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Abstract

The shallow water equations (SWE) are a powerful tool for modeling the propagation of grav-

ity currents (GC) because of their relative simplicity, computational efficiency and accuracy. Finite

difference solutions, either based on the method of characteristics (MOC) or the implementation

of numerical schemes such as Lax-Wendroff (LxW ) have been traditionally used in such flow com-

putations. On the other hand, the finite volume method (FVM) has been gaining popularity in

several other hydraulic applications, being favored in cases when flow discontinuities are antic-

ipated. This work is focused on an implementation of the finite volume method (FVM) to the

solution of Boussinesq GC using the one and two-layer SWE models. The proposed two-layer

mathematical model is a modification of the the work by [Rottman and Simpson, 1983], adapted

to express such equations in a vectorial conservative format, amenable for FVM implementation.

The traditional solution for the GC front boundary condition (BC), using a characteristic equation

and a front condition, is compared to a new formulation that explicitly enforces local mass and

momentum conservation. Linear numerical schemes (LxW and FORCE) and non-linear schemes

based on the approximate solution of the Riemann problem (Roe and HLL) are implemented in

this framework along with various front conditions. The proposed modeling framework is tested

against experimental data collected by this investigation, and is also compared to previous inves-

tigations. Results indicate that this proposed model has a comparably simple and robust imple-

mentation, being flexible enough to be applied in a wide range of GC flow conditions and presents

good accuracy.
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Chapter 1

Introduction

Gravity currents (GC) (i.e. buoyancy or density currents) are driven by a density difference

between two or more fluids and generally travel in a quasi horizontal plane. In a large number of

cases the difference in density is small so that the buoyancy forces are of equal or greater magnitude

than the inertial forces. The primary discrepancies in the density are caused by two factors: the

accumulation of dissolved solids or temperature differences between fluids. Examples of GC in

which an accumulation of solids causes an increase in density include exchange flows in estuaries,

sediment entrainment in rivers and the expansion of dense volcanic dust clouds. When a cold

stream enters a warmer lake or vice versa, the density current is driven by temperature differences.

In this thesis high Reynold’s number GC flows, which are formed from the discharge of saltwater

into freshwater, are analyzed in the context of the shallow water equations (SWE).

In water bodies such as rivers and estuaries, GC flows are a common occurrence and have a

substantial impact on the flow field. When a river with a high discharge rate empties into an estuary

with negligible tidal effects, a lighter GC may form at the free surface with a salt wedge (denser

GC) propagating on the channel bottom into the river (Figure 1.1). In the Connecticut River during

the spring months, there is a large discharge due to snow melt, which forms a salt-wedge regime

with the Long Island Sound estuary (see Figure 1.1). Detailed measurements of the density profile

have been recorded for the lighter GC that forms at the water surface [Simpson, 1997].

Sea-lochs are deep inlets from the ocean in which tidal and river effects are important. In

systems with large amounts of river flow, well-mixed layers of brackish water develop on the

river side of a sill or obstacle. If the tide rises high enough, a salt wedge may rise over this sill

into the brackish region. This process has important effects on the pollution of the inlet and may

determine the amount of dissolved oxygen in an unmixed zone that lies underneath the brackish
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Figure 1.1: Aerial view of the front that forms between the Connecticut river and the Long Island
Sound estuary. Source: environmentalheadlines.com

region. Overturn due to dense water flowing over the sill may occur at rare intervals. In Loch Eil

in Scotland, the overturn occurs at a frequency of about once a year, and this occurrence is caused

by a GC flow [Simpson, 1997].

One of the first observed GC flows was related to volcanic eruptions in which hot gas and

ash are expelled at high velocities. This ash cloud can travel hundreds of kilometers and is the

most destructive component of the eruption [Baxter, 2000]. Once the buoyancy forces outweigh

the initial momentum, the fluid rises vertically as a buoyant plume, which is outside the scope

of quasi horizontal GC flows [Turner, 1973]. As the ash cloud moves higher and higher into

the atmosphere, entrainment becomes more and more important [Slim, 2006]. Thus, the reduced

gravity is decreased in magnitude until neutral buoyancy is achieved, which is inevitable because of

the ambient stratification. At this depth, the plume begins to move horizontally as an intrusive GC.
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Figure 1.2: A particle-driven GC generated from the terrorist attacks of 9/11. Source: 911re-
search.wtc7.net.

Similar examples occur at the ocean floor where 75% of the annual volcanic activity occurs. Small-

scale emissions through hydrothermal vents and large-scale eruptions rise as buoyant plumes and

have an important impact on ocean currents [Simpson, 1997].

Instead of forming a buoyant plume, a volcanic eruption can also spread as a pyroclastic GC

when the density of the fluid is sufficiently large. Moreover, when the ash cloud is too dense

to continue rising, the flow collapses and forms a “ground-hugging” surge [Slim, 2006]. These

pyroclastic flows can travel at speeds of up to 160 ms−1 with temperatures reaching 900◦C [Blong,

2000]. Since the late 1700s, the primary cause of death in volcanic eruptions is due to pyroclastic

flows (i.e. approximately 27% or 220,000 deaths) [Baxter, 2000]. A similar type of GC flow

occured due to the terrorist attacks on 9/11/2001 (see Figure 1.2).

A number of other types of GC flows can also occur in the context of volcanoes. When heavy

rains re-mobilize the unconsolidated ash deposited from a volcanic eruption, a lahar or mud flow

3



is formed. This hazardous type of GC can travel at high velocities for several kilometers and

can recur years after the initial eruption [Blong, 2000] and [Slim, 2006]. In 1985, the volcanic

eruption of Nevado del Ruiz in Columbia claimed 25,000 lives. Four major lahars were formed,

which traveled a total distance of 60 km at 10 ms−1. These mud flows over topped the banks a

river channel in Armero and followed the bank into the town, which resulted in the majority of the

casualties for this event [Simpson, 1997].

The GC examples presented above are higher velocity and lower viscosity flows. Thus, the

Reynolds number is large (Re > 1,000). However, the flow of molten rock is an example of a

low velocity and high viscosity flow. In addition, these low Reynolds number flows (Re < 10) are

non-Newtonian meaning that there is a nonlinear relationship between stress and strain. However,

the focus of this thesis is on the simpler Newtonian fluids, which are valid for gases and water

flows. In addition, the buoyancy forces are balanced by inertial forces instead of by viscosity so

that viscous forces are neglected.

Another common atmospheric GC is a haboob or dust cloud, which is a cold atmospheric

front several hundred meters in depth that can travel at over 20 ms−1. These types of GC flows

are generated from thunderstorm outflows over sandy and arid landscapes. The turbulence from

the outflow entrains dust, which has been measured at 40 mg/m3 [Simpson, 1997]. However,

the difference in density due to the entrained dust particles is generally a small fraction of 1%

compared to the effects of temperature. Therefore, it is common to model these haboobs only

based on the temperature differences between the two fluids [Simpson, 1997].

GC flows are often categorized depending on the description of the density difference. When

this difference is caused by temperature or dissolved solids, the GC is referred to as homogeneous.

However, sometimes GC flows are driven by suspended particles that progressively settle out of

the GC, and the density of the current is reduced. These flows are categorized as particle-driven

whereas a combination of these two is known as particle-laden. A haboob is an example of a

particle-laden GC; however, this type of flow is more homogeneous dependent. On the other

4



Figure 1.3: A haboob or dust cloud smothering a residential area, my3monsters.com.

hand, a buoyant plume that occurs due to volcanic eruptions, ocean outfalls, etc. eventually move

horizontally as a GC once neutral buoyancy is reached and is known as an intrusion [Slim, 2006].

In this thesis, the focus is on turbulent, homogeneous GC flows that travel along a horizontal

surface in a Boussinesq system (i.e. ρa/ρc≈ 1 where ρa is the ambient density and ρa is the current

density). The thin layer assumption, which is widely used in the context of GC, is utilized in order

to validate the SWE. Two thin-layer numerical models are proposed: one-layer SWE (the ambient

fluid is neglected in the governing equations) and two-layer SWE (the governing equations are

formulated based on the current and the ambient fluids). In addition, lock-exchange experiments

are conducted to compare with the numerical models and to measure the GC velocity structure.

1.1 Description of GC flows

GC flows are driven by a density difference in the vertical direction, which results in a pressure

difference in the horizontal plane. This pressure difference is balanced by the dynamic velocity

field in the horizontal direction. The gravitational effect associated with the density difference is

5



referred to as the reduced acceleration due to gravity, g′: [Ungarish, 2009].

g′ =
(

ρc−ρa

ρc

)
g = εg (1.1)

in which ρa is the ambient fluid density, ρc is the density of the current and ε is the relative density

difference. The reduced gravity is a fundamental feature in the GC propagation and causes the

decrease in velocity for GC compared to traditional dam break flows. This parameter replaces the

gravity (g) in the SWE and plays a role in the front condition (described in 2.1).

The first quantitative study of GC flows was done by von Karman, who evaluated the spread

of poisonous gas [Huppert, 2006]. Subsequently, [von Karman, 1940] formulated a classical rela-

tionship for the GC depth and velocity using Bernoulli’s theorem in which a heavier fluid advances

into the lighter atmosphere:
u LE

(g′h LE)1/2 = Fr LE (1.2)

in which hLE and uLE are the depth and velocity of the front or leading edge of the GC, respectively.

FrLE is the Froude number of the GC front, which was evaluated by von Karman to equal
√

2 in the

context of a relatively deep ambient. [Benjamin, 1968] argued that von Karman’s formulation was

invalid because he applied Bernoulli’s theorem across a streamline characterized with head losses.

Subsequently, Benjamin re-derived this expression (1.2) using the momentum integral, and ended

up with the same results. This result surprised Benjamin; however, because both approaches used

a different integral of the Euler equation, they could not have reached different results [Huppert,

2006].

The Froude number for a GC flowing into a deep ambient is actually closer to unity. More-

over, [Huppert and Simpson, 1980] obtained FrLE from their experiments and [Bonnecase et al.,

1992] stated that viscous drag and Reynold’s stresses are the reason for this discrepancy. [Shin

et al., 2004] formulated a new expression for the GC front in which FrLE = 1 for the deep ambient

scenario. Their result differs from Benjamin and von Karman’s value because [Shin et al., 2004]

approach includes the energy transfer between the GC and the ambient fluid, which is important
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for φ → 0. In the experiments conducted in this thesis φ = 1; however, the numerical model is able

to simulate any initial condition for the fractional depth (0≤ φ ≤ 1).

Two problems emerge from equation 1.2. For example, when a GC propagates into a shallow

ambient fluid, the Froude number also becomes dependent on the ambient depth H or in effect,

the depth ratio or fractional depth at the leading edge of the GC (i.e. φLE = hLE/H). In addition,

(1.2) represents one equation for two unknowns (hLE and uLE) [Huppert, 2006] (further discussed in

subsection 4.4.2). [Benjamin, 1968] solved the first potential problem by deriving an expression for

FrLE that is a function of φLE by applying a flow force balance (section 2.1). For the lock-exchange

flow that is simulated in this thesis, two approaches are utilized at the front BC in conjunction with

Benjamin’s condition or an empirical alternative.

The leading edge or front of a GC forms a distinct region that separates the advancing GC

and ambient fluids. Mixing is prevalent at the GC front, but the entrainment between the two fluids

is swept upstream in the form of shear instabilities. Towards the front of the GC a head or nose

generally forms in which the flow depth is greater than that of the fluid upstream. This nose region

is characterized by ”‘a zone of breaking waves and intense mixing”’ [Simpson, 1997]. Initially, the

nose of a GC moving along a horizontal surface is quasi-steady; however, in the case of an incline,

the size of the GC nose increases with slope [Simpson, 1997]. For an inviscid GC flowing on a

rigid and horizontal surface (Figure 1.4), the depth of the GC nose is dependent on the ambient

depth, which varies from the deep ambient φ = 0 to the full depth lock-exchange problem φ = 1. In

addition, the shape of the nose is dependent on the turbulence in the ambient fluid and the ambient

velocity structure.

This study is not concerned with viscous effects, but if viscosity becomes important, the rate

of advance for the GC is decreased and the turbulence at the nose is lessened. For high velocity

and low viscosity GC (i.e. Re > 1,000), the Reynolds number does not play a significant role in

the propagation. For instance, in a thunderstorm the Reynold’s number is typically in the order of

1,000,000. Moreover, field observations suggest that the flow structure in these highly turbulent

examples is similar for all Re > 1,000 GC flows [Simpson, 1997]. Viscosity can play an important
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Figure 1.4: High Reynolds number lock-exchange GC for Boussinesq fluids along a horizontal
surface presented in [Slim, 2006].

role for flows in which Re < 1,000; moreover, when Re < 10, viscosity tends to dominant over

inertia in the GC flow [Simpson, 1997]. When a viscous oil slick spreads over top a water body,

surface tension eventually exceeds viscosity in the level of importance [Fannelop and Waldman,

1971].

For high Reynold’s number GC flows, turbulent mixing is prevalent, and the instabilities

travel upstream of the GC nose. This turbulent mixing feature is illustrated in Figure 1.4 in which

most of the information is presented from [Britter and Simpson, 1978] and [Simpson and Britter,

1979]. The mixing in GC flows is a complex process that usually occurs in the following two

forms: billows that roll up the nose of the GC and a pattern of lobes and clefts. The billows

are formed from shear instabilities at the interface of the fluids because the two fluids flow in

opposite directions. The lobes and clefts are formed by the influence of turbulence against the

ground [Simpson, 1997]. Entrainment, the mixing between fluids, plays an important role in the

propagation of the GC, and the importance of entrainment increases with slope. Moreover, the

billows that entrain the ambient fluid play an important role in mass transfer, which decreases the

front velocity.

The velocity of the GC front is one of the key parameters and has received a great deal of

attention from researchers. This value can be approximated by equating the mean potential energy
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loss to the kinetic energy gain [Simpson, 1997]. For a lock exchange flow where the height of the

lock equals h0, this relationship becomes:

1
2

g′h0 =
1
2

u2 (1.3)

Isolating the velocity (u) in (1.3) yields:

U =
√

g′h0 (1.4)

in which U is an estimated potential velocity of the current and h0 is the initial GC depth. Although

the velocity estimation in (1.4) is an unrealistic simplification, the results are typically of the same

order of magnitude [Ungarish, 2009]. It is customary to normalize the results for the velocity with

this velocity estimation.

As discussed above, one of the key parameters in GC flows is the Reynolds number, which

governs the importance of viscosity. An estimate of the magnitude for the Reynold’s number can

be determined from equation 1.4 [Simpson, 1997]:

Re =Uh0/ν (1.5)

in which ν is the kinematic viscosity. For this study, we are concerned with high Reynolds number

flows (i.e. Re >> 1,000), and the final viscous stage that may eventually develop is neglected

[Simpson, 1997]. In addition, the present work is focused on thin layer systems (h0/x0 < 1) so that

the SWE are more applicable because there is less interfacial mixing [Ungarish, 2009].

1.2 Laboratory experiments

Experiments are conducted to validate the proposed numerical model using a MicroADV

device as well as digital cameras. One of the advantages of experimental research is that the

GC flows are similar to large-scale environmental examples. Moreover, experiments are typically
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easier to conduct than field measurements and it is easier to control parameters such as the effects

of the ambient fluid velocity. Experimental investigations from [Britter and Simpson, 1978] and

[Simpson and Britter, 1979] provided important information on the GC structure especially at

the nose that forms near the leading edge. One of the first GC experiments (the lock-exchange

problem) was conducted by removing a vertical barrier that separates freshwater from saltwater

[Keulegan, 1957] and [Barr, 1967]. A similar approach was conducted in this study in which high

definition digital cameras tracked the GC front while MicroADV probes measured the internal GC

velocity distribution.

Constant volume lock-exchange experiments are typically conducted by separating a denser

fluid with a density ρ +∆ρ , length x0 and depth h0 from a lighter ambient fluid ρ of depth H in a

long rectangular tank (see Figure 1.5). For full depth lock-exchange flows, h0 = H where as partial

depth experiments are conducted when h0 < H. For partial depth releases, the ambient fluid of

depth H − h0 is added on top of the denser fluid so that the depths on both sides of the gate are

equal (for a more comprehensive discussion, see [Shin, 2001]). Once this vertical gate is removed,

a GC flow begins in which the denser fluid propagates underneath the lighter ambient. When h0

equals H, a GC flow also develops at the free surface moving in the opposite direction of the denser

bottom current. Once the upstream moving depression wave (or hydraulic jump) that develops for

the denser fluid reaches an upstream physical boundary, a reflection occurs, and a nose region is

developed towards the front of the GC [Rottman and Simpson, 1983].

Experiments are often preferred to large-scale field measurements in the context of GC flows

[Shin, 2001]. Laboratory experiments are easy to repeat in order to establish consistency with the

data collection. They are less expensive and can be performed in a more controlled environment

so that the data collection is of higher quality than for field trials. In addition, it is easier to isolate

a certain aspect of the flow for a better understanding [Shin, 2001]. For field measurements, it is

often difficult to eliminate the effects of wind, boating and tidal effects in estuaries.
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Figure 1.5: Schematic diagram of a partial depth lock-exchange experiment in a rectangular chanel.
Adapted from [Rottman and Simpson, 1983].

The differences between laboratory experiments and environmental flows can occur because

of the difference in length scales. In order to achieve dynamic similarity between these two meth-

ods, the relative importance of the controlling forces (e.g. inertial, viscous, etc.) should be main-

tained [Shin, 2001]. The dimensionless Reynold’s number should be consistent for the laboratory

experiments.
UL
ν

∣∣∣∣
Prototype

=
UL
ν

∣∣∣∣
Experiment

(1.6)

where U is the velocity scale and ν is the kinematic viscosity. The length scale L within the

Reynold’s number is typically smaller in the laboratory; however, the problem is reduced if water

is used instead of air for atmospheric flows [Shin, 2001]. Moreover, the kinematic viscosity of

water is 0.01 cm2s−1 at 20◦C and 0.15 cm2s−1 for air [Simpson, 1997]. Another important factor

is that GC flows are weakly dependent on the Reynold’s number when the Reynold’s number is

greater than 1,000 as previously described.

The Peclet number is another relevant dimensionless parameter that is related to mass trans-

port phenomena.

Pe =
UL
κ

(1.7)
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in which κ is the diffusivity of the fluid. The Peclet number is the ratio of the advective and

diffusive terms in the momentum equation [Shin, 2001]. In the majority of GC applications, the

order of magnitude of the Peclet number is very large, sometimes greater than 1 million. Therefore,

diffusion effects are negligible [Shin, 2001]. In laboratory experiments, which are presented in this

thesis, the diffusivity of pure salt is 1.1 x 10−5cm2s−1 so that the Peclet number was also greater

than 1 million [Shin, 2001].

1.3 GC Flow stages

The inviscid GC propagation in a rectangular channel is described by three stages [Ungarish,

2009]: slumping, transition, and self-similar. The transition stage is the least interesting of the three

stages because it more or less serves as a bridge between the other two. However, the beginning of

the transition stage (i.e. the end of the slumping stage) is an important feature that effects the GC

depth and velocity (further discussed in 5.2).

At the initial release that marks the beginning of the slumping stage, the depth decreases

dramatically in comparison with the other stages. Moreover, the shape of the interface and the

velocity of the GC undergo a transformation. Although the depth (h) drops to at least half of the

initial depth (h0) after the initial release due to the energy conserving theory of [Benjamin, 1968],

the velocity and the depth of the GC nose remain almost constant for the remainder of the slumping

stage.

[Ungarish, 2009] describes the slumping stage in two sub-categories starting with a motion

analogous to a dam-break wave, which is characterized by the initial drop in depth and increase

in velocity for the GC. This type of motion occurs at the beginning of the lock exchange flow

when stationary fluid remains in the system (i.e. upstream of the release). Towards the front of the

GC ”the interface has a negative slope, corresponding to a rarefaction (expansion) pressure wave,

under which the fluid is accelerated” [Ungarish, 2009]. Next, the entire depth of the current begins

to descend abruptly sending a disturbance towards the nose. A positive slope for this disturbance

begins to form, which travels towards the front of the GC [Ungarish, 2009].
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The second stage is transitional in nature in which the GC ”is under the influence of the

initial conditions and the front boundary conditions” [Ungarish, 2009]. Once the downstream

propagating bore or wave (depending on φ ) that originated at a physical boundary reaches the GC

front, the depth and velocity of the front begin to decrease. Moreover, the quasi steady motion

that forms during the slumping stage is ended and there is an unsteady transition to the self-similar

stage. The importance of the initial conditions begins to decrease as the GC propagates further

downstream and enters this self-similar stage.

In the final stage (i.e. self-similar), the inertial forces begin to balance with the buoyancy

forces to retain an almost steady flow. For the inviscid assumption, the GC flow remains in the self-

similar stage until there is contact with a physical boundary (wall) or the simulation is terminated

after a certain minimum GC thickness (i.e. h→ 0) otherwise viscosity would have to be included

in the computations. Because the depth and the velocity decrease with time, ”‘the importance of

the viscous friction relative to the inertial terms increases monotonically during the self-similar

propagation”’ [Ungarish, 2009]. The following relationship formulated in [Huppert and Simpson,

1980] describes the time when the inviscid assumption becomes invalid:

x∗ = (x5
0h5

0gr/ν
2)

1
7 (1.8)

According to this relationship, the inviscid assumption is valid for all of the experiments and nu-

merical simulations conducted in this study,

1.4 Modeling approaches

One of the first applications in which GC were studied was oil spreading over top of a water

body. Because of the relatively small thickness of oil compared to water in the context of oil spills

within the ocean, the solution of the governing equations can be simplified to analytical solutions.

First, it is customary to reduce the Navier-Stokes equations into the depth-averaged SWE, which

are referenced throughout this paper.
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[Fannelop and Waldman, 1971] and [Hoult, 1972] used the SWE in order to derive self-similar

solutions. They focused on the three major phases in the propagation of oil on a water body:

gravity-inertial, gravity-viscous, and surface tension-viscous. [Fannelop and Waldman, 1971] as-

sumed that the SWE are time-independent, which is required in order to derive these analytical

solutions, so that time derivatives vanish in the governing equations.

In order to derive the SWE in the context of oil spreading using a single pair of governing

equations (one-layer SWE), some simplifications are made. For example, the viscosity in the mo-

mentum equation is neglected because the viscosity of crude oil is one to two orders of magnitude

greater than water, so the horizontal spread of oil is considered independent of the vertical direc-

tion. However, if the Reynold’s is greater than 1,000, viscosity is typically neglected for saltwater

intrusions as well. The following derivation follows the formulation in [Fannelop and Waldman,

1971]; however, subtle changes are made in the notation for consistency with this thesis, which

focuses on a heavier GC propagating underneath a lighter ambient fluid (e.g. saltwater into fresh-

water).

[Fannelop and Waldman, 1971] derives the 1-D one-layer SWE from the 2-D Navier-Stokes

equations with the incompressible and Boussinesq assumptions:

∂u
∂x

+
∂v
∂y

+ ju/x = 0 (1.9)

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=− 1
ρ

∂P
∂x

+
µ

ρ

∂ 2u
∂y2 (1.10)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

=− 1
ρ

∂P
∂y
−g (1.11)

in which u and v represent the longitudinal and vertical velocity components, respectively. P is

the pressure, ρ is the density and µ is the shear stress. This set of equations (1.9-1.11) is valid

for both 2-D and axisymmetric GC flows. For the planar case, j = 0, and for the radial case,

j = 1. In order to derive the 1-D SWE from these 2-D Navier-Stokes equations, the thin layer

assumption is utilized. Thus, equations (1.9-1.11) are integrated across the GC layer depth (h),
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and v∂u
∂y becomes zero in the x-momentum equation. In addition, the vertical accelerations are

neglected (i.e. v ∂v
∂y = 0). After integration, (1.11) is reduced to the hydrostatic relation between

the pressure in the layer and the depth. Then, an expression is derived by differentiating this

pressure relation with respect to x and assuming the weight of the GC is equal the weight of the

displaced ambient fluid.
∂P
∂x

= ρg′
∂h
∂x

(1.12)

in which g′ = (ρ1− ρ2)/ρ1 where ρ1 is the density of the heavier current and ρ2 is the density

of the ambient fluid. Equation 1.12 is substituted into equation 1.10 in order to obtain a single

momentum equation. This thesis is concerned with inviscid GC, so the last term in the RHS of the

x-momentum equation (1.10) is omitted and the resulting expression for momentum is:

∂u
∂ t

+u
∂u
∂x

+g′
∂h
∂x

= 0 (1.13)

Following the formulation in [Fannelop and Waldman, 1971], equation (1.13) is not sufficient

to solve for the two unknowns (h and u). Therefore, the continuity equation is required alongside

of this momentum equation. In order to formulate the updated continuity equation from (1.9), the

vertical accelerations are neglected. Then, the difference in the velocity (∆v) is equated to the

continuity equation integrated along the depth:

∆v =−
∫ h

0

(
∂u
∂x

+ ju/x
)

dh =−h
∂u
∂x
− juh/x (1.14)

in which:

∆v =
∂h
∂ t

+u
∂h
∂x

Therefore, the resulting continuity equation is written as:

∂h
∂ t

+u
∂h
∂x

+h
(

∂u
∂x

+ ju/x
)
= 0 (1.15)
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Together, equations (1.13) and (1.15) form the 1-D SWE, which are written in primitive for-

mat. This set of equations is amenable to the planar and axisymmetric scenarios, which are widely

studied for both analytical models and SWE models. However, this thesis is not concerned with

axisymmetric GC, so the radial term is omitted in the continuity equation. Moreover, the chain

rule is utilized in order to write the resulting SWE in conservative format (i.e. in terms of h and

uh), which is preferred near shocks: [LeVeque, 1992]:

∂h
∂ t

+
∂uh
∂x

= 0 (1.16)

∂uh
∂ t

+
∂

∂x

(
(uh)2

h
+

1
2

g′h2

)
= 0 (1.17)
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Chapter 2

Literature Review

In this chapter, the theoretical and empirical GC front investigations are discussed. Some

of the relavent experimental investigations into GC flows are presented. Subsequently, the use of

analytical box models to simulate these GC flows are discussed before moving on to the more

complex numerical models. The one and two-layer SWE models and the corresponding boundary

conditions are analyzed in detail since this discussion leads to the proposed numerical models

presented in the Methodology, Chapter 4. The advantages and disadvantages between the SWE

models and the Navier-stokes models are presented in section 2.4.3, and this chapter is concluded

with a discussion of hyperbolic numerical schemes that are used in SWE models.

2.1 The description of the front

The description of the GC front (i.e. h and u / uh) has received considerable attention in recent

decades. It is well known that the front velocity is very important to the GC propagation and

interfacial mixing. In the widely used integral models (discussed in 2.3), the description of the

front is one of the primary components along with volume continuity. Moreover, the front of the

GC is typically utilized as a boundary condition in the SWE. The SWE are invalid at the GC front

because of the importance of vertical accelerations, so the addition of a front condition is required

to complete the model (described ahead in 4.4.2).

One of the most traditional problems in unsteady, open channel hydraulics is the 1-D dam

break problem, which is similar to the description of a GC front. In the dam break problem with a

dry, frictionless bed scenario on one side, the front of the fluid (i.e. water) approaches a feather tip

solution [Sturm, 2010]. Through characteristic analysis, Ritter was able to compute the velocity of

the dam break front, which is described by the following relationship: 2u = c0 where c0 =
√

gh0
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is the initial wave celerity [Klemp et al., 1994]. In addition, a similar expression was obtained for

the velocity of the upstream moving depression wave: u =−co.

[Schoklitsch, 1917] compared these dam break results to the propagation of GC by means of

laboratory experiments. It was apparent that the upstream moving wave of the GC compared well

with the dam break analysis. However, the velocity of the GC front was about 1/2 of the dam break

front velocity. This discrepancy lead to a new relationship (equation 1.2), which was formulated

by [von Karman, 1940]. [Abbott, 1961] altered this relationship by replacing the Froude number

with an empirical coefficient β that was determined from experiments:

uLE = β
√

g′hLE (2.1)

in which the subscript LE denotes the front or leading edge of the gravity current. One notices that

this expression (2.1) equates to the dam break front velocity when β = 2 and the density of the

ambient fluid is much smaller than the GC fluid density [Klemp et al., 1994]. In the description of

GC propagation, the correct value for β or the Froude number has been the focus of a number of

research investigations. Because of the importance and intrinsic complexity of interfacial mixing

(specifically at the GC front), empirical relationships are often applied in SWE models. However,

there have been many attempts to improve the theoretical description of the GC front.

2.1.1 Theoretical investigations of GC front conditions

From experimental observations, it is known that the celerity of a GC front depends on the

density difference (∆ρ) between the fluids and the depth ratio at the GC front region (i.e. φLE). In

equation 2.1 the density difference is incorporated in the form of the reduced gravity. However, the

depth ratio is not involved in this expression, so it is expected that β is a function of the depth ratio.

One of the main theoretical breakthroughs for the description of the GC front was formulated by

[Benjamin, 1968] in which the Froude-like number is a function of the fractional depth.
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In order to formulate this expression at the leading edge of the GC, [Benjamin, 1968] equated

the buoyancy forces to the drag forces between the two fluids at the front. For Ritter’s traditional

dam break problem, the ambient fluid density is neglected as well as the shear with the ambient

fluid, which leads to the feather tip front. In GC flows these simplifications are strictly invalid.

Benjamin’s analysis was applied to a system in which an air cavity intruded over top of the water-

filled pipe with a rectangular cross-section undergoing discharging at one end. The following

development follows [Klemp et al., 1994], who applied Benjamin’s analysis in the context of

a heavier fluid traveling underneath a lighter fluid (e.g. the propagation of a saltwater wedge into

freshwater). In order to obtain the relationship for the GC front velocity, the flow is assumed steady

and depth-averaged. The vertical momentum equation (1.11) is simply reduced to the hydrostatic

relationship [Klemp et al., 1994]:
∂P
∂ z

= g′ (2.2)

The x-momentum equation is formulated from equation 1.10, and the effects of shear are

neglected. This expression is integrated from a point far ahead r of the GC front to a point l

far behind the GC across the channel of depth H, which yields the following flow force balance

[Klemp et al., 1994]: ∫ H

0

(
Pr +u2

r
)
dz =

∫ H

0

(
P l +u2

l
)
dz (2.3)

in which ur is the ambient velocity at r and ul is the ambient velocity at l. Pl and Pr represent the

pressures at l and r, respectively (see Figure 2.1).

In order to compute this flow force balance, the continuity of volume is required: ul =

−urH/(H − h). Moreover, Pl is determined by applying the vertical momentum equation (2.2)

far behind the nose: Pl =
1
2u2

r − g′h. When these two expressions are applied to (2.3) along with

the assumptions that Pr = 0 far ahead of the front and Ps =
1
2u2

r at the stagnation point x f , the result

is Benjamin’s formula:

uLE√
g′hLE

= Fr(φLE) =

[
(2−φLE)(1−φLE)

1+φLE

]1/2

(2.4)
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Figure 2.1: Schematic diagram of Benjamin’s formulation for the case of a heavier fluid propagat-
ing underneath a lighter ambient fluid. Adapted from [Klemp et al., 1994].

This important expression represents one equation for two unknowns: uLE and hLE and is a solution

for equation 2.1. From this relationship (2.4), it is clear that the velocity of the GC depends on

the reduced acceleration due to gravity, the depth and the depth ratio. The implementation of this

expression in numerical models is discussed in subsection 4.4.2.

[Shin et al., 2004] extended Benjamin’s expression to include the effects of mass transfer

between the front of the ambient fluid advance and the front of the heavier fluid. Their results are

exactly the same as Benjamin’s for the lock-exchange problem because the interfacial waves (in

which energy is transferred between the two fluids at the interface) generated from the ambient

front are unable to reach the leading edge of the GC. However, the results from [Shin et al., 2004]

expression improve in accuracy over Benjamin’s solution as the depth ratio decreases to a deep

ambient problem [Shin et al., 2004]. For Boussinesq fluids, the expression formulated by [Shin

et al., 2004] is:
U√
g′h

= Fr(φLE) =
1
2

√
h
H

(
2− h

H

)
(2.5)

This expression was reduced from the original non-Boussinesq relationship; furthermore,

[Shin et al., 2004] expects the non-Boussinesq relationship to break down for large density dif-

ferences. This reasoning is based on their assumption that the current and ambient fronts are

connected by a horizontal interface with uniform flow conditions. This assumption is warranted

20



for Boussinesq systems; however, in non-Boussinesq fluids the interface is more complex and this

assumption is invalid [Keller and Chyou, 1991].

2.1.2 Empirical investigations of GC front conditions

• Huppert and Simpson (HS): This front condition was constructed empirically from the ex-

periments of [Huppert and Simpson, 1980] and [Keulegan, 1957]. It performs better for full

depth lock releases but is able to simulate all depth ratios [Ungarish, 2009].

Fr(φLE) =


1
2φ
− 1

3 (0.075≤ φLE < 1)

1.19 (φLE ≤ 0.075)

(2.6)

• Rottman and Simpson (RS): In this front condition, Benjamin’s theoretical condition is al-

tered with an empirical front condition β . [Rottman and Simpson, 1983] adjusted β based

on their partial depth experiments because their model was unable to simulate large initial

values for φ . On the contrary to the HS front condition, the RS front condition performs well

for small fractional depths but not as well for full depth releases [Ungarish, 2009].

Fr(φLE) =
β√

2

[
(2−φLE)(1−φLE)

1+φLE

]1/2

(2.7)

• Ungarish and Zemach (UZ): [Ungarish and Zemach, 2005] formulated a new front condition

that bridges the HS and RS front conditions, so it is able to perform well for a large range of

fractional depth.

Fr(φLE) = (1+3φLE)
−1/2 (2.8)

• Kranenburg (K): [Kranenburg, 1978] adjusted Benjamin’s theoretical front condition to al-

low for an initially moving ambient. In addition, they utilized an empirical coefficient k that

they estimated to equal 0.6. While the focus of this thesis is on counter-flows in which the

ambient fluid has an initial condition of zero velocity, in many hydraulic applications the
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Figure 2.2: Schematic diagram of a GC in an initially moving ambient system. Adapted from
[Wright and Paez-Rivadeneira, 1996].

ambient fluid has non-zero velocity, either coflows or counter-current flows with respect to

GC (e.g. cold discharges in river flows). The expression presented by [Kranenburg, 1978] is:

C1

(grH)1/2 = Fr(h/H) =

[
h/H(1−h/H)(2−h/H)

1+h/H + k(1−h/H)

]1/2

(2.9)

in which C1 = uLE−q/H is equal to the velocity uLE of the GC for ambient fluids with initially

zero velocity. Notice that the LHS of Equation 2.9 is a function of the ambient fluid depth

instead of the GC depth. The schematic diagram for this system is illustrated in Figure 2.2.

• Wright (W ): [Wright et al., 1990] developed a generalized relationship that is able to simu-

late both co-flows and counter-flows. The depth ratio φ in this relationship is based on the

depth behind the nose (see Figure 2.2). Several experiments conducted for various ambient

velocities demonstrated the effectiveness in this approach [Wright and Paez-Rivadeneira,

1996].

C1

(grH)1/2 = Fr(h/H) = [1− (1+qr)h/H]

[
h/H(1−h/H)3

(1−h/H)3−q3
r (h/H)3

]1/2

(2.10)

where qr is the velocity ratio between the ambient fluid and the GC (qr = q2/q1) in which q = uh.
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2.2 Experimental investigations

Along with analytical and numerical research, experimental investigations have provided im-

portant insights into GC flows. [Simpson and Britter, 1979] studied a large range of dimensionless

depths for GC flows and determined the resulting dimensionless velocities, rate of mixing, and

the depth of the mixed layer behind the head. Their apparatus consisted of a moving floor and a

downstream weir, which allowed them to halt the GC flow in order to obtain more accurate mea-

surements. A similar procedure was utilized by [Wright and Paez-Rivadeneira, 1996] to analyze

the effects of coflows and counterflows. For lock-exchange flows, [Rottman and Simpson, 1983]

analyzed a large range of initial depth ratios (φ ) and compared the results their two-layer SWE

model. For large initial depths, [Rottman and Simpson, 1983] concluded experimentally that the

upstream moving jump occurs when φ ≈ 0.7 and that the reflection off of the upstream boundary

produces a hydraulic drop that eventually overtakes the GC front marking the beginning of the self

similar stage. For smaller initial depths, the upstream moving jump is replaced by a depression

wave [Rottman and Simpson, 1983].

In [Hacker et al., 1996] a digital image technique (DigImage, [Dalziel, 1993]) was used to de-

termine the density structure for lock-release GC flows. They were able to observe the detrainment

of dense fluid at the GC nose by breaking Kelvin-Helmholtz waves, which produced a stratified

region behind the nose. The diluted fluid in this region was replaced by dense fluid behind the

nose, which traveled toward the front of the nose. Thus, this process causes a re-circulation pro-

cess and the entire GC becomes diluted. The work by [Hacker et al., 1996] utilized the following

expressions to compute the total depth densimetric Froude number (FrH) and the mean Reynolds

number (Rem) for the lock-exchange problem:

FrH =
um√
h0 g′

Rem =
1
2

um h0

ν
(2.11)

where h0 is the initial depth of the denser fluid, g′0 is the initial reduced gravity, um is the mean

velocity of the GC front and nu is the kinematic viscosity. Rem is multiplied by 1
2h0 because this is
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the energy conserving depth described by [Benjamin, 1968]. These dimensionless parameters are

provided for the experiments conducted for this thesis in section 4.1.

[Gerber et al., 2011] used a particle image velocimetry (PIV) to measure the Reynolds stress

and shear production of turbulence of a stably stratified GC. Their experimental results compared

well to their Reynold’s averaged Navier-stokes numerical model. [Firoozabadi et al., 2010] used

MicroADV probes to measure the turbulence energy, Reynolds stresses and turbulence intensity

of 3-D GC flows for various discharges, concentrations and slopes. As the discharge and the

concentration increased, the turbulence kinetic energy also increased. Their results also indicate

that the normalized turbulence intensity does not change with bed slope.

A large number of experimental investigations have utilized sodium chloride (NaCl) in their

experiments to generate Boussinesq fluids ([Rottman and Simpson, 1983], [Shin et al., 2004],

etc.). The same approach was implemented in the experiments presented in this thesis. For non-

Boussinesq lock-exchange flows, [Lowe et al., 2005] used sodium iodide (NAI) in addition to

NACL in order to obtain density ratios (ρ2/ρ1) between 0.6 and 1.0. From their non-Boussinesq

experiments, they determined that in most cases the lighter current retains its energy-conserving

depth while the denser current is dissipative, so the depth decreases according to a decreasing

density ratio.

2.3 Analytical description of GC flows with integral models

For a quick and simple estimation of the GC propagation, integral models (also referred to as

box models) can be a useful modeling option. In integral models only the resistance of the advance

(the front condition) and the conservation of buoyancy are imposed. Thus, GC flows for an integral

model are described by the spreading of an equal area rectangle, so horizontal variations in the flow

are ignored [Slim, 2006]. While this is an unrealistic assumption; however, these modeling results

can provide important insights into the average flow depth and velocity [Ungarish, 2009].
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2.3.1 Deep ambient with constant Froude number

The first integral model is derived for a homogeneous GC propagating into a deep ambient

φ ≈ 0. However, similar models have also been proposed for particle-driven GC for both incom-

pressible [Hogg et al., 1999] and compressible fluids [Timmermans et al., 2001]. In the context

of the deep ambient, the Froude number, which is the ratio between the inertial and gravitational

forces, is assumed constant (valid for the deep ambient problem). For the two-dimensional or pla-

nar case, there are two key variables in the internal cell calculations: GC length xN(t) and height

hN(t). As a result, two equations are required to complete the box model [Ungarish, 2009]. The

first equation is the simple volume continuity equation:

xN(t)hN(t) =−V (2.12)

in which −V is the volume of the dense GC. For the fixed volume GC (e.g. the lock-exchange

problem) with inertial-buoyancy balance (neglecting viscosity), the derivation begins with the front

condition. This BC, which can be derived through dimensional analysis, with the Froude number

(Fr) notation used in [Benjamin, 1968] is written as:

uN =
dxN

dt
= Fr(g′hN)

1/2 (2.13)

in which dxN/dt represents the GC front velocity; the Froude number is defined as Fr = u/
√

g′hN .

This BC is the same relationship that is implemented for the SWE (described ahead in this paper).

Unlike in Benjamin’s formulation, the Fr in (2.13) is assumed constant for this derivation. The

combination of (2.12) and (2.13) yields the following relationship for xN(t) (or for hN(t)) [Ungar-

ish, 2009]: ∫ t2

t1
=

1
V 1/2

∫ xN

x 0

[Fr(φ(x))]−1x 1/2dx (2.14)
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where φ(x) =−V/(Hx) through algebraic manipulation.

x N = x 0

(
1+

3
2

Fr
(g′−V )1/2

x 0
3/2 t

)2/3

(2.15)

Once xN is determined from (2.15), h is computed from the continuity equation (2.12). The same

strategy can be implemented to obtain an integral model (2.16) for the axisymmetric scenario:

r = r0

(
1+2Fr

(g′−V )1/2

ro 2π1/2

)
(2.16)

where r is the radius and r0 is the initial condition.

2.3.2 Generalized solution

[Huppert and Simpson, 1980] developed an innovative integral model for both the two-dimensional

and axisymmetric scenarios. Instead of using a constant Fr, they implemented the empirical front

condition (HS) that was derived from their experiments and from [Keulegan, 1957]. As a result,

they obtain a solution for both the slumping and the self-similar stage, which depends on the depth

ratio (φ ). For the two-dimensional case, [Huppert and Simpson, 1980] substitutes the continuity

equation (2.12) into the HS front condition. For the slumping stage, this relationship is written as:

Fr =
dxN

dt
/(g′−V/xN)

1/2 =
1
2

(
−V

xNH

)−1/3

(0.075≤ hN/H < 1) (2.17)

After integration and isolating xN , the slumping stage relationship is:

xN = x0

(
1+

7
12

(
g′ 3−V H 2

x0 7

)1/6

t

)6/7

(x0 ≤ xN ≤ xs) (x0 ≤ x≤ xs) (2.18)

in which x0 is the initial lock length and xs is the slumping distance, which [Huppert and Simpson,

1980] define as the distance when (hN/H ≤ 0.075)
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For the self-similar stage (i.e. hN/H ≤ 0.075), the authors propose that the Froude number is

1.19 according to the HS front condition. Following the same procedure as the slumping stage,

the relationship for the self-similar stage is:

xN =
[
x3/2

0 +1.78(g′−V )1/2(t− ts)
]2/3

(xs ≤< x∗) (2.19)

in which x∗ is the distance when viscous effects become larger than inertial effects (1.8) [Huppert

and Simpson, 1980]:

For the axisymmetric problem, which is derived in a similar manner to the two-dimensional

case, the solution in the slumping stage is: [Huppert and Simpson, 1980]:

r =
[

r4/3
0

2
3

π
−1/6(g′2−V H2)1/6t

]3/4

(r0 ≤ r ≤ rs) (2.20)

where rs and r∗ in cylindrical coordinates are equivalent to xs and x∗ for the two-dimensional

problem. The relationship for the self-similar stage is: [Huppert and Simpson, 1980]:

r = [r2
s +2.37π

−1/2(g′−V )1/2t]1/2 (rs ≤ r ≤ r∗) (2.21)

In summary, integral models are simple to implement and require minimal computational

time as compared to the SWE and Navier-Stokes models since they lend themselves to analytical

solutions. The development of such models does not require numerical methods or schemes, which

can become extremely complex in other models (e.g. higher order Riemann solvers). The cost of

this reduction in complexity is the use of assumptions: that GC spread in a quasi-steady manner

with a constant depth in an exactly rectangular shape. Nevertheless, integral models can provide

important insights into the flow of GC in a channel.

The results for the deep ambient scenario are satisfactory depending on the context. However,

when the initial depth ratio approaches the lock-exchange problem (φ > 0.5), the integral model

is unable to accurately capture the depth profile and other flow features although the Huppert and
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Simpson formulation is a viable alternative. As a result, more complex models (e.g. SWE and

Navier-Stokes) are required for the accurate simulation of these flows.

2.4 Numerical modeling of gravity currents

Experimental studies (described in section 2.2) are an imperative tool for the understanding

of GC flows. However, it is not practical to construct scale models for every type of scenario that

is present in the field. It is very difficult to simulate experimentally several common flow features:

tidal intrusions, complex geometries, non-Boussinesq systems, flows over porous substrates, etc.

Analytical and numerical models are essential for a better understanding of GC propagation in

which experimental data and/or field observations are used to calibrate these numerical models.

Once calibrated, these numerical models can become powerful tools, yielding useful predic-

tions of GC flows that are very important to the scientist or engineer in the field, who may need to

determine the mixing mechanisms and/or flow field for a variety of issues such as the transport of

contaminants. While analytical models are a viable option for these situations, they suffer from se-

vere assumptions as described in the previous text. As a result, many GC flow applications require

the use of numerical modeling. There are two primary methods for the numerical modeling of GC

flows: SWE models and Navier-Stokes models, which are described below.

2.4.1 One-Layer SWE model

The SWE models are generally separated into two groups: one-layer and two-layer. The

two-layer SWE models differ in that they include the effects of the ambient fluid velocity in the

internal cell calculations. Both of these models can provide an accurate estimation of the GC front

and are computationally efficient compared to the more complex Navier-Stokes models. In the

following text the details of the SWE models are analyzed and several of the important research

investigations are included.

The one-layer SWE models (4.2) are widely used for GC flowing into deep ambient fluids.

[Ungarish and Huppert, 2004] used the one-layer SWE to simulate a GC traveling at the base of
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a stratified ambient and determined that the stratification reduces the GC velocity. The key at-

tractions in the single-layer SWE are the simplicity and the computational efficiency. Because the

velocity of the ambient fluid is neglected, discontinuous solutions are generally not observed for

flows in simplified rectangular geometries without obstacles. Details of this one-layer formula-

tion are found in [Ungarish, 2009] for both Boussinesq and non-Boussinesq fluids. In this study,

Boussinesq fluids are focused; however, it is relatively simple to formulate the one-layer model

without the Boussinesq assumption. Therefore, the more generalized one-layer, non-Boussinesq

SWE model is the focus of this discussion:

∂h
∂ t

+
∂uh
∂x

= 0

∂uh
∂ t

+
∂

∂x

(
(uh)2

h
+

1
2

g′h2

)
= 0

For this SWE model, the one-layer assumption (i.e. the ambient fluid velocity is neglected)

poses inaccuracies for larger depth ratios. However, the single-layer SWE model provides fairly

accurate results for the GC trajectory for depth ratios approaching unity φ→ 1 even though the one

layer assumption is least valid [Ungarish, 2007]. For the full depth lock-exchange problem, the ac-

curacy is believed to be caused by a fortunate balance of errors from different simplifications (e.g.

ambient velocity effects, entrainment, etc.) [Ungarish, 2007]. The ambient fluid velocity increases

the GC velocity, but this increase is balanced by the reduction in velocity due to entrainment. The

single-layer SWE model cannot simulate either one of these complex flow features, but the com-

bined effect of neglecting these features equates to an accurate estimation for the GC front velocity.

On the other hand, the flow depth in the initial slumping stage is inaccurately computed by this

SWE model for larger initial depth ratios. Therefore, it is customary to move to the two-layer SWE

model for this scenario.

[Ungarish, 2007] formulated a single-layer SWE model for a large range of depth ratios and

density differences. Furthermore, in this study Boussinesq GC flows for the lock-exchange prob-

lem were analyzed as a special case of their non-Boussinesq model. Although there are several
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important underlying assumptions in this approach, the generality, absence of empirical coeffi-

cients and computational efficiency are attractive [Ungarish, 2007]. The characteristic equations

for the one-layer model that are implemented in [Ungarish, 2007] are:

g′
1
2

dh
h1/2 ±du = 0 on

dx
dt

= u± (g′h)1/2 (2.22)

in which the second expression represents the characteristic flow velocities. Although these equa-

tions (2.22) can be used to compute the internal cell calculations, [Ungarish, 2007] implemented

the Lax-Wendroff two step finite difference method. This numerical scheme is well documented

and performs well in the absence of shocks [Chaudhry, 2008], which are generally not present in

the one-layer model.

However, the characteristic approach was still used in the computations by [Ungarish, 2007].

Since Benjamin’s theoretical front condition was used at the GC front BC, a characteristic equation

was also used to solve for both unknowns (i.e. hLE and uLE). Therefore, the traditional solution to this

problem has been to use a characteristic equation along with a front condition at this BC (described

further in 4.4.2). For the other boundary condition that is located upstream of the release, either a

reflective [Toro, 2001] or characteristic [Sturm, 2010] boundary condition may be used.

One of the inconvenient components of SWE models for GC is the need for a boundary condi-

tion at the GC front. Therefore, [Ruo and Chen, 2007] formulated the modified SWE for inviscid

GC in order to eliminate the need for a front condition. Therefore, the only required boundary

conditions are at the physical boundaries or end walls. In order to formulate their mathematical

model, [Ruo and Chen, 2007] included the effects of the ambient resistance, which is normally

accounted for by the front condition.

The continuity equation for the modified SWE is the same as in the traditional SWE . How-

ever, the momentum equation is altered in order to account for the ambient resistance. [Ruo and

Chen, 2007] begins their derivation with equations (1.9) and (1.11). Then, the pressure term is
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reduced from the following relationship, which is also used in the two-layer formulations:

P(x,y, t) = Pi(x, t)+ρg(H−h) (2.23)

where Pi(x, t) is the pressure at the fluid interface, and H and h are the ambient and current depth,

respectively. In addition, equation (1.11) is implemented in order to develop a new x-momentum

equation:
∂u
∂ t

+u
∂u
∂x

+gr
∂h
∂x

(2.24)

However, a new problem emerges in this mathematical model: How to determine the pressure

at the fluid interface. [Ruo and Chen, 2007] implements the unsteady Bernoulli equation along

the instant streamline in order to overcome this issue. Their solution for Pi(x, t) is the following

relationship:

P i(x, t) = P t−ρagh− 1
2

ρa(Ṽi)
2−ρa

∂Φ

∂ t

∣∣∣
y=h(x,t)

(2.25)

in which Vi is the absolute velocity of the ambient fluid at the interface, Φ is the velocity potential so

that V = ∇Φ, and Pt is the total pressure of the ambient fluid at a location far from the current [Ruo

and Chen, 2007], which in this case is constant. When equation 2.25 is substituted into equation

2.24, it becomes clear that the new difficulties become computing Ṽi and φ . Furthermore, [Ruo

and Chen, 2007] breaks apart Ṽi into two components: tangential velocity wt and normal velocity

wn. It is then assumed that ∂ (w2
n)/∂x >> ∂ (w2

t )/∂x, which leads to the following relationships:

Vi = wn =
∂h/∂ t√

1+(∂h/∂x)2

∂

∂x

[
∂Φ

∂ t

]
=− ∂

∂x

[
(∂h/∂ t)2

1+(∂h/∂x)2

]
(2.26)

so that momentum equation for the modified SWE is [Ruo and Chen, 2007]:

∂u
∂ t

+u
∂u
∂x

+gr
∂h
∂x

=−γ

2
∂

∂x

[
(∂h/∂ t)2

1+(∂h/∂x)2

]
(2.27)
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in which γ = ρa/ρ . A look at this highly nonlinear momentum equation suggests that (2.27) is

very similar to (1.17). However, there is an added source term on the RHS of (2.27), so [Ruo and

Chen, 2007] solved this momentum equation using the perturbation method. Although they obtain

accurate results that compare well to the more traditional SWE models for smaller depth ratios,

[Ruo and Chen, 2007] does not believe that their approach can be extended to the lock-exchange

problem.

2.4.2 Two-Layer SWE model

The two-layer SWE have received more attention than the single-layer alternative for GC flow

modeling. For instance, the lock-exchange problem is a relatively easy experiment to perform in

which the two-layer SWE model is preferred. Numerous research investigations have focused on

a wide range of GC flows and the use of the two-layer SWE. For example, [Bonnecaze et al.,

1993] applied the two-layer SWE to particle-driven GC flows. However, this discussion focuses

on homogeneous GC flows on a horizontal surface. As previously described, the two-layer SWE

are preferred when φ → 1. When φ → 0, the results converge to the one-layer SWE model results.

[Rottman and Simpson, 1983] developed the first two-layer SWE model for GC flows in the context

of partial-depth releases. For larger fractional depth (i.e. φ > 0.5), they encountered difficulties,

which are described below. In the case of a two-layered model, the SWE represent a system with

four PDEs to account for each phase’s mass and linear momentum conservation [Rottman and

Simpson, 1983].
∂h1

∂ t
+

∂

∂x
(u1h1) = 0 (2.28)

∂h2

∂ t
+

∂

∂x
(u2h2) = 0 (2.29)

∂u1

∂ t
+u1

∂u1

∂x
=− 1

ρ1

∂P i

∂x
−g

∂h1

∂x
(2.30)

∂u2

∂ t
+u2

∂u2

∂x
=− 1

ρ2

∂P i

∂x
−g

∂h1

∂x
(2.31)
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The subscripts (1, 2) represent the lower (heavier) and upper (lighter) fluid layers, respectively.

[Rottman and Simpson, 1983] implemented equation (2.28) as the sole continuity equation for

their model. Then, the ambient variables (i.e. h2 and u2) were computed from the following rela-

tionships:

h2(x, t) = H−h1(x, t) (Depth uniformity) (2.32a)

u2 =−
u1h1

h2
(Local continuity) (2.32b)

where equation 2.32a is deduced from the rigid lid assumption in which the total depth of the

system does not change. The relationship for the ambient velocity (equation 2.32b) is formulated

from the two continuity equations (2.28 and 2.29) along with 2.32a and is valid for constant volume

gravity currents.

In order to utilize one relationship for the equation of motion and to eliminate Pi (the pressure

at the fluid interface), equations (2.30) and (2.31) are substituted together into a single momentum

equation:

(1+ ra)
∂u1

∂ t
+

[
1− ra

H +h1

H−h1

]
u1

∂u1

∂x
+

[
g′− r(1+a)3 u2

1
H

]
∂h1

∂x
= 0 (2.33)

Furthermore, [Rottman and Simpson, 1983] implemented the Boussinesq simplification, which

eliminates r (i.e. ρ2/ρ1), yielding:

∂u1

∂ t
+(1−2a)u1

∂u1

∂x
+(1−b)g′

∂h1

∂x
= 0 (2.34)

The mathematical model that is formulated in [Rottman and Simpson, 1983] serves as the

basis of the proposed model, which is presented in section 4.3. The two-layer mathematical model

formulated in [Rottman and Simpson, 1983] is presented below in primitive format. By using

the assumption of local flow continuity and overall depth uniformity, the governing equations are
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reduced to 2 PDEs that represent the conservation of mass and momentum of the GC:

∂h1

∂ t
+

∂

∂x
(u1h1) = 0

∂u1

∂ t
+(1−2a)u1

∂u1

∂x
+(1−b)g′

∂h1

∂x
= 0

(2.35)

where

a =
h1

H−h1
b =

h1

H
+

u2
1

g′H

(
1− h1

H

)−2

(2.36)

[Rottman and Simpson, 1983] implemented the first expression in (2.35) as the sole continuity

equation for their model along with the single momentum equation. However, one of the draw

backs is clear from the parameters a and b in which the solution is undefined as the fractional

depth approaches unity h→ H. A solution to this problem is proposed in section 4.3.

The context in which these two-layered models are most often implemented is in the release

of dense fluids into relatively small ambient depths (e.g. the lock-exchange problem). The dense

fluid is often originally contained by a barrier that is suddenly removed and a wall is located

upstream of the release, which represents a physical boundary. Once the four PDEs are reduced

to a single pair of PDEs, the numerical solution that is implemented in [Rottman and Simpson,

1983] involves characteristic analysis where these PDEs are transformed into the system of ODEs

presented below:

h1
du1

dh1
− (1−2a)u1 + c± = 0

c± = u1(1−a)±
[
u2

1a2 +g′h1(1−b)
]1/2

(2.37)

One of the main benefits in this approach is computational efficiency and simplicity. However,

the method of characteristics is not able to simulate shocks in which the characteristic lines of the

same family intercept one another [Chaudhry, 2008].

In addition to the internal cell calculations, the c+ equation is implemented at the GC front

boundary condition to provide closure to solve for the two local unknowns, hLE and uLE. The results

in [Rottman and Simpson, 1983] compare well with experiments and exhibit minimal oscillations

throughout the slumping stage; however, their front condition is only tested for smaller depth ratios
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(φ ≤ 0.5). Furthermore, their front condition (RS) decreases in accuracy for larger depth ratios,

especially for the full depth lock-exchange problem [Ungarish and Zemach, 2005].

When φ ≥ 0.5, the numerical results for [Rottman and Simpson, 1983] two-layer SWE model

are non-physical (i.e. there is a multi-valued solution for the depth). Moreover, the upstream

propagating shock that is generated for φ > 0.5 becomes stronger as it travels at higher speeds, and

the reflection off of a back wall triggers the formation of another sharp interface that eventually

catches up with the GC front. While the numerical modeling suggests that the limit for this sharp

interface to develop is φ > 0.5, experiments from [Rottman and Simpson, 1983] point that this limit

is in fact closer to φ > 0.7, albeit the transition is not exactly clear. The discrepancy, according to

[Rottman and Simpson, 1983], is a result of the smooth profile in the velocity for the experiments

and the mixing between the two fluids, which is neglected in the shallow water model. As a result,

the two layer model developed by [Rottman and Simpson, 1983] is accurate quantitatively for φ ≤

0.5; the authors pointed that numerical simulations with φ > 0.5 would require new developments

in the theory of flow discontinuities.

The work by [Klemp et al., 1994] extended the two-layer model developed by [Rottman and

Simpson, 1983] in order to solve for the depth ratios greater than 0.5. Instead of using the method

of characteristics, [Klemp et al., 1994] implemented a finite difference model using the second-

order accurate Leapfrog scheme for the solution of the two-layered SWE. They enforce a bound-

ary condition at the upstream propagating discontinuity based on an analytical relationship for

hydraulic jumps. [Klemp et al., 1994] specified the pressure far downstream pr(d) according to

the following expression:

pr(d) =
1
2
(
V 2

f −u′2
2)+g′∆ (2.38)

in which Vf is the speed of the upstream moving jump, u′2 is the velocity of the ambient fluid just

downstream of the jump and ∆ is the dissipation term (see Figure 2.3).

Applying the flow force balance far upstream and downstream and using equation 2.38 and the

continuity relations, [Klemp et al., 1994] obtained the following solution for the upstream moving
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shock:
V 2

f

g′H
=

φ 2−α2−2∆′

[2φ 2−α/α]+ (1−φ)2(1−2α)/(1−α)2 (2.39)

in which h f is the height of the upstream moving jump, φ = h0/H, α = (h0−h f )/H and ∆′=∆/H.

[Klemp et al., 1994] set the dissipation term (∆) equal to zero for consistency with Benjamin’s

theory and based on the evaluation of weak hydraulic jumps. Equation 2.39 is not sufficient to

solve for the moving jump BC, so [Klemp et al., 1994] implemented an additional condition for

steady-state jumps based on the formulation in [Stommel and Farmer, 1952]:

(
u1 +Vf

)2

g′h1
+

(
u2 +Vf

)2

g′h2
= 1 (2.40)

The schematic diagram for a GC flowing into a shallow ambient fluid is illustrated in Figure 2.3.

This analytical relationship was required for their SWE model for φ > 0.5 because the leading

edge of the backward propagation wave travels slower than the trailing region until the front of the

wave steepens into a discontinuity. [Klemp et al., 1994] describes this phenomenon as a hydraulic

jump according to long wave theory; however, this jump differs from the classical hydraulic jump

because it does not form an abrupt discontinuity. Instead, [Klemp et al., 1994] points that the slope

of this jump remains finite due to non-hydrostatic effects, which are outside the scope of long wave

theory. [Klemp et al., 1994] presented their results for a large range of depth ratios; however, they

have focused their model on the initial stages of the current propagation, up to the instant when the

upstream moving front contacts the end wall.

The work by [Ungarish and Zemach, 2005] presents a model that extends the theory of

[Rottman and Simpson, 1983] and [Klemp et al., 1994] in order to include the entire slumping

stage in their formulation, extending the simulation beyond the instant when the backward prop-

agating front contacts the upstream wall boundary. [Ungarish and Zemach, 2005] implemented a

second-order accurate finite difference technique similar to [Klemp et al., 1994], but they used the

Lax-Wendroff (LxW) two-step numerical scheme. The model performs an explicit tracking of the

upstream propagating front before and after the reflection off the back wall, and these fronts are
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Figure 2.3: Schematic diagram for both fronts that is generated from a GC flowing into a shallow
ambient (φ > 0.5). Adapted from [Ungarish and Zemach, 2005].

treated as discontinuities in the depth. In a certain way, the treatment of these fronts resembles a

shock fitting approach used to track open channel bores presented in [Cunge et al., 1980]. When

the shock contacts the end wall, the model by [Ungarish and Zemach, 2005] predicts the propaga-

tion of a discontinuity towards the nose, which is also explicitly tracked. [Ungarish and Zemach,

2005] track this bore until the end of the dam break stage where the depth and the velocity of the

current begin to decrease.

One of the drawbacks in the approach by [Ungarish and Zemach, 2005] is the added model

complexity in introducing two additional boundary conditions to track the flow discontinuities. In

addition, the model requires two solution methods depending on the depth ratio. If φ > 0.5, an

explicit feature tracking approach is required; however, if φ ≤ 0.5, the simpler approach is imple-

mented in which no shock tracking methods are utilized except at the front of the GC [Ungarish,

2009]. In addition, experimental results indicate the discontinuities that form for two-layer GC

flows are not represented by an exactly vertical interface between the two fluids. Therefore, it

is an idealized approximation in which additional experimental confirmation is necessary. This

motivated the development of an unified and more general shock-capturing approach that is com-

putationally consistent for all depth ratios, which is formulated and discussed in section 4.3.
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Although the BC at the GC front, upstream hydraulic jump and the reflected bore have been

discussed, there is still another feature that needs to be addressed. For gravity currents flowing into

shallow ambients (φ ≈ 0.8 or larger depending on FrLE), a critical condition emerges at the GC

nose [Ungarish, 2009]. This constraint occurs when b* < 1 (see equation 2.41) so that the GC front

cannot travel faster than the c+ characteristic, which would cause cavitation [Klemp et al., 1994].

Therefore, the depth and velocity constraints are computed by setting b* = 1. This critical change

of behavior is clearly seen from the following dimensionless, two-layer characteristic relationships

[Ungarish, 2009]:


dh*

du* =
1

1−b*

[
a*u*∓

√
(a*u*)2 +(1−b*)h*

]
, on

dx*

dt* = c±= u*(1−a*)±
√
(a*u*)2 +(1−b*)h*

(2.41)

in which the asterisk denotes dimensionless variables. The parameters, a* and b*, are equivalent to

the expressions in equation 2.36 in dimensionless form. In equation 2.41 and throughout Chapter

5, the dimensional variables are converted to dimensionless variables, denoted with an asterisk,

according to the following procedure [Ungarish, 2009]:

{x*, h*, t*, u*}= {x/x0, h/h0, t/T, u/U} (2.42)

where

U =
(
g′h0

)1/2 T =
x0

U

By using the critical nose approach described above, the constraints when implementing Ben-

jamin’s condition are h = 0.347H and u* = 0.527. Thus, the depth and velocity cannot be greater

than these constraints.

More recently, [Adduce et al., 2011] formulated an alternative two-layer SWE model in which

the conserved variables are: ρ1h1, ρ2h2, u1 and u2. Their primary objective was to include the

effects of entrainment and shear forces, which decrease the GC front velocity. These features
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enable [Adduce et al., 2011] to implement the theoretical front condition from [Shin et al., 2004].

However, their approach is more complex and is still largely dependent on empirical parameters.

For the majority of SWE numerical models, the important effects of entrainment and shear

forces require the use of an empirical front condition. However, [Adduce et al., 2011] avoided this

approach by included these effects in the SWE formulation:

∂ (ρ1h1)

∂ t
+

∂ (ρ1h1u1)

∂x
= ρ2ue

∂ (ρ2h2)

∂ t
+

∂ (ρ2h2u2)

∂x
=−ρ2ue

∂u1

∂ t
+

∂

∂x

[
u2

1
2
+

(
ρ2h2 +ρ1h1

ρ1

)
gcosθ

]
= gsinθ − τ 1b + τ 21

ρ1h1

∂u2

∂ t
+

∂

∂x

[
u2

2
2
+

(
ρ1h1

ρ1
+

ρ2h2

ρ2

)
gcosθ

]
= gsinθ +

τ 2b + τ 12

ρ2h2

(2.43)

in which ρ1 and ρ2 are the densities of the denser GC and the ambient fluid, respectively. ue [L/T ]

is an entrainment parameter and θ is the angle between the bottom of the tank and the horizontal

[Adduce et al., 2011]. τ1b and τ2b represent the shear stress at the lower and upper boundaries,

respectively. τ12 and τ21 are the interfacial shear stresses in each direction. The entrainment

parameter (ue) was computed from an empirical relationship based on the formulation in [Ellison

and Turner, 1959]. [Adduce et al., 2011] altered their expression in order to simulate the full depth

lock-exchange system:
ue

u1
=

k ·F2
r

F2
r +5

(2.44)

Then, [Adduce et al., 2011] computed the density of the GC ρ1(t) according to the following

expression:

ρ1(t) =
M1 +

∫ t

0
dt
∫ xn(t)

0
ρ2ue dx

V1 +
∫ t

0
dt
∫ xn(t)

0
ue dx

(2.45)

in which M1 is the mass and V1 is the volume of the GC.

The advantage of this approach is that it takes into account the entrainment between the two

fluids, which allows for a more accurate simulation of the GC front. However, the accuracy for this
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approach is highly dependent on the empirical coefficient k, which was calibrated from experiments

to be equal to 0.48. One questions whether other cases of GC flows would have the same k value. In

addition, the model complexity and the computational time for this model should be substantially

greater compared to the approach from [Ungarish and Zemach, 2005], or the model proposed in

this thesis.

2.4.3 Navier-Stokes models

For GC research, the majority of Navier-Stokes models are solved using Direct Numerical

Simulation (DNS) or Large Eddy Simulation (LES). These models are able to simulate interfacial

mixing and provide high-resolution results at the GC nose. A large number of insights into GC

flows has been gained through high-resolution DNS models. [Härtel et al., 2000] determined that

the stagnation point is not at the GC front but at a point just upstream. [Necker et al., 2002] com-

pared 2-D and 3-D models for particle-driven GC and concluded that 3-D models are required to

accurately model the spanwise vortices or interfacial instabilities. These features survive over long

times for 2-D simulations but are more rapidly broken down in the 3-D models. [Birman et al.,

2005] investigated non-Boussinesq GC and confirmed that the denser GC front dissipates more for

larger density differences whereas the lighter ambient front remains very close to the energy con-

serving theory seen in Boussinesq systems. Moreover, the denser front is reduced to substantially

less than half the channel height depending on the density difference while the light front remains

near half the channel height. Although DNS models are the best choice theoretically, there are

many drawbacks. The most important limitations are the intensive computational requirements

and the increased complexity. Moreover, for 3-D simulations in present-day computing systems,

the DNS method is limited to GC flows where Re = O(1,000) [Slim, 2006].

Another option for high resolution simulations of GC flows is Large Eddy Simulation (LES).

[Ozgokmen et al., 2009] analyzed several LES models and concluded that a hybrid approach,

which combined the dynamic eddy viscosity and approximate deconvolution approaches, com-

pared best to the DNS results and was 1,000 times more computationally efficient. However, in
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the first Navier-Stokes models that were used to simulate GC flows the details of the interfacial

instabilities were not the primary objective. [Klemp et al., 1994] solved the two-dimensional non-

hydrostatic incompressible Boussinesq equations in addition to the two-layer SWE to determine

the validity of Benjamin’s front condition. The results from [Klemp et al., 1994] two-dimensional

simulations indicate good agreement in comparison with the two-layer SWE. The main differences

between their two models are the simulation of the upstream moving disturbance (for φ > 0.5) and

the ”hydrostatic circulation in the vicinity of the head” [Klemp et al., 1994]. [Ungarish and Hup-

pert, 2004] also found good agreement between the one-layer SWE and Navier-Stokes simulations

in the context of a GC propagating at the base of a stratified ambient fluid.

[Klemp et al., 1994] also determined that Benjamin’s front condition performed well in com-

parison with their model. Moreover, they concluded that the discrepancy between the SWE models

and experiments is not caused by Benjamin’s theory but by other simplifications in the SWE mod-

els the most important being the inability to simulate interfacial mixing. The validity of Benjamin’s

theoretical expression is further discussed in section 5.3 with the use of MicroADV devices.

2.5 Hyperbolic numerical schemes

Since the proposed numerical models for this thesis are implemented for the one and two-layer

SWE, which is an example of a hyperbolic PDE, the focus is on hyperbolic numerical schemes.

The majority of research and implementations for these numerical schemes is based on the more

traditional water-air component of hydraulics. In the context of dam-breaks, an extensive compar-

ison for both linear and nonlinear explicit numerical schemes is presented in [Zoppou and Roberts,

2003] for the SWE. Moreover, [Vasconcelos and Nunes, 2009] presented a detailed analysis for

all of the numerical schemes that are implemented in this thesis: Lax-Wendroff (LxW ), Modified

FORCE (MFORCE), HLL, and Roe. They analyzed each of the numerical schemes based on error

analysis (i.e. L1 and L∞) and computational efficiency in the context of the dam break problem.

Although the Roe scheme was generally the most accurate of the compared schemes, the HLL
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scheme was considered the most appropriate choice based on the improved computational perfor-

mance and similar accuracy. In the absence of shocks, the LxW scheme performed very well. The

MFORCE scheme was accurate for each scenario, but the computational time rivaled the nonlin-

ear schemes, which are considered superior [Vasconcelos and Nunes, 2009]. The implementation

of these numerical schemes to inviscid GC using the finite volume method is further discussed in

4.4.1.

Numerical schemes are applied on broad range of applications in hydraulics. More recently,

nonlinear numerical schemes based on the solution of the initial value problem presented by Rie-

mann (i.e. Riemann solvers) have been applied in a large range of hydraulic problems that include:

one and two-dimensional dam-breaks [Zoppou and Roberts, 2003], the structural collapse of wa-

ter supply reservoirs in urban areas [Zoppou and Roberts, 1999], the simulation of shocks in pipe

filling events [Vasconcelos et al., 2009], etc. However, these schemes are rarely utilized in GC

models. The main drawback for numerical schemes based on the Riemann problem is the in-

crease in complexity without a clear increase in accuracy. A method to determine the adequacy

of a numerical scheme is to assess computational efficiency, the possibility of shocks, etc. How-

ever, whenever explicit schemes are used, it is essential that the CFL condition is satisfied. The

maximum time step that is allowed for this condition is computed from the following expression:

∆t =Cr
∆x(
|u|+ c

) (2.46)

in which Cr is the Courant number.

In order to sustain model stability when using explicit schemes, Cr should be less than or

equal to one. When the time step is well below this limit and shocks exist, linear schemes suffer

either from numerical diffusion or oscillations depending on the type of scheme [Godunov, 1959].

On the other hand, nonlinear numerical schemes are not affected by this issue. For example, in

the simulation of pipe filling events, it may be possible that the air phase requires small Courant

numbers in certain locations along the pipe. In order to sustain a stable simulation, the Courant
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condition (2.46) must be satisfied and nonlinear schemes are much more effective [Vasconcelos

et al., 2009]. Implicit schemes can overcome this difficulty; however, if the Courant number is

increased beyond unity, the accuracy of the simulation is compromised when shocks are present.

In this section of the thesis, some of the most commonly used linear and nonlinear explicit

schemes are presented and examples of their implementation are provided. This discussion begins

with linear schemes, which are presented in the Methodology subsection 4.4.1, all in the context

of the Finite Volume Methods (FVM). The linear schemes that are subsequently presented are all

Centred methods. The advantage of Centred schemes with respect to alternatives (e.g. Upwind

schemes) is that ”explicit local information on wave propagation for constructing approximations

to the numerical flux” is not required [Toro, 2001]. In other words for more complex flow events

in which is difficult to determine the location and the time at which the information is generated,

Centered-cell schemes are preferred. Upwind schemes are superior for other problems (e.g. a

contaminant is discharged at an upstream boundary) in which it is clear where the information

generated.

In a large number of recent models, the FVM is used because of its ability to implement

nonlinear schemes, which are outside the scope of the FDM. While the FVM method is imple-

mented in this study (presented in 4.4.1) for both linear and nonlinear schemes, the use of the

FDM in previous GC investigations is more frequent. These numerical schemes are implemented

for mathematical models of the following conservative form:

∂~U
∂ t

+
∂ ~F(U)

∂x
= ~S(U) (2.47)

where ~U is the vector of the conserved variables, ~F(U) is the flux vector and ~S(U) represents

the source terms. For the FVM, the conserved variables are updated according to the following

expression: The various FVM schemes propose expressions for the interfacial fluxes ~F(U)
n+1/2
i+1/2 in

order to solve this update equation for the conserved variables.

~Un+1
i = ~Un

i +
∆t
∆x

(
~F(U)

n+1/2
i−1/2 −

~F(U)
n+1/2
i+1/2

)
+∆t ~S(U) (2.48)
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2.5.1 Linear schemes

For GC flows, the most widely used linear schemes are presented:

• Lax-Friedrich (LxF): This 1st order accurate, linear and monotone scheme is an extension

of the unstable FTCS (forward-time centred-space) scheme. The general approach for GC

problems is to move on to second-order accurate schemes due to the problems with numerical

diffusion that are exhibited in first-order linear schemes. In addition, the second-order accu-

rate schemes are more accurate for smaller discretization sizes. The Lax-Friedrich scheme

is provided in [Toro, 2001] in FVM format:

~ULF
i+1/2 =

1
2

[
~F(U)n

i +
~F(U)n

i+1

]
+

1
2

∆x
∆t

[
~Un

i −~Un
i+1

]
(2.49)

• Lax-Wendroff (LxW ): The LxW scheme is second-order accurate and is solved with predictor

and corrector steps. This scheme is widely used in hydraulic problems and is one of the best

options if shocks are not present [Vasconcelos and Nunes, 2009]. However, in the presence

of flow discontinuities, the LxW scheme produces spurious non-physical oscillations in the

results. Despite this drawback, this scheme is widely used in the context of GC with the

aid of artificial viscosity [Ungarish and Zemach, 2005], which reduces the magnitude of

the oscillations. One of the drawbacks of this approach is that the amount of diffusion that

needs to be introduced is not easy to estimate a priori in order to avoid excessive smearing

[LeVeque, 1992]. The Lax-Wendroff two-step scheme in FDM format is provided in [Sturm,

2010] for the St. Venant equations. In the following relationship, the Lax-Wendroff scheme

is rewritten in a general format that is also applicable to the 1-D SWE.


~Un+1/2

i+1/2 =
~Un

i +
~Un

i+1
2 + ∆t

2∆x

[
~F(U)n

i − ~F(U)n
i+1

]
~Un+1

i = ~Un
i +

∆t
∆x

[
~F(U)

n+1/2
i−1/2 −

~F(U)
n+1/2
i+1/2

]
+∆t ~F(U)n

i

(2.50)
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• MacCormick: This second-order accurate linear scheme yields results that are similar to

the Lax-Wendroff scheme. However, [Zoppou and Roberts, 2003] determined that that the

MacCormick scheme is slightly more accurate in the context of the dam break problem. In

that study the error analysis was performed for the following parameters: normalized depth

and normalized velocity. [Zoppou and Roberts, 2003] determined that the error associated

with the combination of the MacCormick scheme and artificial viscosity is almost double

the amount of the MacCormick scheme alone depending on the damping parameter. Unfor-

tunately, the presence of spurious oscillations in the presence of shocks generally requires

artificial viscosity. Despite this drawback, the MacCormick scheme has been utilized in a

large number of GC models. [Adduce et al., 2011] implemented the MacCormack scheme

in FDM format for their two-layer SWE model based on the implementation of [Garcia and

Kahawita, 1986] for the St. Venant equations, which are closely related to the 1-D SWE.



~Up
i = ~Un

i − ∆t
∆x

[
~F(U)n

i − ~F(U)n
i−1

]
+∆t ~S(U)n

i predictor

~Uc
i =

~Up
i −

∆t
∆x

[
~F(U)p

i+1− ~F(U)p
i

]
+∆t ~S(U)p

i corrector

~Un+1
i =

~Un
i +

~Uc
i

2 step n+1

(2.51)

• Leapfrog: This numerical scheme differs from the MacCormick and LxW schemes in that it

is second-order accurate in time but not in space. In addition, this scheme is not as widely

used as the previous two second-order accurate linear schemes. However, the Leapfrog

scheme was implemented successfully in the work by [Klemp et al., 1994]. However,

because they end their simulation when the upstream moving jump contacts the physical

boundary, the performance of the Leapfrog scheme for the lock-exchange problem is not

completely clear. It is expected that this scheme does not perform well after the reflection
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Figure 2.4: Two-wave structure for the HLL scheme presented in [Toro, 2001].

from the upstream physical boundary, which is discussed in chapter 5. Details of this numer-

ical scheme is described in [Sturm, 2010] in FDM format for the St. Venant equations:

~Un+1
i = ~Un−1

i − ∆t
∆x

(
~F(U)n

i+1− ~F(U)n
i−1

)
(2.52)

2.5.2 Nonlinear schemes

For the nonlinear schemes, the focus is on two of the most widely used implementations of

the Riemann problem: HLL and Roe. The use of nonlinear schemes in GC models is not frequent,

and for the lock-exchange problem, no examples were found. Therefore, the following analysis is

based on more traditional open channels flows and follows the formulation in [Toro, 2001].

• HLL: The HLL scheme is widely used in gas dynamics and hydraulics. However, it has

rarely if ever been implemented for the SWE in the context of lock-exchange GC flows. The

nonlinear HLL scheme assumes a two-wave structure that is correct for purely 1-D problems

(see Figure 2.4). The HLL flux (FHLL) occurs in the intermediate or star region between the

two wave speeds, SL and SR. If shear waves or species equations are introduced, the HLL

scheme is inadequate because the middle wave is ignored [Toro, 2001].
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In order to utilize the FVM update expression (2.48), the interfacial fluxes ( ~F(U)i+1/2) must

be computed. For the HLL scheme, ( ~F(U)i+1/2) is determined from the following relation-

ship:

~F(U)i+1/2 =



FL

FHLL =
SRFL−SLFR +SRSL(uR−uL)

SR−SL

FR

(2.53)

where SL and SR are the wave speeds, the subscript L denotes the ith cell and the subscript R

denotes the cell i+1. These wave speeds can be computed from the following relationship

that was suggested by [Toro, 2001]:

SL = uL− cLqL SR = uR + cRqR (2.54)

and qK is given by:

qK =


√

1
2

[
(h∗+hK)h∗

h2
K

]
if h∗ > hK,

1 if h∗ ≤ hK

(2.55)

There are a multiple options available in which to determine the variables in the intermediate

or star region (h∗ and u∗). [Toro, 2001] recommended the Two-Rarefaction Riemann Solver:


h∗ = 1

g′
[1

2(aL +aR +
1
4(uL−uR)

]2
,

u∗ = 1
2(uL +uR)+aL−aR

(2.56)

• Roe: For the SWE, the first-order accurate Roe scheme is presented in [Toro, 2001], which

forms the basis of the following formulation. The accuracy of the Roe scheme compares

well to the HLL scheme [Zoppou and Roberts, 2003]; however, Roe’s scheme is generally
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more computationally intensive [Vasconcelos and Nunes, 2009]. The nonlinear Roe scheme

was originally applied to the Euler equations, but was first applied to the SWE by [Glaister,

1988]. For the Roe scheme, the quasi linear form of (2.47) is approximated with a linear

system:
∂~U
∂ t

+A
∂~U
∂x

= 0 (2.57)

where A is the Jacobian matrix.

To compute the Roe averages, there are two common methods for SWE models: Roe-Pike

[Roe and Pike, 1984] and Glaister [Glaister, 1988]. For the Roe-Pike approach presented in

[Toro, 2001], the Roe-averages are computed from the following relationships:

(Roe−Pike)



ū =
uL
√

hL +uR
√

hR√
hL +

√
hL

h̄ =
√

hLhR

c̄ =
√

1
2(c

2
L + c2

R)

(2.58)

where ū, h̄ and c̄ are the Roe averages for the velocity, the depth and the celerity, respectively.

For the Glaister approach the only difference is in the calculation of ū, which is presented

below:

(Glaister)
{

ū =
uL
√

hR +uR
√

hL√
hL +

√
hR

(2.59)

Once the Roe averages are determined, the eigenvalues (λ̄ j) and eigenvectors (R̄( j )) are com-

puted from the following relationships, which are presented in [Toro, 2001]:

λ̄1 = ū− ā

λ̄2 = ū+ ā

R̄(1) =
[ 1
ū− c̄

]
R̄(2) =

[ 1
ū− c̄

] (2.60)
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In addition, the wave strengths are computed from the Roe averages:

wavestrengths


ᾱ1 =

1
2

[
∆h− h̄

c̄ ∆u
]

ᾱ2 =
1
2

[
∆h+ h̄

c̄ ∆u
] (2.61)

The final step in the Roe scheme is to compute the inter-cell fluxes so that the conserved

variables can be updated.

~F(U)i+1/2 =
1
2

(
~F(U)n

i +
~F(U)n

i+1

)
− 1

2

2

∑
j=1

ᾱ j|λ̄ j|R̄( j ) (2.62)
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Chapter 3

Knowledge Gap and Objectives

Although there have been significant insights into GC flows in recent years, there are still

several unanswered questions:

• The link between the SWE models with theoretical front conditions from [Benjamin, 1968]

and [Shin et al., 2004] and the experimental results is not clear. [Klemp et al., 1994] states

that the error from the model is due to the SWE assumptions and not from the theoretical

front conditions. Since the SWE models do not account for interfacial mixing, which slows

down the GC advance, the velocity is overestimated.

• In experimental studies, it is difficult to determine the depth of the nose due to interfacial

instabilities (e.g. Kelvin-Helmholtz). [Shin et al., 2004] presents a solution for this problem

where h is a function of (g, ρ , H). However, it is difficult to determine the density variation

from experiments.

• For state of the art two-layer SWE models, two modeling approaches are required depending

on the depth ratio (φ ≤ 0.5 and φ > 0.5). For larger initial depth ratios, the model is much

more complex and involves cumbersome, explicit tracking of flow features. A simpler and

general model that is valid for all depth ratios is obviously desired.

• Nonlinear numerical schemes are becoming more and more popular in gas dynamics and

hydraulics; however, there use in GC flows is still incipient. Therefore, the advantage of

these nonlinear schemes on GC is not well known.

• The BC at the front of the GC has been traditionally solved with a front condition and a

characteristic equation. However, for more complex mathematical models (e.g. the two-

layer SWE), the characteristic equations also become more complex [Rottman and Simpson,
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1983] and [Klemp et al., 1994]. In addition, the continuity errors are oftentimes unaccept-

able (especially when depth constraints are implemented at the GC front). A relevant, robust

solution for GC front calculations that improves continuity errors would be a clear improve-

ment.

This work is linked to the development of a new numerical model based on the FVM to simu-

late the propagation of GC in the environment that can describe all relevant stages of the propaga-

tion up to the self-similar stage. The proposed model should rely on a simple implementation and

on conservative solutions of the SWE to simulate waves and flow discontinuities. The only explicit

tracking that is enforced in the proposed model is at the GC front, and in this work several front

condition alternatives were tested and compared. Details of the numerical model development as

well as the experimental procedure are presented in the Methodology (Chapter 4).
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Chapter 4

Methodology

The procedure for the experimental investigations and the numerical modeling developments

is discussed in the subsequent text. Both components are constructed in such a way to compare the

front trajectory and to develop velocity hydrographs near the middle of the tank. The development

is based on the full depth lock-exchange problem for Boussinesq fluids in a rectangular tank.

Examples of the notation and a sketch of the experimental apparatus are provided in Figure 4.1.

4.1 Experimental program

Lock-exchange experiments were conducted in this work for three different density differ-

ences ε = 1%,2%and3%) with the following initial conditions: x0 = 76.2cm and h0 = 40.6cm.

There was no initial or constant ambient motion in the experiments conducted for this study. In-

stead of analyzing a large range of initial parameters (e.g./ x0, h0, ∆ρ , etc.), the experimental

contributions are based on the analysis of the MicroADV probe results. However, the trajectory

of the nose is also obtained from high-definition digital cameras for a comparison with the SWE

models. Several experiments were conducted in smaller scale tanks in order to develop a consistent

experimental program that involved the mixing procedure and the gate removal. Once consistent

results for the GC trajectory were obtained in the smaller tanks, the experiments were performed

in the 9.14 m tank that was used in this work. Two to three duplicates were performed for each run

to ensure that the results were consistent and properly obtained.

4.1.1 Physical apparatus construction

The 9.144 m long acrylic tank that is utilized in this thesis aims to represent a section of the

navigation channel of Mobile Bay in Alabama, USA (see Figure 4.2. The full scale model was
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Figure 4.1: The experimental apparatus with stationary ADV probes and a video camera moving
with the GC front. The initial GC depth h0 is equal to the ambient depth H.

used in a separate work to investigate the exchange flows between the Mobile and Tensaw rivers

and the Gulf of Mexico that occur within the bay. The rectangular acrylic tank represents a channel

9.754 m that connects two reservoirs (see Figure 4.3). For this thesis, the channel was separated

from the rest of the physical model with two wooden barriers approximately 2 cm thick with rubber

attachments at each end. After these barriers were locked in place by two metal clamps, the length

of the channel was reduced by 0.305 m at each end. In order to perform the experiments, a third

gate was constructed to separate the two fluids, which initiated the GC flow upon removal.

The acrylic channel was constructed in four segments because the acrylic sheets are only 2.44

m in length. In each component a 15 cm wide sheet that represents the channel bottom was welded

to two side sheets (40.6 cm wide). Therefore, the maximum depth that could be achieved in the

channel is 40.6 cm. After the side pieces were welded on top of the bottom sheet, the effective

channel width was 12.7 cm.

Before the the acrylic sheets were welded together, openings were drilled into the acrylic.

Then the acrylic sheets were tightened together with metal screws in order to increase the welding
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Figure 4.2: The photograph on the left is an aerial view of Mobile Bay, Alabama. Source: Landsat
program. To the right is a snapshot of the depth-averaged velocities (arrows) and the water levels
(contours) predicted by the estuarine and coastal ocean model. The vertical line in the middle of
the bay represents the shipping canal. Presented in [Chen et al., 2005].

adhesion and to provide structural support. In the front of the physical model on the outside of

the tank, small acrylic pieces were used to connect the adjacent acrylic sheets (Figure 4.3). On

the inside of the tank, adhesive tape was placed between the acrylic pieces with silicon caulking

applied along the edges in order to obtain a strong waterproof seal. As a result, the entire channel

formed a cohesive and waterproof unit.

4.1.2 Initial salinity measurements

The difference in density can be obtained by dissolving salt in one side of the tank CITE or

by using a different temperature CITE. If the primary difference between the fluids is temperature,

then the colder fluid will flow underneath the warmer fluid. In this study salt is dissolved in one

side of the tank, so the saltwater will flow underneath the ambient freshwater.

When dissolving the salt into the denser fluid, it is imperative that the resulting density is

accurately computed. The methods that have been implemented to determine the density are:

salinity tables, polynomial equations, hydrometers and refractive index measurements. Although
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Figure 4.3: Different components of the construction for the acrylic channel.
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reference tables are readily available, this method is not the most accurate because the volume of

the fluid is known only to a few percent. In addition, the salt is never pure and may vary from one

brand to another. Moreover, salt may contain certain amounts of water and may not completely

dissolve in the fluid.

An alternative and more accurate approach is to determine the refractive index of the solution,

which depends on the amount of salt. [Shin, 2001] utilized an electronic refractometer, which is

usually designed for medical use, with standard tables in which the density is determined from the

value in Brix. According to [Shin, 2001], the error associated with this approach is 0.1 Brix or

0.005 gcm−3. The smallest value for the density difference in their experiments was 0.1 gcm−3,

so the maximum error was less than 5%. The refractive index also depends on the temperature of

the fluid, which can be calibrated by the instrument. In order to further reduce these errors due

to temperature differences, [Shin, 2001] allowed the fluids to reach room temperature before the

simulation.

However, because of the simplicity and accurate results, the difference in density for this work

was estimated from a polynomial expression in www.csgnetwork.com/h2odenscalc.html, which

was provided by the University of Michigan and NOAA:

ρ = ρ0 +Ac+Bc3/2 +0.00048314c2 (4.1)

where

A = 0.824493−0.0040899T +0.000076438T 2−0.00000082467T 3 +0.0000000053675T 4

B =−0.005724+0.00010227T −0.0000016546T 2

ρ0 = 1000
1− (T +288.9414)

508929.2(T +68.12963)
∗ (T −3.9863)2

in which A, B and C are polynomial parameters, ρ is the density of the denser fluid in kgm−3, T is

the temperature in ◦C and c is the concentration in mg/l. The initial salt concentration was deter-

mined from this relationship, and the resulting density difference was re-evaluated using precision
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Figure 4.4: Photograph of the leading edge of a GC that illustrates the procedure in which the front
trajectories were measured.

hydrometers. These hydrometers determine the density with an error of approximately 5% or less.

In addition to providing reliable data, experiments were performed relatively quickly.

4.1.3 Front trajectory measurements

One of the most common data recording techniques that has been used in past decades is to

record the trajectory of the GC front [Huppert and Simpson, 1980]. Although the position and the

velocity of the front has been accurately obtained in previous studies, newer technology allows for

a more accurate description. In the present study, digital cameras were used to record the position

of the front at 30 frames per second. This, however, is not the first time that this type of quality of

video camera has been used for GC front trajectories [Adduce et al., 2011]. Measurements of the

trajectory of the front are very important in the evaluation of numerical models.

In order to obtain values for the position of the GC nose at various positions along the channel,

a grid (4 in by 1 in) was drawn on the front of the tank to record the longitudinal position of GC

fronts. The video camera was operated in a way that followed the front of the GC. Because the
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video camera also recorded the time, the velocity distribution of the GC front for each experiment

was obtained.

4.1.4 MicroADV measurements

For the velocity hydrograph measurements, MicroADV probes sampling at 20 Hz were placed

near the middle of the tank in order to determine the longitudinal velocities for the denser GC and

the ambient fluid. The lower ADV probe was placed low enough to measure the GC at 10.2 cm

from the channel bottom. The upper probe was placed at 33.0 cm from the channel bottom in

order to measure the ambient velocities. Although the ADV probes can measure the velocity in

three-dimensions, the main focus of the data analysis was related to the longitudinal velocities.

In this analysis, it was important to position the MicroADV probes as close to vertical as

possible in order to accurately measure the velocity in the longitudinal direction. The probes were

held in place with a wooden support, and adhesive tape was applied to hold the them in the vertical

direction. The wooden support contains a cantilever section that hangs over the channel so that the

ADV probe can be placed in the center of the tank. The data was recorded at 20 Hz for about 250

seconds or when the GC front reflected back and forth twice.

4.2 One-layer SWE model

As mentioned, the objective was to develop a robust and generalized Boussinesq gravity cur-

rent model for the lock-exchange problem. It was decided to minimize the use of explicit track-

ing of flow features (i.e. discontinuities appearing when φ > 0.5). Using the one and two-layer

SWE written in physically conservative format, it was possible to implement linear and nonlinear

shock-capturing schemes within a finite volume framework in an attempt to better describe the

propagation of gravity currents, as presented below.

The one-layer SWE models (equation 4.2) are widely used for GC flowing into a deep am-

bient. In an attempt to establish clarity and simplicity, the one-layer SWE are written in vectorial
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conservative format:

∂~U
∂ t

+
∂ ~F(U)

∂x
= ~S(U)

~U =

 h

uh

 ~F(U) =

 uh

(uh)2

h
+

1
2

g′h2

 ~S(U) =

 0

0

 (4.2)

This mathematical model is solved within the finite volume framework by integrating the

previous PDE system, yielding the following expression that performs the updates on the conserved

variables for each computational cell i at the time step n+1:

~Un+1
i = ~Un

i +
∆t
∆x

(
~F(U)

n+1/2
i−1/2 −

~F(U)
n+1/2
i+1/2

)

where ~F(U)
n+1/2
i−1/2 are inter-cell fluxes (not to confuse with ~F(U)), which are calculated according

to various numerical schemes formulations. Details of such formulations are presented in [Toro,

2001] and are omitted here for brevity.

A major limitation of one-layer model is the inaccuracy when the ambient flow depth is not

large in comparison with the depth of the current [Ungarish, 2009]. Moreover, the one-layer SWE

cannot capture the slumping characteristics of gravity currents with large depth ratios where the

effects of the ambient velocity are more important. In order to appropriately simulate the advance

of gravity current fronts, SWE models (one and two-layered) require the use of a front condition.

4.3 Two-layer SWE model

For the one-layer model, the velocity of the ambient fluid is neglected in the internal cell

calculations. However, if the fractional depth becomes large enough (particularly when φ > 0.5),
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then the ambient velocity becomes an important parameter. The mathematical model for the two-

layer SWE in a Boussinesq system was formulated in [Rottman and Simpson, 1983]:

∂h
∂ t

+
∂

∂x
(uh) = 0

∂u
∂ t

+(1−2a)u
∂u
∂x

+(1−b)g′
∂h
∂x

= 0
(4.3)

where

a =
h

H−h
b =

h
H

+
u2

g′H

(
1− h

H

)−2

Although equation 4.3 can produce robust results for certain GC applications, the previous

equation has two limitations. First it is not expressed in terms of physically conserved variables (u

instead of uh). Second, while amenable to be implemented in a finite difference framework, it is

not in the conservative format used in finite volume models (i.e. equation 4.2). Thus, in cases of

flow discontinuities, shocks will be simulated with incorrect velocities. In this work we propose to

further manipulate the previous expression using the continuity equation and the chain rule (shown

below) in order to obtain conservative variables.

∂q
∂ t

=
∂uh
∂ t

=
∂u
∂ t

+
∂h
∂ t

The terms that cannot be presented in the fluxes of the conservative variables ( ~F(U)) are isolated

as source terms, which yields the following expression for the linear momentum conservation

equation:
∂uh
∂ t

+
∂

∂x

(
(uh)2

h
+

1
2

g′h2

)
= 2auh

∂u
∂x

+bg′h
∂h
∂x

(4.4)
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Now, combination of the equation (4.4) with the continuity equation for the dense layer yields

a system of PDEs that is expressed in conservative, divergent format:

∂~U
∂ t

+
∂ ~F(U)

∂x
= ~S(U)

~U =

 h

uh

 ~F(U) =

 uh

(uh)2

h
+

1
2

g′h2

 ~S(U) =

 0

A
∂u
∂x

+g′hB
∂h
∂x

 (4.5)

where A and B are written as:

A =
2uh2

H−h
B =

(1−h/H)2 +
(
u/
√

g′H
)2

(1−h/H)2 (4.6)

In the above equations, A and B are components of the source terms presented by [Rottman and

Simpson, 1983] written in such a way to demonstrate that the numerator and denominator in both

expressions approach 0 as φ → 1 and h→ H, since the current velocity (u) approaches 0 in such

conditions. For h > 0.95H, special handling of the source terms is required.

A straight forward inspection of equation 4.6 indicates that the terms A and B appearing in the

source term of equation 4.5 become undefined as h/H→ 1 where u→ 0, which in turn renders the

numerical solution unstable. For the depth gradient term, this causes no problems except at φ = 1;

however,~S = 0 at φ = 1. In this scenario B = 1 because u = 0 due to the horizontal free surface.

For the velocity gradient component, the fix is not as simple. Moreover, instabilities are generated

for h/H ranging from 0.95 to 1.0. In order to overcome this dilemma, L’Hopital’s rule is applied

as h/H→ 1 so that a limiting value for A is formulated:

lim
h / H→1

A =−4uh (4.7)

In the proposed two-layer SWE model, this use of L’Hopital’s rule was applied for φ > 0.95.

Moreover, the velocity gradient term is negligible for h/H > 0.9, so the possible side effects are

negated. Using this approach, the two-layer SWE model is able to accurately simulate GC flows of
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all fractional depth. In this implementation, the parameter A for the velocity gradient component

of the source term is provided in the following expression.

A =


2uh2

H−h
(h/H < 0.95)

−4uh (h/H ≥ 0.95)
(4.8)

The source terms are evaluated numerically using a finite difference calculation, and in this

implementation a simple, central difference scheme scheme was used. The two-layer SWE may

be solved by implementing a numerical scheme in a FVM update formulation (equation 2.48).

In summary, the advantage of the proposed mathematical model is the simplicity since the same

numerical scheme is applied everywhere in the solution domain at all time steps, except of course

at the boundary conditions. Thus, the only boundary conditions that are used in the computations

are the physical boundaries constraining the flow and the GC front. There is no explicit tracking

of shocks except at the leading edge of the GC.

4.4 Aspects of the numerical solution

A brief discussion on the strategy for the numerical solution implementation for these hyper-

bolic PDE systems is presented, which include the selected numerical schemes; boundary condi-

tions, including a new formulation to compute flow at the gravity current nose; and aspects related

to the numerical stability and time steps that are required in the proposed model.

4.4.1 Numerical schemes

As mentioned, to perform updates in the conserved variables using finite volume method,

it is necessary to calculate the interface fluxes. While the proposed model has been tested with

several linear and nonlinear schemes, four schemes are selected to perform the comparison in this

work: the first-order accurate, linear FORCE scheme; second-order accurate, linear Lax-Wendroff
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scheme; and two first-order accurate, nonlinear Roe and HLL schemes. All of these schemes are

widely applied in CFD problems, and a detailed analysis is provided in [Toro, 2001].

• Lax-Wendroff (LxW): The linear, two-step LxW scheme was presented in subsection 2.5.2

for the FDM. For the FVM, the expression for this second-order accurate scheme is [Toro,

2001]: 

~Un+1/2
i+1/2 = 1

2(
~Un

i +
~Un

i+1)+
∆t

2∆x(
~F(U)n

i − ~F(U)n
i+1)

~F(U)
n+1/2
i+1/2 =

 uhn+1/2
i+1/2(

(uh)2

h + 1
2g′h2

)n+1/2

i+1/2

 (4.9)

• Modified FORCE: The original FORCE scheme discussed in [Toro, 2001] is an average

50%-50% of the interfacial fluxes from the LxW and LxF schemes. This work follows the

idea from [Vasconcelos and Nunes, 2009] and adds more weight to LxW scheme (i.e. 70%)

so that diffusion is further reduced without a noticeable increase in oscillations at shocks.

This results in the modified FORCE scheme adopted here:

~F(U)
n+1/2
i+1/2 =

1
2

(
0.3 · ~F(U)

n+1/2
i+1/2

∣∣∣
LxF

+0.7 · ~F(U)
n+1/2
i+1/2

∣∣∣
LxW

)
(4.10)

• HLL: The nonlinear HLL scheme has performed well in the more common dam break prob-

lem [Vasconcelos and Nunes, 2009] and should provide accurate and computationally effi-

cient solutions for lock-exchange GC flows. The primary difference between this formula-

tion and other SWE models is that the gravity g is replaced with the reduced gravitational

acceleration g′ in the flux calculations. The procedure for the HLL scheme is provided in

subsection 2.5.2. For the HLL scheme, the expression for the interfacial fluxes ( ~F(U)i+1/2)
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that is used in the update expression (2.48) is:

~F(U)i+1/2 =



FL

FHLL =
SRFL−SLFR +SRSL(UR−UL)

SR−SL

FR

in which the subscript L denotes the i th cell and the subscript R denotes the cell i+ 1. The

description of wave speeds (S) and the fluxes (F) is provided in subsection 2.5.2. In the

proposed model, the intermediate or star variables are computed with the Two-Rarefaction

Riemann Solver, which was recommended by [Toro, 2001]. However, similar results were

obtained with the Riemann Solver based on exact depth positivity. Therefore, it is assumed

that the choice of approximate-state Riemann solver for the intermediate variables is not

crucial for these GC flows.

• Roe: The nonlinear Roe scheme was presented in subsection 2.5.2. The main difference

in this implementation from other SWE models is that the gravity (g) is replaced with the

reduced gravity (g′) due to Boussinesq gravity currents. The proposed numerical model was

tested with the Glaister [Glaister, 1988] and Roe-Pike [Roe and Pike, 1984] approaches to

compute the Roe averages, and the results were almost identical. For the Roe scheme, the

expression for the interfacial fluxes (~F(~U)i+1/2) that is used in the update expression (2.48)

is:

~F(U)i+1/2 =
1
2

(
~F(U)n

i +
~F(U)n

i+1

)
− 1

2

2

∑
j=1

ᾱ j|λ̄ j|R̄( j )

where the wave strengths (ᾱ j), eigenvalues (λ̄ j) and eigenvectors (R̄( j )) are provided in subsection

2.5.2.
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4.4.2 Boundary Conditions: DC and MOC

At the boundaries of the solution domain (either between a moving gravity front and a physical

boundary or between two physical boundaries) numerical schemes cannot be used to determine the

two flow variables U= [h,uh]T and boundary condition calculations are required. At physical walls

the alternatives to solve the problem are generally straightforward. One way is to either enforce

zero flow (u = 0) and solve for the depth h using a relevant characteristic equation [Sturm, 2010];

an alternative would be the use of a reflective boundary condition as presented in [Toro, 2001].

The other boundary condition calculation is at the GC front, and two alternatives are im-

plemented for this moving boundary in the case of the one-layer SWE model: the traditional

characteristic approach (MOC) and a proposed approach based on local continuity and momentum

conservation (DC) (described ahead in this subsection). Both alternatives enforce a constraint on

the depth when the ambient depth H decreases and approaches the lock-exchange problem (e.g.

0.347 ·H for Benjamin’s front condition) [Klemp et al., 1994] and [Ungarish and Zemach, 2005].

The MOC BC that is only implemented here for the one-layer model involves the combination of a

C+ characteristic equation and the enforcement of a front condition (as explained in section 2.1).

This approach provides two equations that allow for the solution of the two unknowns [hLE,qLE]
T at

the gravity current cell LE, which denotes the front or leading edge. Assuming that the velocity of

cell 1 (i.e. the wall boundary) will always be zero, the resulting set of equations are:

ucell:1 +2
√

g′hcell:1 = 2
√

g′hcell:1 = uLE +2
√

g′hLE uLE =
√

g′hLEFr LE (4.11)

which are solved iteratively (for this study, the Bisection method was used). One notices that the

characteristic equation transports the Riemann invariant value u+2c from the upstream wall (cell

1) until the GC nose according to the characteristic velocity: u+ c. In addition, the solution for

[hLE,uLE]
T allows for the determination of uhLE.

The boundary condition strategy for the two-layered system could also have followed the

same strategy, but the more complex structure of the characteristic equation (as shown in [Rottman
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and Simpson, 1983]), and consequently Riemann invariants, motivated the development of an

alternative approach. This alternative method explicitly enforces continuity, linear momentum,

the kinematic condition and a front condition at the leading edge of the GC. This front region is

assumed to span over cell LE, a finite volume cell fully occupied by the dense fluid, and over cell

LE+1, which undergoes the advance of the current and is not yet completely filled (see Figure 4.5).

Because the front region exists between two computational cells, this method was named Dual-Cell

(DC), and it requires five equations to solve for the unkown parameters: h LE, uh LE, h LE+1, uh LE+1 and

∆x LE+1. At the upstream front BC cell (i.e. LE), continuity is enforced along with the x-momentum

equation. The continuity equation and a front condition is implemented at the downstream cell (i.e.

LE+1). The continuity equations that were used in the SWE models are provided below:

Continuity


dALE

dt
= ∆x

dhLE

dt
= uh LE-1−uh LE+1 cell: LE

dALE+1

dt
=

d(∆x LE+1 hLE+1)

dt
= uh LE cell: LE+1

(4.12)

in which A is the cell area (A = ∆xhLE for cell LE and A = ∆xLE+1hLE+1 for cell LE+1). The continuity

equation is slightly more complex for cell LE+1 because both the depth hLE+1 and the distance ∆xLE+1

change with time (see Figure 4.5). The x-momentum equation that was used in the DC boundary

condition is provided from the following expression:

∑Fx = ∑
cs

ṁLE+1uLE+1−∑
cs

ṁLEuLE (4.13)

in which ṁ = ρc uh is the mass flow rate. The implementation of the momentum and continuity

equations for the SWE models is provided below along with the other two equations (i.e. front
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condition and kinematic condition), which make up the DC boundary condition:

DC



[
I
]

ρc ·uh n+1
LE

(uh n+1
LE+1

h n+1
LE

− uh n+1
LE-1

h n+1
LE

)
+F 2−F1 = 0[

II
]

h n+1
LE = h n

LE +
∆t
∆x(uh n+1

LE-1−uh n+1
LE+1)[

III
]

uh n+1
LE+1 = h n+1

LE+1

√
g′h n+1

LE+1 FrLE+1[
IV
]

∆x n+1
LE+1 = ∆xn

LE+1 +∆t
uh n+1

LE+1

h n+1
LE+1[

V
]

uh n+1
LE = 1

∆t

[
∆x n+1

LE+1(h
n+1
LE+1−h n

LE+1)+h n+1
LE

(
∆x n+1

LE+1−∆x n
LE+1

)]
(4.14)

where n is the time step index, F1 is the upstream hydrostatic force at the interface between cells LE-1

and LE, and F 2 is the downstream hydrostatic force at the interface between cells LE and LE+1. These

five equations represent respectively: 4.14
[
I
]

the linear momentum balance at cell LE; 4.14
[
II
]

the

local continuity at cell LE; 4.14
[
III
]

the enforcement of a front condition relating depth and velocity

at cell LE+1; 4.14
[
IV
]

the kinematic condition, which updates the front position ∆x n+1
LE+1, at cell LE+1;

and 4.14
[
V
]

the local continuity at cell LE+1.

These equations are solved iteratively for the pair of cells at the edge of the computational

domain until the advance of the GC front at cell LE+1 (i.e x n+1
LE+1, given by ∑u LE+1∆t) exceeds the

cell size ∆x. When this happens, the front of the GC enters a new cell and ∆x LE+1 is reset to zero.

This alternative to compute the boundary conditions is shown to be accurate for both one-layer and

two-layer SWE models, and have compared well with experimental data collected in this work as

well with previous investigations.

4.4.3 Stability and time step calculation

Due to the choice of applying explicit schemes for the numerical solution, there is an up-

per limit for the computational time step ∆t established by the Courant-Friedrichs-Lewy (CFL)

condition:
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Figure 4.5: Schematic diagram of a GC that illustrates the cell structure for the DC BC at a given
time step. The cell LE represents the last computational node that is completely filled by the front
of the GC.

∆t ≤ ∆x
max(u+

√
g′h)

(4.15)

The enforcement of this condition is not sufficient to render the model stable. What was

determined is that in some cases, even when equation 4.15 is satisfied, the conditions become

unstable at the front. When the time step was reduced and the number of time steps to traverse cell

LE+1 increased, stability is obtained in the computations. Thus, a second limit for time step is also

enforced in which the velocity scales with the celerity:

∆t ≤ k∆t
∆x√
g′hLE

(4.16)

in which k∆t is a constant factor used in the computations ranging between 0.05 and 0.5, depending

on the initial depth ratio and the density difference. However, stability was typically achieved with

k∆t = 0.1. Later in the model development, a change was made to the force calculations of the

boundary conditions so that the Courant condition governed the stability. As a general rule, the
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relationship that was implemented to compute the time steps is:

∆t ≤min
(

∆x
max(u+

√
g′h)

,k∆t
∆x√
g′hLE

)
(4.17)
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Chapter 5

Results and Discussion

5.1 Experimental results

Front trajectories

It is convenient to display the results for lock-exchange GC flows in terms of dimensionless

units (see section 2.4.2). Furthermore, the distance is normalized by the initial current length

(x0), the depth by the initial GC depth (h0), the velocities by the initial celerity (
√

g′h0), etc.

(see [Ungarish, 2009]). This procedure allows for a comparison for various initial conditions

and verifies consistent experimental results. In addition, other researchers can easily compare

there data to the dimensionless results. For the experiments conducted in this study, the initial

conditions and some of the dimensionless results (see section 2.2) are presented in Table 5.1. It is

clear from the results that the inviscid assumption is justified (Rem >> 1,000). The consistency for

FrH demonstrate the consistency in which the experiments were performed.

Table 5.1: Experimental initial conditions and results for each experiment. Values for um were
determined from a digital camera tracking the GC front.

Run x0 h0 ρ1 g′ um Rem FrH[
m
] [

m
] [

kgm -3
] [

ms -2
] [

ms -1
] [

−
] [

−
]

1 0.762 0.406 1010 0.107 0.098 19952 0.468
2 0.762 0.406 1020 0.202 0.135 27657 0.472
3 0.762 0.406 1028 0.277 0.158 32423 0.473

In Figure 5.1 dimensionless GC front trajectory and velocity results are provided for the 9.14

m tank. After an initial reduction in velocity, a near constant velocity region forms denoting the

slumping stage (see section 1.3). The velocity results for the three experiments are almost identical
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Figure 5.1: Dimensionless trajectory and velocity for the GC front.

(i.e. steady) except at the beginning of the experiment where the removal of the gate is very impor-

tant and could not be absolutely equal between repetitions. Likewise, the change in position with

time reveals that the velocity is almost constant (actually very slowly decreasing) within the slump-

ing stage. These results suggest that the experiments were conducted with sufficient accuracy to

yield consistent results.

MicroADV results

MicroADV results were obtained in the 9.14 m segment of the channel at one location for all

of the experiments: x∗ = x/h0 = 7.68. The depth (h0) for the experiments was 40.6 cm and the

initial lock length (x0) was 76.2 cm. Thus, the thin layer assumption for the shallow water theory

is valid. For h0/x0 < 1, the mixing between the GC and the ambient fluids is not significant, and

the majority of breaking waves are confined to the interface [Hacker et al., 1996]. The results for
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the MicroADV probe are displayed in terms of dimensionless units in Figure 5.2. Thus, the data

for all three experiments should fall along the same path.

The results for the MicroADV probe provide a clear representation of the internal velocity

structure for lock-exchange experiments. It is apparent from Figure 5.2 that pressure pulses are

consequences of surface waves generated from the gate removal. An oscillatory pattern forms

from this wave celerity; however, there is a clear interface caused by the arrival of the GC front. As

the time increases, the pressure pulses are reduced. Furthermore, a parabolic decrease in velocity

occurs after the GC front moves past the ADV probe until the end wall reflection generates negative

velocities. The one and two-layer SWE models are able to simulate the GC propagation beyond

the end wall reflection so that the velocity magnitudes are compared.

The negative peaks that occur when t∗ ≈ 40 represent the front of the reflected GC from the

far wall so that the GC travels back towards its initial location. After the negative velocity front

arrives at the MicroADV probe, one notices that the velocity quickly changes back to positive

values before a negative curve develops. Thus a dense solitary wave was separated from the rest of

the flow at the initial reflection with the far wall. This solitary wave was generated from a hydraulic

jump, which was diminished due to the stably stratified layer that was left behind the GC nose from

turbulent mixing [Simpson, 1997].
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Figure 5.2: Velocity hydrograph comparison for 1%, 2%, and 3% salt in the 9.14 m tank.
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5.2 Numerical model results

The results for the one and two-layer SWE models are illustrated in Figure 5.3 for a wide

range of fractional depth. In Figure 5.3 φ = 0.01, φ = 0.5 and φ = 1.0 for the deep ambient,

critical condition and full depth scenario, respectively. The DC BC was implemented at the front

of the GC with Benjamin’s front condition and 400 discretization nodes. Unless otherwise noted,

k∆t = 0.1 for the full depth and critical condition. For the deep ambient problem, k∆t = 0.2 in order

for the code to remain stable.

It is clear from figure 5.3 that the two-layer SWE model approaches the one-layer alternative

for the deep ambient scenario. The depth profile and the GC trajectory are almost identical at each

point in time. In the deep ambient scenario, the velocity of the ambient fluid is much smaller in

magnitude thus less momentum is transferred to the GC. However, as the depth ratio begins to

increase, the two SWE models begin to diverge from one another. The resistance of the ambient

fluid becomes more important, and the two-layer model is the better alternative [Ungarish, 2009].

The decrease in accuracy of the one-layer SWE model for smaller ambient depths is due to

the increased importance of the ambient velocity. As the fractional depth increases from the deep

ambient to the full depth lock-exchange problem, the velocity increases for both the one and two-

layer models. Moreover, for the deep ambient scenario, a larger pressure from the ambient fluid is

being exerted on the GC, which corresponds to a greater horizontal velocity.

One of the interesting features in Figure 5.3 is that the GC in the two-layer model increases

in velocity relative to the one-layer model as the depth ratio increases to the critical condition

and then to the full depth lock-exchange problem. The reason for this discrepancy is due to the

increased accuracy of the two-layer model in computing the length of the slumping stage, which

is underestimated with the one-layer model. The two-layer model simulates the reflection with

the upstream boundary with a sharp reflected bore, which eventually reaches the front. For the

one-layer model, this reflection generates a wave, which reaches the GC front much faster, so the

depth of the front and the resulting velocity are decreased quicker than in the two-layer model.
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Although though the GC front in the two-layer model is constrained because of the more

complex characteristics, the depth and velocity of the front are greater than in the one-layer model

for the majority of the slumping stage. This constraint has been validated by high-resolution mod-

els that suggest the GC front rarely moves faster than the c+ characteristic for Boussinesq fluids

[Ungarish, 2009]. Because the two-layer model computes a longer slumping stage for the shallow

ambient condition, the GC propagates at a faster.

In table 5.2 the sensitivity of the DC boundary condition is analyzed in the context of the

number of discretization nodes. For the one-layer model, the DC boundary condition is compared

to the traditional MOC boundary condition. The results indicate that the DC BC is more accurate

for simulations with smaller discretization nodes. However, both models converge in accuracy at

approximately 400-800 nodes.

In previous two-layer models using the shock-tracking approaches, a smaller number of dis-

cretization nodes was often used to resolve the flow discontinuities. The discontinuous interfaces

for these models are assumed vertical, so the numerical scheme does not need compute this feature

even though post shock oscillations are a potential side effect [Ungarish, 2009]. By comparison, the

shock-capturing approach proposed in this thesis requires more sophisticated numerical schemes

and improved grid discretization in order to accurately reproduce the discontinuous interfaces. A

comparison between these two approaches is presented in Figure 5.11.

Table 5.2: Sensitivity of each modeling approach to the number of discretization nodes. The error
for each model is compared to its computed propagation time at 1,000 nodes. The Roe scheme is
used with B front condition and k∆ t = 0.1.

Model Parameter Number of nodes
50 100 200 400 800 1000

GC propag. time (s) 77.6 71.1 68.1 68.0 67.2 67.31L: MOC
Continuity error (%) +15.3 +5.5 +1.2 +1.0 -0.1 0

GC propag. time (s) 66.9 65.6 64.6 65.5 65.5 65.81L: DC
Continuity error (%) +1.7 -0.3 -1.8 -0.4 -0.4 0

GC propag. time (s) 58.4 56.2 55.1 55.4 55.4 55.52L: DC
Continuity error (%) +5.3 +1.4 -0.6 -0.1 -0.1 0
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Figure 5.3: GC propagation for the one and two-layer SWE over a wide range of fractional depth:
φ = 0.01, 0.5 and 1.0. The DC BC is used with 400 discretization cells.
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5.3 Comparison between experimental results and numerical predictions

The assessment of the proposed numerical solutions for the one and two-layer SWE with

regards to the experimental results is done in the following comparisons:

1. Experimental measurements of the GC front trajectory are compared to the results obtained

from the one and two-layer models using the Roe scheme;

2. Experimental results for the overall GC propagation time are compared to numerical predic-

tions with different numerical schemes, front conditions, front BC strategies (for the one-

layer model) and time steps (for the two-layer model). Continuity errors in each alternative

are also compared;

3. Velocity measurements obtained with MicroADV probes for both the denser GC and the

upper ambient fluid are compared to the predicted velocity hydrographs obtained with the

one and two-layer SWE models;

Trajectory results

Experimental results for the trajectory of the GC front in the 9.14 m tank were obtained from

high definition digital cameras, recording at 30 frames per second. The advance of the front was

measured against a grid placed on the acrylic walls, and typical results are presented in Figure

5.4. The GC flow was caused by the removal of a gate located at x0 = 0.762m, which separated

saltwater from freshwater. The depth of both fluids prior to the gate removal was 0.406 m, and the

relative density difference was approximately 2%. As described in [Simpson, 1997], the advance

of the GC front is quasi-steady within the slumping stage, as one notices that the slope of the

trajectory varies only slightly with time.

Figure 5.4 presents numerical predictions for the GC front trajectory obtained with the one-

layer SWE model using the Roe scheme to solve flow in internal cells associated with various

front conditions. The DC front boundary condition equations were used in a 400-cell computa-

tional domain. In the chart, the acronyms ”B”, ”HS” and ”UZ” represent for the front conditions
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Figure 5.4: Front trajectory results for the one-layer SWE model using Roe scheme and DC BC
with various front conditions and from experiments.

proposed by Benjamin [Benjamin, 1968], Huppert and Simpson [Huppert and Simpson, 1980] and

Ungarish and Zemach [Ungarish and Zemach, 2005], respectively. Results presented in this figure

for the coordinate of the front are normalized by the original position of the gate x0, while the time

was normalized by x0/
√

g′h0. One notices that the best prediction obtained with the one-layer

model was the one obtained with Benjamin’s front condition followed by Huppert and Simpson.

In general, the tested numerical alternatives were able to capture well the general trend of the

experimental trajectory of the GC front.

A similar comparison, this time obtained with the two layer model is presented in Figure 5.5;

the options for the numerical solution are the same as for the one-layer model described above.

Results are now reversed in that the predictions with Benjamin’s front condition were the worst,

while results obtained with HS and UZ front conditions simulated the experimental measurements

very well.
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Figure 5.5: Front trajectory results for the two-layer SWE model using Roe scheme and DC bound-
ary conditions with various front conditions and from experiments.

Effects of the boundary conditions and numerical schemes

The effect of the numerical scheme selection, boundary condition solution strategy (for one-

layer model), time step size (for two-layer model) and front condition choice to the accuracy of the

model predictions are compared and summarized in Tables 5.3 and 5.4 for the one and two-layer

SWE models, respectively. The assessment of the model accuracy is measured using three criteria:

1) the difference between the experimental propagation time and the respective numerical predic-

tion; and 2) the continuity (mass balance) errors; and 3) the computational efficiency involved in

the calculations of the GC flow. Numerical results, all obtained with a 400-cell computational do-

main, are compared to the experimental condition (x0 = 76.2cm, h0 = 40.6cm, ∆ρ = 0.02gcm−3),

but results for larger density differences follow the same general trend.

One recalls that the application of the one-layer model is not recommended for the conditions

used in experiments due to the large ratio between the GC depth and the ambient depth, particu-

larly at the initial stages of the flow. This condition may be one explanation why the continuity

errors obtained for this model associated with the traditional characteristic equation are too high,
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regardless of the front condition, as it may be seen in Table 5.3. For this scenario, the constraint

based on the energy conservation theory (φ ≤ 0.5), causes an increase in the continuity error for

the characteristic BC. The use of the alternative DC boundary condition equations, however, seems

to address most of the issues with continuity errors. As far as the velocity of the GC front, the best

results were obtained with Benjamin’s front condition for the one-layer model.

In general, the worst numerical scheme with regards to the accuracy of the GC propagation

time and continuity error is the second-order LxW scheme, possibly due to the artificial viscos-

ity that must be introduced in the scheme so that oscillations are controlled. The best numerical

scheme for this condition is the modified FORCE, but both non-linear schemes tested also pro-

duced accurate results. The nonlinear Roe and HLL schemes performed well for all conditions that

were tested. In addition, these nonlinear schemes are more stable for larger density differences and

partial depth releases and perform better for smaller time steps than the linear schemes (Table 5.4).

In Figure 5.6 the results with the Roe and HLL schemes are superimposed, and the depth profile

and front trajectory are almost identical.

The conditions tested in the experiments are more appropriately simulated with the use of a

two-layer SWE formulation even though the front trajectory is also simulated accurately with the

one-layer model. In general continuity errors are all under 1.4% for the two-layer model (Table

5.4), and the largest divergence between the measured and predicted propagation time is 18%.

This error was expected because [Shin et al., 2004] stated that Benjamin’s theory over-predicts the

propagation time by about 20%. As discussed in the Methodology chapter, a boundary condition

for the GC front based on the characteristic equation was not implemented for the two-layer SWE

model. Thus it was decided here to compare the effects of changing the time step size by using

two values for the coefficient k∆t presented in equation 4.17.

The best agreement for the two-layer model was observed for the case when Huppert and

Simpson’s front condition was used in terms of the GC front propagation time. With regards to the

continuity error, both HS and UZ front conditions presented continuity errors consistently smaller

than 1% while the results using Benjamin’s front condition were consistently the worst. There was
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Figure 5.6: Slumping for the one and two-layer SWE models using the HLL and Roe scheme with
two front conditions: Benjamin (B) and Huppert Simpson (HS). x0 = 1, h0 = 1 and ε = 2% using
800 computational cells.
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a slight increase in the continuity errors for the smaller k∆t tested. All two-layer numerical schemes

tested presented similarly accurate results, with a slight advantage to the non-linear schemes. The

use of the LxW scheme resulted in instabilities that deemed this shock-capturing model unstable,

and thus it was decided not to present the results here.

Based on the error computed for the propagation time for the two-layer model, which was

almost always greater in magnitude than 6%, an additional front condition was implemented.

[Rottman and Simpson, 1983] proposed an approach based on Benjamin’s condition that allowed

for a calibration constant. From their partial-depth experiments, they calibrated this parameter β

to equal 1.0. However, this term changes for the full depth lock-exchange problem. Therefore,

β is re-calibrated in order to determine a value that satisfied the experiments for this work (This

condition is referred to as MRS). The results are summarized in Table 5.5, and β = 1.215 (see

equation 2.7) provided the best results. For the full depth lock-exchange problem, it is impor-

tant to note that the depth and velocity constraints at the GC front change depending on the front

condition (see subsection 2.4.2). The front constraints for the MRS condition are: hLE ≤ 0.414H,

uLE/
√

g′h0 ≤ 0.448, respectively. Moreover, the error with experiments for the two-layer SWE

model using the MRS front condition is constistently less than 1%.

According to Table 5.3, the one-layer SWE are very accurate in conjunction with Benjamin’s

theoretical front condition. It is speculated that the reason for these good results is that the errors

associated with interfacial mixing/entrainment balance with the errors associated with neglecting

the ambient velocity. In the actual GC propagation, the ambient velocity transfers momentum to

the GC, which increases the GC velocity. On the other hand, turbulent entrainment, which is most

prevalent at the GC front [Simpson, 1997], halts the advance of the GC. [Ungarish, 2007] similarly

obtained accurate results for the full depth release using the one-layer SWE even though these

equations are least valid for this depth ratio. When the two-layer SWE model is implemented,

this balance of errors is changed because the ambient velocity is taken into account within the

internal cell calculations. Therefore, because turbulent entrainment is neglected, the errors are

greater compared to the one-layer model.
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Table 5.3: Comparison between lock-exchange experiments and one-layer SWE model predictions
using both BC approaches at the GC front, k∆ t = 0.1 and a 400-cell solution domain. The time of
propagation for the GC in the experiments was 93.67 s (ε = 1.0%) and 67.63 s (ε = 2.0%).

Experiment: ε = 1.0%
DC BC equations Characteristic BC equations

B LxW FORCE HLL Roe LxW FORCE HLL Roe

GC propag. time (sec) 91.54 89.90 90.21 89.87 92.43 91.74 92.02 93.71
Error w/ experim. (%) -2.3 -4.0 -3.7 -4.1 -1.3 -2.1 -1.8 +0.0
Continuity error (%) -5.0 -2.0 -2.1 -2.4 -8.3 -7.4 -7.7 -8.0

HS LxW FORCE HLL Roe LxW FORCE HLL Roe

GC propag. time (sec) 108.39 107.42 107.49 107.49 109.94 109.66 109.76 109.63
Error w/ experim. (%) +15.7 +14.7 +14.8 +14.8 +17.4 +17.1 +17.2 +17.0
Continuity error (%) -7.4 -2.0 -2.3 -2.3 -12.9 -11.4 -11.8 -10.8

UZ LxW FORCE HLL Roe LxW FORCE HLL Roe

GC propag. time (sec) 122.02 120.09 119.95 120.19 125.18 124.68 124.81 124.56
Error w/ experim. (%) +30.3 +28.2 +28.1 +28.3 +33.6 +33.1 +33.2 +33.0
Continuity error (%) -7.3 -2.0 -2.1 -2.3 -12.6 -11.0 -11.6 -10.7

Experiment: ε = 2.0%
DC BC equations Characteristic BC equations

B LxW FORCE HLL Roe LxW FORCE HLL Roe

GC propag. time (sec) 66.55 65.45 65.83 65.43 67.23 66.75 66.93 68.01
Error w/ experim. (%) -1.6 -3.2 -2.7 -3.3 -0.1 -1.3 -1.0 +0.6
Continuity error (%) -4.88 -2.03 -3.47 -2.23 -8.28 -7.43 -7.65 -8.18

HS LxW FORCE HLL Roe LxW FORCE HLL Roe

GC propag. time (sec) 78.82 78.12 79.06 78.14 79.96 79.78 79.83 79.76
Error w/ experim. (%) +16.5 +15.5 +16.9 +15.5 +18.2 +18.0 +18.0 +17.9
Continuity error (%) -7.33 -2.04 -2.42 -2.22 -12.89 -11.51 -11.83 -11.02

UZ LxW FORCE HLL Roe LxW FORCE HLL Roe

GC propag. time (sec) 88.73 87.30 87.56 87.32 91.05 90.68 90.77 90.62
Error w/ experim. (%) +31.2 +29.1 +29.5 +29.1 +34.6 +34.1 +34.2 +34.0
Continuity error (%) -7.27 -2.05 -2.10 -2.23 -12.63 -11.12 -11.58 -10.88
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Table 5.4: Comparison between lock-exchange experiments and two-layer SWE model predictions
for different time steps and front conditions using the DC boundary condition. The GC time of
propagation in the experiments was 93.67 s (ε = 1.0%) and 67.63 s (ε = 2.0%).

Experiment: ε = 1.0%
k∆ t = 0.1 k∆ t = 0.05

B FORCE HLL Roe FORCE HLL Roe

GC propag. time (sec) 76.15 76.15 76.14 76.15 76.15 76.15
Error w/ experim. (%) -18.7 -18.7 -18.7 -18.7 -18.7 -18.7
Contintuity error (%) +1.0 +1.3 +1.3 +1.5 +1.3 +1.4

HS FORCE HLL Roe FORCE HLL Roe

GC propag. time (sec) 100.26 99.65 99.63 99.56 99.68 99.65
Error w/ experim. (%) +7.0 +6.4 +6.4 +6.3 +6.4 +6.4
Contintuity error (%) +0.5 +0.6 +0.6 +0.8 +0.7 +0.7

UZ FORCE HLL Roe FORCE HLL Roe

GC propag. time (sec) 107.48 106.36 106.28 106.28 106.39 106.32
Error w/ experim. (%) +14.7 +13.5 +13.5 +13.5 +13.6 +13.5
Contintuity error (%) +0.5 +0.6 +0.6 +0.8 +0.7 +0.7

Experiment: ε = 2.0%
k∆ t = 0.1 k∆ t = 0.05

B FORCE HLL Roe FORCE HLL Roe

GC propag. time (sec) 55.38 55.38 55.38 55.39 55.39 55.38
Error w/ experim. (%) -18.1 -18.1 -18.1 -18.1 -18.1 -18.1
Contintuity error (%) +1.4 +1.3 +1.3 +1.6 +1.4 +1.4

HS FORCE HLL Roe FORCE HLL Roe

GC propag. time (sec) 72.46 72.46 72.19 71.50 72.48 72.22
Error w/ experim. (%) +7.1 +7.1 +6.7 +0.57 +7.2 +6.8
Contintuity error (%) +0.7 +0.6 +0.7 +1.0 +0.7 +0.8

UZ FORCE HLL Roe FORCE HLL Roe

GC propag. time (sec) 77.36 77.32 76.77 75.58 77.36 76.80
Error w/ experim. (%) +14.4 +14.3 +13.5 +11.8 +14.4 +13.6
Contintuity error (%) +0.7 +0.6 7 +1.0 +0.7 +0.8
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Table 5.5: Two-layer SWE results using various values for β for the RS front condition with 400-
cell solution domain. When β = 1.215, this front condition is referred to as MRS. The GC time of
propagation in the experiments was 93.67 s (ε = 1.0%) and 67.63 s (ε = 2.0%).

Experiment: ε = 1%

β based on equation 2.7 1.0 (RS) 1.1 1.2 1.215 1.3
√

2 (B)

GC propag. time (s) 131.35 112.81 95.73 93.33 83.64 76.16
Error w/ experim. (%) +40.2 +20.4 +2.2 +0.4 -10.7 -18.7
Continuity error (%) +0.51 +0.55 +0.70 +0.73 +0.91 +1.29

Experiment: ε = 2%

β based on equation 2.7 1.0 (RS) 1.1 1.2 1.215 1.3
√

2 (B)

GC propag. time (s) 95.53 82.08 69.45 67.88 60.83 55.40
Error w/ experim. (%) +41.3 +21.4 +3.0 -0.4 -10.1 -18.1
Continuity error (%) +0.51 +0.55 +0.70 +0.73 +0.91 +1.29

The computational time associated with the for SWE model alternatives is an important fea-

ture that is compared in Table 5.6. This comparison is made between the one and two-layer models

and between the DC and MOC boundary conditions for the one-layer model. The first section of

Table 5.6 displays the computational time for the GC to travel the full length of the tank with the

following initial conditions: x0 = 1m, Ltank = 10m, h0 = 1m and ε = 2%. The second section

of Table 5.6 compares the different modeling approaches. The results indicate that the DC BC is

consistently more computationally efficient than the MOC BC. It is apparent from these results

that the computational time is strongly dependent on the boundary condition solution strategy for

the GC front. Also, the source terms that are present in the two-layer model have an important

effect on the computational time (20%-50%, see Table 5.6). The two-layer model combined with

the MOC BC and explicit tracking of the discontinuities is expected to provide even worse com-

putational times as the one-layer model for comparable domain discretizations. Therefore, the

two-layer SWE shock-capturing model proposed in this thesis is potentially attractive in terms of

computational efficiency, fairly low continuity errors and above all conceptual simplicity and ease

of implementation.

It was found that the selection of the numerical scheme has a minor importance on the overall

accuracy. It was determined that the nonlinear schemes are more stable for partial depth releases
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Table 5.6: Computational time comparison between the one-layer (1L) and two-layer (2L) SWE
models and between the DC and MOC front BC strategies for various discretization sizes.

Num. of cells 100 200 400 800 2000

1L: MOC (s) 1.37 5.20 26.93 88.78 179.00
1L: DC (s) 1.02 2.07 2.62 9.58 36.32
2L: DC (s) 1.40 2.77 3.17 13.28 52.57

1L: MOC/DC 1.3 2.5 10.3 9.3 4.9
DC: 2L/1L 1.4 1.3 1.2 1.4 1.5

and for larger density differences. There was severe diffusion for the first-order Lax-Friedrich

scheme. In addition, the second-order accurate linear schemes tested were unable to remain sta-

ble for the two-layer SWE model in the context of the full depth lock-exchange problem due to

excessive oscillations that form during the reflected bore. In previous models these second-order

accurate schemes performed adequately because a shock-fitting procedure was used. In shock-

capturing models, the choice of numerical scheme is more important since the discontinuity is not

explicitly tracked.

The most important factors in the simulation of GC propagation compared to lock-exchange

experiments were: 1) selection of the appropriate mathematical model for the numerical solu-

tion (best was two layer SWE); 2) selection of the appropriate front condition (modified RS for

two-layer model); and 3) the selection of the nose BC solution strategy (most efficient was DC

equations).

Velocity measurements and predictions

A comparison between the predicted and measured velocities at an intermediate point in the

tank are presented in Figure 5.7. Velocity values are normalized by
√

g′h0 while time values

are normalized by xo/
√

g′h0 (the dimensionless variables are denoted with asterisk). Velocity

measurements were performed with the MicroADV probes sampling at a frequency of 20 Hz. The

oscillations observed at the beginning of the velocity measurements were caused by the removal

of the gate separating fresh and salt water. Suddenly, at about t∗ = 15 the jump in the velocity
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values corresponds to the arrival of the front at the ADV station, at x∗ = x/h0 = 7.68. Velocity

measurements indicate a gradual decline in the velocity after an initial peak that was caused by

the arrival of the GC front. Measurements were continued after the gravity current advanced the

entire length of the tank in order to observe the reflections. As the reflected current reached the

MicroADV probes, the velocity becomes slightly negative, which was an expected outcome.

Figure 5.7a) presents a comparison between the experimental measurements of the velocity

with the predictions from the one-layer SWE model using the Roe scheme, DC boundary condi-

tions and either Benjamin’s or Huppert and Simpson’s front conditions. These front conditions

represent the theoretical implementation and the most accurate empirical condition that was tested

for the full depth release. One notices good agreement between both simulations and the experi-

mental data, with Benjamin’s front more accurately predicting both the arrival of the front and the

reflected wave. The predicted velocity decay during the motion of the gravity current is milder

than the measurements. Moreover, for the one-layer model the use an empirical front condition is

not as important since the theoretical formulation in [Benjamin, 1968] is provides accurate results.

A comparison between the predicted GC velocity using the two-layer SWE model and the

experiments is presented in Figure 5.7b). As in the previous case, Roe scheme and DC boundary

conditions were used along with Benjamin’s and Huppert and Simpson’s front conditions. From

recent studies [Ungarish and Zemach, 2005], it is well known that the HS front condition performs

well for the full depth lock-release, which is reinforced in 5.7b). On the other hand, Benjamin’s

condition overestimates the GC front velocity by about 20% [Shin et al., 2004]. Therefore, one

would expect that the HS front condition would provide a better estimate for the GC velocity

structure. However, the magnitude (specifically at the velocity peaks) is better represented by

Benjamin’s condition even though the front advance is better approximated by the HS condition.

These results suggest that there is intense mixing and entrainment at the GC front (stated in

[Simpson, 1997]), which decrease the velocities from their theoretical value. Although there have

been many explanations regarding the inaccuracy of Benjamin’s theory [Klemp et al., 1994] and

[Shin et al., 2004], Figure 5.7b) provides a clear understanding of the source of these problems in
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the context of the velocity structure. The results in 5.7 indicate that the best agreement is observed

with the HS front condition and the two-layer model.

The results with the MRS front condition are presented in Figure 5.8 for the two-layer model to

compare with two experiments: ε = 1% and ε = 2%. Although the HS front condition performed

well in predicting the GC velocities, the results suggest that the MRS front condition performs best

at predicting the arrival of both GC fronts: initial propagation and first reflection. It performs a

little better than the HS front condition at predicting the peak velocities at the front but not as well

as the B front condition. All things considered for the two-layer model, the MRS front condition is

the best method tested for the Boussinesq, full depth lock-exchange problem.

In Figure 5.9 the experimental results (∆ρ = 3.0%) for the upper MicroADV probe are com-

pared to the two-layer SWE model predictions. The MRS and B front conditions are used with

200 computational cells. As seen in Figure 5.7b), the B front condition overestimates the arrival

of both fronts: initial propagation and first reflection. The peak velocities compare well to both

front conditions tested but are better represented by the MRS front condition. In addition, the MRS

condition performs very well at predicting both GC front locations: t∗ ≈ 15 and t∗ ≈ 40. After

the arrival of the GC front (t∗ ≈ 20−30 in Figure 5.9), the ambient velocities computed with the

two-layer SWE model underpredict the MicroADV results.
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Figure 5.7: Velocity hydrographs with B and HS front conditions and 200 computational cells.
The experimental data (ε = 2.0%) is provided from MicroADV devices in the slumping stage:
x∗ = 7.68.
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Figure 5.8: Velocity hydrographs with the MRS front condition and 200 computational cells. The
experimental data is provided from MicroADV devices at x∗ = 7.68.
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Figure 5.9: Comparison between measured ambient velocities and two-layer SWE predictions
using B and HS front conditions with 200 computational cells. The experimental data (ε = 3.0%)
is provided from MicroADV devices at x∗ = 7.70.

5.4 Comparison with previous models

This subsection compares the results of the proposed model to the ones obtained by previous

models. Two models were selected for this comparison, both of these using two-layer formulations:

Rottman and Simpson [Rottman and Simpson, 1983] and Ungarish and Zemach [Ungarish and

Zemach, 2005]. The former model successfully simulated gravity current flows for partial depth

releases (for φ ≤ 0.5), but had limitations in representing the back-propagation of the wave during

the slumping stage of gravity currents. The second model presented by [Ungarish and Zemach,

2005] is able to successfully simulate flows for cases when φ > 0.5, but requires explicit tracking

of the upstream moving hydraulic jump and the reflected bore. As it is shown below, the proposed

model is able to simulate flows for any value of φ without needing to perform explicit tracking of

any flow feature except the GC front.
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Figure 5.10 presents a comparison between the proposed model and the Rottman and Simpson

model results for the case when φ = 0.5. The results presented are the profiles of the GC at different

times along the simulation. All profiles are presented in a non-dimensional fashion, with depth

normalized by h0, length by x0 and time by x0/
√

g′h0. [Rottman and Simpson, 1983] presented

results using Benjamin’s front condition for a qualitative analysis; they obtained better agreement

with experiments using their front condition. The proposed model results were obtained using

Roe’s scheme and Benjamin’s front condition. One notices an excellent agreement between both

models.

A more challenging simulation is the case when φ > 0.5 due to the formation of the backward

moving feature resembling a discontinuity in the depth. A simulation for the case when φ = 1 was

performed with the proposed model in the conditions used in the work by [Ungarish and Zemach,

2005], and the results of both model’s GC profiles are presented in Figure 5.11. Two different

modeling alternatives are presented for this comparison: Figure 5.11a) presents results obtained

with the Roe scheme; and Figure 5.11b) presents results obtained with the Modified FORCE

scheme. In both cases the HS front condition was used with the limiting value hLE = 0.427H

at the GC front, following [Klemp et al., 1994]. Both modeling alternatives were successful in

reproducing the model results presented by [Ungarish and Zemach, 2005]. Results obtained with

the MFORCE scheme were slightly sharper (i.e better at simulating the vertical interface of shocks)

than the results obtained with Roe scheme. For the Roe scheme, which performed similarly to the

HLL scheme, Glaister’s approach [Glaister, 1988] was used to compute the Roe averages; however,

the same results were obtained with the Roe-Pike approach (see [Toro, 2001]). One also notices

that the few high frequency spurious oscillations presented in [Ungarish and Zemach, 2005] model

(which uses LxW scheme) are not present in the proposed model results.

In the previous discussion, the two-layer SWE model results were presented for three different

initial depth ratios: φ = 0, φ = 0.5 and φ = 1. In the following comparison, front conditions are

tested for a larger number depth ratios in the context of the dimensionless front velocity. The results

are presented in Figure 5.12 and were obtained using Roe’s scheme and three front conditions: B,
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Figure 5.10: Comparison of GC profiles at various time steps between the proposed two-layer
model and [Rottman and Simpson, 1983] model for the critical condition: φ = 0.5.
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Figure 5.11: Dimensionless slumping comparison between the proposed model and [Ungarish and
Zemach, 2005] model using Roe scheme and modified FORCE scheme.
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Figure 5.12: Dimensionless front velocity results for the two-layer model over a large range of
fractional depth.

HS and UZ. One notices that as the GC propagates into shallower ambient depths (thus larger

φ values) the velocity normalized by
√

g′h0 decreases. Results obtained with Benjamin’s front

simulation were the largest, while results obtained with Huppert and Simpson’s front condition

had an intermediate maximum at about φ = 0.10. The results obtained with the UZ front yielded

the smallest GC front propagation velocity. These results are compared with the numerical results

presented by [Ungarish and Zemach, 2005] and with the experimental results by [Rottman and

Simpson, 1983], and the best agreement with experimental results from the proposed model was

observed for the UZ front condition.
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A final comparison is made between the Environmental Fluid Dynamics code (EFDC) and

the two SWE models (with the HS front condition), which is presented in [Hatcher et al., 2012].

If EFDC is used to compare the SWE models (Figure 5.13), the depth profile is much better ap-

proximated by the two-layer model. However, both SWE models are able to accurately simulate

the position of the front if the correct front condition is used. The positive results between the

two-layer SWE models and EFDC indicate the possibilities of the thin layer models to GC flows.

In addition, the position of the nose and the slope of the reflected bore are very similar for both

approaches. It is important to note that the SWE model simulates a smaller magnitude for the

length of the nose region and is unable to model the mixing between the two fluids.
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Figure 5.13: Dimensional slumping comparison between the SWE and EFDC for a) t=1.8sec and
b) t=39sec. The discretization size for the SWE models is 800 cells.
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Chapter 6

Conclusions and future developments

In this thesis Boussinesq lock-exchange flows were analyzed experimentally and numerically

with the one and two-layer SWE models. These types of flows are common in canals, rivers, estu-

aries, etc. and play an important role in mixing and contaminant transport. Thus, computationally

efficient and accurate numerical models are important to determine the trajectory and velocities of

the GC. Although the model was constructed for Boussinesq, 1-D lock-exchange flows, the pro-

posed BC at the GC front can be applied to a larger range of flows (e.g./ non-Boussinesq). In order

to test the numerical model, MicroADV probes were used to measure the velocities of the bottom

current and the ambient fluid, and a high definition video camera was used to track the GC front.

This study presents a modeling framework based on the FVM to simulate GC flows using the

one and two-layer SWE. The motivation was the overall success in the application of the FVM

in the context of free surface flow simulation. While the simulation of GC flows with numerical

models has been performed for almost three decades, some conditions associated with GC flows

are more challenging to be represented numerically. This is particularly true for the case when GC

propagate into small ambient depths (φ ≥ 0.5), as in such cases a backward propagating wave with

a large depth discontinuity poses difficulties to SWE-based models. To date, such flows have been

simulated with models that perform explicit tracking of this hydraulic jump and the reflected bore,

which results in additional model complexity.

The proposed model aims to present a simple, albeit robust, way to perform GC flow com-

putation to any ambient depth. Previous two-layer SWE models required different approaches

depending on the initial fractional depth. In the proposed two-layer SWE model, two main contri-

butions are presented. The first is a numerical model in which a single shock-capturing framework
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is used to simulate GC flows for any initial depth ratio. The second contribution is a new al-

ternative to compute the GC front boundary condition enforcing explicitly mass and momentum

conservation, referred to as Dual-Cell (DC). This method was generally able to increase model

accuracy, particularly for smaller discretization sizes while being substantially more computation-

ally efficient than the alternative based on the method of characteristics (MOC). For some of the

discretization sizes that were tested, the DC BC was more than 10 times faster than the MOC.

The characteristic backward moving flow discontinuity cannot be properly simulated with

a single-layer model as is discussed in [Ungarish, 2009]. Results obtained with the proposed

two-layer SWE model are much better qualitatively and were more successful in reproducing ex-

perimental results with the MicroADV probes. Moreover, the two-layer SWE compared very well

with previous numerical models both for small and large ambient depths. The development of

this numerical solution involved the application of the SWE equation in conservative variables and

the separation of some terms of the expression derived by Rottman and Simpson [Rottman and

Simpson, 1983] to be handled as source terms. Such source terms required special treatment to

overcome difficulties as φ ≈ 1, and the use of L’Hopital rule in the two-layer model was successful

for this purpose.

The velocity gradient component of the two-layer source term vector required the use of

L’Hopital’s rule for h/H > 0.95. This velocity gradient term was not important in the source

term calculations for large fractional depth, so the effect on the numerical scheme was negligible.

However, if L’Hopital’s rule is not used the numerical code was unstable. On the other hand, the

depth gradient term played the most important role in establishing the discontinuity instead of the

depression wave for large values of φ . When this discontinuity (instead of the depression wave)

reflects off of the upstream boundary, the reflection causes the GC nose to form in case of the

two-layer model. Once the upstream reflection occurs, the source terms are only important at the

interface of the reflected bore (where the depth gradient is large), which eventually reaches the

front of the GC.
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The resulting one and two-layer SWE models were tested with different front conditions, dif-

ferent strategies to compute the nose boundary condition and for various fractional depth. The

most important factors as far as accuracy is concerned were: 1) proper selection of the mathe-

matical model; 2) selection of the front condition expression; and 3) selection of nose boundary

condition calculation. Unlike the initial expectation, three out of four numerical models performed

comparably well in the simulations. The Lax-Wendroff scheme (even with the use of artificial

viscosity) produced the worst results due to the oscillations observed and the code crashing at the

upstream reflection.

The use of a modified FORCE scheme and the non-linear Roe and HLL schemes was gen-

erally very successful in reproducing the experimental results collected in this investigation, par-

ticularly when associated with the two-layer SWE formulation and the modified version of the RS

front condition (MRS) that was presented in this thesis. The empirical coefficient β in this expres-

sion was calibrated for the full depth lock-exchange experiments, and the best agreements with

experiments was β = 1.215. This value is clearly larger than the value provided in [Rottman and

Simpson, 1983] (β = 1.0) for partial depth releases. It is reiterated that an important feature of

the proposed model is the ability to simulate the upstream moving discontinuity observed during

the slumping stage without the need of explicit tracking. Moreover, the objective was to develop

a shock-capturing two-layer SWE model that can simulate GC flows without the restriction of the

ambient depth.

Although there has been extensive research for GC flows in recent decades, further investi-

gations are required for better understanding. The effects of entrainment and complex geometries

are still poorly understood in the context of the SWE models. For laboratory experiments, it is

difficult to accurately measure the GC depth. For this study, there was an attempt to utilize pres-

sure transducers to overcome this problem; however, surface waves smear the results indicating

that larger-scale GC flows are required if transducers are to be used. In future studies additional

CFD models will be tested (e.g. OpenFOAM or FLOW3D). In addition, the proposed two-layer

modeling approach should be extended to non-Boussinesq problems and axisymmetric GC flows.
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