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Abstract

This dissertation summarizes my research in the area of Discrete Geometry. The par-

ticular problems of Discrete Geometry discussed in this dissertation are concerned with

partitioning three dimensional polyhedra into tetrahedra. The most widely used partition

of a polyhedra is triangulation, where a polyhedron is broken into a set of convex polyhedra

all with four vertices, called tetrahedra, joined together in a face-to-face manner. If one does

not require that the tetrahedra to meet along common faces, then we say that the partition

is a tiling.

Many of the algorithmic implementations in the field of Computational Geometry are

dependent on the results of triangulation. For example computing the volume of a polyhedron

is done by adding volumes of tetrahedra of a triangulation. In Chapter 2 we will provide a

brief history of triangulation and present a number of known non-triangulable polyhedra. In

this dissertation we will particularly address non-triangulable polyhedra.

Our research was motivated by a recent paper of J. Rambau [20], who showed that a

nonconvex twisted prisms cannot be triangulated. As in algebra when proving a number is

not divisible by 2012 one may show it is not divisible by 2, we will revisit Rambau’s results

and show a new shorter proof that the twisted prism is non-triangulable by proving it is

non-tilable. In doing so, we identify a new family of nonconvex non-tilable polyhedra, which

we call an altered right prism. Furthermore we will perturb the vertices of a regular dodec-

ahedron in a twisted manner resulting in a non-tilable polyhedra. Also for completeness, we

describe two concrete non-triangulable polyhedra which can be tiled with tetrahedra.

From observations made about the provided non-triangulable polyhedra, we started

to systematically study extensions of surface triangulations of convex polyhedra. Among

others we proved that if each vertex of a convex polyhedron is adjacent to no more than
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three non-triangular faces, then for every surface triangulation one can perturb the vertices

of the polyhedron so that the resulting polyhedron is combinatorially equivalent to the given

surface triangulation.
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Chapter 1

Introduction

Geometry is a subject as old as mathematics itself. Most of the early theorems and

proofs of mathematics were a result of studying point and line configurations. With the

development of abstract geometries such as topology and differential geometries, much of

the classical concrete problems of geometry seemed to be neglected. While some of the great

mathematicians such as Cauchy, Gauss, and Kepler dabbled in such topics, it appeared

that the geometries of the Greeks and Euclid were only used for teaching purposes. With

the insurgence of technology and the necessity for algorithmic solutions, came a rebirth of

research interest into the more concrete geometric structures and so the intuitive geometric

questions posed by Thue and Minkowski gave birth to the subject of Discrete Geometry.

Later L. Fejes Tóth [10] and [11] formalized this field of mathematics which he initially

called “Intuitive Geometry”. Currently W. Kuperberg and others are translating Fejes Tóth’s

German monograph [11] into English. Many other monographs and survey papers have since

been written in an attempt to compile the up to date results of the field. Some of the larger

compilations are by P. Argawal and J. Pach [18], C. Rogers [21], and P, Brass, W. Moser

and J. Pach [4].

By the mid 20th century many mathematicians were looking for answers to the simply

stated geometric questions of optimization and packing problems and it would not be long

until we would find useful application for the results of these early discrete geometers. In

the 1970’s the growing areas of Computer Science such as Computer Graphics, Robotics,

Algorithmic Design, Geographic Information Systems, Coding Theory and others spawned

the area of Computational Geometry. Some recent introductory texts which have compiled
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some of the newest results in this field are [8] and [3]. It is worth noting one of the earliest

monographs in this field was compiled by H. Edelsbrunner [9].

Today Discrete Geometry and Computational Geometry are often combined as the two

areas study similar problems, in fact they frequently use results from one another. This dis-

sertation contains four results, each associated with the area of Discrete and Computational

Geometry, which constitutes my research during the period of 2010-2012. We will provide

formal definitions and theorems throughout the text, but the purpose of this introduction is

to present the motivation for choosing this topic and informally present our results.

The specific problems we will discuss concern three dimensional polyhedra and their

partitions into tetrahedra. A partition is called a triangulation if the tetrahedra are joined

together in a face-to-face manner. If one does not require that the tetrahedra meet along

common faces, then we say that the partition is a tiling. We will also consider extensions of

surface triangulations to triangulations (tilings resp.).

My research started by reading a recent paper of Rambau [20], who showed that twisted

prisms cannot be triangulated. It did not take long to realize that triangulation is an ex-

tensively studied area with large amounts of literature and many applications. For example

computing the volume of a polyhedron is done by adding volumes of tetrahedra of a trian-

gulation.

Three dimensional problems usually are more difficult than their planar counterparts,

and in the area of triangulation there are surprisingly many differences between the planar

and the three dimensional versions. For example everybody knows that every polygon can be

triangulated, moreover the number of triangles is the same in each triangulation. Neither of

these hold for triangulations of polyhedra, and thus the characterization of non-triangulable

polyhedra is a very difficult open problem.

We aim to describe new families of non-triangulable polyhedra. Before presenting our

original results, we will provide a brief overview of the history of triangulation and discuss

seven known examples of non-triangulable polyhedra. In particular Rambau [20] showed that
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no triangulation of a prism uses the set of cyclic diagonals along the lateral faces to prove

that the twisted prism cannot be triangulated. After reading the details of Rambau’s paper,

it is natural to ask if there exist a tiling of a twisted prism. This question motivated the

research which is summarized in this dissertation. The dissertation contains the following

new results.

• Examples 8 and 9 are non-triangulable polyhedra which can be tiled by tetrahedra.

• Theorem 3.4 gives an infinite family of non-tilable polyhedra.

• The family of tilings not only includes the family of triangulations, but also allows a

different approach when proving non-existence. In fact we revisited Rambau’s corollary

on twisted prisms and present a new and shorter proof.

• We will further generalize our technique to present another family of non-tilable poly-

hedra in Theorem 3.8, further demonstrating the non triviality of tiling by tetrahedra.

• From the observations of the techniques presented in showing a polyhedron is non-

triangulable, we will show how negative results of extendable surface triangulations

can produce non-triangulable polyhedra.

• We will provide both positive and negative results of extendable surface triangulations

on Archimedean and Johnson Solids.
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Chapter 2

Brief History of Triangulation and Terminology

Triangulation is of great concern and has many applications, in fact Devadoss and

O’Rourke [8] state that “ triangulations are the prime factorizations of polygons, alas with-

out the benefit of the “Fundamental Theorem of Arithmetic” guaranteeing unique factor-

ization.” This statement alludes to the difficulties of dealing with the non-unique nature of

triangulation and its importance to the field of geometry. Triangulation has become such a

useful partitioning that entire chapters of texts are devoted to the topic and there is even a

monograph by J. De Loera, J. Rambau, and F. Santos [7] providing a detailed history of the

algorithms and applications surrounding triangulation.

Definition 1. A triangulation of a point configuration A in the Euclidean n space, denoted

as Rn, is a collection of d-simplices, all of whose vertices are points in A and satisfies the

following two properties:

1. The union of all the simplices equals conv(A). (Union Property)

2. Any pair of the simplices intersect in a common face (possibly empty). (Intersection

Property)

Throughout the text we will partition n-dimensional polytopes, where the 2 dimensional

polytope is called a polygon and the 3 dimensional polytope is called a polyhedron. A polygon

is a closed region whose boundary is a polygonal chain with no self intersections. We call

the boundary segments edges, and the points where the edges meet will be called vertices.

Unless otherwise stated we will require that two adjacent line segments are not collinear. A

polyhedron is the three dimensional analogue of a polygon which is an enclosed region of

R3 bounded by finitely many polygons so that if two polygons intersect, they do so along
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a common edge or vertex. In a polyhedron no two adjacent faces are coplanar. Therefore

a polytope is the n-dimensional analogue of a polygon which is an enclosed region of Rn

bounded by finitely many n − 1 dimensional polytopes joined edge to edge, where an edge

is the n− 2 dimensional boundary of the n− 1 dimensional polytope boundaries, so that if

two n− 1 dimensional boundary polytopes intersect, they do so along a common boundary.

2.1 History of Triangulation

There exist many algorithms which attempt to triangulate a point set and each algorithm

must first depend on finding the convex hull, which has been shown to have complexity

O(n log n). (We will briefly discuss complexity in a later section of this chapter.) Surprisingly

the complexity of triangulating a point set has the same complexity as finding its convex

hull. In this introduction we will present techniques used for triangulation, yet we will not

give the details of such algorithms or complexity arguments.

Many triangulation algorithms use a step called lifting (Figure 2.1) and as an extension

bending.

• A lift of a point configuration A is constructed by assigning a height ωi > 0 to every

ai ∈ A, thus giving a point configuration Â ∈ Rm+1.

• The lower envelope of a lift is the face structure of the convex hull of Â seen from

below (the Rm plane).

• A triangulation of a point configuration A ∈ Rm is regular if it is a projection of a

lower envelope of a lifting of A.

Bending is similar to lifting yet involves assigning heights to a subset of the points while

leaving the complement at height 0. Different envelopes are considered depending on the

application of the bend.
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Figure 2.1: A triangulation determined by a lower envelope of a lift

One should notice that points in the interior of the convex hull are not necessarily

vertices of a simplex of the triangulation. A triangulation is full if every point of the point

set is a vertex of at least one simplex in the triangulation.

One of the most frequently used regular triangulation is the Delauney Triangulation

which can be found by lifting the point set onto the Rm+1 paraboloid, then projecting the

lower envelope of the lift back onto the Rm space. Interestingly the Delauney Triangulation

is the dual of the Voronoi Diagram.

Definition 2. For every point p of a point set S, we define the Voronoi Region to be all

points x ∈ Rm such that |x− p| ≤ |x− q| for all q ∈ S.

The Voronoi Diagram is the collection of all points in Rm which have more than one nearest

neighbor, or the boundaries of the Voronoi Regions.

Figure 2.2: Delauney triangulation and Voronoi diagram
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Our new results will concern triangulations of polyhedra in R3. A triangulation of a

polyhedron P is a partition into finitely many non-overlapping tetrahedra joined face-to-

face. In our original results we restrict ourselves to triangulations where the vertices of each

tetrahedron are a subset of the vertex set of P . Since we will be concerned with triangulations

of polyhedra, all triangulations will be full.

Two-Dimensional Triangulations

Let us first investigate the intersection property of triangulation of a point set in R2.

In Figure 2.3 we notice the shaded region is a triangle, but the neighboring triangles do not

share the entire edge, and thus the configuration is not a triangulation. We may wish to refer

to the shaded region as a quadrilateral to emphasize it has four vertices of existing triangles

in the partitioning along its boundaries. This is a situation when we wish not to have the

angle between two adjacent edges of a polygon be 180o.

Figure 2.3: A partition into triangles which is not a triangulation

To avoid ambiguity with such configurations, it is common to consider the point set to

be in general position which in this context means that no three points are collinear. Since

our results are concerned with triangulating polyhedra it will not be possible to have a vertex

lying on the edge of a triangle, so this issue will not arise.
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There exist many interesting combinatorial results concerning triangulations in R2, of

which many hinge on the concept of flips. Two triangulations are flips of one another if the

same partitioning is obtained by deleting a diagonal of a convex quadrilateral (or interior

vertex of a triangle with its incident edges) from each of the triangulations. (In R3 almost

triangulations are obtained from deleting common faces, edges, or a vertex.)

Flips in 2 dimensional space: Flips in 3 dimensional space:

Figure 2.4: Flips in two and three dimensional space

In two dimensional space it is common to use a graph of triangulations (Figure 2.5)

where each node is a triangulation and the edges between nodes represent a flip. C. Lawson

[14] showed that the flip graph is connected. Therefore implying that any two triangulations

can be transformed to one another through a series of flips, which has not been shown for

higher dimensions.

Figure 2.5: Graph of triangulations of a hexagon
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The connectedness of the flip graph can be helpful in finding combinatorial results in

R2 on both point configurations and polygons. Two important combinatorial results are:

Theorem 2.1. Let T be triangulation of a point configuration A ∈ R2, where n is the

number of points in A and c is the number of points in A lying on the boundary of conv(A),

then T contains 2n− c− 2 triangles.

Theorem 2.2. The number of triangulations of a convex n-gon is the (n − 2)th Catalan

number, where the nth Catalan number is defined as Cn = 1
n+1

(
2n
n

)
.

Triangulation in Higher Dimension

While the graphs of triangulations have been highly useful in R2, the process of combi-

natorially classifying triangulations becomes difficult in R3. The most elementary counting

problems, such as how many tetrahedra are included in a triangulation, are daunting in

higher dimensional spaces. As seen in Figure 2.6, not every triangulation of a polyhedron

consist of the same number of tetrahedra.

Figure 2.6: Triangulations of different cardinality

The non-uniqueness provides difficulties for combinatorial results in higher dimensional

spaces, yet there do exist some results concerning the number and the existence of triangu-

lations. Four such results are listed below along with an important conjecture.

Goodman and Pach [12] utilized the concept of bending to show:
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Theorem 2.3. If A and B are disjoint convex polytopes in Rn, then the closure of Conv{A∪

B} − A−B can be triangulated.

and

Theorem 2.4. If A and B are convex polytopes in Rn, with B ⊂ A, then the closure of

A−B can be triangulated.

The same year Sleator, Tarjan, and Thurston [23] also provided some combinatorial

results for triangulations in R3.

Theorem 2.5. Let A be a point configuration in R3, then there exists a triangulation of A

with no more than 2v − 7 tetrahedra, where v is the number of vertices in conv(A).

and

Corollary 2.6. Every polyhedra of R3, with n ≥ 13 vertices, has a triangulation (with the

introduction of new vertices, called Steiner points) with at most 2n− 10 tetrahedra.

The proof of Theorem 2.5 uses a fan argument which we will discuss later in the text

when finding extendable surface triangulations. From these results Sleator, Tarjan, and

Thurston [23] conjecture:

Conjecture 2.7. For every three-dimensional polyhedron with n ≥ 13 vertices, there exist

no triangulation with less than 2n− 10 tetrahedra and its flip graph contains a hamiltonian

cycle, which contain every vertex of the flip graph.

2.2 Complexity and NP-Complete

Questions which can be answered with a simple yes or no, such as “can a particular

polyhedron be triangulated?” are called decision problems. Decision problems can be an-

swered by an algorithm which through a series of questions, or steps, arrives at the yes or

no answer. Algorithms are measured for effectiveness by their time complexity, or how long
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it will take the algorithm to answer the question. Time is measured by the number of steps

an algorithm takes to arrive at an answer. Given a variable n of the decision problem, if

the algorithm solves the question in fewer than a constant multiple of a function f(n) steps,

then we say the algorithm’s complexity is O(f(n)). Specifically we say an algorithm is in

polynomial time, if its complexity is O(nk) for some whole number k.

One can study algorithms that run either on deterministic or nondeterministic comput-

ers. A deterministic computer is the typical computer which goes through a series of yes and

no questions until it determines a final solution. A non-deterministic computer is allowed

unlimited parallel computing meaning it has the ability to explore the options of yes and no

simultaneously and do so at every step.

A decision problem is in the complexity class P if there exists an algorithm operating

on a deterministic computer which can arrive at the answer in polynomial time. A decision

problem is in the complexity class NP if there exists an algorithm operating on a non-

deterministic computer which can arrive at the answer in polynomial time and a deterministic

computer can check the answer in polynomial time. So it is obvious that P ⊂ NP .

Within the class of NP problems we call a decision problem NP -complete if we can

show it is NP and all NP problem can be reduced to it in polynomial time. Therefore if

we can reduce a decision problem in polynomial time to a known NP -complete problem,

then it is NP -complete. The first NP -complete problem that all others can be reduced to in

polynomial time was given by Steve Cook in 1971. If someone can find an algorithm operating

on a deterministic machine which solves any NP -complete problem in polynomial time, then

this algorithm would solve all NP problems on a deterministic machine in polynomial time

concluding that P = NP , one of the well known unsolved problems in mathematics today.

Although significant progress has been made in triangulations of higher dimensions, the

most compelling result appeared in 1992 by Ruppert and Seidel [22].
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Theorem 2.8. It is NP-Complete to decide whether a given three-dimensional polyhedron

can be triangulated without using additional Steiner points.

2.3 Non-Triangulable Polyhedra

The results of this dissertation are motivated by one of the unsolved problem in [8].

O’Rourke and Devadoss ask to, “Find characteristics that determine whether or not a poly-

hedron is tetrahedralizable. Even identifying a large natural class of tetrahedralizable poly-

hedra would be interesting.” (O’Rourke and Devadoss use the synonymous term tetrahedral-

izable for triangulable.)

It was first shown in 1911 by Lennes [15] that not all three-dimensional polyhedra are

triangulable. We will provide seven other known examples of non-triangulable polyhedra in

this section.

Example 1 (Schönhardt [24])

Figure 2.7: Schönhardt’s twisted triangular prism

One of the most frequently quoted and simplest examples was given by Schönhardt [24]

in 1927. Schönhardt made a nonconvex twisted triangular prism (Figure 2.7) by rotating

the top face of a right triangular prism so that a set of cyclic diagonals became edges with

interior dihedral angles greater than 180o.

Claim: Schönhardt’s twisted triangular prism cannot be triangulated.
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Proof: Every diagonal of the polyhedron lies outside the polyhedron. Therefore any

tetrahedron containing four vertices of the twisted triangular prism will contain at least one

edge lying outside the polyhedron. �

Example 2 (Bagemihl [1])

Figure 2.8: Bagemihl’s polyhedron

In 1948, Bagemihl [1] modified Schönhardt’s idea to construct a nonconvex polyhedron

with n ≥ 6 vertices. Figure 2.8 is constructed by replacing one of the twisted vertical edges

from Schönhardt’s twisted triangular prism with a concave curve and placed n− 6 vertices

along the curve so that the interior dihedral angles of an edge between these new vertices

and the vertices of the twisted triangular prism is greater than 180o.

Claim: Bagemihl’s generalization cannot be triangulated.

Proof: If a triangulation exists, then the top triangular face must be a face of some

tetrahedron of the triangulation. For every vertex v, not on the top face, there is a diagonal

from v to some vertex on the top face which lies outside the polyhedron. Therefore there is no

tetrahedron from the vertex set with the top face as a boundary lying inside the polyhedron.

�

Example 3 (Ruppert and Seidel[22])
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Figure 2.9: Attaching Schönhardt’s twisted prism to a cube

Another idea of creating non-triangulable polyhedron with large number of vertices was

presented by Ruppert and Seidel [22]. They attached a copy of a non-triangulable polyhe-

dron to another polyhedron. Figure 2.9 shows a polyhedron where a copy of Schönhardt’s

nonconvex twisted triangular prism, called a niche, is attached to a face of a cube. Although

the union of a cube and Schönhardt’s nonconvex twisted triangular prism (Figure 2.9) is not

a polyhedron by our definition, this is sometimes considered a polyhedron by those wishing

to define a polyhedron to be homeomorphic to a ball. To satisfy our definition we could

attach a niche to other polyhedron along a common face so that the desired properties still

hold.

Claim: If the base of the niche is small enough then Ruppert’s and Seidel’s polyhedron

cannot be triangulated.

Proof: It can be arranged that those vertices of the Schöhardt prism which do not

lie on the face of the cube do not see any vertex of the cube. Since each diagonal to the

non-attached base of the triangular prism lies outside the polyhedron, then there must exist

a tetrahedron contained inside the non-convex twisted triangular prism. We know from

Example 1 this is not possible, so no set of tetrahedra triangulates the union. �

Example 4 (Jessen [13])
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Figure 2.10: Jessen’s orthogonal icosahedron

The orthogonal icosahedron (Figure 2.10) was discovered in 1967 by Jessen [13] while

looking for an answer to a rigidity problem. To construct the Jessen polyhedron (Figure

2.10), first take three pairwise orthogonal rectangles all sharing a common center with side

length in a ratio of 1 :
√

2, so that no two edges from different rectangles intersect. Now

take the convex hull of the set of 12 vertices of the three rectangles, forming an irregular

icosahedron, and remove the six tetrahedra which have two adjacent triangles along an edge

of length 1.

Claim: Jessen’s polyhedron cannot be triangulated.

Proof: As shown in the claim of Bagemihl’s generalization, a polyhedron P cannot be

triangulated if there exists a face F such that for every vertex v ∈ P , v /∈ F , there is a

vertex w ∈ F where the diagonal vw is not contained completely inside P . Any triangular

face created by the removal of a tetrahedron is such that any vertex not on this face has

a diagonal between this vertex and one of the vertices of the face protruding outside the

polyhedron. �

Example 5 (Thurston et al. [19])

Thurston’s polyhedron (Figure 2.11), attributed to Thurston by Paterson and Yao [19],

is made from removing 18 non-intersecting square prisms, six from each pair of parallel faces,

from the cube. Although this is not considered a polyhedron by our definition, we still find

the construction relevant to triangulations of polyhedra and we can slightly modify this shape
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Figure 2.11: Thurston’s polyhedron

to become a polyhedron. It is important to note that this polyhedron was independently

discovered by several people including W. Kuperberg, Holden, and Seidel.

Claim: Thurston’s polyhedron cannot be triangulated.

Proof: We say that a point in a polyhedron “sees” another point in the polyhedron

if the line segment between the two points is contained inside the polyhedron. We observe

that each point of a tetrahedron can see each of the tetrahedron’s vertices. If a polyhedron

contains a point which does not see at least four non-coplanar vertices of the polyhedron,

then it cannot be contained in a tetrahedron from a triangulation. In Thurston’s polyhedron,

the center of the cube does not see any vertex of the polyhedron, thus obviously not in the

interior of a tetrahedron of a triangulation. �

Example 6 (Chazelle [5])

Figure 2.12: Chazelle’s polyhedron
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In an attempt to create triangulation algorithms, computational geometers have intro-

duced the use of Steiner points, or new vertices on existing edges, to allow each polyhedron

to be triangulated. Although our aim is to triangulate polyhedra without introducing new

vertices, the results of such a process can be useful.

Chazelle started with a rectangular prism oriented with one edge along the z-axis con-

taining the origin. Let wedges on the bottom face be parallel to the x-axis, and wedges on

the top face be parallel to the y-axis. Each wedge’s edge is within epsilon of the hyperbolic

parapaloid z = xy so that no two wedges intersect. The polyhedra obtained from deleting

all the wedges from the rectangular prism is the Chazelle Polyhedron (Figure 2.12).

Claim: Chazelle’s polyhedron cannot be triangulated.

Proof: A surprising connection was found by Eppstein between our problem and the

problem of finding a lower bound on the number of convex pieces into which any polyhedron

of n vertices can be partitioned. Chazelle [5] constructed a polyhedron which can not be

partitioned into fewer then O(n2) convex polyhedra. Coincidently his polyhedron spans at

most O(n) tetrahedra, which excludes the existence of a triangulation. �

Example 7 (Rambau [20])

Rambau [20] discovered another generalization of the Schönhardt twisted triangular

prism, which he calls the nonconvex twisted prism (Schönhardt prism).

Let Cn be a convex polygon with n vertices, where the vertices of Cn are labeled clockwise

as v1, v2, ..., vn.

The right prism over Cn (Figure 2.14) is PCn = conv{(Cn × {0}) ∪ (Cn × {1})}.

To construct the nonconvex twisted prism, pick a point O in the interior of Cn and rotate

Cn clockwise about O by ε. Label the vertices of Cn(ε), v1(ε), v2(ε), ..., vn(ε), corresponding

to the vertices of Cn. The convex twisted prism over Cn is PCn(ε) = conv{(Cn × {0}) ∪

(Cn(ε)× {1})}.
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Figure 2.13: Nonconvex twisted prism SC6

(v4, 0)
(v1, 0)

(v2, 0)(v3, 0)

(v5, 0) (v6, 0)

(v1, 1)

(v2, 1)
(v3, 1)

(v4, 1)

(v5, 1) (v6, 1)

Figure 2.14: Right prism PC6

The non-convex twisted prism over Cn (Figure 2.13) is:

SCn = PCn(ε) - conv{(vi,0),(vi+1,0),(vi(ε),1),(vi+1(ε),1)}, for all i ∈ (1, n) taken modulo n.

Rambau [20] proves:

Theorem 2.9. No right prism PCn, for n ≥ 3, admits a triangulation that uses the cyclic

diagonals {(vi,0),(vi+1,1)}.

Which implies

Corollary 2.10. For all n ≥ 3 and all sufficiently small ε > 0, the non-convex twisted prism

SCn cannot be triangulated.

Since our new results are closely related to Rambau’s results we wish to discuss the

techniques used in his proof.

18



Theorem 2.9 Proof Overview

Assume PCn is triangulated so that each cyclic diagonal is an edge of at least one

tetrahedron. Rambau observes that every tetrahedron in the triangulation of PCn contains

at least one vertex on each base of the prism. Therefore Rambau is able to view each

tetrahedron of the triangulation in a cross section of PCn . So he chooses a hyperplane

parallel to the base which intersects the prism near (Cn × {1}).

Rambau also observes that the intersection of the hyperplane and the prism, a copy of

Cn which he calls Sn, is subdivided into regions called mixed cells. The mixed cells are the

intersections of the hyperplane and the tetrahedra from the triangulation. There are three

types of mixed cells in the subdivision of Sn. A tetrahedron containing three vertices from

the bottom and one vertex from the top intersects the hyperplane in a small triangle, called

a short mixed triangle, and a tetrahedron containing three vertices from the top and one

vertex from the bottom intersects the hyperplane in a large triangle, called a long mixed

triangle. He labels the boundaries of each short triangle as short edges and large triangles

as long edges. Any tetrahedron which has two vertices on the top and two vertices from the

bottom will intersect the hyperplane in a parallelogram, called a mixed parallelogram, with

two parallel short edges and two parallel long edges. Furthermore, each boundary of a mixed

cell is parallel to an edge or diagonal of Sn. Also the intersection property of triangulation

provides that mixed cells intersect each other along an entire edge.

Each parallelogram is adjacent to at least one short triangle and one long triangle. Also

Rambau notices that the edges of Sn are partitioned into one short edge and one long edge

which correspond to the diagonal on a lateral face used by the triangulation. Therefore

since we are assuming the cyclic diagonals are edges of tetrahedra, we know the mixed edges

alternate along the perimeter of Sn to correspond with the cyclic diagonals.

For every edge of Sn there is a vertex of the mixed subdivision on the edge separating

the long mixed edge and short edge. So we assume the mixed subdivision of Sn contains

these edges. He starts along the short mixed edge on a boundary edge, and knowing the two
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neighboring edges along the boundary are long edges the mixed cell containing this edge has

a vertex in the interior of Sn. Now he orders the halfplanes, bounded by diagonals in the

projection of (Cn × {0}) onto Sn at each short edge on the perimeter of Sn, as positive if it

contains the short edge and negative otherwise. Then he looks at the cells on the positive

side of of each diagonal and shows that no mixed parallelogram is on the positive side of

both its short edges. Finally by the connectedness of the subdivision through adjacent mixed

cells, he finds a contradiction that at least one mixed parallelogram is on the positive side

of both its short edges. Therefore no triangulation of PCn uses the set of cyclic diagonals.�
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Chapter 3

Tiling by Simplices

3.1 Terminology

For our new results, we will introduce new concepts which have been alluded to by

previous results, yet we wish to formally define such concepts in this dissertation. First we

will introduce the concept of tiling by simplices, which weakens the intersection property of

triangulation.

Definition 3. A tiling by simplices of a point configuration A ∈ Rd is a collection of

d-simplices, all of whose vertices are points in A, which satisfies the following two properties:

1. The union of all the simplices equals conv(A). (Union Property)

2. The intersection of any two simplices (possibly empty) is a subset of a Rd−1 space. (In-

tersection Property)

Specifically in R3, a tiling by tetrahedra of a polyhedron P is a partition into finitely

many tetrahedra such that the intersection of two tetrahedra (possibly empty) is a subset of

a plane.

Remark 1. Figure 3.1 describes a tiling of the cube which is not a triangulation.

Definition 4. A surface triangulation of a polyhedron P is the triangulation of the faces

of P . We will denote the set of diagonals as P̄ and the set of triangles bounded by P̄ and

the edges of P as P̂ .

Definition 5. We say a surface triangulation of a polyhedron P is extendable if there exist

a triangulation of P where every t ∈ P̂ is a face of a tetrahedron of the triangulation.
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Dissect the cube down the diagonal plane.

Triangulate each
piece so that its
dotted diagonal is
used.

Figure 3.1: Tiling a cube

Definition 6. A (Schönhardt type) realization P̃ , of a surface triangulation of a convex

polyhedron P , is a polyhedron which is constructed from moving vertices of P within an ε-

neighborhood such that every d ∈ P̄ is an edge of P̃ with a concave interior dihedral angle

and every edge of P is an edge of P̃ with a convex interior dihedral angle. Thus every t ∈ P̂

becomes a face of P̃ .

Remark 2. The Schönhardt twisted triangular trism (Figure 2.7 on page 12) is a Schönhardt

type realization of a surface triangulation on the right triangular prism.

Remark 3. In Chapter 4, we will classify a set of polyhedra where every surface triangulation

can be realized.

As previously stated, we wish to re-prove Corollary 2.10, yet we will make an even

stronger claim that SCn cannot be tiled by tetrahedra. Figure 3.1 clearly shows that a tiling
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by tetrahedra exists for PC4 , which is not a triangulation. Furthermore, this shows that

there exists such a tiling which uses the cyclic diagonals of the cube. We will present a new

approach for showing a polyhedron is non-triangulable by showing it is unable to be tiled by

tetrahedra. We will also demonstrate how this technique can be used for other polyhedra.

Since Rambau’s technique only applies if a hyperplane intersects every tetrahedron from

the triangulation, we will provide a family of non-tilable polyhedra in Theorem 3.8 where a

hyperplane would not intersect every tetrahedra of a triangulation. Let us first provide two

examples of non-triangulable polyhedra which can be tiled by tetrahedra.

3.2 Non-Triangulable Polyhedra which can be Tiled by Tetrahedra

Theorem 3.1. There exist a polyhedron which is not triangulable, but can be tiled by tetra-

hedra.

Proof We will present Examples 8 and 9 as such polyhedra.

Example 8

E F

A
B

CD
E′

F ′

O

Figure 3.2: A non-triangulable polyhedron which can be tiled with tetrahedra

Start with a horizontal unit square Q. Let A,B,C and D be the vertices of Q in

counterclockwise order when we look down at the square from above. Let the point O be

over Q at unit distance from its vertices. Next add to this arrangement a segment EF ,

whose midpoint is O, has length 4, and is parallel to AB (assume E is closer to A than to
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B). Rotate this segment clockwise (i.e. opposite to the order of the vertices A,B,C and D)

around the vertical line through O by a small angle ε. Let P be a non-convex polyhedron

bounded Q and by six triangles EAB, EBF , BFC, CDF , EFC, and EDA.

Finally let P ′ be the image of P under the reflection around the plane of Q followed by

a 90◦ rotation around the vertical line containing O. Label the images of E and F as E ′ and

F ′ respectively.

First notice that P is triangulable as it is the union of the tetrahedra EABD,EBDF

and DBCF . Since the same holds for P ′ we have that the union of P and P ′ can be tiled

by tetrahedra.

Next we show that the union of P and P ′ is not triangulable. Since neither E nor F

can see the vertices E ′ and F ′, we have that any triangulation of the union is the union of

triangulations of P and P ′. The polyhedron P was constructed so that the dihedral angles

corresponding to the edges EB and FD are concave, therefore the diagonals AF and EC lie

outside of P . It is easy to see that the triangles ABC and ACD cannot be faces of disjoint

tetrahedra contained in P , thus diagonal BD must be an edge of at least one tetrahedron

in any triangulation of P . A similar argument applied for P ′ gives that the diagonal AC is

an edge of at least one tetrahedron in any triangulation of P ′. Thus the union of P and P ′

is not triangulable.

and

Example 9

Start with a unit cube with faces labeled Top, Bottom, Left, Right, Front, and Back and

translate the Top to the right by a distance greater than 1. Label the vertices as in Figure

3.4. Move vertices W and Y along the lines AW and CY respectively up by ε and vertices

X and Z along the line XZ away from one another by ε. Now let P be the polyhedron
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Figure 3.3: A non-triangulable polyhedron which can be tiled with tetrahedra

bounded by the square ABCD and the ten triangles ABW , BWX, BXY , BCY , CDY ,

DY Z, DWZ, ADW , WXZ and XY Z.

A B

CD

W X

YZ

Figure 3.4: Labeling the translated cube

Finally let P ′ be the image of P under the rotation of 180o about the line through the

midpoints of AD and BC. Label the images of W , X, Y , and Z as W ′, X ′, Y ′, and Z ′

respectively.

First notice that P is triangulable as it is the union of the tetrahedra ABDW , BWXZ,

BCDY , BDWZ, BDY Z and BXY Z. Since the same holds for P ′ we have that the union

of P and P ′ can be tiled by tetrahedra.

Next we show that the union of P and P ′ is not triangulable. Since the vertices W ,

X, Y , nor Z cannot see the vertices W ′, X ′, Y ′, and Z ′, we have that any triangulation of

the union is the union of triangulations of P and P ′. The polyhedron P was constructed so

that the dihedral angles corresponding to the edges BW , BY , DW , and DY are concave,

therefore the diagonals AX, AZ, CX, and CZ lie outside of P .
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Assume the triangles ABC and ACD are faces of disjoint tetrahedra contained in P ,

then the fourth vertex of each tetrahedra respectively is W or Y . Since the tetrahedra

ABCW and ACDY do not intersect along a common face, but do intersect in a plane, they

cannot both be in the triangulation. A similar argument is made for ABCY and ACDW ,

therefore the fourth vertex of the tetrahedra containing ABC and ACD respectively is the

same.

By symmetry let’s assume ABCW and ACDW are tetrahedra of the triangulation. The

tetrahedron containing XY Z as a face either has vertex B or D as its fourth vertex, but

XY ZB and XY ZD intersect both ABCW and ACDW . Therefore diagonal AC cannot be

an edge of a tetrahedron in a triangulation of P , so diagonal BD must be an edge of at least

one tetrahedron in any triangulation of P . A similar argument applied for P ′ yields that the

diagonal AC is an edge of at least one tetrahedron in any triangulation of P ′. Therefore the

union of P and P ′ is not triangulable. �

Remark 4. A non-triangulable polyhedron is tilable only if it contains at least four coplanar

vertices where no three are incident with a common face.

Since SCn does not contain 4 coplanar points, for sufficiently small ε, where no three are

incident with a common face, Remark 4 implies that no tiling exists.

Throughout the remainder of the text, we will often look at tetrahedra contained inside

a polyhedron and determine if any two interior tetrahedra intersect. If two tetrahedra

intersect in more than a plane, we can conclude that both tetrahedra cannot be in a tiling

by tetrahedra.

Lemma 3.2. Let two tetrahedra TO and TB share an edge e and contain two coplanar faces

tO and tB respectively on a plane P . If there exists a plane Q 6= P containing e such that

the fourth vertex O of TO is in the open halfplane bounded by Q containing tB and the fourth

vertex B of TB is in the open halfplane bounded by Q containing tO, then TO and TB overlap.
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Figure 3.5: Intersecting tetrahedra

Lemma 3.2 can simply be proven by noticing that the interior dihedral angle of TO at e

and the interior dihedral angle of TB at e sum to greater than 180o.

Since each face of a tetrahedron t ∈ T is a triangle, we say T induces a surface trian-

gulation. Rambau used this observation in proving Corollary 2.10 by using Theorem 2.9.

We will also use this observation when considering which tetrahedron a particular surface

triangle belongs.

Definition 7. An ear is a triangle in a triangulation of a polygon P with exactly two of its

edges being edges of P . The vertex incident with these two edges will be the ear vertex.

Theorem 3.3. (Meisters [17]) For n > 3, every triangulation of a polygon has at least 2

ears.

It is common to view each triangulation as a tree by letting each triangle be represented

by a dual vertex where two dual vertices are adjacent if the corresponding triangles share an

edge. In this dual tree each ear is a leaf. We will borrow the terminology of pruning a leaf,

to prune ears of a triangulation.
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Definition 8. An ear E is pruned by deleting the ear from the triangulation, leaving the

edge which was not an edge of P as an edge of P ′ = P − E. In doing so, we delete the ear

vertex from the polygon.

3.3 Non-Tilable Polyhedra

Definition 9. We construct a polyhedron which will have two horizontal faces (bottom base

and upper base) and several side faces. Let the bottom base be a convex polygonn Cn on

n vertices labeled clockwise as b1, b2, ..., bn. Define li to be the line containing edge bibi+1

(indices taken modulo n). Now we will call the closed area bounded by the lines li, li−1, and

li−2, which contains bi−1bi but does not contain Cn, region Ri (Figure 3.6). (Region Ri may

be infinite if li and li−2 are parallel or intersect on the same side of li−1 as the polygon.)

Now define the upper base as the convex polygon Un = conv{ui, u2, ..., un}, where ui ∈ Ri.

Let B′Cn
= conv{(Cn × {0}) ∪ (Un × {1})},

and BCn (Figure 3.7) = B′Cn
− conv{(bi,0),(bi+1,0),(ui+1,1),(ui+2,1)}, for all i ∈ {1, 2, . . . , n}

taken modulo n.

Cn

b1

b2

b3

b4
b5

b6

b7

l2

l1

l3 l4
l5

l6

l7R2

R1

R3

R4 R5

R6

R7

Figure 3.6: All regions Ri for C7

Theorem 3.4. The non-convex polyhedron BCn cannot be tiled with tetrahedra.
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u7

Figure 3.7: Polyhedron BC7

Proof Assume a set of simplices (tetrahedra) S tiles BCn . The tiling by S induces a

triangulation of (Un × {1}), which we will call T . Now, for every t ∈ T there exists exactly

one s ∈ S such that t is a face of s. Obviously, the fourth vertex of s must be a vertex of

(Cn × {0}).

Define a sub-polygon to be the convex hull of a subset of the vertices of a polygon. Let

P be the set of sub-polygons of Un such that every edge of a sub-polygon p ∈ P is an edge

of some t ∈ T .

Let e be an edge of p and let t be a triangle of T having e as an edge and inside p.

We will say p is a separator if every point bi in the open halfplane, bounded by the line

containing e, which does not contain p cannot be in a tetrahedron of S with t as a face.

Let P ′ ⊆ P so that every p′ ∈ P ′ is separating. P ′ is not empty since Un is a separating

sub-polygon. A minimal separating sub-polygon is a sub-polygon with the fewest vertices.

Let m ∈ P ′ be a minimal separating sub-polygon with n vertices. If n > 3, then there is a
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t ∈ T which is an ear of m. Let d be the edge of t which is not an edge of m. Observe that

there exists a triangle t′ ∈ T which has d as an edge and is contained in m.

Remark 5. The construction of Un yields the property that the line containing the diagonal

uiuj (for i < j) bounds two open halfplanes such that the halfplane containing the vertices

uk for i < k < j also contains the vertices bm for i ≤ m < j and no other vertices from the

polygon Cn.

Let Q be the plane through d perpendicular to Un×{1}. Since m is separating, we can

conclude by Lemma 3.2 that t′ cannot be in a tetrahedron with any (bi, 0) where bi is in the

open halfplane, bounded by the line containing d, which contains t. Therefore we can prune

t so that m− t is a separating sub-polygon. Since m− t has fewer vertices than m, m is not

a minimal separating sub-polygon. Therefore we can conclude that the minimal separating

sub-polygon is a triangle.

Some t = {ux, uy, uz} ∈ T is a minimal separating sub-polygon. Since t is separating,

for every bi outside of t, t is not in a tetrahedron with (bi, 0). By Remark 5, the only vertices

which can exist inside t are bx, by, or bz, but the segments (bi, 0)(ui, 1) lie outside BCn .

Therefore no set of tetrahedra tiles BCn . �

A closer look at the proof yields that Remark 5 is the only observation necessary of Un

for the proof. Thus we will define a particular alteration ACn of a prism.

Let Cn be the same convex polygon defined in BCn . Let An = conv{a1, a2, ..., an}, where

the line containing the diagonal aiaj (for i < j) bounds two open halfplanes such that the

halfplane containing the vertices ak for i < k < j also contains the vertices bm for i ≤ m < j

from the polygon Cn. Let A′Cn
= conv{(Cn × {0}) ∪ (An × {1})}. The nonconvex altered

prism over Cn is ACn = A′Cn
− conv{(bi,0),(bi+1,0),(ai,1),(ai+1,1)}, for all i ∈ (1, n) taken

modulo n.

Corollary 3.5. The non-convex altered prism ACn cannot be tiled by tetrahedra, hence it

also non-triangulable.
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Relationship between SCn and ACn

Let us first make an observation about how the center of rotation used to construct

Cn(ε) relates to Remark 5. Consider a line segment ac and place a point b on this segment

between a and c. Define the line l to be the line perpendicular to ac through the point c.

Assume we rotate all points about a center O by some small angle of rotation to the points

a′, b′, and c′ respectively. If O does not lie in the same open halfplane, bounded by l, as a

and b, then for some ∆ and all rotation by α, 0 < α < ∆, about O the line containing the

segment a′c′ bounds two halfplanes one of which contains both a and b. Thus we will define

the halfplane, bounded by l, containing a and b as the c+ halfplane, and the other as the

c− halfplane.

a b c

l

c+ c−

Figure 3.8: Halfplanes c+ and c−

It is easy to see that there is a convex polygon Cn where no rotational center yields the

observations made in Remark 5 between Cn and Cn(ε). Such an example is provided on the

coordinate plane in Figure 3.9.

We notice for small rotations if the center of rotation lies on a point with an x-coordinate

greater than or equal to 0, then the diagonal (−1, 1)(−3, 1− ε) will not satisfy Remark 5.

Similarly, if the center of rotation lies on a point with an x-coordinate less than or equal to

0, the diagonal (1,−1)(3,−1 + ε) will not satisfy Remark 5. Therefore, there is no center of

rotation which will satisfy Remark 5.
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(-1,1)

(2,-1)(1,-1)

(-2,1)

(-3,1-ε)

(3,-1+ε)

O

Figure 3.9: Polygonal base with no rotational center

This provides that if we wish to show that the results of Rambau hold in the case of

tiling by tetrahedra, we must alter our proof technique to satisfy all polyhedra in SCn . We

make the observation that in Lemma 3.2 we need not have plane Q be perpendicular to plane

P , the lemma holds for any plane Q containing the edge E where Q 6= P .

Corollary 3.6. (Analogue of Rambau’s Corollary)

For all n ≥ 3 and all sufficiently small ε > 0, the non-convex twisted prism SCn cannot be

triangulated.

Proof It suffices to show that for any Cn, there exists a sufficiently small ε such that

for any diagonal (vi, 1)(vj, 1) (for i < j) of Cn(ε) there is a plane Q containing the diagonal

(vi, 1)(vj, 1) which bounds two open halfspaces such that the halfspace containing the vertices

(vk, 1) for i < k < j also contains the vertices (vm, 0) for i ≤ m < j and no other vertices

from the polygon Cn × {0}. When constructing Cn(ε) we must consider the planes through

each diagonal. Now, for any rotational center O, there is some angle of rotation αij where

the diagonal vi(αij)vj(αij) lies on a line parallel to the diagonal vi−1vj−1. Thus, for every

SCn constructed by a rotation about O by 0 < εij < αij there exists a plane Q satisfying
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the conditions of Lemma 3.2 for the diagonal (vi, 1)(vj, 1). It follows that if we let α =

min{αij|i, j ∈ (1, 2, 3, ..., n)}, then for 0 < ε < α SCn , constructed from rotation by ε about

the center O, cannot be tiled by tetrahedra. �

We notice that the results of Schönhardt, Bagemihl and Jessen provide polyhedra where

no diagonal is contained inside the polyhedron, thus cannot be tiled by tetrahedra. Also fig-

ures producing an interior point which cannot be seen by any vertex, such as Thurston’s

polyhedron, cannot be tiled by tetrahedra. The results of Rambau do not give such a con-

clusion, yet, as shown previously, SCn cannot be tiled by tetrahedra. With these results it

is natural for one to ask if there exist other polyhedra which cannot be tiled. By a gener-

alization of the technique in Theorem 3.4, we will show that a Schönhardt type realization

of a surface triangulation of the Regular Dodecahedron cannot be tiled by tetrahedra. To

do so, we will first revisit Lemma 3.2 and state a more general lemma of two intersecting

tetrahedra.

Lemma 3.7. Let two tetrahedra TA and TB share an edge e, where e is an edge of triangles

A and B from the tetrahedra respectively. Let a be the fourth vertex of TA and b be the fourth

vertex of TB. If b is in the intersection containing TA of the the halfspace bounded by the

plane containing A and the halfspace bounded by the plane containing a and e, then TA and

TB do not have disjoint interiors.

The proof of Lemma 3.7 is simply concluded by noticing a similar relationship as in

Lemma 3.2. The sum of the dihedral angles formed in TA and TB at the edge e is greater

than the dihedral angle formed at e by A and B.

Remark 6. When implementing Lemma 3.7 we must consider each possible tetrahedra sep-

arately, instead of considering the orthogonal plane, since A and B are no longer assumed

to be coplanar.
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Nonconvex Twisted Dodecahedron

Similar to the construction of the Schönhardt Prism, we will start with a well known

convex polyhedron. Consider the regular dodecahedron DH oriented with one pentagonal

face at height 0, called P0, and its parallel face at height 1,called P1. The remaining ten

vertices are equally partitioned at two heights between 0 and 1. For simplicity, we will label

these two heights a and b, a < b.

50
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40 11 21

31

41

51

1a

2a

3a4a

5a

1b

2b

3b

4b
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Figure 3.10: Edge graph of DH

We will first label all the vertices of the regular dodecahedron. For this construction

we will only be using labels from the set {1, 2, 3, 4, 5}, thus all labels will be taken mod-

ulo 5. We will also be using clockwise and counterclockwise orientation viewed from the

above perspective. Label P0 with vertices {10, 20, 30, 40, 50} in a clockwise manner, such that

i0(i+ 1)0 is an edge. Then let the five vertices adjacent to P0 be Pa = {1a, 2a, 3a, 4a, 5a},

where i0(i+ 1)a is an edge. Now let the five vertices adjacent to P1 be Pb = {1b, 2b, 3b, 4b, 5b},

so that iaib and ib(i+ 1)a are edges. Finally let the five vertices of P1 be {11, 21, 31, 41, 51},

such that ib(i+ 1)1 is an edge. So the regular dodecahedron is DH = conv{P0, P1, Pa, Pb}

(Figure 3.10)
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Now to create the nonconvex twisted dodecahedron DH(ε) (Figure 3.11) we will rotate

P0 about the center point counterclockwise by an angle β ≤ ε, and P1 about the center point

clockwise by an angle τ ≤ ε. So the bottom face is rotated by β in one direction and the top

face is rotated by τ in the opposing direction where the orientation of each rotation is viewed

from above the dodecahedron. Now we will take the convex hull of the 20 points minus the

convex hull of each set of five points which was the face of DH, with the exception of the

top and bottom faces.
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20(β)30(β)

40(β)
11(τ) 21(τ)

31(τ)

41(τ)

51(τ)

1a

2a

3a4a

5a

1b

2b

3b

4b

5b

Figure 3.11: Edge graph of DH(ε)

Remark 7. We will choose ε < 18o , so that the top and bottom faces are not translates of

each other.

So P0(β) = {10(β), 20(β), 30(β), 40(β), 50(β)}

and P1(τ) = {11(τ), 21(τ), 31(τ), 41(τ), 51(τ)}

Definition 10. The nonconvex twisted dodecahedron (Figure 3.11) is

DH(ε) = conv{P0(β), P1(τ), Pa, Pb} − conv{i0(β), (i + 1)0(β), (i + 1)a, (i + 1)b, (i + 2)a} −

conv{i1(τ), (i+ 1)1(τ), (i− 1)b, ib, ia} for all i ∈ {1, 2, 3, 4, 5} (taken modulo 5).
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Remark 8. The diagonals of the form inix for i ∈ {1, 2, 3, 4, 5}, n ∈ {0, 1}, and x ∈ {a, b}

lie outside DH(ε).

Theorem 3.8. For 0 < ε < 18o the nonconvex twisted dodecahedron DH(ε) cannot be tiled

by tetrahedra without new vertices.

Proof Outline

• Assume a tiling of DH(ε) exists and induces a triangulation on P1(τ) by triangles A,B,

and C.

• We will use Lemma 3.7 to show that at least one triangle from P1(τ) is in a tetrahedron

with a vertex from P0(β).

• Using a case analysis and Lemma 3.7 we will show that there is a triangular face which

can only be in a tetrahedron which contains a diagonal lying outside DH(ε) for every

combination where a triangle of P1(τ) is in a tetrahedron with a vertex from P0(β),

contradicting that such a tiling exists.

Detailed Proof

As in theorem 3.4, we will assume there exist a set of simplices (tetrahedra) S which

tiles DH(ε), and consider the induced triangulation T of P1(τ). Since P1(τ) is a pentagon,

having only one unique triangulation, and all vertices of P1(τ) are vertex transitive, we can

assume, without loss of generality, that

T = {(11(τ), 21(τ), 31(τ)), (11(τ), 31(τ), 41(τ)), (11(τ), 41(τ), 51(τ))}.

For simplicity we will let triangle (11(τ), 21(τ), 31(τ)) = A, triangle (11(τ), 31(τ), 41(τ)) =

B, and triangle (11(τ), 41(τ), 51(τ)) = C shown in Figure 3.12. We will also refer to a tetra-

hedron containing these triangles as faces by {X, p} where X ∈ {A,B,C} and p is some

vertex of DH(ε) not on P1(τ).
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First we will show there exist an s ∈ S where t ∈ T is a face of s and the fourth vertex

of s is a vertex of P0(β).

A B C

11(τ )

21(τ )

31(τ ) 41(τ )

51(τ )

1a

1b

2a

2b

3a

3b

4a

4b

5a

5b

Figure 3.12: Top view of DH(ε)

Assume each tetrahedra containing three points from P1(τ) does not contain a fourth

point from P0(β). Recall that triangle A cannot be in a tetrahedron with vertices from the

set {1a, 1b, 2a, 2b, 3a, 3b}. If triangle B is in a tetrahedron with 2a or 2b, then by Lemma

3.7 triangle A cannot be in a tetrahedron with vertices from the set {4a, 4b, 5a, 5b}. Thus

reaching a contradiction that triangle A is not in a tetrahedron with a vertex from P0(β).

Similarly if triangle B is in a tetrahedron with 5a or 5b, then by Lemma 3.7 triangle

C cannot be in a tetrahedron with vertices from the set {2a, 2b, 3a, 3b}. Thus reaching a

contradiction that triangle C is not in a tetrahedron with a vertex from P0(β).

Therefore triangle B cannot be in a tetrahedron with vertices of Pa or Pb, so at least

one triangle in T must be in a tetrahedra with a vertex from P0(β).

Now we will show no tetrahedron of the tiling can be of the form {X, z0(β)} for X ∈

{A,B,C}. We will do so by taking a case analysis of each possibility for a tetrahedron s ∈ S.

Case 1: s = {B, z0(β)}
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Case A: Assume z = 2, so s = {B, 20(β)}.

Since face {31(τ), 41(τ), 2b} shares and edge with triangle B we can see by Lemma 3.7

that the tetrahedron of S having {31(τ), 41(τ), 2b} as a face can only have its fourth vertex

be from the set {3a, 3b, 20(β)}, but by construction all tetrahedra of these constraints contain

a diagonal lying outside DH(ε).

Case B: Assume z = 1, 3, 4,or 5

We will find a contradiction for z = 5, so s = {B, 50(β)}. The other three will follow

with symmetry and similar arguments.

Since triangle B and triangle A share edge 11(τ)31(τ), then Lemma 3.7 provides that

the tetrahedron of S having triangle A as a face can only have it’s fourth vertex from the

set {10(β), 50(β), 1a, 1b, 2a, 2b}, but by construction A cannot be in a tetrahedron with the

vertices from the set {1a, 1b, 2a, 2b}.

Thus if we assume the tetrahedron {A, 10(β)} ∈ S, then by a similar argument as in

Case 1-A the tetrahedra of S having {21(τ), 31(τ), 1b} as a face, will have its fourth vertex

be from the set {2a, 2b, 10(β)} but by construction all tetrahedra of these constraints contain

a diagonal ling outside DH(ε). Similarly if we assume the tetrahedron {A, 50(β)} ∈ S, then

by a similar argument as in Case 1-A the tetrahedron of S having {11(τ), 21(τ), 5b} as a face,

will have its fourth vertex be from the set {1a, 1b, 50(β)} but by construction all tetrahedra

of these constraints contain a diagonal ling outside DH(ε).

Case 2: s = {A, z0(β)} (By symmetry a similar argument can be made for triangle C.)

Case A: We have seen that z 6= 1 or 5 by the argument in Case 1-B.

Case B: Assume z = 2

Since face {21(τ), 31(τ), 1b} shares an edge with triangle A, then Lemma 3.7 along

with the construction yields that the tetrahedron of S containing {21(τ), 31(τ), 1b} as a face

must have as its fourth vertex 20(β). Since face {31(τ), 1b, 2a} shares an edge with face

{21(τ), 31(τ), 1b}, Lemma 3.7 provides that the tetrahedron of S containing {31(τ), 1b, 2a} as
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a face has as it’s fourth vertex be from the set {10(β), 2b, 20(β), 3a}, but by construction all

tetrahedra of these constraints contain a diagonal lying outside DH(ε).

Case C: Assume z = 3 or 4

We will find a contradiction for z = 3, so s = {A, 30(β)}. The case of z = 4 will follow

from a similar argument.

Recall that case 1 showed triangle B cannot be in a tetrahedron with a vertex of P0(β).

Since triangle A and triangle B share and edge Lemma 3.7 and the construction provides

that the tetrahedron of S containing B as a face has as its fourth vertex 5a.

Since triangle B and triangle C share an edge and B is in a tetrahedron with vertex 5a,

then by Lemma 3.7, all tetrahedra not intersecting {B, 5a} and containing C as a face has

a diagonal lying outside DH(ε).

So we have shown that for any set of tetrahedra S which tiles DH(ε), there is at least

one induced triangle of P1(τ) in a tetrahedron with a vertex in P0(β) and that there is no

tetrahedron with a triangle of P1(τ) and a fourth vertex from P0(β). Therefore there exist

no set of tetrahedra which tiles DH(ε). �

3.4 Open Problem

The result for DH(ε) motivates a generalization just as Schönhardt example motivated

Rambau’s generalization.

Notice that the position of P0 and P1 in DH is the same as the bases of the right

pentagonal anti-prism. So we will define a n-gonal pentaprism as a polyhedron with two

bases in the same position as the right n-sided anti-prism and bounded on the sides by 2n

pentagonal lateral faces.

Definition 11. Let Rn be a regular n-gon. Let R0 be a copy of Rn at height 0 and R1 be a

copy of Rn at height 1 so that conv{R0, R1} is the right n-sided anti-prism. Let the plane

39



containing R0 be P0 and the plane containing R1 be P1. If δ is the interior dihedral angle

between a base and a lateral face of the right n-sided anti-prism, then let α be such that

δ < α < 180.

Label the edges of R0 as ei for i ∈ {2, 3, · · · , n + 1} and define the plane containing ei

which forms an angle above R0 of measure α with R0 to be Pi. Similarly, label the edges of

R1 as ej for j ∈ {n + 2, n + 3, · · · , 2n + 1} and define the plane containing ej which forms

an angle below R1 of measure α with R1 to be Pj.

Now let Hi be the halfspace bounded by Pi for i ∈ {0, 1, · · · , 2n+ 1} = I containing the

right n-sided anti-prism. The n-sided pentaprism is PPn = ∩i∈IHi.

Remark 9. DH = PP5 for α = arccos(−1√
5
).

We pose the open problem: Is the nonconvex twisted PPn, as described by the con-

struction of DH(ε), tilable by tetrahedra for all n > 3?

It follows from the proof of Theorem 3.8 that for n = 3 or 4, the non-convex twisted

pentaprism cannot be tiled. However, for arbitrarily n, the regular n-gon has many non-

isomorphic triangulation, thus a more sophisticated method is needed.
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Chapter 4

Extendable Surface Triangulation

In the previous chapter we discussed triangulable or tilable polyhedra while alluding to

surface triangulations. We wish to formalize the relationship between these concepts.

Definition 12. A surface triangulation of a given polyhedron is called extendable to a

triangulation (to a tiling respectively) if the polyhedron has a triangulation (tiling respectively)

such that each triangle of the surface triangulation is a face of one of the participating

tetrahedra. In this case we also say that the set of tetrahedra which triangulate (or tile

respectively) the polyhedron induces the given surface triangulation.

It is hard to tell which chain of thinking led the different authors to construct their non-

triangulable polyhedra (Examples 1-6), however a close look at the polyhedra can reveal some

common key features which lead to further non-triangulable polyhedra. If one starts with

a specific symmetrical convex polyhedron and finds a non-extendable surface triangulation,

then there might be a chance that one can perturb the vertices of the polyhedron so that

the new polyhedron is non-triangulable. We will make this perturbing idea more precise.

Theorem 4.1. There is a suffeciently small ε so that an ε perturbed surface triangulation is

triangulable if and only if the surface triangulation is extendable to a triangulation.

The proof of Theorem 4.1 hinges solely of the fact that the set of tetrahedra are joined

face-to-face. It is natural to assume the analogous holds true for extending surface trian-

gulations to a tiling by tetrahedra. However, we notice that the tetrahedra are not joined

face-to-face in a tiling and thus the analogue is not true.

Theorem 4.2. There exist extendable surface triangulations to a tiling by tetrahedra, where

an ε perturbation of the surface triangulations is non-tilable.
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Remark 10. A polyhedron with only triangular faces is a ε perturbation of itself, thus if

tilable then there is a polyhedra which it is an ε perturbed surface triangulation which is

extendable.

Proof The simplest example of such a formation is to consider the tiling of a cube shown

in Figure 4.1. Since the cyclic diagonals are a subset of the induced surface triangulation,

then the perturbation of the twist described by Rambau [20] would produce a corresponding

tiling, yet Theorem 3.4 showed that the twisted cube is not tilable. �

Dissect the cube down the diagonal plane.

Triangulate each
piece so that its
dotted diagonal is
used.

Figure 4.1: Tiling of a cube

So we ask, why is this so? We will assume we have an extended tiling of the surface

triangulation of cyclic diagonals on the cube. Notice that the bottom face is triangulated

into two triangles which must be connected to two opposing vertices of the top face as shown

by the two tetrahedron in Figure 4.2. It is obvious by Lemma 3.2 that the two tetrahedra

will overlap for any small twist.
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Figure 4.2: Extended tiling which crosses

4.1 Realizing Surface Triangulations

Let us discuss a perturbation in a planar setting. Assume a given polygon P has its

edges partitioned into line segments by placing new vertices along the edges. Some (or all)

edges may contain no new vertices, thus not partitioned. The introduction of new vertices

will result in a degenerate polygon, where some pairs of adjacent edges are collinear. Let

ε > 0 be a sufficiently small positive number. Making a degenerate polygon semi-concave

is to transform (Figure 4.3) its vertices so that the vertices are repositioned within their ε

neighborhood and all degenerate internal angles (180o) of the given polygon become concave.

If no new vertices are added in the partitioning, then there is no need to move any of the

vertices. Otherwise one can get a desired semi-concave polygon by replacing each edge of P

with a slightly bent concave polygonal arc with the new vertices from that edge.

One can say that the role of the sufficiently small ε in the above definition is the same

as saying one wants to perturb the vertices slightly. The R3 variant of this problem is less

trivial and not an analogue of the above definition as we will not add new vertices to edges,

but rather new edges on the faces of a polyhedron. Let us start with a proper definitions:
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Figure 4.3: Transforming a degenerate polygon into a semi-concave polygon

Definition 13. Let P̂ be a surface triangulation of a given polyhedron P . P̂ can be viewed

as a degenerated polyhedron. Let ε > 0 be a sufficiently small positive number. Making a

degenerate polyhedron semi-concave is to transform its vertices so that the vertices are

repositioned within their ε neighborhood and the dihedral angles between coplanar adjacent

faces become concave. The resulting polyhedron will be called the realized semi-concave

polyhedron of the surface triangulation of P . We will also refer to the transformation as

realizing a surface triangulations.

Theorem 4.3. If each vertex of a convex polyhedron is adjacent to no more than three non-

triangular faces, then every surface triangulation of the polyhedron can be realized.

Proof Let P be the convex polyhedron satisfying the conditions of Theorem 4.3 and let

P̂ be a surface triangulation of P . Recall P̄ is the set of diagonals of the surface triangulation.

Color all the triangular faces of P blue, and every triangle of P̂ red (except those which are

faces of P ). Also color every edge of P black and every diagonal of P̄ white. Consider the

degenerate polyhedra bounded by the blue and red triangles; the interior dihedral angle at

every white edge is 180o and every blue triangular face is bounded by three black edges,

whose dihedral angles are convex.
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It is easy to see that there exist a sufficiently small ε so that dragging any vertex of P

along with its incident edges to a point inside an ε neighborhood will result in all the convex

dihedral angles remaining convex, and the concave dihedral angles remaining concave. Let

v be a vertex of P such that it is an ear vertex (Definition 7) of at least one of the faces

triangulated by P̂ . The dihedral angles corresponding to the white edge of an ear can

become convex or concave depending on the perturbation of its ear vertex. Our job is to

find a perturbation which makes the dihedral angles of the white edge concave.

We will distinguish between two cases:

Case 1: If vertex v is an ear vertex on every non triangular incident face:

Let v be the ear vertex of ears E1, E2 and E3 on faces F1, F2 and F3 respectively. (If

fewer than three non triangular faces exist, disregard the extra ears and faces.) We will drag

v along with its incident edges of P to a point inside of the ε neighborhood of v which is not

coplanar with F1, F2 or F3. Furthermore we will pick the point so that each white edge of

E1, E2, and E3 becomes concave.

Each plane containing Fi bounds two hemispheres of the ε neighborhood of v, one which

contains all the points which if v is dragged to will make the white edge of Ei a concave

interior angle and the other contains the points which will make a convex interior angle. All

three faces contain v, so the intersection of the hemispheres causing concave interior angles

at the white edges is not empty, thus such a point exists.

Case 2: If vertex v is not an ear vertex of at least one of its non triangular incident faces.

Assume v is not an ear vertex of the non triangular faces F1 and F2. (If only one non

triangular faces exist, disregard F2) We will drag v along with its incident edges of P to a

point inside of the ε neighborhood of v which is coplanar with F1 and F2 and causes the

white edge of every ear, where v is an ear vertex, to become concave. The line which is the

intersection of the planes containing F1 and F2 contains such a point. Notice every white

edge along F1 and F2 remains degenerate.
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In both cases, change the color of the white edge(s), which are now concave, to black and

the red ear(s), which are now faces, to blue. The new polyhedra (possibly still degenerate)

has at least one less red triangle and at least one less white edge. This implies that the above

process, beginning with choosing a vertex v which is incident to a red ear, can be repeated

finitely many times resulting with a polyhedron with only blue triangular faces and concave

dihedral angles at each of the original diagonals of P̄ . �

Remark 11. With the process shown in Theorem 4.3, each diagonal along a face P which

crosses a diagonal of P̄ becomes outside the realized polyhedron.

4.2 Polyhedra with Regular Polygonal Faces

We will now attempt to find non-extendable surface triangulations where the realized

semi-concave polyhedron is a non-triangulable polyhedron. We will begin our search by

investigating the surface triangulations of polyhedra composed of regular polygonal faces,

since each meets the conditions of Theorem 4.3

Platonic Solids and Prisms

Theorem 2.9 clearly defined a partial surface triangulation of the right prism which

cannot be extended.

Theorem 4.4. The 5 Platonic solids are divided into two classes depending on the extendibil-

ity of their surface triangulations:

A) Every surface triangulation is extendable to a triangulation.

B) There exist at least one surface triangulation which is not extendable to a triangulation.

Proof It is obvious that there is only one surface triangulation of the regular tetra-

hedron, octahedron, and icosahedron, which is the empty set of diagonals, thus the surface

triangulation of each of these is extendable. However, we have discussed in length the state-

ment of Theorem 2.9 showing the surface triangulation of the cyclic diagonals of a prism is

not extendable, therefore there exists a surface triangulation of the cube (and every right
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prism) which is not extendable. With the relationship given in Theorem 4.1, we can also

conclude from Theorem 3.8 that the surface triangulation of the regular dodecahedron which

can be realized to DH(ε) is not extendable. �

Archimedean and Johnson Solids

We will explicitly study the surface triangulations of the Archimedean solids. We have

provided the names, vertex labeling and an image (taken from http://en.wikipedia.org/wiki/

Archimedean solid) of each Archimedean Solid. As a bi-product, we will mention results

concerning some Johnson solids.

Theorem 4.5. The 13 Archimedean solids are divided into four classes depending on the

extendibility of their surface triangulations:

A) Every surface triangulation is extendable to a triangulation.

B) Every surface triangulation can be extended to a tiling by tetrahedra, but it is unknown if

each surface triangulation can be extended to a triangulation.

C) There exist at least one surface triangulation which is not extendable to a triangulation.

D) It is unknown if each surface triangulation can be extended to a triangulation.
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Class A

1. Snub cube (3,3,3,3,4)

2. Snub dodecahedron (3,3,3,3,5)

3. Cuboctahedron (3,4,3,4)

Definition 14. A fan is a triangulation such that all simplices contain a common vertex.

We will call the common vertex the fan vertex.

Remark 12. To show that all convex polyhedra contain a triangulation it is sufficient to

create a fan at one of the vertices. In a fan triangulation of a convex polyhedron, we notice

that the triangulation induces a fan triangulation at that vertex on every adjacent face.

Proof of Class A If a surface triangulation of a convex polyhedron contains a vertex which

is a fan of each of its adjacent faces, then by Remark 12 it is extendable. A fan triangulation

is the set of all tetrahedra created by taking the three vertices of every triangle of the surface

triangle, except those containing the fan vertex, and adjoining it with the fan vertex.

Since each triangulation of a quadrilateral and pentagon are fans we will first consider

the Archimedean solids which only contain triangles, squares, and pentagons. Not all such

polyhedra with this property must be triangulated with a fan vertex, but if every square

and pentagon is only adjacent to triangular faces, then every surface triangulation contains

a fan vertex. The snub cube and snub dodecahedron have this property, thus belong to class

A. It is worth noting that there are forty four Johnson solids which have this property. You

can find a list of these Johnson solids in the appendix.
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Although the cuboctahedron has previously been shown to be in class A [7], Figure 4.4

shows the only unique surface triangulation without a fan vertex. It would suffice to find the

extension of this surface triangulation, however, we wish to present a new method of finding

an extension of all surface triangulation simultaneously.

1 2

3

45

6

2 1

6

54

3

Top View Bottom View

T2

T4

T6
T5

T3

T1

Figure 4.4: Vertex labeling of the cuboctahedron

Consider the vertices labeled as in Figure 4.4 and remove the convex hull of the point

set {T1, T2, T3, T4, T5, T6}, which is a triangular anti-prism. Now we can break the remaining

volume into the six congruent pieces which are the convex hulls of points sets {1,2,T2,T3,T4},

{2,3,T3,T4,T5}, {3,4,T4,T5,T6}, {4,5,T1,T5,T6}, {5,6,T1,T2,T6}, and {1,6,T1,T2,T3}. Notice

each piece is connected to two others by common triangles, also each shares a triangular

face with the anti-prism. Now we should notice that the six congruent pieces all have ex-

actly one square face from the exterior of the cuboctahedron, so they can be triangulated

with either diagonal of the square and by the fan argument each surface triangulation is

extendable. �

Class B

4) Rhombicuboctahedron (3,4,4,4)

Proof of Class B
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Remark 13. If we want to tile a polyhedron, it suffices to slice the shape by a plane(s) which

creates no new vertices and consider tiling the remaining pieces. The issue with this method

when attempting to triangulate the polyhedron is that the triangulation of each piece must

induce the same surface triangulation on the cross section.

First observe that on the rhombicuboctahedron there are three sets of cyclic squares,

where each is the convex hull of a octagonal prism. Also notice each pair of cyclic squares

intersect on two opposing parallel faces.

We will attempt to break the rhombicuboctahedron into three pieces by removing one

of these octagonal prisms as shown in Figure 4.5.

Figure 4.5: Slicing the rhombicuboctahedron

Before doing this we must first show that each piece can be tiled by tetrahedra. So

by Theorem 3.4 we need that the octagonal prism not be surface triangulated by the cyclic

diagonals. Since there are three of these it is easily seen that all three cyclic squares cannot

be triangulated by cyclic diagonals simultaneously, thus every surface triangulation will

contain at least one octagonal prism not containing the cyclic diagonals along its lateral

faces. Therefore we can cut the rhombicuboctahedron as shown in Figure 4.5 and tile each

piece with tetrahedra. �

It is obvious that this method does not provide a triangulation of the rhombicubocta-

hedron since either octagonal cut may contain different triangulations on its cross sections,

yet if we can show that every surface triangulation of the square cupola (the top and bottom
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pieces in Figure 4.5) can be extended, then we will be able to triangulate each octagonal

cross section in the same manner.

Open Problem

Is every surface triangulation of a square cupola extendable to a triangulation?

Remark 14. This will also prove that each surface triangulation of the square orthobicupola

and square gyrobicupola is extendable.(Notice this is not the case for the elongated square

gyrobicupola. Although it can be broken into three pieces as the rhombicuboctohedron, the

octagonal prism may be triangulated on the surface by the cyclic diagonals.)

Class C

5)Truncated tetrahedron (3,6,6)

6) Truncated cube (3,8,8)

7) Truncated dodecahedron (3,10,10)

8) Icosidodecahedron (3,5,3,5)

Proof of Class C

For the truncated tetrahedron, we consider the partial surface triangulation of three

hexagonal faces shown in Figure 4.6.

Notice the top face is a triangle {1,2,3} and the bottom face is a hexagon {A,B,C,D,E,F},

and the other three vertices are labeled by there adjacent vertices.
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Figure 4.6: Edge graph of a partial surface triangulation of the truncated tetrahedron

We will again consider the abstract case, and show no tiling by tetrahedra induces such

a surface triangulation. Now let us focus on the surface triangle {B,C,1}. If we assume

a tiling by tetrahedra exists, we can consider which vertex will be in a tetrahedron with

triangle {B,C,1}. It is obvious the the vertices {A,F,2,AB1,CD2} are not the fourth vertex.

Now if we prescribe a surface triangulation on the bottom hexagon {A,B,C,D,E,F} which

contains diagonal AC or CF , the triangle {B,C,1} must be a face of tetrahedra {B,C,1,3}

in the tiling (or triangulation) of the truncated tetrahedron.

Now we can form a similar argument that the surface triangle {D,E,2} must belong to

the tetrahedra {D,E,1,2} by prescribing a surface triangulation contain diagonal CE. Now

we reach a contradiction as tetrahedra {B,C,1,3} and {D,E,1,2} overlap.

Therefore any surface triangulation containing the diagonals B1, C1, (CD2)1, D2, E2,

(EF3)2, (AB1)3, CE and AC or CF cannot be extended.

Similar arguments can be made for the other three polyhedra in this class. In each

polyhedron we use a similar technique of investigating triangles from a surface triangulation
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which are all adjacent to a common triangular face and use diagonals on other faces to force

which tetrahedra contains the surface triangles incident with the common triangular face. An

edge graph for such a surface triangulation of the truncated cube is provided in Figure 4.7.

(We will not provide the diagram of the truncated dodecahedron or the icosidodecahedron,

because it looses its visual appeal with the distortion needed to draw the faces in an edge

graph.)

We have color coded the diagram so that each face diagonal (dotted curves) restricts

vertices that can be in a tetrahedron with the corresponding colored face triangle. We have

also colored each vertex to show it can be in a tetrahedron with the triangle of the same

color. The crux of the argument is to recognize that no two of the given colored triangles

can both be in a tetrahedron with another vertex from their shared triangular face. Then

we arbitrarily choose two of the colored triangles to be in a tetrahedron with a fourth vertex

elsewhere, and find that any combination of their fourth vertices respectively will cause the

two tetrahedra to overlap. �

Figure 4.7: Edge graph of a partial surface triangulation of the truncated cube

Obviously we need to consider more surface diagonals in the cases of the truncated

dodecahedron and the icosidodecahedron.
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Class D

9) Truncated octahedron (4,6,6)

10) Great rhombicuboctahedron (4,6,8)

11) Truncated icosahedron (5,6,6)

12) Rhombicosidodecahedron (3,4,5,4)

13) Great rhombicosidodecahedron (4,6,10)

These polyhedra cannot be broken into smaller shapes to be triangulated, since their is

no plane cutting the polyhedron into two pieces without creating new vertices. The cyclic

surface triangle method shown for class C also does not seem to work as the rhombicosi-

dodecahedron is the only shape containing triangular faces, and it seems as if having more

than three non-triangular faces adjacent to a triangular face will hinder the contradiction

reached with the other four polyhedra where this technique proved fruitful.
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Appendix A

Johnson Solids Containing Fan Vertices in every Surface Triangulation

1. Square Pyramid

2. Pentagonal Pyramid

3. Elongated Triangular Pyramid

4. Elongated Square Pyramid

5. Elongated Pentagonal Pyramid

6. Gyroelongated Square Pyramid

7. Gyroelongated Pentagonal Pyramid

8. Triangular Dipyramid

9. Pentagonal Dipyramid

10. Elongated Triangular Dipyramid

11. Elongated Square Dipyramid

12. Elongated Pentagonal Dipyramid

13. Gyroelongated Square Dipyramid

14. Gyroelongated Triangular Cupola

15. Gyroelongated Square Cupola

16. Gyroelongated Pentagonal Cupola

17. Gyroelongated Triangular Bicupola

18. Gyroelongated Square Bicupola

19. Gyroelongated Pentagonal Bicupola

20. Gyroelongated Pentagonal Cupolaro-

tunda

21. Augmented Triangular Prism

22. Biaugmented Triangular Prism

23. Triaugmented Triangular Prism

24. Augmented Pentagonal Prism

25. Biaugmented Pentagonal Prism

26. Augmented Hexagonal Prism

27. Parabiaugmented Hexagonal Prism

28. Metabiaugmented Hexagonal Prism

29. Triaugmented Hexagonal Prism

30. Augmented Dodecahedron

31. Parabiaugmented Dodecahedron

32. Metabiaugmented Dodecahedron
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33. Triaugmented Dodecahedron

34. Metabidiminished Icosahedron

35. Tridiminished Icosahedron

36. Augmented Tridiminished Icosahedron

37. Snub Disphenoid

38. Snub Square Antiprism

39. Sphenocorona

40. Augmented Sphenocorona

41. Sphenomegacorona

42. Hebesphenomegacorona

43. Disphenocingulum

44. Triangular Hebesphenorotunda
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