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Abstract

A detachment of a graph H is a graph obtained from H by splitting some or all of its

vertices into more than one vertex. If g is a function from V pHq into N, then a g-detachment

of H is a detachment of H in which each vertex u of H splits into gpuq vertices. H is an

amalgamation of G if there exists a function φ called an amalgamation function from V pGq

onto V pHq and a bijection φ1 : EpGq Ñ EpHq such that e joining u and v is in EpGq iff φ1peq

joining φpuq and φpvq is in EpHq.

We prove that for a given edge-colored graph there exists a detachment so that the result

is a graph in which the edges are shared among the vertices in ways that are fair with respect

to several notions of balance (such as between pairs of vertices, degrees of vertices in both

the graph and in each color class, etc.). The connectivity of color classes is also addressed.

Most results in the literature on amalgamations focus on the detachments of amalgamated

complete graphs and complete multipartite graphs. Many such results follow as immediate

corollaries to the main result, which addresses amalgamations of graphs in general.

We exhibit some applications of this result in Hamiltonian decomposition of several

families of graphs, and also we show that many known graph decomposition results can be

obtained by a short proof using the main theorem. We study the companion embedding

problems with many applications.

We then extend various results by Hilton, Nash-Williams and Rodger to hypergraphs.

Such extensions provide a powerful tool to generalizes Baranyai’s Theorems, and related

results by Berge and Johnson.

We study several hypergraph embedding problems which will extend results of Brouwer,

Schrijver, Baranyai, Häggkvist and Hellgren.
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In connection with Baranyai-Katona conjecture, we provide necessary and sufficient

conditions for a complete uniform hypergraph to be connected factorizable, answering a

question by Katona.
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Chapter 1

What are graph amalgamations?

1.1 Introduction

Edouard Lucas (1842–1891), the inventor of the Towers of Hanoi problem, discussed

the probléme de ronde that asked the following [64]: Given 2n ` 1 people, is it possible to

arrange them around a single table on n successive nights so that nobody is seated next to

the same person on either side more than once? This problem is equivalent to a Hamiltonian

decomposition of K2n`1; that is partitioning the edge set of K2n`1 into spanning cycles. A

solution to this problem for n “ 3 is illustrated in Figure 1.1, which is due to Walecki. This

can be easily generalized to any complete graph by “rotating” an initial cycle.

v1

v2

v3

v4

v7

v6

v5

Figure 1.1: Walecki Construction

In 1984, Hilton [44] suggested a different approach to solving this problem, one of which

is useful for solving another family of problems as well. He first fused all the vertices of Kn
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(this is called amalgamation) which results in having
`

n

2

˘

loops incident with a vertex. Then

he shared the loops evenly between different color classes. (In this dissertation, the ith color

class of G is defined to be the spanning subgraph of G that contains precisely the edges

colored i.) Finally he reversed the fusion by splitting the single vertex into n vertices (this

is called detachment), so that each color class is a Hamiltonian cycle. This is illustrated in

Figure 1.2 for K7. It is not obvious how we can detach the loops so that each color class is a

v1

21 loops

v2

v3

v4

v5

v6

v7

v4

v1

v2

v6

v5

v3v7

amalgamation edge-coloring detachment

Figure 1.2: Hamiltonian decomposition of K7

Hamiltonian cycle. The second problem that Hilton solved was an embedding problem [44].

Given an edge-coloring of Km, in which each color class is a path, he used amalgamations to

extend this coloring to an edge-coloring of Km`n, so that each color class is a Hamiltonian

cycle in Km`n (so m ` n must be odd). The idea is to add a new vertex, say u to Km

incident with
`

n

2

˘

loops so that there are n edges between this vertex and every other vertex.

Let us call this graph K`
m. (In fact K`

m is an amalgamation of Km`n in which all further n

vertices are contracted in one point.) One can easily color all the edges incident with u so

that the valency of u for each color class is exactly 2n. Finally by detaching u into n vertices,

say u1, . . . , un and sharing the edges of each color class incident with u among u1, . . . , un

as evenly as possible and ensuring that each color class is connected, provides the desired

2



outcome: a Hamiltonian decomposition of Km`n. This is illustrated for m “ 5, n “ 2 in

Figure 1.3. To provide more explanation, first we give some definitions.

v5

v2

v1

v3

v4

v5

v2

v1

v4

v3

v

?

v5

v2

v1

v4

v3

v

v6

v7

v5

v1

v2

v3

v4

Figure 1.3: Embedding a path decomposition of K5 into a Hamiltonian decomposition of K7

Throughout this dissertation, all graphs are finite and undirected (possibly with loops

and multiple edges). The letters G andH denote graphs. Sets may contain repeated elements

(so are really multisets). Each edge is represented by a 2-element multisubset of the vertex

set; in particular tu, uu represents a loop on the vertex u. A k-edge-coloring of a graph G is

a mapping f : EpGq Ñ C, where C is a set of k colors (often we use C “ t1, . . . , ku). It is

often convenient to have empty color classes, so we do not require f to be surjective.

In this dissertation, x « y means tyu ď x ď rys, ℓpuq denotes the number of loops

incident with vertex u, dpuq denotes the degree of vertex u (loops are considered to contribute

two to the degree of the incident vertex), the subgraph of G induced by the edges colored

j is denoted by Gpjq, ωpGq is the number of components of G, the multiplicity of a pair

of vertices u, v of G, denoted by mpu, vq, is the number of edges joining u and v in G, Kn

denotes the complete graph with n vertices, and Km,...,m denotes the complete multipartite

graph each part having m vertices. If we replace every edge of G by λ multiple edges, then

we denote the new graph by λG.

Informally speaking, amalgamating a finite graph G can be thought of as taking G,

partitioning its vertices, then for each element of the partition squashing the vertices to

form a single vertex in the amalgamated graph H . Any edge incident with an original vertex

3



in G is then incident with the corresponding new vertex in H , and any edge joining two

vertices that are squashed together in G becomes a loop on the new vertex in H .

More precisely, H is an amalgamation of G if there exists a function φ called an amal-

gamation function from V pGq onto V pHq and a bijection φ1 : EpGq Ñ EpHq such that e

joining u and v is in EpGq if and only if φ1peq joining φpuq and φpvq is in EpHq; We write

φpGq “ H . In particular, this requires that e be a loop in H if and only if, in G, it either

is a loop or joins distinct vertices u, v, such that φpuq “ φpvq. (Note that φ1 is completely

determined by φ.) Associated with φ is the number function η : V pHq Ñ N defined by

ηpvq “ |φ´1pvq|, for each v P V pHq. We also shall say that G is a detachment of H in which

each vertex v of H splits (with respect to φ) into the vertices in φ´1ptvuq (see Figure 1.4).

HG

amalgamation

Figure 1.4: A graph G with one of its amalgamations H

A detachment of H is, intuitively speaking, a graph obtained from H by splitting some

or all of its vertices into more than one vertex (see Figure 1.5). If η is a function from V pHq

into N, then an η-detachment of H is a detachment of H in which each vertex u of H splits

into ηpuq vertices. In other words, G is an η-detachment of H if there exists an amalgamation

function φ of G onto H such that |φ´1ptuuq| “ ηpuq for every u P V pHq. Some authors refer

to detachments as disentanglements (see [58, 60, 61]).

Since two graphs G and H related in the above manner have an obvious bijection

between the edges, an edge-coloring of G or H , naturally induces an edge-coloring on the

4



G

u

w

v

H

Figure 1.5: A graph G with one of its detachments H

other graph. Hence an amalgamation of a graph with colored edges is a graph with colored

edges.

One of the most useful properties that one can obtain using the techniques described

here, is that many graph parameters (such as colors, degrees, multiple edges) can be simul-

taneously shared evenly during the detachment process. This is often the most desirable

property.

Theorem 1.1. (Bahmanian, Rodger [5, Theorem 3.1]) Let H be a k-edge-colored graph

and let η be a function from V pHq into N such that for each v P V pHq, ηpvq “ 1 implies

ℓHpvq “ 0. Then there exists a loopless η-detachment G of H in which each v P V pHq is

detached into v1, . . . , vηpvq, such that G satisfies the following conditions:

(A1) dGpuiq « dHpuq{ηpuq for each u P V pHq and 1 ď i ď ηpuq;

(A2) dGpjqpuiq « dHpjqpuq{ηpuq for each u P V pHq, 1 ď i ď ηpuq, and 1 ď j ď k;

(A3) mGpui, ui1q « ℓHpuq{
`

ηpuq
2

˘

for each u P V pHq with ηpuq ě 2 and 1 ď i ă i1 ď ηpuq;

5



(A4) mGpjqpui, ui1q « ℓHpjqpuq{
`

ηpuq
2

˘

for each u P V pHq with ηpuq ě 2, 1 ď i ă i1 ď ηpuq,

and 1 ď j ď k;

(A5) mGpui, vi1q « mHpu, vq{pηpuqηpvqq for every pair of distinct vertices u, v P V pHq, 1 ď

i ď ηpuq, and 1 ď i1 ď ηpvq;

(A6) mGpjqpui, vi1q « mHpjqpu, vq{pηpuqηpvqq for every pair of distinct vertices u, v P V pHq,

1 ď i ď ηpuq, 1 ď i1 ď ηpvq, and 1 ď j ď k;

(A7) If for some j, 1 ď j ď k, dHpjqpuq{ηpuq is even for each u P V pHq, then ωpGpjqq “

ωpHpjqq.

The proof uses edge-coloring techniques and will be given in the next chapter. An edge-

coloring of a multigraph is (i) equalized if the number of edges colored with any two colors

differs by at most one, (ii) balanced if for each pair of vertices, among the edges joining the

pair, the number of edges of each color differs by at most one from the number of edges of

each other color, and (iii) equitable if, among the edges incident with each vertex, the number

of edges of each color differs by at most one from the number of edges of each other color. In

[80, 81, 82, 83] de Werra studied balanced equitable edge-coloring of bipartite graphs. The

following result is used to prove Theorem 1.1.

Theorem 1.2. Every bipartite graph has a balanced, equitable and equalized k-edge-coloring

for each k P N.

Here we show that this result is simply a consequence of Nash-Williams lemma. A

family A of sets is laminar if, for every pair A,B of sets belonging to A , either A Ă B, or

B Ă A, or A X B “ ∅.

Lemma 1.3. (Nash-Williams [70, Lemma 2]) If A ,B are two laminar families of subsets

of a finite set S, and n P N, then there exist a subset A of S such that for every P P A Y B,

|AX P | « |P |{n.

6



Proof of Theorem 1.2. Let B be a bipartite graph with vertex bipartition tV1, V2u. For

i “ 1, 2 define the laminar set Li to consist of the following sets of subsets of edges of B:

(i) The edges between each pair of vertices v1 P V1 and v2 P V2, (ii) For each v P Vi, the

edges incident with v, (iii) All the edges in B. Applying Lemma 1.3 with n “ k provides

one color class. Remove these edges then reapply Lemma 1.3, with n “ k ´ 1 to get the

second class. Recursively proceeding in this way provides the k-edge-coloring of B. It is

straightforward to see that this produces the result by observing that the edges in subsets

defined in (i), (ii) and (iii) guarantee that the k-edge-coloring is balanced, equitable, and

equalized respectively.

1.2 Applications

In this section we demonstrate the power of Theorem 1.1. The results are not new, and

many follow from earlier, more restrictive versions of Theorem 1.1. But the point of this

section is to give the reader a feel for how amalgamations can be used.

Theorem 1.4. (Walecki [64]) λKn is Hamiltonian decomposable (with a 1-factor leave, re-

spectively) if and only if λpn´ 1q is even (odd, respectively).

Proof. The necessity is obvious. To prove the sufficiency, let H be a graph with V pHq “ tvu,

ℓpvq “ λ
`

n

2

˘

and ηpvq “ n , and let k “ tλpn ´ 1q{2u. Color the loops so that ℓHpjqpvq “ n,

for 1 ď j ď k (and ℓHpk`1qpvq “ n{2, if λpn ´ 1q is odd). Applying Theorem 1.1 completes

the proof.

The following result is essentially proved in [44], but the result is stated in less general

terms.

Theorem 1.5. (Hilton [44]) A k-edge-colored Km can be embedded into a Hamiltonian de-

composition of Km`n (with a 1-factor leave, respectively) if and only if pm ` n ´ 1q is even

(odd, respectively), k “ rpm` n´ 1q{2s, and each color class of Km (except one color class,

say k, respectively) is a collection of at most n disjoint paths, (color class k consists of paths

7



of length at most 1, at most n of which are of length 0, respectively), where isolated vertices

in each color class are to be counted as paths of length 0.

Proof. The necessity is obvious. To prove the sufficiency, let pi ď n be the number of paths

colored i, 1 ď i ď k. Form a graph H by adding a new vertex u to Km so that ℓpuq “
`

n

2

˘

,

mpu, vq “ n for each v P V pKmq, and ηpuq “ n. Color the new edges incident with vertices in

Km so that dHpjqpvq “ 2 for v P V pKmq, 1 ď j ď k (if m`n is even, do it so that dHpkqpvq “ 1

for v P V pKmq; so at most n such edges are incident with u by necessary conditions). Clearly,

each color appears on an even number of such edges (except possibly color k when m` n is

odd). Color the loops so that dHpjqpuq “ 2n for 1 ď j ď k (if m`n is even, then the coloring

must be so that dHpkqpuq “ n). This is possible since each color appears on p2n´ 2piq{2 ě 0

loops. Now applying Theorem 1.1 completes the proof.

A similar result can be obtained for embedding λKm into a Hamiltonian decomposition

of λKm`n. A more general problem is the following enclosing problem

Problem 1. Find necessary and sufficient conditions for enclosing an edge-colored λKm

into a Hamiltonian decomposition of µKm`n for λ ă µ.

An pr1, . . . , rkq-factorization of a graph G is a partition (decomposition) tF1, . . . , Fku of

EpGq in which Fi is an ri-factor for i “ 1, . . . , k. The following is a corollary of a strong

result of Johnson [51] in which each color class can have a specified edge-connectivity. A

special case of this is proved by Johnstone in [52].

Theorem 1.6. λKn is pr1, . . . , rkq-factorizable if and only if rin is even for 1 ď i ď k, and

řk
i“1 ri “ λpn´ 1q. Moreover, for 1 ď i ď k each ri-factor can be guaranteed to be connected

if ri is even.

Proof. The necessity is obvious. To prove the sufficiency, start from the graph H as in the

proof of Theorem 1.4, but color the loops so that ℓHpjqpvq “ nrj{2 for 1 ď j ď k. Then apply

Theorem 1.1.
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The following result was proved for the special case r1 “ . . . “ rk “ r in [3, 74].

Theorem 1.7. A k-edge-coloring of Km can be embedded into an pr1, . . .

, rkq-factorization of Km`n if and only if ripm`nq is even for 1 ď i ď k,
řk

i“1 ri “ m`n´1,

dKmpiqpvq ď rσpiq for each v P V pKmq, 1 ď i ď k, and some permutation σ P Sk, and

|EpKmpiqq| ě rσpiqpm´ nq{2.

Proof. The necessity is obvious. To prove the sufficiency, start from the graph H as in the

proof of Theorem 1.5. Color the new edges incident with vertices in Km so that dHpjqpvq “

rσpjq for v P V pKmq, 1 ď j ď k. Then color the loops incident with u so that dHpjqpuq “ rσpjqm

for 1 ď j ď k (the last necessary condition guarantees that the number of required loops is

non-negative), and apply Theorem 1.1.

Problem 2. Find necessary and sufficient conditions for enclosing an edge-colored λKn into

an pr1, . . . , rkq-factorization of µKm`n for λ ď µ.

The case λ “ µ can be obtained by altering the proof of Theorem 1.7 slightly.

Some of the above results can be easily generalized to complete multipartite graphs.

Theorem 1.8. (Laskar, Auerbach [57]) λKn1,...,nm
is Hamiltonian decomposable (with a 1-

factor leave, respectively) if and only if n1 “ ¨ ¨ ¨ “ nm :“ n, and λnpm ´ 1q is even (odd,

respectively).

Proof. The necessity is obvious. To prove the sufficiency, consider the graph H :“ λn2Km,

and η : V pHq Ñ N with ηpvq “ n for each v P V pHq. Using Theorem 1.6, find a connected

2n-factorization of H and apply Theorem 1.1.

Another very nice requirement that one can ask of a Hamiltonian decomposition of a

complete multipartite graph is that it be fair; that is, in each Hamiltonian cycle, the number

of edges between each pair of parts is within one of the number of edges between each other

pair of parts. This result can be proved by being more careful in the construction of the

edge-coloring of the graph H described in the proof of Theorem 2.5; ensure that for each
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color class the number of edges between each pair of vertices in H is within 1 of the number

of edges between each other pair of vertices (one could think of this color class as being

“equimultiple”). Leach and Rodger [59] used this approach to prove that

Theorem 1.9. Kn1,...,nm
is fair Hamiltonian decomposable if and only if n1 “ ¨ ¨ ¨ “ nm :“ n,

and npm ´ 1q is even.

Problem 3. Find necessary and sufficient conditions for enclosing a k-edge-colored λKn1,...,nm

into a (fair) Hamiltonian decomposition of µKn1
1
,...,n1

m1
for ni ď n1

i, 1 ď i ď m ď m1, and

λ ď µ.

Theorem 1.10. λKn1,...,nm
is pr1, . . . , rkq-factorizable if and only if n1 “ ¨ ¨ ¨ “ nm :“ n,

rinm is even for 1 ď i ď k, and
řk

i“1 ri “ λnpm ´ 1q.

Proof. The necessity is obvious. To prove the sufficiency, use Theorem 1.6 to find an

pnr1, . . . , nrkq-factorization of the graph H described in the proof of Theorem 1.8; then

apply Theorem 1.1.

Problem 4. Find necessary and sufficient conditions for enclosing a k-edge-colored λKn1,...,nm

into an pr1, . . . , rkq-factorization of µKn1
1
,...,n1

m1
for ni ď n1

i, 1 ď i ď m ď m1, and λ ď µ.

The Oberwolfach problem OP pra11 , . . . , rakk q asks whether or not it is possible to partition

the edge set of Kn, n odd, or Kn with a 1-factor removed when n is even, into isomorphic 2-

factors such that each 2-factor consists of aj cycles of length rj, 1 ď j ď k, and n “ řk

j“1 rjaj .

In [46] some new solutions to the Oberwolfach problem are given using the amalgamation

technique.
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Chapter 2

Multiply Balanced Edge Colorings of Multigraphs

2.1 Introduction

In this chapter, a theorem is proved that generalizes several existing amalgamation

results in various ways. The main aim is to disentangle a given edge-colored amalgamated

graph so that the result is a graph in which the edges are shared out among the vertices

in ways that are fair with respect to several notions of balance (such as between pairs of

vertices, degrees of vertices in the both graph and in each color class, etc). The connectivity

of color classes is also addressed. Most results in the literature on amalgamations focus

on the disentangling of amalgamated complete graphs and complete multipartite graphs.

Many such results follow as immediate corollaries to the main result in this chapter, which

addresses amalgamations of graphs in general, allowing for example the final graph to have

multiple edges. A new corollary (see Chapter 3) of the main theorem is the settling of the

existence of Hamilton decompositions of the family of graphs Kpa1, . . . , ap;λ, µq; such graphs

arose naturally in statistical settings.

A graph is said to be: (i) almost regular if there is an integer d such that every vertex

has degree d or d` 1, (ii) equimultiple if there is an integer d such that every pair of vertices

has multiplicity d or d ` 1, (iii) P -almost-regular (where P “ tP1, . . . , Pru is a partition of

V pGq) if for 1 ď i ď r, there is an integer di such that each vertex in Pi has degree di or

di ` 1.

The main goal of this chapter is to prove Theorem 2.1. Informally, it states that for

a given k-edge-colored graph H and a function η : V pHq Ñ N, there exists a loopless η-

detachment G of H with amalgamation function φ : V pGq Ñ V pHq, η being the number

function associated with φ, such that: (i) G and each of its color classes are P -almost-regular
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where P “ tφ´1pvq : v P V pHqu, (ii) the subgraph of G induced by φ´1pvq is equimultiple

for each v P V pHq, as are each of its color classes, (iii) the bipartite subgraph of G formed

by the edges joining vertices in φ´1puq to the vertices in φ´1pvq is equimultiple for every pair

of distinct u, v P V pHq, as are each of its color classes, and (iv) under certain conditions,

the subgraph induced by each color class can be guaranteed to have the same number of

components in G as in H . The conditions (ii) and (iii) can be used to force G to be

multigraphs of interest, such as λKn, λKm,...,m, or Kpa1, . . . , ap;λ, µq (for the definition of

Kpa1, . . . , ap;λ, µq, see Chapter 3). As in previous results, condition (iv) is especially useful

in the context of Hamiltonian decompositions, since it can be used to force connected color

classes in H to remain connected in G.

A Hamiltonian decomposition of a graph G is a partition of the edges of G into sets,

each of which induces a spanning cycle. Hamiltonian decompositions have been studied since

1892, when Walecki [64] proved the classic result that Kn is Hamiltonian decomposable if

and only if n is odd. In 1976 Laskar and Auerbach [57] settled the existence of Hamiltonian

decomposition of the complete multipartite graph Km,...,m and of Km,...,m ´ F where F is a

1-factor. Nash-Williams [67] conjectured that every 2k-regular graph with at most 4k ` 1

vertices has a Hamiltonian decomposition.

Several techniques have been used for finding Hamiltonian decompositions. The tech-

nique of vertex amalgamation, which was developed in the 1980s by Hilton and Rodger

[44, 48], has proved to be very powerful in constructing Hamiltonian decompositions of var-

ious classes of graphs, especially in obtaining embedding results; see also [47, 51, 70, 74].

Buchanan [28] used amalgamations to prove that for any 2-factor U of Kn, n odd, Kn´EpUq

admits a Hamiltonian decomposition. Rodger and Leach [58] solved the corresponding exis-

tence problem for complete bipartite graphs, and obtained a solution for complete multipar-

tite graphs when U has no small cycles [60]. See also [23, 66] for different approach to solve

this problem. Detachments of graphs have also been studied in [18, 49], generalizing some

results of Nash-Williams [68, 69].
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The main theorem of this chapter, Theorem 2.1, not only generalizes several well-known

graph amalgamation results, (for example, in [44, 48, 58, 61, 74], Theorem 1, Theorem 1,

Theorem 3.1, Theorem 2.1 and Theorem 2.1 respectively all follow as immediate corol-

laries)), but also provides the right tool to find necessary and sufficient conditions for

Kpa1, . . . , ap;λ, µq to be Hamiltonian decomposable, as shown in Theorem 3.4. The lat-

ter graph, Kpa1, . . . , ap;λ, µq, is of particular interest to statisticians, who consider group

divisible designs with two associate classes, beginning over 50 years ago with the work of

Bose and Shimamoto [22]. Recently, partitions of the edges of Kpa1, . . . , ap;λ, µq into sets,

each of which induces a cycle of length m, have been extensively studied for small values ofm

[37, 38, 39]. Theorem 3.4 provides a companion to this work, settling the problem completely

for longest (i.e. Hamiltonian) cycles with a really neat proof. When a1 “ . . . “ ap “ a, we

denote Kpa1, . . . , ap;λ, µq by Kpappq;λ, µq. Using Theorem 2.1, in Chapter 4 we will provide

conditions under which one can embed an edge-colored Kpappq;λ, µq into an edge-colored

Kpapp`rq;λ, µq such that every color class of Kpapp`rq;λ, µq induces a Hamiltonian cycle.

However obtaining such results will be much more complicated than for companion results

for simple graphs, with a complete solution unlikely to be found in the near future.

We describe terminology and notation in Section 2.2. Then we prove the main result in

Section 2.3.

2.2 Terminology and More Definitions

In this thesis, R denotes the set of real numbers, N denotes the set of positive integers,

and Zk denotes the set of integers t1, . . . , ku. If f is a function from a set X into a set

Y and y P Y , then f´1pyq denotes the set tx P X : fpxq “ yu, and f´1rys denotes tx P

X : fpxq “ yuztyu. If x, y are real numbers, then txu and rxs denote the integers such that

x ´ 1 ă txu ď x ď rxs ă x ` 1, and x « y means tyu ď x ď rys. We observe that for

x, y, z, x1, . . . xn P R, a, b, c P Z, and n P N: (i) a « x implies a P ttxu, rxsu, (ii) x « y implies

x{n « y{n (iii) the relation « is transitive (but not symmetric), (iv) xi « x for 1 ď i ď n
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implies přn

i“1 xiq{n « x, (v) x « y and y ă a implies x ď a, and (vi) a “ b ´ c and c « x,

implies a « b ´ x. These properties of « will be used in Section 2.3 when required without

further explanation.

If G is a k-edge-colored graph, and if u, v P V pGq and A,B Ă V pGq with AXB “ ∅, then

mpA,Bq denotes the total number of edges joining vertices in A to vertices in B. We refer

to mpA,Bq as the multiplicity of pair A,B, naturally generalizing the multiplicity mpu, vq of

a pair of vertices u, v as used in [19]. In particular by mpu,Aq we mean mptuu, Aq. If G1, G2

are subgraphs of G with V pG1q “ A and V pG2q “ B, then we let mpG1, G2q denote mpA,Bq,

and mpu,G1q denote mptuu, Aq. The neighborhood of vertex v, written Npvq, denotes the

set of all vertices adjacent to v (not including v).

2.3 Main Theorem

The main theorem below describes some strong properties that can be guaranteed to be

satisfied by some detachment G of a given edge-colored graph H . Condition (A1) addresses

the issue of P -almost-regularity (where P is a partition of V pGq), while conditions (A3) and

(A5) address the equimultiplicity issue inG. Conditions (A1), (A3) and (A5) have companion

conditions (A2), (A4) and (A6), respectively, that restricts the graphs considered to the color

classes of G. Condition (A7) addresses the connectivity issue of each color class of G.

Theorem 2.1. (Bahmanian, Rodger [5, Theorem 3.1]) Let H be a k-edge-colored graph and

let η be a function from V pHq into N such that for each w P V pHq, ηpwq “ 1 implies

ℓHpwq “ 0. Then there exists a loopless η-detachment G of H with amalgamation function

ψ : V pGq Ñ V pHq, η being the number function associated with ψ, such that G satisfies the

following conditions:

(A1) dGpuq « dHpwq{ηpwq for each w P V pHq and each u P ψ´1pwq;

(A2) dGpjqpuq « dHpjqpwq{ηpwq for each w P V pHq, each u P ψ´1pwq and each j P Zk;
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(A3) mGpu, u1q « ℓHpwq{
`

ηpwq
2

˘

for each w P V pHq with ηpwq ě 2 and every pair of distinct

vertices u, u1 P ψ´1pwq;

(A4) mGpjqpu, u1q « ℓHpjqpwq{
`

ηpwq
2

˘

for each w P V pHq with ηpwq ě 2, every pair of distinct

vertices u, u1 P ψ´1pwq and each j P Zk;

(A5) mGpu, vq « mHpw, zq{pηpwqηpzqq for every pair of distinct vertices w, z P V pHq, each

u P ψ´1pwq and each v P ψ´1pzq;

(A6) mGpjqpu, vq « mHpjqpw, zq{pηpwqηpzqq for every pair of distinct vertices w, z P V pHq,

each u P ψ´1pwq, each v P ψ´1pzq and each j P Zk;

(A7) If for some j P Zk, dHpjqpwq{ηpwq is an even integer for each w P V pHq, then ωpGpjqq “

ωpHpjqq.

Remark 2.2. All existing results in [44, 48, 58, 61, 74] study amalgamations for complete

graphs or complete multipartite graphs. In these papers, Theorem 1, Theorem 1, Theorem

3.1, Theorem 2.1, and Theorem 2.1 respectively are all immediate corollaries of Theorem

2.3. Other results in the literature may have another focus, most notably in [51, 70, 74]

where the edge-connectivity of each color class is specified; such results are not generalized

by Theorem 2.3.

Proof. Let H “ pV,Eq and let n “ ř

vPV

pηpvq ´ 1q. Our proof consists of the following major

parts. First we shall describe the construction of a sequence of graphs H0 “ H,H1, . . . , Hn,

where Hi is an amalgamation of Hi`1 (so Hi`1 is a detachment of Hi) for 0 ď i ď n ´ 1

with amalgamation function ψi that combines a vertex with amalgamation number 1 with

one other vertex. To construct each Hi`1 from Hi we will use two bipartite graphs Bi, B
1
i.

Then we will observe some properties of B1
i. We will show that these properties will impose

conditions on Hi`1 in terms of Hi. The relations between Hi`1 and Hi lead to conditions

relating each Hi, 1 ď i ď n to the initial graph H . This will then show that Hn satisfies the

conditions (A1)-(A7), so we can let G “ Hn.
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Initially we let H0 “ H, η0 “ η, and we let ψ0 be the identity function from V into V .

Now assume that H0 “ pV0, E0q, . . . , Hi “ pVi, Eiq and ψ0, . . . , ψi have been defined for some

i ě 0. Also assume that η0 : V0 Ñ N, . . . , ηi : Vi Ñ N have been defined for some i ě 0 such

that for each j “ 0, . . . , i and each y P Vj , ηjpyq “ 1 implies ℓHj
pyq “ 0. Let ϕi “ ψ0 . . . ψi.

If i “ n, we terminate the construction, letting G “ Hn and ψ “ ϕn. Otherwise, we can

select a vertex y of Hi such that ηipyq ě 2. Hi`1 is formed from Hi by detaching a vertex

vi`1 with amalgamation number 1 from y.

To decide which edge (and loop) to detach from y and to move to vi`1, we construct

two sequences of bipartite graphs B0, . . . , Bn´1 and B1
0, . . . , B

1
n´1 together with a sequence

F0, F1, . . . , Fn´1 of sets of edges (possibly including loops) with Fi Ă EpB1
iq for i “ 0, . . . , n´

1; each edge in Fi corresponds to an edge in Hi which will have one end detached from y

and joined to vi`1 when forming Hi`1.

Let ci1, . . . , cik and Li be distinct vertices which do not belong to Vi. Let Bi be a

bipartite graph whose vertex bipartition is tQi,Wiu, where

Qi “ tci1, . . . , ciku and Wi “ NHi
pyq Y tLiu,

and whose edge set is

EpBiq “
´

ď

ty,uuPEpHipjqq
y‰u

ttcij , uuu
¯

ď

´

ď

ty,yuPEpHipjqq

ttcij ,Liu, tcij ,Liuu
¯

.

Intuitively speaking, for each color j P Zk and each vertex u P WiztLiu an edge is placed

between cij and u in Bi for each edge in Hipjq joining y to u. Moreover, two edges are placed

between cij and Li in Bi for each loop incident with y in Hipjq. This is shown in Figure 2.1.
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Figure 2.1: Construction of Bi from Hi

For Bi we have

dBi
pvq “

$

’

’

’

’

&

’

’

’

’

%

dHipjqpyq if v “ cij for some j P Zk

2ℓHi
pyq if v “ Li

mHi
py, vq otherwise.

(2.1)

By Theorem 1.2 we can give Bi an equalized, equitable and balanced ηipyq-edge-coloring

Ki. Since Ki is equitable, for each 1 ď r ď ηipyq, we have

dBiprqpvq «

$

’

’

’

’

&

’

’

’

’

%

dHipjqpyq{ηipyq if v “ cij for some j P Zk

2ℓHi
pyq{ηipyq if v “ Li

mHi
py, vq{ηipyq otherwise.

(2.2)

Now let Ti be formed by a subgraph of Bi induced by the edges colored 1 and 2. Since

ηipyq ě 2, this is always possible. For each color j P Zk for which

for all v P Vi, dHi
pjqpvq{ηipvq is an even integer, (2.3)
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define αij “ dHipjqpyq{ηipyq. By (2.2) for each color class r of Ki, dBiprqpcijq « dHipjqpyq{ηipyq.

Therefore since two color classes of Ki are chosen to form Ti, if (2.3) is satisfied, then

dTi
pcijq “ 2dHipjqpyq{ηipyq “ 2αij.

Let B1
i be the bipartite graph whose vertex bipartition is tQ1

i,Wiu, obtained by splitting

all the vertices cij in Ti for each j P Zk for which condition (2.3) holds, into αij vertices

ci,j,1, . . . , ci,j,αij
all of degree 2 as described in (M1)-(M2) below. (We don’t split vertices cij

in Ti for j P Zk for which condition (2.3) does not hold; but they and their incident edges

remain in B1
i.)

(M1) First, as many of ci,j,t’s 1 ď t ď αij as possible are joined by 2 edges to the same vertex

in Wi;

(M2) Then, among all ci,j,t’s 1 ď t ď αij with valency less than 2, as many of them as

possible are incident with two edges that correspond to edges in Hipjq that join y to

vertices that are both in the same component of Hipjqztyu.

For each j P Zk that satisfies condition (2.3), we let Cij “
αij
Ť

t“1

tci,j,tu. Otherwise, we let

Cij “ tciju. By Theorem 1.2, we can give B1
i an equalized, equitable and balanced 2-edge-

coloring K1
i. This gives us two color classes either of which can be chosen to be Fi, say the

edges colored 1 are chosen. Since K1
i is equitable, we have

dB1
ip1qpvq «

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dHipjqpyq{ηipyq if v “ cij for j P Zk for which (2.3) does not hold

1 if v P Cij for j P Zk for which (2.3) holds

2ℓHi
pyq{ηipyq if v “ Li

mHi
py, vq{ηipyq otherwise.

(2.4)

Now we let

Aij “
´

ď

tc,vuPFi

cPCij

ty, vu
¯

ď

´

ď

tc,LiuPFi

cPCij

ty, yu
¯
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and

Bij “
´

ď

tc,vuPFi

cPCij

tvi`1, vu
¯

ď

´

ď

tc,LiuPFi

cPCij

tvi`1, yu
¯

,

where vi`1 is a vertex which does not belong to Vi. Let Vi`1 “ Vi Y tvi`1u, and let ψi`1 be

a function from Vi`1 onto Vi such that

ψi`1pvq “

$

’

&

’

%

y if v “ vi`1

v otherwise.

Let Hi`1 “ pVi`1, Ei`1q be the ψi`1-detachment of Hi such that for each j P Zk

EpHi`1pjqq “ pEpHipjqqzAijq Y Bij,

and Ei`1 “ Ťk

j“1EpHi`1pjqq.

Intuitively speaking, Hi`1 is formed as follows. Each edge tc, vu P Fi with c P Cij and

v P WiztLiu directly corresponds to an edge ty, vu in Hipjq; replace ty, vu with the edge

tv, vi`1u colored j in Hi`1. So in forming Hi`1pjq from Hipjq the end of this edge is detached

from v and joined to the new vertex vi`1 instead. Moreover, we remove mB1
ip1qpCij ,Liq loops

colored j incident with y in Hi and we replace them with mB1
i
p1qpCij ,Liq edges colored j

joining y to vi`1 in Hi`1. Note that since K1
i is balanced, ηipyq ě 2 and rdB1

i
pLiq{2s ď

rdBi
pLiq{2s “ ℓHi

pyq, at most half of the edges in B1
i incident with Li are colored 1, so there

are indeed mB1
ip1qpCij ,Liq loops incident with y in Hi (recall that each loop in Hi corresponds

to two edges in B1
i).
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Obviously, ψi`1 is an amalgamation function from Hi`1 into Hi. Let ηi`1 be the function

from Vi`1 into N such that

ηi`1pvq “

$

’

’

’

’

&

’

’

’

’

%

1 if v “ vi`1

ηipvq ´ 1 if v “ y

ηipvq otherwise.

We now check that B1
i, described above, satisfies the following conditions for each color

j P Zk :

(P1) mB1
ip1qpCij ,Liq « 2ℓHipjqpyq{ηipyq;

(P2) mB1
ip1qpCij , vq « mHipjqpy, vq{ηipyq for each v P WiztLiu;

(P3) mB1
ip1qpQ1

i,Wiq « dHi
pyq{ηipyq;

(P4) mB1
ip1qpCij ,Wiq « dHipjqpyq{ηipyq.

In order to prove (P1) and (P2) first we show that

mB1
ip1qpCij , vq «

mB1
i
pCij , vq
2

for each v P W 1
i .

There are two cases:

• Case 1: Cij “ tciju. Since K1
i is balanced,

mB1
ip1qpCij , vq “ mB1

ip1qpcij , vq «
mB1

i
pcij , vq
2

“
mB1

i
pCij , vq
2

.

• Case 2: Cij “
αij
Ť

t“1

tci,j,tu. By (M1), among all vertices in Cij , there are exactly

tmB1
i
pCij , vq{2u vertices of degree 2 which are joined to v (at most one vertex in Cij

is joined to v by one edge). Since K1
i is balanced(or equitable), among these vertices
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of degree 2, exactly one of them is joined to v by an edge colored 1. Therefore

mB1
i
p1qpCij , vq “

αij
ÿ

t“1

mB1
i
p1qpci,j,t, vq «

mB1
i
pCij , vq
2

.

Clearly mB1
i
pCij , vq “ mTi

pcij , vq “ mBip1qpcij , vq`mBip2qpcij , vq. If v “ Li, from the definition

of Bi it follows that mBi
pcij,Liq “ 2ℓHipjqpyq. Since Ki is balanced, for each 1 ď r ď ηipyq

we have mBiprqpcij ,Liq « 2ℓHipjqpyq{ηipyq. Therefore

mB1
ip1qpCij ,Liq «

mB1
i
pCij ,Liq
2

“ mTi
pcij ,Liq
2

« 2ℓHipjqpyq
ηipyq .

This proves (P1).

Now let v P WiztLiu. From the definition of Bi it follows that mBi
pcij , vq “ mHipjqpy, vq.

Since Ki is balanced, for each 1 ď r ď ηipyq we have mBiprqpcij, vq « mHipjqpy, vq{ηipyq.

Therefore

mB1
ip1qpCij , vq «

mB1
i
pCij , vq
2

“ mTi
pcij , vq
2

« mHipjqpy, vq
ηipyq .

This proves (P2).

SinceK1
i is equalized, mB1

i
p1qpQ1

i,Wiq “ |EpB1
ip1qq| « mB1

i
pQ1

i,Wiq{2. ClearlymB1
i
pQ1

i,Wiq “

|EpB1
iq| “ mTi

pQi,Wiq “ mBip1qpQi,Wiq`mBip2qpQi,Wiq. From the definition of Bi it follows

that mBi
pQi,Wiq “ |EpBiq| “ dHi

pyq. Since Ki is equalized, for each 1 ď r ď ηipyq we have

mBiprqpQi,Wiq “ |EpBiprqq| « dHi
pyq{ηipyq. Therefore

mB1
ip1qpQ1

i,Wiq «
mB1

i
pQ1

i,Wiq
2

“ mTi
pQi,Wiq
2

« dHi
pyq

ηipyq .

This proves (P3).

In order to prove (P4), there are two cases:
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• Case 1: Cij “ tciju. From (2.4) it follows that

mB1
i
p1qpCij ,Wiq “ mB1

i
p1qpcij ,Wiq “ dB1

i
p1qpcijq « dHipjqpyq

ηipyq .

• Case 2: Cij “
αij
Ť

t“1

tci,j,tu. In this case mB1
ip1qpCij ,Wiq “

αij
ř

t“1

mB1
ip1qpci,j,t,Wiq. From (2.4)

it follows that

mB1
ip1qpCij ,Wiq “

αij
ÿ

t“1

1 “ αij “ dHipjqpyq
ηipyq .

This proves (P4).

Most of the conditions that Hi`1 must satisfy, are numerical, and we consider them

first. The reader who is more interested in the connectivity issue, namely property (A7),

may wish to jump to the consideration of conditions (D1)-(D2) on the last three pages of

this section.

Using (2.4) and (P1)-(P4), now we show that Hi`1, described above, satisfies the fol-

lowing conditions:

(B1) ℓHi`1
pyq « ℓHi

pyqpηi`1pyq ´ 1q{ηipyq;

(B2) ℓHi`1pjqpyq « ℓHipjqpyqpηi`1pyq ´ 1q{ηipyq for each j P Zk;

(B3) (i) dHi`1
pyq{ηi`1pyq « dHi

pyq{ηipyq,

(ii) dHi`1
pvi`1q « dHi

pyq{ηipyq;

(B4) For each j P Zk

(i) dHi`1pjqpyq{ηi`1pyq « dHipjqpyq{ηipyq,

(ii) dHi`1pjqpvi`1q « dHipjqpyq{ηipyq;

(B5) For each v P NHi
pyq

(i) mHi`1
py, vq{ηi`1pyq « mHi

py, vq{ηipyq,

22



(ii) mHi`1
pvi`1, vq « mHi

py, vq{ηipyq,

(iii) mHi`1
py, vi`1q{ηi`1pyq « ℓHi

pyq{
`

ηipyq
2

˘

;

(B6) For each v P NHi
pyq, and each j P Zk

(i) mHi`1pjqpy, vq{ηi`1pyq « mHi
pjqpy, vq{ηipyq,

(ii) mHi`1pjqpvi`1, vq « mHipjq
py, vq{ηipyq,

(iii) mHi`1pjqpy, vi`1q{ηi`1pyq « ℓHipjqpyq{
`

ηipyq
2

˘

.

Note that ηi`1pyq “ ηipyq ´ 1. Let us fix v P NHi
pyq, and j P Zk.

From the construction of Hi`1, we have ℓHi`1
pyq “ ℓHi

pyq ´ dB1
ip1qpLiq. By (2.4),

dB1
ip1qpLiq « 2ℓHi

pyq{ηipyq. Hence

ℓHi`1
pyq « ℓHi

pyq ´ 2ℓHi
pyq

ηipyq “ ℓHi
pyqpηipyq ´ 2q
ηipyq “ ℓHi

pyqpηi`1pyq ´ 1q
ηipyq .

This completes the proof of (B1).

Clearly, ℓHi`1pjqpyq “ ℓHipjqpyq´mB1
ip1qpCij ,Liq. By (P1),mB1

ip1qpCij ,Liq « 2ℓHipjqpyq{ηipyq.

Hence

ℓHi`1pjqpyq « ℓHipjqpyq ´ 2ℓHipjqpyq
ηipyq “ ℓHipjqpyqpηipyq ´ 2q

ηipyq “ ℓHipjqpyqpηi`1pyq ´ 1q
ηipyq .

This completes the proof of (B2).

Construction of Hi`1 follows that, dHi`1
pyq “ dHi

pyq´mB1
ip1qpQ1

i,Wiq, and dHi`1
pvi`1q “

mB1
ip1qpQ1

i,Wiq. By (P3), mB1
ip1qpQ1

i,Wiq « dHi
pyq{ηipyq. Hence

dHi`1
pyq « dHi

pyq ´ dHi
pyq

ηipyq “ dHi
pyqpηipyq ´ 1q
ηipyq “ dHi

pyqηi`1pyq
ηipyq ,

and dHi`1
pvi`1q « dHi

pyq{ηipyq. This completes the proof of (B3).
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From the construction of Hi`1, we have that dHi`1pjqpyq “ dHipjqpyq ´ mB1
ip1qpCij ,Wiq,

and dHi`1pjqpvi`1q “ mB1
ip1qpCij ,Wiq. By (P4), mB1

ip1qpCij ,Wiq « dHipjqpyq{ηipyq. Hence

dHi`1pjqpyq « dHipjqpyq ´ dHipjqpyq
ηipyq “ dHipjqpyqpηipyq ´ 1q

ηipyq “ dHipjqpyqηi`1pyq
ηipyq ,

and dHi`1pjqpvi`1q « dHipjqpyq{ηipyq. This completes the proof of (B4).

It is easy to see that, mHi`1
py, vq “ mHi

py, vq ´ mB1
ip1qpQ1

i, vq “ mHi
py, vq ´ dB1

ip1qpvq,

and mHi`1
pvi`1, vq “ dB1

ip1qpvq. By (2.4), dB1
ip1qpvq « mHi

py, vq{ηipyq. Hence

mHi`1
py, vq « mHi

py, vq ´ mHi
py, vq

ηipyq “ mHi
py, vqpηipyq ´ 1q

ηipyq “ mHi
py, vqηi`1pyq
ηipyq ,

andmHi`1
pvi`1, vq « mHi

py, vq{ηipyq. Moreover, mHi`1
py, vi`1q “ mB1

ip1qpQ1
i,Liq “ dB1

ip1qpLiq.

By (2.4), dB1
ip1qpLiq « 2ℓHi

pyq{ηipyq. Therefore mHi`1
py, vi`1q « 2ℓHi

pyq{ηipyq. Hence

mHi`1
py, vi`1q

ηi`1pyq « 2ℓHi
pyq

ηipyqηi`1pyq “ ℓHi
pyq

`

ηipyq
2

˘ .

This completes the proof of (B5).

Finally, from the construction of Hi`1, mHi`1pjqpy, vq “ mHipjqpy, vq ´mB1
i
p1qpCij , vq, and

mHi`1pjqpvi`1, vq “ mB1
ip1qpCij , vq. By (P2), mB1

ip1qpCij , vq « mHipjqpy, vq{ηipyq. Hence

mHi`1
py, vq « mHipjqpy, vq ´ mHipjqpy, vq

ηipyq “ mHipjqpy, vqpηipyq ´ 1q
ηipyq “ mHipjqpy, vqηi`1pyq

ηipyq ,

and mHi`1pjqpvi`1, vq « mHipjqpy, vq{ηipyq. Moreover, mHi`1pjqpy, vi`1q “ mB1
ip1qpCij ,Liq. By

(P1), mB1
ip1qpCij ,Liq « 2ℓHipjqpyq{ηipyq. Therefore mHi`1pjqpy, vi`1q « 2ℓHipjqpyq{ηipyq. Hence
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mHi`1pjqpy, vi`1q
ηi`1pyq « 2ℓHipjqpyq

ηipyqηi`1pyq “ ℓHipjqpyq
`

ηipyq
2

˘ .

This completes the proof of (B6).

Recall that ϕi “ ψ0 . . . ψi, that ψ0 : V Ñ V , and that ψi : Vi Ñ Vi´1 for i ą 0. Therefore

ϕi : Vi Ñ V and thus ϕ´1
i : V Ñ Vi. Now we use (B1)-(B6) to prove that for 0 ď i ď n, Hi

satisfies the following conditions:

(C1) (i) ℓHi
pwq{

`

ηipwq
2

˘

« ℓHpwq{
`

ηpwq
2

˘

for each w P V with ηpwq ě 2, ηipwq ě 2,

(ii) ℓHi
pwq “ ℓHi

pvrq “ 0 for each w P V with ηipwq “ 1 and each 1 ď r ď i;

(C2) ℓHipjqpwq{
`

ηipwq
2

˘

« ℓHpjqpwq{
`

ηpwq
2

˘

for each w P V with ηpwq ě 2, ηipwq ě 2 and each

j P Zk;

(C3) For each w P V

(i) dHi
pwq{ηipwq « dHpwq{ηpwq,

(ii) dHi
pvrq « dHpwq{ηpwq for each vr P ϕ´1

i rws;

(C4) For each w P V and each j P Zk

(i) dHipjqpwq{ηipwq « dHpjqpwq{ηpwq,

(ii) dHipjqpvrq « dHpjqpwq{ηpwq for each vr P ϕ´1
i rws;

(C5) For each w P V

(i) mHi
pw, vrq{ηipwq « ℓHpwq{

`

ηpwq
2

˘

for each vr P ϕ´1
i rws,

(ii) mHi
pvr, vsq « ℓHpwq{

`

ηpwq
2

˘

for every pair of distinct vertices vr, vs P ϕ´1
i rws;

(C6) For each w P V , and each j P Zk

(i) mHipjqpw, vrq{ηipwq « ℓHpjqpwq{
`

ηpwq
2

˘

for each vr P ϕ´1
i rws,
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(ii) mHipjqpvr, vsq « ℓHpjqpwq{
`

ηpwq
2

˘

for every pair of distinct vertices vr, vs P ϕ´1
i rws;

(C7) For every pair of distinct vertices w, z P V

(i) mHi
pw, zq{pηipwqηipzqq « mHpw, zq{pηpwqηpzqq,

(ii) mHi
pvr, vsq « mHpw, zq{pηpwqηpzqq for each vr P ϕ´1

i rws and each vs P ϕ´1
i rzs,

(iii) mHi
pw, vsq{ηipwq « mHpw, zq{pηpwqηpzqq for each vs P ϕ´1

i rzs;

(C8) For every pair of distinct vertices w, z P V , and each j P Zk

(i) mHipjqpw, zq{pηipwqηipzqq « mHpjqpw, zq{pηpwqηpzqq,

(ii) mHipjqpvr, vsq « mHpjqpw, zq{pηpwqηpzqq for each vr P ϕ´1
i rws and each vs P ϕ´1

i rzs,

(iii) mHipjqpw, vsq{ηipwq « mHpjqpw, zq{pηpwqηpzqq for each vs P ϕ´1
i rzs.

Let w, z be an arbitrary pair of distinct vertices of V , and let j P Zk. We prove (C1)-(C8) by

induction. Let us first verify (C1)-(C8) for i “ 0. Recall that H0 “ H , and η0pwq “ ηpwq.

If ηpwq ě 2, obviously ℓH0
pwq{

`

η0pwq
2

˘

“ ℓHpwq{
`

ηpwq
2

˘

. If ηpwq “ 1, by hypothesis of

Theorem 2.1, ℓHpwq “ 0. This proves (C1) for i “ 0. (C2) can be proved in a similar way.

Obviously dH0
pwq{η0pwq “ dHpwq{ηpwq and (C3)(ii) is obvious, so this proves (C3) for i “ 0.

The proof for (C4) is similar and (C5)-(C8) are sufficiently obvious.

Now we will show that if Hi satisfies the conditions (C1) - (C8) for some i ă n, then

Hi`1 (formed from Hi by detaching vi`1 from the vertex y) satisfies these conditions by

replacing i with i ` 1; we denote the corresponding conditions for Hi`1 by (C1)1-(C8)1. If

ηi`1pwq “ ηipwq, then (C1)1-(C6)1 are obviously true. So we just check (C1)1-(C6)1 in the

case where w “ y. Also if ηi`1pwq “ ηipwq and ηi`1pzq “ ηipzq, then (C7)1-(C8)1 are clearly

true. So in order to prove (C7)1 - (C8)1 we shall assume that either ηi`1pwq “ ηipwq ´ 1

or ηi`1pzq “ ηipzq ´ 1. (so y P tw, zu; the asymmetry in condition (iii) of (C7)1 and (C8)1

prevents us from assuming that w “ y.)

(C1)1 If ηi`1pyq ě 2, by (B1) ℓHi`1
pyq « ℓHi

pyqpηi`1pyq´1q{ηipyq, and by (C1)(i) of the induc-

tion hypothesis, ℓHi
pyq{

`

ηipyq
2

˘

« ℓHpyq{
`

ηpyq
2

˘

. Also note that
`

ηipyq
2

˘

“ ηipyqpηipyq´1q{2.
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Therefore

ℓHi`1
pyq

`

ηi`1pyq
2

˘ « ℓHi
pyqpηi`1pyq ´ 1q
`

ηi`1pyq
2

˘

ηipyq
“ ℓHi

pyq
`

ηipyq
2

˘ « ℓHpyq
`

ηpyq
2

˘ .

This proves (C1)1(i).

Clearly ℓHi`1
pvi`1q “ 0 and ℓHi`1

pvrq “ ℓHi
pvrq “ 0 for each 1 ď r ď i. Therefore

ℓHi`1
pvrq “ 0 for each 1 ď r ď i ` 1. Also if ηi`1pyq “ 1, by (B1) ℓHi`1

pyq “ 0. This

proves (C1)1(ii).

(C2)1 The proof is similar to the proof of (C1)1(i), following from (B2) and (C2) of the

induction hypothesis.

(C3)1 By (B3)(i), dHi`1
pyq{ηi`1pyq « dHi

pyq{ηipyq, and by (C3)(i) of the induction hypothesis,

dHi
pyq{ηipyq « dHpyq{ηpyq. Therefore

dHi`1
pyq

ηi`1pyq « dHpyq
ηpyq .

This proves (C3)1(i).

By (B3)(ii), dHi`1
pvi`1q « dHi

pyq{ηipyq, and by (C3)(ii) of the induction hypothesis,

dHi
pvrq « dHpyq{ηpyq for each vr P ϕ´1

i rys. Since in forming Hi`1 no edge is detached

from vr for each vr P ϕ´1
i rys, we have dHi`1

pvrq “ dHi
pvrq. Therefore dHi`1

pvrq «

dHpyq{ηpyq for each vr P ϕ´1
i`1rys. This proves (C3)1(ii).

(C4)1 The proof is similar to the proof of (C3)1, following from (B4) and (C4) of the induction

hypothesis.
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(C5)1 By (B5)(i), mHi`1
py, vrq{ηi`1pyq « mHi

py, vrq{ηipyq for each vr P ϕ´1
i rys. By (C5)(i) of

the induction hypothesis, mHi
py, vrq{ηipyq « ℓHpyq{

`

ηpyq
2

˘

for each vr P ϕ´1
i rys. There-

fore

mHi`1
py, vrq

ηi`1pyq « ℓHpyq
`

ηpyq
2

˘ .

for each vr P ϕ´1
i rys. Moreover, by (B5)(iii) mHi`1

py, vi`1q{ηi`1pyq « ℓHi
pyq{

`

ηipyq
2

˘

,

and by (C1)(i) of the induction hypothesis, ℓHi
pyq « ℓHpyq

`

ηipyq
2

˘

{
`

ηpyq
2

˘

. Therefore

mHi`1
py, vi`1q

ηi`1pyq « ℓHpyq
`

ηipyq
2

˘

`

ηpyq
2

˘`

ηipyq
2

˘ “ ℓHpyq
`

ηpyq
2

˘ .

This proves (C5)1(i).

By (B5)(ii), mHi`1
pvi`1, vrq « mHi

py, vrq{ηipyq for each vr P ϕ´1
i rys. By (C5)(i) of the

induction hypothesis, mHi
py, vrq{ηipyq « ℓHpyq{

`

ηpyq
2

˘

for each vr P ϕ´1
i rys. Therefore

mHi`1
pvi`1, vrq « ℓHpyq

`

ηpyq
2

˘

for each vr P ϕ´1
i rys. By (C5)(ii) of the induction hypothesis, mHi

pvr, vsq « ℓHpyq{
`

ηpyq
2

˘

for every pair of distinct vertices vr, vs P ϕ´1
i rys. Since in forming Hi`1 no edge is

detached from vr for each vr P ϕ´1
i rys, we have mHi`1

pvr, vsq “ mHi
pvr, vsq. Therefore

mHi`1
pvr, vsq « ℓHpyq

`

ηpyq
2

˘

for every pair of distinct vertices vr, vs P ϕ´1
i`1rys. This proves (C5)1(ii).

(C6)1 The proof is similar to the proof of (C5)1, following from (B6) and (C6) of the induction

hypothesis.

(C7)1 If z R NHpwq then mHpw, zq “ 0 and (C7)1 is trivial. So we assume that z P NHpwq.
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(i) If ηi`1pwq “ ηipwq ´1 (so w “ y), by (B5)(i) mHi`1
py, zq{ηi`1pyq « mHi

py, zq{ηipyq,

and since ηi`1pzq “ ηipzq, we havemHi`1
py, zq{pηi`1pyqηi`1pzqq « mHi

py, zq{pηipyqηipzqq.

By (C7)(i) of the induction hypothesis, mHi
py, zq{pηipyqηipzqq « mHpy, zq{pηpyqηpzqq.

Therefore

mHi`1
py, zq

ηi`1pyqηi`1pzq « mHpy, zq
ηpyqηpzq .

The other case, ηi`1pzq “ ηipzq ´ 1), is similar. This proves (C7)1(i).

(ii) By (C7)(ii) of the induction hypothesismHi
pvr, vsq « mHpw, zq{pηpwqηpzqq for each

vr P ϕ´1
i rws and each vs P ϕ´1

i rzs “ ϕ´1
i`1rzs. Since in forming Hi`1 no edge is detached

from vr and vs for each vr P ϕ´1
i rws and each vs P ϕ´1

i rzs, we have mHi`1
pvr, vsq “

mHi
pvr, vsq. Therefore mHi`1

pvr, vsq « mHpw, zq{pηpwqηpzqq for each vr P ϕ´1
i rws and

each vs P ϕ´1
i`1rzs. If ηi`1pyq “ ηipyq ´ 1 (so w “ y), by (B5)(ii) mHi`1

pvi`1, vsq «

mHi
py, vsq{ηipyq for each vs P ϕ´1

i rzs “ ϕ´1
i`1rzs. By (C7)(iii) of induction hypothesis,

mHi
py, vsq{ηipyq « mHpy, zq{pηpyqηpzqq. So

mHi`1
pvi`1, vsq « mHpy, zq

ηpyqηpzq .

The other case, ηi`1pzq “ ηipzq ´ 1, is similar. This proves (C7)1(ii).

(iii) If ηi`1pyq “ ηipyq´1 (so w “ y), then by (B5)(i)mHi`1
py, vsq{ηi`1pyq « mHi

py, vsq{ηipyq

for each vs P ϕ´1
i rzs “ ϕ´1

i`1rzs. But by (C7)(iii) of induction hypothesis, mHi
py, vsq{ηipyq «

mHpy, zq{pηpyqηpzqq for each vs P ϕ´1
i rzs. Therefore

mHi`1
py, vsq

ηi`1pyq « mHpy, zq
ηpyqηpzq

for each vs P ϕ´1
i`1rzs. If ηi`1pzq “ ηipzq ´ 1 (so z “ y), then since in forming Hi`1

no edge is detached from vs for each vs P ϕ´1
i rys, we have mHi`1

pw, vsq “ mHi
pw, vsq

for each vs P ϕ´1
i rys. Therefore mHi`1

pw, vsq{ηi`1pwq “ mHi
pw, vsq{ηipwq for each

29



vs P ϕ´1
i rys. Moreover, by (B5)(ii) mHi`1

pw, vi`1q « mHi
pw, yq{ηipyq. Therefore

mHi`1
pw, vi`1q{ηi`1pwq « mHi

pw, yq{pηipwqηipyqq. By (C7)(i) of induction hypothe-

sis, mHi
pw, yq{pηipwqηipyqq “ mHpw, yq{pηpwqηpyqq. Hence

mHi`1
pw, vi`1q

ηi`1pwq « mHpw, yq
ηpwqηpyq .

This proves (C7)1(iii).

(C8)1 The proof is similar to the proof of (C7)1, following from (B6) and (C8) of the induction

hypothesis.

As a result of (C1)-(C8), we prove that G is loopless, and satisfies conditions (A1)-(A6) of

Theorem 2.1. Recall that Hn “ G, ϕn “ ψ, and ηnpwq “ 1 for each w P V . Let w, z be an

arbitrary pair of distinct vertices of V , and let j P Zk. Now in (C1)-(C8) we let i “ n. From

C1(ii) it is immediate that G is loopless.

From (C3)(i) it follows that dHn
pwq{ηnpwq « dHpwq{ηpwq, so dGpwq « dHpwq{ηpwq.

From (C3)(ii), dHn
pvrq « dHpwq{ηpwq for each vr P ϕ´1

n rws, so dGpvrq « dHpwq{ηpwq for each

vr P ψ´1rws. Therefore G satisfies (A1).

From (C5)(i) it follows that mHn
pw, vrq{ηnpwq « ℓHpwq{

`

ηpwq
2

˘

for each vr P ϕ´1
n rws, so

mGpw, vrq « ℓHpwq{
`

ηpwq
2

˘

for each vr P ψ´1rws. From (C5)(ii), mHn
pvr, vsq « ℓHpwq{

`

ηpwq
2

˘

for every pair of distinct vertices vr, vs P ϕ´1
n rws, so mGpvr, vsq « ℓHpwq{

`

ηpwq
2

˘

for every pair

of distinct vertices vr, vs P ψ´1rws. Therefore G satisfies (A3).

From (C7)(i) it follows thatmHn
pw, zq{pηnpwqηnpzqq « mHpw, zq{pηpwqηpzqq, somGpw, zq «

mHpw, zq{pηpwqηpzqq. From (C7)(ii), mHn
pvr, vsq « mHpw, zq{pηpwqηpzqq for each vr P

ϕ´1
n rws and each vs P ϕ´1

n rzs, so mGpvr, vsq « mHpw, zq{pηpwqηpzqq for each vr P ψ´1rws and

each vs P ψ´1rzs. From (C7)(iii) it follows that mHn
pvr, zq{ηnpzq « mHpw, zq{pηpwqηpzqq

for each vr P ϕ´1
n rws, so mGpvr, zq « mHpw, zq{pηpwqηpzqq for each vr P ψ´1rws. From

(C7)(iii), mHn
pw, vsq{ηmpwq « mHpw, zq{pηpwqηpzqq for each vs P ϕ´1

n rzs, so mGpw, vsq «

mHpw, zq{pηpwqηpzqq for each vs P ψ´1rzs. Therefore G satisfies (A5).
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A similar argument shows that G satisfies (A2), (A4), (A6). In order to prove that G

satisfies the last condition (A7) of Theorem 2.1, it suffices to show that if for some j P Zk,

dHipjqpvq{ηipvq is even for all v P Vi, then

(D1) dHi`1pjqpvq{ηi`1pvq is an even integer for all v P Vi`1, and

(D2) ωpHi`1pjqq “ ωpHipjqq.

For then, if for each v P V pHq “ V0, dHpjqpvq{ηpvq “ dH0pjqpvq{η0pvq is an even integer, then

it follows inductively that for each 0 ď r ď n and each v P Vr, dHrpjqpvq{ηrpvq is an even

integer and

ωpHrpjqq “ ωpH0pjqq.

Therefore ωpGpjqq “ ωpHnpjqq “ ωpH0pjqq “ ωpHpjqq. This will complete the proof of

Theorem 2.1.

So we now establish (D1) and (D2). Let j P Zk be a color for which for all v P Vi,

dHipjqpvq{ηipvq is an even integer. Recall that y is the vertex for which ηi`1pyq “ ηipyq ´ 1.

To establish (D1), there are three cases to consider:

• Case 1: v R ty, vi`1u. Clearly dHi`1pjqpvq “ dHipjqpvq and ηi`1pvq “ ηipvq. So

dHi`1pjqpvq{ηi`1pvq “ dHipjqpvq{ηipvq which is an even integer.

• Case 2: v “ y. From (B4)(i), it follows that dHi`1pjqpyq{ηi`1pyq “ dHipjqpyq{ηipyq which

is an even integer.

• Case 3: v “ vi`1. From (B4)(ii), it follows that dHi`1pjqpvi`1q “ dHipjqpyq{ηipyq which

is an even integer.

This proves (D1).

In order to prove (D2), let Hy
i pjq be the component of Hipjq which contains y. It is

enough to show that ωpHy
i`1pjqq “ ωpHy

i pjqq. Let ωij “ ωpHy
i pjqztyuq and let Γi,j,1, . . . ,Γi,j,ωij

be the vertex sets of the components of Hy
i pjqztyu. Note that Γi,j,r is a subset of V pBiq,
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Γi,j,ωij

Γi,j,1

y

vi+1

y

H
y

i+1
(j)H

y

i
(j)

Γi,j,1

Γi,j,ωij

Figure 2.2: Detachment of Hy
i pjq into Hy

i`1pjq

of V pTiq, and of V pB1
iq for 1 ď r ď ωij . Since dHipjqpvq{ηipvq is an even integer for each

v P Vi, it follows that dHipjqpvq is an even integer for each v P Vi. Therefore Hipjq is an even

graph (all vertices are of even degree). Since dHipjqpyq is even, so is dHipjqpyq ´ 2ℓHipjqpyq.

Since Hipjq is an even graph, and the sum of the degree of the vertices in any graph must

be even, it follows that mHipjqpy,Γi,j,tq “ mBi
pcij ,Γi,j,tq is even for 1 ď t ď ωij. (In fact

every edge cut in Hipjq is even.) Now from (M2) it follows that for each t, 1 ď t ď ωij,

mB1
ip1qpCij ,Γi,j,tq « mB1

i
pCij ,Γi,j,tq{2. There are two cases to consider:

• Case 1: mTi
pcij,Γi,j,tq “ mBi

pcij ,Γi,j,tq. In this case we have

mB1
ip1qpCij ,Γi,j,tq “

mB1
i
pCij ,Γi,j,tq
2

“ mTi
pcij,Γi,j,tq
2

“ mBi
pcij ,Γi,j,tq
2

.
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• Case 2: mTi
pcij,Γi,j,tq ă mBi

pcij ,Γi,j,tq. In this case we have

mB1
i
p1qpCij ,Γi,j,tq «

mB1
i
pCij ,Γi,j,tq
2

“ mTi
pcij,Γi,j,tq
2

ă mBi
pcij ,Γi,j,tq
2

.

Therefore in both cases mB1
ip1qpCij ,Γi,j,tq ď mBi

pcij ,Γi,j,tq{2 for 1 ď t ď ωij. This is shown

in Figure 2.2. This means, at most half of the edges joining y to Γi,j,t, 1 ď t ď ωij , are

moved to vi`1 in forming Hi`1. So from each vertex u ‰ vi`1 in H
y
i`1pjq, there is a path

of edges colored j from u to y. Moreover, vi`1 is either adjacent with y or is adjacent with

another vertex in Hy
i`1pjq, so vi`1 is also joined to y by a path of edges colored j. Therefore

ωpHy
i`1pjqq “ ωpHy

i pjqq. This proves (D2) and the proof of Theorem 2.1 is complete.
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Chapter 3

Hamiltonian Decomposition of Kpn1, . . . , nm;λ, µq

Let n1, . . . , nm P N, and λ, µ P N Y t0u. Let G “ Kpn1, . . . , nm;λ, µq denote a graph

with m parts, the ith part having size ni, in which multiplicity of each pair of vertices in

the same part (in different parts) is λ (µ, respectively). In other words, G is a graph with

m parts V1, . . . , Vm, with |Vi| “ ni for 1 ď i ď m, mGpu, vq “ λ for every pair of distinct

vertices u, v P Vi for 1 ď i ď m, and mGpu, vq “ µ for each u P Vi, v P Vj for 1 ď i ă j ď m.

When n1 “ . . . “ nm “ n, we denote Kpn1, . . . , nm;λ, µq by Kpnpmq;λ, µq. In [5],

we settled the existence of Hamiltonian decomposition for Kpn1, . . . , nm;λ, µq, a graph of

particular interest to statisticians, who consider group divisible designs with two associate

classes.

Example 3.1. Figure 3.1 illustrates a Hamiltonian decomposition of Kp2p3q; 2, 1q.

In this chapter, we present a constructive proof of this existence and we also solve the

companion problem; that is the Hamiltonian decompositions problem for Kpn1, . . . , nm;λ, µq

when it is a regular graph of odd degree (see [9]). The details are provided in order that the

reader may become more familiar with the nuances of using amalgamations.

A graph G is said to be even if all of its vertices have even degree. Let k be a positive

integer. We say that G has an evenly-equitable k-edge-coloring if G has a k-edge-coloring

for which, for each v P V pGq

(i) dGpiqpvq is even for 1 ď i ď k, and

(ii) |dGpiqpvq ´ dGpjqpvq| P t0, 2u for 1 ď i, j ď k.
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Figure 3.1: A Hamiltonian Decomposition of Kp2p3q; 2, 1q

We need the following theorem of Hilton [43]. (It may help to recall that the definition

of k-edge-coloring allows some color classes to be empty. It is also worth noting that the

following theorem is true even if the graph contains loops.)

Theorem 3.2. (Hilton [43, Theorem 8]) Each finite even graph has an evenly-equitable

k-edge-coloring for each positive integer k.

3.1 Hamiltonian Decomposition of Kpn1 . . . , nm;λ, µq

Walecki’s construction for Hamiltonian decomposition of Kn and Kn ´ F where F is a

1-factor [64], easily provides the following result:

Theorem 3.3. The graph λKn is Hamiltonian decomposable if and only if λpn ´ 1q is an

even integer.
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Using this result, together with Theorem 3.2 and Theorem 2.1, now we are able to find

necessary and sufficient conditions for Kpn1 . . . , nm;λ, µq to be Hamiltonian decomposable.

Let us first look at some trivial cases:

(i) If m “ 1, then G “ λKn1
which by Theorem 3.3, is Hamiltonian decomposable if and

only if λpn1 ´ 1q is even.

(ii) Ifm ą 1,µ “ 0, thenG “
m
Ť

i“1

λKni
. Clearly G is disconnected and so is not Hamiltonian

decomposable.

(iii) If ni “ 1 for 1 ď i ď m, then G “ µKm which is Hamiltonian decomposable if and

only if µpm´ 1q is even.

(iv) If λ “ µ, then G “ λKn1`¨¨¨`nm
which is Hamiltonian decomposable if and only if

λp
m
ř

i“1

ni ´ 1q is even.

We exclude the above four cases from our theorem:

Theorem 3.4. (Bahmanian, Rodger [5, Theorem 4.3]) Let m ą 1, λ ě 0, and µ ě 1, with

λ ‰ µ be integers. Let n1, . . . , nm be positive integers with n1 ď . . . ď nm, and nm ě 2. Then

G “ Kpn1, . . . , nm;λ, µq is Hamiltonian decomposable if and only if the following conditions

are satisfied:

(i) ni “ nj :“ n for 1 ď i ă j ď m;

(ii) λpn´ 1q ` µnpm´ 1q is an even integer ;

(iii) λ ď µnpm´ 1q.

Proof. Let s “
m
ř

i“1

ni. To prove the necessity, suppose G is Hamiltonian decomposable.

For v P Vi, 1 ď i ď m, we have dGpvq “ λpni ´ 1q ` µps ´ niq. Since G is Hamiltonian

decomposable, it is regular. So we have λpni ´ 1q ` µps ´ niq “ λpnj ´ 1q ` µps ´ njq for

every pair 1 ď i ă j ď m. Equivalently λpni ´ njq “ µpni ´ njq. So pλ ´ µqpni ´ njq “ 0

36



and since λ ‰ µ, we have ni “ nj :“ n for every pair 1 ď i ă j ď m. So we can assume that

G “ Kpnpmq;λ, µq. Therefore s “ mn and dGpvq “ λpn´1q`µpmn´nq “ λpn´1q`µnpm´1q.

Now by the Hamiltonian decomposability of G, the degree of each vertex

λpn´ 1q ` µnpm´ 1q is an even integer.

By the preceding paragraph, the number of Hamiltonian cycles of G is 1
2
pλpn ´ 1q `

µnpm ´ 1qq. Let us say that an edge is pure if both of its endpoints belong to the same

part. Each Hamiltonian cycle passes through every vertex of every part exactly once. Hence

each Hamiltonian cycle contains at most pn´ 1q pure edges from each part. Since the total

number of pure edges in each part is λ
`

n

2

˘

, we have

λ

ˆ

n

2

˙

ď pn´ 1q
2

pλpn´ 1q ` µnpm´ 1qq.

So,

λnpn´ 1q
2

ď pn´ 1q
2

pλpn´ 1q ` µnpm´ 1qq.

Since n ą 1, it implies that λn ď λpn ´ 1q ` µnpm ´ 1q. Thus λ ď µnpm ´ 1q. Therefore

conditions (i)-(iii) are necessary. Note that the necessity of condition (iii) can also be seen

as an edge-connectivity issue. Of course G has edge-connectivity at most µn2pm ´ 1q, as

deleting all the edges incident with vertices in a fixed part disconnects the graph. Since G has

a Hamiltonian decomposition, it clearly has degree equal to its edge-connectivity. Therefore,

the degree of G, namely λpn´ 1q ` µnpm´ 1q, is at most µn2pm ´ 1q.

To prove the sufficiency, suppose conditions (i)-(iii) are satisfied and let H be a graph

with |V pHq| “ m, ℓHpyq “ λ
`

n

2

˘

for every y P V pHq, and mHpy, zq “ µn2 for every pair

y, z P V pHq and let η be a function from V pHq into N with ηpyq “ n for all y P V pHq. We

note that H is pλnpn´1q `µn2pm´1qq-regular. It is easy to see that H is an amalgamation

of G. In what follows we shall find an appropriate edge-coloring for H and then we shall
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apply Theorem 2.1, to show that H has a η-detachment G in which every color class induces

a Hamiltonian cycle.

Let H˚ be the spanning subgraph of H whose edges are the non-loop edges of H . It

is easy to see that H˚ – µn2Km. We claim that µnpm ´ 1q is even. To see this, suppose

µnpm ´ 1q is odd; then a is odd and λpn ´ 1q is even. But then λpn ´ 1q ` µnpm ´ 1q is

odd, contradicting condition (ii) of the theorem. Therefore µn2pm ´ 1q is even and thus by

Theorem 3.3, H˚ is Hamiltonian decomposable.

Since µn2Km is µn2pm´ 1q-regular, it is decomposable into µn2pm´ 1q{2 Hamiltonian

cycles by Theorem 3.3. Now define k “
`

λpn´ 1q `µnpm´ 1q
˘

{2. From (ii), k is an integer.

Now since n ą 1 and µnpm´ 1q ě λ, we have the following sequence of equivalences:

pn´ 1qpµnpm´ 1q ´ λq ě 0 ô µnpm ´ 1qpn´ 1q ´ λpn ´ 1q ě 0 ô

µn2pm ´ 1q ´ λpn´ 1q ´ µnpm´ 1q ě 0 ô µn2pm´ 1q
2

ě λpn´ 1q ` µnpm´ 1q
2

.

Hence, the number of Hamiltonian cycles inH˚ is at least k. Now let C1, . . . , Ck be k arbitrary

Hamilton cycles of a Hamiltonian decomposition of H˚. Let K˚ be a (partial) k-edge-coloring

of H˚ such that all edges of each cycle Ci are colored i, for each i P Zk. Now let H˚˚ be the

spanning subgraph of H whose edges are all the edges of H that are uncolored in H˚. Recall

that H is 2nk-regular, so for each v P V pH˚˚q we have dH˚˚pvq “ 2nk ´ 2k “ 2pn ´ 1qk.

Therefore H˚˚ is an even graph and so by Theorem 3.2 it has an evenly-equitable edge-

coloring K˚˚ with k colors 1, . . . , k (Note that we are using the same colors we used to

color edges of H˚). Therefore for each j, 1 ď j ď k, and for each y P V pH˚˚q, we have

dH˚˚pjqpyq “ 2pn´ 1qk{k “ 2pn´ 1q. Now we can define the edges coloring K : EpHq Ñ Zk

for H as below:

Kpeq “

$

’

&

’

%

K˚peq if e P EpH˚qzEpH˚˚q,

K˚˚peq if e P EpH˚˚q.
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So for each j P Zk, for each y P V pHq, we have dHpjqpyq “ 2 ` 2pn ´ 1q “ 2n. Note that

since all edges of each Hamiltonian cycle Cj are colored j, 1 ď j ď k, each color class Hpjq

is connected.

So we have a k-edge-colored graph H for which, for each y, z P V pHq, y ‰ z, and

each j P Zk, ηpyq “ n ě 2, ℓHpyq “ λ
`

n

2

˘

, mHpy, zq “ µn2, dHpyq “ 2nk, dHpjqpyq “ 2n,

ωpHpjqq “ 1.

Now by Theorem 2.1 there exists a loopless η-detachment G˚ of H with amalgamation

function ψ : V pG˚q Ñ V pHq, η being the number function associated with ψ, such that for

each y, z P V pHq, y ‰ z, and each j P Zk the following conditions are satisfied:

• mG˚pu, u1q “ λ
`

n

2

˘

{
`

n

2

˘

“ λ for every pair of distinct vertices u, u1 P ψ´1pyq;

• mG˚pu, vq “ µn2{pnnq “ µ for each u P ψ´1pyq and each v P ψ´1pzq;

• dG˚pjqpuq “ 2n{n “ 2 for each u P ψ´1pyq;

• ωpG˚pjqq “ ωpHpjqq “ 1, since dHpjqpyq{ηpyq “ 2n{n “ 2.

From the first two conditions it follows that G˚ – Kpnpmq;λ, µq “ G. The last two conditions

tells us that each color class is 2-regular and connected, respectively; that is each color class

is a Hamiltonian cycle. So we obtained a Hamiltonian decomposition of Kpnpmq;λ, µq and

the proof is complete.

Remark 3.5. We may prove the necessity of condition (iii) of Theorem 3.4 by a different

counting argument. Let us say an edge is mixed if its endpoints are from different parts of

G. Each Hamiltonian cycle starts from a vertex of a part Vi for some 1 ď i ď m and it will

pass through every part at least once and it will eventually come back to the initial vertex

in Vi. Hence each Hamiltonian cycle contains at least m mixed edges. On the other hand,

the total number of mixed edges is µn2
`

m

2

˘

. Therefore,

µn2

ˆ

m

2

˙

ě m
1

2
pλpn´ 1q ` µnpm´ 1qq.
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So,

µn2mpm ´ 1q
2

ě mpλpn´ 1q ` µnpm´ 1qq
2

.

It implies that, µnpm ´ 1qpn ´ 1q ´ λpn ´ 1q ě 0, so pn ´ 1qpµnpm´ 1q ´ λq ě 0 and since

n ą 1, we have λ ď µnpm ´ 1q.

Remark 3.6. Observe that the equality in condition (iii) of Theorem 3.4 holds if and only

if for each Hamiltonian decomposition, each Hamiltonian cycle contains exactly pn´ 1q pure

edges from every part, and exactly m mixed edges.

3.2 Hamiltonian Decomposition of Kpn1, . . . , nm;λ, µq with a 1-factor leave

Let us first look at some trivial cases:

(i) If m “ 1, then G “ λKn1
which by Theorem 1.4, is decomposable into Hamiltonian

cycles and a single 1-factor if and only if λpn1 ´ 1q is odd.

(ii) If m ą 1, µ “ 0, then G “
m
Ť

i“1

λKni
. Clearly G is disconnected it does not have any

Hamiltonian cycle.

(iii) If ni “ 1 for 1 ď i ď m, then G “ µKm which is decomposable into Hamiltonian cycles

and a single 1-factor if and only if µpm´ 1q is odd.

(iv) If λ “ µ, then G “ λKn1`¨¨¨`nm
which is decomposable into Hamiltonian cycles and a

single 1-factor if and only if λp
m
ř

i“1

ni ´ 1q is even.

(v) If λ “ 0, and ni “ n for 1 ď i ď m, then G “ µKn, . . . , n
looomooon

m

which is decomposable into

Hamiltonian cycles and a single 1-factor if and only if µnpm´ 1q is odd (see [57]).

We exclude the above five cases from our theorem:

Theorem 3.7. Let m ą 1. Let n1, . . . , nm be positive integers with n1 ď . . . ď nm, and

nm ě 2, and λ, µ ě 1 with λ ‰ µ. Then G “ Kpn1, . . . , nm;λ, µq is decomposable into

Hamiltonian cycles and a single 1-factor if and only if the following conditions are satisfied:
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(i) ni “ nj :“ n for 1 ď i ă j ď m;

(ii) λpn´ 1q ` µnpm´ 1q is an odd integer ;

(iii) λ ď µnpm´ 1q if n ě 3, and λ ´ 1 ď 2µpm´ 1q otherwise.

Proof. Let s “ řm

i“1 ni. To prove the necessity, suppose G is Hamiltonian decomposable.

For v P Vi, 1 ď i ď m, we have dGpvq “ λpni ´ 1q ` µps ´ niq. Since G is Hamiltonian

decomposable, it is regular. So we have λpni ´ 1q ` µps ´ niq “ λpnj ´ 1q ` µps ´ njq for

1 ď i ă j ď m. It follows that ni “ nj :“ n for 1 ď i ă j ď m. So we can assume that

G “ Kpnpmq;λ, µq. Therefore dGpvq “ λpn´ 1q ` µnpm ´ 1q. Now since G is decomposable

into Hamiltonian cycles and a single 1-factor

λpn´ 1q ` µnpm´ 1q is an odd integer.

By the preceding paragraph, the number of Hamiltonian cycles of G is
`

λpn ´ 1q `

µnpm ´ 1q ´ 1
˘

{2. Let us say that an edge is pure if both of its endpoints belong to the

same part. Each Hamiltonian cycle passes through every vertex of every part exactly once.

Hence each Hamiltonian cycle contains at most n ´ 1 pure edges from each part. Since the

total number of pure edges in each part is λ
`

n

2

˘

, and a 1-factor contains at most ta{2u pure

edges from each part, we have

λ

ˆ

n

2

˙

ď pn ´ 1q
2

`

λpn´ 1q ` µnpm´ 1q ´ 1
˘

` t
n

2
u.

So,

λnpn ´ 1q
2

ď pn´ 1q
2

`

λpn´ 1q ` µnpm´ 1q ´ 1
˘

` t
n

2
u.

Since n ą 1, it implies that

λn ď λpn´ 1q ` µnpm´ 1q ´ 1 ` 2tn
2
u

n´ 1
.
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It follows that if n is odd, then we have λ ď µnpm ´ 1q, and if n ą 2 is even, then we have

λ ď µnpm´ 1q ` 1{pn´ 1q, which is equivalent to λ ď µnpm´ 1q. Moreover, if n “ 2, then

we have λ ´ 1 ď 2µpm´ 1q. Therefore conditions (i)-(iii) are necessary.

To prove the sufficiency, suppose conditions (i)-(iii) are satisfied. We first solve the

special case of n “ 2. Since λ`2µpm´1q is odd, so is λ. Also λ´1 ď 2µpm´1q. Therefore,

by Theorem 3.4, Kp2pmq;λ ´ 1, µq is Hamiltonian decomposable. Adding an edge to each

part of Kp2pmq;λ ´ 1, µq (which is a 1-factor) will form Kp2pmq;λ, µq. Thus we obtain a

decomposition of Kp2pmq;λ, µq into Hamiltonian cycles and a single 1-factor. To prove the

sufficiency for n ě 3, let H be a graph with |V pHq| “ m, ℓHpyq “ λ
`

n

2

˘

for every y P V pHq,

and mHpy, zq “ µn2 for every pair y, z P V pHq and let η be a function from V pHq into N

with ηpyq “ n for all y P V pHq. Now define k “
`

λpn ´ 1q ` µnpm ´ 1q ´ 1
˘

{2. From

(ii), k is an integer. We note that H is p2k ` 1qn-regular. In what follows we shall find an

appropriate edge-coloring for H and then we shall apply Theorem 2.1, to show that H has

an η-detachment G in which every color class except one induces a Hamiltonian cycle, the

exceptional color class being a -factor.

Let H˚ be the spanning subgraph of H whose edges are the non-loop edges of H . It is

easy to see that H˚ – µn2Km. We shall find a pk ` 1q-edge-coloring for H . There are two

cases to consider, but first we observe that:

pn´ 1q
`

µnpm ´ 1q ´ λ
˘

ě 0 ðñ

µnpm´ 1qpn´ 1q ´ λpn´ 1q ě 0 ðñ

µn2pm´ 1q ´ λpn´ 1q ´ µnpm´ 1q ě 0 ðñ
µn2pm´ 1q

2
ě λpn´ 1q ` µnpm´ 1q

2
.

(3.1)

• Case 1: n is even. It follows that µn2pm ´ 1q is even and thus by Theorem 1.4,

H˚ is decomposable into µn2pm´1q
2

Hamiltonian cycles. Now since n ą 1, and since by

(iii) µnpm ´ 1q ě λ, by (3.1) it follows that the number of Hamiltonian cycles in H˚
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is greater than k. Now let C1, . . . , Ck be k arbitrary Hamilton cycles of a Hamiltonian

decomposition of H˚. Let K˚ be a (partial) k-edge-coloring of H˚ such that all edges

of each cycle Ci are colored i, for each 1 ď i ď k. Now let L be a spanning subgraph

of H in which every vertex is incident with n{2 loops (observe that λ
`

n

2

˘

ě n{2); so

the graph L consists only of loops. Now let H˚˚ be the spanning subgraph of H whose

edges are all edges in EpHqzEpLq that are uncolored in H˚. Recall that H is p2k`1qn-

regular, so for each v P V pH˚˚q we have dH˚˚pvq “ p2k`1qn´2k´2pn{2q “ 2kpn´1q.

Therefore H˚˚ is an even graph and so by Theorem 3.2 it has an evenly-equitable

edge-coloring K˚˚ with k colors 1, . . . , k (Note that we are using the same colors we

used to color edges of H˚). Therefore for each j, 1 ď j ď k, and for each y P V pH˚˚q,

we have dH˚˚pjqpyq “ 2pn ´ 1qk{k “ 2pn ´ 1q. Now we can define the pk ` 1q-edges

coloring K for H as below:

Kpeq :“

$

’

’

’

’

&

’

’

’

’

%

K˚peq if e P EpH˚qzEpH˚˚q,

K˚˚peq if e P EpH˚˚q,

k ` 1 if e P EpLq.

So for each y P V pHq,

dHpjqpyq “

$

’

&

’

%

2pn´ 1q ` 2 “ 2n if 1 ď j ď k,

2pn{2q “ n if j “ k ` 1.

• Case 2: n is odd. Since λpn ´ 1q is even, and by (ii), λpn ´ 1q ` µnpm ´ 1q is odd,

it follows that µnpm ´ 1q is odd. So µn2pm ´ 1q is odd. Thus by Theorem 1.4, H˚ is

decomposable into
`

µn2pm´ 1q ´ 1
˘

{2 Hamiltonian cycles and a single 1-factor F .

By (3.1), it follows that

µn2pm´ 1q ´ 1

2
ě λpn´ 1q ` µnpm´ 1q ´ 1

2
“ k.
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Hence, the number of Hamiltonian cycles in H˚ is at least k. Now let C1, . . . , Ck be

k arbitrary Hamilton cycles of a Hamiltonian decomposition of H˚. Let K˚ be a

(partial) k-edge-coloring of H˚ such that all edges of each cycle Ci are colored i, for

each 1 ď i ď k, and the single 1-factor F is colored k ` 1. Now let L be a spanning

subgraph of H in which every vertex is incident with pn ´ 1q{2 loops (observe that

λ
`

n

2

˘

ě pn ´ 1q{2). Now let H˚˚ be the spanning subgraph of H whose edges are all

edges in EpHqzEpLq that are uncolored in H˚. Recall that H is p2k ` 1qn-regular, so

for each v P V pH˚˚q we have dH˚˚pvq “ p2k ` 1qn´ 2k ´ 1 ´ 2pn´ 1q{2 “ 2kpn ´ 1q.

Therefore H˚˚ is an even graph and so by Theorem 3.2 it has an evenly-equitable

edge-coloring K˚˚ with k colors 1, . . . , k (Note that we are using the same colors we

used to color edges of H˚). Therefore for each j, 1 ď j ď k, and for each y P V pH˚˚q,

we have dH˚˚pjqpyq “ 2pn ´ 1qk{k “ 2pn ´ 1q. Now we can define the pk ` 1q-edges

coloring K for H as below:

Kpeq :“

$

’

’

’

’

&

’

’

’

’

%

K˚peq if e P EpH˚qzEpH˚˚q,

K˚˚peq if e P EpH˚˚q,

k ` 1 if e P EpLq.

So for each y P V pHq,

dHpjqpyq “

$

’

&

’

%

2pn´ 1q ` 2 “ 2n if 1 ď j ď k,

1 ` 2pn´ 1q{2 “ n if j “ k ` 1.

Note that since all edges of each Hamiltonian cycle Cj are colored j, 1 ď j ď k, each color

class Hpjq is connected for 1 ď j ď k. Therefore in both cases, we have a pk`1q-edge-colored

graph H for which, for each y, z P V pHq, y ‰ z, ηpyq “ n ě 2, ℓHpyq “ λ
`

n

2

˘

, mHpy, zq “ µn2,
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dHpyq “ p2k ` 1qn, ωpHpjqq “ 1 for each 1 ď j ď k, and

dHpjqpyq “

$

’

&

’

%

2n if 1 ď j ď k,

n if j “ k ` 1.

Now by Theorem 2.1, there exists a loopless η-detachment G˚ of H in which each v P V pHq

is detached into v1, . . . , vηpvq such that for each u, v P V pHq, u ‰ v the following conditions

are satisfied:

• mG˚pui, ui1q “ λ
`

n

2

˘

{
`

n

2

˘

“ λ for 1 ď i ă i1 ď ηpuq;

• mG˚pui, vi1q “ µn2{pnnq “ µ for 1 ď i ď ηpuq and 1 ď i1 ď ηpvq;

• dG˚pjqpuiq “

$

’

&

’

%

2n{n “ 2 if 1 ď j ď k,

n{n “ 1 if j “ k ` 1,
for 1 ď i ď ηpuq;

• ωpG˚pjqq “ ωpHpjqq “ 1 for each 1 ď j ď k, since dHpjqpuq{ηpuq “ 2n{n “ 2 for

1 ď j ď k.

From the first two conditions it follows that G – Kpnpmq;λ, µq. The last two conditions tells

us that each color class 1 ď j ď k is 2-regular and connected respectively; that is each color

class 1 ď j ď k is a Hamiltonian cycle. Furthermore, the color class k`1 is 1-regular. So we

obtained a decomposition of Kpnpmq;λ, µq into Hamiltonian cycles and a single 1-factor.
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Chapter 4

Embedding an Edge-colored Kpappq;λ, µq into a Hamiltonian Decomposition of

Kpapp`rq;λ, µq

4.1 Introduction

Recall that Kpappq;λ, µq is a graph with p parts, each part having size a, in which the

multiplicity of each pair of vertices in the same part (in different parts) is λ (µ, respectively).

In this chapter we consider the following embedding problem: When can a graph decom-

position of Kpappq;λ, µq be extended to a Hamiltonian decomposition of Kpapp`rq;λ, µq for

r ą 0? A general result is proved, which is then used to solve the embedding problem for

all r ě λ
µa

` p´1
a´1

. The problem is also solved when r is as small as possible in two different

senses, namely when r “ 1 and when r “ λ
µa

´ p ` 1.

Let G “ pV,Eq be a graph and letH “ tHiuiPI be a family of graphs where Hi “ pVi, Eiq.

We say that G has an H-decomposition if tEi : i P Iu partitions E and each Ei induces

an isomorphic copy of Hi. Graph decomposition in general has been studied for many

classes of graphs. The decomposition of a graph into paths [79], cycles [76] or stars [78]

has been of special interest over the years. Of particular interest is the decomposition of

a graph into Hamiltonian cycles; that is a Hamiltonian Decomposition. In 1892 Walecki

[64] proved the classic result that the complete graph Kn is decomposable into Hamiltonian

cycles if and only if n is odd. Laskar and Auerbach [57] settled the existence of Hamiltonian

decomposition of the complete multipartite graph Km,...,m. Alspach, Gavlas, and S̆ajna

[1, 76, 77] collectively solved the problem of decomposing the complete graph into isomorphic

cycles, but the problem remains open for different cycle lengths.

Another challenge is the companion embedding problem:
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Let H “ tHiuiPI and H˚ “ tH˚
j ujPJ be two families of graphs. Given a graph G

with an H-decomposition and a graph G˚ which is a supergraph of G (or G is a subgraph

of G˚), under what circumstances one can extend the H-decomposition of G into an H˚-

decomposition of G˚? In other words, given an edge-coloring of G (that can be considered

as a decomposition when each color class induces a graph in H), is it possible to extend this

coloring to an edge-coloring of G˚ so that each color class of G˚ induces a graph in H˚?

In this direction, Hilton [44] found necessary and sufficient conditions for a decom-

position of Km to be embedded into a Hamiltonian decomposition of Km`n, which later

was generalized by Nash-Williams [70]. Hilton and Rodger [48] considered the embedding of

Hamiltonian decompositions for complete multipartite graphs. For embedding factorizations

see [47, 74], where the connectivity of the graphs in H˚ is one defining property. We also note

that embedding problems first were studied for latin squares by M. Hall [41]. For extensions

of Hall’s theorem see [2, 3, 63].

The graphKpa1, . . . , ap;λ, µq is of particular interest to statisticians, who consider group

divisible designs with two associate classes, beginning over 50 years ago with the work of

Bose and Shimamoto [22]. Decompositions of Kpa1, . . . , ap;λ, µq into cycles of length m

have been studied for small values of m [37, 38, 39]. Recently, Bahmanian and Rodger have

settled the existence problem completely for longest (i.e. Hamiltonian) cycles in [5]. In this

chapter, we study conditions under which one can embed a decomposition of Kpappq;λ, µq

into a Hamiltonian decomposition of Kpapp`rq;λ, µq for r ą 0. Our proof is largely based on

our results in [5] (see Theorem 2.1).

4.2 Amalgamation and Graph Embedding

Recall that a detachment of H is, intuitively speaking, a graph G obtained from H by

splitting some or all of its vertices into more than one vertex. That is, to each vertex α of

H there corresponds a subset Vα of V pGq such that an edge joining two vertices α and β in

H will join some element of Vα to some element of Vβ. If η is a function from V pHq into
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N (the set of positive integers), then an η-detachment of H is a detachment of H in which

each vertex u of H splits into ηpuq vertices. For a more precise definition of amalgamation

and detachment, we refer the reader to Chapter 1.

Since two graphs G and H related in the above manner have an obvious bijection

between the edges, an edge-coloring of G or H , naturally induces an edge-coloring on the

other graph. Hence an amalgamation of a graph with colored edges is a graph with colored

edges.

The technique of vertex amalgamation, which was developed in the 1980s by Rodger

and Hilton, has proved to be very powerful in decomposing of various classes of graphs. For

a survey about the method of amalgamation and embedding partial edge-colorings we refer

the reader to [4]. In [5], the authors proved a general detachment theorem for multigraphs.

For the purpose of this chapter we use a very special case of this theorem as follows:

Theorem 4.1. Let H be a k-edge-colored graph all of whose color classes are connected, and

let η be a function from V pHq into N such that for each v P V pHq: (i) ηpvq “ 1 implies

ℓHpvq “ 0, (ii) dHpjqpvq{ηpvq is an even integer for 1 ď j ď k, (iii)
`

ηpvq
2

˘

divides ℓHpvq,

and (iv) ηpvqηpwq divides mHpv, wq for each w P V pHqztvu. Then there exists a loopless

η-detachment G of H in which each v P V pHq is detached into v1, . . . , vηpvq, all of whose

color classes are connected, and for v P V pHq:

(i) mGpvi, vi1q “ ℓHpvq{
`

ηpvq
2

˘

for 1 ď i ă i1 ď ηpvq if ηpvq ě 2,

(ii) mGpvi, wi1q “ mHpv, wq{pηpvqηpwqq for w P V pHqztvu, 1 ď i ď ηpvq and 1 ď i1 ď ηpwq,

and

(iii) dGpjqpviq “ dHpjqpvq{ηpvq for 1 ď i ď ηpvq and 1 ď j ď k.

Here is our main result:
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Theorem 4.2. (Bahmanian, Rodger [10, Theorem 2]) Let G “ Kpappq;λ, µq with a ą 1,

λ ě 0, µ ě 1, λ ‰ µ, r ě 1, and let ωj “ ω
`

Gpjq
˘

. For 1 ď j ď k, define

sj ” ωj pmod rq with 1 ď sj ď r, (4.1)

and suppose
k

ÿ

j“1

sj ě kr ´ µa2
ˆ

r

2

˙

. (4.2)

Then a k-edge-coloring of G can be embedded into a Hamiltonian decomposition of G˚ “

Kpapp`rq;λ, µq if and only if:

(i) k “
`

λpa´ 1q ` µapp ` r ´ 1q
˘

{2,

(ii) λ ď µapp ` r ´ 1q,

(iii) Every component of Gpjq is a path (possibly of length 0) for 1 ď j ď k, and

(iv) ωj ď ar for 1 ď j ď k.

Proof. By Theorem 3.4, for Kpapp`rq;λ, µq to be Hamiltonian decomposable, conditions (i)

and (ii) are necessary and sufficient. (Condition (i) follows since k must be dG˚pvq{2. Con-

dition (ii) follows since each Hamiltonian cycle must use at least p` r mixed edges, so there

must be sufficiently many mixed edges for all pure edges to be used.) For 1 ď j ď k, for

Gpjq to be extendable to a Hamiltonian cycle in Kpapp`rq;λ, µq, the degree of each vertex

has to be at most 2, and thus every component must be a path. Moreover, since each new

vertex can link together two disjoint paths, the number of components of every color class

can not exceed the number of new vertices, ar. This proves the necessity of (i)–(iv).

Let G “ pV,Eq, and let u be a vertex distinct from vertices in V . Define the new graph

G1 “ pV1, E1q with V1 “ V Y tuu by adding to G the vertex u incident with µa2
`

r

2

˘

loops,

and adding µar edges between u and each vertex v in V (see Figure 4.1). Note that for each

v P V , dG1
pvq “ λpa´ 1q ` µapp´ 1q `µar “ λpa´ 1q `µapp` r´ 1q “ 2k. Now we extend
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µar

µar

w

G1

v

G

ℓpuq “ µa2
`

r

2

˘

u

G2

w

G

µa2

u2u1

ur

µa

µa

v

Figure 4.1: G1 and its detachment G2

the k-edge-coloring of G to a pk ` 1q-edge-coloring of G1 as follows:

(A1) Each edge in G has the same color as it does in G1,

(A2) For every v P V , color the µar edges between v and u so that dG1pjqpvq “ 2 for

1 ď j ď k. Since dGpjqpvq ď 2 for 1 ď j ď k, and since dG1
pvq “ 2k, this can be

done. Notice that for every component of Gpjq (which is a path), exactly two edges

(from end points of the path) are connected to u; so at this point dG1pjqpuq “ 2ωj for

1 ď j ď k.

(A3) For 1 ď j ď k color r´ sj (ě 0) loops with j. This coloring of loops can be done, since

by condition (2) of the theorem we have:

k
ÿ

j“1

sj ě kr ´ µa2
ˆ

r

2

˙

ðñ
k

ÿ

j“1

r ´
k

ÿ

j“1

sj ď µa2
ˆ

r

2

˙

ðñ
k

ÿ

j“1

pr ´ sjq ď µa2
ˆ

r

2

˙

“ ℓG1
puq.

Moreover we color the remaining
řk

j“1 sj ´ kr`µa2
`

r

2

˘

(ě 0) loops with the new color

k ` 1. Thus for 1 ď j ď k,

dG1pjqpuq “ 2ωj ` 2pr ´ sjq “ 2r ` 2pωj ´ sjq,
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and dG1pk`1qpuq “ 2
´

řk

j“1 sj ´ kr ` µa2
`

r

2

˘

¯

. By (1) dG1pjqpuq is an even multiple of

r for 1 ď j ď k. Now to show that dG1pk`1qpuq is an even multiple of r, first we show

that
řk

j“1 ωj “ µa2pr{2.

ÿk

j“1
ωj “

ÿk

j“1
ppa´ |EpGpjqq|q

“ kpa´ |E|

“ pa
`

λpa´ 1q ` µapp ` r ´ 1q
˘

{2 ´ pa
`

λpa´ 1q ` µapp ´ 1q
˘

{2

“ µa2pr{2.

Notice that µapp ` r ´ 1q is even, since otherwise, in particular a would be odd, so k

would not be an integer. Thus,

dG1pk`1qpuq ” 2
ÿk

j“1
ωj ` µa2rpr ´ 1q

” µa2pr ` µa2rpr ´ 1q

” µa2rpp ` r ´ 1q

” 0 pmod 2rq.

Let b1, . . . , bk`1 be even integers such that dG1pjqpuq “ bjr for 1 ď j ď k` 1. Note that

for 1 ď j ď k, we have

bj{2 “ 1 ` ωj ´ sj

r
ď 1 ` t

ar ´ 1

r
u ď 1 ` pa ´ 1q “ a.

Since each component of Gpjq is joined to u in G1pjq, each color class of G1 is connected.

Let η be a function from V1 into N such that ηpvq “ 1 for each v P V , and ηpuq “ r. Now by

Theorem 4.1, there exists an η-detachment G2 of G1, all of whose color classes are connected,

(see Figure 4.1) in which u is detached into r new vertices u1, . . . , ur such that:

(a) mG2
pui, ui1q “ µa2

`

r

2

˘

{
`

r

2

˘

“ µa2, for 1 ď i ă i1 ď r;
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(b) mG2
pui, vq “ µar{r “ µa for each v P V and each i, 1 ď i ď r;

(c) dG2pjqpuiq “ bjr{r “ bj for 1 ď i ď r and 1 ď j ď k ` 1.

We observe that dG2
puiq “ appµaq ` pr ´ 1qµa2 “ µa2pp ` r ´ 1q for 1 ď i ď r, and is

even. Note that by (c), dG2pjqpuiq “ dG2pjqpui1q and is even for 1 ď i ď i1 ď r, and we

know that dG2
puiq ď 2ka for 1 ď i ď r. Therefore, since Gpk ` 1q is an even graph, (so

it has a 2-factorization), we can recolor each 2-factor of color class k ` 1 with a color j,

1 ď j ď k such that dG2pjqpuiq ď 2a. We let b1
1, . . . , b

1
k be even integers such that in the

resulting edge-coloring of G2 obtained from recoloring the color class k ` 1, dG2pjqpuq “ b1
jr

for 1 ď j ď k.

Now we define the new graph G3 by adding λ
`

a

2

˘

loops on every vertex ui in G2, for

1 ď i ď r (see Figure 4.2). We extend the k-edge-coloring of G2 to a k-edge-coloring of G3

w

G

µa2

u2u1

ur

µa

µa

v
λ

`

a

2

˘

loops

G3

Figure 4.2: G3

such that:

(B1) Each edge in G2 has the same color at it does in G3,
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(B2) For 1 ď i ď r and 1 ď j ď k, there are a´ b1
j{2 (ě 0) loops incident with ui colored j.

This is possible, for the following reason:

k
ÿ

j“1

pa´ b1
j{2q “ ka´ 1

2

k
ÿ

j“1

dG2pjqpu1q

“ ka´ 1

2
dG2

pu1q

“ ka´ 1

2
µa2pp ` r ´ 1q

“ a

2

`

λpa´ 1q ` µapp ` r ´ 1q
˘

´ 1

2
µa2pp ` r ´ 1q

“ a

2
λpa´ 1q “ ℓG3

pu1q.

Since for 1 ď j ď k, G2pjq is a connected spanning subgraph ofG3pjq, G3pjq is also connected.

Let η1 be a function from V3 into N such that η1pvq “ 1 for each v P V , and η1puiq “ a for

1 ď i ď r. Now by Theorem 4.1, there exists an η1-detachment G4 of G3, all of whose color

classes are connected, in which ui is detached into a new vertices ui1, . . . , uia for 1 ď i ď r

such that:

• mG4
puij, uij1q “ λ

`

a

2

˘

{
`

a

2

˘

“ λ for 1 ď i ď r and 1 ď j ă j1 ď a;

• mG4
puij, ui1j1q “ µa2{a2 “ µ for 1 ď i ă i1 ď r and 1 ď j ă j1 ď a;

• mG4
puij, vq “ µa{a “ µ for each v P V and for 1 ď i ď r; and

• dG4pjqpuii1q “ 2a{a “ 2 for 1 ď i ď r, 1 ď i1 ď a.

Therefore G4 “ Kpapp`rq;λ, µq, and each color class in G4 is a Hamiltonian cycle, so the

proof is complete.

A natural perspective of this embedding problem is to keep a, p, λ and µ fixed, and ask

for which values of r the embedding is possible. The following result completely settles this

question for all r ě λpa´1q`µapp´1q
µapa´1q

.
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Theorem 4.3. (Bahmanian, Rodger [10, Theorem 3]) Let G “ Kpappq;λ, µq with a ą 1,

λ ě 0, µ ě 1, λ ‰ µ, and

r ě λpa´ 1q ` µapp ´ 1q
µapa ´ 1q . (4.3)

Then a k-edge-coloring of G can be embedded into a Hamiltonian decomposition ofKpapp`rq;λ, µq

if and only if (i)–(iv) of Theorem 4.2 are satisfied.

Proof. It is enough to show that (4.3) implies (4.2). Since sj ě 1 for 1 ď j ď k,
řk

j“1 sj ě k.

Thus, if we show that k ě kr ´ µa2
`

r

2

˘

, we are done. This is true by the following sequence

of equivalences:

kpr ´ 1q ď µa2
ˆ

r

2

˙

ðñ

pr ´ 1q
`

λpa´ 1q ` µapp ` r ´ 1q
˘

ď µa2rpr ´ 1q ðñ

λpa ´ 1q ď µapar ´ p ´ r ` 1q “ µa
`

rpa´ 1q ´ pp ´ 1q
˘

ðñ

λpa´ 1q{pµaq ď rpa´ 1q ´ pp ´ 1q ðñ

r ě λpa´ 1q ` µapp ´ 1q
µapa ´ 1q .

Another immediate corollary of Theorem 4.2 is the following complete solution to the

embedding problem when r “ 1:

Corollary 4.4. Let G “ Kpappq;λ, µq with a ą 1, λ ě 0, µ ě 1, λ ‰ µ. Then a k-edge-

coloring of G can be embedded into a Hamiltonian decomposition of Kpapp`1q;λ, µq if and

only if:

(i) k “
`

λpa´ 1q ` µap
˘

{2,

(ii) λ ď µap,

(iii) Every component of Gpjq is a path (possibly of length 0) for 1 ď j ď k, and
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(iv) ωj ď a for 1 ď j ď k.

Proof. Since r “ 1, we have s1 “ . . . “ sk “ 1, so k “ řk
j“1 sj “ k ´ µa2

`

1
2

˘

“ k, and thus

condition (4.2) of Theorem 4.2 is satisfied.

Proposition 4.5. Whenever λ ď µa and p ď a, the embedding problem is completely solved

for all values of r ě 1.

Proof. Condition 4.3 can be rewritten as r ě λ
µa

` p´1
a´1

. Since we are assuming that λ ď µa

and p ď a, we have λ
µa

` p´1
a´1

ď 2. Therefore the result follows from Theorem 4.3 and

Corollary 4.4.

Example 4.6. A k-edge-coloring of Kp10p7q; 2, 5q can be embedded into a Hamiltonian

decomposition of Kp10p7`rq; 2, 5q for r ě 1 if and only if (i)–(iv) of Theorem 4.2 are satisfied.

The following result completely settles the embedding problem for the smallest value of

r in another sense, namely with respect to the inequality (ii) of Theorem 4.2; so it settles the

case where λ “ µapp ` r ´ 1q, or equivalently where r “ λ
µa

´ p ` 1. The proof is similar to

that of Theorem 4.2, so only an outline of the proof is provided, the details being omitted.

The proof of the necessity of condition (ii) of Theorem 4.2 shows that, in a Hamiltonian

decomposition of Kpappq;λapp ` r ´ 1q, λq, each Hamiltonian cycle contains exactly a ´ 1

pure edges from each part, and exactly p ` r mixed edges.

Theorem 4.7. (Bahmanian, Rodger [10, Theorem 4]) Let a ą 1 and r, µ ě 1. A k-edge-

coloring of G “ Kpappq;µapp` r´ 1q, µq can be embedded into a Hamiltonian decomposition

of G˚ “ Kpapp`rq;µapp ` r ´ 1q, µq if and only if:

(i) k “ µa2pp ` r ´ 1q{2,

(ii) Every component of Gpjq is a path (possibly of length 0) for 1 ď j ď k,

(iii) Gpjq has exactly a ´ 1 pure edges from each part, and at most p ´ 1 mixed edges for

1 ď j ď k, and
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(iv) ωj ď r for 1 ď j ď k.

Proof. The necessity of (i)–(iii) follows as described in Theorem 4.2. Let mj be the number

of mixed edges in Gpjq. To extend each component P of Gpjq to a Hamiltonian cycle in G˚,

two mixed edges have to join P to the new vertices, and since each Hamiltonian cycle in G˚

contains exactly p ` r mixed edges, we have that

mj ` 2ωj ď p ` r. (4.4)

Since Gpjq is a collection of paths, for 1 ď j ď k, we have |V pGpjqq| “ |EpGpjqq| ` ωj.

Therefore ap “ mj ` ppa´ 1q ` ωj and thus

mj ` ωj “ p. (4.5)

Combining (4.4) and (4.5) implies (iv).

To prove sufficiency, we define the graph G1 as it is defined in Theorem 4.2. We extend

the k-edge-coloring of G to a k-edge-coloring of G1 such that dG1pjqpvq “ 2 for each v P V

and 1 ď j ď k. This is possible by the same argument as in Theorem 4.2. At this point

dG1pjqpuq “ 2ωj ď 2r for 1 ď j ď k. So we can color the loops incident with u such that

dG1pjqpuq “ 2r for 1 ď j ď k, simply by assigning the color j to r ´ ωj loops.

Now we detach the vertex u into r new vertices u1, . . . , ur to obtain the new graph G2

(as we did in the proof of Theorem 4.2). Note that dG2pjqpuiq “ 2r{r “ 2 for each i, 1 ď i ď r

and each j, 1 ď j ď k. Now we define the new graph G3 by adding a ´ 1 loops of color j,

1 ď j ď k, on every vertex ui in G2, for each i, 1 ď i ď r. So we have dG3pjqpuiq “ 2a. Using

Theorem 4.1, detach each vertex ui into a new vertices ui1, . . . , uia for 1 ď i ď r, to obtain

the new graph G4 in which, G4pjq is connected and dG4pjqpuii1q “ 2a{a “ 2 for 1 ď j ď k,

1 ď i ď r, 1 ď i1 ď a. This completes the proof.
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Chapter 5

Detachments of Amalgamated 3-uniform Hypergraphs : Factorization Consequences

5.1 Introduction

A detachment of a hypergraph F is, informally speaking, a hypergraph obtained from

F by splitting some or all of its vertices into more than one vertex. If G is a detachment of

F , then F is an amalgamation of G . Amalgamating G , intuitively speaking, can be thought

of as taking G , partitioning its vertices, then for each element of the partition squashing the

vertices to form a single vertex in the amalgamated hypergraph F . We shall give more

precise definition for amalgamation and detachment in Section 5.2.

Perhaps the most interesting use of amalgamations has been to prove embedding results;

see, for example [2, 3, 47, 51, 70, 74]. Detachments of graphs have also been studied in

[18, 49], generalizing some results of Nash-Williams [69, 68]. For a survey about the method

of amalgamation and embedding partial edge-colorings we refer the reader to [4].

Most of the results in graph amalgamation have used edge-coloring techniques due to

de Werra [80, 81, 82, 83], however Nash-Williams [70] proved a lemma (see Lemma 1.3) to

generalize theorems of Hilton and Rodger. In this chapter we apply Nash-Williams technique

to produce a general detachment theorem for 3-uniform hypergraphs (see Theorem 5.3).

This result is not only a substantial generalization of previous amalgamation theorems,

but also yields several consequences on factorizations of complete 3-uniform multipartite

(multi)hypergraphs. To demonstrate the power of our detachment theorem, we show that

the complete 3-uniform n-partite multi-hypergraph λK3
m1,...,mn

can be expressed as the union

G1 Y . . .Y Gk of k edge-disjoint factors, where for i “ 1, . . . , k, Gi is ri-regular, if and only if:

(i) mi “ mj :“ m for all 1 ď i, j ď k,
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(ii) 3 � rimn for each i, 1 ď i ď k, and

(iii)
řk

i“1 ri “ λ
`

n´1
2

˘

m2.

It is expected that Theorem 5.3 can be used to provide conditions under which one

can embed a k-edge-colored complete 3-uniform hypergraph K3
n into an edge-colored K3

n`m

such that ith color class of K3
n`m induces an ri-factor for i “ 1, . . . , k. However obtaining

such results will require more advanced edge-coloring techniques and it will be much more

complicated than for companion results for simple graphs, with a complete solution unlikely

to be found in the near future (see [11]).

In connection with Kirkman’s famous Fifteen Schoolgirls Problem [56], Sylvester re-

marked in 1850 that the complete 3-uniform hypergraph with 15 vertices, is 1-factorizable.

Several generalizations of this problem were solved during the last 70 years (see for exam-

ple [71, 73, 15, 16]). It was Baranyai, who died tragically in his youth, who settled this

120-year-old problem (1-factorization of complete uniform hypergraphs) ingeniously [15, 16].

Baranyai’s proof actually yields a method for constructing a 1-factorization recursively.

However, this approach would not be very efficient and its complexity is exponential [53].

Baranyi’s original theorem was spurred by Peltesohn’s result [71] which was a direct con-

struction, and it was polynomial time to implement. Brouwer and Schrijver gave an elegant

proof for 1-factorizations of the complete uniform hypergraph for which the algorithm is

more efficient [25]. Our construction leads to an algorithm similar to that of Brouwer and

Schrijver. This is discussed briefly in Section 5.6, but for more details we refer the reader to

Chapter 10.

Notation and more precise definitions will be given in Section 5.2. Any undefined term

may be found in [20]. In Section 5.3, we state our main result and we postpone its proof to

Section 5.5. In Section 5.4, we exhibit some applications of our result by providing several

factorization theorems for 3-uniform (multi)hypergraphs. The key idea used in proving the

main theorem is short and is given in 5.5.1. The rest of Section 5.5 is devoted to the

verification of all conditions in Theorem 5.3.
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5.2 Notation and More Precise Definitions

For the purpose of this chapter, a hypergraph G is an ordered quintuple pV pG q, EpG q, HpG q,

ψ, φq where V pG q, EpG q, HpG q are disjoint finite sets, ψ : HpG q Ñ V pG q is a function and

φ : HpG q Ñ EpG q is a surjection. Elements of V pG q, EpG q, HpG q are called vertices, hyper-

edges and hinges of G , respectively. A vertex v and hinge h are said to be incident with

each other if ψphq “ v. A hyperedge e and hinge h are said to be incident with each other

if φphq “ e. A hinge h is said to attach the hyperedge φphq to the vertex ψphq. In this

manner, the vertex φphq and the hyperedge ψphq are said to be incident with each other.

If e P EpG q, and e is incident with n hinges h1, . . . , hn for some n P N, then the hyperedge

e is said to join (not necessarily distinct) vertices ψph1q, . . . , ψphnq. If v P V pG q, then the

number of hinges incident with v is called the degree of v and is denoted by dG pvq.

The number of vertices incident with a hyperedge e, denoted by |e|, is called the size of

e. If |e| “ 1 then e is called a loop. If for all hyperedges e of G , |e| ď 2 and |φ´1peq| “ 2,

then G is a graph. If n ą 1 and e1, . . . , en are n distinct hyperedges of G , incident with the

same set of vertices, then e1, . . . , en is said to be multiple hyperedges. A multi-hypergraph is

a hypergraph with multiple hyperedges.

Thus a hypergraph, in the sense of our definition is a generalization of a finite hypergraph

as usually defined, but for convenience, we imagine each hyperedge of a hypergraph to be

attached to the vertices which it joins by in-between objects called hinges. In fact if for every

edge e, |e| “ |φ´1peq|, then our definition is essentially the same as the usual definition. One

can think of a hypergraph as a bipartite multigraph, where E forms one class, V forms

other class, and the hinges H form the edges. A hypergraph may be drawn as a set of

points representing the vertices. An edge is represented by a simple closed curve enclosing

its incident vertices. A hinge is represented by a small line attached to the vertex incident

with it (see Figure 5.1).
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Example 5.1. Let F “ pV,E,H, ψ, φq, with V “ tvi : 1 ď i ď 7u, E “ te1, e2, e3u, H “

thi : 1 ď i ď 9u, such that ψph1q “ v1, ψph2q “ ψph3q “ v2, ψph4q “ v3, ψph5q “ ψph6q “

ψph7q “ v4, ψph8q “ v5, ψph9q “ v6 and φph1q “ e1, φph2q “ φph3q “ φph4q “ φph5q “

φph6q “ e2, φph7q “ φph8q “ φph9q “ e3. Moreover |e1| “ 1, |e2| “ |e3| “ 3, and dpv1q “

dpv3q “ dpv5q “ dpv6q “ 1, dpv2q “ 4, dpv4q “ 3, dpv7q “ 0.

h7

h6

h5

v7

v5
h8

v6

h9

e3

e2

e1

v1

h1

h4

v3

v2

h3

h2

F

v4

Figure 5.1: Representation of a hypergraph F

Throughout this chapter, the letters F and G denote hypergraphs (possibly with loops

and multiple hyperedges). The set of hinges of G which are incident with a vertex v

(a hyperedge e), is denoted by HpG , vq (HpG , eq, respectively). Thus if e P EpG q, then

HpG , eq “ φ´1peq. If v P V pG q, then HpG , vq “ ψ´1pvq, and |HpG , vq| is the degree dpvq of

v. If S is a subset of V pG q or EpG q, then HpG , Sq denotes the set of those hinges of G which

are incident with an element of S. If S1 Ă V pG q and S2 Ă EpG q, then HpG , S1, S2q denotes

HpG , S1q XHpG , S2q. If v P V pG q and S Ă EpG q, then HpG , v, Sq denotes HpG , tvu, Sq. To

avoid ambiguity, subscripts may be used to indicate the hypergraph in which hypergraph-

theoretic notation should be interpreted — for example, dG pvq.

Let G be a hypergraph in which each hyperedge is incident with exactly three hinges.

If u, v, w are three (not necessarily distinct) vertices of G , then ∇pu, v, wq denotes the set of

hyperedges which are incident with u, v, w. For each hyperedge e incident with three hinges

h1, h2, h3 there are three possibilities (see Figure 5.2):
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(i) e is incident with exactly one vertex u. In this case u is incident with h1, h2, h3. We

denote ∇pu, u, uq by ∇pu3q.

(ii) e is incident with exactly two distinct vertices u, v. In this case one of the vertices, say

u is incident with two hinges, say h1, h2 and v is incident with h3. We denote ∇pu, u, vq

by ∇pu2, vq.

(iii) e is incident with three distinct vertices u, v and w.

For multiplicity we use mp.q rather than |∇p.q|. A hypergraph G is said to be k-uniform

u

h2

e

(ii) (iii)

e
v

h1

h3

(i)

e

u

h2

h3

v
u

h1

w

h1

h2

h3

Figure 5.2: The three types of edges in a hypergraph G in which |HpG , eq| “ 3 for every
edge e

if |e| “ |HpG , eq| “ k for each e P EpG q. A k-uniform hypergraph with n vertices is said

to be complete, denoted by Kk
n, if every k distinct vertices are incident within one edge. A

3-uniform hypergraph with vertex partition tV1, . . . , Vnu with |Vi| “ mi for i “ 1, . . . , n, is

said to be (i) n-partite, if every edge is incident with at most one vertex of each part, and (ii)

complete n-partite, denoted by K3
m1,...,mn

, if it is n-partite and every three distinct vertices

from three different parts are incident.

If we replace every hyperedge of G by λ (ě 2) multiple hyperedges, then we denote the

new (multi) hypergraph by λG . A k-hyperedge-coloring of G is a mapping K : EpG q Ñ C,
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where C is a set of k colors (often we use C “ t1, . . . , ku), and the hyperedges of one color

form a color class. The sub-hypergraph of G induced by the color class j is denoted by G pjq.

A hypergraph G is said to be (i) regular if there is an integer d such that every vertex has

degree d, and (ii) k-regular if every vertex has degree k. A factor of G is a regular spanning

sub-hypergraph of G . A k-factor is a k-regular factor. A factorization is a decomposi-

tion (partition) of EpG q into factor(s). Let r1, . . . , rk be (not necessarily distinct) positive

integers. An pr1, . . . , rkq-factorization is a factorization in which there is one ri-factor for

i “ 1, . . . , k. An prq-factorization is called simply an r-factorization. A hypergraph G is said

to be factorizable if it has a factorization. The definition for k-factorizable and pr1, . . . , rkq-

factorizable hypergraphs is similar.

If F “ pV,E,H, ψ, φq is a hypergraph and Ψ is a function from V onto a set W , then

we shall say that the hypergraph G “ pW,E,H,Ψ ˝ψ, φq is an amalgamation of F and that

F is a detachment of G . In this manner, Ψ is called an amalgamation function, and G is

the Ψ-amalgamation of F . Associated with Ψ is the number function g : W Ñ N defined

by gpwq “ |Ψ´1pwq|, for each w P W , and we shall say that F is a g-detachment of G .

Intuitively speaking, a g-detachment of G is obtained by splitting each u P V pG q into gpuq

vertices. Thus F and G have the same hyperedges and hinges, and each vertex v of G is

obtained by identifying those vertices of F which belong to the set Ψ´1pvq. In this process,

a hinge incident with a vertex u and a hyperedge e in F becomes incident with the vertex

Ψpuq and the edge e in G . Since two hypergraphs F and G related in the above manner have

the same hyperedges, coloring the hyperedges of one of them is the same thing as coloring the

hyperedges of the other. Hence an amalgamation of a hypergraph with colored hyperedges

is a hypergraph with colored hyperedges.

Example 5.2. Let F be the hypergraph of Example 5.1. Let Ψ : V Ñ tw1, w2, w3, w4u be

the function with Ψpv1q “ Ψpv7q “ w1, Ψpv2q “ w2, Ψpv3q “ Ψpv4q “ w3, Ψpv5q “ Ψpv6q “

w4. The hypergraph G in Figure 5.3 is the Ψ-amalgamation of F .
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h9

h6

w3

e1

h1

h7

h3

w4

h8

h2

w2

h5

h4

G

w1

e3

e2

Figure 5.3: Amalgamation G of the hypergraph F in Example 5.1

5.3 Statement of the Main Theorem

In the remainder of this chapter, all hypergraphs are either 3-uniform or are amalgama-

tions of 3-uniform hypergraphs. That is, for every hypergraph F we have

1 ď |e| ď |HpF , eq| “ 3 for every e in F . (5.1)

Therefore every edge is of one the types shown in Figure 5.2. For g : V pF q Ñ N, we define

the symmetric function g̃ : V 3pF q Ñ N such that for distinct x, y, z P V pF q, g̃px, x, xq “
`

gpxq
3

˘

, g̃px, x, yq “
`

gpxq
2

˘

gpyq, and g̃px, y, zq “ gpxqgpyqgpzq. Also we assume that for each

x P V pF q, gpxq ď 2 implies mF px3q “ 0, and gpxq “ 1 implies mF px2, yq “ 0 for every

y P V pF q.

Theorem 5.3. Let F be a k-hyperedge-colored hypergraph and let g be a function from V pF q

into N. Then there exists a 3-uniform g-detachment G (possibly with multiple hyperedges) of

F with amalgamation function Ψ : V pG q Ñ V pF q, g being the number function associated

with Ψ, such that G satisfies the following conditions:

(A1) dG puq « dF pxq{gpxq for each x P V pF q and each u P Ψ´1pxq;

(A2) dG pjqpuq « dF pjqpxq{gpxq for each x P V pF q, each u P Ψ´1pxq and each j P t1, . . . , ku;
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(A3) mG pu, v, wq « mF px, y, zq{g̃px, y, zq for every x, y, z P V pF q with gpxq ě 3 if x “

y “ z, and gpxq ě 2 if |tx, y, zu| “ 2, and every triple of distinct vertices u, v, w with

u P Ψ´1pxq, v P Ψ´1pyq and w P Ψ´1pzq;

(A4) mG pjqpu, v, wq « mF pjqpx, y, zq{g̃px, y, zq for every x, y, z P V pF q with gpxq ě 3 if

x “ y “ z, and gpxq ě 2 if |tx, y, zu| “ 2, every triple of distinct vertices u, v, w with

u P Ψ´1pxq, v P Ψ´1pyq and w P Ψ´1pzq and each j P t1, . . . , ku.

5.4 Factorization Consequences

Throughout this section n ě 3. It is easy to see that every factorizable hypergraph must

be regular. If G is a 3-uniform hypergraph with an r-factor, since each edge contributes 3

to the sum of the degree of all vertices in an r-factor, r|V pG q| must be divisible by 3.

5.4.1 Factorizations of λK3
n

We first note that λK3
n is λ

`

n´1
2

˘

-regular, and |EpλK3
nq| “ λ

`

n

3

˘

. Throughout this

section, F is a hypergraph consisting of a single vertex x and λ
`

n

3

˘

loops incident with x,

and g : V pF q Ñ N is a function with gpxq “ n. Note that λK3
n is a g-detachment of F .

Theorem 5.4. λK3
n is pr1, . . . , rkq-factorizable if and only if

(i) 3 � rin for each i, 1 ď i ď k, and

(ii)
řk

i“1 ri “ λ
`

n´1
2

˘

.

Proof. Suppose first that λK3
n is pr1, . . . , rkq-factorizable. The existence of each ri-factor

implies that 3 � rin for each i, 1 ď i ď k. Since each ri-factor is an ri-regular spanning

sub-hypergraph and λK3
n is λ

`

n´1
2

˘

-regular, we must have
řk

i“1 ri “ λ
`

n´1
2

˘

.
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Now assume (i)–(ii). We find a k-hyperedge-coloring for F such that mF pjqpx3q “ rjn{3

for each j P t1, . . . , ku. It is possible, because

k
ÿ

j“1

mF pjqpx3q “
k

ÿ

j“1

rjn

3
“ n

3

k
ÿ

j“1

rj

“ λn

3

ˆ

n ´ 1

2

˙

“ λ

ˆ

n

3

˙

“ mF px3q.

Now by Theorem 5.3, there exists a 3-uniform g-detachment G of F with n vertices, say

v1, . . . , vn such that by (A2) dG pjqpviq “ rjn{n “ rj for each i “ 1, . . . , n and each j P

t1, . . . , ku; and by (A3) mG pvr, vs, vtq “ λ
`

n

3

˘

{
`

n

3

˘

“ λ for distinct r, s, t, 1 ď r, s, t ď n.

Therefore G – λK3
n and each color class i is an ri-factor for i “ 1, . . . , k.

5.4.2 Factorizations of K3
m1,...,mn

We denote K3
m, . . . ,m
loooomoooon

n

by K3
m,...,m (so we don’t write the under-brace when it is not am-

biguous). We first note that λK3
m,...,m is a λ

`

n´1
2

˘

m2-regular hypergraph with nm vertices and

λ
`

n

3

˘

m3 edges. Throughout this section, F “ λm3K3
n with vertex set V pF q “ tx1, . . . , xnu,

and g : V pF q Ñ N is a function with gpxiq “ m for i “ 1, . . . , n. We observe that λK3
m,...,m

is a g-detachment of F .

Theorem 5.5. λK3
m1,...,mn

is pr1, . . . , rkq-factorizable if and only if

(i) mi “ mj :“ m for 1 ď i ă j ď n,

(ii) 3 � rimn for each i, 1 ď i ď k, and

(iii)
řk

i“1 ri “ λ
`

n´1
2

˘

m2.

Proof. Suppose first that λK3
m1,...,mn

is r-factorizable (so it is regular). Let u and v be

two vertices from two different parts, say pth and qth parts respectively. Then we have the

following sequence of equivalences:
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dpuq “ dpvq ðñ
ÿ

1ďiăjďn
i,j‰p

mimj “
ÿ

1ďiăjďn
i,j‰q

mimj ðñ

mq

ÿ

1ďiďn
i‰p,q

mi `
ÿ

1ďiăjďn
i,jRtp,qu

mimj “ mp

ÿ

1ďiďn
i‰p,q

mi `
ÿ

1ďiăjďn
i,jRtp,qu

mimj ðñ

mq

ÿ

1ďiďn
i‰p,q

mi “ mp

ÿ

1ďiďn
i‰p,q

mi ðñ

pmp ´ mqq
ÿ

1ďiďn
i‰p,q

mi “ 0 ðñ

mp “ mq :“ m. pn ě 3q

This proves (i). The existence of each ri-factor implies that 3 � rimn for each i, 1 ď i ď

k. Since each ri-factor is an ri-regular spanning sub-hypergraph and K3
m,...,m is λ

`

n´1
2

˘

m2-

regular, we must have
řk

i“1 ri “ λ
`

n´1
2

˘

m2.

Now assume (i)–(iii). Since 3 � rimn for each i, 1 ď i ď k and
řk

i“1mri “ λ
`

n´1
2

˘

m3, by

Theorem 5.4, F is pmr1, . . . , mrkq-factorizable. Therefore we can find a k-hyperedge-coloring

for F such that

dF pjqpxq “ rjm @j P t1, . . . , ku.

Now by Theorem 5.3, there exists a 3-uniform g-detachment G of F with mn vertices, say

xij , 1 ď i ď n, 1 ď j ď m (xi1, . . . , xim are obtained by splitting xi into m vertices for

i “ 1, . . . , n) such that by (A2) dG ptqpxijq “ rtm{m “ rt for each i “ 1, . . . , n, j “ 1, . . . , m,

and each t P t1, . . . , ku; by (A3) mG pxij, xij1, xij2q “ 0 for i “ 1 . . . , n and distinct j, j1, j2,

1 ď j, j1, j2 ď m, if m ě 3; by (A3) mG pxij , xij1, xi1j2q “ 0 for distinct i, i1, 1 ď i, i1 ď n and

distinct j, j1, 1 ď j, j1, j2 ď m, if m ě 2; and by (A3) mG pxij , xi1j1, xi2j2q “ λm3{pmmmq “ λ

for distinct i, i1, i2, 1 ď i, i1, i2 ď n and 1 ď j, j1, j2 ď m. Therefore G – λK3
m,...,m and each

color class i is an ri-factor for each i P t1, . . . , ku.
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5.5 Proof of the Main Theorem

Recall that x « y means tyu ď x ď rys. We observe that for x, y P R, a, b, c P Z, and

n P N (i) a « x implies a P ttxu, rxsu, (ii) x « y implies x{n « y{n (iii) the relation « is

transitive (but not symmetric), and (vi) a “ b ´ c and c « x, implies a « b ´ x. These

properties of « will be used in this section when required without further explanation.

Let F “ pV,E,H, ψ, φq. Let n “ ř

vPV pgpvq ´ 1q. Our proof of Theorem 5.3 consists

of the following major parts. First, in Section 5.5.1 we shall describe the construction of

a sequence F0 “ F ,F1, . . . ,Fn of hypergraphs where Fi is an amalgamation of Fi`1 (so

Fi`1 is a detachment of Fi) for 0 ď i ď n´1 with amalgamation function Φi that combines

a vertex with amalgamation number 1 with one other vertex. To construct each Fi`1 from

Fi we will use two laminar families Ai and Bi. In Section 5.5.2 we shall observe some

properties of Fi`1 in terms of Fi. As we will see in Section 5.5.3, the relations between

Fi`1 and Fi lead to conditions relating each Fi, 1 ď i ď n to the initial hypergraph F .

Finally, in Section 5.5.4 we will show that Fn satisfies the conditions (A1)–(A4), so we can

let G “ Fn.

5.5.1 Construction of G

Initially we let F0 “ F and g0 “ g, and we let Φ0 be the identity function from V into

V . Now assume that F0 “ pV0, E0, H0, ψ0, φ0q, . . . ,Fi “ pVi, Ei, Hi, ψi, φiq and Φ0, . . . ,Φi

have been defined for some i ě 0. Also assume that g0 : V0 Ñ N, . . . , gi : Vi Ñ N have been

defined such that for each j “ 0, . . . , i and each x P Vj , gjpxq ď 2 implies mFj
px3q “ 0, and

gjpxq “ 1 implies mFj
px2, yq “ 0 for every y P Vj. Let Ψi “ Φ0 . . .Φi. If i “ n, we terminate

the construction, letting G “ Fn and Ψ “ Ψn.

If i ă n, we can select a vertex α of Fi such that gipαq ě 2. As we will see, Fi`1 is

formed from Fi by detaching a vertex vi`1 with amalgamation number 1 from α.

Let Hij “ HpFipjq, αq for j “ 1, . . . , k. If e P Ei incident with α, we let He
ij “

HpFipjq, α, eq for j “ 1, . . . , k. Recall that by (5.1), |He
ij | ď 3. Intuitively speaking, Hij is
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the set of all hinges which are incident with α and a hyperedge colored j, and He
ij is a subset

of Hij consisting of only those hinges incident with a single hyperedge e colored j. Now let

Ai “ tHpFi, αqu
Ť tHi1, . . . , Hiku
Ť tHe

ij : e P ∇pα2, yq, y P Vi, 1 ď j ď ku. (5.2)

Note that

tHe
ij : e P ∇pα2, yq, y P Vi, 1 ď j ď ku “ tHe

ij : e P ∇pα3q, 1 ď j ď ku
Ť tHe

ij : e P ∇pα2, yq, y P Viztαu, 1 ď j ď ku.

If u, v P Vi, let Huv
i “ HpFi,∇pα, u, vqq and Huv

ij “ HpFipjq, α,∇pα, u, vqq for j “ 1, . . . , k.

Now let

Bi “ tHuv
i : u, v P Viu

Ť tHuv
ij : u, v P Vi, 1 ď j ď ku. (5.3)

It is easy to see that both Ai and Bi are laminar families of subsets of HpFi, αq. Then, by

Lemma 1.3, there exists a subset Zi of HpFi, αq such that

|Zi X P | « |P |{gipαq, for every P P Ai Y Bi. (5.4)

Let vi`1 be a vertex which does not belong to Vi and let Vi`1 “ Vi Y tvi`1u. Let Φi`1 be the

function from Vi`1 onto Vi such that Φi`1pvq “ v for every v P Vi and Φi`1pvi`1q “ α. Let

Fi`1 be the detachment of Fi under Φi`1 (Fi is the Φi`1-amalgamation of Fi`1) such that

V pFi`1q “ Vi`1, and
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HpFi`1, vi`1q “ Zi, HpFi`1, αq “ HpFi, αqzZi. (5.5)

In fact, Fi`1 is obtained from Fi by splitting α into two vertices α and vi`1 in such a

way that hinges which were incident with α in Fi become incident in Fi`1 with α or vi`1

according as they do not or do belong to Zi, respectively. Obviously, Ψi is an amalgamation

function from Fi`1 into Fi. Let gi`1 be the function from Vi`1 into N, such that gi`1pvi`1q “

1, gi`1pαq “ gipαq ´ 1, gi`1pvq “ gipvq for every v P Viztαu. This finishes the construction

of Fi`1. Now, we explore some relations between Fi`1 and Fi. In the remainder of this

chapter, dip.q, mip.q, dp.q, and mp.q will denote dFi
p.q, mFi

p.q, dF p.q, and mF p.q, respectively.

5.5.2 Relations Between Fi`1 and Fi

The hypergraph Fi`1, described in 5.5.1, satisfies the following conditions:

(B1) di`1pαq « dipαqgi`1pαq{gipαq;

(B2) di`1pvi`1q « dipαq{gipαq;

(B3) mi`1pα, v2q « mipα, v2qgi`1pαq{gipαq for each v P Viztαu;

(B4) mi`1pvi`1, v
2q « mipα, v2q{gipαq for each v P Viztαu;

(B5) mi`1pα, u, vq « mipα, u, vqgi`1pαq{gipαq for every pair of distinct vertices u, v P Viztαu;

(B6) mi`1pvi`1, u, vq « mipα, u, vq{gipαq for every pair of distinct vertices u, v P Viztαu;

(B7) mi`1pv2i`1, vq “ 0 for each v P Viztαu;

(B8) mi`1pα, vi`1, vq « 2mipα2, vq{gipαq for each v P Viztαu;

(B9) mi`1pα2, vq « mipα2, vqpgi`1pαq ´ 1q{gipαq for each v P Viztαu;

(B10) mi`1pv3i`1q “ mi`1pv2i`1, αq “ 0;

(B11) mi`1pα3q « mipα3qpgi`1pαq ´ 2q{gipαq;
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(B12) mi`1pvi`1, α
2q « 3mipα3q{gipαq.

Proof. Since HpFi, αq P Ai, from (5.5) it follows that

di`1pvi`1q “ |HpFi`1, vi`1q| “ |Zi| “ |Zi X HpFi, αq|

« |HpFi, αq|{gipαq “ dipαq{gipαq,

di`1pαq “ |HpFi`1, αq| “ |HpFi, αq| ´ |Zi|

« dipαq ´ dipαq{gipαq “ pgipαq ´ 1qdipαq{gipαq

“ dipαqgi`1pαq{gipαq.

This proves (B1) and (B2).

If v P Viztαu, then Hvv
i P Bi and so

mi`1pvi`1, v
2q “ |Zi X Hvv

i | « |Hvv
i |{gipαq “ mipα, v2q{gipαq,

mi`1pα, v2q “ |Hvv
i | ´ |Zi X Hvv

i | « mipα, v2q ´ mipα, v2q{gipαq

“ pgipαq ´ 1qmipα, v2q{gipαq

“ mipα, v2qgi`1pαq{gipαq.

This proves (B3) and (B4) (see Figure 5.4(i)).

If u, v are a pair of distinct vertices in Viztαu, then Huv
i P Bi and so

mi`1pvi`1, u, vq “ |Zi X Huv
i | « |Huv

i |{gipαq “ mipα, u, vq{gipαq,

mi`1pα, u, vq “ |Huv
i | ´ |Zi X Huv

i |

« mipα, u, vq ´ mipα, u, vq{gipαq

“ pgipαq ´ 1qmipα, u, vq{gipαq

“ mipα, u, vqgi`1pαq{gipαq.

This proves (B5) and (B6) (see Figure 5.4(ii)).
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If v P Viztαu, and e P ∇Fipjqpα2, vq, then He
ij P Ai, so

ˇ

ˇZi X He
ij

ˇ

ˇ « |He
ij |{gipαq “ 2{gipαq ď 1.

Therefore either |Zi X He
ij| “ 1 and consequently e P ∇Fi`1

pvi`1, α, vq or Zi X He
ij “ ∅ and

consequently e P ∇Fi`1
pα2, vq. Therefore

∇Fi`1
pv2i`1, vq “ ∅.

This proves (B7) (see Figure 5.4(iii)). Moreover, since Hαv
i P Bi

α

v

α

v

α
v

u

v
α α

α
v

u

v
α α

α

v

vi+1

vi+1

α

v

(i) (ii)

(iv)(iii)

u

vi+1

v

vi+1

Figure 5.4: The four possibilities for detachment of a single edge incident with α
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mi`1pα, vi`1, vq “ |Zi X Hαv
i | « |Hαv

i |{gipαq “ 2mipα2, vq{gipαq,

mi`1pα2, vq “ mipα2, vq ´ |Zi X Hαv
i |

« mipα2, vq ´ 2mipα, u, vq{gipαq

“ pgipαq ´ 2qmipα2, vq{gipαq

“ mipα2, vqpgi`1pαq ´ 1q{gipαq.

This proves (B8) and (B9). We note that from (B9) it follows that if gi`1pαq “ 1, then

mi`1pα2, vq “ 0.

If e is a loop in Fipjq incident with α, (so gipαq ě 3,) then He
ij P Ai. So

|Zi X He
ij | « |He

ij|{gipαq “ 3{gipαq ď 1.

Therefore either |Zi X He
ij| “ 1 and consequently e P ∇Fi`1

pα2, vi`1q or Zi X He
ij “ ∅ and

consequently e P ∇Fi`1
pα3q. Therefore

∇Fi`1
pv3i`1q “ ∇Fi`1

pv2i`1, αq “ ∅.

This proves (B10) (see Figure 5.4(iv)). Moreover,

mi`1pα2, vi`1q “ |Zi X Hαα
i | « |Hαα

i |{gipαq “ 3mipα3q{gipαq,

mi`1pα3q “ mipα3q ´ |Zi X Hαα
i | « mipα3q ´ 3mipα3q{gipαq

“ pgipαq ´ 3qmipα3q{gipαq “ mipα3qpgi`1pαq ´ 2q{gipαq.

This proves (B11) and (B12). We may note that from (B11) it follows that if gi`1pαq “ 2,

then mi`1pα3q “ 0.

A similar statement can be proved for every color class: Let us fix j P t1, . . . , ku, and let

u, v be a pair of distinct vertices in Viztαu. The colored version of (B7) and (B10) is trivial.
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Since Hij P Ai, H
vv
ij P Bi, H

uv
ij P Bi, H

αv
ij P Bi, H

αα
ij P Bi, respectively, we can obtain a

colored version for (B1) and (B2), (B3) and (B4), (B5) and (B6), (B8) and (B9), and (B11)

and (B12), respectively.

5.5.3 Relations Between Fi and F

Recall that Ψi “ Φ0 . . .Φi, that Φ0 : V Ñ V , and that Φi : Vi Ñ Vi´1 for i ą 0.

Therefore Ψi : Vi Ñ V and thus Ψ´1
i : V Ñ Vi.

Now we use (B1)–(B12) to prove that the hypergraph Fi satisfies the following condi-

tions for 0 ď i ď n :

(D1) dipxq{gipxq « dpxq{gpxq for each x P V ;

(D2) dipvrq « dpxq{gpxq for each x P V and each vr P Ψ´1
i rxs;

(D3) mipx3q{
`

gipxq
3

˘

« mpx3q{
`

gpxq
3

˘

for each x P V with gpxq ě 3 if gipxq ě 3, and mipx3q “ 0

otherwise;

(D4) mipv3rq “ 0 for each x P V and each vr P Ψ´1
i rxs;

(D5) mipx2, vrq{
`

gipxq
2

˘

« mpx3q{
`

gpxq
3

˘

for each x P V with gpxq ě 3 and each vr P Ψ´1
i rxs if

gipxq ě 2, and mipx2, vrq “ 0 otherwise;

(D6) mipx, vr, vsq{gipxq « mpx3q{
`

gpxq
3

˘

for each x P V with gpxq ě 3 and every pair of

distinct vertices vr, vs P Ψ´1
i rxs;

(D7) mipvr, vs, vtq « mpx3q{
`

gpxq
3

˘

for each x P V with gpxq ě 3 and every triple of distinct

vertices vr, vs, vt P Ψ´1
i rxs;

(D8) mipx2, yq{p
`

gipxq
2

˘

gipyqq « mpx2, yq{p
`

gpxq
2

˘

gpyqq for every pair of distinct vertices x, y P

V with gpxq ě 2 if gipxq ě 2, and mipx2, yq “ 0 otherwise;

(D9) mipx2, vtq{
`

gipxq
2

˘

« mpx2, yq{p
`

gpxq
2

˘

gpyqq for every pair of distinct vertices x, y P V with

gpxq ě 2 and each vt P Ψ´1
i rys if gipxq ě 2, and mipx2, vtq “ 0 otherwise;
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(D10) mipx, vr, yq{pgipxqgipyqq « mpx2, yq{p
`

gpxq
2

˘

gpyqq for every pair of distinct vertices x, y P

V with gpxq ě 2 and each vr P Ψ´1
i rxs;

(D11) mipx, vr, vtq{gipxq « mpx2, yq{p
`

gpxq
2

˘

gpyqq for every pair of distinct vertices x, y P V

with gpxq ě 2, each vr P Ψ´1
i rxs and each vt P Ψ´1

i rys;

(D12) mipvr, vs, yq{gipyq « mpx2, yq{p
`

gpxq
2

˘

gpyqq for every pair of distinct vertices x, y P V

with gpxq ě 2 and every pair of distinct vertices vr, vs P Ψ´1
i rxs;

(D13) mipvr, vs, vtq « mpx2, yq{p
`

gpxq
2

˘

gpyqq for every pair of distinct vertices x, y P V with

gpxq ě 2, every pair of distinct vertices vr, vs P Ψ´1
i rxs and each vt P Ψ´1

i rys;

(D14) mipx, y, zq{pgipxqgipyqgipzqq « mpx, y, zq{pgpxqgpyqgpzqq for every triple of distinct ver-

tices x, y, z P V ;

(D15) mipx, y, vtq{pgipxqgipyqq « mpx, y, zq{pgpxqgpyqgpzqq for every triple of distinct vertices

x, y, z P V and each vt P Ψ´1
i rzs;

(D16) mipx, vs, vtq{gipxq « mpx, y, zq{pgpxqgpyqgpzqq for every triple of distinct vertices x, y, z P

V , each vs P Ψ´1
i rys and each vt P Ψ´1

i rzs;

(D17) mipvr, vs, vtq « mpx, y, zq{pgpxqgpyqgpzqq for every triple of distinct vertices x, y, z P V ,

each vr P Ψ´1
i rxs, each vs P Ψ´1

i rys and each vt P Ψ´1
i rzs.

Proof. Let x, y, z be an arbitrary triple of distinct vertices of V . We prove (D1)–(D17) by

induction. To verify (D1)–(D17) for i “ 0, recall that F0 “ F , and g0pxq “ gpxq.

Obviously d0pxq{g0pxq “ dpxq{gpxq, and this proves (D1) for i “ 0. (D2) is trivial. If

gpxq ě 3, obviously m0px3q{
`

g0pxq
3

˘

“ mpx3q{
`

gpxq
3

˘

, and if gpxq ď 2, by hypothesis of Theorem

5.3, mpx3q “ 0. This proves (D3) for i “ 0. The proof of (D4)–(D17) for i “ 0 is similar and

can be verified easily.

Now we will show that if Fi satisfies the conditions (D1)–(D17) for some i ă n, then

Fi`1 (formed from Fi by detaching vi`1 from the vertex α) satisfies these conditions by
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replacing i with i ` 1; we denote the corresponding conditions for Fi`1 by (D1)1–(D17)1. If

gi`1pxq “ gipxq, then (D1)1–(D7)1 are obviously true. So we just check (D1)1–(D7)1 in the

case where x “ α. Also if gi`1pxq “ gipxq and gi`1pyq “ gipyq, then (D8)1–(D13)1 are clearly

true. So in order to prove (D8)1–(D13)1, we shall assume that either gi`1pxq “ gipxq ´ 1

or gi`1pyq “ gipyq ´ 1 (so α P tx, yu). Similarly, if gi`1pxq “ gipyq, gi`1pyq “ gipyq, and

gi`1pzq “ gipzq, then (D14)1–(D17)1 are true. Therefore to prove (D14)1–(D17)1 we shall

assume that either gi`1pxq “ gipxq ´ 1 or gi`1pyq “ gipyq ´ 1 or gi`1pzq “ gipzq ´ 1 (so

α P tx, y, zu).

(D1)1 By (B1), di`1pαq{gi`1pαq « dipαq{gipαq, and by (D1) of the induction hypothesis

dipαq{gipαq « dpαq{gpαq. Therefore

di`1pαq
gi`1pαq

(B1)« dipαq
gipαq

(D1)« dpαq
gpαq .

This proves (D1)1.

(D2)1 By (B2), di`1pvi`1q « dipαq{gipαq, and by (D1) of the induction hypothesis dipαq{gipαq «

dpαq{gpαq. Therefore

di`1pvi`1q
(B2)« dipαq

gipαq
(D1)« dpαq

gpαq .

Since in forming Fi`1 no hyperedge is detached from vr for each vr P Ψ´1
i rαs, we have

di`1pvrq “ dipvrq. By (D2) of the induction hypothesis dipvrq « dpαq{gpαq for each

vr P Ψ´1
i rαs. Therefore

di`1pvrq “ dipvrq
(D2)« dpαq

gpαq

for each vr P Ψ´1
i rαs. This proves (D2)1.

75



(D3)1 Suppose gpαq ě 3. If gi`1pαq ě 3, by (B11)

mi`1pα3q
`

gi`1pαq
3

˘

(B11)« mipα3qpgi`1pαq ´ 2q
gipαq

`

gi`1pαq
3

˘

“ mipα3qpgi`1pαq ´ 2q
gipαqgi`1pαqpgi`1pαq ´ 1qpgi`1pαq ´ 2q{6

“ mipα3q
`

gipαq
3

˘ .

Since gipαq ě 4 ą 3, by (D3) of the induction hypothesismipα3q{
`

gipαq
3

˘

« mpα3q{
`

gpαq
3

˘

.

Therefore

mi`1pα3q
`

gi`1pαq
3

˘

(B11)« mipα3q
`

gipαq
3

˘

(D3)« mpα3q
`

gpαq
3

˘ .

If gi`1pαq ă 3, by (B11) mi`1pα3q “ 0. This proves (D3)1.

(D4)1 By (B10), mi`1pv3i`1q “ 0. Moreover, mi`1pv3rq “ mipv3rq “ 0 for each 1 ď r ď i. This

proves (D4)1.

(D5)1 Suppose gpαq ě 3. If gi`1pαq ě 2, by (B12)

mi`1pα2, vi`1q
`

gi`1pαq
2

˘

(B12)« 3mipα3q
gipαq

`

gi`1pαq
2

˘

“ 3mipα3q
gipαqgi`1pαqpgi`1pαq ´ 1q{2

“ mipα3q
`

gipαq
3

˘ .

Since gipαq ě 3, by (D3) of the induction hypothesis mipα3q{
`

gipαq
3

˘

« mpα3q{
`

gpαq
3

˘

.

Therefore

mi`1pα2, vi`1q
`

gi`1pαq
2

˘

(B12)« mipα3q
`

gipαq
3

˘

(D3)« mpα3q
`

gpαq
3

˘ .
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By (B9) for each vr P Ψ´1
i rαs

mi`1pα2, vrq
`

gi`1pαq
2

˘

(B9)« mipα2, vrqpgi`1pαq ´ 1q
gipαq

`

gi`1pαq
2

˘

“ mipα2, vrqpgi`1pαq ´ 1q
gipαqgi`1pαqpgi`1pαq ´ 1q{2

“ mipα2, vrq
`

gipαq
2

˘ .

Since gipαq ě 3 ą 2, by (D5) of the induction hypothesis we have mipα2, vrq{
`

gipαq
2

˘

«

mpα3q{
`

gpαq
3

˘

for each vr P Ψ´1
i rαs. Therefore

mi`1pα2, vrq
`

gi`1pαq
2

˘

(B9)« mipα2, vrq
`

gipαq
2

˘

(D5)« mpα3q
`

gpαq
3

˘

for each vr P Ψ´1
i rαs. If gi`1pαq “ 1, by (B9) it follows that mi`1pα2, vrq “ 0 for each

vr P Ψ´1
i`1rαs. This proves (D5)1.

(D6)1 Suppose gpαq ě 3 and vr, vs are a pair of distinct vertices in Ψ´1
i rαs. From (B5) it

follows that mi`1pα, vr, vsq{gi`1pαq « mipα, vr, vsq{gipαq. By (D6) of the induction

hypothesis mipα, vr, vsq{gipαq « mpα3q{
`

gpαq
3

˘

. Therefore

mi`1pα, vr, vsq
gi`1pαq

(B5)« mipα, vr, vsq
gipαq

(D6)« mpα3q
`

gpαq
3

˘ .

From (B8) it follows that

mi`1pα, vr, vi`1q
gi`1pαq

(B8)« 2mipα2, vrq
gipαqgi`1pαq “ mipα2, vrq

`

gipαq
2

˘ .

By (D5) of the induction hypothesis mipα2, vrq{
`

gipαq
2

˘

« mpα3q{
`

gpαq
3

˘

. Therefore

mi`1pα, vr, vi`1q
gi`1pαq

(B8)« mipα2, vrq
`

gipαq
2

˘

(D5)« mpα3q
`

gpαq
3

˘ .
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This proves (D6)1.

(D7)1 Suppose gpαq ě 3 and vr, vs, vt are a triple of distinct vertices in Ψ´1
i rαs. Since

in forming Fi`1 no hyperedge is detached from vr, vs, vt, we have mi`1pvr, vs, vtq “

mipvr, vs, vtq. But by (D7) of the induction hypothesis, mipvr, vs, vtq « mpα3q{
`

gpαq
3

˘

.

Therefore

mi`1pvr, vs, vtq “ mipvr, vs, vtq
(D7)« mpα3q

`

gpαq
3

˘ .

By (B6) mi`1pvr, vs, vi`1q « mipα, vr, vsq{gipαq. By (D6) of the induction hypothesis

mipα, vr, vsq{gipαq « mpα3q{
`

gpαq
3

˘

. Therefore

mi`1pvr, vs, vi`1q
(B6)« mipα, vr, vsq

gipαq
(D6)« mpα3q

`

gpαq
3

˘ .

This proves (D7)1.

(D8)1 Case 1: If gi`1pxq “ gipxq ´ 1 (so x “ α), by (B9) mi`1pα2, yq « mipα2, yqpgi`1pαq ´

1q{gipαq which is 0 if gi`1pαq “ 1. If gi`1pαq ě 2, by (B9)

mi`1pα2, yq
`

gi`1pαq
2

˘

gi`1pyq
(B9)« mipα2, yqpgi`1pαq ´ 1q

gipαq
`

gi`1pαq
2

˘

gi`1pyq

“ mipα2, yqpgi`1pαq ´ 1q
gipαqgi`1pαqpgi`1pαq ´ 1qgipyq{2

“ mipα2, yq
`

gipαq
2

˘

gipyq
.

Since gipαq ě 3 ą 2, by (D8) of the induction hypothesis mipα2, yq{p
`

gipαq
2

˘

gipyqq «

mpα2, yq{p
`

gpαq
2

˘

gpyqq. Therefore

mi`1pα2, yq
`

gi`1pαq
2

˘

gi`1pyq
(B9)« mipα2, yq

`

gipαq
2

˘

gipyq
(D8)« mpα2, yq

`

gpαq
2

˘

gpyq
.

Case 2: If gi`1pyq “ gipyq´1 (so y “ α), by (B3)mi`1px2, αq « mipx2, αqgi`1pαq{gipαq

which is 0 by (D8) of the induction hypothesis, if gi`1pxq “ gipxq “ 1. If gi`1pxq ě 2,
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by (B3) and (D8) of the induction hypothesis

mi`1px2, αq
`

gi`1pxq
2

˘

gi`1pαq
(B3)« mipx2, αq

`

gi`1pxq
2

˘

gipαq
“ mipx2, αq

`

gipxq
2

˘

gipαq
(D8)« mpx2, αq

`

gpxq
2

˘

gpαq
.

This proves (D8)1.

(D9)1 Suppose vt P Ψ´1
i rys. There are two cases:

Case 1: If gi`1pxq “ gipxq ´ 1 (so x “ α), by (B9) mi`1pα2, vtq « mipα2, vtqpgi`1pαq ´

1q{gipαq which is 0 if gi`1pαq “ 1. If gi`1pαq ě 2, by (B9)

mi`1pα2, vtq
`

gi`1pαq
2

˘

(B9)« mipα2, vtqpgi`1pαq ´ 1q
gipαq

`

gi`1pαq
2

˘

“ mipα2, vtqpgi`1pαq ´ 1q
gipαqgi`1pαqpgi`1pαq ´ 1q{2

“ mipα2, vtq
`

gipαq
2

˘ .

Since gipαq ě 3 ą 2, by (D9) of the induction hypothesis we have mipα2, vtq{
`

gipαq
2

˘

«

mpα2, yq{p
`

gpαq
2

˘

gpyqq. Therefore

mi`1pα2, vtq
`

gi`1pαq
2

˘

(B9)« mipα2, vtq
`

gipαq
2

˘

(D9)« mpα2, yq
`

gpαq
2

˘

gpyq
.

Case 2: If gi`1pyq “ gipyq ´ 1 (so y “ α), since in forming Fi`1 no hyperedge is

detached from vt and x, we have mi`1px2, vtq “ mipx2, vtq which is 0 by (D9) of the

induction hypothesis, if gi`1pxq “ gipxq “ 1. If gi`1pxq ě 2, by (D9) of the induction

hypothesis

mi`1px2, vtq
`

gi`1pxq
2

˘ “ mipx2, vtq
`

gipxq
2

˘

(D9)« mpx2, αq
`

gpxq
2

˘

gpαq
.

By (B4), mi`1pvi`1, x
2q « mipα, x2q{gipαq which is 0 by (D8) of the induction hy-

pothesis, if gi`1pxq “ gipxq “ 1. If gi`1pxq ě 2, by (B4) and (D8) of the induction
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hypothesis

mi`1px2, vi`1q
`

gi`1pxq
2

˘

(B4)« mipx2, αq
`

gi`1pxq
2

˘

gipαq
“ mipx2, αq

`

gipxq
2

˘

gipαq
(D8)« mipx2, αq

`

gpxq
2

˘

gpαq
.

This proves (D9)1.

(D10)1 Suppose vr P Ψ´1
i rxs. There are two cases:

Case 1: If gi`1pxq “ gipxq´1 (so x “ α), by (B5)mi`1pα, vr, yq{gi`1pαq « mipα, vr, yq{gipαq.

Therefore by (D10) of the induction hypothesis

mi`1pα, vr, yq
gi`1pαqgi`1pyq

(B5)« mipα, vr, yq
gipαqgi`1pyq

“ mipα, vr, yq
gipαqgipyq

(D10)« mpα2, yq
`

gpαq
2

˘

gpyq
.

By (B8) mi`1pα, vi`1, yq « 2mipα2, yq{gipαq. Therefore since gipαq ě 2, by (D8) of the

induction hypothesis

mi`1pα, vi`1, yq
gi`1pαqgi`1pyq

(B8)« 2mipα2, yq
gipαqgi`1pαqgi`1pyq

“ mipα2, yq
`

gipαq
2

˘

gipyq
(D8)« mpα2, yq

`

gpαq
2

˘

gpyq
.

Case 2: If gi`1pyq “ gipyq ´ 1 (so y “ α), by (B5) we have mi`1px, vr, αq{gi`1pαq «

mipx, vr, αq{gipαq. Therefore by (D10) of the induction hypothesis

mi`1px, vr, αq
gi`1pxqgi`1pαq

(B5)« mipx, vr, αq
gi`1pxqgipαq

“ mipx, vr, αq
gipxqgipαq

(D10)« mpx2, αq
`

gpxq
2

˘

gpαq
.

This proves (D10)1.

(D11)1 Suppose vr P Ψ´1
i rxs, vt P Ψ´1

i rys. There are two cases:

Case 1: If gi`1pxq “ gipxq ´ 1 (so x “ α), by (B5) and (D11) of the induction
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hypothesis

mi`1pα, vr, vtq
gi`1pαq

(B5)« mipα, vr, vtq
gipαq

(D11)« mpα2, yq
`

gpαq
2

˘

gpyq
.

By (B8) mi`1pα, vi`1, vtq « 2mipα2, vtq{gipαq. Therefore by (D10) of the induction

hypothesis

mi`1pα, vi`1, vtq
gi`1pαq

(B8)« 2mipα2, vtq
gipαqgi`1pαq

“ mipα, vr, yq
`

gipαq
2

˘

(D10)« mpα2, yq
`

gpαq
2

˘

gpyq
.

Case 2: If gi`1pyq “ gipyq ´ 1 (so y “ α), since in forming Fi`1 no hyperedge is

detached from x, vr and vt, we have mi`1px, vr, vtq “ mipx, vr, vtq. Therefore by (D11)

of the induction hypothesis

mi`1px, vr, vtq
gi`1pxq “ mipx, vr, vtq

gi`1pxq “ mipx, vr, vtq
gipxq

(D11)« mpx2, αq
`

gpxq
2

˘

gpαq
.

By (B6) mi`1pvi`1, x, vrq « mipα, x, vrq{gipαq. Therefore by (D10) of the induction

hypothesis

mi`1px, vr, vi`1q
gi`1pxq

(B6)« mipx, vr, αq
gi`1pxqgipαq “ mipx, vr, αq

gipxqgipαq
(D10)« mpx2, αq

`

gpxq
2

˘

gpαq
.

This proves (D11)1.

(D12)1 Suppose vr, vs P Ψ´1
i rxs. There are two cases:

Case 1: If gi`1pxq “ gipxq ´ 1 (so x “ α), since in forming Fi`1 no hyperedge is

detached from vr, vs and y, we have mi`1pvr, vs, yq “ mipvr, vs, yq. Therefore by (D12)

of the induction hypothesis

mi`1pvr, vs, yq
gi`1pyq “ mipvr, vs, yq

gi`1pyq “ mipvr, vs, yq
gipyq

(D12)« mpα2, yq
`

gpαq
2

˘

gpyq
.
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By (B6) mi`1pvi`1, vr, yq « mipα, vr, yq{gipαq. Therefore by (D10) of the induction

hypothesis

mi`1pvi`1, vr, yq
gi`1pyq

(B6)« mipα, vr, yq
gipαqgi`1pyq “ mipα, vr, yq

gipαqgipyq
(D10)« mpα2, yq

`

gpαq
2

˘

gpyq
.

Case 2: If gi`1pyq “ gipyq´1 (so y “ α), by (B5) and (D12) of the induction hypothesis

mi`1pvr, vs, αq
gi`1pαq

(B5)« mipvr, vs, αq
gipαq

(D12)« mpx2, αq
`

gpxq
2

˘

gpαq
.

This proves (D12)1.

(D13)1 Suppose vr, vs P Ψ´1
i rxs, vt P Ψ´1

i rys. Since in forming Fi`1 no hyperedge is detached

from vr, vs and vt, we have mi`1pvr, vs, vtq “ mipvr, vs, vtq. Therefore by (D13) of the

induction hypothesis

mi`1pvr, vs, vtq
(D13)« mpx2, yq

`

gpxq
2

˘

gpyq
.

If gi`1pxq “ gipxq ´ 1 (so x “ α), by (B6) and (D11) of the induction hypothesis

mi`1pvr, vi`1, vtq
(B6)« mipα, vr, vtq

gipαq
(D11)« mpα2, yq

`

gpαq
2

˘

gpyq
.

If gi`1pyq “ gipyq ´ 1 (so y “ α), by (B6) and (D12) of the induction hypothesis

mi`1pvr, vs, vi`1q
(B6)« mipα, vr, vsq

gipyq
(D12)« mpx2, αq

`

gpxq
2

˘

gpαq
.

This proves (D13)1.
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(D14)1 If gi`1pxq “ gipxq ´ 1 (so x “ α) , by (B5) mi`1pα, y, zq{gi`1pαq « mipα, y, zq{gipαq.

Therefore by (D14) of the induction hypothesis

mi`1pα, y, zq
gi`1pαqgi`1pyqgi`1pzq

(B5)« mipα, y, zq
gipαqgi`1pyqgi`1pzq

“ mipα, y, zq
gipαqgipyqgipzq

(D14)« mpα, y, zq
gpαqgpyqgpzq.

There are two other cases (gi`1pyq “ gipyq ´ 1 and gi`1pzq “ gipzq ´ 1) for which the

proof is similar. This proves (D14)1.

(D15)1 Suppose vt P Ψ´1
i rzs. There are three cases:

Case 1: If gi`1pxq “ gipxq´1 (so x “ α) , by (B5)mi`1pα, y, vtq{gi`1pαq « mipα, y, vtq{gipαq.

Therefore by (D15) of the induction hypothesis

mi`1pα, y, vtq
gi`1pαqgi`1pyq

(B5)« mipα, y, vtq
gipαqgi`1pyq

“ mipα, y, vtq
gipαqgipyq

(D15)« mpα, y, zq
gpαqgpyqgpzq.

Case 2: If gi`1pyq “ gipyq ´ 1 (so y “ α), the proof is similar to that of case 1.

Case 3: If gi`1pzq “ gipzq ´ 1 (so z “ α), since in forming Fi`1 no hyperedge is

detached from x, y and vt, we have mi`1px, y, vtq « mipx, y, vtq. Therefore by (D15) of

the induction hypothesis

mi`1px, y, vtq
gi`1pxqgi`1pyq “ mipx, y, vtq

gipxqgipyq
(D15)« mpx, y, αq

gpxqgpyqgpαq.

By (B6) mi`1px, y, vi`1q « mipx, y, αq{gipαq. Therefore by (D14) of the induction

hypothesis

mi`1px, y, vi`1q
gi`1pxqgi`1pyq

(B6)« mipx, y, αq
gi`1pxqgi`1pyqgipαq

“ mipx, y, αq
gipxqgipyqgipαq

(D14)« mpx, y, αq
gpxqgpyqgpαq.
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This proves (D15)1.

(D16)1 Suppose vs P Ψ´1
i rys, vt P Ψ´1

i rzs. There are three cases:

Case 1: If gi`1pxq “ gipxq ´ 1 (so x “ α) , by (B5) and (D16) of the induction

hypothesis

mi`1pα, vs, vtq
gi`1pαq

(B5)« mipα, vs, vtq
gipαq

(D16)« mpα, y, zq
gpαqgpyqgpzq.

Case 2: If gi`1pyq “ gipyq ´ 1 (so y “ α), since in forming Fi`1 no hyperedge is

detached from x, vs and vt, we have mi`1px, vs, vtq “ mipx, vs, vtq. Therefore by (D16)

of the induction hypothesis

mi`1px, vs, vtq
gi`1pxq “ mipx, vs, vtq

gipxq
(D16)« mpx, α, zq

gpxqgpαqgpzq.

By (B6) mi`1px, vi`1, vtq « mipx, α, vtq{gipαq. Therefore by (D15) of the induction

hypothesis

mi`1px, vi`1, vtq
gi`1pxq

(B6)« mipx, α, vtq
gi`1pxqgipαq

“ mipx, α, vtq
gipxqgipαq

(D15)« mpx, α, zq
gpxqgpαqgpzq.

Case 3: If gi`1pzq “ gipzq ´ 1 (so z “ α), the proof is similar to that of case 2. This

proves (D16)1.

(D17)1 Suppose vr P Ψ´1
i rxs, vs P Ψ´1

i rys, vt P Ψ´1
i rzs. Since in forming Fi`1 no hyperedge

is detached from vr, vs and vt, we have mi`1pvr, vs, vtq “ mipvr, vs, vtq. Therefore by

(D17) of the induction hypothesis

mi`1pvr, vs, vtq
(D17)« mpx, y, zq

gpxqgpyqgpzq.
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If gi`1pxq “ gipxq ´ 1 (so x “ α) , by (B6) and (D16) of the induction hypothesis

mi`1pvi`1, vs, vtq
(B6)« mipα, vs, vtq

gipαq
(D16)« mpα, y, zq

gpαqgpyqgpzq.

There are two other cases (gi`1pyq “ gipyq ´ 1 and gi`1pzq “ gipzq ´ 1) for which the

proof is similar. This proves (D17)1.

A similar statement can be proved for every color class simply by restricting each relation

above to a color class j P t1, . . . , ku.

5.5.4 Relations Between G “ Fn and F

Recall that G “ Fn,Ψ “ Ψn and gnpxq “ 1 for each x P V . We claim that G satisfies

all conditions stated in Theorem 5.3.

Obviously G is a g-detachment of F . Let x, y, z be an arbitrary triple of distinct vertices

of V , and let j P t1, . . . , ku. Now in (D1)–(D17) we let i “ n. From (D3) and (D4) it is

immediate that G is loopless. From (D5), (D8) and (D9) it follows that G has no hyperedge

of size 2. Thus G is a 3-uniform hypergraph.

From (D1) it follows that dFn
pxq{gnpxq « dpxq{gpxq, so dG pxq « dpxq{gpxq. From (D2),

dFn
pvrq « dpxq{gpxq for each vr P Ψ´1

n rxs, so dG pvrq « dpxq{gpxq for each vr P Ψ´1rxs.

Therefore G satisfies (A1).

A similar argument shows that (A2) follows from the colored version of (D1) and (D2),

(A3) follows from (D6), (D7), and (D10)–(D17), and (A4) follows from the colored version

of (D6), (D7), and (D10)–(D17). This completes the proof of Theorem 5.3.

5.6 Algorithmic Aspects

To construct an r-factorization for λK3
n, we start with an amalgamation of λK3

n in

which all hyperedges are loops. We color the hyperedges among k :“ λ
`

n´1
2

˘

{r color classes
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as evenly as possible, and apply Theorem 5.3. In Theorem 5.3, we detach vertices in n ´ 1

steps. At each step, to decide how to share edges (and hinges) among the new vertices, we

define two sets A and B whose sizes are no more than 1`k`
`

n

3

˘

and pk`1q
`

n

2

˘

, respectively,

and use Nash-Willimas lemma. Nash-Williams lemma builds a graph of size Opn3q (or more

precisely of size |A | ` |B|) and finds a set Z with a polynomial time algorithm. The set

Z tells us exactly how to share edges (and hinges) among the new vertices. Therefore, our

construction is polynomial in
`

n

3

˘

, the output size for the problem.

86



Chapter 6

Mathematicians Collaboration Problem

6.1 Introduction

In a mathematics workshop with mn mathematicians in n different areas, each area

consisting ofmmathematicians, we want to create a collaboration network. For this purpose,

we would like to schedule daily meetings between groups of size three, so that (i) two persons

of the same area meet one person of another area, (ii) each person has exactly r meetings

each day, and (iii) every two persons of the same area have exactly λ meetings with each

person of another area by the end of the workshop. We show that this can be done if: 3 � rm,

2 � rnm and r � 3λpn´ 1q
`

m

2

˘

.

Let K 3
nˆm denote a hypergraph with vertex partition tVi : 1 ď i ď nu, so that Vi “

txij : 1 ď j ď mu for 1 ď i ď n, and with edge set E “ ttxij , xij1, xklu : 1 ď j ă j1 ď m, 1 ď

i, k ď n, i ‰ k, 1 ď l ď mu. One may notice that finding an r-factorization for λK 3
nˆm is

equivalent to scheduling the meetings between mathematicians with the above restrictions.

In this chapter we use hypergraph amalgamation to solve our Mathematicians Collab-

oration Problem.

Example 6.1. Let F “ pV,E,H, ψ, φq, with V “ tvi : 1 ď i ď 6u, E “ te1, e2, e3u, H “

thi : 1 ď i ď 9u, such that ψphiq “ vi for 1 ď i ď 6, ψph7q “ v1, ψph8q “ v3, ψph9q “ v5

and φph5q “ φph6q “ φph7q “ e1, φph1q “ φph2q “ φph8q “ e2, φph3q “ φph4q “ φph9q “ e3.

Let Ψ : V Ñ tw1, w2, w3u be the function with Ψpv1q “ Ψpv6q “ w1, Ψpv2q “ Ψpv3q “ w2,

Ψpv4q “ Ψpv5q “ w3. The hypergraph G in Figure 6.1 is the Ψ-amalgamation of F .

In the remainder of this chapter, we assume that n ě 3, m ě 2, and all hypergraphs

are either 3-uniform or are amalgamations of 3-uniform hypergraphs. Notice that for every
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Figure 6.1: A visual representation of a hypergraph F with an amalgamation G

hypergraph G we have

1 ď |e| ď |φ´1peq| “ 3 for every e in G . (6.1)

If u, v, w are three (not necessarily distinct) vertices of G , then E pu, v, wq denotes the set

of hyperedges that join u, v, w. For a graph G, we denote the set of edges joining a pair of

vertices u, v by Epu, vq.

In [6], the author proved a general detachment theorem for hypergraphs. For the purpose

of this chapter we use a very special case of this theorem as follows:

Theorem 6.2. Let F be a k-hyperedge-colored hypergraph and let g be a function from

V pF q into N such that for x, y, z P V pF q: (i) gpxq ď 2 implies E px, x, xq “ ∅, (ii)

gpxq “ 1 implies E px, x, yq “ ∅, and (iii) gpxq divides dF pjqpxq,
`

gpxq
3

˘

divides |E px, x, xq|,
`

gpxq
2

˘

gpyq divides |E px, x, yq|, and gpxqgpyqgpzq divides |E px, y, zq|. Then there exists a 3-

uniform g-detachment G of F in which each v P V pF q is detached into v1, . . . , vgpvq such

that G satisfies the following conditions for distinct x, y, z P V pF q :

(A1) dG pjqpxiq “ dF pjqpxq{gpxq for 1 ď i ď gpxq and 1 ď j ď k;

(A2) |EG pxi, xi1, xi2q| “ |EF px, x, xq|{
`

gpxq
3

˘

for 1 ď i ă i1 ă i2 ď gpxq, if gpxq ě 3;
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(A3) |EG pxi, xi1, yi2q| “ |EF px, x, yq|{p
`

gpxq
2

˘

gpyqq for 1 ď i ă i1 ď gpxq if gpxq ě 2, and

1 ď i2 ď gpyq;

(A4) |EG pxi, yi1, zi2q| “ |EF px, y, zq|{pgpxqgpyqgpzqq for 1 ď i ď gpxq, 1 ď i1 ď gpyq and

1 ď i2 ď gpzq.

6.2 Proof of the Main Theorem

Let K˚
n denote the hypergraph with n vertices in which |E pu, u, vq| “ 1, and E pu, u, uq “

E pu, v, wq “ ∅ for distinct vertices u, v, w. First we need the following simple lemma:

Lemma 6.3. If 2 � rin for 1 ď i ď k, and
řk

i“1 ri “ λpn ´ 1q, then λK˚
n is p3r1, . . . , 3rkq-

factorizable.

Proof. Let G “ λKn with vertex set V . Since 2 � rin for 1 ď i ď k, and
řk

i“1 ri “ λpn´ 1q,

G is pr1, . . . , rkq-factorizable (see [52], or [51]). So we can find a k-edge-coloring for G such

that dGpiqpvq “ ri for every v P V and every color 1 ď i ď k. Now we form a hypergraph H

with vertex set V , such that |EH piqpu, u, vq| “ |EGpiqpu, vq| for every pair of distinct vertices

u, v P V . It is easy to see that H “ λK˚
n and dH piqpvq “ 3ri for every v P V and every color

1 ď i ď k. Thus we obtain a p3r1, . . . , 3rkq-factorization for λK˚
n .

Notice that λK 3
mˆn is a 3λpn´1q

`

m

2

˘

-regular hypergraph with nm vertices and 2λm
`

n

2

˘`

m

2

˘

edges.

Theorem 6.4. λK 3
mˆn is pr1, . . . , rkq-factorizable if

(i) 3 � rim for 1 ď i ď k,

(ii) 2 � rimn for 1 ď i ď k, and

(iii)
řk

i“1 ri “ 3λpn´ 1q
`

m

2

˘

.
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Proof. Let F “ λm
`

m

2

˘

K˚
n . Note that F is an amalgamation of λK 3

mˆn. Since for 1 ď i ď k,

2 � rimn
3

and
řk

i“1
rim
3

“ λmpn ´ 1q
`

m

2

˘

, by Lemma 6.3, F is pmr1, . . . , mrkq-factorizable.

Thus, we can find a k-hyperedge-coloring for F such that

dF pjqpxq “ mri 1 ď i ď k.

Let g : V pF q Ñ N be a function with gpxiq “ m for i “ 1, . . . , n. Note that K 3
mˆn is a

g-detachment of F . Now by Theorem 6.2, there exists a 3-uniform g-detachment G of F

with mn vertices, say xij , 1 ď i ď n, 1 ď j ď m (xi1, . . . , xim are obtained by splitting xi

into m vertices for i “ 1, . . . , n) such that

• dG ptqpxijq “ rt for 1 ď i ď n, 1 ď j ď m, and 1 ď t ď k;

• EG pxij , xij1, xij2q “ ∅ for 1 ď i ď n and 1 ď j ă j1 ă j2 ď m, if m ě 3;

• |EG pxij , xij1, xi1j2| “ λ for 1 ď i ă i1 ď n, 1 ď j ă j1 ď m, and 1 ď j2 ď m; and

• EG pxij , xi1j1, xi2j2q “ ∅ for 1 ď i ă i1 ă i2 ď n and 1 ď j, j1, j2 ď m.

Therefore G – λK 3
mˆn and the ith color class is an ri-factor for 1 ď i ď k.

In particular we solve the Mathematicians Collaboration Problem in the following case.

Corollary 6.5. λK 3
mˆn is r-factorizable if

(i) 3 � rm,

(ii) 2 � rnm, and

(iii) r � 3λpn´ 1q
`

m

2

˘

.

We define K 3
m1,...,mn

similar to K 3
mˆn with the difference that in K 3

m1,...,mn
we allow

different parts to have different sizes.

Conjecture 6.6. λK 3
m1,...,mn

is pr1, . . . , rkq-factorizable if and only if
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(i) mi “ mj :“ m for 1 ď i ă j ď n,

(ii) 3 � rimn for each i, 1 ď i ď k, and

(iii)
řk

i“1 ri “ 3λpn´ 1q
`

m

2

˘

.

We prove the necessity as follows. Since λK 3
mˆn is factorizable, it must be regular. Let

u and v be two vertices from two different parts, say pth and qth parts respectively. Then we

have the following sequence of equivalences:

dpuq “ dpvq ðñ
ÿ

1ďiďn
i‰p

ˆ

mi

2

˙

` pmp ´ 1q
ÿ

1ďiďn
i‰p

mi “
ÿ

1ďiďn
i‰q

ˆ

mi

2

˙

` pmq ´ 1q
ÿ

1ďiďn
i‰q

mi ðñ
ˆ

mq

2

˙

`
ÿ

1ďiďn
i‰p,q

ˆ

mi

2

˙

` pmp ´ 1qpmq `
ÿ

1ďiďn
i‰p,q

miq “
ˆ

mp

2

˙

`
ÿ

1ďiďn
i‰p,q

ˆ

mi

2

˙

` pmq ´ 1qpmp `
ÿ

1ďiďn
i‰p,q

miq ðñ
ˆ

mp

2

˙

´
ˆ

mq

2

˙

` mpmq ´ mp ´ mpmq ` mq ` pmp ´ mqq
ÿ

1ďiďn
i‰p,q

miq “ 0 ðñ

m2
p ´ m2

q ´ 3mp ` 3mq ` 2pmp ´ mqq
ÿ

1ďiďn
i‰p,q

miq “ 0 ðñ

pmp ´ mqqpmp ` mq ´ 3 ` 2
ÿ

1ďiďn
i‰p,q

miq “ 0 ðñ

mp “ mq :“ m.

This proves (i). The existence of an ri-factor implies that 3 � rimn for 1 ď i ď k. Since each

ri-factor is an ri-regular spanning sub-hypergraph and λK 3
mˆn is 3λpn ´ 1q

`

m

2

˘

-regular, we

must have
řk

i“1 ri “ 3λpn´ 1q
`

m

2

˘

.

It is not difficult to show that K 3
3,3,3 has a unique 1-factorization, but it does not satisfy

condition (ii) of Theorem 6.4. There are many other examples of this kind, but none of them

gives us a general construction.
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Chapter 7

Embedding factorizations for 3-uniform hypergraphs

7.1 Introduction

In this chapter, two results are obtained on a hypergraph embedding problem. The

proof technique is itself of interest, being the first time amalgamations have been used to

address the embedding of hypergraphs.

The first result finds necessary and sufficient conditions for the embedding a hyperedge-

colored copy of the complete 3-uniform hypergraph of order m, K3
m, into an r-factorization

of K3
n, providing that n ą 2m` p´1 `

?
8m2 ´ 16m´ 7q{2.

The second result finds necessary and sufficient conditions for an embedding when not

only are the colors of the hyperedges of K3
m given, but also the colors of all the “pieces”

of hyperedges on these m vertices are prescribed (the “pieces” of hyperedges are eventually

extended to hyperedges of size 3 in K3
n by adding new vertices to the hyperedges of size 1

and 2 during the embedding process).

Both these results make progress towards settling an old question of Cameron on com-

pleting partial 1-factorizations of hypergraphs.

Let G be a hypergraph, and let H be a family of hypergraphs. We say that G has an

H -decomposition if there exists a partition tEpH1q, . . . , EpHmqu of EpG q such that Hi is

isomorphic to a hypergraph in H for 1 ď i ď m.

The general setting for this chapter is as follows. Let H and H ˚ be two families of

hypergraphs. Given a hypergraph G with an H -decomposition and a hypergraph G ˚ which

is a super-hypergraph of G , under what circumstances can one extend the H -decomposition

of G into an H ˚-decomposition of G ˚? In other words, given a hyperedge-coloring of G in

which each color class induces a hypergraph in H , is it possible to extend this coloring to a
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hyperedge-coloring of G ˚ so that each color class of G ˚ induces a hypergraph in H ˚? Most

naturally, G is usually taken to be the complete h-uniform hypergraph on m vertices, Kh
m.

Solving this problem requires knowledge about hypergraph decompositions; compared

to graph decompositions, very little is known about these, even for special cases. Perhaps

the best evidence for this difficulty is the long standing open problem of Sylvester in 1850

(in connection with Kirkman’s famous Fifteen Schoolgirls Problem [56]) which asks whether

it is possible to find a 1-factorization of Kh
n (see the next section for definitions). It took 120

years before Baranyai finally settled this conjecture [15]. After Baranyai’s proof appeared,

in 1976 Cameron [29] asked the following question:

Under what conditions can partial 1-factorizations ofKh
m be extended to 1-factorizations

of Kh
n?

This problem is wide open and to the authors1 best knowledge, the only partial results

address the very special case of embedding a 1-factorization of Kh
m into a 1-factorization of

Kh
n [17, 40].

Here we make some progress toward settling this problem, considering the following

related general embedding problem that is natural in its own right. When can a hyperedge-

coloring of a given hypergraph G on m vertices be embedded into a hyperedge-coloring of

K3
n in such a way that each color class forms an r-factor? So the special case when r “ 1 and

G “ Kh
m addresses the Cameron question in the situation where the given partial 1-factors

are all defined on a set of m vertices.

In Section 7.3, we assume that precisely the hyperedges of size 3 on m vertices have

been colored; that is, the given hypergraph is G “ K3
m), giving a complete solution if

n ą 2m ` p´1 `
?
8m2 ´ 16m´ 7q{2 (see Theorem 7.3). Lemma 7.4 then shows that

Theorem 7.3 is not true if this bound on n is replaced by n ě 2m ´ 1. In Section 7.4 we

assume that not only the hyperedges of size 3 are colored, but so are all the “pieces” of

hyperedges of K3
n that contain one or two of the given m vertices (i.e. n ´ m and

`

n´m

2

˘

copies of the hyperedges in K2
m andK1

m, respectively); these pieces are built up to hyperedges
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of size 3 when the new vertices are added. In this case the problem is completely solved in

Section 7.4, providing necessary and sufficient conditions (see Theorem 7.5).

The results in this chapter supplement embedding results for graphs. Such results

typically take a given edge-coloring of all the edges of a smaller complete graph and extend

it to an edge-coloring of all the edges of a bigger complete graph in such a way that each color

class is one of a given family of graphs. Hilton [44] used amalgamations to solve the problem

of embedding an edge-coloring of Km into a Hamiltonian decomposition of Kn. This was

later generalized by Nash-Williams [70]. Hilton and Rodger [48] considered the embedding

problem for Hamiltonian decompositions of complete multipartite graphs. For embeddings

of factorizations in which connectivity is also addressed, see [47, 51, 74].

It is worth remarking that embeddings of combinatorial structures with the same flavor

as results found in this chapter have a long history. For example, in his 1945 paper [41], Hall

proved that every p ˆ n latin rectangle on n symbols can be embedded in a latin square of

size n. Following this classic embedding theorem, in 1951 Ryser generalized Hall’s result to

p ˆ q latin rectangles on n symbols [75]. Ryser’s result is equivalent to embedding a proper

edge-coloring of the complete bipartite graph Kp,q into a 1-factorization of Kn,n. Doyen

and Wilson [35] solved the embedding problem for Steiner triple systems (K3-decompostions

of Kn), then Bryant and Horsley [27] addressed the embedding of partial designs, proving

Lindner’s conjecture [62] that any partial Steiner triple system of order u, PSTSpuq, can be

embedded in an STSpvq if v ” 1, 3 pmod 6q and v ě 2u ` 1. (2u` 1 is best possible in the

sense that for all u ě 9 there exists a PSTSpuq that can not be embedded in an STSpvq for

any v ă 2u ` 1.)

7.2 Detachments of Amalgamated Hypergraphs

Note that a hypergraph as defined here corresponds to a hypergraph as usually defined

providing hyperedges are allowed to contain vertices multiple times. We imagine each hy-

peredge of a hypergraph to be attached to the vertices which it joins by in-between objects
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called hinges. A hypergraph may be drawn as a set of points representing the vertices. A

hyperedge is represented by a simple closed curve enclosing its incident vertices. A hinge is

represented by a small line attached to the vertex incident with it (see Figure 7.1).

Example 7.1. Let F “ pV,E,H, ψ, φq, with V “ tvi : 1 ď i ď 8u, E “ te1, e2, e3u, H “

thi : 1 ď i ď 9u, such that for 1 ď i ď 8, ψphiq “ vi , ψph9q “ v6 and φph1q “ φph2q “

φph3q “ e1, φph4q “ φph5q “ φph6q “ e2, φph7q “ φph8q “ φph9q “ e3. Let Ψ : V Ñ

tw1, w2, w3, w4u be the function with Ψpv1q “ Ψpv2q “ Ψpv3q “ w1, Ψpv4q “ w2, Ψpv5q “

Ψpv6q “ w3, Ψpv7q “ Ψpv8q “ w4. The hypergraph G is the Ψ-amalgamation of F (see

Figure 7.1).

e1

v3

h3

h4

h7
v1

h5

v7

v8
h8

h9

h1

v2

h2

v4 v5

h6

v6

e2

e3

F

e1
h4

h9

w2

h6

e2

e3

w1

h1
h2 h3

h5

w4

w3
h7

h8

G

Figure 7.1: A visual representation of a hypergraph F with an amalgamation G

In the remainder of this chapter, all hypergraphs are either 3-uniform or are amalgama-

tions of 3-uniform hypergraphs. This implies that for every hypergraph G we have

1 ď |e| ď |φ´1peq| “ 3 for every e in G . (7.1)

If u, v, w are three (not necessarily distinct) vertices of G , thenmpu, v, wq denotes the number

of hyperedges that join u, v, and w. For convenience, we let mpu2, vq “ mpu, u, vq, and

mpu3q “ mpu, u, uq. If we think of an edge as a multiset, then mpu2, vq (or mpu3q) counts

the multiplicity of an edge of the form tu, u, vu (or tu, u, uu, respectively).
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For the purpose of this chapter, we need the following result which is a special case

of both Theorem 3.1 in [6], and Theorem 4.1 in [8]. To state it, some notation must be

introduced.

For g : V pF q Ñ N, we define the symmetric function g̃ : V 3pF q Ñ N such that for dis-

tinct x, y, z P V pF q, g̃px, x, xq “
`

gpxq
3

˘

, g̃px, x, yq “
`

gpxq
2

˘

gpyq, and g̃px, y, zq “ gpxqgpyqgpzq.

Also we assume that for each x P V pF q, gpxq ď 2 implies mF px3q “ 0, and gpxq “ 1 implies

mF px2, yq “ 0 for every y P V pF q.

Theorem 7.2. (Bahmanian [6, Theorem 3.1]) Let F be a k-hyperedge-colored hypergraph

and let g be a function from V pF q into N. Then there exists a 3-uniform g-detachment G of

F with amalgamation function Ψ : V pG q Ñ V pF q, g being the number function associated

with Ψ, such that:

(A1) for each x P V pF q, each u P Ψ´1pxq and each j P t1, . . . , ku

dG pjqpuq « dF pjqpxq
gpxq ; and

(A2) for every x, y, z P V pF q, with gpxq ě 3 if x “ y “ z, and gpxq ě 2 if |tx, y, zu| “ 2, and

every triple of distinct vertices u, v, w with u P Ψ´1pxq, v P Ψ´1pyq and w P Ψ´1pzq,

mG pu, v, wq « mF px, y, zq
g̃px, y, zq .

7.3 Embedding Partial Hyperedge-colorings into Factorizations

In this section we completely solve the embedding problem in the case where all the

hyperedges of size 3 on a set of m vertices have been colored, providing n is big enough. We

then show that some lower bound on n is needed, since the necessary conditions of Theorem

7.3 are not sufficient if n “ 2m´ 1.
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Theorem 7.3. Suppose that n ą 2m ` p´1 `
?
8m2 ´ 16m´ 7q{2. A q-hyperedge-coloring

of F “ K3
m can be embedded into an r-factorization of G “ K3

n if and only if

(i) 3 � rn,

(ii) r �
`

n´1
2

˘

,

(iii) q ď
`

n´1
2

˘

{r, and

(iv) dF pjqpvq ď r for each v P V pF q and 1 ď j ď q.

Proof. To prove the necessity, suppose that F with V “ V pF q can be embedded into an

r-factorization of G . Since each edge contributes 3 to the the sum of the degrees of the

vertices in an r-factor, r|V pG q| must be divisible by 3 which implies (i). Since each r-factor

is an r-regular spanning sub-hypergraph and G is
`

n´1
2

˘

-regular, we must have r �
`

n´1
2

˘

,

which is condition (ii). This r-factorization requires exactly k “
`

n´1
2

˘

{r colors which is

condition (iii), and to be able to extend each color class to an r-factor we need condition

(iv).

Now assume that conditions (i)–(iv) are true. By Baranyai’s theorem [15], the case of

m ď 3 is trivial, and so we may assume that m ě 4. Let ej “ |E
`

F pjq
˘

| for 1 ď j ď k.

In what follows, we extend the hyperedge-coloring of F into a k-hyperedge-coloring of an

amalgamation of G , and then we apply Theorem 7.2 to obtain the detachment G in which

each color class is an r-factor. The hyperedges added in steps (I), (II), and (III) correspond

to the hyperedges in G that contain one, two, and three new vertices, respectively.

(I) Let F1 be a hypergraph formed by adding a new vertex u and hyperedges to F such

that mpu, v, wq “ n ´ m for every pair of distinct vertices v, w P V . Of course the

hyperedges in EpF q X EpF1q are already colored. We color greedily as many of the

added pn ´ mq
`

m

2

˘

hyperedges as possible, ensuring that dF1pjqpvq ď r for 1 ď j ď k.

Suppose there exists a hyperedge incident with u,v and w that is not colored. Then

for 1 ď j ď k either dF1pjqpvq “ r or dF1pjqpwq “ r, so dF1pjqpvq ` dF1pjqpwq ě r for
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every 1 ď j ď k. Therefore 2
`

m´1
2

˘

` 2pn ´ mqpm ´ 1q ´ 2 “ dF1
pvq ` dF1

pwq ´ 2 ě
řk

j“1

`

dF1pjqpvq ` dF1pjqpwq
˘

ě řk
j“1 r “ kr “

`

n´1
2

˘

, in which the first inequality

follows from that fact that at least one hyperedge incident with v and w is not colored.

So, 2pm´ 1qpm´ 2q ` 4pn´ mqpm ´ 1q ´ 4 ě pn ´ 1qpn´ 2q. Thus n2 ´ 4nm` n`

2m2 ` 2m` 2 ď 0. So

n ď 2m ` p´1 `
?
8m2 ´ 16m´ 7q{2,

a contradiction. So all hyperedges can be colored greedily. Let fj be the number of

hyperedges of color j in some such coloring for 1 ď j ď k.

(II) Let F2 be a hypergraph formed by adding m
`

n´m

2

˘

further hyperedges to F1 so that

mpu2, vq “
`

n´m

2

˘

for each v P V . Note that for each v P V ,

dF2
pvq “

ˆ

m´ 1

2

˙

` pm´ 1qpn´ mq `
ˆ

n´ m

2

˙

“
ˆ

n´ 1

2

˙

“ rk.

Since dF1pjqpvq ď r for v P V and 1 ď j ď k, to ensure that dF2pjqpvq “ r, we color

r´ dF1pjqpvqpě 0q hyperedges incident with v that were added in forming F2 from F1

with color j for each v P V and 1 ď j ď k. So the coloring we perform in this step

results in all the newly added hyperedges being colored. Let gj denote the number of

such hyperedges of color j for 1 ď j ď k.

(III) Let F3 be the hypergraph formed by adding
`

n´m

3

˘

further hyperedges to F2 so that

mpu3q “
`

n´m

3

˘

. Let ℓj :“ rpn{3 ´ mq ` fj ` 2ej for 1 ď j ď k. We claim that ℓj ě 0

for 1 ď j ď k. To prove this, it is enough to show that n ě 3m. Since m ě 4 ą

p3 `
?
17q{2, we have m2 ´ 3m ´ 2 ě 0. Therefore, 8m2 ´ 16m ´ 7 ě 4m2 ´ 4m ` 1,

and thus
?
8m2 ´ 16m´ 7 ě 2m ´ 1, which implies p1 `

?
8m2 ´ 16m´ 7q{2 ě m,
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and consequently we have tp1 `
?
8m2 ´ 16m´ 7q{2u ě m. Since n ą 2m ` tp1 `

?
8m2 ´ 16m´ 7q{2u, we have n ě 3m.

Now we color the added hyperedges such that there are exactly ℓj further hyperedges

colored j for 1 ď j ď k. This is possible because

k
ÿ

j“1

ℓj “
k

ÿ

j“1

`

rpn{3 ´ mq ` fj ` 2ej
˘

“ rkpn{3 ´ mq `
k

ÿ

j“1

fj ` 2
k

ÿ

j“1

ej

“
ˆ

n´ 1

2

˙

pn{3 ´ mq ` pn´ mq
ˆ

m

2

˙

` 2

ˆ

m

3

˙

“ n3{6 ´ n2m{2 ´ n2{2 ` nm2{2 ` nm

` n{3 ´ m3{6 ´ m2{2 ´ m{3

“
ˆ

n´ m

3

˙

“ mF3
pu3q.

Let us fix j P t1, . . . , ku. Since dF3pjqpvq “ r for v P V , we have

rm “
ÿ

vPV

dF3pjqpvq “ 3ej ` 2fj ` gj. (7.2)

On the other hand,

dF3pjqpuq “ 3ℓj ` 2gj ` fj “ rpn´ 3mq ` 3fj ` 6ej ` 2gj ` fj

“ rpn´ 3mq ` 4fj ` 6ej ` 2gj.

This together with (7.2) implies that for 1 ď j ď k,

dF3pjqpuq “ rpn´ 3mq ` 2rm “ rpn´ mq.
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(IV) Let g : V pF3q Ñ N be a function with gpuq “ n ´ m, and gpvq “ 1 for each v P V .

By Theorem 7.2, there exists a 3-uniform g-detachment G ˚ of F3 with n ´ m new

vertices, say u1, . . . , un´m detached from u such that

• dG ˚pjqpvq “ dF3pjqpvq{gpvq “ r{1 “ r and dG ˚pjqpuiq “ dF3pjqpuq{gpuq “ rpn ´

mq{pn ´ mq “ r for 1 ď i ď n ´ m and 1 ď j ď k;

• mG ˚pui, ui1, ui2q “ mF3
pu3q{

`

gpuq
3

˘

“
`

n´m

3

˘

{
`

n´m

3

˘

“ 1 for 1 ď i ă i1 ă i2 ď n´m;

• mG ˚pui, ui1, vq “ mF3
pu2, vq{

``

gpuq
2

˘

gpvq
˘

“
`

n´m

2

˘

{
`

n´m

2

˘

“ 1 for 1 ď i ă i1 ď

n ´ m, and v P V , and

• mG ˚pui, v, wq “ mF3
pu, v, wq{

`

gpuqgpvqgpwq
˘

“ pn´mq{pn´mq “ 1 for 1 ď i ď

n ´ m and distinct v, w P V .

Therefore G ˚ – G “ K3
n and each color class is an r-factor. This completes the proof.

Lemma 7.4. Conditions (i)–(iv) of Theorem 7.3 are not sufficient if n “ 2m´ 1.

Proof. Suppose that the hyperedge-coloring of K3
m induces an r-factorization. Then in the

embedding, the sub-hypergraph of K3
n on the new n´m vertices induced by the hyperedges

having the original colors clearly has an r-factorization (each of the colors induces an r-

factor). Therefore n ´ m ě m, or equivalently n ě 2m. So if r is chosen so that 3 � r and

r � m´ 1, then it is easy to check that conditions (i)–(iv) of Theorem 7.3 are satisfied when

n “ 2m ´ 1, yet no embedding is possible.

7.4 Extending Restrictions of Partial Edge-colorings

If every hyperedge e of the hypergraph G is replaced with λ (ě 2) copies of e then

denote the resulting (multi) hypergraph by λG . If G1, . . . ,Gt are hypergraphs on the vertex

set V with edge sets EpG1q . . . , EpGtq respectively, then let
Ťt

i“1 Gi be the hypergraph with

vertex set V and edge set
Ťt

i“1EpGiq.
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In this section we completely solve the embedding problem in the case where all the

hyperedges in F “ K3
m Y pn´ mqK2

m Y
`

n´m

2

˘

K1
m on a set of m vertices have been colored,

regardless of the size of n. One can think of the given colored hyperedges as being all the

“pieces” of hyperedges on these m vertices that are eventually extended to hyperedges of

size 3 by adding the new n´ m vertices during the embedding process.

Let EipG pjqq denote the set of hyperedges of size i and color j in G .

Theorem 7.5. A k-hyperedge-coloring of F “ K3
mYpn´mqK2

mY
`

n´m

2

˘

K1
m with V “ V pF q

can be extended to an r-factorization of G “ K3
n if and only if

(i) 3 � rn,

(ii) r �
`

n´1
2

˘

,

(iii) k “
`

n´1
2

˘

{r,

(iv) dF pjqpvq “ r for each v P V and 1 ď j ď k, and

(v) |E2pF pjqq| ` 2|E3pF pjqq| ě rpm´ n{3q for 1 ď j ď k.

Proof. First, suppose that F can be embedded into an r-factorization of G . The necessity of

(i)–(iv) follow as described in the proof of Theorem 7.3; equalities in this result replace the

inequalities there because the colors of all hyperedges restricted to F have been prescribed

in this case. Let us fix j P t1, . . . , ku. Let ej , fj, gj, and ℓj be the number of hyperedges in

EpG pjqq that are incident with exactly 3, 2, 1 and 0 vertices in V , respectively. It is easy

to see that ej “ |E3pF pjqq| and fj “ |E2pF pjqq|. Since rpn ´ mq “ 3ℓj ` 2gj ` fj, and

rm “ gj `2fj `3ej, we have rpn´3mq “ 3ℓj ´3fj ´6ej, and thus ℓj “ rpn{3´mq`fj `2ej ,

but since ℓj ě 0, we must have 2ej ` fj ě rpm´ n{3q. This proves (v).

To prove the sufficiency, assume that conditions (i)–(v) are true. Let F 1 be a hypergraph

formed by adding a new vertex u to F with mpu3q “
`

n´m

3

˘

, and extending each hyperedge

of size one or two to a hyperedge incident with u of size two or three, respectively. We

extend the hyperedges of size one (two, respectively) such that u is incident with two (one,

respectively) hinges within that hyperedge. Ignoring colorings, F 1 is isomorphic to F3 in
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the proof of Theorem 7.3, and F 1 is an amalgamation of G . We color rpn{3´mq ` fj ` 2ej

of the new hyperedges with color j. This coloring results in all the newly added hyperedges

being colored. The rest of the proof is identical to part (IV) of Theorem 7.3.
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Chapter 8

Detachments of Hypergraphs: The Berge-Johnson Problem

8.1 Introduction

Intuitively speaking, a detachment of a hypergraph is formed by splitting each vertex

into one or more subvertices, and sharing the incident edges arbitrarily among the subvertices.

As the main result of this chapter (see Theorem 8.2), we prove that for a given edge-colored

hypergraph F , there exists a detachment G such that the degree of each vertex and the

multiplicity of each edge in F (and each color class of F ) are shared fairly among the

subvertices in G (and each color class of G , respectively). This result is not only interesting

by itself and generalizes various graph theoretic results (see for example [5, 44, 48, 51, 58,

61, 70, 74]), but also is used to obtain extensions of existing results on edge-decompositions

of hypergraphs by Bermond, Baranyai [15, 16], Berge and Johnson [21, 50], and Brouwer

and Tijdeman [24, 26].

Given a set N of n elements, Berge and Johnson [21, 50] addressed the question of when

do there exist disjoint partitions of N , each partition containing only subsets of h or fewer

elements, such that every subset of N having h or fewer elements is in exactly one partition.

Here we state the problem in a more general setting with the hypergraph theoretic notation.

Let pλ1 . . . , λmqKh1,...,hm
p1,...,pn

be a hypergraph with vertex partition tV1, . . . , Vnu, |Vi| “ pi

for 1 ď i ď n such that there are λi edges of size hi incident with every hi vertices, at most

one vertex from each part for 1 ď i ď m (so no edge is incident with more than one vertex

of a part). We use our detachment theorem to show that the obvious necessary conditions

for pλ1 . . . , λmqKh1,...,hm
p1,...,pn

to be expressed as the union G1 Y . . .Y Gk of k edge-disjoint factors,

where for 1 ď i ď k, Gi is ri-regular, are also sufficient. Baranyai [15, 16] solved the case of

h1 “ ¨ ¨ ¨ “ hm, λ1 “ . . . , λm “ 1, p1 “ ¨ ¨ ¨ “ pm, r1 “ ¨ ¨ ¨ “ rk. Berge and Johnson [21, 50],
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(and later Brouwer and Tijdeman [24, 26], respectively) considered (and solved, respectively)

the case of hi “ i, 1 ď i ď m, p1 “ ¨ ¨ ¨ “ pm “ λ1 “ ¨ ¨ ¨ “ λm “ r1 “ ¨ ¨ ¨ “ rk “ 1. We also

extend our result to the case where each Gi is almost regular.

In the next two sections, we give more precise definitions along with terminology. In

Section 8.4, we state our main result, followed by the proof in Section 8.5. In the last

section, we show the usefulness of the main result on decompositions of various classes of

hypergraphs. We defer the applications of the main result in solving embedding problems

to a future paper.

8.2 Terminology and Precise Definitions

For a multiset A and u P A, let µApuq denote the multiplicity of u in A, and let

|A| “ ř

uPA µApuq. For multisets A1, . . . , An, we define A “ Ťn

i“1Ai by µApuq “ řn

i“1 µAi
puq.

We may use abbreviations such as turu for tu, . . . , u
looomooon

r

u — for example tu2, v, w2u Y tu, w2u “

tu3, v, w4u.

For the purpose of this chapter, a hypergraph G is an ordered quintuple pV pG q, EpG q, HpG q,

ψ, φq where V pG q, EpG q, HpG q are disjoint finite sets, ψ : HpG q Ñ V pG q is a function and

φ : HpG q Ñ EpG q is a surjection. Elements of V pG q, EpG q, HpG q are called vertices, edges

and hinges of G , respectively. A vertex v (edge e, respectively) and hinge h are said to be

incident with each other if ψphq “ v (φphq “ e, respectively). A hinge h is said to attach the

edge φphq to the vertex ψphq. In this manner, the vertex ψphq and the edge φphq are said to

be incident with each other. If e P EpG q, and e is incident with n hinges h1, . . . , hn for some

n P N, then the edge e is said to join (not necessarily distinct) vertices ψph1q, . . . , ψphnq. If

v P V pG q, then the number of hinges incident with v (i.e. |ψ´1pvq|) is called the degree of v

and is denoted by dpvq. The number of (distinct) vertices incident with an edge e, denoted

by |e|, is called the size of e. If for all edges e of G , |e| ď 2 and |φ´1peq| “ 2, then G is a

graph.
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Thus a hypergraph, in the sense of our definition, is a generalization of a hypergraph

as it is usually defined. In fact, if for every edge e, |e| “ |φ´1peq|, then our definition is

essentially the same as the usual definition. Here for convenience, we imagine each edge of a

hypergraph to be attached to the vertices which it joins by in-between objects called hinges.

Readers from a graph theory background may think of this as a bipartite multigraph with

vertex bipartition tV,Eu, in which the hinges form the edges. A hypergraph may be drawn

as a set of points representing the vertices. A hyperedge is represented by a simple closed

curve enclosing its incident vertices. A hinge is represented by a small line attached to the

vertex incident with it (see Figure 8.1).

The set of hinges of G which are incident with a vertex v (and an edge e, respectively),

is denoted by Hpvq (Hpv, eq, respectively). Thus if v P V pG q, then Hpvq “ ψ´1pvq, and

|Hpvq| is the degree dpvq of v. If U is a multi-subset of V pG q, and u P V pG q, let EpUq denote

the set of edges e with |φ´1peq| “ |U | joining vertices in U . More precisely, EpUq “ te P

EpG q| for all v P V pG q, |Hpv, eq| “ µUpvqu. For U1, . . . , Un Ă V where for 1 ď i ď n each Ui

is a multiset, let EpU1, . . . , Unq denote EpŤn
i“1 Uiq. We write mpUq for |EpUq| and call it the

multiplicity of U . For simplicity, Epur, Uq denotes Epturu, Uq, and mpum1

1 , . . . , umr
r q denotes

mptum1

1 , . . . , umr
r uq. The set of hinges that are incident with u and an edge in Epur, Uq is

denoted by Hpur, Uq.

Example 8.1. Let G “ pV,E,H, ψ, φq, with V “ tv1, v2, v3, v4, v5u, E “ te1, e2, e3u, H “

thi, 1 ď i ď 7u, such that ψph1q “ ψph2q “ v1, ψph3q “ v2, ψph4q “ ψph5q “ v3, ψph6q “

v4, ψph7q “ v5 and φph1q “ φph2q “ φph3q “ φph4q “ e1, φph5q “ φph6q “ e2, φph7q “ e3. We

have:

• |e1| “ 3, |e2| “ 2, |e3| “ 1,

• dpv1q “ dpv3q “ 2, dpv2q “ dpv4q “ dpv5q “ 1,

• Hpv1q “ th1, h2u, Hpv2q “ th3u, Hpv3q “ th4, h5u,

• Hpv3, e1q “ th4u, Hpv3, e2q “ th5u, Hpv3, e3q “ ∅,
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Figure 8.1: Representation of a hypergraph G

• Eptv1, v2, v3uq “ ∅, Eptv21 , v2, v3uq “ Epv21, tv2, v3uq “ te1u,

• mpv1, v2, v3q “ 0, mpv21, v2, v3q “ 1,

• Hpv21, tv2, v3uq “ th1, h2u, Hpv1, tv2, v3uq “ ∅, Hpv3, tv21, v2uq “ th4u.

A k-edge-coloring of G is a mapping f : EpG q Ñ C, where C is a set of k colors (often we

use C “ t1, . . . , ku), and the edges of one color form a color class. The sub-hypergraph of G

induced by the color class j is denoted by G pjq. To avoid ambiguity, subscripts may be used

to indicate the hypergraph in which hypergraph-theoretic notation should be interpreted —

for example, dG pvq, EG pv2, wq, HG pvq.

8.3 Amalgamations and Detachments

If F “ pV,E,H, ψ, φq is a hypergraph and Ψ is a function from V onto a set W , then

we shall say that the hypergraph G “ pW,E,H,Ψ ˝ψ, φq is an amalgamation of F and that

F is a detachment of G . Associated with Ψ is the number function g : W Ñ N defined

by gpwq “ |Ψ´1pwq|, for each w P W ; being more specific, we may also say that F is a

g-detachment of G . Intuitively speaking, a g-detachment of G is obtained by splitting each

u P V pG q into gpuq vertices. Thus F and G have the same edges and hinges, and each

vertex v of G is obtained by identifying those vertices of F which belong to the set Ψ´1pvq.
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In this process, a hinge incident with a vertex u and an edge e in F becomes incident with

the vertex Ψpuq and the edge e in G .

There are quite a lot of other papers on amalgamations and some highlights include

[36, 42, 45, 44, 48, 51, 70, 74].

8.4 Main Result

A function g : V pG q Ñ N is said to be simple if

|Hpv, eq| ď gpvq for v P V pG q, e P EpG q.

A hypergraph G is said to be simple if g : V pG q Ñ N with gpvq “ 1 for v P V pG q is simple.

It is clear that for a hypergraph F and a function g : V pF q Ñ N, there exists a simple

g-detachment if and only if g is simple.

Theorem 8.2. Let F be a k-edge-colored hypergraph and let g : V pF q Ñ N be a simple

function. Then there exists a simple g-detachment G (possibly with multiple edges) of F

with amalgamation function Ψ : V pG q Ñ V pF q, g being the number function associated

with Ψ, such that:

(A1) for each u P V pF q and each v P Ψ´1puq

dG pvq « dF puq
gpuq ;

(A2) for each u P V pF q, each v P Ψ´1puq and 1 ď j ď k

dG pjqpvq « dF pjqpuq
gpuq ;
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(A3) for distinct u1, . . . , ur P V pF q and Ui Ă Ψ´1puiq with |Ui| “ mi ď gpuiq for 1 ď i ď r

mG pU1, . . . , Urq « mF pum1

1 , . . . , umr
r q

Πr
i“1

`

gpuiq
mi

˘ ;

(A4) for distinct u1, . . . , ur P V pF q and Ui Ă Ψ´1puiq with |Ui| “ mi ď gpuiq for 1 ď i ď r

and 1 ď j ď k

mG pjqpU1, . . . , Urq « mF pjqpum1

1 , . . . , umr
r q

Πr
i“1

`

gpuiq
mi

˘ .

8.5 Proof of Theorem 8.2

8.5.1 Inductive Construction of G

Let F “ pV,E,H, ψ, φq. Let n “ ř

vPV pgpvq ´ 1q. Initially we let F0 “ F and

g0 “ g, and we let Φ0 be the identity function from V into V . Now assume that F0 “

pV0, E0, H0, ψ0, φ0q, . . . ,Fi “ pVi, Ei, Hi, ψi, φiq and Φ0, . . . ,Φi have been defined for some

i ě 0. Also assume that the simple functions g0 : V0 Ñ N, . . . , gi : Vi Ñ N have been defined

for some i ě 0. Let Ψi “ Φ0 . . .Φi. If i “ n, we terminate the construction, letting G “ Fn

and Ψ “ Ψn.

If i ă n, we can select a vertex α of Fi such that gipαq ě 2. As we will see, Fi`1 is

formed from Fi by splitting off a vertex vi`1 from α so that we end up with α and vi`1. Let

Ai “ tHFi
pαqu

Ť tHFip1qpαq, . . . , HFipkqpαqu
Ť tHFipjqpα, eq : e P EFipjqpαq, 1 ď j ď ku, (8.1)

and let

Bi “ tHFi
pαt, Uq : t ě 1, U Ă Viztαuu

Ť tHFipjqpαt, Uq : t ě 1, U Ă Viztαu, 1 ď j ď ku. (8.2)
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It is easy to see that both Ai and Bi are laminar families of subsets of HpFi, αq.

Therefore, by Lemma 1.3, there exists a subset Zi of HpFi, αq such that

|Zi X P | « |P |{gipαq, for every P P Ai Y Bi. (8.3)

Let vi`1 be a vertex which does not belong to Vi and let Vi`1 “ Vi Y tvi`1u. Let Φi`1 be the

function from Vi`1 onto Vi such that Φi`1pvq “ v for every v P Vi and Φi`1pvi`1q “ α. Let

Fi`1 be the detachment of Fi under Φi`1 such that V pFi`1q “ Vi`1, and

HFi`1
pvi`1q “ Zi, HFi`1

pαq “ HFi
pαqzZi. (8.4)

In fact, Fi`1 is obtained from Fi by splitting α into two vertices α and vi`1 in such a

way that hinges which were incident with α in Fi become incident in Fi`1 with α or vi`1

according as they do not or do belong to Zi, respectively. Obviously, Ψi is an amalgamation

function from Fi`1 into Fi. Let gi`1 be the function from Vi`1 into N, such that gi`1pvi`1q “

1, gi`1pαq “ gipαq´1, and gi`1pvq “ gipvq for every v P Viztαu. This finishes the construction

of Fi`1.

8.5.2 Relations Between Fi`1 and Fi

The hypergraph Fi`1, satisfies the following conditions:

(B1) dFi`1
pαq « dFi

pαqgi`1pαq{gipαq;

(B2) dFi`1
pvi`1q « dFi

pαq{gipαq;

(B3) mFi`1
pvsi`1, α

t, Uq “ 0 for s ě 2, and t ě 0;

(B4) mFi`1
pαt, Uq « mFi

pαt, Uqpgipαq ´ tq{gipαq for each U Ă Viztαu, and gipαq ě t ě 1;

(B5) mFi`1
pαt, vi`1, Uq « pt` 1qmFi

pαt`1, Uq{gipαq for each U Ă Viztαu, and t ě 0.
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Proof. Since HFi
pαq P Ai, from (8.4) it follows that

dFi`1
pvi`1q “ |HFi`1

pvi`1q| “ |Zi| “ |Zi X HFi
pαq|

« |HFi
pαq|{gipαq “ dFi

pαq{gipαq,

dFi`1
pαq “ |HFi`1

pαq| “ |HFi
pαq| ´ |Zi|

« dFi
pαq ´ dFi

pαq{gipαq “ pgipαq ´ 1qdFi
pαq{gipαq

“ dFi
pαqgi`1pαq{gipαq.

This proves (B1) and (B2).

If t ě 1, U Ă Viztαu, and e P EFi
pαt, Uq, then for some j, 1 ď j ď k, HFipjqpα, eq P Ai,

so
ˇ

ˇZi X HFipjqpα, eq
ˇ

ˇ « |HFipjqpα, eq|{gipαq “ t{gipαq ď 1,

where the inequality implies from the fact that gi is simple. Therefore either |ZiXHFipjqpα, eq| “

1 and consequently e P EFi`1
pαt´1, vi`1, U) or Zi X HFipjqpα, eq “ ∅ and consequently

e P EFi`1
pαt, Uq. Therefore

mFi`1
pvsi`1, α

r, Uq “ 0,

for r ě 1, and s ě 2. This proves (B3). Moreover, since HFi
pαt, Uq P Bi, we have

mFi`1
pαt´1, vi`1, Uq “ |Zi X HFi

pαt, Uq| « |HFi
pαt, Uq|{gipαq “ tmFi

pαt, Uq{gipαq,

mFi`1
pαt, Uq « mFi

pαt, Uq ´ |HFi
pαt, Uq|{gipαq “ mFi

pαt, Uq ´ tmFi
pαt, Uq{gipαq

“ mFi
pαt, Uqpgipαq ´ tq{gipαq.

This proves (B4) and (B5).

Let us fix j P t1, . . . , ku. It is enough to replace Fi with Fipjq in the statement and the

proof of (B1)–(B5) to obtain companion conditions, say (C1)–(C5) for each color class.
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8.5.3 Relations Between Fi and F

Recall that Ψi “ Φ0 . . .Φi, that Φ0 : V Ñ V , and that Φi : Vi Ñ Vi´1 for i ą 0.

Therefore Ψi : Vi Ñ V and thus Ψ´1
i : V Ñ Vi. Now we use (B1)–(B5) to prove that the

hypergraph Fi satisfies the following conditions for 0 ď i ď n :

(D1) dFi
pvq{gipvq « dF puq{gpuq for each u P V and each v P Ψ´1

i puq;

(D2) mFi
pua11 , U1, . . . , u

ar
r , Urq{Πr

j“1

`

gipujq
aj

˘

« mF pum1

1 , . . . , umr
r q{Πr

j“1

`

gpujq
mj

˘

for distinct ver-

tices u1, . . . , ur P V , aj ě 0, Uj Ă Ψ´1
i pujqztuju with 1 ď mj “ aj ` |Uj| ď gpujq,

1 ď j ď r if gipujq ě aj, 1 ď j ď r.

Proof. The proof is by induction. Recall that F0 “ F , and g0puq “ gpuq for u P V . Thus,

(D1) and (D2) are trivial for i “ 0. Now we will show that if Fi satisfies the conditions (D1)

and (D2) for some i ă n, then Fi`1 satisfies these conditions by replacing i with i ` 1; we

denote the corresponding conditions for Fi`1 by (D1)1 and (D2)1.

Let u P V . If gi`1puq “ gipuq, then (D1)1 is obviously true. So we just check (D1)1

in the case where u “ α. By (B1) and (D1) we have dFi`1
pαq{gi`1pαq « dFi

pαq{gipαq «

dF pαq{gpαq. Moreover, from (B2) and (D1) it follows that dFi`1
pvi`1q « dFi

pαq{gipαq «

dF pαq{gpαq. Since in forming Fi`1 no edge is detached from vr for each vr P Ψ´1
i pαqztαu,

we have dFi`1
pvrq “ dFi

pvrq. Therefore dFi`1
pvrq “ dFi

pvrq « dF pαq{gpαq for each vr P

Ψ´1
i pαqztαu. This proves (D1)1. Let u1, . . . , ur be distinct vertices in V . If gi`1pujq “ gipujq

for 1 ď j ď r, then (D2)1 is clearly true. Therefore, in order to prove (D2)1, without loss of

generality we may assume that gi`1pu1q “ gipu1q ´ 1 (so α “ u1 and vi`1 P Ψ´1
i pu1q). First,

note that for integers a, b we always have pa ´ bq
`

a

b

˘

“ a
`

a´1
b

˘

“ pb ` 1q
`

a

b`1

˘

. If vi`1 R U1,
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we have

mFi`1
pua11 , U1, . . . , u

ar
r , Urq

Πr
j“1

`

gi`1pujq
aj

˘

(B4)« mFi
pua11 , U1, . . . , u

ar
r , Urqpgipu1q ´ a1q{gipu1q

`

gipu1q´1
a1

˘

Πr
j“2

`

gipujq
aj

˘

“ mFi
pua11 , U1, . . . , u

ar
r , Urqpgipu1q ´ a1q{gipu1q

pgipu1q ´ a1q{gipu1q
`

gipu1q
a1

˘

Πr
j“2

`

gipujq
aj

˘

“ mFi
pua11 , U1, . . . , u

ar
r , Urq

Πr
j“1

`

gipujq
aj

˘

(D2)« mF pum1

1 , . . . , umr
r q

Πr
j“1

`

gpujq
mj

˘ .

If vi`1 P U1, we have

mFi`1
pua11 , U1, . . . , u

ar
r , Urq

Πr
j“1

`

gi`1pujq
aj

˘

(B5)« mFi
pua1`1

1 , U1ztvi`1u, . . . , uarr , Urqpa1 ` 1q{gipu1q
`

gipu1q´1
a1

˘

Πr
j“2

`

gipujq
aj

˘

“ mFi
pua1`1

1 , U1ztvi`1u, . . . , uarr , Urq
gipu1q{pa1 ` 1q

`

gipu1q´1
a1

˘

Πr
j“2

`

gipujq
aj

˘

“ mFi
pua1`1

1 , U1ztvi`1u, . . . , uarr , Urq
`

gipu1q
a1`1

˘

Πr
j“2

`

gipujq
aj

˘

(D2)« mF pum1

1 , . . . , umr
r q

Πr
j“1

`

gpujq
mj

˘ .

This proves (D2)1.

Let us fix j P t1, . . . , ku. It is enough to replace F with F pjq, Fi with Fipjq, Fi`1 with

Fi`1pjq, and (Bi) with (Ci) for i “ 1, 2, 4, 5, in the statement and the proof of (D1) and

(D2) to obtain companion conditions, say (E1) and (E2) for each color class.

8.5.4 G satisfies (A1)–(A4)

Recall that G “ Fn and gnpuq “ 1 for every u P V , therefore when i “ n, (D1) implies

(A1). Moreover, if we let i “ n in (D2), we have aj P t0, 1u for 1 ď j ď r and thus

Πr
j“1

`

gipujq
aj

˘

“ Πr
j“1

`

1
aj

˘

“ 1. This proves (A3). By a similar argument, one can prove (A2)

and (A4), and this completes the proof of Theorem 8.2.
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8.6 Corollaries

For a matrix A, let Aj denote the j
th column of A, and let spAq denote the sum of all the

elements of A. Let R “ rr1 . . . rksT (or RT “ rris1ˆk), Λ “ rλ1 . . . λmsT and H “ rh1 . . . hmsT

be three column vectors with ri, λi P N, and hi P t1, . . . , nu for 1 ď i ď m, such that

h1 . . . , hm are distinct. Let ΛKH
n denote a hypergraph with vertex set V , |V | “ n, such that

there are λi edges of size hi incident with every hi vertices for 1 ď i ď m. A hypergraph G is

said to be k-regular if every vertex has degree k. A k-factor of G is a k-regular spanning sub-

hypergraph of G . An R-factorization is a partition (decomposition) tF1, . . . , Fku of EpG q in

which Fi is an ri-factor for 1 ď i ď k. Notice that ΛKH
n is

řm
i“1 λi

`

n´1
hi´1

˘

-regular. We show

that the obvious necessary conditions for the existence of an R-factorization of ΛKH
n , are

also sufficient.

Theorem 8.3. ΛKH
n is R-factorizable if and only if spRq “ řm

i“1 λi
`

n´1
hi´1

˘

, and there exists

a non-negative integer matrix A “ raijskˆm such that AH “ nR, and spAjq “ λj
`

n

hj

˘

for

1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
n is R-factorizable. Since each ri-factor is

an ri-regular spanning sub-hypergraph for 1 ď i ď k, and ΛKH
n is

řm
i“1 λi

`

n´1
hi´1

˘

-regular,

we must have spRq “ řk

i“1 ri “ řm

i“1 λi
`

n´1
hi´1

˘

. Let aij be the number of edges (counting

multiplicities) of size hj contributing to the ith factor for 1 ď i ď k, 1 ď j ď m. Since for

1 ď j ď m, each edge of size hj contributes hj to the the sum of the degrees of the vertices in

an ri-factor for 1 ď i ď k, we must have
řm

j“1 aijhj “ nri for 1 ď i ď k and
řk

i“1 aij “ λj
`

n

hj

˘

for 1 ď j ď m.

To prove the sufficiency, let F be a hypergraph consisting of a single vertex v with

mF pvhjq “ λj
`

n

hj

˘

for 1 ď j ď m. Note that F is an amalgamation of ΛKH
n . Now we color

the edges of F so that mF piqpvhjq “ aij for 1 ď i ď k, 1 ď j ď m. This can be done,

because:
k

ÿ

i“1

mF piqpvhjq “
k

ÿ

i“1

aij “ λj

ˆ

n

hj

˙

“ mF pvhjq for 1 ď j ď m.
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Moreover,

dF piqpvq “
m
ÿ

j“1

aijhj “ nri for 1 ď i ď k.

Let g : V pF q Ñ N be a function so that gpvq “ n. Since for 1 ď i ď m, hi ď n, g is simple.

By Theorem 8.2, there exists a simple g-detachment G of F with n vertices, say v1, . . . , vn

such that by (A2), dG piqpvjq « dF piqpvq{gpvq “ nri{n “ ri for 1 ď i ď k, 1 ď j ď n, and by

(A3), for each U Ă tv1, . . . , vnu with |U | “ hj , mG pUq « mF pvhjq{
`

n

hj

˘

“ λj
`

n

hj

˘

{
`

n

hj

˘

“ λj

for 1 ď j ď m. Therefore G – ΛKH
n , and the ith color class induces an ri-factor for

1 ď i ď k.

In particular, if m “ 1, h :“ h1, λ1 “ 1, r :“ r1 “ ¨ ¨ ¨ “ rk, then Theorem 8.3 implies

Baranyai’s theorem: the complete h-uniform hypergraph Kh
n is r-factorizable if and only if

h � rn and r �
`

n´1
h´1

˘

.

Now let hi ě 2 for 1 ď i ď m, and let ΛKH
p1,...,pn

be a hypergraph with vertex partition

tV1, . . . , Vnu, |Vi| “ pi for 1 ď i ď n such that there are λi edges of size hi incident with

every hi vertices, at most one vertex from each part for 1 ď i ď m (so no edge is incident

with more than one vertex of a part). If p1 “ ¨ ¨ ¨ “ pn :“ p, we denote ΛKH
p1,...,pn

by ΛKH
nˆp.

Theorem 8.4. ΛKH
p1,...,pn

is R-factorizable if and only if p1 “ ¨ ¨ ¨ “ pn :“ p, spRq “
řm

i“1 λi
`

n´1
hi´1

˘

phi´1, and there exists a non-negative integer matrix A “ raijskˆm such that

AH “ npR, and spAjq “ λj
`

n

hj

˘

phj for 1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
p1,...,pn

is R-factorizable (so it is regular). Let

u and v be two vertices from two different parts, say ath and bth parts, respectively. Since
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dpuq “ dpvq, we have

ÿ

1ďjďm

λj
ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

aRti1,...,ihj´1
u

pi1 . . . pihj´1
“

ÿ

1ďjďm

λj
ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

bRti1,...,ihj´1
u

pi1 . . . pihj´1
ðñ

ÿ

1ďjďm

λj

´

ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

aRti1,...,ihj´1
u

pi1 . . . pihj´1
´

ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

bRti1,...,ihj´1
u

pi1 . . . pihj´1

¯

“ 0 ðñ

ÿ

1ďjďm

λj

´

pb
ÿ

1ďi1ă¨¨¨ăi
hj´2

ďn
pi1 . . . pihj´2

´ pa
ÿ

1ďi1ă¨¨¨ăi
hj´2

ďn
pi1 . . . pihj´2

¯

“ 0 ðñ

ppb ´ paq
ÿ

1ďjďm

λj
ÿ

1ďi1ă¨¨¨ăi
hj´2

ďn
pi1 . . . pihj´2

“ 0 ðñ

pb “ pa.

Therefore, p1 “ ¨ ¨ ¨ “ pn :“ p. So ΛKH
nˆp is

řm
i“1 λi

`

n´1
hi´1

˘

phi´1-regular, and we must have

spRq “ řk

i“1 ri “ řm

i“1 λi
`

n´1
hi´1

˘

phi´1. Moreover, there must exist non-negative integers aij ,

1 ď i ď k, 1 ď j ď m, such that
řm

j“1 aijhj “ npri for 1 ď i ď k and
řk

i“1 aij “ λj
`

n

hj

˘

phj

for 1 ď j ď m. We note that aij is in fact the number of edges (counting multiplicities) of

size hj contributing to the ith factor.

To prove the sufficiency, let Λp “ rphiλisT1ˆm, and let F “ ΛpKH
n with vertex set

V “ tv1, . . . , vnu. Notice that F is an amalgamation of ΛKH
nˆp. By Theorem 8.3, F is

pR-factorizable. Therefore, we can color the edges of F so that

dF piqpvq “ pri for v P V, 1 ď i ď k.

Let g : V Ñ N be a function so that gpvq “ p for v P V . Since p ě 1, g is simple. By Theorem

8.2, there exists a simple g-detachment G of F with np vertices, say vi is detached to

vi1, . . . , vip for 1 ď i ď n, such that by (A2), dG piqpvabq « dF piqpvaq{gpvaq “ pri{p “ ri for 1 ď

i ď k, 1 ď a ď n, 1 ď b ď p, and by (A3), mG pva1b1 , . . . , vahj bhj q « mF pva1 , . . . , vahj q{phj “

phjλj{phj “ λj for 1 ď j ď m, 1 ď a1 ă ¨ ¨ ¨ ă ahj
ď n, 1 ď b1, . . . , bhj

ď p. Therefore

G – ΛKH
nˆp, and the ith color class induces an ri-factor for 1 ď i ď k.
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In particular, if m “ 1, h :“ h1, λ1 “ 1, r :“ r1 “ ¨ ¨ ¨ “ rk, then Theorem 8.4 implies

another one of Baranyai’s theorems: the complete h-uniform n-partite hypergraph Kh
nˆp is

r-factorizable if and only if h � npr and r �
`

n´1
h´1

˘

ph´1.

Let JT
k “ r1 . . . 1s1ˆk. For two column vectors Q “ rq1 . . . qksT , R “ rr1 . . . rksT , if

qi ď ri for 1 ď i ď k, we say that Q ď R. For a hypergraph G , a pq, rq-factor is a spanning

sub-hypergraph in which

q ď dpvq ď r for each v P V pG q.

A pQ,Rq-factorization is a partition tF1, . . . , Fku of EpG q in which Fi is a pqi, riq-factor for

1 ď i ď k. An almost k-factor of G is pk ´ 1, kq-factor. An almost R-factorization is an

pR ´ Jk, Rq-factorization. The proof of the following theorems are very similar to those of

Theorem 8.3 and 8.4.

Theorem 8.5. ΛKH
n is pQ,Rq-factorizable if and only if spQq ď řm

i“1 λi
`

n´1
hi´1

˘

ď spRq, and

there exists a non-negative integer matrix A “ raijskˆm such that nQ ď AH ď nR, and

spAjq “ λj
`

n

hj

˘

for 1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
n is pQ,Rq-factorizable. Since ΛKH

n is

řm

i“1 λi
`

n´1
hi´1

˘

-regular, we must have spQq “ řk

i“1 qi ď řm

i“1 λi
`

n´1
hi´1

˘

ď řk

i“1 ri “ spRq.

Since for 1 ď j ď m, each edge of size hj contributes hj to the the sum of the degrees of the

vertices in pqi, riq-factor for 1 ď i ď k, there must exist non-negative integers aij , 1 ď i ď k,

1 ď j ď m, such that nqi ď řm
j“1 aijhj ď nri for 1 ď i ď k and

řk
i“1 aij “ λj

`

n

hj

˘

for

1 ď j ď m.

To prove the sufficiency, let F be a hypergraph consisting of a single vertex v with

mF pvhjq “ λj
`

n

hj

˘

for 1 ď j ď m. Note that F is an amalgamation of ΛKH
n . Now we color

the edges of F so that mF piqpvhjq “ aij for 1 ď i ď k, 1 ď j ď m. This can be done,

because:
k

ÿ

i“1

mF piqpvhjq “
k

ÿ

i“1

aij “ λj

ˆ

n

hj

˙

“ mF pvhjq for 1 ď j ď m.
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Moreover,

nqi ď dF piqpvq “
m

ÿ

j“1

aijhj ď nri for 1 ď i ď k.

Let g : V pF q Ñ N be a function so that gpvq “ n. Since for 1 ď i ď m, hi ď n, g is simple.

By Theorem 8.2, there exists a simple g-detachment G of F with n vertices, say v1, . . . , vn

such that by (A2), qi “ nqi{n ď dG piqpvjq ď nri{n “ ri for 1 ď i ď k, 1 ď j ď n, and by

(A3), for each U Ă tv1, . . . , vnu with |U | “ hj , mG pUq « mF pvhjq{
`

n

hj

˘

“ λj
`

n

hj

˘

{
`

n

hj

˘

“ λj

for 1 ď j ď m. Therefore G – ΛKH
n , and the ith color class induces a pqi, riq-factor for

1 ď i ď k.

Theorem 8.6. ΛKH
n is almost R-factorizable if and only if spRq´k ď řm

i“1 λi
`

n´1
hi´1

˘

ď spRq,

and there exists a non-negative integer matrix A “ raijskˆm such that npR´Jkq ď AH ď nR,

and spAjq “ λj
`

n

hj

˘

for 1 ď j ď m.

Proof. It is enough to take Q “ R ´ Jk in Theorem 8.5.

Theorem 8.7. ΛKH
nˆp is pQ,Rq-factorizable if and only if spQq ď řm

i“1 λi
`

n´1
hi´1

˘

phi´1 ď spRq,

and there exists a non-negative integer matrix A “ raijskˆm such that npQ ď AH ď npR,

and spAjq “ λj
`

n

hj

˘

phj for 1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
nˆp is pQ,Rq-factorizable. Since ΛKH

nˆp is
řm

i“1 λi
`

n´1
hi´1

˘

phi´1-regular, we must have spQq “ řk

i“1 qi ď řm

i“1 λi
`

n´1
hi´1

˘

phi´1 ď řk

i“1 ri “

spRq. Moreover, there must exist non-negative integers aij , 1 ď i ď k, 1 ď j ď m, such that

npqi ď řm
j“1 aijhj ď npri for 1 ď i ď k and

řk
i“1 aij “ λj

`

n

hj

˘

phj for 1 ď j ď m.

To prove the sufficiency, let Λp “ rphiλisT1ˆm, and let F “ ΛpKH
n with vertex set

V “ tv1, . . . , vnu. Notice that F is an amalgamation of ΛKH
nˆp. By Theorem 8.5, F is

ppQ, pRq-factorizable. Therefore, we can color the edges of F so that

pqi ď dF piqpvq ď pri for v P V, 1 ď i ď k.
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Let g : V Ñ N be a function so that gpvq “ p for v P V . Since p ě 1, g is simple. By

Theorem 8.2, there exists a simple g-detachment G of F with np vertices, say vi is detached to

vi1, . . . , vip for 1 ď i ď n, such that by (A2), qi “ pqi{p ď dG piqpvabq ď pri{p “ ri for 1 ď i ď k,

1 ď a ď n, 1 ď b ď p, and by (A3), mG pva1b1 , . . . , vahj bhj q « mF pva1 , . . . , vahj q{phj “

phjλj{phj “ λj for 1 ď j ď m, 1 ď a1 ă ¨ ¨ ¨ ă ahj
ď n, 1 ď b1, . . . , bhj

ď p. Therefore

G – ΛKH
nˆp, and the ith color class induces a ppi, riq-factor for 1 ď i ď k.

Theorem 8.8. ΛKH
nˆp is almost R-factorizable if and only if spRq´k ď řm

i“1 λi
`

n´1
hi´1

˘

phi´1 ď

spRq, and there exists a non-negative integer matrix A “ raijskˆm such that nppR ´ Jkq ď

AH ď npR, and spAjq “ λj
`

n

hj

˘

phj for 1 ď j ď m.

Proof. It is enough to take Q “ R ´ Jk in Theorem 8.7.
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Chapter 9

Connected Baranyai Theorem

9.1 Introduction

Let Kh
n “ pV,

`

V

h

˘

q be the complete h-uniform hypergraph on vertex set V with |V | “ n.

Baranyai showed that Kh
n can be expressed as the union of edge-disjoint r-regular factors if

and only if h divides rn and r divides
`

n´1
h´1

˘

. Using a new proof technique, in this chapter

we prove that λKh
n can be expressed as the union G1 Y . . . Y Gk of k edge-disjoint factors,

where for 1 ď i ď k, Gi is ri-regular, if and only if (i) h divides rin for 1 ď i ď k, and (ii)

řk

i“1 ri “ λ
`

n´1
h´1

˘

. Moreover, for any i (1 ď i ď k) for which ri ě 2, this new technique

allows us to guarantee that Gi is connected, generalizing Baranyai’s theorem, and answering

a question by Katona.

A hypergraph G is a pair pV,Eq where V is a finite set called the vertex set, E is the

edge multiset, where every edge is itself a multi-subset of V . This means that not only can

an edge occur multiple times in E, but also each vertex can have multiple occurrences within

an edge. The total number of occurrences of a vertex v among all edges of E is called the

degree, dGpvq of v in G. For a positive integer r, an r-factor in a hypergraph G is a spanning

r-regular sub-hypergraph, and a partition of the edge set of G into (disjoint) r-factors is

called an r-factorizaton. The hypergraph Kh
n :“ pV,

`

V

h

˘

q with |V | “ n (by
`

V

h

˘

we mean the

collection of all h-subsets of V ) is called a complete h-uniform hypergraph. Avoiding trivial

cases, we assume that n ą h. Baranyai proved that:

Theorem 9.1. (Baranyai [15]) Kh
n is r-factorizable if and only if h � rn and r �

`

n´1
h´1

˘

.

It is natural to ask if we can obtain a connected factorization; that is, a factorization in

which each factor is a connected hypergraph. Let m be the least common multiple of h and
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n, and let a “ m{h. Define the set of edges

K “ tt1, . . . , hu, th ` 1, . . . , 2hu, . . . , tpa´ 1qh` 1, pa´ 1qh` 2, . . . , ahuu,

where the elements of the edges are considered mod n. The families obtained from K by

permuting the elements of the underlying set tnu are called wreaths. If h divides n, then a

wreath is just a partition. Baranyai and Katona conjectured that the edge set of Kh
n can be

decomposed into disjoint wreaths [54]. In connection with this conjecture, Katona (private

communication) suggested the problem of finding a connected factorization for Kh
n . In this

chapter, we solve this problem.

An pr1, . . . , rkq-factorization of G is a partition of the edge set of G into F1, . . . , Fk where

Fi is an ri-factor for 1 ď i ď k. If we replace every edge e of Kh
n by λ copies of e, then

we denote the new hypergraph by λKh
n . In this chapter, the main result is the following

theorem:

Theorem 9.2. λKh
n is pr1, . . . , rkq-factorizable if and only if h � rin for 1 ď i ď k, and

řk
i“1 ri “ λ

`

n´1
h´1

˘

. Moreover, for 1 ď i ď k, if ri ě 2, then we can guarantee that the ri-factor

is connected.

While this generalizes Baranyai’s result in various ways, we note that the major exten-

sion is the guarantee of connectivity for the r-factors when r ě 2. In particular if λ “ 1,

and h “ r1 “ ¨ ¨ ¨ “ rk “ 2, Theorem 9.2 implies the classical result of Walecki [64] that the

edge set of Kn can be partitioned into Hamiltonian cycles if and only if n is odd. Here we

list some other interesting special consequences of Theorem 9.2:

Corollary 9.3. Kh
n is connected 2-factorizable if and only if

`

n´1
h´1

˘

is even and h � 2n.

Corollary 9.4. Kh
n has a connected h

gcdpn,hq
-factorization.

We note that the idea behind the proof of Theorem 9.2 is based on the amalgamation

technique [44, 70]. Preliminaries are given in Section 9.2, followed by the proof of Theorem

9.2 in Section 9.3.
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We end this section with some notation we need to be able to describe hypergraphs that

arise in this setting.

Let G “ pV,Eq be a hypergraph with α P V , and let U “ tu1, . . . , uzu Ă V ztαu. Recall

that each edge is a multi-subset of V . We abbreviate an edge of the form tα, . . . , α
looomooon

p

, u1, . . . , uzu

to tαp, u1, . . . , uzu. An h-loop incident with α is an edge of the form tαhu, and mpαp, Uq

denotes the multiplicity of an edge of the form tαpuYU . A k-edge-coloring of G is a mapping

f : E Ñ C, where C is a set of k colors (often we use C “ t1, . . . , ku), and the edges of one

color form a color class. The sub-hypergraph of G induced by the color class i is denoted by

Gi, abbreviate dGi
pαq to dipαq and mGi

pαp, Uq to mipαp, Uq.

9.2 Preliminaries

A vertex α in a connected hypergraph G is a cut vertex if there exist two non-trivial

sub-hypergraphs I, J of G such that I Y J “ G, V pI X Jq “ α and EpI X Jq “ ∅. A non-

trivial connected sub-hypergraph W of a connected hypergraph G is said to be an α-wing

of G, if α is not a cut vertex of W and no edge in EpGqzEpW q is incident with a vertex

in V pW qztαu. The set of all α-wings of G is denoted by WαpGq. Figure 9.1 illustrates an

example of a hypergraph and the set of all its α-wings.

If the multiplicity of a vertex α in an edge e is p, we say that α is incident with p

distinct objects, say h1, . . . , hp. We call these objects hinges, and we say that e is incident

with h1, . . . , hp. The set of all hinges in G incident with α is denoted by HGpαq; so |HGpαq|

is in fact the degree of α.

Intuitively speaking, an α-detachment of G is a hypergraph obtained by splitting a vertex

α into one or more vertices and sharing the incident hinges and edges among the subvertices.

That is, in an α-detachment G 1 of G in which we split α into α and β, an edge of the form

tαp, u1, . . . , uzu in G will be of the form tαp´i, βi, u1, . . . , uzu in G 1 for some i, 0 ď i ď p. Note

that a hypergraph and its detachments have the same hinges. Whenever it is not ambiguous,

we use d1, m1, etc. for degree, multiplicity and other hypergraph parameters in G 1. Also, for
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α
α

α

,, ,

u

WαpGq “ t
α

G

Figure 9.1: A hypergraph G and the set of all its α-wings

an α-wing W in G and an α-detachment G 1, let W 1 denote the sub-hypergraph of G 1 whose

hinges are the same as those in W .

We shall present three lemmas, all of which follow immediately from definitions.

Lemma 9.5. Let G be a connected hypergraph. Let G 1 be an α-detachment of G obtained by

splitting a vertex α into two vertices α and β. Then G 1 is connected if and only if for some

α-wing W P WαpGq with dW pαq ě 2,

1 ď |HW pαq X HG1pβq| ă dW pαq.

Informally speaking, Lemma 9.5 says that for some α-wing W with dW pαq ě 2, at least

one but not all the hinges incident with α in W must be incident with β in G 1.

A family A of sets is laminar if, for every pair A,B of sets belonging to A : A Ă B, or

B Ă A, or A X B “ ∅.

Let us fix a vertex α of a k-edge-colored hypergraph G “ pV,Eq. For 1 ď i ď k, let

Hi be the set of hinges each of which is incident with both α and an edge of color i (so

dipαq “ |Hi|). For any edge e P E, let He be the collection of hinges incident with both α
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and e. Clearly, if e is of color i, then He Ă Hi. For an α-wing W , let HW “ HW pαq. For

1 ď i ď k, let

H i “
ď

WPWαpGiq,dW pαqě2

HW .

Lemma 9.6. Let

A “ tH1, . . . , Hku Y tHW : W P WαpGiq, 1 ď i ď ku

Y tH1, . . . , Hku Y tHe : e P Eu.

Then A is a laminar family of subsets of Hpαq.

For each p ě 1, and each U Ă V ztαu, let HU
p be the set of hinges each of which is

incident with both α and an edge of the form tαpu Y U in G (so |HU
p | “ pmpαp, Uq).

Lemma 9.7. Let

B “ tHU
p : p ě 1, U Ă V ztαuu.

Then B is a laminar family of subsets of Hpαq.

If x, y are real numbers, x « y means tyu ď x ď rys. We need the following powerful

lemma:

Lemma 9.8. (Nash-Williams [70, Lemma 2]) If A ,B are two laminar families of subsets

of a finite set S, and n is a positive integer, then there exist a subset A of S such that

|AX P | « |P |{n for every P P A Y B.

9.3 Proof of the Main Theorem

To prove Theorem 9.2, first we look at the obvious necessary conditions:

Lemma 9.9. If λKh
n is connected pr1, . . . , rkq-factorizable, then
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(i) ri ě 2 for 1 ď i ď k,

(ii) h � rin for 1 ď i ď k, and

(iii)
řk

i“1 ri “ λ
`

n´1
h´1

˘

.

Proof. Suppose that λKh
n is connected pr1, . . . , rkq-factorizable. The necessity of (i) is suffi-

ciently obvious. Since each edge contributes h to the the sum of the degrees of the vertices

in an ri-factor for 1 ď i ď k, we must have (ii). Since each ri-factor is an ri-regular spanning

sub-hypergraph for 1 ď i ď k, and λKh
n is λ

`

n´1
h´1

˘

-regular, we must have (iii).

In order to get an inductive proof of Theorem 9.2 to work, we actually prove the following

seemingly stronger result:

Theorem 9.10. Let n, h, λ, k, r1, . . . , rk be positive integers with n ą h satisfying (i)–(iii).

For any integer 1 ď ℓ ď n, there exists an ℓ-vertex k-edge-colored hypergraph G with vertex

set V (α P V ) such that

dipuq “

$

’

&

’

%

ripn´ ℓ ` 1q if u “ α

ri if u ‰ α
for u P V, 1 ď i ď k, (9.1)

mpαp, Uq “ λ

ˆ

n ´ ℓ ` 1

p

˙

for p ě 0, U Ă V ztαu with |U | “ h´ p, and (9.2)

Gi is connected if ri ě 2, for 1 ď i ď k. (9.3)

Remark 9.11. Theorem 9.2 follows from Theorem 9.10 in the case where ℓ “ n as the

following argument shows. If ℓ “ n, then conditions (9.1)–(9.3) imply that we have an n-

vertex k-edge-colored hypergraph G in which the ith color class is ri-regular by (9.1), and

connected by (9.3). Moreover, (9.2) implies that for U Ă V ztαu, (i) mpUq “ λ
`

1
0

˘

“ λ if

|U | “ h (when p “ 0), (ii) mpα, Uq “ λ
`

1
1

˘

“ λ if |U | “ h ´ 1 (when p “ 1), and (iii)

mpαp, Uq “ λ
`

1
p

˘

“ 0 for p ě 2, and |U | “ h´ p. Therefore G – λKh
n .
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Proof. The proof is by induction on ℓ. At each step we will assume not only that G is an ℓ-

vertex k-edge-colored hypergraph with vertex set V (α P V ) satisfying conditions (9.1)–(9.3),

but that G also satisfies the two additional properties

|He| ď n´ ℓ ` 1 for each edge e of G, and (9.4)

for 1 ď i ď k, if ri ě 2, then δi “ ripn ´ ℓ ` 1q (9.5)

where for 1 ď i ď k, δi “ |H i|.

First consider the base case when ℓ “ 1. Let F be a hypergraph with a single vertex α

incident with λ
`

n

h

˘

h-loops; i.e. mpαhq “ λ
`

n

h

˘

. Color the edges ofF such thatmipαhq “ rin{h

for 1 ď i ď k. This is possible since by (ii) h � rin, and by (iii)
řk

i“1mipαhq “ řk

i“1 rin{h “

n{hřk
i“1 ri “ λn

`

n´1
h´1

˘

{h “ λ
`

n

h

˘

“ mpαhq. Also, note that for ℓ “ 1, the hypergraph F

trivially satisfies (9.4), and since each h-loop is an α-wing, F also satisfies (9.5). Therefore,

F shows that conditions (9.1)–(9.5) holds for ℓ “ 1.

Now suppose that 1 ď ℓ ă n, and that G satisfies (9.1)–(9.5). The proof is completed

by showing that G has an pℓ ` 1q-vertex α-detachment G 1 with vertex set V 1 “ V Y tβu

satisfying

|H 1
e| ď n´ ℓ for each edge e of G 1, (9.6)

d1
ipuq “

$

’

&

’

%

ripn ´ ℓq if u “ α

ri if u ‰ α
for u P V 1, 1 ď i ď k, (9.7)

m1pαp, Uq “ λ

ˆ

n´ ℓ

p

˙

for p ě 0, U Ă V 1ztαu with |U | “ h´ p, (9.8)

G 1piq is connected if ri ě 2, for 1 ď i ď k, and (9.9)
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for 1 ď i ď k, if ri ě 2 and if ℓ ă n ´ 1, then

δ1
i “ ripn ´ ℓq. (9.10)

Let A and B be the laminar families in Lemmas 9.6, and 9.7. By Lemma 9.8, there

exists a subset A of Hpαq such that

|AX P | « |P |{pn´ ℓ ` 1q for every P P A Y B. (9.11)

Let G 1 be the hypergraph obtained from G by splitting α into two vertices α and β in such a

way that hinges which were incident with α in G become incident in G 1 with α or β according

as they do not or do belong to A, respectively. More precisely,

H 1pβq “ A, H 1pαq “ HpαqzA. (9.12)

Since Hi P A for 1 ď i ď k, we have

d1
ipβq “ |A X Hi|

« |Hi|{pn ´ ℓ ` 1q “ dipαq{pn´ ℓ ` 1q

“ ripn´ ℓ ` 1q{pn´ ℓ ` 1q “ ri,

d1
ipαq “ dipαq ´ d1

ipβq

“ ripn´ ℓ ` 1q ´ ri “ ripn´ ℓq,

and for u R tα, βu, d1
ipuq “ dipuq “ ri. Therefore G 1 satisfies (9.7).

Let e be an edge in G incident with α. Then He P A , and so

|A X He| « |He|{pn ´ ℓ ` 1q ď 1,
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observing that the last inequality implies from (9.4). This means that either A X He “ ∅

or |A X He| “ 1. Therefore m1pβq, Uq “ 0 for q ě 2 and U Ă V 1. Also, note that if

|He| “ n ´ ℓ ` 1, then |A X He| “ 1 and thus |H 1
e| “ n ´ ℓ, and if |He| ă n ´ ℓ ` 1, then

|H 1
e| ď |He| ď n ´ ℓ, both cases together proving (9.6).

Since for p ě 1, and U Ă V ztαu, HU
p P B, we have

m1pαp´1, β, Uq “ |AX HU
p |

« |HU
p |{pn ´ ℓ ` 1q “ pmpαp, Uq{pn ´ ℓ ` 1q

“ λp

ˆ

n´ ℓ ` 1

p

˙

{pn ´ ℓ ` 1q “ λ

ˆ

n´ ℓ

p ´ 1

˙

,

m1pαp, Uq “ mpαp, Uq ´ m1pαp´1, β, Uq

“ λ

ˆ

n´ ℓ ` 1

p

˙

´ λ

ˆ

n´ ℓ

p ´ 1

˙

“ λ

ˆ

n´ ℓ

p

˙

.

Therefore G 1 satisfies (9.8).

Let us fix an i, 1 ď i ď k such that ri ě 2. Let W be an α-wing of Gi with dW pαq ě 2.

Then HW P A , and so

|AX HW | « |HW |{pn ´ ℓ ` 1q “ dW pαq{pn´ ℓ ` 1q, (9.13)

which implies that (noting that n ´ ℓ ` 1 ě 2)

|AX HW | ă |HW |. (9.14)

Moreover,

|AX H i| « |H i|{pn ´ ℓ ` 1q “ δi{pn ´ ℓ ` 1q “ ri ě 2, (9.15)

and therefore there exists an α-wing W in Gi with dW pαq ě 2, such that A X HW ‰ ∅.

Therefore by Lemma 9.5, G 1
i is connected.
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Now, suppose that ℓ ď n´ 2, or equivalently that n´ ℓ` 1 ě 3. Since δi “ di, we have

that for every W P WαpGiq, dW pαq ě 2. So there is no α-wing W in Gi with dW pαq “ 1. Let

us fix an α-wing W in Gi. There are two cases to consider:

• Case 1: If |HW | ě 3, then since |AXHW | « |HW |{pn´ ℓ` 1q ď |HW |{3, we have that

d1
W 1pαq ě 2, and thus δ1

i “ d1
ipαq “ ripn ´ ℓq. Note that W 1 is a sub-hypergraph of

some α-wing S in G 1 with d1
Spαq ě 2.

• Case 2: If |HW | “ 2, then |A X HW | « |HW |{pn ´ ℓ ` 1q “ 2{pn ´ ℓ ` 1q ď 2{3. So

|AXHW | P t0, 1u. If AXHW “ ∅, we are done. So let us assume that |AXHW | “ 1.

Recall from (9.15) that |AXH i| ě 2. Therefore, there is another α-wing T in Gi with

|HT | ě 2 such that 1 ď |AXHT | ă |HT |. Therefore, there exists an α-wing S in G 1 with

W 1 Y T 1 Ă S, and d1
Spαq ě 2. Thus, in this case also we have δ1

i “ δi ´ ri “ ripn ´ ℓq.

Therefore G 1 satisfies (9.10) and the proof is complete.
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Chapter 10

Polynomial Time Parallelisms

10.1 Introduction

Throughout this chapter, k is a fixed positive integer. Let Pkpnq be the collection of all

k-element subsets of an n-set. A parallelism on Pkpnq is an equivalence relation of Pkpnq such

that the members of each equivalence class form a partition of the n-set. Each equivalence

class is called a parallel class, that is a set of n{k k-subsets each of which partitions the n-

set. In connection with Kirkman’s famous Fifteen Schoolgirls Problem [56], in 1850 Sylvester

asked whether it is possible to find a parallelism on Pkpnq. Of course, it is necessary that k

divides n, and the number of parallel classes would be k
n

`

n

k

˘

“
`

n´1
k´1

˘

. For those readers with

(hyper)graph theory background, we note that finding a parallelism on Pkpnq is equivalent to

finding a 1-factorization for a complete k-uniform hypergraph on n vertices. Sylvester found

a parallelism on P3p15q. Several generalizations of this problem were studied during the last

70 years (see for example [71, 73]), but the general case remained open until 1973, when

Baranyai settled this old problem [15]. Baranyai’s elegant proof actually yields a method

for constructing a parallelism on Pkpnq recursively. However, this approach is not be very

efficient, its complexity being exponential (Op2nq) [53, p. 226]. Later Brouwer and Schrijver

gave another proof for which the complexity is polynomial in
`

n

k

˘

, the output size for the

problem [25].

In this chapter, using our proof techniques of Chapter 5 and Chapter 8, we give a con-

structive proof of polynomial time complexity for the existence of a parallelism on Pkpnq. All

known proofs including the one we shall present here, use a form of network flow; specifically,

we use an approach which has been useful in finding detachments of graphs [70]. We note

even though our proof is very similar to that of Brouwer and Schrijver [25], it is obtained
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independently by simplifying the proofs of Theorem 10.3 and Nash-Williams lemma. For

applications of parallelism on Pkpnq in computer science and biology (such as parallel algo-

rithms for tightening inter-atomic distance-bounds required for molecular conformation) see

[33, 34, 72]. It is shown in [55] that there are 103000 isomorphic classes of parallelisms on

P3p9q.

10.2 Terminology

If x, y are real numbers, then txu and rxs denote the integers such that x´1 ă txu ď x ď

rxs ă x ` 1, and x « y means tyu ď x ď rys. For a multiset A and u P A, let µApuq denote

the multiplicity of u in A, and let |A| “ ř

uPA µApuq. For multisets A1, . . . , An, we define

A “ Ťn

i“1Ai so that µApuq “ řn

i“1 µAi
puq. We abbreviate tu, . . . , u

looomooon

r

u to turu; for example

tu2, v, w2u Y tu, w2u “ tu3, v, w4u.

A circulation on a digraph D is a mapping f from EpDq to the reals satisfying conserva-

tion of flow at every vertex (see [84, chap. 7]). Let N´pvq and N`pvq denote the in-neighbor

and out-neighbor of the vertex v, respectively. By pv, wq we mean a directed edge from v

to w, and we abbreviate fptv, wuq to fpv, wq. Let f be a circulation on a finite digraph

D. Then it is known that there exists an integral circulation g (obtainable by a polytime

algorithm) such that gpeq « fpeq for every edge e (see for example [70, Lemma 1]).

10.3 Proofs

Theorem 10.1. If k divides n, then the set of all
`

n

k

˘

k-subsets of an n-set may be partitioned

into disjoint parallel classes Ai, i “ 1, . . . ,
`

n´1
k´1

˘

.

In order to get an inductive proof to work, rather than prove Theorem 10.1, we prove

the stronger result Theorem 10.2 below. Let m “ n{k, M “
`

n´1
k´1

˘

. We use the term pm, kq-

split of a set X for a multiset A of m k-multi-subsets of X whose union contains X . For an
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integer ℓ and a set A1, . . . ,AM of pm, kq-splits of t1, . . . , ℓu, let µj
i “ ř

αPAj
µαpiq, and for

0 ď r ď k and S Ă t2, . . . , ℓu with |S| “ k ´ r, let µr
S “ řM

i“1 µAi

`

S Y t1ru
˘

.

Theorem 10.2. For any integer ℓ, 1 ď ℓ ď n, there exist a set

P “ tA1, . . . ,AMu

of pm, kq-splits of t1, . . . , ℓu such that for 1 ď j ď M , µj
1 “ n ´ ℓ ` 1, µj

i “ 1 for 2 ď i ď ℓ,

and µr
S “

`

n´ℓ`1
r

˘

for 0 ď r ď k and each S Ă t2, . . . , ℓu with |S| “ k ´ r. Moreover, P can

be obtained by a polynomial time algorithm.

Proof. We prove our assertion by induction on ℓ. Notice that it is true for ℓ “ 1 by choosing

A1 “ ¨ ¨ ¨ “ AM “ tt1kumu. Also notice that proving the case ℓ “ n will prove Theorem

10.1, since µj
i “ 1 for 1 ď i ď n means that each Aj forms a partition of t1, . . . , nu for

j “ 1, . . . ,M , and µr
S “

`

1
r

˘

for 0 ď r ď k and each S Ă t2, . . . , nu with |S| “ k ´ r means

that every k-subset of the n-set appears exactly once in
ŤM

i“1Ai (the cases r “ 1 and 0

consider subsets of t1, . . . , nu that do and do not contain 1 respectively).

Assume for some value ℓ ă n that pm, kq-splits A1, . . . ,AM exist with the required

properties. We form a digraph D with vertex multiset V “ tσ, τu Y ty1, . . . , yMu Y twα :

α P ŤM

i“1Ai, µαp1q ą 0u Y tvrS : 0 ď r ď k, S Ă t2, . . . , ℓu, |S| “ k ´ r, µr
S ą 0u and with

a circulation f as follows. (Note that some α may occur several times in Ai, the name wα

may occur on several vertices, so V is a multiset.)

• For 1 ď i ď M , there is a directed edge from σ to yi such that fpσ, yiq “ 1.

• For 1 ď i ď M and for each α P Ai with µαp1q ą 0, there is a directed edge from yi to

wα such that fpyi, wαq “ µαp1q{pn´ ℓ ` 1q.

• For 0 ď r ď k, and for S Ă t2, . . . , ℓu with |S| “ k ´ r, if µr
S ą 0 then for each

α “ S Y t1ru in
ŤM

i“1Ai, there is a directed edge from wα to vrS such that fpwα, v
r
Sq “

µαp1q{pn´ ℓ` 1q, and there is a directed edge from vrS to τ such that fpvrS, τq “
`

n´ℓ

r´1

˘

.
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• There is a directed edge from τ to σ such that fpτ, σq “ M .

It is straightforward to check that f is a circulation (see Figure 10.1). There is an integer

circulation g on D such that gpeq « fpeq for each edge e in D. Let us fix an i, 1 ď i ď M . For

each α P Ai with µαp1q ą 0, we have gpyi, wαq P t0, 1u. More important, since gpσ, yiq “ 1,

there is exactly one α in Ai such that gpyi, wαq “ 1. Now, we obtain an pm, kq-split A1
i of

the set t1, . . . , ℓ ` 1u by letting A1
i be obtained from Ai by replacing one 1 in α P Ai with

ℓ ` 1 if gpyi, wαq “ 1. At this point, it is clear that our construction is of polynomial time

complexity.

Finally, we show that the pm, kq-splits A1
1, . . . ,A

1
M satisfy the required properties. We

define µ1
i
j and µ1

S
r for A1

1, . . . ,A
1
M similarly to the way we defined them for A1, . . . ,AM .

Obviously, µ1
i
j “ µ

j
i “ 1 for 2 ď i ď ℓ, 1 ď j ď M . Also µ1

ℓ`1
j “ 1, and µ1

1
j “ µ

j
1 ´ µ1

ℓ`1
j “

n´ℓ for 1 ď j ď M . Moreover, for 0 ď r ď k, S Ă t1, . . . , ℓ`1u with |S| “ k´r, if ℓ`1 P S

then µ1
S
r “ gpvr`1

Sztℓ`1u, τq “
`

n´ℓ

r

˘

, and if S Ă t1, . . . , ℓu then µ1
S
r “

`

n´ℓ`1
r

˘

´ gpvrS, τq “
`

n´ℓ`1
r

˘

´
`

n´ℓ

r´1

˘

“
`

n´ℓ

r

˘

. This completes the proof.
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Chapter 11

Recent Results and Future Directions

In this chapter, I shall summarize my research, the significance of my results, and some

motivation for future research. For each topic, I describe the problem with a brief discussion

on proof techniques, applications and extensions together with related open problems.

11.1 Amalgamations and Connected Fair Detachments

A detachment of a graph H is a graph obtained from H by splitting some or all of its

vertices into more than one vertex. If g is a function from V pHq into N, then a g-detachment

of H is a detachment of H in which each vertex u of H splits into gpuq vertices. H is an

amalgamation of G if there exists a function φ called an amalgamation function from V pGq

onto V pHq and a bijection φ1 : EpGq Ñ EpHq such that e joining u and v is in EpGq iff φ1peq

joining φpuq and φpvq is in EpHq.

A k-edge-coloring of G is a mapping f : E Ñ C, where E is the edge set of G and

C is a set of k colors (we often use C “ t1, . . . , ku), and the edges of one color form a

color class. In [5], we proved that for a given edge-colored graph there exists a detachment

so that the result is a graph in which the edges are shared among the vertices in ways

that are fair with respect to several notions of balance (such as between pairs of vertices,

degrees of vertices in both the graph and in each color class, etc.). The connectivity of color

classes is also addressed. Applications of this result are addressed in Sections 11.3 and 11.5.

Most results in the literature on amalgamations focus on the detachments of amalgamated

complete graphs and complete multipartite graphs. Many such results ([44, 48, 58, 61, 74],

Theorem 1, Theorem 1, Theorem 3.1, Theorem 2.1 and Theorem 2.1, respectively) follow as
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immediate corollaries to our main result in [5], which addresses amalgamations of graphs in

general.

11.1.1 Edge-Coloring Techniques

An edge-coloring of a multigraph is (i) equalized if the number of edges colored with

any two colors differs by at most one, (ii) balanced if for each pair of vertices, among the

edges joining the pair, the number of edges of each color differs by at most one from the

number of edges of each other color, and (iii) equitable if, among the edges incident with each

vertex, the number of edges of each color differs by at most one from the number of edges

of each other color. In [80, 81, 82, 83] de Werra studied balanced equitable edge-colorings of

bipartite graphs. The following lemma by de Werra is used to prove the main result in [5]:

Lemma 11.1. Every bipartite graph has a balanced, equitable and equalized k-edge-coloring

@k P N.

11.2 Fair Detachments of Hypergraphs

A hypergraph G is a pair pV,Eq where V is a finite set called the vertex set, E is the

edge multiset, where every edge is a multi-subset of V . A detachment of a hypergraph is

formed by splitting each vertex into one or more subvertices, and sharing the incident edges

arbitrarily among the subvertices. Let F be a hypergraph in which each edge is of size at

most 3. In [6], I proved that for a given edge-coloring of F , there exists a detachment G such

that the degree of each vertex and the multiplicity of each edge in F (and each color class

of F) are shared fairly among the subvertices in G (and each color class of G, respectively).

11.2.1 Laminar Families

A family A of sets is laminar if, for every pair A,B of sets belonging to A, either A Ă B,

or B Ă A, or A X B “ ∅. To extend our main result in [5] to hypergraphs [6], I used the

following lemma by Nash-Williams [70] (Here x « y means tyu ď x ď rys):
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Lemma 11.2. If A ,B are two laminar families of subsets of a finite set S, and n P N, then

there exist a subset A of S such that for every P P A Y B, |AX P | « |P |{n.

In [8], I generalized the results in [6] to arbitrary hypergraphs. Here dpvq denotes the

degree of the vertex v, Gpjq denotes the color class j of G, and mpum1

1 , . . . , umr
r q denotes the

multiplicity of an edge of the form

tu1, . . . , u1
loooomoooon

m1

, . . . , ur, . . . , ur
loooomoooon

mr

u.

Theorem 11.3. Let F be a k-edge-colored hypergraph and let g : V pFq Ñ N. Then F

has a fair g-detachment G. That is, there exists a g-detachment G of F with amalgamation

function Ψ : V pGq Ñ V pFq ( @v P V pFq, gpvq “ |Ψ´1pvq|) such that:

(A1) dGpvq « dFpuq{gpuq for each u P V pFq and each v P Ψ´1puq;

(A2) dGpjqpvq « dFpjqpuq{gpuq for each u P V pFq, each v P Ψ´1puq and 1 ď j ď k;

(A3) mGpU1, . . . , Urq « mFpum1

1 , . . . , umr
r q{Πr

i“1

`

gpuiq
mi

˘

for distinct u1, . . . , ur P V pFq and

Ui Ă Ψ´1puiq with |Ui| “ mi ď gpuiq for 1 ď i ď r;

(A4) mGpjqpU1, . . . , Urq « mFpjqpum1

1 , . . . , umr
r q{Πr

i“1

`

gpuiq
mi

˘

for distinct u1, . . . , ur P V pFq and

Ui Ă Ψ´1puiq with |Ui| “ mi ď gpuiq for 1 ď i ď r and 1 ď j ď k.

Applications of this theorem are discussed in Sections 11.4 and 11.6.

11.3 Edge-Decompositions and Edge-Colorings

An pr1, . . . , rkq-factorization of a graph G is a partition (decomposition) tF1, . . . , Fku of

EpGq in which Fi is an ri-factor (ri-regular spanning) for i “ 1, . . . , k. While the main result

in [5] is interesting by itself, it provides a short proof for the following well-known results

(see [9]):
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• λKn (λ-fold complete graph) is decomposable into Hamiltonian cycles iff λpn ´ 1q is

even.

• λKn is pr1, . . . , rkq-factorizable iff rin is even for 1 ď i ď k, and
řk

i“1 ri “ λpn ´ 1q.

Moreover, each ri-factor can be guaranteed to be connected if ri is even.

• λKn1,...,nm
(λ-fold complete multipartite graph) is Hamiltonian decomposable iff n1 “

¨ ¨ ¨ “ nm :“ n, and λnpm ´ 1q is even.

• λKn1,...,nm
is pr1, . . . , rkq-factorizable iff n1 “ ¨ ¨ ¨ “ nm :“ n, rinm is even for 1 ď i ď k,

and
řk

i“1 ri “ λnpm ´ 1q.

Let mpu, vq denote the number of edges between u and v. Let Kpa1, . . . , ap;λ, µq be a graph

with p parts V1, . . . , Vp, with |Vi| “ ai for 1 ď i ď p, mGpu, vq “ λ for every pair of distinct

vertices u, v P Vi for 1 ď i ď p, and mGpu, vq “ µ for each u P Vi, v P Vj for 1 ď i ă j ď p.

This graph arises naturally in statistical settings [22]. In [5], we found necessary and sufficient

conditions for Kpa1, . . . , ap;λ, µq to be decomposable into Hamiltonian cycles.

The Oberwolfach problem asks whether or not it is possible to partition the edge set of

Kn, n odd, into isomorphic 2-factors such that each 2-factor consists of aj cycles of length

rj, 1 ď j ď k, and n “ řk
j“1 rjaj . In [46] some new solutions to the Oberwolfach problem

are given using the amalgamation technique. I am planning to attack the following problem

using amalgamations for which I need to obtain a detachment result in which each color

class is evenly equitable:

Conjecture 11.4. (Alspach 1981) If n is odd, 3 ď c1, . . . , cm ď n, and
řn

i“1 ci “
`

n

2

˘

, then

Kn decomposes into cycles of lengths c1, . . . , cm.

11.4 Hypergraph Edge-Colorings and Baranyai’s Theorem

In a mathematics workshop with mn mathematicians in n different areas, each area

consisting ofmmathematicians, we want to create a collaboration network. For this purpose,
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we would like to schedule daily meetings between groups of size three, so that (i) two persons

of the same area meet one person of another area, (ii) each person has exactly r meetings

each day, and (iii) every two persons of the same area have exactly λ meetings with each

person of another area by the end of the workshop. Using hypergraph amalgamations, in

[7] I proved a general result regarding factorizations of a family of multipartite hypergraphs,

and as a corollary I showed that the above scheduling can be done if: 3 � rm, 2 � rnm and

r � 3λpn´ 1q
`

m

2

˘

.

Let
`

rns
h

˘

denote the set of all h-subsets of rns :“ t1, . . . , nu. Let Kh
n “ prns,

`

rns
h

˘

q. The

problem of finding 1-factorizations for Kh
n remained an unsolved problem for 120 years until

it was settled by Baranyai (1975) [15]. Since then not much has been done in this area and

many problems remain open.

Here we discuss a different approach (amalgamations and detachments) to extend Baranyai’s

results and to answer various related questions. An immediate corollary of Theorem 11.3

is that the obvious necessary conditions for λKh
n to be pr1, . . . , rkq-factorizable are also suf-

ficient. Let Kh
p1,...,pn

“ pV,Eq be a hypergraph with vertex partition tV1, . . . , Vnu, |Vi| “ pi

for 1 ď i ď n, and E “ te Ă V : |e| “ h, |e X Vi| ď 1 for 1 ď i ď nu. Another consequence

of Theorem 11.3 is that the obvious necessary conditions for λKh
p1,...,pn

to be pr1, . . . , rkq-

factorizable are also sufficient.

11.4.1 The Berge-Johnson Problem

For a matrix A, let Aj denote the jth column of A, and let spAq denote the sum of all

the entries of A. Let RT “ rris1ˆk, Λ
T “ rλis1ˆm and HT “ rhis1ˆm be three vectors with

ri, λi P N, and hi P t1, . . . , nu for 1 ď i ď m, such that h1 . . . , hm are distinct.

Let ΛKH
p1,...,pn

be a hypergraph with vertex partition tV1, . . . , Vnu, |Vi| “ pi for 1 ď i ď n

such that there are λi edges of size hi incident with every hi vertices, at most one vertex

from each part for 1 ď i ď m (so no edge is incident with more than one vertex of a part).

Here is another interesting corollary of Theorem 11.3:
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Theorem 11.5. ΛKH
p1...,pn

is pr1, . . . , rkq-factorizable iff p1 “ ¨ ¨ ¨ “ pn :“ p, spRq “
řm

i“1 λi
`

n´1
hi´1

˘

phi´1, and there exists a non-negative integer matrix A “ raijskˆm such that

AH “ npR, and spAjq “ λj
`

n

hj

˘

phj for 1 ď j ď m.

Baranyai [15, 16] solved the case of h1 “ ¨ ¨ ¨ “ hm, λ1 “ . . . , λm “ 1, p1 “ ¨ ¨ ¨ “ pm,

r1 “ ¨ ¨ ¨ “ rk. Berge and Johnson [21], (and later Brouwer and Tijdeman [26], respectively)

considered (and solved, respectively) the case of hi “ i, 1 ď i ď m, p1 “ ¨ ¨ ¨ “ pm “ λ1 “

¨ ¨ ¨ “ λm “ r1 “ ¨ ¨ ¨ “ rk “ 1.

11.4.2 Baranyai-Katona Conjecture

Let m be the least common multiple of h and n, and let a “ m{h. Define

K “ tt1, . . . , hu, th ` 1, . . . , 2hu, . . . , tpa´ 1qh` 1, pa´ 1qh` 2, . . . , ahuu,

where the elements of the sets are considered mod n. The families obtained from K by

permuting the elements of the underlying set rns are called wreaths. If h divides n, then

a wreath is just a partition. It was conjectured that Kh
n can be decomposed into disjoint

wreaths [54]. In connection with this conjecture, I am currently working on the connectivity

of factors [12, 13].

11.4.3 Connected Factorizations

In [12], I solved the following problem which was suggested by Katona:

Theorem 11.6. λKh
n is pr1, . . . , rkq-factorizable iff h � rin for 1 ď i ď k, and

řk

i“1 ri “

λ
`

n´1
h´1

˘

. Moreover, for 1 ď i ď k an ri-factor is connected if ri ě 2.

This can be considered as a connected version of Baranyai’s Theorem. In particular if

λ “ 1, and h “ r1 “ ¨ ¨ ¨ “ rk “ 2, this implies the classical result of Walecki that the edge

set of Kn can be partitioned into Hamiltonian cycles iff n is odd. A related problem due to

Bermond (1978) asked for conditions under which one can decompose Kh
n into Hamiltonian
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cycles. I am interested in the following more general problem that relates my work to the

results of Nash-Williams [68], and their extensions [18]:

Problem 5. Find necessary and sufficient conditions for an edge-colored hypergraph F to

have a fair detachment in which each color class is k-edge-connected.

So far [13], I have been able to solve this problem when all edges of F are of size at

most 3, and k “ 2. This, in particular, implies another Baranyai-type theorem (h “ 3) in

which each factor is 2-edge-connected.

11.4.4 Kneser Graphs and the Middle Levels Problem

The Kneser graph Kpn, hq has as vertices the h-subsets of rns. Two vertices are adjacent

if the corresponding h-subsets are disjoint. It is widely conjectured that all Kneser graphs

but the Petersen graph, Kp5, 2q, have Hamiltonian cycles. Let n ě 2h ` 1. The bipartite

Kneser Graph Hpn, hq has as its partite sets the h- and pn´ hq-subsets of rns. Two vertices

A and B from different partite sets are adjacent if the h-subset A is contained in the pn´hq-

subset B. It is conjectured that Hp2h ` 1, hq is Hamiltonian. Using Baranyai’s Theorem,

partial results to these two conjectures are given in [30, 32]. I am interested in working on

these two conjectures.

11.5 Extending Partial Decompositions and Graph Embedding Problems

In this section and the next section I describe the usefulness of amalgamations in solving

embedding problems. For example the main result in [5] provides a short proof for the

following theorems (see [9]): A k-edge-coloring ofKm can be embedded into (i) a Hamiltonian

decomposition of Km`n(Hilton [44]), (ii) an pr1, . . . , rkq-factorization of Km`n(Johnson [51])

iff the obvious necessary conditions are satisfied. Embedding Hamiltonian cycles in complete

multipartite graphs is considered in [48] but the problem is still open and I am interested in

working on it. When a1 “ ¨ ¨ ¨ “ ap :“ a, let Kpappq;λ, µq denote Kpa1, . . . , ap;λ, µq. In [10],

we asked:
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Problem 6. When can a graph decomposition of Kpappq;λ, µq be extended to a Hamiltonian

decomposition of Kpapp`rq;λ, µq for r ą 0?

We proved [10]:

Theorem 11.7. Let f : E Ñ C be a k-edge coloring for Kpappq;λ, µq, and let ωj denote

the number of components of color class j. For 1 ď j ď k, define sj ” ωj pmod rq with

1 ď sj ď r, and suppose
řk

j“1 sj ě kr´µa2
`

r

2

˘

. Then f can be embedded into a Hamiltonian

decomposition of Kpapp`rq;λ, µq iff the obvious necessary conditions are satisfied.

We used this general result to give a complete solution to Problem 6 for all r ě λ
µa

` p´1
a´1

.

We also solved the problem when r is as small as possible in two different senses, namely

when r “ 1 and when r “ λ
µa

´ p ` 1 [10].

11.6 Embedding Problems for Hypergraphs

Over 35 years ago, Cameron asked [29]: Under what conditions can partial 1-factorizations

of Kh
n be extended to 1-factorizations? In [11] we considered a more general problem for

h “ 3. We proved that

Theorem 11.8. Suppose that n ą 2m` tp1 `
?
8m2 ´ 16m´ 7q{2u. Then an edge-coloring

of K3
m can be embedded into an r-factorization of K3

n iff the obvious necessary conditions are

satisfied.

One can assume that not only the hyperedges of size 3 are colored, but so are all the

hyperedges of “pieces” of hypergraphs (i.e. n and
`

n

2

˘

copies of the hyperedges in K2
m and

K1
m, respectively) that are built up to size 3 when the new vertices are added. In this case

we solved the problem completely in [11]:

Theorem 11.9. An edge-coloring of K3
mYnK2

mY
`

n

2

˘

K1
m can be extended to an r-factorization

of K3
n iff the obvious necessary conditions are satisfied.
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Brouwer, Schrijver and Baranyai [17, 25] studied special cases of Cameron’s Problem

and conjectured that: A 1-factorization of Kh
m can be extended to a 1-factorization of Kh

n iff

h divides both m and n, and n ě 2m. Häggkvist and Hellgren settled this conjecutre [40].

The more general question I am interested in working on is the conditions under which one

can extend an equitable edge-coloring of Kh
m into a factorization of Kh

n for n ą m.

11.7 Matroids

I am also interested to study amalgamations and detachments for matroids. Finding

companion results for matroid will lead to interesting matroid decomposition and embedding

results.
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