@) (gi+é(a))gi+1 (v)
mi(a?,y)(gir1(a) — 1)
gi(@)giv1(a)(giv1(a) — 1)gi(y)/2
m;i(a?,y)
(gZ(a))QZ<y> .

Since g;(a) = 3 > 2, by (D8) of the induction hypothesis mi(a2,y)/((gl(a))gl(y))

m(a?, y)/((g(o‘))g(y)). Therefore

mi+1(a2vy) (]i\?) mi(a27y) (Ii,\:s) m(a27y)
@2 Ngily)  Caly)  ("gly)

Case 2: If g;11(y) = g:(y)—1 (soy = ), by (B3) m;1(2?%, a) ~ m;(22, a)gir1(a)/g:()

which is 0 by (D8) of the induction hypothesis, if g;11(z) = gi(z) = 1. If g;41(z) = 2,

78



by (B3) and (D8) of the induction hypothesis

mig(a®,0) B mi(a®,a)  m(z® a) ©8) m(z? a)

@1 Ngia(@) (S Ngla)  (“Fga)  (P)gla)

This proves (D8)'.

Suppose v; € ¥, '[y]. There are two cases:
Case 1: If g;1(z) = gi(z) — 1 (so x = ), by (B9) m,1(a?, v;) = my(a?, v)(giy1(a) —

1)/g:(a) which is 0 if g;11(a) = 1. If g;11() = 2, by (B9)

M (1?) mz(a Ut)(gz+l(a) )

(gi+;(0¢)) = (gz+1(0¢))
mz(a ;) (gir1(a) — 1)
9i(@)gir1(a)(gir1(a) — 1)/2
mi(a?, vy)

o)
Since g;(a) = 3 > 2, by (D9) of the induction hypothesis we have mi(az,vt)/(gi(a)) ~

m(a ,y)/((g(a))g(y)). Therefore

mig1(a?, vy) (B9) mi(a®, ;) (D9) m(a’,y)

(gig(a)) = (giéa)) = (9(20‘))9(?;)'

Case 2: If g;11(y) = gi(y) — 1 (so y = «), since in forming .%; ;1 no hyperedge is
detached from v; and x, we have m; (2%, v;) = m;(2?, v;) which is 0 by (D9) of the
induction hypothesis, if g;41(x) = gi(x) = 1. If g;11(z) = 2, by (D9) of the induction
hypothesis

miJrl(xzvvt) mi($2uvt) (]2?) m(x2,a)

(#+1@) - @@ (W)gla)

By (B4), mii1(viy1,2%) ~ m;(a, 2?)/g;(a) which is 0 by (D8) of the induction hy-

pothesis, if g;+1(z) = gi(z) = 1. If gip1(x) = 2, by (B4) and (D8) of the induction
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hypothesis

mip1 (2, vig1) BH my(a®,0)  m(a® a) 08) my(a?,a)
(gig(w)) (gm(w))gl( ) (gigr))gi(a) (g(;))g(a).

This proves (D9)'.

(D10)" Suppose v, € U, [x]. There are two cases:

Case 1: If g;1(x) = g;(x)—1 (so z = «), by (B5) m;i1(a, v, y)/giv1(a) = my(a, v, y)/gi().

Therefore by (D10) of the induction hypothesis

mi-l—l(aa Ur, y) (%’) mi(a7 Ur, y)
gi+1(a>gi+1(y) gi(Oé)ng(y)
mi(a7 Up, y) (DiO) m(ozZ, y)
9i(a)gi(y) (““g(y)

By (B8) myy1(a, vit1,y) ~ 2m;(a?,y)/gi(a). Therefore since g;(a) = 2, by (D8) of the

induction hypothesis

mi1(Q,vig1,y)  (B8) 2m;(a?,y)
9i+1(a)9i+1(y) gi(a>gi+1( )9z+1(y)
mi(a2>y) D8 m(a2>y)

(") giy) N (“Ngly)

Case 2: Tf ginr(y) = Gi(y) — 1 (50 ¥ = @), by (B5) we have mii(z,0r, 0)/gis(0) ~
m;(x, v, «)/g;(a). Therefore by (D10) of the induction hypothesis

mi1(z, vy, @) (B5) m;(x, vy, a)
gi+1($€)gz‘+1(04) gi+1($)gi(04)
mi(xa U, Oé) (Di(]) m(x ,Oé)

gi(@)gi(a) — (“D)g(a)

2

This proves (D10)".

(D11)" Suppose v, € U [x], v, € U [y]. There are two cases:
Case 1: If g;ii(z) = gi(x) — 1 (so x = «), by (B5) and (D11) of the induction

80



(D12)’

hypothesis
mi+1<a7 Uy, Ut) (]i?) mi(av Uy, Ut) (Dil) m(a2, y)
gir1(a) gi(e) ("5 gy)

By (B8) mi1(a,vit1,v:) ~ 2m;(a®,vy)/gi(«). Therefore by (D10) of the induction

hypothesis

Mmigi (o, vigr,v) B8 2my(a?, vy)
giv1(a) gi(a)git1 (@)
mi(a7 Ur, y) (DiO) m(ozZ, y)
(giéa)) (g(f))g(y)

Case 2: If g;11(y) = gi(y) — 1 (so y = «), since in forming .%; ;1 no hyperedge is
detached from x, v, and v;, we have m; 1 (z,v,.,v;) = m;(z,v,,v;). Therefore by (D11)

of the induction hypothesis

miy1(2, Up, V) . mi(x, vy, V) _ m;(x, vy, vy) (D11) m(x

gir1(x) gi+1(2) gi(z) ("N g(a)

By (B6) mii1(viy1, x,v,.) ~ my(a,x,v,.)/g;(a). Therefore by (D10) of the induction

hypothesis

mi+1(x7 Up, UiJrl) (],‘Df) my (LU, U, Oé) oy (LU, Up, Oé) (DiO) m(xQ, Oé)

gn(@)  gm@ele)  g@gl)  (Dgla)

This proves (D11)".

Suppose v,, v, € ¥; '[z]. There are two cases:
Case 1: If g;11(z) = gi(x) — 1 (so x = «), since in forming .%;;1 no hyperedge is
detached from v,, vs and y, we have m;.1(v,, vs,y) = m;(v,, vs, y). Therefore by (D12)

of the induction hypothesis

_ B 2 y)

Miy1(Vr,V5,y)  mi(vp,vs,y)  my(or, vs,y) (012) m(a
gir1(y) gir1(y) 9i(y) (N gly)
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(D13

By (B6) m;i1(vit1, v, y) ~ my(a, vy, y)/gi(e). Therefore by (D10) of the induction

hypothesis

_ 2. y)

mi+1(Ui+1, (U y) (]iﬁ) mi<a7 Up, y) mi<a7 Ur, y) (DiO) m(a
g1 (y) 9i(@)gi1(y)  gia)gi(y) ("N g(y)

Case 2: If g;11(y) = g:(y)—1 (soy = ), by (B5) and (D12) of the induction hypothesis

)

mi+1(Ur,Us,Oé) (B5) mi(vr,vs,a) (D12) m(;g
) @) (P)gla)

This proves (D12)".

Suppose vy, vs € U;[x],v; € ¥; ![y]. Since in forming .%;,; no hyperedge is detached
from v, vs and v, we have m;1(v,, vs,vs) = m;(v,, vs,vy). Therefore by (D13) of the
induction hypothesis

(013) m(2?,y)
Mit1(Vp, Vs, V) ~ TN N
(“gly)

If giy1(x) = gi(z) — 1 (so z = ), by (B6) and (D11) of the induction hypothesis

B6) m; (v, v, v) 011 M«
M1 (Vr, Vig1, 0) X ———— X @

gi(a) ("N g(y)

2

If giv1(y) = gi(y) — 1 (so y = «), by (B6) and (D12) of the induction hypothesis

(B6) m; (e, vy, vg) (D12) m(:l?2, a)
Mit1(Vp, Vs, Vig1) & ————=—F & e
9i(y) (“5)9(a)

This proves (D13)".
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(D14)" If gis1(2) = gi(z) — 1 (so z = ) , by (B5) mr1(,y,2)/gin1(a) = mi(a, y, 2)/gi(c).
Therefore by (D14) of the induction hypothesis

mii(a,y, 2) (B5) mi(a,y, 2)
Gi+1()giv1(¥)giv1(2) 9i(@)gi11(y)giv1(2)
mi(a,y,z) O _m(a,y, z)
9:(a)gi(v)gi(2)  g(a)g(y)g(z)

There are two other cases (¢;+1(y) = ¢;(y) — 1 and g;11(2) = ¢;(2) — 1) for which the

proof is similar. This proves (D14)".

(D15)" Suppose v; € ¥;'[z]. There are three cases:

Case 1: If g;11(x) = gi(z)—1 (sox = a) , by (B5) my1(a, y,v)/giv1 () = my(a, y,vy)/gi( ).
Therefore by (D15) of the induction hypothesis

M, Y, vp) (B5) mi(, y, vt)
gir1(a)giv1(y) 9i(@)gir1(y)
iy, v) 01 m(a.y,2)
9i()gi(y) 9(a)g(y)g(z)

Case 2: If g;11(y) = gi(y) — 1 (so y = «), the proof is similar to that of case 1.
Case 3: If g;11(2) = gi(2) — 1 (so z = «), since in forming .%; ;1 no hyperedge is
detached from x,y and v, we have m;1(x,y,v;) ~ m;(z,y,v;). Therefore by (D15) of

the induction hypothesis

mi+1(x>y>'ut) _ mi(zayavt) (D,é‘r’) m(:)s,y,oz)
gir1(@)gii(y)  gi(x)gi(y) g(x)g(y)g(a)

By (B6) mi1(z,y,vi41) ~ mi(x,y,a)/gi(a). Therefore by (D14) of the induction

hypothesis

M1 (2, Y, vig1) (B6) mi(z,y, a)

9i+1(2)gi+1(y) 9i+1(2)gis1(y)gi()

mi(z,y0) W miz,y,a)
9:()gi(y)gi(e)  g(x)g(y)g(e)
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(D16’

(D17)

This proves (D15)".

Suppose v, € U, [y], v; € ¥; ![z]. There are three cases:
Case 1: If g;y1(z) = gi(z) — 1 (so = «) , by (B5) and (D16) of the induction

hypothesis
mi+1(Oé,Us,Ut) (115) mi(a7U87Ut) (Diﬁ) m(a,y,z)
Git1(e) gi(a) g(a)g(y)g(z)

Case 2: If g;11(y) = gi(y) — 1 (so y = «), since in forming .%; ;1 no hyperedge is
detached from x, v and v, we have m;,1(x, vs,v;) = m;(x, vs,v;). Therefore by (D16)

of the induction hypothesis

mi+1(x>'Us>'Ut) mi(xavsavt) (DiG) m(x,a,z)

gin(x)  gl@)  gl@)gla)g(z)

By (B6) myi1(z,vip1,v:) ~ my(z, o, v)/g:(a). Therefore by (D15) of the induction

hypothesis

mi+1(x>vi+lavt) (],3\6) mi(l',Oé,Ut>

gi+1(x) gir1(z)gi(a)
mi(z, o, vp) (015)  m(x, a, 2)
gi(x)gi(a) g9(x)g(a)g(z)

Case 3: If g;11(2) = ¢gi(z) — 1 (so z = «), the proof is similar to that of case 2. This
proves (D16)".

Suppose v, € ¥; [z],v, € U, [y],v; € U, [z]. Since in forming .%;,; no hyperedge
is detached from wv,,vs and vy, we have m; (v, vs,v;) = m;(v,, vs,vy). Therefore by

(D17) of the induction hypothesis

( ) (D17) m(x,y,z)
mMi+1\Up, Ug, U ~ — .
* ' 9(2)g(y)g(z)
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If giv1(z) = gi(z) — 1 (so 2 = ) , by (B6) and (D16) of the induction hypothesis

. ( ) (B6) mi(a, Vs, 'Ut) (D16) m(a, Y, Z)
i+1(Vig1, Vs, V) & ~ :
+1\Vit gi() 9(@)g(y)g(2)

There are two other cases (¢;+1(y) = ¢;(y) — 1 and g;1(2) = ¢;(2) — 1) for which the

proof is similar. This proves (D17)".
U

A similar statement can be proved for every color class simply by restricting each relation

above to a color class j € {1,..., k}.

5.5.4 Relations Between ¥ = .%, and .

Recall that ¥4 = %, ¥ = V¥, and g,(z) = 1 for each x € V. We claim that ¥ satisfies
all conditions stated in Theorem 5.3.

Obviously ¢ is a g-detachment of .%. Let x,y, z be an arbitrary triple of distinct vertices
of V, and let j € {1,...,k}. Now in (D1)-(D17) we let ¢ = n. From (D3) and (D4) it is
immediate that ¢ is loopless. From (D5), (D8) and (D9) it follows that ¢ has no hyperedge
of size 2. Thus ¥ is a 3-uniform hypergraph.

From (D1) it follows that dz, (x)/g.(z) ~ d(x)/g(x), so dy(x) ~ d(z)/g(z). From (D2),
dz,(v.) ~ d(z)/g(x) for each v, € ¥ 1[z], so dy(v,) ~ d(x)/g(z) for each v, € U~ [x].
Therefore ¢ satisfies (Al).

A similar argument shows that (A2) follows from the colored version of (D1) and (D2),
(A3) follows from (D6), (D7), and (D10)—(D17), and (A4) follows from the colored version
of (D6), (D7), and (D10)—(D17). This completes the proof of Theorem 5.3.

5.6 Algorithmic Aspects

To construct an r-factorization for AK?, we start with an amalgamation of AK? in

which all hyperedges are loops. We color the hyperedges among k := )\("51) /r color classes
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as evenly as possible, and apply Theorem 5.3. In Theorem 5.3, we detach vertices in n — 1
steps. At each step, to decide how to share edges (and hinges) among the new vertices, we
define two sets &/ and % whose sizes are no more than 1+k+ (g) and (k+1) (;‘), respectively,
and use Nash-Willimas lemma. Nash-Williams lemma builds a graph of size O(n?) (or more
precisely of size |<7| + |#|) and finds a set Z with a polynomial time algorithm. The set
Z tells us exactly how to share edges (and hinges) among the new vertices. Therefore, our

construction is polynomial in (g), the output size for the problem.
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Chapter 6

Mathematicians Collaboration Problem
6.1 Introduction

In a mathematics workshop with mn mathematicians in n different areas, each area
consisting of m mathematicians, we want to create a collaboration network. For this purpose,
we would like to schedule daily meetings between groups of size three, so that (i) two persons
of the same area meet one person of another area, (ii) each person has exactly r meetings
each day, and (iii) every two persons of the same area have exactly A meetings with each
person of another area by the end of the workshop. We show that this can be done if: 3 | rm,
2 | rnm and r | 3\(n —1)(7).

Let 73

nxm

denote a hypergraph with vertex partition {V; : 1 < i < n}, so that V; =
{z;; : 1 <j<m} for 1 <i<n,and with edge set £ = {{z;;, 2, xu}:1<j<j <m,1<
i,k <mn,i # k1 <1< m}. One may notice that finding an r-factorization for \.#3,
equivalent to scheduling the meetings between mathematicians with the above restrictions.

In this chapter we use hypergraph amalgamation to solve our Mathematicians Collab-

oration Problem.

Example 6.1. Let F = (V, E, H,0),8), with V = {v; : 1 <i <6}, E = {e1, en, e5}, H =
{hi 1< i <9}, such that ¥(h) = v for 1 < i < 6, ¢(hs) = vy, d(hs) = v, b(hy) = vs
and ¢(hs) = d(he) = ¢(hr) = e1,¢(h1) = ¢(h2) = d(hs) = ea,P(h3) = ¢(ha) = ¢(hg) = e3.
Let W : V — {wy,wy, w3} be the function with W(vy) = ¥(vg) = wy, ¥(vg) = VU(v3) = wo,

U(vy) = ¥U(vs) = ws. The hypergraph ¢ in Figure 6.1 is the U-amalgamation of .%.

In the remainder of this chapter, we assume that n > 3, m > 2, and all hypergraphs

are either 3-uniform or are amalgamations of 3-uniform hypergraphs. Notice that for every
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U3
€3

F 2

Figure 6.1: A visual representation of a hypergraph .# with an amalgamation ¢

hypergraph ¢4 we have
1< |e|] <|¢p ' (e)] =3 for every e in 4. (6.1)

If u,v,w are three (not necessarily distinct) vertices of ¢, then &(u,v,w) denotes the set
of hyperedges that join u,v,w. For a graph G, we denote the set of edges joining a pair of
vertices u,v by E(u,v).

In [6], the author proved a general detachment theorem for hypergraphs. For the purpose

of this chapter we use a very special case of this theorem as follows:

Theorem 6.2. Let .% be a k-hyperedge-colored hypergraph and let g be a function from
V(&) into N such that for z,y,z € V(F): (i) g(x) < 2 implies &(z,x,x) = &, (ii)
g(z) = 1 implies & (v, x,y) = @, and (iii) g(z) divides dz;)(x), (g(;)) divides |&(z, x, x)|,
(ggw))g(y) divides |8 (z, x,y)|, and g(x)g(y)g(z) divides |&(x,y, z)|. Then there exists a 3-
uniform g-detachment & of F in which each v € V(F) is detached into v, ..., vgw) such

that &G satisfies the following conditions for distinct x,y,z € V(F) :
(A1) dgj(@i) = dz()/9(z) for 1 <i<g(x) and1 < j<k;

(A2) 18y (s ao, w0)] = 165 (2,2,2) /() for 1 <i<i <i" < gla), if g(a) > 3
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(A3) [y (wi,wo,y)| = |E5(x, 2, 9)|/((*)9(y)) for 1 < i < i < g(2) if g(x) > 2, and

1<i"<g(y)

(A4) |8q(wi,yir, 2n)| = |E7 (2,9, 2)/(g(2)g(y)g(2)) for 1 < i < g(x), 1 <7 < g(y) and

1 <" <g(2).

6.2 Proof of the Main Theorem

Let K* denote the hypergraph with n vertices in which |&(u, u,v)| = 1, and & (u, u,u) =

& (u,v,w) = @ for distinct vertices u, v, w. First we need the following simple lemma:

Lemma 6.3. If2 | mn for 1 <i <k, and Zle ri = A(n — 1), then AK} is (3r1,...,3rk)-

factorizable.

Proof. Let G = AK,, with vertex set V. Since 2 | r;n for 1 <i < k, and Zle ri = An—1),
G is (rq,...,r)-factorizable (see [52], or [51]). So we can find a k-edge-coloring for G such
that dg()(v) = r; for every v € V and every color 1 <i < k. Now we form a hypergraph J#
with vertex set V', such that |€ ) (u, u,v)| = |Egu (u,v)| for every pair of distinct vertices

u,v € V. It is easy to see that J# = AK and d»(;)(v) = 3r; for every v € V and every color

1 <i < k. Thus we obtain a (3ry,. .., 3r;)-factorization for AK*. O
Notice that A2, ,, is a 3\ (n—1)(')-regular hypergraph with nm vertices and 2Am (3) ('7)

edges.
Theorem 6.4. \JZ3  is (r1,...,r)-factorizable if
(i) 3 | rym for 1 <i<k,

(ii) 2 | mymn for 1 <i<k, and

(iii) Yy s = 3A(n = 1)(%).
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Proof. Let # = Am("}) K. Note that .Z is an amalgamation of .,

e Oince for 1 < i <k,

2 | "5 and Zle o= dm(n — 1)(7;), by Lemma 6.3, % is (mry, ..., mry)-factorizable.

Thus, we can find a k-hyperedge-coloring for .%# such that

dy(j)<$) = mr; 1<i<k.

Let g : V(#) — N be a function with g(x;) = m for i = 1,...,n. Note that 32  is a
g-detachment of .%. Now by Theorem 6.2, there exists a 3-uniform g-detachment ¢ of %
with mn vertices, say x;;, 1 <i<n,1<j<m (2;,...,2;, are obtained by splitting x;

into m vertices for i = 1,...,n) such that
o dyw(wij) =rfor 1 <i<n,1<j<m,and1<t<Fk;
o Sy(xij, v, vijn) =@ forl <i<nand1<j<j <j" <m,ifm=3;
o |Ey(xij, Ty, x| =Afor 1 <i<i' <n,1<j<j <m,and 1 <j” <m; and
o Sy(wij,xpj,xpjn) =D for 1 <i<i <i’"<nandl<y,j, 5" <m.

Therefore & ~ \.#3

3 and the " color class is an r-factor for 1 < i < k. O

In particular we solve the Mathematicians Collaboration Problem in the following case.

Corollary 6.5. \.73

o 1S T-factorizable if

(i) 3| rm,
(ii) 2 | rnm, and
(iii) r | 3A(n—1)(73).

We define 72 = similar to %}

T wn With the difference that in 272 = we allow

,m

different parts to have different sizes.

Conjecture 6.6. A2 is (r1, ..., 7)-factorizable if and only if

yeees My
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(i) m;=m;:=m forl <i<j<mn,
(i) 3 | rymn for each i, 1 <i <k, and

(iii) S, = 3A(n —1)(7).

We prove the necessity as follows. Since A3, is factorizable, it must be regular. Let

mXxn

w and v be two vertices from two different parts, say p* and ¢'* parts respectively. Then we

have the following sequence of equivalences:

d(u) = d(v) —
m;
<i<n + (my — 1) <i<n M =
Zil;p< ( 2 ) v Zzl;fp<
m;
<ign + (mg — 1) <i<n i —
Z}:‘]< ( 2 ) / Zzl;fq<
my ;
9 + Zléién + (my — 1)(my + leisn m;) =
1#Pp,q 1#D,q

m

2

m m;
< 210) + ZKKN ( 2 ) + (mq - 1)(mp + leisn mi) —

1#D,q 1#D,q

m m —
< 2p) N < Qq) + My My — My — MMy + Mg + (my, — mq>21<i<" m;) =0
1#p,q

12, — mz —3my, + 3m, + 2(m, — mq)Zﬁﬁ” m;) =0 —

m

(mp_mq)(mp+mq_3+221<i<n m;) =0 D
1#D,q

mp = Mg = m.

This proves (i). The existence of an r;-factor implies that 3 | r;mn for 1 < i < k. Since each

ri-factor is an 7-regular spanning sub-hypergraph and \.%3, . is 3\(n — 1)(7;)-regular, we
must have Y¥_ 7 = 3A(n — 1)(73).

It is not difficult to show that #5% ; has a unique 1-factorization, but it does not satisfy
condition (ii) of Theorem 6.4. There are many other examples of this kind, but none of them

gives us a general construction.
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Chapter 7

Embedding factorizations for 3-uniform hypergraphs

7.1 Introduction

In this chapter, two results are obtained on a hypergraph embedding problem. The
proof technique is itself of interest, being the first time amalgamations have been used to
address the embedding of hypergraphs.

The first result finds necessary and sufficient conditions for the embedding a hyperedge-

colored copy of the complete 3-uniform hypergraph of order m, K3 into an r-factorization

of K3, providing that n > 2m + (=1 + +/8m2 — 16m — 7)/2.

The second result finds necessary and sufficient conditions for an embedding when not
only are the colors of the hyperedges of K2 given, but also the colors of all the “pieces”
of hyperedges on these m vertices are prescribed (the “pieces” of hyperedges are eventually
extended to hyperedges of size 3 in K> by adding new vertices to the hyperedges of size 1
and 2 during the embedding process).

Both these results make progress towards settling an old question of Cameron on com-
pleting partial 1-factorizations of hypergraphs.

Let ¢ be a hypergraph, and let 7 be a family of hypergraphs. We say that ¢ has an
¢-decomposition if there exists a partition {E(74), ..., E(5€,)} of E(¥) such that .7 is
isomorphic to a hypergraph in 7 for 1 <i < m.

The general setting for this chapter is as follows. Let . and J7* be two families of
hypergraphs. Given a hypergraph ¢ with an #-decomposition and a hypergraph ¢* which
is a super-hypergraph of ¢, under what circumstances can one extend the #-decomposition
of ¢4 into an J#*-decomposition of ¥*?7 In other words, given a hyperedge-coloring of ¢4 in

which each color class induces a hypergraph in 57, is it possible to extend this coloring to a
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hyperedge-coloring of ¢* so that each color class of ¢* induces a hypergraph in J*? Most
naturally, ¢ is usually taken to be the complete h-uniform hypergraph on m vertices, K" .
Solving this problem requires knowledge about hypergraph decompositions; compared
to graph decompositions, very little is known about these, even for special cases. Perhaps
the best evidence for this difficulty is the long standing open problem of Sylvester in 1850
(in connection with Kirkman’s famous Fifteen Schoolgirls Problem [56]) which asks whether
it is possible to find a 1-factorization of K" (see the next section for definitions). It took 120
years before Baranyai finally settled this conjecture [15]. After Baranyai’s proof appeared,

in 1976 Cameron [29] asked the following question:

Under what conditions can partial 1-factorizations of K" be extended to 1-factorizations

of K'?

This problem is wide open and to the authors’ best knowledge, the only partial results
address the very special case of embedding a 1-factorization of K" into a 1-factorization of
K [17, 40].

Here we make some progress toward settling this problem, considering the following
related general embedding problem that is natural in its own right. When can a hyperedge-
coloring of a given hypergraph ¢ on m vertices be embedded into a hyperedge-coloring of
K3 in such a way that each color class forms an r-factor? So the special case when r = 1 and
¢ = K" addresses the Cameron question in the situation where the given partial 1-factors
are all defined on a set of m vertices.

In Section 7.3, we assume that precisely the hyperedges of size 3 on m vertices have

been colored; that is, the given hypergraph is 4 = K3), giving a complete solution if

n > 2m + (=1 + +/8m2 — 16m — 7)/2 (see Theorem 7.3). Lemma 7.4 then shows that
Theorem 7.3 is not true if this bound on n is replaced by n > 2m — 1. In Section 7.4 we
assume that not only the hyperedges of size 3 are colored, but so are all the “pieces” of
hyperedges of K32 that contain one or two of the given m vertices (i.e. n —m and (";m)

copies of the hyperedges in K2 and K! | respectively); these pieces are built up to hyperedges
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of size 3 when the new vertices are added. In this case the problem is completely solved in
Section 7.4, providing necessary and sufficient conditions (see Theorem 7.5).

The results in this chapter supplement embedding results for graphs. Such results
typically take a given edge-coloring of all the edges of a smaller complete graph and extend
it to an edge-coloring of all the edges of a bigger complete graph in such a way that each color
class is one of a given family of graphs. Hilton [44] used amalgamations to solve the problem
of embedding an edge-coloring of K,, into a Hamiltonian decomposition of K,. This was
later generalized by Nash-Williams [70]. Hilton and Rodger [48] considered the embedding
problem for Hamiltonian decompositions of complete multipartite graphs. For embeddings
of factorizations in which connectivity is also addressed, see [47, 51, 74].

It is worth remarking that embeddings of combinatorial structures with the same flavor
as results found in this chapter have a long history. For example, in his 1945 paper [41], Hall
proved that every p x n latin rectangle on n symbols can be embedded in a latin square of
size n. Following this classic embedding theorem, in 1951 Ryser generalized Hall’s result to
p x ¢ latin rectangles on n symbols [75]. Ryser’s result is equivalent to embedding a proper
edge-coloring of the complete bipartite graph K, , into a 1-factorization of K, ,. Doyen
and Wilson [35] solved the embedding problem for Steiner triple systems (K3-decompostions
of K,), then Bryant and Horsley [27] addressed the embedding of partial designs, proving
Lindner’s conjecture [62] that any partial Steiner triple system of order u, PST'S(u), can be
embedded in an ST'S(v) if v =1,3 (mod 6) and v > 2u + 1. (2u + 1 is best possible in the
sense that for all u > 9 there exists a PST'S(u) that can not be embedded in an ST'S(v) for

any v < 2u + 1.)

7.2 Detachments of Amalgamated Hypergraphs

Note that a hypergraph as defined here corresponds to a hypergraph as usually defined
providing hyperedges are allowed to contain vertices multiple times. We imagine each hy-

peredge of a hypergraph to be attached to the vertices which it joins by in-between objects
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called hinges. A hypergraph may be drawn as a set of points representing the vertices. A
hyperedge is represented by a simple closed curve enclosing its incident vertices. A hinge is

represented by a small line attached to the vertex incident with it (see Figure 7.1).

Example 7.1. Let % = (V,E, H,{,¢), with V = {v; : 1 <i <8}, E = {e1,e9,e3},H =
{hi : 1 < i < 9}, such that for 1 < i < 8, ¥(h;) = v; , Y(hg) = vg and @(hy) = ¢(hy) =
¢(hs) = e1,0(ha) = ¢(hs) = d(he) = e, ¢(hr) = d(hs) = ¢(hy) = €3. Let ¥ : V —
{wy, w9, w3, wy} be the function with W(vy) = ¥(vg) = V(v3) = wy, V(vg) = wy, ¥(v5) =
U(vg) = ws, V(v7) = VU(vg) = wy. The hypergraph ¢ is the V-amalgamation of .# (see

Figure 7.1).

€1
€3

F 4

Figure 7.1: A visual representation of a hypergraph .# with an amalgamation ¢

In the remainder of this chapter, all hypergraphs are either 3-uniform or are amalgama-

tions of 3-uniform hypergraphs. This implies that for every hypergraph ¢ we have

1< |e|] <|p ' (e)] =3 for every e in 4. (7.1)

If u, v, w are three (not necessarily distinct) vertices of ¢, then m(u, v, w) denotes the number
of hyperedges that join u, v, and w. For convenience, we let m(u? v) = m(u,u,v), and
m(u®) = m(u,u,u). If we think of an edge as a multiset, then m(u? v) (or m(u?®)) counts

the multiplicity of an edge of the form {u,u,v} (or {u,u,u}, respectively).
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For the purpose of this chapter, we need the following result which is a special case
of both Theorem 3.1 in [6], and Theorem 4.1 in [8]. To state it, some notation must be
introduced.

For g : V(%) — N, we define the symmetric function g : V3(%) — N such that for dis-
tinct z,y,z € V(F), j(z,z,7) = (*Y), glz,z,y) = (*V)g(y), and gz, y, 2) = g(x)g(y)g(=).
Also we assume that for each x € V(.F), g(x) < 2 implies m#(23) = 0, and g(x) = 1 implies

mg(x?,y) = 0 for every y € V(F).

Theorem 7.2. (Bahmanian [6, Theorem 3.1]) Let .# be a k-hyperedge-colored hypergraph
and let g be a function from V(F) into N. Then there exists a 3-uniform g-detachment 4 of
F with amalgamation function W : V(4) — V(F), g being the number function associated

with ¥, such that:

(A1) for each x € V(F), each u e ¥~(x) and each j € {1,...,k}

L 4 (@)

;and
9()

deg () (u)
(A2) foreveryx,y,ze V(F), withg(x) =23 ifx =y =z, and g(x) = 2 if {z,y, z}| = 2, and
every triple of distinct vertices u,v,w with u € ¥(z), ve V"1(y) and we ¥(2),

g (v, w) ~ TEEY: ).
g(r,y,2)

7.3 Embedding Partial Hyperedge-colorings into Factorizations

In this section we completely solve the embedding problem in the case where all the
hyperedges of size 3 on a set of m vertices have been colored, providing n is big enough. We
then show that some lower bound on n is needed, since the necessary conditions of Theorem

7.3 are not sufficient if n = 2m — 1.
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Theorem 7.3. Suppose that n > 2m + (=1 + v/8m?2 — 16m — 7)/2. A q-hyperedge-coloring

of F = K3 can be embedded into an r-factorization of 4 = K3 if and only if
(i) 3| rn,

(i) r 1 (5,

(i) ¢ < (*,")/r, and

(iv) dz@(v) <7 for eachve V(F) and 1 < j < q.

Proof. To prove the necessity, suppose that .# with V' = V(%) can be embedded into an
r-factorization of ¢. Since each edge contributes 3 to the the sum of the degrees of the

vertices in an r-factor, 7|V (%)| must be divisible by 3 which implies (i). Since each r-factor

n—1

N )—regular, we must have r | ("_1)7

is an r-regular spanning sub-hypergraph and ¥ is ( 5

which is condition (ii). This r-factorization requires exactly k = (";1) /r colors which is
condition (iii), and to be able to extend each color class to an r-factor we need condition
(iv).

Now assume that conditions (i)—(iv) are true. By Baranyai’s theorem [15], the case of
m < 3 is trivial, and so we may assume that m > 4. Let e; = |E(Z(j))| for 1 < j < k.
In what follows, we extend the hyperedge-coloring of .# into a k-hyperedge-coloring of an
amalgamation of ¢, and then we apply Theorem 7.2 to obtain the detachment ¢ in which
each color class is an r-factor. The hyperedges added in steps (I), (IT), and (III) correspond

to the hyperedges in ¢ that contain one, two, and three new vertices, respectively.

(I) Let % be a hypergraph formed by adding a new vertex u and hyperedges to .% such
that m(u,v,w) = n — m for every pair of distinct vertices v,w € V. Of course the
hyperedges in E(.Z) n E(%;) are already colored. We color greedily as many of the
added (n — m) (g‘) hyperedges as possible, ensuring that dz (;)(v) < r for 1 < j < k.
Suppose there exists a hyperedge incident with u,v and w that is not colored. Then

for 1 < j < k either dg,;(v) = r or dg,j(w) = 7, s0 dg ;) (v) + dz,;)(w) = r for
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(D)

(I11)

every 1 < j < k. Therefore 2(™,") +2(n —m)(m — 1) = 2 = dz (v) + dz, (w) — 2 >
Z?zl (dg,(j)(v) + dz(j(w)) = Zle r = kr = (";'), in which the first inequality
follows from that fact that at least one hyperedge incident with v and w is not colored.
So, 2(m —1)(m—2) +4(n—m)(m—1)—4 > (n—1)(n — 2). Thus n*> — dnm +n +

2m? +2m +2 < 0. So

n<2m+ (=1 ++/8m2 —16m —7)/2,

a contradiction. So all hyperedges can be colored greedily. Let f; be the number of

hyperedges of color j in some such coloring for 1 < j < k.

Let #5 be a hypergraph formed by adding m("gm) further hyperedges to .#; so that

m(u?,v) = (") for each v € V. Note that for each v eV,

i) = ("5 ) o= ne-m (")
= (ngl)zrk.

Since dg (;)(v) < r forve V and 1 < j <k, to ensure that dz,;)(v) = r, we color
r—dz, j)(v)(= 0) hyperedges incident with v that were added in forming .%, from .7,
with color j for each v € V and 1 < 5 < k. So the coloring we perform in this step
results in all the newly added hyperedges being colored. Let g; denote the number of

such hyperedges of color j for 1 < j < k.

Let .#3 be the hypergraph formed by adding (";m) further hyperedges to .%5 so that
m(u?) = ("3™). Let ¢; :=r(n/3 —m) + f; + 2¢; for 1 < j < k. We claim that ¢; > 0
for 1 < j < k. To prove this, it is enough to show that n > 3m. Since m > 4 >

(3 +4/17)/2, we have m* — 3m — 2 > 0. Therefore, 8m* — 16m — 7 > 4m?* — 4m + 1,

and thus v/8m2 — 16m — 7 > 2m — 1, which implies (1 + v/8m?2 — 16m — 7)/2 > m,
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and consequently we have |(1 + +/8m2 — 16m —7)/2|] > m. Since n > 2m + |(1 +

V8m2 — 16m — 7)/2|, we have n > 3m.

Now we color the added hyperedges such that there are exactly ¢; further hyperedges

colored j for 1 < j < k. This is possible because

k
2l =

j=1

(r(n/3—m)+ f; + 2¢;)

HM»

k
= rk(n/B—m)+2fj+QZej

J=1 J=1

_ (n;1>(n/3—m)+(n—m)(7;> +2<7§)

= n?/6 —n*m/2 —n?/2 +nm?/2 + nm

+n/3—m?/6 —m?/2 —m/3
= (n B m> = mz,(u®).

Let us fix j € {1,...,k}. Since dg,;j(v) = r for ve V, we have
rm = Y dy () = 3e; +2f; + g;. (7.2)
veV

On the other hand,

dgzg(j) (U) = 3€] + 29] + fj = r(n — 3m) + 3f] + 6€j + 29] + fj

= r(n—3m)+4f; + 6e; + 2¢;.
This together with (7.2) implies that for 1 < j <k,

dz,)(u) = r(n—3m) + 2rm = r(n —m).
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(IV) Let g : V(#;) — N be a function with g(u) = n —m, and g(v) = 1 for each v € V.
By Theorem 7.2, there exists a 3-uniform g-detachment ¢* of %3 with n — m new

vertices, say uq, ..., U,_, detached from u such that
o dysip(v) = dir(®)/9(0) = /1 = 7 and dgngy () = dg(w)/g(w) = r(n —
m)/(n—m)=rforl<i<n—mandl<j<k;
o M (Uy, Uy, Ujn) = myg(u?’)/(g%“)) = ("3")/("5") = lfor 1 <i<i' <’ <n—m;
o Mg (U, Uy, V) = m%(uz,v)/((g(;))g(v)) = ("gm)/(";m) =1lforl <i<?i <
n—m, and v € V, and
o mys(u;, v, w) = Mz, (u,v,w)/(g(w)g(v)g(w)) = (n—m)/(n—m) = 1for 1 <i<

n —m and distinct v,w e V.
Therefore ¥* ~ ¢ = K3 and each color class is an r-factor. This completes the proof.
]
Lemma 7.4. Conditions (i)—(iv) of Theorem 7.3 are not sufficient if n = 2m — 1.

Proof. Suppose that the hyperedge-coloring of K32 induces an r-factorization. Then in the
embedding, the sub-hypergraph of K32 on the new n —m vertices induced by the hyperedges
having the original colors clearly has an r-factorization (each of the colors induces an r-
factor). Therefore n —m > m, or equivalently n > 2m. So if r is chosen so that 3 | r and
r | m—1, then it is easy to check that conditions (i)—(iv) of Theorem 7.3 are satisfied when

n = 2m — 1, yet no embedding is possible. O

7.4 Extending Restrictions of Partial Edge-colorings

If every hyperedge e of the hypergraph ¢ is replaced with A (> 2) copies of e then
denote the resulting (multi) hypergraph by 4. If 4, ..., %, are hypergraphs on the vertex
set V with edge sets E(4)) ..., E(%,) respectively, then let | J!_, % be the hypergraph with
vertex set V and edge set | J'_, E(%).
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In this section we completely solve the embedding problem in the case where all the
hyperedges in .F = K3, U (n —m)KZ2 u (";") K}, on a set of m vertices have been colored,
regardless of the size of n. One can think of the given colored hyperedges as being all the
“pieces” of hyperedges on these m vertices that are eventually extended to hyperedges of
size 3 by adding the new n — m vertices during the embedding process.

Let E'(4(j)) denote the set of hyperedges of size ¢ and color j in .

Theorem 7.5. A k-hyperedge-coloring of F = K3 U(n—m)K2 0 (") K}, withV = V(F)

can be extended to an r-factorization of 4 = K3 if and only if
(i) 3] rn,

(i) r | ("),

(i) &= (",")/r,

(iv) dzgy(v) =r for eachveV and 1 <j <k, and

(V) [E2(Z O]+ 2AEX(Z ()] = r(m —n/3) for 1 <j <k

Proof. First, suppose that .# can be embedded into an r-factorization of ¢4. The necessity of
(i)—(iv) follow as described in the proof of Theorem 7.3; equalities in this result replace the
inequalities there because the colors of all hyperedges restricted to .# have been prescribed
in this case. Let us fix j € {1,...,k}. Let ej, f;, g;, and ¢; be the number of hyperedges in
E(%(j)) that are incident with exactly 3, 2, 1 and 0 vertices in V, respectively. It is easy
to see that e; = |E*(Z(4))] and f; = |E*(Z(j))|. Since r(n —m) = 3(; + 2g; + f;, and
rm = g;+2f; +3e;, we have r(n—3m) = 3(; —3f; —6e;, and thus {; = r(n/3—m)+ f; +2e;,
but since ¢; > 0, we must have 2e; + f; = r(m — n/3). This proves (v).

To prove the sufficiency, assume that conditions (i)—(v) are true. Let .#’ be a hypergraph
formed by adding a new vertex u to .# with m(u?) = ("_3""”), and extending each hyperedge
of size one or two to a hyperedge incident with u of size two or three, respectively. We

extend the hyperedges of size one (two, respectively) such that u is incident with two (one,

respectively) hinges within that hyperedge. Ignoring colorings, .#’ is isomorphic to #3 in
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the proof of Theorem 7.3, and .#’ is an amalgamation of 4. We color 7(n/3 —m) + f; + 2e;
of the new hyperedges with color j. This coloring results in all the newly added hyperedges

being colored. The rest of the proof is identical to part (IV) of Theorem 7.3. O
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Chapter 8

Detachments of Hypergraphs: The Berge-Johnson Problem

8.1 Introduction

Intuitively speaking, a detachment of a hypergraph is formed by splitting each vertex
into one or more subvertices, and sharing the incident edges arbitrarily among the subvertices.
As the main result of this chapter (see Theorem 8.2), we prove that for a given edge-colored
hypergraph %, there exists a detachment ¢ such that the degree of each vertex and the
multiplicity of each edge in % (and each color class of .%) are shared fairly among the
subvertices in ¢4 (and each color class of ¢, respectively). This result is not only interesting
by itself and generalizes various graph theoretic results (see for example [5, 44, 48, 51, 58,
61, 70, 74]), but also is used to obtain extensions of existing results on edge-decompositions
of hypergraphs by Bermond, Baranyai [15, 16], Berge and Johnson [21, 50], and Brouwer
and Tijdeman [24, 26].

Given a set N of n elements, Berge and Johnson [21, 50] addressed the question of when
do there exist disjoint partitions of N, each partition containing only subsets of h or fewer
elements, such that every subset of N having h or fewer elements is in exactly one partition.
Here we state the problem in a more general setting with the hypergraph theoretic notation.

Let (Ar..., ) KJivhm be a hypergraph with vertex partition {Vi,...,V,}, [Vi| = p;
for 1 < ¢ < n such that there are \; edges of size h; incident with every h; vertices, at most
one vertex from each part for 1 < i < m (so no edge is incident with more than one vertex
of a part). We use our detachment theorem to show that the obvious necessary conditions
for (A1..., Am)KJolm 0 be expressed as the union 4 U ... U %, of k edge-disjoint factors,
where for 1 <i < k, %, is r;-regular, are also sufficient. Baranyai [15, 16] solved the case of

hy=-=hpy, M1=..., \n=1,p = =pp, r = =r, Berge and Johnson [21, 50],
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(and later Brouwer and Tijdeman [24, 26], respectively) considered (and solved, respectively)
thecaseof hy =i, 1<i<m,pr=-=ppn=A ==\, =1, =---=1, =1. We also
extend our result to the case where each ¥; is almost regular.

In the next two sections, we give more precise definitions along with terminology. In
Section 8.4, we state our main result, followed by the proof in Section 8.5. In the last
section, we show the usefulness of the main result on decompositions of various classes of
hypergraphs. We defer the applications of the main result in solving embedding problems

to a future paper.

8.2 Terminology and Precise Definitions

For a multiset A and u € A, let pa(u) denote the multiplicity of w in A, and let
|A| = > e a(u). For multisets Ay, ..., A,, we define A = |, A; by pa(u) = 2" | pa,(u).

We may use abbreviations such as {u"} for {u,...,u} — for example {u? v, w?} U {u, w?} =
—_——

T

{u3, v, wt}.

For the purpose of this chapter, a hypergraph ¢ is an ordered quintuple (V(¥), E(¥), H(¥),
¥, @) where V(¥), E(¥), H(¥) are disjoint finite sets, ¢ : H(¥) — V(¥) is a function and
¢: H(Y) - E(9) is a surjection. Elements of V(¥), E(¥), H(¥) are called vertices, edges
and hinges of ¢, respectively. A vertex v (edge e, respectively) and hinge h are said to be
incident with each other if ¥)(h) = v (¢(h) = e, respectively). A hinge h is said to attach the
edge ¢(h) to the vertex ¥ (h). In this manner, the vertex ¥ (h) and the edge ¢(h) are said to
be incident with each other. If e € E(¥), and e is incident with n hinges hy, ..., h, for some
n € N, then the edge e is said to join (not necessarily distinct) vertices (hq), ..., ¥ (hy). If
v e V(¥), then the number of hinges incident with v (i.e. [07*(v)|) is called the degree of v
and is denoted by d(v). The number of (distinct) vertices incident with an edge e, denoted
by |e|, is called the size of e. If for all edges e of ¢, |e| < 2 and |¢p~1(e)| = 2, then ¥ is a

graph.
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Thus a hypergraph, in the sense of our definition, is a generalization of a hypergraph
as it is usually defined. In fact, if for every edge e, |e| = |¢~'(e)|, then our definition is
essentially the same as the usual definition. Here for convenience, we imagine each edge of a
hypergraph to be attached to the vertices which it joins by in-between objects called hinges.
Readers from a graph theory background may think of this as a bipartite multigraph with
vertex bipartition {V, E'}, in which the hinges form the edges. A hypergraph may be drawn
as a set of points representing the vertices. A hyperedge is represented by a simple closed
curve enclosing its incident vertices. A hinge is represented by a small line attached to the
vertex incident with it (see Figure 8.1).

The set of hinges of ¢ which are incident with a vertex v (and an edge e, respectively),
is denoted by H(v) (H(v,e), respectively). Thus if v € V(¥), then H(v) = ¢~!(v), and
|H (v)] is the degree d(v) of v. If U is a multi-subset of V(¥), and u € V(¥), let E(U) denote
the set of edges e with |¢~*(e)| = |U| joining vertices in U. More precisely, E(U) = {e €
E(9)| for all v e V(¥),|H (v,e)| = py(v)}. For Uy,...,U, = V where for 1 <i < n each U;
is a multiset, let E(Uy,...,U,) denote E(|J;—, U;). We write m(U) for |E(U)| and call it the
multiplicity of U. For simplicity, E(u",U) denotes E({u"},U), and m(uj", ...

u™) denotes

> r

m({ui,...,u™}). The set of hinges that are incident with w and an edge in E(u",U) is

denoted by H(u",U).

Example 8.1. Let ¥ = (V. E H, ¢, ¢), with V = {vy,v9,v3, 04,05}, E = {e1,es,e3}, H =
{hi,1 < i < 7}, such that ¢(h1) = ¥(ha) = vi,¢(hs) = v2,Y(ha) = P(hs) = v3,¢(he) =
vy, P(h7) = v5 and ¢(h1) = ¢(ha) = ¢(h3) = d(ha) = €1, d(hs) = ¢(he) = €2, ¢(h7) = e5. We

have:
o lerf =3, leaf = 2, ]es| = 1,
o d(v)) = d(vs) = 2,d(va) = d(vs) = d(vs) = 1,
o H(vi) = {h, ha}, H(vo) = {hs}, H(vs) = {ha, hs},
o H(vg 1) = {hat, H(vs, e2) = {hs}, H(vs, e3) = 2,
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Figure 8.1: Representation of a hypergraph ¢

b E<{U17U27U3}) = ®7E({U%7U27U3}) = E(U%7 {U27U3}) = {61}7
o m(vi,vy,v3) = 0, m(v?, v, v3) = 1,

o H(vi,{vy,v3}) = {1, ha}, H(vy, {va,v3}) = &, H(vs, {v], v2}) = {ha}.

A k-edge-coloring of 4 is a mapping f : E(¥Y) — C, where C' is a set of k colors (often we
use C' = {1,...,k}), and the edges of one color form a color class. The sub-hypergraph of ¢4
induced by the color class j is denoted by ¢(j). To avoid ambiguity, subscripts may be used
to indicate the hypergraph in which hypergraph-theoretic notation should be interpreted —

for example, dy(v), Eg(v?,w), Hy(v).

8.3 Amalgamations and Detachments

If # = (V,E, H,v,¢) is a hypergraph and V¥ is a function from V onto a set W, then
we shall say that the hypergraph ¢ = (W, E, H, Vo1, ¢) is an amalgamation of % and that
Z is a detachment of &. Associated with W is the number function g : W — N defined
by g(w) = |~} (w)|, for each w € W; being more specific, we may also say that .Z is a
g-detachment of . Intuitively speaking, a g-detachment of ¢ is obtained by splitting each
u e V(¥4) into g(u) vertices. Thus .# and ¢ have the same edges and hinges, and each

vertex v of ¢ is obtained by identifying those vertices of .% which belong to the set U—1(v).
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In this process, a hinge incident with a vertex u and an edge e in .# becomes incident with
the vertex W(u) and the edge e in ¥.
There are quite a lot of other papers on amalgamations and some highlights include

36, 42, 45, 44, 48, 51, 70, 74].

8.4 Main Result

A function g : V(¥4) — N is said to be simple if

|H(v,e)| < g(v) forveV(¥4),ee E(9).

A hypergraph ¥ is said to be simple if g : V(¥9) — N with g(v) = 1 for v € V(¥) is simple.
It is clear that for a hypergraph % and a function g : V(.%#) — N, there exists a simple

g-detachment if and only if g is simple.

Theorem 8.2. Let F be a k-edge-colored hypergraph and let g : V(%) — N be a simple
function. Then there exists a simple g-detachment & (possibly with multiple edges) of %
with amalgamation function ¥ : V(¥4) — V(F), g being the number function associated

with ¥, such that:

(A1) for each ue V(F) and each v e U (u)
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(A3) for distinct uy, ..., u, € V(F) and U; < O~ (w;) with |U;| = m; < g(w;) for 1 <i<r

mg(ul™, ... ul)

> r

Im_, (40)

I

mg(Ul, ey Ur) =~

(A4) for distinct uy, ..., u, € V(F) and U; € W~ (u;) with |U;| = m; < g(w;) for 1 <i<r

and 1< j <k

mr

m?(j)(ugnla e Uy )
H;=1 (g(“i))

m;

mg(j)(Ul, ey Ur) x

8.5 Proof of Theorem 8.2

8.5.1 Inductive Construction of ¢

Let # = (V,E,H,¢,¢). Let n = 3 . (9(v) —1). Initially we let %, = F and
go = g, and we let &y be the identity function from V into V. Now assume that %, =
(Vo, Eo, Ho, Yo, 00), - .., Fi = (Vi, B, Hi, s, ;) and @y, ..., ®; have been defined for some

7 = 0. Also assume that the simple functions gy : Vo — N, ..., ¢; : V; = N have been defined

for some i = 0. Let ¥; = ®q...P,. If i = n, we terminate the construction, letting ¢ = .%,

and ¥ = V,,.
If i < n, we can select a vertex a of .%; such that g;(a) = 2. As we will see, .%;, is

formed from .%; by splitting off a vertex v;,; from « so that we end up with « and v; ;. Let

and let

By = {Hﬂ} (atv U) t=21,Uc ‘/z\{a}}

U {Hzy(@U):t=>1,UcVi\{a},1 <j <k} (8.2)
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It is easy to see that both & and %, are laminar families of subsets of H(.%;, a).

Therefore, by Lemma 1.3, there exists a subset Z; of H(.%;, ) such that

|Z; n P| ~ |P|/gi(a), for every P e o U ;. (8.3)

Let v;41 be a vertex which does not belong to V; and let V;;1 = V; U {v;11}. Let ®;.; be the
function from V;,; onto V; such that ®;.;(v) = v for every v € V; and ®;41(v;41) = . Let

Fi+1 be the detachment of .#; under ®,,; such that V(.%;,1) = V1, and

Hz,,(vis1) = Zi, Hz,, (o) = Hz,(0)\Z;. (8.4)

(3

In fact, .%;,1 is obtained from .%#; by splitting « into two vertices o and v;y; in such a
way that hinges which were incident with « in .%; become incident in .%;,; with « or v; 4
according as they do not or do belong to Z;, respectively. Obviously, ¥; is an amalgamation
function from .%; ; into .%;. Let g;41 be the function from V;,; into N, such that g;1(v;11) =
1,gi41(a) = gi(a)—1, and g;11(v) = g;(v) for every v € V;\{a}. This finishes the construction
of Z; 1.

8.5.2 Relations Between .%,,; and .%;

The hypergraph .%; 1, satisfies the following conditions:
(B1) d%H(Q) ~ dz,(a)giv1(a)/gi(a);
(B2) dz,, (vis1) ~ dz(a)/gi(a);
(B3) mg,,,(vi,,,a",U) =0 for s > 2, and t > 0;
(B4) mg,,, (", U) ~ mg, (o', U)(gi(a) — t)/gi(a) for each U < V;\{a}, and g;(a) =t > 1;

(B5) mg,, (0", v;41,U) = (t + 1)mg, ('™, U)/g;(a) for each U < V;\{a}, and t = 0.
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Proof. Since Hz («) € o, from (8.4) it follows that

dz,.,(vis1) = |Hz,,(vin1)| = |Zi| = |Zi 0 Hz,(a)|
~ |Hz(a)l/gi(a) = dz(a)/g9i(a),
dz,,,(a) = [Hz, (a)] =|Hz /(o) —|Z]

2

dz, (@) = dz(@)/9:(a) = (g:i(@) = Ddz(a)/9:()

= dz(@)gi(a)/gi().

This proves (B1) and (B2).

Ift>1,U c V\{a}, and e € Ez (a',U), then for some j, 1 < j <k, Hg,

(3

(j)(av 6) €
SO

‘ZZ A Hyi(j)(a7e)\ ~ |H§i(j)<a7 e)|/gi<a) = t/gi<a) <1,

where the inequality implies from the fact that g, is simple. Therefore either |Z;nH z,;)(a, e)| =
1 and consequently e € Egz,, (o' vi1,U) or Z; n Hg,;(o,e) = & and consequently
e€ Egz, (o', U). Therefore

Mz ('Uz'erla O‘Ta U) =0,
for r > 1, and s > 2. This proves (B3). Moreover, since Hg, (o', U) € %;, we have
mz; . (at—l’ Vi+1, U) = |ZZ N Hﬁi (at’ U)| ~ |H¢%(O‘t> U)|/g,(a) =tmg, (at’ U)/gi(a)>
mz,.,(a,U) ~ mgz(a",U) = |Hgz (", U)|/gi(a) = mz (a",U) — tmz,(a',U)/g;(cx)
= mgz(a", U)(gi(a) = t)/gi(a).
This proves (B4) and (B5). O

Let us fix j € {1,...,k}. It is enough to replace .%#; with .%;(j) in the statement and the

proof of (B1)-(B5) to obtain companion conditions, say (C1)—(C5) for each color class.
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8.5.3 Relations Between .%#; and %

Recall that ¥; = ®y...P;, that &5 : V — V, and that &; : V; — V;_; for i > 0.
Therefore ¥; : V; — V and thus ¥; ' : V — V;. Now we use (B1)-(B5) to prove that the

hypergraph .%; satisfies the following conditions for 0 < i < n :
(D1) dz,(v)/g:(v) ~ dz(u)/g(u) for each u € V and each v e U, *(u);

(D2) mg, (ui*, Uy, ..., ug, Up) /TGy (gigﬂ')) ~mg(uy™, . ur) /1 (92‘;)) for distinct ver-

tices uy,...,u, € V, a; = 0, U; < W7 (u)\{u;} with 1 < mj = a; + |Uj] < g(uy),

1<j<rifg(u;) =a;, 1 <j<r.

Proof. The proof is by induction. Recall that %y = .%, and go(u) = g(u) for uw € V. Thus,
(D1) and (D2) are trivial for i« = 0. Now we will show that if .%; satisfies the conditions (D1)
and (D2) for some ¢ < n, then %, satisfies these conditions by replacing i with i + 1; we
denote the corresponding conditions for .%; 1 by (D1)" and (D2)".

Let w € V. If gir1(u) = gi(u), then (D1) is obviously true. So we just check (D1)’
in the case where v = . By (Bl) and (D1) we have dgz,,,(a)/gi+1(a) ~ dg,(o)/gi(a) ~
dz(a)/g(c). Moreover, from (B2) and (D1) it follows that dz,,,(vit1) ~ dz(®)/g9:(e) ~
dz(a)/g(c). Since in forming .%;;; no edge is detached from v, for each v, € ¥ *(a)\{a},
we have dz,,,(v,) = dg,(v,). Therefore dg, ,(v,) = dz(v,) ~ dz(a)/g(a) for each v, €
;Y (a)\{a}. This proves (D1)". Let uy, ..., u, be distinct vertices in V. If g;y1(u;) = gi(u;)
for 1 < j < r, then (D2)’ is clearly true. Therefore, in order to prove (D2)’, without loss of
generality we may assume that g;,1(u1) = g;(u1) — 1 (so @ = uy and vy, € ¥; H(uy)). First,

note that for integers a,b we always have (a — b)(§) = a(“;l) = (b+ 1)(bil). If v;yq ¢ Uy,
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we have

m?i+1(u(111> U1’ cee ’u;}r’ UT’) (%) mg, (ul >U1> sy Uy >Ur)(gi(u1) B al)/gi(ul)
15, () O ()

myi(ulf1> U1> s ’u?r’ UT)(gi(ul) B al)/gi(ul)
(g:(u1) = a1) /i un) (") Ty (#0)

_ ml(ul’Ul’..., T,,Urp)
11, (ng(ff))
o (g ur)
e (%))
If v;;1 € Uy, we have
mz,, (Wi, U, uim, Us) 85 mg, (uf Gt U N1}, u® U (ay + 1) /gi(uy)
TCER) L C)
_ mﬂ}( artl Ul\{vl+1} RN r ) U’r‘)
gi(w) /(a1 + 1)(.%@1) )Hr (gz[(;;j))
_ my( p Ul\{vl-i-l} cey Uy 7UT’>
(LI (1)
©2) mg(uy",...,u")
e (%))
This proves (D2)'. O

Let us fix j € {1,...,k}. It is enough to replace ¥ with % (j), %#; with Z#,(j), %11 with
Fiy1(4), and (Bi) with (Ci) for ¢ = 1,2,4,5, in the statement and the proof of (D1) and

(D2) to obtain companion conditions, say (E1) and (E2) for each color class.

8.5.4 ¥ satisfies (A1)—(A4)

Recall that ¢ = .%,, and g,(u) = 1 for every u € V, therefore when i = n, (D1) implies
(A1). Moreover, if we let i = n in (D2), we have a; € {0,1} for 1 < j < r and thus
H;f:l(gi[(ljj)) = H;f:l(alj) = 1. This proves (A3). By a similar argument, one can prove (A2)

and (A4), and this completes the proof of Theorem 8.2. O
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8.6 Corollaries

For a matrix A, let A; denote the j* column of A, and let s(A) denote the sum of all the
elements of A. Let R = [ry...r.]T (or RT = [ri]ixx), A= [A1... \u]T and H = [hy ... by )T
be three column vectors with r;, \; € N, and h; € {1,...,n} for 1 < i < m, such that
hyi ..., hny are distinct. Let AK denote a hypergraph with vertex set V, |V| = n, such that
there are \; edges of size h; incident with every h; vertices for 1 < ¢ < m. A hypergraph ¥ is
said to be k-regular if every vertex has degree k. A k-factor of ¢ is a k-regular spanning sub-
hypergraph of 4. An R-factorization is a partition (decomposition) {Fy, ..., Fj} of EF(¥) in
which Fj is an r;-factor for 1 <4 < k. Notice that AK is PpY (Z‘;ll)—regular. We show
that the obvious necessary conditions for the existence of an R-factorization of AK! are

also sufficient.

Theorem 8.3. AK/? is R-factorizable if and only if s(R) = >,;" | \i (}2:11), and there exists
a non-negative integer matric A = [a;|pxm such that AH = nR, and s(A;) = X;()') for

I<j<m.

Proof. To prove the necessity, suppose that AK is R-factorizable. Since each r-factor is
an r;-regular spanning sub-hypergraph for 1 < ¢ < k, and AK is Y, \; (}Z*_ll)-regular,
we must have s(R) = Zleri =37 N (:ill) Let a;; be the number of edges (counting
multiplicities) of size h; contributing to the i" factor for 1 <i < k, 1 < j < m. Since for
1 < j <'m, each edge of size h; contributes h; to the the sum of the degrees of the vertices in
an r;-factor for 1 < ¢ < k, we must have Z;”:l a;jhj = nr; for 1 <i <k and Zle ai; = Aj (}:)
for 1 <j<m.

To prove the sufficiency, let .# be a hypergraph consisting of a single vertex v with
mg (Vi) = ), (}Z) for 1 < j < m. Note that .Z is an amalgamation of AK. Now we color

the edges of .Z so that mgg)(v") = a;; for 1 < i < k, 1 < j < m. This can be done,

because:



Moreover,

dzu)(v) = Z a;jhj =mnr; for 1 <i<k.

j=1
Let g : V(%) — N be a function so that g(v) = n. Since for 1 <i < m, h; < n, g is simple.
By Theorem 8.2, there exists a simple g-detachment ¢ of .% with n vertices, say vy, ..., v,
such that by (A2), dy@)(v;) ~ dz@)(v)/g(v) = nry/n = r; for 1 <i <k, 1<j <n,and by
(A3), for each U < {vy,...,v,} with [U| = h;, mg(U) ~ my(vhﬂ')/(}?j) = )\J(:J)/(:) =}

J

for 1 < j < m. Therefore ¥ =~ AK!

n

and the i color class induces an r;-factor for

1<i<k. 0

In particular, if m =1, h := hy, Ay =1, 7 :=r; = -+ = 1, then Theorem 8.3 implies
Baranyai’s theorem: the complete h-uniform hypergraph K" is r-factorizable if and only if
h | rnand r | (Zj)

Now let h; = 2 for 1 <i < m, and let AK, H .pn, be a hypergraph with vertex partition

{(Vi,..., Vo), |Vil = p; for 1 < i < n such that there are \; edges of size h; incident with

every h; vertices, at most one vertex from each part for 1 < i < m (so no edge is incident

with more than one vertex of a part). If p; = --- = p, := p, we denote AK[T by AK[ .
Theorem 8.4. AK[!  is R-factorizable if and only if py = --- = p, = p, s(R) =

PIEPY (Z:ll)phi’l, and there ezists a non-negative integer matric A = |a;;j|kxm Such that

AH = npR, and s(A;) = ), ( )p for1<j<m.

Proof. To prove the necessity, suppose that AK! is R-factorizable (so it is regular). Let

P1;---,Pn

w and v be two vertices from two different parts, say a* and b parts, respectively. Since
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d(u) = d(v), we have

Z )\ Zl<zl< <7, 1<np21... ’L . Z )\ Zl<zl< <Z lgn pll"'pihj71 =

1<]<m a¢{7417 ’h 1} 1<]<m b¢{lly ’h }
Z )\ (Zl<zl< <7, <n p'll .. .pihj71 - Zl<21< <Z <n pll .. 'pihj71> = O p—1
hj—
Isjsm agfi,..., in, } b{i1,..i inj—1 }
)\‘< Z D — Z D >=O<=>
Z i\Pv 1<ip<-<i, ,<n Pir ++Pip;—2 — Pa 1<ip<-<i, ,<n Pir ++ Pin; -
1<js<m J J

pb pa Z Z1<11< iy _,<n Piy - .pihj’2 =0 =

1<j<m T2
Po = Pa-
Therefore, py = -+ = p, := p. So AK[ is 3" N (}Zill)phi_l—regular, and we must have
s(R) = Zle r; = 221 i (}’::11) p"~'. Moreover, there must exist non-negative integers a;;,
<i <k, 1 <j<m,such that 37" a;jh; = npr; for 1 < i <k and SEoay =\ (f:‘)phj
for 1 < 7 < m. We note that a;; is in fact the number of edges (counting multiplicities) of

size h; contributing to the ™ factor.

To prove the sufficiency, let AP = [phi)\;]7 and let .# = APKH with vertex set

Ixm>»

V = {v1,...,v,}. Notice that .7 is an amalgamation of AK . By Theorem 8.3, .Z is

pR-factorizable. Therefore, we can color the edges of .%# so that

dz@(v) =priforve V,1<i<k.

Let g : V' — N be a function so that g(v) = p for v € V. Since p > 1, g is simple. By Theorem
8.2, there exists a simple g-detachment ¥ of % with np vertices, say v; is detached to
Vi, - . ., Uy for 1 < < n, such that by (A2), dyg)(va) ~ dzg)(va)/9(ve) = pri/p = r; for 1 <

i<k, 1<a<n,1<b<p,and by (A3), mg(valbl,...,vahjbhj) A mg(val,...,vahj)/phf =
piNj/phi =N for 1 <j<m,1<a < < ap; <n, 1 < by,...,bp; < p. Therefore
¢ ~ AKH and the i*" color class induces an r;-factor for 1 <i < k O

nxp)
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In particular, if m =1, h := hy, Ay = 1, r :=r; = .-+ = r, then Theorem 8.4 implies

another one of Baranyai’s theorems: the complete h-uniform n-partite hypergraph K,’jxp is

n—1

r-factorizable if and only if & | npr and r | (7-7)p" "

Let JI' = [1...1]1xx. For two column vectors @ = [q1...q]", R = [r1...r]7, if
q; < r; for 1 <i <k, we say that Q < R. For a hypergraph ¢, a (g, r)-factor is a spanning
sub-hypergraph in which

q < d(v) < r for each v e V(¥).

A (Q, R)-factorization is a partition {F}, ..., Fi} of E(¥¢) in which F; is a (g;, r;)-factor for
1 <i < k. An almost k-factor of 4 is (k — 1, k)-factor. An almost R-factorization is an
(R — Ji, R)-factorization. The proof of the following theorems are very similar to those of

Theorem 8.3 and 8.4.

Theorem 8.5. AK/ is (Q, R)-factorizable if and only if s(Q) < X" N\ (;:11) < s(R), and
there exists a non-negative integer matric A = [a;jlpxm such that nQQ < AH < nR, and

s(A;) = )\j(:j) for1<j<m.

Proof. To prove the necessity, suppose that AKH is (Q, R)-factorizable. Since AK is
> )\i(;:ll)—regular, we must have s(Q) = Zle a < D AZ(;Zf_ll) < Zle ri = s(R).
Since for 1 < j < m, each edge of size h; contributes h; to the the sum of the degrees of the
vertices in (g;, 7;)-factor for 1 < i < k, there must exist non-negative integers a;;, 1 < i <k,
1 < j < m, such that ng; < 7", ajjh; < nry for 1 < i < k and SEoay = )\j(:j) for
I<j<m.

To prove the sufficiency, let .# be a hypergraph consisting of a single vertex v with
mg (V') = ), (}:) for 1 < j < m. Note that .Z is an amalgamation of AK*. Now we color
the edges of .7 so that mg(;)(v") = a;; for 1 < i < k, 1 < j < m. This can be done,

because:

k k
2. mre (V") = Y ai = X (:) =mgz(u") for1<j<m.
i=1 i=1 J
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Moreover,

ng < dg Za,] <nr; forl<i<k.

Let g : V(#) — N be a function so that g(v) = n. Since for 1 <i < m, h; < n, g is simple.
By Theorem 8.2, there exists a simple g-detachment ¢ of .% with n vertices, say vy, ..., v,
such that by (A2), ¢; = ngi/n < dyu(vj) < nry/n =1 for 1 <i <k, 1<j<mn,and by
(A3), for each U < {vy,...,v,} with [U| = hj, mg(U) ~ mz(v")/(] ) Ai() J) (; )

for 1 < j < m. Therefore ¢ ~ AKX and the i color class induces a (g;,r;)-factor for

n

1<i<k. 0

Theorem 8.6. AKY is almost R-factorizable if and only if s(R)—k < Y, \; (::11) < s(R),

and there exists a non-negative integer matric A = [a;;|kxm such that n(R—Jy) < AH < nR,

and s(A;) = )\j(}Z) for1<j<m.
Proof. Tt is enough to take Q = R — J in Theorem 8.5. O

Theorem 8.7. AK” s (Q, R)-factorizable if and only if s(Q) < D" Ni (}Z__ll)phi_l < s(R),

nxp

and there exists a non-negative integer matric A = [aij|gxm such that npQ < AH < npR,

and s(A;) = )xj(}:;)phj for1<j<m

Proof. To prove the necessity, suppose that AKX is (Q, R)-factorizable. Since AKX

nxp

nxp
. _ - - k
PIEPY (}Z_ll)phl Lregular, we must have s(Q) = 31| ¢; < Z:’il i (}Z_ll)phl Ly =
s(R). Moreover, there must exist non-negative integers a;;, 1 <i <k, 1 < j < m, such that
npgq; < Z; L aijhy < npr; for 1 <@ <k and Zle a;j = )\j( ) hifor1 <j<m.

To prove the sufficiency, let A? = [p"\]T,,,, and let . F = APKH with vertex set

1xm»

V = {vq,...,v,}. Notice that .# is an amalgamation of AK By Theorem 8.5, .% is

nxp

(pQ, pR)-factorizable. Therefore, we can color the edges of .% so that

g < dgz@i(v) <priforveV,1<i<k.
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Let g : V. — N be a function so that g(v) = p for v € V. Since p > 1, ¢ is simple. By
Theorem 8.2, there exists a simple g-detachment ¢ of . with np vertices, say v; is detached to

Vi, - - ., Vip for 1 < i < n, such that by (A2), ¢; = pgi/p < dy@)(va) < pri/p = riforl <i <k,

1 <a<mn 1<b<p and by (A3), mg(valbl,...,vahjbhj) A m,g(val,...,vahj)/phj =
pidj/phi = XNjfor 1 <j<m1<a < - < ap; < n, 1 <by,...,bp; < p. Therefore
G ~ Afop, and the ' color class induces a (p;, r;)-factor for 1 < i < k. O

Theorem 8.8. AKY  is almost R-factorizable if and only if s(R)—k < D" N (:iill)phi_l <

nxp

s(R), and there exists a non-negative integer matric A = [a;;]kxm such that np(R — J) <

AH < npR, and s(A;) = ), (}Z)phf for1<j<m.

Proof. 1t is enough to take () = R — J; in Theorem 8.7. O
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Chapter 9

Connected Baranyai Theorem
9.1 Introduction

Let Kh = (V, (Z)) be the complete h-uniform hypergraph on vertex set V with |V| = n.
Baranyai showed that K" can be expressed as the union of edge-disjoint r-regular factors if

and only if h divides rn and r divides ("_1). Using a new proof technique, in this chapter

h—1
we prove that AK" can be expressed as the union G; U ... U G, of k edge-disjoint factors,
where for 1 < i < k, G; is r-regular, if and only if (i) A divides rn for 1 < i < k, and (ii)
Zle r = )\(Zj) Moreover, for any i (1 < ¢ < k) for which r; > 2, this new technique
allows us to guarantee that G; is connected, generalizing Baranyai’s theorem, and answering
a question by Katona.

A hypergraph G is a pair (V, E) where V is a finite set called the vertex set, F is the
edge multiset, where every edge is itself a multi-subset of VV. This means that not only can
an edge occur multiple times in £, but also each vertex can have multiple occurrences within
an edge. The total number of occurrences of a vertex v among all edges of E is called the
degree, dg(v) of v in G. For a positive integer r, an r-factor in a hypergraph G is a spanning
r-regular sub-hypergraph, and a partition of the edge set of G into (disjoint) r-factors is
called an r-factorizaton. The hypergraph K" := (V, (‘;)) with |[V] =n (by (‘;) we mean the

collection of all h-subsets of V') is called a complete h-uniform hypergraph. Avoiding trivial

cases, we assume that n > h. Baranyai proved that:
Theorem 9.1. (Baranyai [15]) K" is r-factorizable if and only if h | rn and r | (Z:l).

It is natural to ask if we can obtain a connected factorization; that is, a factorization in

which each factor is a connected hypergraph. Let m be the least common multiple of A and
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n, and let a = m/h. Define the set of edges
H ={{1,...;h},{h+1,....2h},....{(a—1)h+1,(a—1)h+2,...,ah}},

where the elements of the edges are considered mod n. The families obtained from % by
permuting the elements of the underlying set {n} are called wreaths. If h divides n, then a
wreath is just a partition. Baranyai and Katona conjectured that the edge set of K" can be
decomposed into disjoint wreaths [54]. In connection with this conjecture, Katona (private
communication) suggested the problem of finding a connected factorization for K”. In this
chapter, we solve this problem.

An (ry,...,7)-factorization of G is a partition of the edge set of G into F1, ..., F}, where
F; is an ri-factor for 1 < i < k. If we replace every edge e of K" by A copies of e, then
we denote the new hypergraph by AK". In this chapter, the main result is the following

theorem:

Theorem 9.2. AK" is (ry,...,r)-factorizable if and only if h | rn for 1 < i < k, and
Zle r; = )\(Zj) Moreover, for1 <i < k, ifr; = 2, then we can guarantee that the r;-factor

18 connected.

While this generalizes Baranyai’s result in various ways, we note that the major exten-
sion is the guarantee of connectivity for the r-factors when r > 2. In particular if A = 1,
and h =ry = -+ =1, =2, Theorem 9.2 implies the classical result of Walecki [64] that the
edge set of K,, can be partitioned into Hamiltonian cycles if and only if n is odd. Here we
list some other interesting special consequences of Theorem 9.2:

n—1

h—l) 18 even and h | 2n.

Corollary 9.3. K is connected 2-factorizable if and only if(

Corollary 9.4. K" has a connected m-ﬁzctom’zation.

We note that the idea behind the proof of Theorem 9.2 is based on the amalgamation
technique [44, 70]. Preliminaries are given in Section 9.2, followed by the proof of Theorem

9.2 in Section 9.3.
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We end this section with some notation we need to be able to describe hypergraphs that
arise in this setting.
Let G = (V, E) be a hypergraph with a € V', and let U = {uy,...,u,} < V\{a}. Recall

that each edge is a multi-subset of V. We abbreviate an edge of the form {«, ..., a,uy, ..., u,}
—_——

to {a? uy,...,u,}. An h-loop incident with « is an edge of the form {ah; and m(a?,U)
denotes the multiplicity of an edge of the form {a?} UU. A k-edge-coloring of G is a mapping
f: E— C, where C is a set of k colors (often we use C' = {1,...,k}), and the edges of one
color form a color class. The sub-hypergraph of G induced by the color class i is denoted by

G;, abbreviate dg,(a) to d;(«) and mg,(a?,U) to m;(a®,U).

9.2 Preliminaries

A vertex « in a connected hypergraph G is a cut vertex if there exist two non-trivial
sub-hypergraphs I, J of G such that T v J =G, V(I nJ) =« and E(I nJ) = &. A non-
trivial connected sub-hypergraph W of a connected hypergraph G is said to be an a-wing
of G, if v is not a cut vertex of W and no edge in E(G)\E (W) is incident with a vertex
in V(W)\{a}. The set of all a-wings of G is denoted by #,(G). Figure 9.1 illustrates an
example of a hypergraph and the set of all its a-wings.

If the multiplicity of a vertex « in an edge e is p, we say that « is incident with p
distinct objects, say hq,...,h,. We call these objects hinges, and we say that e is incident
with hq,...,h,. The set of all hinges in G incident with « is denoted by Hg(«); so |[Hg(o)|
is in fact the degree of a.

Intuitively speaking, an a-detachment of G is a hypergraph obtained by splitting a vertex
« into one or more vertices and sharing the incident hinges and edges among the subvertices.
That is, in an a-detachment G’ of G in which we split « into v and 3, an edge of the form
{aP uy,...,u.} in G will be of the form {a?~% 3", uy,...,u.} in G’ for some i, 0 < i < p. Note
that a hypergraph and its detachments have the same hinges. Whenever it is not ambiguous,

we use d’, m’, etc. for degree, multiplicity and other hypergraph parameters in G’. Also, for
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Figure 9.1: A hypergraph G and the set of all its a-wings

an a-wing W in G and an a-detachment G’, let W’ denote the sub-hypergraph of G’ whose
hinges are the same as those in W.

We shall present three lemmas, all of which follow immediately from definitions.

Lemma 9.5. Let G be a connected hypergraph. Let G be an a-detachment of G obtained by
splitting a vertex o into two vertices a and . Then G’ is connected if and only if for some

a-wing W e #,(G) with dy («) = 2,

1< |Hw(04) N Hg/(ﬁ” < dw(OA)

Informally speaking, Lemma 9.5 says that for some a-wing W with dy («) = 2, at least
one but not all the hinges incident with « in W must be incident with 8 in G’.

A family o of sets is laminar if, for every pair A, B of sets belonging to «/: A < B, or
Bc A, or AnB=a.

Let us fix a vertex « of a k-edge-colored hypergraph G = (V) E). For 1 < i < k, let
H; be the set of hinges each of which is incident with both « and an edge of color i (so

d;(a) = |H;|). For any edge e € E, let H, be the collection of hinges incident with both «
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and e. Clearly, if e is of color i, then H, — H;. For an a-wing W, let Hy = Hy («). For
1<i<k, let

H = U Hyy.
WeHa(Gi),dw () =2

Lemma 9.6. Let

o = {Hy,...,H} V{Hw : W e#,(G),1<i<k}

u {H',...,H*} U{H,:e€ E}.

Then < is a laminar family of subsets of H(«).

For each p > 1, and each U c V\{a}, let H be the set of hinges each of which is

incident with both a and an edge of the form {a”} U U in G (so |HJ| = pm(aP,U)).

Lemma 9.7. Let

% = {HY :p=>1,Uc V\{a}}.

p

Then A is a laminar family of subsets of H(«).

If 2,y are real numbers, z ~ y means |y| < = < [y|. We need the following powerful

lemma:

Lemma 9.8. (Nash-Williams [70, Lemma 2|) If o/, % are two laminar families of subsets

of a finite set S, and n is a positive integer, then there exist a subset A of S such that
|A n P| ~ |P|/n for every P e o/ U A.

9.3 Proof of the Main Theorem

To prove Theorem 9.2, first we look at the obvious necessary conditions:

Lemma 9.9. If A\K" is connected (ry,...,7)-factorizable, then
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(i) 1 =2 for 1 <i<k,
(i) h | rin for 1 <i <k, and

(i) 3y = A1)

Proof. Suppose that AK" is connected (ry,...,7;)-factorizable. The necessity of (i) is suffi-
ciently obvious. Since each edge contributes h to the the sum of the degrees of the vertices

in an r;-factor for 1 < i < k, we must have (ii). Since each r;-factor is an r;-regular spanning

1

sub-hypergraph for 1 <i < k, and AK" is A(Z:l)—regular, we must have (iii). O

In order to get an inductive proof of Theorem 9.2 to work, we actually prove the following

seemingly stronger result:

Theorem 9.10. Let n, h, A\, k,r,... 1 be positive integers with n > h satisfying (i)—(iii).
For any integer 1 < £ < n, there exists an (-vertex k-edge-colored hypergraph G with vertex
set V (awe V') such that

rim—0+1) ifu=a«
di(u) = forueV,1<i<k, (9.1)

T if u # «

—(+1
m(a?,U) =>\<n - ) forp=0,U c V\{a} with |U| = h—p, and (9.2)
p
Gi is connected if r; = 2, for 1 <i<k. (9.3)

Remark 9.11. Theorem 9.2 follows from Theorem 9.10 in the case where ¢ = n as the
following argument shows. If £ = n, then conditions (9.1)—(9.3) imply that we have an n-
vertex k-edge-colored hypergraph G in which the " color class is r;-regular by (9.1), and
connected by (9.3). Moreover, (9.2) implies that for U < V\{a}, (i) m(U) = )\((1)) = \if
[U| = h (when p = 0), (i) m(a,U) = A(}) = A if [U| = h — 1 (when p = 1), and (iii)
m(a?,U) = A(;) = 0 for p > 2, and |U| = h — p. Therefore G =~ A\K}".

1
P
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Proof. The proof is by induction on ¢. At each step we will assume not only that G is an /-
vertex k-edge-colored hypergraph with vertex set V' (v € V') satisfying conditions (9.1)—(9.3),

but that G also satisfies the two additional properties
|H.| <n—{+1 for each edge e of G, and (9.4)

for 1 <i<k, ifr; =2, then §; =r;(n—~0+1) (9.5)

where for 1 <i <k, §; = |H|.

First consider the base case when ¢ = 1. Let F be a hypergraph with a single vertex «
incident with A(}}) h-loops; i.e. m(a”) = A(}). Color the edges of F such that m;(a”) = ryn/h
for 1 < i < k. This is possible since by (ii) kA | r;n, and by (iii) Zle m;i(ah) = Zle rin/h =
n/hZf:1 r; = )xn(Zj)/h = )\(Z) = m(a”). Also, note that for ¢ = 1, the hypergraph F
trivially satisfies (9.4), and since each h-loop is an a-wing, F also satisfies (9.5). Therefore,
F shows that conditions (9.1)—(9.5) holds for ¢ = 1.

Now suppose that 1 < ¢ < n, and that G satisfies (9.1)—(9.5). The proof is completed
by showing that G has an (¢ + 1)-vertex a-detachment G’ with vertex set V' = V u {5}

satisfying

|H!| < n — ¢ for each edge e of G, (9.6)
riin—40) ifu=a«a
di(u) = forue V' 1<i<k, (9.7)
T if u# «
—/0
m'(a?,U) = )\(n ) for p > 0,U < V\{a} with |U| = h —p, (9.8)
p
G'(i) is connected if r; > 2, for 1 <i <k, and (9.9)
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for 1 <i<k,ifr; >2andif { <n —1, then

5 = ry(n — 0). (9.10)

Let &/ and % be the laminar families in Lemmas 9.6, and 9.7. By Lemma 9.8, there

exists a subset A of H(«) such that

|An P|~ |P|/(n—{¢+1) for every Pe &/ U A. (9.11)

Let G’ be the hypergraph obtained from G by splitting « into two vertices « and (3 in such a
way that hinges which were incident with « in G become incident in G’ with « or 3 according

as they do not or do belong to A, respectively. More precisely,

H(B) = A, H(a)=H(a)\A. (9.12)

Since H; € & for 1 < i < k, we have

d;(8) = [An Hi

&2

|Hi|/(n — £+ 1) =di(a)/(n— L +1)
= rin—C0+1)/(n—L+1)=r,
di(a) = di(a) — di(5)

= rin—Ll+1)—r;=ri(n—1),

and for u ¢ {«, 8}, di(u) = d;(u) = r;. Therefore G’ satisfies (9.7).

Let e be an edge in G incident with o. Then H, € 7, and so

A~ H| ~|H|/(n—(+1) <1,
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observing that the last inequality implies from (9.4). This means that either A n H, = @
or |An H. = 1. Therefore m'(89,U) = 0 for ¢ = 2 and U < V’. Also, note that if
|H.| = n—{+1, then |[An H,| =1 and thus |H!| = n— ¢, and if |H.| < n — ¢+ 1, then
|H!| < |H.| <n—{ both cases together proving (9.6).

Since for p > 1, and U < V\{«}, H € 2, we have

m' ("L B,U) = |AnH|

2

|H£J|/(n—€+ 1) =pm(a®,U)/(n—C+1)

_ )‘P<n_§+1)/(n_£+1):)\(Z:f)’

m'(a”U) = m(a?,U) —m/(a’", 8,U)

B R D)

Let us fix an 4, 1 < i < k such that r; = 2. Let W be an a-wing of G; with dy («) = 2.

Therefore G’ satisfies (9.8).

Then Hy, € <7, and so

A Hy|~ [Hyl/(n—€+1) = dw(a)/(n— €+ 1), (9.13)

which implies that (noting that n — ¢ + 1 > 2)

A~ Hy| < [Hy). (9.14)

Moreover,

An H'| ~ |H|/(n—L+1)=06/(n—L+1)=1; =2, (9.15)

and therefore there exists an a-wing W in G; with dy (o) = 2, such that A n Hy # @.

Therefore by Lemma 9.5, G/ is connected.
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Now, suppose that £ < n — 2, or equivalently that n — ¢ + 1 > 3. Since §; = d;, we have
that for every W e #,(G;), dw () = 2. So there is no a-wing W in G; with dy () = 1. Let

us fix an a-wing W in G;. There are two cases to consider:

e Case 1: If |[Hy| = 3, then since |A n Hy| ~ |Hw|/(n — €+ 1) < |Hy|/3, we have that
diy () = 2, and thus ¢, = di(a) = r;(n — ¢). Note that W’ is a sub-hypergraph of

some a-wing S in G’ with ds(a) = 2.

e Case 2: If |[Hy| = 2, then |[An Hy| ~ |[Hy|/(n —C+1) =2/(n—(+1) <2/3. So
|An Hy|e€{0,1}. If An Hy = &, we are done. So let us assume that |[A n Hy | = 1.
Recall from (9.15) that |A n H'| > 2. Therefore, there is another a-wing 7" in G; with
|Hr| = 2 such that 1 < |An Hy| < |Hr|. Therefore, there exists an a-wing S in G’ with

W'oT' < S, and d(a) = 2. Thus, in this case also we have 9, = 6; —r; = r;(n — 0).

Therefore G’ satisfies (9.10) and the proof is complete. O

128



Chapter 10

Polynomial Time Parallelisms

10.1 Introduction

Throughout this chapter, & is a fixed positive integer. Let Pg(n) be the collection of all
k-element subsets of an n-set. A parallelism on Py(n) is an equivalence relation of P(n) such
that the members of each equivalence class form a partition of the n-set. Each equivalence
class is called a parallel class, that is a set of n/k k-subsets each of which partitions the n-
set. In connection with Kirkman’s famous Fifteen Schoolgirls Problem [56], in 1850 Sylvester
asked whether it is possible to find a parallelism on Py(n). Of course, it is necessary that k
divides n, and the number of parallel classes would be %(Z) = (Zj) For those readers with
(hyper)graph theory background, we note that finding a parallelism on Py(n) is equivalent to
finding a 1-factorization for a complete k-uniform hypergraph on n vertices. Sylvester found
a parallelism on P;(15). Several generalizations of this problem were studied during the last
70 years (see for example [71, 73]), but the general case remained open until 1973, when
Baranyai settled this old problem [15]. Baranyai’s elegant proof actually yields a method
for constructing a parallelism on Py(n) recursively. However, this approach is not be very
efficient, its complexity being exponential (O(2")) [53, p. 226]. Later Brouwer and Schrijver
gave another proof for which the complexity is polynomial in (Z), the output size for the
problem [25].

In this chapter, using our proof techniques of Chapter 5 and Chapter 8, we give a con-
structive proof of polynomial time complexity for the existence of a parallelism on Py(n). All
known proofs including the one we shall present here, use a form of network flow; specifically,
we use an approach which has been useful in finding detachments of graphs [70]. We note

even though our proof is very similar to that of Brouwer and Schrijver [25], it is obtained
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independently by simplifying the proofs of Theorem 10.3 and Nash-Williams lemma. For
applications of parallelism on Py(n) in computer science and biology (such as parallel algo-
rithms for tightening inter-atomic distance-bounds required for molecular conformation) see
[33, 34, 72]. It is shown in [55] that there are 103000 isomorphic classes of parallelisms on
P5(9).

10.2 Terminology

If z,y are real numbers, then |z| and [z| denote the integers such that x —1 < |z| < z <
[z] <2+ 1, and = ~ y means |y| < z < [y|. For a multiset A and u € A, let pa(u) denote
the multiplicity of u in A, and let |A| = >, _, pa(u). For multisets Ay,..., A,, we define

A =Ji_, A; so that pa(u) = D7 pia,(u). We abbreviate {u,...,u} to {u"}; for example

T

A circulation on a digraph D is a mapping f from E(D) to the reals satisfying conserva-
tion of flow at every vertex (see [84, chap. 7]). Let N~ (v) and N*(v) denote the in-neighbor
and out-neighbor of the vertex v, respectively. By (v, w) we mean a directed edge from v
to w, and we abbreviate f({v,w}) to f(v,w). Let f be a circulation on a finite digraph
D. Then it is known that there exists an integral circulation g (obtainable by a polytime

algorithm) such that g(e) ~ f(e) for every edge e (see for example [70, Lemma 1]).

10.3 Proofs

Theorem 10.1. If k divides n, then the set of all (Z) k-subsets of an n-set may be partitioned

into disjoint parallel classes A;, i =1,..., (Zj)

In order to get an inductive proof to work, rather than prove Theorem 10.1, we prove
the stronger result Theorem 10.2 below. Let m = n/k, M = (}_]). We use the term (m, k)-

split of a set X for a multiset A of m k-multi-subsets of X whose union contains X. For an
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integer ¢ and a set Ay, ..., Ay of (m,k)-splits of {1,...,0}, let u = Daca, Ma(i), and for
O0<r<kandSc{2...,0} with |S| =k —r, let ug =Z£1MAZ.(SU{1"}).

Theorem 10.2. For any integer ¢, 1 < ¢ < n, there exist a set
P = {Ah"'vAM}

of (m, k)-splits of {1,...,0} such that for 1 < j <M, pl =n—0+1, p) =1 for2 <i<{,
and (s = ("f“) for0 <r <k and each S < {2,...,0} with |S| =k —r. Moreover, P can

be obtained by a polynomial time algorithm.

Proof. We prove our assertion by induction on ¢. Notice that it is true for £ = 1 by choosing
Ay = - = Ay = {{1¥}™}. Also notice that proving the case £ = n will prove Theorem
10.1, since ,ug = 1 for 1 < ¢ < n means that each A; forms a partition of {1,...,n} for
j=1,..., M, and pj§ = (i) for 0 < r < k and each S < {2,...,n} with |S| = k — r means
that every k-subset of the n-set appears exactly once in Uf‘il A; (the cases r = 1 and 0
consider subsets of {1,...,n} that do and do not contain 1 respectively).

Assume for some value ¢ < n that (m,k)-splits Ay, ..., Ay exist with the required
properties. We form a digraph D with vertex multiset V' = {o,7} U {y1,...,ynm} U {w, :
a € Ui]\ilAi,ua(l) >0tufvy:0<r <k Sc{2..,0,5 =k—rps > 0} and with
a circulation f as follows. (Note that some o may occur several times in A;, the name w,

may occur on several vertices, so V' is a multiset.)
e For 1 <i < M, there is a directed edge from o to y; such that f(o,y;) = 1.

e For 1 <i < M and for each o € A; with p,(1) > 0, there is a directed edge from y; to
w, such that f(y;, wa) = pa(1)/(n— €+ 1).

e For 0 < r < k, and for S < {2,...,¢} with |S| = k —r, if g > 0 then for each
a=Su{l"}in Uf‘il A;, there is a directed edge from w, to v% such that f(w,,vs) =

ta(1)/(n—£€+ 1), and there is a directed edge from v§ to 7 such that f(vg, 7) = (f:f)
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e There is a directed edge from 7 to o such that f(r,0) = M.

It is straightforward to check that f is a circulation (see Figure 10.1). There is an integer
circulation g on D such that g(e) ~ f(e) for each edge e in D. Let us fix ani, 1 <i < M. For
each a € A; with p,(1) > 0, we have g(y;, w,) € {0,1}. More important, since g(o,y;) = 1,
there is exactly one « in A; such that ¢(y;, w,) = 1. Now, we obtain an (m, k)-split A} of
the set {1,...,¢ + 1} by letting A, be obtained from A; by replacing one 1 in o € A; with
¢+ 1if g(y;, ws) = 1. At this point, it is clear that our construction is of polynomial time
complexity:.

Finally, we show that the (m, k)-splits A],. .., A}, satisfy the required properties. We
define p? and pl" for Aj, ..., A}, similarly to the way we defined them for Aj,..., Ay
Obviously, i/ = ] =1for 2<i <, 1<j <M. Also p,,7 =1, and p}7 = 1} — ),/ =
n—{for 1 <j< M. Moreover, for 0 <r <k, Sc{l,... +1} with |S|=k—r,ifl+1€S
then u" = g(vgir{lul}ﬁ) = ("9, and if S < {1,...,¢} then p" = (") — g(vg,7) =

T

(n7£+1) _ (n*Z) — (”;Z) This completes the proof. =

r r—1
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Figure 10.1: Digraph D with circulation f
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Chapter 11

Recent Results and Future Directions

In this chapter, I shall summarize my research, the significance of my results, and some
motivation for future research. For each topic, I describe the problem with a brief discussion

on proof techniques, applications and extensions together with related open problems.

11.1 Amalgamations and Connected Fair Detachments

A detachment of a graph H is a graph obtained from H by splitting some or all of its
vertices into more than one vertex. If g is a function from V(H) into N, then a g-detachment
of H is a detachment of H in which each vertex u of H splits into g(u) vertices. H is an
amalgamation of G if there exists a function ¢ called an amalgamation function from V(G)
onto V(H) and a bijection ¢’ : E(G) — E(H) such that e joining v and v is in E(G) iff ¢/(e)
joining ¢(u) and ¢(v) is in E(H).

A k-edge-coloring of G is a mapping f : E — C, where E is the edge set of G and
C is a set of k colors (we often use C' = {1,...,k}), and the edges of one color form a
color class. In [5], we proved that for a given edge-colored graph there exists a detachment
so that the result is a graph in which the edges are shared among the vertices in ways
that are fair with respect to several notions of balance (such as between pairs of vertices,
degrees of vertices in both the graph and in each color class, etc.). The connectivity of color
classes is also addressed. Applications of this result are addressed in Sections 11.3 and 11.5.
Most results in the literature on amalgamations focus on the detachments of amalgamated
complete graphs and complete multipartite graphs. Many such results ([44, 48, 58, 61, 74],

Theorem 1, Theorem 1, Theorem 3.1, Theorem 2.1 and Theorem 2.1, respectively) follow as
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immediate corollaries to our main result in [5], which addresses amalgamations of graphs in

general.

11.1.1 Edge-Coloring Techniques

An edge-coloring of a multigraph is (i) equalized if the number of edges colored with
any two colors differs by at most one, (ii) balanced if for each pair of vertices, among the
edges joining the pair, the number of edges of each color differs by at most one from the
number of edges of each other color, and (iii) equitable if, among the edges incident with each
vertex, the number of edges of each color differs by at most one from the number of edges
of each other color. In [80, 81, 82, 83] de Werra studied balanced equitable edge-colorings of

bipartite graphs. The following lemma by de Werra is used to prove the main result in [5]:

Lemma 11.1. Every bipartite graph has a balanced, equitable and equalized k-edge-coloring

Vk e N.

11.2  Fair Detachments of Hypergraphs

A hypergraph G is a pair (V, E) where V is a finite set called the vertex set, F is the
edge multiset, where every edge is a multi-subset of V. A detachment of a hypergraph is
formed by splitting each vertex into one or more subvertices, and sharing the incident edges
arbitrarily among the subvertices. Let F be a hypergraph in which each edge is of size at
most 3. In [6], I proved that for a given edge-coloring of F, there exists a detachment G such
that the degree of each vertex and the multiplicity of each edge in F (and each color class

of F) are shared fairly among the subvertices in G (and each color class of G, respectively).

11.2.1 Laminar Families

A family A of sets is laminar if, for every pair A, B of sets belonging to A, either A ¢ B,
or Bc A, or An B = @. To extend our main result in [5] to hypergraphs [6], I used the

following lemma by Nash-Williams [70] (Here 2 ~ y means |y| < z < [y]):
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Lemma 11.2. If o/ | A are two laminar families of subsets of a finite set S, and n € N, then

there exist a subset A of S such that for every P e o/ U B, |An P|~ |P|/n.

In [8], I generalized the results in [6] to arbitrary hypergraphs. Here d(v) denotes the
degree of the vertex v, G(j) denotes the color class j of G, and m(uy", ..., u"") denotes the

multiplicity of an edge of the form
{ug, o Uy Uy U
—_——

Theorem 11.3. Let F be a k-edge-colored hypergraph and let g : V(F) — N. Then F
has a fair g-detachment G. That is, there exists a g-detachment G of F with amalgamation

function ¥ : V(G) — V(F) (Yve V(F), gv) = |[¥~1(v)|) such that:
(A1) dg(v) ~ dx(u)/g(u) for each ue V(F) and each v e ¥ (u);
(A2) dgjy(v) = dx)(u)/g(u) for each u e V(F), eachve ¥ (u) and 1 < j < k;

(A3) mg(Uy,...,U,) ~ mge(u™, ... u')/I_, (gfg:)) for distinct uq,...,u, € V(F) and

» r

U; « U (w;) with U] = m; < g(w;) for 1 <1 <r;

(A4) mg;(Ur, ..., Up) =~ mpgy(uf™, ... ul) /HI_, (gfsz)) for distinct uy, ..., u, € V(F) and

> T

Uy < U (w;) with U] =m; < g(w;) forl<i<randl<j<k.

Applications of this theorem are discussed in Sections 11.4 and 11.6.

11.3 Edge-Decompositions and Edge-Colorings

An (rq,...,rg)-factorization of a graph G is a partition (decomposition) {F7,..., Fi} of
E(G) in which F; is an r;-factor (r;-regular spanning) for i = 1,..., k. While the main result

in [5] is interesting by itself, it provides a short proof for the following well-known results

(see [9]):
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e MK, (Afold complete graph) is decomposable into Hamiltonian cycles iff A(n — 1) is

evell.

o \K, is (ry,...,rg)-factorizable iff r;n is even for 1 < i < k, and Zle ri = AMn—1).

Moreover, each r;-factor can be guaranteed to be connected if r; is even.

o \K, (A-fold complete multipartite graph) is Hamiltonian decomposable iff n; =

1y Mm

- =Ny, :=n, and An(m — 1) is even.

o \K,, ., is(r1,...,rg)-factorizable iff ny = --- = n,, := n, mnmis even for 1 <i <k,

m

and 3 7 = An(m —1).

Let m(u,v) denote the number of edges between u and v. Let K(ay, ..., ap; A, 1) be a graph
with p parts Vi,..., V), with |V;| = q; for 1 <7 < p, mg(u,v) = A for every pair of distinct
vertices u,v € V; for 1 < i < p, and mg(u,v) = p for each ue V;,v e V; for 1 <i < j <p.
This graph arises naturally in statistical settings [22]. In [5], we found necessary and sufficient
conditions for K(ay,...,a,; A, ) to be decomposable into Hamiltonian cycles.

The Oberwolfach problem asks whether or not it is possible to partition the edge set of
K,, n odd, into isomorphic 2-factors such that each 2-factor consists of a; cycles of length
rj, 1 <j<k andn = Z?Zl rja;. In [46] some new solutions to the Oberwolfach problem
are given using the amalgamation technique. I am planning to attack the following problem

using amalgamations for which I need to obtain a detachment result in which each color

class is evenly equitable:

Conjecture 11.4. (Alspach 1981) If n is odd, 3 < c1,...,¢n < m, and Y, ¢; = (g), then

K,, decomposes into cycles of lengths cq, ..., Cp.

11.4 Hypergraph Edge-Colorings and Baranyai’s Theorem

In a mathematics workshop with mn mathematicians in n different areas, each area

consisting of m mathematicians, we want to create a collaboration network. For this purpose,
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we would like to schedule daily meetings between groups of size three, so that (i) two persons
of the same area meet one person of another area, (ii) each person has exactly r meetings
each day, and (iii) every two persons of the same area have exactly A meetings with each
person of another area by the end of the workshop. Using hypergraph amalgamations, in
[7] I proved a general result regarding factorizations of a family of multipartite hypergraphs,
and as a corollary I showed that the above scheduling can be done if: 3 | rm, 2 | rnm and
r | 3A(n—1)(73).

Let ([Z]) denote the set of all h-subsets of [n] := {1,...,n}. Let K" = ([n], ([Z])) The
problem of finding 1-factorizations for K" remained an unsolved problem for 120 years until
it was settled by Baranyai (1975) [15]. Since then not much has been done in this area and
many problems remain open.

Here we discuss a different approach (amalgamations and detachments) to extend Baranyai’s
results and to answer various related questions. An immediate corollary of Theorem 11.3
is that the obvious necessary conditions for AK” to be (ry, ..., r;)-factorizable are also suf-

ficient. Let K;jl = (V, E) be a hypergraph with vertex partition {Vi,...,V,.}, |Vi| = p:

7"'7p7l
for1<i<n,and E={ecV:le]=h]enV;] <1forl<i<n}. Another consequence

of Theorem 11.3 is that the obvious necessary conditions for AK;}I to be (ry,...,rp)-

yee P

factorizable are also sufficient.

11.4.1 The Berge-Johnson Problem

For a matrix A, let A; denote the j column of A, and let s(A) denote the sum of all
the entries of A. Let RT = [ri]ixk, AT = [Ai]ixm and HT = [h;]1xm be three vectors with
ri,\i € N, and h; € {1,...,n} for 1 < i < m, such that h; ..., h,, are distinct.

Let AKgW _ be a hypergraph with vertex partition {Vi,...,V,}, |[Vi| = p; for 1 <i<n

'7p
such that there are \; edges of size h; incident with every h; vertices, at most one vertex
from each part for 1 < i < m (so no edge is incident with more than one vertex of a part).

Here is another interesting corollary of Theorem 11.3:
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Theorem 11.5. AKT is (ry1,...,r%)-factorizable iff py = -+ = p, = p, s(R) =

1.-,Pn

PIIPY (Z:ll)phi’l, and there ezists a non-negative integer matric A = [a;;]kxm such that

AH = npR, and s(A;) = \; (}Z)phﬂ' for1<j<m.

Baranyai [15, 16] solved the case of hy = -+ = hy,, Ay = ..., A =1, p1 =+ = pp,
ry = --- =1 Berge and Johnson [21], (and later Brouwer and Tijdeman [26], respectively)
considered (and solved, respectively) the case of h; =i, 1 < i< m, p; =+ =pp = A\ =
= Ay, =1 == = 1.

11.4.2 Baranyai-Katona Conjecture

Let m be the least common multiple of h and n, and let a = m/h. Define
A ={{1,....h},{h+1,....2h},....{(a—1)h+1,(a—1)h+2,...,ah}},

where the elements of the sets are considered mod n. The families obtained from ¢ by
permuting the elements of the underlying set [n]| are called wreaths. If h divides n, then
a wreath is just a partition. It was conjectured that K" can be decomposed into disjoint
wreaths [54]. In connection with this conjecture, I am currently working on the connectivity

of factors [12, 13].

11.4.3 Connected Factorizations
In [12], T solved the following problem which was suggested by Katona:

Theorem 11.6. AK" is (ry,...,r)-factorizable iff h | rn for 1 < i < k, and Zle r; =

)\(Zj) Moreover, for 1 < i < k an r;-factor is connected if r; = 2.

This can be considered as a connected version of Baranyai’s Theorem. In particular if
A=1,and h =ry =--- =r, = 2, this implies the classical result of Walecki that the edge
set of K, can be partitioned into Hamiltonian cycles iff n is odd. A related problem due to

Bermond (1978) asked for conditions under which one can decompose K" into Hamiltonian
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cycles. I am interested in the following more general problem that relates my work to the

results of Nash-Williams [68], and their extensions [18]:

Problem 5. Find necessary and sufficient conditions for an edge-colored hypergraph F to

have a fair detachment in which each color class is k-edge-connected.

So far [13], I have been able to solve this problem when all edges of F are of size at
most 3, and k = 2. This, in particular, implies another Baranyai-type theorem (h = 3) in

which each factor is 2-edge-connected.

11.4.4 Kneser Graphs and the Middle Levels Problem

The Kneser graph K (n, h) has as vertices the h-subsets of [n]. Two vertices are adjacent
if the corresponding h-subsets are disjoint. It is widely conjectured that all Kneser graphs
but the Petersen graph, K (5,2), have Hamiltonian cycles. Let n = 2h + 1. The bipartite
Kneser Graph H(n, h) has as its partite sets the h- and (n — h)-subsets of [n]. Two vertices
A and B from different partite sets are adjacent if the h-subset A is contained in the (n— h)-
subset B. It is conjectured that H(2h + 1,h) is Hamiltonian. Using Baranyai’s Theorem,
partial results to these two conjectures are given in [30, 32]. T am interested in working on

these two conjectures.

11.5 Extending Partial Decompositions and Graph Embedding Problems

In this section and the next section I describe the usefulness of amalgamations in solving
embedding problems. For example the main result in [5] provides a short proof for the
following theorems (see [9]): A k-edge-coloring of K, can be embedded into (i) a Hamiltonian
decomposition of K, (Hilton [44]), (ii) an (71, ..., r;)-factorization of K,,,(Johnson [51])
iff the obvious necessary conditions are satisfied. Embedding Hamiltonian cycles in complete
multipartite graphs is considered in [48] but the problem is still open and I am interested in
working on it. When a; = - -+ = a, := a, let K(a®;\, u) denote K(ay,...,ay; A, p). In [10],

we asked:
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Problem 6. When can a graph decomposition of K (a®; \, i) be extended to a Hamiltonian

decomposition of K(a®*); X\, ) forr > 07
We proved [10]:

Theorem 11.7. Let f : E — C be a k-edge coloring for K(a®; X\, n), and let w; denote
the number of components of color class j. For 1 < j < k, define s; = w; (mod r) with
1< s; <r, and suppose Z§:1 sj = kr — pa® (;) Then f can be embedded into a Hamiltonian

decomposition of K(a®*™); X, 1) iff the obvious necessary conditions are satisfied.

We used this general result to give a complete solution to Problem 6 for all r > ﬁ + 5%1.
We also solved the problem when r is as small as possible in two different senses, namely

when r = 1 and when r = ﬁ—p%—l [10].

11.6 Embedding Problems for Hypergraphs

Over 35 years ago, Cameron asked [29]: Under what conditions can partial 1-factorizations
of K" be extended to 1-factorizations? In [11] we considered a more general problem for

h = 3. We proved that

Theorem 11.8. Suppose that n > 2m + |(1 4+ +/8m2? — 16m — 7)/2|. Then an edge-coloring
of K3 can be embedded into an r-factorization of K3 iff the obvious necessary conditions are

satisfied.

One can assume that not only the hyperedges of size 3 are colored, but so are all the
hyperedges of “pieces” of hypergraphs (i.e. n and (g) copies of the hyperedges in K2 and
K | respectively) that are built up to size 3 when the new vertices are added. In this case

we solved the problem completely in [11]:

Theorem 11.9. An edge-coloring of K3 unK?2 U (g) K} can be extended to an r-factorization

of K3 iff the obvious necessary conditions are satisfied.
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Brouwer, Schrijver and Baranyai [17, 25] studied special cases of Cameron’s Problem
and conjectured that: A 1-factorization of K can be extended to a 1-factorization of K iff
h divides both m and n, and n > 2m. Héggkvist and Hellgren settled this conjecutre [40].
The more general question I am interested in working on is the conditions under which one

can extend an equitable edge-coloring of K" into a factorization of K" for n > m.

11.7 Matroids

I am also interested to study amalgamations and detachments for matroids. Finding
companion results for matroid will lead to interesting matroid decomposition and embedding

results.
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