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Abstract 

 The increasing reliance on electrical systems to fulfill mission and safety critical 

applications has motivated the need for in situ monitoring of functioning electrical systems and a 

priori warnings of failure. In this research the drawbacks of traditional reliability methods when 

applied to mission and safety critical applications are discussed and a new paradigm for the 

reliability of electronics, prognostic health management, is demonstrated. In the prognostic 

health management reliability model wear and damage to individual electrical systems are 

monitored and advanced warnings of failure are issued to allow adequate time to plan mitigating 

action and avoid unplanned failures. The occurrence of an unplanned failure in a mission and 

safety critical electrical component is considered by definition to have an associated cost that is 

unbearably high. Leading indicators of failure have been developed that allow in-situ monitoring 

of the structural health of electronics, a method coined resistance spectroscopy. The presented 

techniques are non-destructive in nature and were purposefully designed to cheaply embed into 

new electrical systems. Methods for processing the stream of information from real time 

observations are presented in a manner that facilitates statistically defendable decision making 

and the optimization of safety, availability, and operating costs. A variety of recursive filters –

least squares, Kalman, extended Kalman, and particle – are combined with prognostic methods 

(forecasting) to create seamless real time monitoring and prediction algorithms. Solder joint 

configurations studied include SnPb eutectic, high lead, lead-free (SnAgCu), copper columns, 

and micro coil springs. Architectures studied include ball grid array, land grid array, a novel 
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spring interconnect and pin/spring electrical connectors. Test environments include drop/shock, 

vibration, and simultaneous temperature and vibration.  

Investigations relating to the implementation of the presented techniques demonstrate the 

practical nature of the work. A cost justification method that is accessible to engineers, technical 

managers, and executives is developed to quantify the business case for implementing prognostic 

health management for electronics. Particle swarm optimization methods have been used to 

demonstrate the expected future performance of implemented prognostic algorithms given a set 

of test data. The described methods have been shown to be particularly sensitive to damage in 

the novel spring interconnect designed for long duration space travel. 

Methods for verifying the correct operation of prognostic algorithms and validating that 

algorithms meet specified requirements (both online and offline) are discussed. A prognostic 

health management toolbox, coded in Matlab
TM

, has been created. The toolbox provides a 

foundation of verified and validated algorithms for implementation of the presented methods, 

and is highly extendable for the development of new prognostic algorithms. The code is generic 

enough to apply to electronics as well as other application domains where suitable leading 

indicators of failure exist. All of the work presented in this document was created in part with the 

prognostic health management toolbox. 
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1 Introduction 

Mission and safety critical electronics describes a system of electrical components whose 

correct operation are integral to the operation of a larger engineering system where an unplanned 

failure will result in loss of life or other unbearable consequences. As engineering systems 

continue to become increasingly electronic rich the need to assure the correct operation of 

mission and safety critical electronics increases in importance. This document will discuss 

methods for monitoring electronics for leading indicators of failure and predicting the expected 

future time of failure so that contingency plans can be made before a catastrophic failure occurs. 

1.1 Mission and Safety Critical Electronics 

Many electrical subsystems can be considered as mission and safety critical. Avionics 

systems require ultra-high reliability to fulfill critical roles in autonomous aircraft control and 

navigation, flight path prediction and tracking, and self-separation. Complex electrical power 

systems (EPS) which broadly comprise of energy generation, energy storage, power distribution, 

and power management, have a major impact on the operational availability, and reliability of 

electronic systems. Technology trends in the evolution of avionics systems point towards more 

electric aircraft and the prevalent use of power semi-conductor devices in future aircraft and 

space platforms.  

Automotive applications demand many high reliability applications for electronics. In the 

power train engine controllers and the accompanying electronic throttle controls have received 

much scrutiny recently due to reports of unintended accelerations in automobiles. Autonomous 

vehicles, automated collision avoidance, air bags and anti-lock brakes require very high 
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reliability electronic systems to fulfill important safety applications. Automobiles are quickly 

becoming one of the most heavily mechanically/electrically coupled consumer products. 

An increasing reliance on internet based storage and online applications requires very 

high reliability needs for computer servers. Many of the world’s financial centers rely heavily on 

uninterrupted access to vast computer resources and large cities require extensive computing 

resources to maintain safety and order for millions of residents. As the world’s population 

continues to shift to more urban environments their reliance on electronics for daily activities 

will increase substantially. 

Long term human presence in space without the need for resupply is another typical 

example of mission and safety critical applications. Space travel tends to expose electronics to a 

variety of harsh environments, with severe consequences for unplanned failures and few 

opportunities for repair.  

Due to the increasingly important role of electronics in modern engineering systems a 

number of traditional reliability approaches have been developed for electronics. A brief 

overview of traditional reliability methods will be discussed to frame a discussion about their 

drawbacks. Then new methods for overcoming the drawbacks of current methods will be 

introduced. 

1.2 Traditional Reliability Approaches for Electronics 

Traditional reliability approaches for electronics, also known as life prediction 

methodologies, use a combination of accelerated life testing and numerical simulation to 

describe the reliability of electronics. Even highly accelerated tests can be time consuming and 
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the accuracy of numerical simulations can vary widely due to the complicated nature of 

electronic assemblies and ever changing manufacturing procedures. 

1.2.1 Accelerated Life Testing 

Accelerated life testing is a method of using exaggerated environmental stresses to 

quickly damage an electronic assembly and gain information about its expected reliability. For 

purely mechanical stresses this typically involves thermal cycling, drop, and vibration testing. 

There are also a number of humidity, corrosion and electrical stresses that can be applied. 

Results from this type of testing are frequently communicated in the form of a Weibull failure 

distribution. To relate accelerated testing to actual usage conditions acceleration factors of 

varying quality may be available. 

1.2.2 Numerical Simulation 

In an effort to reduce the time and cost of physically testing electronics, a number of 

virtual qualification methods exist. There are some closed from tools that can quickly and 

roughly estimate reliability, but generally finite element simulation are used to analyze electrical 

components. Electronic assemblies are small in physical size, and incorporate many different 

constituent materials in a single product. Materials used in electronic components may have 

scale, temperature, and rate dependent properties which cause difficulties in successfully 

modeling the effect of applied stresses on components. 

1.2.3 Hybrid Approaches 

Hybrid approaches exist which combine experimental observations with simulation to 

predict reliability. For example the ability to measure strains in solder joints is very limited due 

to their small size (~0.5 mm height). As a solution to this problem strains near the solder joint on 
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the circuit board are measured, and then used as inputs to drive the boundary conditions for finite 

element simulations.  

1.3 Shortcoming of Traditional Life Prediction Approaches 

In a few closely controlled situations traditional reliability approaches can be used to 

successfully avoid unplanned failures. Unfortunately the way electronics are used in the field, 

particularly mission and safety critical electrical systems, the assumptions needed for traditional 

reliability methods to perform properly are often violated.  In practice manufacturing variations 

and defects, simultaneous stress environments, unintended usages, and difficult to understand 

material properties undercut the effectiveness of traditional methods when an electronic system 

is mission or safety critical. 

1.3.1 Drawback of Accelerated Life Testing 

Typically accelerated life testing is performed on a batch of components from a 

prototyping line or a single manufacturing run. Accelerated thermo-mechanical testing for ball 

grid array (BGA), and chip resistor/capacitor components can take months to complete and 

significantly delays the timely launch of new products. Therefore there is strong monetary 

incentive to increase the speed of testing and draw conclusions from limited sample sizes. Using 

two accelerated tests to compare the relative reliability of two components can be effective 

provided a large enough sample size is used. It is much more challenging to acquire the data 

needed to determine acceleration factors that translate data from accelerated tests into estimates 

of field usage reliability. To generate these acceleration factors, you must make assumptions 

about the environment the electronics will be used in. If the actual usage differs from the 

assumed usage the quoted reliability from accelerated tests can be inaccurate. Another drawback 

of accelerated testing is the inability to handle manufacturing variations and defects. Test 
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assemblies from accelerated testing may not even be manufactured on the same line as the 

production parts. Variations in mechanical tolerances and properties can be difficult to identify 

during manufacturing because electrical testing (not mechanical) is predominantly used to 

validate the correct operation of circuit boards during assembly. If a small sample from each 

manufacturing lot is requisitioned for accelerated testing, months may pass between the start of a 

deviation in the manufacturing process and the identification of the problem due to the long 

running time of accelerated tests. 

The most significant limitation on successful reliability life prediction is simultaneous 

usage conditions. Most accelerated testing involves imparting a single stress at a constant rate to 

a component. In the field, mission and safety critical electronics typically experience 

simultaneous stresses. For example automotive and aerospace systems typically experience 

widely varying temperature extremes and random vibrations simultaneously. In an effort to 

reduce the number of variables in an experiment accelerated testing usually does not stress 

components that may have interactions between two or more different stress types. As will be 

discussed later, a typical example is the reliability of a solder interconnect subjected to a drop 

event can be drastically reduced by prior isothermal ageing. 

1.3.2 Drawbacks of Numerical Reliability Prediction Methods 

Numerical simulations suffer from a number of drawbacks when trying to predict 

reliability in mission and safety critical electronics. Most importantly the simulations are difficult 

to directly validate due to the small size of the critical parts of an electronic assembly. Second 

order validations are used because as of yet no one has figured out how to experimentally 

observe strains in the tiny critical locations that are mechanically weak. An example of a second 

order validation is to use a correlation between a simulation and experimentally observed failure 
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data when in fact we are truly concerned with un-observable stresses inside the component. The 

danger of correlation without causation is much higher with a second order correlation. 

Additionally simulations must assume ideal geometries and pristine material properties. Due to 

normal variations in manufacturing, geometries may not be adequately modeled. Manufacturing 

defects are seldom considered. The non-linear, scale, temperature, and time dependent properties 

of materials used in electronics makes building a successful simulation challenging. In situations 

where stresses are applied in a dynamic method such as drop and shock the computational 

expense of numerical analysis of can be very high. 

1.3.3 Drawbacks of Hybrid Reliability Approaches 

Hybrid reliability approaches suffer from a combination of experimental and numerical 

challenges discussed in the previous two subsections. Again the single stress nature of 

accelerated tests may limit the applicability of hybrid approaches to mission and safety critical 

electronics. Many times hybrid approaches rely on strain values extracted from numerical 

simulations which are nearly impossible to validate by experimental methods. Interacting factors 

that are seen in fielded products, but not easily duplicated in a laboratory, can also limit these 

approaches if reliability predictions were developed from assemblies undergoing a single stress 

test. 

1.4 Prognostic Health Management  

The limitations of traditional reliability methods when applied to mission and safety 

critical electronics in realistic fielded environments has motivated the development of 

prognostics and health management methodologies (PHM) for electronics. Named after an 

analogy from the medical field where patients are given a prognosis for their survival time based 

on medical indicators specific to the patient, prognostics in an engineering discipline which 
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attempts to predict the remaining useful life (RUL) of a physical system. Similar to the medical 

profession, leading indicators of failure are used to help quantify the damage state of the system 

being monitored. The development of PHM has tracked closely with the evolving methodology 

of maintenance. Maintenance methodologies have evolved from reactionary to performing time 

based and condition based maintenance. In practice as the reliability of engineering systems has 

increased a larger number of applications are either becoming, or desire to be, mission and safety 

critical.  

Assuming traditional reliability methods can be applied successfully, which may not 

always be true; you are encountered with the situation where you must choose the acceptable 

probability of failure in a group of systems. This is represented schematically in Figure 1. The 

area under a predicted failure distribution curve is defined as unity. Therefore an N% allowable 

probability of failure can be identified as a region under the curve with an area of N%. The edge 

of this area defines the N% failure time. Traditional maintenance approaches would schedule 

maintenance or replacement of a component when its usage exceeds the N% threshold. In 

practice high reliability systems may be thresholded at a maximum probability of 1, 0.1, or even 

0.01% failure. This results in two undesirable situations. The first disadvantage is there will 

always be a small probability of an unplanned failure. By definition if the system is mission and 

safety critical this is unbearable. Furthermore (100 – N)% of components will be replaced before 

they are truly worn out which can make maintaining a mission or safety critical system very 

expensive. If the traditional reliability method that was used to derive the predicted failure 

distribution is flawed in any of the ways described earlier, the N% probability of failure may not 

accurately represent the true risk of failure. Most importantly traditional reliability methods use 

large population statistics to describe reliability as an average in a large fleet of identical 
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products. Traditional methods provide no means for predicting the reliability of a single 

component given its truly unique history of past usage and infinite number of possible future 

usage conditions. 

 

Figure 1: Hypothetical failure distribution highlighting some drawbacks of traditional 

reliability methods 

PHM methodologies are a reaction to traditional methods. PHM uses advances in sensor 

technology and failure models to monitor a component as it is in use. Predictions of remaining 

useful life can be made based on the true state of the system so that contingency plans can be 

made before failure occurs. If a manufacturing defect has escaped detection and is installed on a 

fielded system PHM can provide warning that an earlier than traditionally expected failure may 

occur. If the system is used in a manner or environment that it was not designed for, PHM can 

provide warning of an impending failure because actual damage to the system is monitored. 

Damage accrued during shipping, handling, and maintaining the system can also be captured 

using PHM. There are many aspects to PHM. Damage isolation and detection can be used to 

identify that the system has accrued damage. Failure mode classification methods are used to 

determine what failure mode is most dominant. This work will focus on the prognosis aspect of 

PHM including the development of sensors to monitor damage and models for predicting 
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impending failures. Much of this work will ultimately focus on determining the remaining useful 

life of a system given a measurement of the current state. 

1.5 Risk Based Decision Making 

“Knowing when a system will fail is not nearly as valuable as knowing when to 

take an action.” – Steven Engle 

Risk based decision making is a methodology that embodies how to make prognostic 

predictions of failure useful for the end user of a system. Using a process established in [Engle 

2009], statistically defendable methods for using predictions and taking action based on those 

predictions is established. Using the same remaining useful life prediction in different ways, risk 

based decision making can be structured to optimize, safety, cost, availability, and logistics. 

Many of the techniques used in this document were chosen because they ultimately facilitate the 

use of risk based decision making.  

1.6 Resistance Spectroscopy 

Resistance spectroscopy is a method of making resistance measurements on very small 

specimens, like those found in electronics. The denotation spectroscopy implies that the 

measurement has a magnitude and phase component, like a sine wave, that is used to 

characterize the system being measured. The ability of the resistance spectroscopy measurement 

approach to monitor small changes in resistance in a very noisy environment makes it an ideal 

sensor for non-destructive evaluation of damage in fielded electronics. The entirety of this work 

is made possible by the measurement capability of the resistance spectroscopy method. Earlier 

when PHM was described as leveraging advances in sensor technology to provide unique 

capability beyond traditional methods, the resistance spectroscopy method is the advancement 
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that makes this work feasible. The choice of resistance spectroscopy as a practical sensor for 

PHM of electronics is crucial because it can be easily implemented in a cost effective manner on 

circuit boards using the same technology that is used to manufacture the rest of the circuit board. 

The prevalence of easy access to the electrical signals and proximity to failure locations on a 

circuit board makes it ideal for prognostics when compared to other more mechanical 

measurement methods. 

1.7 Overview of Electronic Packaging 

Much attention has been given to Moore’s Law [Moore 1965], which roughly states that 

based on prior experience the number of transistors that can be cheaply built into a single chip 

will double every 24 months. Assuming that a model for the number of transistors per chip takes 

the form of 

 ( )    
 
  

(1) 

Where N is the number of transistors per chip, C is a constant, t is time in years, and d is 

the doubling period in years. The regression problem can be made linear using a base two 

logarithm. 

     ( )             
 
        

 

  
(2) 

Based on the data presented in Figure 2, the realized transistors per chip still closely fits 

to the model proposed by Moore in 1965. The data presented in Figure 2 indicates that the 

number of transistors have doubled every 1.991 years between 1971 and 2012. 
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Figure 2: Transistors per Chip Realized in Practice 

The unintended ramification of doubling the number of transistors on a chip every 24 

months is the need to connect an increasing number of interconnects between the micro scale of 

the semiconductor, and the macro scale of the physical world where electronics interact with 

humans. The process of protecting the fragile integrated circuit from the environment in general 

is known as the field of electronic packaging. Figure 3 shows a number of the different levels of 

packaging involved in a complex electrical system 
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Figure 3: Various levels of electronic packaging [Dally 2008] 

First and second level interconnects, or the connections between the chip and the printed 

circuit board bridge the interface between the micro level and macro level and often are 

challenging to make and reliably maintain. On a typical CPU mother board there are thousands 

of second level interconnects, and a single interconnect failure can render the entire computer 

useless. As the complexity of integrated circuits increases, the number of required second level 

interconnects increase. Figure 4 highlights the space advantages of area array packaging as 

compared to simply connecting around the periphery of a chip, and Figure 5 shows a common 

format for high I/O packaging based on this concept called a ball grid array (BGA). 

 

Figure 4: Interconnects per length for different packaging architectures [Dally 2008] 
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Figure 5: Widely used format for electronic packaging, an array of solder bumps or 

solder joints. Top view (upper), bottom view (lower). The bottom side connects to the printed 

circuit board. The integrated circuit is enclosed and protected by the black mold compound. 

Much of the work in this document focuses on monitoring and predicting failures in grid 

array packaging. Figure 6 shows an idealized cross section of two common grid array packages. 

The flip chip is a more modern technology where the integrated circuit is connected directly to 

the circuit board using solder joints. The BGA package is a slightly taller configuration where an 

interposer circuit board connects via wire bonds to the integrated circuit and then solder joints 

connect the interposer board to the printed circuit board.  

 

 

Figure 6: Cross section of a flip chip package (left) and a BGA package (right) 
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A number of environmental stresses such as drop/shock, vibration, temperature, and 

many others can cause fatigue cracks to propagate through solder joints as depicted in Figure 7  

 

Figure 7: Depiction of a cracked solder joint as the result of applied environmental 

stresses. A crack in a solder joint causes an open circuit and failure of the electrical system 

At the time this document was created flip chip and ball grid array packaging was in 

widespread use. New architectures designed to further increase the density of interconnects by 

utilizing all three physical dimensions had begun to be used in higher end electronics. 

Undoubtedly the march of progress will continue in the electronics industry, and each new 

iteration of integrated circuits will be susceptible to the mechanical limitations and reliability 

concerns of the electronic packaging that protects the integrated circuit. In many consumer 

applications that utilize cutting edge technology a certain level of unexpected failures are 

considered acceptable. In mission and safety critical electronics the consequences of unplanned 

failures are unbearable and motivate the use of new techniques to monitor and warn of 

impending failure. This work specifically attempts to create methods of monitoring solder joints 

before a fatigue crack propagates through the joint and predicting when the system will be 

rendered unusable so mitigating action can be planned. 
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2 Literature Review 

Traditional reliability methods for electronics have been covered in extensive detail 

[Minges 1989, Pecht 1991, Lall 1996, Blackwell 2000, Harper 2005, Dally 2008]. A brief 

overview of reliability methods will be made to substantiate claims made in the introduction of 

this document. A discussion of traditional reliability methods highlights drawbacks of the current 

approaches when applied to mission and safety critical electronics. The foundation for 

improvements to traditional methods via sensor advancements will be reviewed in the resistance 

spectroscopy section. Prognostic health management in general and prognostics for electronics in 

particular will be reviewed to provide a context for the contributions of the current work.   

2.1 Traditional Reliability Methods 

Traditional reliability methods focus on gathering large population failure data through 

accelerated life testing, virtually qualifying electronic assemblies through simulation and hybrid 

approaches that combine experimental data with simulation. 

2.1.1 Accelerated life testing 

Accelerated life tests (ALT) are a type of tests that is designed to quickly fail a 

component in a manner that is representative of how the product might fail during actual use 

[Suhir 2002]. This work focuses on direct mechanical stresses that can be imparted on 

electronics by the environment electronics are typically used in. Examples of environmental 

stresses include thermo-mechanical stress due to mismatch in coefficients of thermal expansion 

as ambient temperatures change, drop loadings caused by impacts during use and accidental falls 

during transportation and maintenance, and vibration loadings caused by transportation and 

usage. ALTs may be combined, for example simultaneous vibration and elevated temperatures. 
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Other accelerated tests that will not be discussed include stresses imparted by corrosion, 

humidity, chemical and electrical stresses. The US Department of Defense (DoD) military test 

standard MIL-STD-810 list a large number of different accelerated tests that may be used for a 

variety of different products including, but not limited to electronics. Accelerated tests standards 

for surface mounted electronics common in mission and safety critical electrical products have 

been adopted by the electronics industry for thermomechanical stresses [IPC-SM-785], drop 

[JESD22-B111], and to a lesser extent vibration [JESD22-B103B]. Sometimes vibration profiles 

outlined in MIL-STD-810 are used or modified for vibration testing of surface mount electronics. 

In addition to describing how to run an accelerated test, standards provide insight into 

methods of monitoring electronics for failure during the accelerated test. Electronics subjected to 

highly dynamic stresses such as drops, shock, and vibrations must be monitored using high 

sampling rate equipment to catch brief intermittent failure events. Standard practice is to 

assemble a component under test so that each electrical interconnect is connected in a single 

series circuit, or a continuity daisy chain. If any of the electrical interconnects fail mechanically, 

the resistance of the daisy chain becomes infinity and can be easily identified. Due to the 

dynamic nature of many of the ALTs broken daisy chains can appear to be not broken when the 

test is not running. Therefore the severity, number, and duration of open events that defines a 

failure are dependent on the test standard and must be monitored continuously.  

Accelerated life test data is often communicated in the form of Weibull statistics. The use 

of Weibull statistics is partly based on science and partly based on historical reasons [Hallian 

1993]. The Weibull failure distribution can be configured to widely different shapes and covers 

many practically observed failure phenomena, specifically components that do not have a 

constant failure rate. To produce accurate statistical estimators, particularly for lower percentiles, 
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a large sample size is required [De Souza 1995]. Due to time to market and budget pressures, in 

practice the number of samples is usually less than optimal. There are at least three standard 

forms for the Weibull distribution [Hamada 2008], one of which can be stated as 

 ( )            (    ) (3) 

Where f is the probability density function (PDF) of failure at time x,   is the shape 

parameter and   is the scale parameter. Different methods exist for fitting failure data acquired 

through ALT or from field data to the Weibull model. There is a graphical method, maximum 

likelihood estimate (MLE), and Bayesian approaches to estimating the Weibull parameters 

[Hamada 2008]. The MLE method is used most commonly and can be found in the 

WeibullSmith [Fulton 2002] and Matlab [Mathworks 2012] software tools. To quantify the effect 

of sample size on the effectiveness of the MLE estimate of the shape and scale parameter a 

simulation was created. First a ground truth distribution was created with values of   and   as 

1.5 and 0.7 respectively (Figure 8). Then a limited number of random values were sampled from 

the ground truth distribution. The MLE approach was used to estimate the Weibull parameters 

from the limited sampled data. The process of drawing samples and estimating parameters is 

considered one trial. Ten trials were performed at each of the different sample sizes. Mean and 

standard deviations for each group of ten trials at a specific sample size was calculated. 
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Figure 8: Ground truth PDF used for the Weibull accuracy simulation 

 

Figure 9: Error in MLE parameter estimation for different sample sizes compared to the 

ground truth simulation 
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Figure 10: Error in MLE parameter estimation for different sample sizes compared to the 

ground truth simulation 

The simulations highlight the errors that may occur when estimating the shape (Figure 9) 

and scale (Figure 10) parameters using the commonly used MLE method with even moderate 

sample sizes. The resulting estimates may not accurately provide sufficient resolution to predict 

low percentile thresholds needed for mission and safety critical electronics.    

2.1.2 Numerical Simulation 

A limited number of closed form approaches exist for life estimation in electronics. 

Closed form methods for thermal cycling [Clech 1993], and vibration [Stienberg 2000] 

environments have been proposed. Most life prediction approaches use some form of finite 

element modeling. In general finite element approaches involve choosing a constitutive model to 

describe the behavior of materials used in electronics, assumptions about geometry and boundary 

conditions are made and representative models are created. Commercial software calculates 

stress-strain values for the model. Stress and strain values from the analysis are used as inputs 

into one of the many solder fatigue models to predict the expected time of failure for a 

component. Simulations concerning reliability due to thermomechanical, drop and vibration 
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loadings focus on solder joint reliability as the mechanically weak component. Failures in other 

components may not be studied and can lead to unexpected failures. Constitutive models used 

for modeling solder must account for time and temperature dependent properties [Hongtao 2006, 

2007, Yeo 2006, Bhate 2008] to achieve reasonable accuracy in life prediction. Different 

approaches to modeling geometry have been used. Smeared models [Pitarresi 1991], global/local 

submodeling [Lall 2007f], and non-traditional problem formulations [Lall 2010g,h] have 

facilitated the modeling of electronics. 

Lee provided a concise review of solder joint fatigue models used in electronic packaging 

[Lee 2000]. A summary of the fatigue model names and approach classifications reproduced 

from the cited work is shown in Table 1. Each model tends to be appropriate for a specific 

loading condition, geometry, or material type (e.g.: SnPb or SAC alloy solders). Strain based 

approaches assume that an applied strain causes a stress in the solder, as is common in thermal 

cycling applications. The author further divides the strain based criteria’s into models that 

account for plastic strain or creep strain dominated effects. Energy based approaches utilize 

information from a stress strain hysteresis loop to predict fatigue life. Damage based approaches 

utilize fracture mechanics approaches to predict fatigue failure. The author provides an insightful 

warning that fatigue life and solder joint life are not necessarily defined as the same quantity 

because a solder joint with a growing fatigue crack can still maintain electrical continuity in 

some cases. Famously a bug in the commercial finite element software ANSYS necessitated a 

correction to published model constants in the frequently used Darveaux model [Darveaux 

2002]. The same model was updated with new material constants when lead free solders became 

widely used [Lall 2009]. 
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Table 1: Fatigue models commonly used for predicting reliability of electronics classified 

by approach. Reproduced from [Lee 2000] 

Fatigue model Strain Energy Damage Other 

 Plastic Creep    

Coffin-Manson X     

Total strain X     

Soloman X     

Engelmaier X     

Miner X X    

Knecht and Fox  X    

Syed  X X   

Akay   X   

Liang   X   

Heinrich   X   

Pan   X   

Darveaux   X X  

Stolkarts    X  

Norris and 

Landzberg 

    X 

 

Historically solder for electronics applications was an eutectic formulation of tin-lead 

solder commonly abbreviated as Sn63Pb37. Due to  directive 2002/95/EC , restriction of the use 

of certain hazardous substances in electrical and electronic equipment (RoHS) by the European 
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parliament and council, usage of solders containing lead have been drastically reduced. Starting 

in 2006 solder formulations based mostly on tin and silver known as SAC alloys have been 

predominantly used. Unfortunately for reliability engineers there are a wide number of different 

chemical compositions trying to obtain market dominance in the lucrative electronics 

manufacturing industry. Slightly different solder compositions can have drastically different 

material properties that evolve with time and temperature [Hongtao 2009]. Obtaining adequate 

material properties to build finite element models that can accurately model deformations in lead 

free solder joints can require many difficult to perform tests beyond the classic room temperature 

quasi-static pull test [Mustafa 2011, Lall 2011d].  

The electronics manufacturing industry is dominated by consumer electronics due to the 

large volumes of cell phones, computers, gaming systems, tablets, and related products that are 

manufactured each year. The entire group of manufactures who specialize in mission and safety 

critical electronics has negligible buying power compared to the consumer electronics sector. 

The unintended consequence of the RoHS initiative is the disappearance of SnPb electronic 

products from the global supply chain. Each year the economics of maintaining obsolete 

equipment for a niche market of mission and safety critical electronics customers becomes less 

advantageous so a change to lead free alloys is being forced on many consumers. In response to 

reliability concerns caused by the lead free transition, a coalition of stakeholders including 

NASA, DoD, DoE, Army, Navy, Air Force, defense and space contractors are studying risk 

mitigation strategies. The NASA JCAA/JGPP project, and the Pb-free Electronics Risk 

Mitigation consortium (PERM, aka: Pb-free Manhattan project) are examples of the large bodies 

of work being amassed on the topic of the lead free solder transition for mission and safety 

critical electronics. 
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2.2 Resistance Spectroscopy 

Resistance spectroscopy is a measurement technique that is used extensively in later parts 

of this document. Originally developed for electronic packaging [Constable 1994, 1995] and then 

identified as a reliability tool applicable to ALTs [Butler 2000]. Implementations of the 

resistance spectroscopy technique using commercial off the shelf hardware and the Labview 

programing language [Batra 2003] show an economical method for implementing the technique. 

The underlying concept of the resistance spectroscopy technique has historically been used for a 

number of applications [Temple 1973] in the physical sciences. A full section is dedicated to the 

specifics of this technique later in the document. 

2.3 Prognostic Health Management 

Prognostic health management is a paradigm shift away from reactive fear of failure 

approaches associated with maintaining high-reliability critical electronics systems.  The benefits 

of monitoring a component for early indicators of failure, prognosticating future failure, and then 

taking action before a catastrophic failure occurs have many applications [Luna 2009, Grubic 

2009]. Monitoring the health of individual components enables improvements in safety [Downes 

2007], availability [Swanson 2001], and cost control of high reliability systems [Jarrell 2002]. 

Traditional reliability methods, such as Weibull analysis, provide failure time estimates for a 

large population of components.  Unfortunately the failure of a single electronic component 

would be the most useful information, since single components - not average components - cause 

system wide failures. Knowing the health of single components provides substantially better 

information for making decisions [Engle 2009] that affect safety, availability, and cost of high 

reliability systems.  Advances in sensor technology and failure analysis have catalyzed a 

broadening of application scope for prognostication systems to include large electromechanical 
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systems such as aircraft, helicopters, ships, power plants, and many industrial operations. Current 

PHM application areas include, fatigue crack damage in mechanical structures such as those in 

aircraft [Munns 2000], surface ships [Baldwin 2002], civil infrastructure [Chang 2003], railway 

structures [Barke 2005] and power plants [Jarrell 2002].  The spectrum of reliability and health 

monitoring approaches for electronics has traditional methods at one end of the spectrum, hybrid 

reliability approaches, such as fuses and canaries, in the middle of the spectrum, and prognostic 

health monitoring approaches at the far end of the spectrum.  

Life Consumption Monitoring is a methodology that at times has been described as 

prognostics [Ramakrishnan 2003, Mishra 2002, 2004], but the author feels that it is more 

accurately described as a usage monitoring maintenance approach [Hopp 2011]. Life 

consumption monitoring uses observations of usage conditions as inputs into finite element 

models to perform a customized approach to traditional numerical reliability approaches. 

Because environmental conditions, and not the physical state of the system, is being monitored 

there is no method for detecting manufacturing defects, material variations, or other unplanned 

realities that are not easily captured by a priori computer modeling.  

Reliability canaries represent another method that falls on the spectrum of reliability 

methods between traditional methods and prognostics. Named after the song birds that coal 

miners would carry into mines to provide advanced warning that toxic gases were accumulating 

in the working areas. In the mines, the small bird would die when exposed to concentrations of 

toxic gases that were non-lethal, but potentially dangerous to a human. On a circuit board, a 

canary is a usually a small nonfunctional component that will fail prior to the expected failure 

time of the functional components [Vichare 2006]. Again the problem when applied to mission 
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and safety critical applications is the lack of insight into the functional components and no 

assurances that the manufacturing defects or anomalies will be discovered. 

For a long duration space mission, prognostic technology would be required to be 

integrated (embedded) into the systems being monitored, consume minimal resources, and 

provide sufficient advanced warning of failure to allow contingency plans to be formulated. 

Some approaches that may meet these goals in other application domains and can be loosely 

characterized into structural applications or energy conversion applications. Techniques related 

to structural monitoring include: bridges [Ko 2005], aircraft [Muns  2000], railways [Barke 

2005], and nuclear power plants [Jarrell 2002, Coble 2010], Alternatively other authors have 

investigated monitoring power delivery and conversion system components: batteries [Goebel 

2008], generators [Swanson 2001], planetary carrier plates [Orchard 2007, 2009], bearings 

[Bechhoefer 2011], and split torque gearboxes [He 2010]. Grid array components discussed in 

this paper are part of the subset of electrical energy distribution and conversion. Different 

electrical components tend to have different failure modes even though they are found near grid 

array components on circuit boards. For example: electrolytic capacitors [Kulkarni 2010], gate 

bipolar transistors [Brown 2011], and MOSFETS [Saha 2011b].It is important to note that while 

this paper mainly focuses on monitoring and prediction, the algorithm outputs have been 

specifically designed to dovetail with the management aspect of PHM. Risk based decision 

making methods [Engel 2009, Lall 2010b], allow the outputs from a prognostic prediction to 

result in actionable decisions for an end user. 

Traditional reliability methods have implicit shortcomings that are often unavoidable. 

Critics of traditional reliability methods often point to the need to capture high-resolution 

environmental data on prior usage [Jiang 2009], discontinuity between accelerated test and field-
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usage conditions, sensitivity to manufacturing defects [Elerath 2004], and the reliance on large 

population statistics when single components statistics are most relevant to the repair of a 

specific system [Hamada 2008].  Reactive maintenance, where parts are replaced as they fail, 

often is not an option for high-reliability electronic systems. Thus, electronic components or 

assemblies may often be replaced at a very low probability of failure - typically characterized by 

a p value of one-percent or lower depending on application. The disadvantage of this approach is 

that most components are replaced well before they wear out, leading to excessive and often 

avoidable support costs. Further, in many applications it may not always be possible to collect 

run-to-failure test data.  Fuses and canaries may provide discontinuous data on damage initiation 

and progression.  Prognostic health management, based on leading indicators of failure 

eliminates the need for insight into prior usage, reliance on large population statistics, and insight 

into variance in manufacturing conditions.  The use of leading indicators of failure provides the 

ability to address time varying or evolving usage conditions. Leading indicators can be used to 

identify manufacturing defects often characterized by assemblies which degrade at unusually 

rapid rates.  Furthermore, leading indicators based PHM is component specific and is not 

affected by uncertainties associated with conclusions drawn from large population statistics.  

Previously damage initiation, damage progression, and residual life in the pre-failure space has 

been correlated with micro-structural damage based proxies, feature vectors based on time, 

spectral and joint time-frequency characteristics of electronics [Lall2004a-d, 2005a-b, 2006a-f, 

2007a-e, 2008a-f].  Commonly prognostic algorithms which incorporate a forecasting component 

are implemented though recursive algorithms such as a Kalman filter or Particle filter.  

Kalman filtering is a recursive algorithm that estimates the true state of a system based on 

noisy measurements [Kalman 1960, Zarchan 2000].  Previously, the Kalman Filter has been used 
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for navigation [Bar-Shalom 2001], economic forecasting [Solomou 1998], and online system 

identification [Banyasz 1992]. Typical navigation examples include tracking [Herring 1974], 

ground navigation [Bevly 2007], altitude and heading reference [Hayward 1997], auto pilots 

[Gueler 1989], dynamic positioning [Balchen 1980], GPS/INS/IMU guidance [Kim 2003]. 

Application domains include GPS, missiles, satellites, aircraft, air traffic control, and ships. The 

ability of a Kalman filter to smooth noisy data measurements is utilized in gyros, accelerometers, 

radars, and odometers.  Prognostication of failure using Kalman filtering has been demonstrated 

in steel bands and aircraft power generators [Batzel 2009, Swanson 2000, 2001]. 

The particle filter has been used for projectile tracking [Arulampalam 2002, Gustafsson 

2002, Ristic 2004], robot localization [Verma 2004], fatigue crack growth estimation [Cadini 

2009], and prognostics for helicopters [Orchard 2007,2009], batteries [Saha 2009a,b], and 

pneumatic valves [Daigle 2009, 2010]. In general, particle filtering is classified as a sequential 

Monte Carlo technique [Doucet 2001]. Particle filtering may also be known as sequential 

importance sampling, bootstrap filtering, or Monte Carlo filtering. The benefits of using the 

particle filter are a fully encompassed methodology for tracking nonlinear or non-Gaussian 

damage variables with seamless incorporation of uncertainty management [Saha 2008] into the 

failure prediction algorithms.  The use of particle filter in conjunction with resistance 

spectroscopy and phase-sensitive detection for electronics PHM is new.  Methods specifically 

designed for quantifying the performance of prognostic algorithms [Saxena 2008a,b, 2009a,b] 

can be used to report results in a concise manner. A full discussion of prognostic performance 

metrics is included later in the document. 

Fault mode identification and classification is a paradigm that initially was developed for 

diagnostics [Padalkar  1991, Bernieri 1994, Isermann 1997],  and was later employed in the pre-
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failure space [Lall 2010e,f] for prognostics. Fault mode identification is useful for detecting 

changes in a system as it begins to fail or have unexpected behavior. Fault mode classification 

attempts to predict the dominant failure mode, after an anomaly has been detected in a fault 

mode identification scheme, when there are many possible failure modes that can occur. 

Prognostics can be classified into three stages [Schwabacker 2007]. Typically stage one is the 

fault identification stage, stage two is the fault classification stage, and stage three is the 

prognosis stage. Stage three may alternatively be described as the stage where remaining useful 

life is estimated. The prediction stage is acknowledged as the least developed stage in 

prognostics, and this document will focus exclusively on innovations in stage three for predicting 

failure in electronics. Table 2 highlights different reliability methods that contain components of 

the prognostics methodology, or have been described as prognostics by other authors. The table 

is presented in an attempt to disambiguate contradictory terminology used in the literature. 

Condition based prognostics are taken as the desired application for prognostics discussed in this 

document.   

Table 2: Types of Prognostics. Adapted from Saxena, A., Prognostics - The Science of 

Predictions, Conference of the PHM Society, 2010 

Name Description 

Reliability Based Data Uses population based statistical models and historical time to 

failure records. Estimates average life of an average 

component under typical usage conditions. Examples: Weibull 

analysis, acceleration factors. 

Stress Based Uses knowledge of failure modes and assumptions about 

environmental conditions to predict average life of a 

component under a specified usage condition. Examples: Finite 

element analysis, Coffin-Manson/ Darveaux models, 

Proportional hazard models. 

Condition Based Uses real time information from sensors to measure or infer 

component degradation. May utilize data driven, model based, 

or hybrid approaches. Estimates remaining life for a single 
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component under assumed future usage conditions. Examples: 

Cumulative damage model, filtering and state estimation. 

 

The methodologies of Verification and Validation (V&V), can be used to rigorously 

demonstrate the capability of a system to show that it was built correctly and performs as 

intended. V&V is a popular technique in system engineering [Kapurch 2010] and computational 

mechanics [ASME 2006]. It is easiest to understand V&V from a systems engineering 

standpoint, but the methodologies used in prognostics are probably closer related to 

computational mechanics since they rely heavily on algorithms and differential equations. From 

a systems engineering perspective, V&V can be loosely stated as 

 Verification: Did you build your product correctly to the specifications of the technical 

drawing 

 Validation: When you use your product, does it perform as intended  

It was identified that V&V would be both necessary and difficult to achieve for PHM 

algorithms [Jacklin 2004, 2005, Roemer 2005, Hao 2011], but there appears to be no 

advancements to the state of the art specifically for PHM. Outside of the PHM community, a 

number of seemingly unrelated researchers are developing V&V techniques that indirectly apply 

to prognostics. Physics based models are validated and verified using methods described by 

[Hills 2005] for heart transfer and computational mechanics models. In [Sornette 2008] a general 

approach to model validation is described, using earthquake, solar diffusion, and fluid dynamics 

models and illustrative examples. PHM algorithms commonly contain data driven components of 

machine learning algorithms, such as neural networks [Lall 2010e], that may not be easy to 

validate because they are not a closed form solution. Guidance for validating neural network 
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controllers is provided by [Pullum 2007]. At this time the author is not aware of a demonstrated 

comprehensive method of V&V for prognostics. 

As a historical note, prognostics borrows its name from the field of survival analysis. 

Survival analysis is the study of predicting the time to an event, where the event is typically 

death. Survival analysis is a common name for time to event analysis in the health sciences. 

Equivalent analysis are performed as reliability analysis in engineering fields [Bell 2004], 

duration analysis in economic fields [Klein 1991] and under varying names in fields as varied as 

demographics, astronomy and insurance. Since discussing death in humans, as opposed to failure 

in electronics, carries a certain stigma most health related analysis are performed needing to 

ascertain survival not failure, and hence the frequent references to prognostics in medical fields 

of study.  

Actuarial tables (life expectancy tables) are a method based solely on historical death 

records, and have historically been the corner stone of the insurance industry [Dawson 1898, 

Shang 2006]. Medical studies are performed to evaluate the effectiveness of a treatment for a 

specific disease. A technique known as the Kaplan-Meier curve [Kleinbaum 2005] extends the 

data driven actuarial method to compare a treatment group and placebo group. The Kaplan-Meier 

curve also allows the evaluation of a medical treatments effect on survivability as a function of 

time and can accommodate censored data. Logistic regression [Klienbaum 2002] is a type of 

regression that is applicable to binary variables (life or death), and commonly used in 

survivability analysis. Cox proportional hazard models [Bell 2004], are a modern approach to 

survivability analysis. Cox models have the capability to compensate survival models for 

competing variables such as sex or ethnicity [Moriguchi 1993]. In [Klienbaum 2005] it is shown 

that Weibull reliability models can be algebraically manipulated to be equivalent to proportional 
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hazard models used in survivability analysis. The same issues that restrict the use of traditional 

reliability data based approaches for prognostics also restrict the use of related survivability 

analysis methods. 

Weather forecasting is a discipline that would seem to have similarities to PHM on many 

levels, only applied to a different application area. While some of the verification methods for 

forecasting [Roebber 1996] have been borrowed for prognostics, direct insight is difficult to 

obtain due to the highly application specific nature of weather forecasting. In weather forecasting 

a variety of measurements such as airport weather stations, radar [Whitton 1997], satellites 

[Kuciauskas 2010], and ocean floats [Roemmich 2009] are combined with weather models. 

Knowledge of the interface between the atmosphere and the planet is known to be critical for 

prediction accuracy, but is difficult to monitor with sufficient resolution. A combination of 

statistical models and dynamic weather models (mathematical models based on differential 

equations) are used to forecast future weather. Dynamic weather models are based on differential 

equations that govern the physics of the earth’s atmosphere [Al-Yahyai 2010] and can be 

grouped into global weather models, and local area models. Global and local models represent a 

tradeoff between efficiency, accuracy, and resolution. Traditionally the accuracy of local area 

models is better than global models, but accuracy dramatically reduces as a result of influences 

outside the modeled area after 48 hours. Famously Lorenz correctly predicted that due to the 

chaotic nature of the fluid dynamics involved in weather forecasting, predicting the weather 

accurately beyond 14 days will be beyond the state of the art [Lorenz 1965] for the foreseeable 

future. Lorenz’s prediction highlights the nature of dynamic weather models as simply an initial 

value problem. State of the art global weather models [Ruston 2012] have a grid spacing that is 

typically spaced 25 km apart up to an elevation of 65 km. Typically this results in a model 
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meshed with about 21x10
6
 nodes that will execute on a 12 teraflops super computer in 12 hours. 

By comparison local weather models have nodes at 10 km increments and can run on a modern 

personal computer. Dynamic weather models did not surpass the accuracy of statistical models 

for the five day forecast until the early 1990’s [Rapport 2009]. Data assimilation, the fusion of 

model and observations, relies on variational calculus to minimize error between model and 

observation states in three spatial dimensions and one time dimension [Navon 2009]. A 

technique known as an ensemble Kalman filter, which avoids inverting matrices of observations 

that may have a million entries, was specially devised for data assimilation in weather 

forecasting models [Evensen 1994, 2003].  
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3 Resistance Spectroscopy 

The resistance spectroscopy (RS) technique provides the experimental foundation for the 

work presented in this document. The method is quite elegant when its application is distilled 

into its components. Essentially the technique is a very narrow band pass filter, but is 

implemented in an unexpected manner compared to traditional noise filters. The ability of the 

filter to reject noise at frequencies not related to the signal makes the technique very robust. 

Lastly the applicability of the technique using different test conditions is verified to match with 

theory. 

3.1 Direct Current Wheatstone Bridge 

A Wheatstone bridge is a collection of resistors organized in a manner that facilitates the 

measurement of changes in resistance [Wheeler 2004]. The bridge is widely used in mechanical 

strain gages [Dally 2005]. A diagram of a typical DC Wheatstone bridge can be seen in Figure 

11. 

 

Figure 11: DC Wheatstone bridge 

Resistors are denoted as R1 through R4. Usually at least one of the resistors, and in some 

cases as many as all four resistors are transducers whose resistance changes with applied 

stresses. The bridge is powered by a constant voltage controlled power source, V. The output 
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from the bridge is a DC signal that is proportional to the values of the resistors. The input output 

relationship is shown in Equation (4) [Wheeler 2004]. 

        
         

(     )(     )
 

(4) 

When the numerator equals zero, the bridge is considered balanced and the output is 

negligible. As applied stresses cause changes in the values of the resistors, very small changes in 

resistance will be measurable as an output from the bridge. After manipulating equation (4) the 

changes in resistance of each resistor can be related to the output from the bridge. Note the 

inclusion of a non-linear term for large changes in resistance. If changes in resistance are small 

the non-linear term can be neglected. In the general case each change in resistance is assumed to 

result from both mechanically applied stresses and increases in temperature. Changes in 

resistance caused by changes in temperature are related using equation (5). 

          (5) 

Where      is the thermal coefficient of resistance. Ceramic resistors typically used on 

circuit boards are designed to have a low thermal coefficient of resistance (100ppm/°C). Pure 

metals have much higher coefficients of thermal resistance typically around 4000 ppm/°C that 

must be accounted for when using a Wheatstone bridge to measure changes in resistance due to 

applied mechanical stresses. 

3.1.1 Temperature Compensation 

If                    which is known as the balance condition. When the 

resistors in the bridge change: 
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Plugging these values in for the above equation: 
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If   
  
  
⁄                 ,then the error from   is approximately 1%. 

For a double arm Wheatstone bridge if                         
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For the case where R1 is a tranducer mounted on a specimen, and R2 is a reference gage 

that does not feel any mechanical stress, then       unless     . 

Changes in resistance can be related to strain imparted on a resitor by a gage factor. A 

gage factor is defined as: 
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(9) 

Similarily a gage factor can be calculated for strain caused by thermal expansion. 

         (10) 
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(12) 

Where   is the thermal coeficient of expansion. As discussed before resistance can also 

be effected by variations in ambient temperature. If R1 = R2 and are identical materials, then the 

change in resistance from the thermal coeficient of resistance is the same for both materials when 

subjected to the same ∆T. 

   
      

          (13) 

Changes in resistnace are related to the mechanical and thermal strain felt by each resistor 

through a gage factor, Sg, that is generaly unknown (and possibly non-linear) unless the resistors 

are comercial strain gages. When solder joints are used as resistors the gage factor is probably 

non-linear in nature.  
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When      , the thermal terms inside the brackets cancle each other 

   
  

 
   
  

                                                    

          

(16) 

This setup has the effect of negating the effects of fluxuating temperatures if R1 is feeling 

a mechanical strain and R2 is not stressed mechanicaly, but undergoes a change in resistance due 

to changing temperatures. Both R1 and R2 must be relativley near each other so that they track 

changes in resistance from the ∆T simulaneously.  
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Similarily to the development above, if R3 and R4 are indentical conductors and also 

experiencing changes in resistance from fluctuations in the ambient temperature, but no external 

forces, then their contributions to the output of the bridge will cancle each other out in a manner 

similar to the double arm bridge. 
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In the situation where very small changes in resistance need to be measured in specimens 

with very small absolute resistances the DC Wheatstone bridge may not be the best choice. For 

example Figure 12 shows the equivalent circuit for a DC bridge. The power that must be 

dissipated by the circuit is inversely proportional to the equivalent resistance of the circuit. If 

sufficiently large enough resistors are not used in the bridge the circuit will quickly overheat.  
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Figure 12: Equivalent circuit for a DC Wheatstone bridge 

Because of the overheating problem a shunt resistor, Rs, may be used to increase the 

equivalent resistance of a DC bridge when measuring a small resistance, Rx, as in Figure 13. In 

the shunt resistor configuration R2 is equal to the sum of Rs and Rx.  

 

Figure 13: Addition of a shunt resistor to facilitate measurement of changes in resistance 

of the small resistance Rx 
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Figure 14: Sensitivity of the DC Wheatstone bridge for different choices of resistors 

If the output from the bridge is only a function of R2, then the effect of the shunt resistor 

on the sensitivity of the bridge can be developed in equations (24) through (26) and illustrated in 

Figure 14. In response to the shortcomings of the DC bridge the resistance spectroscopy 

technique uses a modified Wheatstone bridge to make precise measurements on small changes in 

resistance on specimens with a small absolute value of resistance. 

3.2 Alternating Current Wheatstone Bridge   

An alternating current Wheatstone bridge behaves in a similar manner to its DC 

counterpart. The advantage of using an AC bridge is the ability to monitor both phase and 

magnitude information from the signal leaving the bridge which provides richer information 

about the device being monitored. 
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Figure 15: Schematic of AC Wheatstone Bridge 

Figure 15 shows a schematic of an AC Wheatstone bridge. The device under test (DUT) 

is a resistive transducer. In addition to the four resistive elements found in the DC bridge, the AC 

bridge has two additional capacitors (C1 and C2) and is powered by a sinusoidal power source. 

Both the input into the bridge, and the output of the bridge are provided to a lock-in-amplifier 

which implements phase sensitive detection. Phase sensitive detection is the topic of the next 

section. Because the input to the AC bridge is sinusoidal, the output will be a sinusoidal signal of 

the same frequency as the input signal. If the change in resistance is small, the magnitude of the 

output signal will be small, and there may be a phase shift between the input and output signal. 

Capacitors C1 and C2 help eliminate any stray inductances that occur from wires running 

between the DUT and the test circuit. 

The output equation for the AC Wheatstone bridge is very similar to the DC bridge, 

except impedances must be used to describe the components. 

        
         

(     )(     )
 

(27) 
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Using the following definitions for impedances we can write our transfer function in 

terms of the discrete components in the bridge. 

Table 3: List of impedances for passive electrical components used in an AC Wheatstone 

bridge 

Device Impedance/Resistance 

Inductor        

Capacitor      
 

  
 

 

   
 

Resistor      

 

Z1 is the impedance of the C1 and R1 in parallel. R4 is the resistance of the DUT. Our 

transfer function is simply the ratio of the output to the input. 
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(28) 

Starting with the Z1 term. 

   
 

     
 
  

 

The Z2 term is calculated the same as the Z1 term but with the subscripts changed, and the 

impedance of a resistor is simply Z3 = R3 and Z4 = R4. 

Converting to the frequency domain: 
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Plugging in and expanding the transfer function results in equation (29). 
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Table 4: Typical values used in an AC Wheatstone bridge 

Component Value 

C1, C2 0.01uf = 1e-8 f 

R1,R2 10 ohms 

R3 3 ohms 

DUT 3.1 ohms 

 

Using the transfer function in equation (29) and the values listed in Table 4, the resulting 

bode plot is shown in Figure 16. 
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Figure 16: Bode plot for AC Wheatstone bridge 

The bode plot demonstrates that the output signal for a small change in resistance will be 

very small, which motivates the use of phase sensitive detection described in the next section.  

3.3 Phase Sensitive Detection 

Phase sensitive detection (PSD) is an elegant technique that is well suited for measuring 

the magnitude and phase of small signal corrupted with noise. As described in the previous 

section, the output from an AC Wheatstone bridge is expected to be a sinusoidal signal with the 

same frequency as the input signal but much smaller in magnitude and possibly phase shifted. 

The driving signal input into the top of the AC bridge is denoted as the reference signal. The 

reference signal, Vin,AC , is a very clean sine wave. The output from the AC bridge, Vout,AC, is a 

very small magnitude signal corrupted with noise greater than the magnitude of the signal. For 

the sake of describing the process of performing PSD assume that both the reference signal, 

VREF, and the measured signal, VSIG, are pure sine waves. 

           (      ) (30) 
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In equation (32) the signals are multiplied together. In equation (33) the product to sum 

trigonometry identify is applied to VM. The frequency of the reference and measured signal are 

identical, so equation (33) reduces to equation (34). If a low pass filter with a cutoff less than 

   is applied to equation (34) the higher frequency terms are attenuated to a negligible level as 

shown in equation (35). Equation (35) is the phase sensitive detection signal and is a constant 

value proportional to the magnitudes of the reference and measured signal and the phase shift 

between the signals. The values of V1 and    are known quantities. The unknown values are V2 

and   . To create a second independent equation that allows both unknown values to be solved 

for, the reference signal is shifted by 90 degrees, i.e.             (          ). 

Repeating the process in equations (32) through (35) a similar relation can be determined for the 

shifted reference signal. 

       
    
 
   (     ) 

(36) 

With two independent equations all the unknowns related to the measured signal can be 

solved from equations (35) and (36). For historical reasons the results are typically 

communicated as a phasor [Valkenburg 1995].  
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Figure 17: Phasor representation of a sine wave 

 In the more realistic case the measured signal is corrupted with high frequency noise as 

shown in equation (37). Fortunately the high frequency terms will all be greater than the     

term in equation (34) and will also be attenuated to negligible levels after the lowpass filter. 

            (          )         (          )         (          )

   

(37) 

                       (38) 

Functionally phase sensitive detection (shown in Figure 18) is easy to implement. The 

reference and measured signals from the AC Wheatstone bridge are multiplied together and then 

passed through a low pass filter. In practice the multiplication is handled using a digital signal 

processing (DSP) integrated circuit. The low pass filter is typically a higher order filter such as 

an 8
th

 order Butterworth filter. In Figure 18 Vm is the multiplied signal, Rf and Cf are 

components in the low pass filter, and Vpsd is the phase sensitive detection result. 

 

Figure 18: Functional Schematic of Lock in Amplifier 
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The phase sensitive detection method is implemented in a commercially available lock in 

amplifier (Figure 19). For this work an SRS830 lock-in amplifier from Stanford Research 

Systems (1290-D Reamwood Avenue, Sunnyvale, CA 94089) was used to perform phase 

sensitive detection. 

 

Figure 19: Simplified block diagram adapted from SRS830 Lock-in amplifier user 

manual 

3.4 Theory vs. Observation at Different Frequencies 

For historical reasons the data presented in this document used the same AC Wheatstone 

bridge for a number of different data sets. When an industrial partner became interested in 

implementing the RS technique in a production grade product there was a need implement the 

technique at a lower frequency to minimize the cost of the measurement hardware.  

Table 5: Component values for a low frequency AC bridge 

Component Value 

C1, C2 10 uF 

R1,R2 10 ohms 

R3 11.3 ohms 

DUT 11.35 ohms 
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Based on the transfer function we expect the circuit to behave according to the bode plot 

shown in Figure 20. 

 

Figure 20: Bode plot from a circuit optimized for a low frequency measurement 

A labview program was created to automatically iterate between three different driving 

frequencies for the AC Wheatstone bridge during a test and record the resulting outputs. The 

device under test was the daisy chain resistance of a PBGA324 component. The test environment 

was a random vibration profile. Full details about the test setup can be found in the resistance 

spectroscopy section. As the package became damaged the resistance of the device under test 

increases. Data was recorded for a driving frequency of 100, 1000, and 10000 Hz. The raw 

magnitude data from these measurements is presented in Figure 21. A zoomed view of the same 

data set around the time of interest is shown in Figure 22. The data is reported as the R 

component, or magnitude, of the AC signal measured by the lock-in amplifier. 
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Figure 21: Magnitude component recorded at different driving frequencies for the same 

test 

 

Figure 22: Zoomed view aruond the region of interest from Figure 21 

As predicted by the bode plot the sensitivity of the measurement at 1 kHz is just slightly 

better than at 100 Hz. The drop off in sensitivity predicted by the bode plot can be seen for the 

data recorded at 10 kHz. These results confirm that the RS technique will detect small changes in 

resistance at different driving frequencies as predicted by the theoretical transfer function.
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4 Risk Based Decision Making 

Risk based decision making is a methodology that embodies how to make prognostic 

predictions of failure useful for the end user of a system. Using a process established in [Engle 

2009], statistically defendable methods for using predictions and taking action based on those 

predictions is established. Using the same remaining useful life prediction in different ways, risk 

based decision making can be structured to optimize, safety, cost, availability, and logistics.  

4.1 Methodology 

 

Figure 23: Typical wear out profile of a safety and mission critical system 

Figure 23 shows the hypothetical wear out profile of a system. The y-axis represents the 

value of a feature vector, i.e. some characteristic of the system being monitored to characterize 

wear. Risk based decision making and the feature vector is generic and can include any salient 

feature of the system, but this work will mainly focus on feature vectors derived from the 

resistance spectroscopy measurements. A typical component will show no significant change for 

a large percentage of its life. Towards the end of a components life the system tends to rapidly 

deteriorate until failure occurs. The end of life (EOL) condition is easy to identify, the system no 

longer works as expected. Failure is much more difficult to quantify because “operating as 
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expected” can depend on many different interpretations. For the purposes of developing 

prognostic algorithms, a binary representation is preferred as stated in equation (36). 

    ( ( ))  {
                   

            
(39) 

The link between a monitored feature of the system wearing out, and the failure of the 

system requires a correlation between the two variables. This is most easily represented as a 

failure threshold (Figure 24).  

 

Figure 24: Failure threshold and detection threshold that facilitates quantifying failures 

based on the value of a feature vector 

When monitoring a feature vector in the regime where nothing is changing it is not 

prudent to try to predict the end of life for the component. Therefore a detection threshold can be 

established which matches with the noise floor of your measurement. Until the feature vector 

increases above the detection threshold the system is considered healthy and no predictions of 

end of life are made. After the feature vector has broken through the detection threshold 

predictions are made to predict the time in the future when the feature vector will cross the 

failure threshold and the system will suffer a failure (CEOL = 1). 
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Figure 25: The prediction challenge, estimating the time until the feature vector crosses 

the failure threshold 

Figure 25 illustrates the challenge of prognosticating failure. Given a limited amount of 

information about a feature vector, the challenge is to predict when in time the feature vector will 

cross the detection threshold which correlates with failure of the system. Many hard to quantify 

variables such as future usage, stress profiles, interacting stress conditions, and component 

specific material defects will affect the manner in which the feature vector progresses to the 

failure threshold. With so many uncertainties a range of possible predicted failure times can be 

supplied to the end user (Figure 26). Remaining useful life (RUL) is denoted as the time between 

the prediction and the predicted failure. 

 

Figure 26: Uncertainty in the failure prediction 
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A number of different methods for propagating the current state of a feature vector 

forward in time until the failure threshold is crossed will be discussed in this document. The 

predicted failure distribution is drawn as a Gaussian distribution for the sake of illustration, but is 

not restricted to being described by closed form statistics. Unfortunately making predictions is 

not the same as providing useful information to an end user. To practice risk based decision 

making using inputs from an algorithm that monitors a feature vector and predicts, or 

prognosticates, failure you need to establish some high level guidelines for use of the system. 

Risk based decision making requires that the user of a system define acceptable levels of 

risk they are willing to tolerate. The user must define the following inputs. 

4.1.1.1 Maximum Allowable Probability of Failure 

This quantity represents the user’s tolerance for an unplanned failure. In a safety or 

mission critical application this probability would be very small. 

4.1.1.2 Maximum probability of proactive maintenance 

This probability represents the tolerance for replacing a system before it has failed. This 

value has a direct impact on the cost of operating a mission and safety critical system. By 

definition for a critical system this value should be a very low probability, but the practicality of 

limited resources dictates that this probability be as large as possible to minimize operating cost.  

4.1.1.3 Required Lead Time for Taking Action 

The required lead time for taking action encompasses the logistical realities associated 

with operating and maintaining complicated systems. Due to finite resources, it may not be 

possible to keep in stock every spare part for a system. Other constraints may be the availability 

of properly trained personnel to perform maintenance actions. 
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4.1.1.4 Required Confidence in Predictions 

It is important to note that predictions are uncertain due to the wide number of variables 

that affect the rate of wear imparted on a system. The required confidence in a prediction can be 

used to avoid taking action when information from the prognostic algorithms may not be fully 

converged to the correct failure time. 

The inputs for making risk based decision making are not necessarily hard constraints. 

The more physical justification that can be applied to the inputs the better the resulting decision 

making performance will be, but again many of these inputs will have to be simply estimated. 

Using a statistically defendable approach based on the true state of the system is of course 

preferable to the standard procedure of using traditional reliability methods to schedule 

replacement of worn out components. 

Using the inputs provided by the user for risk based decision making a window of 

opportunity can be identified for taking action based on the predicted EOL. The area under a 

probability density function is defined as unity. Therefore a percentage of the area under the PDF 

represents a probability of an event occurring. The maximum allowable probability of proactive 

maintenance can be subtracted from the maximum probability of failure to determine a window 

of opportunity where it is appropriate to take action (Figure 27). A hypothetical example is using 

risk based decision making to schedule the appropriate time to perform maintenance (Figure 28).  

 

Figure 27: Window of opportunity for taking action 
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Figure 28: Appropriate time to schedule maintenance 

If new information becomes available after an initial prediction of RUL (or EOL) but 

before the actual failure, then it is advantageous for the prognostic algorithm to incorporate the 

latest available information and issue an updated prediction of failure. The process of 

incorporating new measurements of the feature vector and issuing revised predictions repeats 

until failure occurs. 

 

Figure 29: Updated failure prediction after new information is available 

4.2 Conclusion 

A framework for risk based decision making has been presented in this section. 

Statistically defendable methods for using information output from a prognostic algorithm to 

take action in the presence of uncertainty were described. The presented framework, known as 

risk based decision making, was introduced in general terms, but will be implemented for the 
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case of monitoring the health of electronics in mission and safety critical electronics. The 

recursive nature of updating predictions as new information becomes available motivates the use 

of recursive filters described in the next section. 
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5 Demonstration of Recursive Filtering 

Recursive filtering is a technique of combining a model of a systems expected dynamic 

behavior with noisy measurements to estimate the true state of a system. It is acknowledged that 

neither the system model nor the measurement are perfect, but rather have some amount of error 

associated with them. Due to the recursive nature of the algorithms they are suited to real time 

applications where a stream of data is constantly updated, such as tracking a leading indicator of 

failure. A number of different filtering algorithms have been implemented for this document, but 

they have been applied to different data sets and do not provide an easy comparison between the 

different methods. This section will be used to introduce the different filtering methods and will 

benchmark their performance against a standard test case. Because the test case consists of 

simulated measurements the ground truth is available. In practical situations presented later in 

this document the ground truth is not known and the algorithms must be evaluated based solely 

on their prognostic performance, which is not a fair comparison when discussing tracking 

performance. Due to the robust nature of the algorithms, poorly configured implementations will 

not necessarily appear different than a superior implementation unless a known good baseline is 

available. In this document the classic case of tracking a ballistic object upon re-entry to the 

earth’s atmosphere will be discussed. The derivation and justification for the algorithms is 

included. 

5.1 Least Squares Approaches 

It is convenient to think of the recursive filtering algorithms as related to a least squares 

curve fitting problem. Many of the derivations of the recursive algorithms described in this 
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section are beyond the scope of the document, but a comparison between batch and recursive 

least squares algorithms provides intuition into the problem and is easily demonstrated.  

5.1.1 Batch Least Squares 

Fitting data to a model in the least squares sense traditionally implies the use of a batch 

least squares algorithm. In a batch least squares every data point must be available before 

processing can begin. Following the example in [Zarchan 2000], hypothetically say you were 

trying to estimate the true value of a noisy process. In this simple example you are making a 

noisy measurement of a constant value. The first assumption is to formally decide that you can 

model your system as a zero order polynomial. 

 ̂     (40) 

In the least squares method you desire to estimate    by minimizing the residual, R, 

between your estimate and actual observations,   
 . 
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Using calculus the optimum estimate of    can be obtained. 
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Equation (44) is the batch least squares solution to estimating the coefficients of a zero 

order polynomial. If the example was higher order than a zero order polynomial the answer 
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would not degenerate into the equation for the sample mean. This result will be used in the next 

section. 

5.1.2 Recursive Least Squares 

To formulate equation (44) as a recursive formula that does not need the entire data set to 

provide estimates of the coefficient of a zero order polynomial equation (44) is re-written. 

 ̂     
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(45) 

Changing the subscripts to let k = k+1, 
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By re-arranging equation (45),  

  ̂  ∑  
 

 

   

 

(47) 

and then substituting (47) into (46) 
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Adding  ̂   ̂    to the numerator of the previous equation, 
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Changing the subscripts to k+1=k, 
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(50) 

Equation (50) is the recursive least squares solution for estimating a zero order 

polynomial. For the trivial case of a zero order polynomial equation (50) is the formula for a 
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recursive average. If the   ⁄  term were replaced with a constant,   ⁄  term, the equation would 

become a moving average filter of length L. 

A simulation shown in Figure 30represents the case of making a measurement of a signal 

corrupted by white noise. Figure 31 shows how the recursive least squares estimate (equation 

(50)) converges to the batch least squares method equation (44). The final estimate of the 

recursive method is exactly equal to the batch method. In situations where it is not possible to 

wait until all measurements are available, as in prognostics, recursive methods can be a useful 

tool to quickly and efficiently estimate properties of a system given a noisy measurement. 

 

Figure 30: Simulation of a constant signal at a value of 1.2 measured in the presence of 

white noise 
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Figure 31: Comparison of the batch least squares approach to the recursive least squares 

approach 

As the order of the polynomial that is assumed to describe the underlying system is 

increased the resulting least squares solutions become much more verbose. For example the 

equations for a first order system are given as equations (51)-(54) for the batch processing 

method, and (55)-(61) for the recursive algorithm.  

         (51) 

   
  ̅  ̅̅ ̅   ̅   ̅̅ ̅

   ̅̅ ̅  ( ̅) 
 

(52) 

   
   ̅̅ ̅   ̅ ̅

   ̅̅ ̅  ( ̅) 
 

(53) 

 ̅  ∑  

 

   

  ̅  ∑  

 

   

    ̅̅ ̅  ∑    

 

   

    ̅̅ ̅  ∑  
 

 

   

  

(54) 

 ̂         (55) 

     
 (    )

 (   )  
(56) 

     
 

 (   )  
 

(57) 



61 

 

 ̅   ̂   
   ̂   

    (58) 

       
   ̅  (59) 

 ̂ 
   ̅           (60) 

 ̂ 
   ̂   

           (61) 

Equation (56) and (57) are denoted as gains, and they multiply the residual, resk,  between 

the state projection,  ̅ , and the noisy measurement,   
  when calculating estimates of the 

polynomial coefficients. 

 

Figure 32: Simulated noisy data with an intercept of 1.2 and a slope of 2 
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Figure 33: Batch least squares fit of noisy data 

 

Figure 34: Comparison of batch least squares to recursive least squares for the a0 

polynomial term 
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Figure 35: Comparison of batch least squares to recursive least squares for the a1 

polynomial term 

5.1.3 Savitzky-Golay Smoothing 

Savitzky-Golay (SG) smoothing is a technique that is commonly applied to render visible 

the relative widths and heights of spectral lines in noisy spectrometric data [Vetterling 1992]. 

The technique is commonly known as Savitzky-Golay smoothing [Savitzky 1964, Steinier 1972 , 

Bromba 1981, Gorry 1990], least squares filtering, or digital smoothing polynomial filtering. The 

concept is to apply a window to a time series. The data point at the center of the window is 

smoothed by fitting a d-order polynomial to the data points inside the window of length N using 

a least squares approach. The best fit polynomial of order d, is evaluated at the center of the 

window to obtain a smoothed value for that point. The window is then moved forward one time 

step and the process is repeated. Following the formulation developed by [Orfanidis 1996] , to 

smooth a time series of noisy measurements  . 

  [                    ] (62) 

For a window of size N, N=2M+1. Restrictions on N include that N be odd and that 

     . A d order polynomial will be fit in a least squares sense to the measurements  . 
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Define d+1 polynomial basis vectors 

  ( )   
                 (64) 

The N by (d+1) matrix S is comprised of columns   . 
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Smoothed values,  ̂, are evaluated as 
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Then the following matrices are calculated; 
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For a noisy sequence  ( ), the SG smoothed sequence is calculated as 
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Derivatives of the noisy sequence can be calculated using the G matrix. 
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A typical application of SG smoothing is shown in Figure 36. In many spectroscopy 

applications such as Auger or mass spectroscopy the location and width of a peak is corrupted 

with white noise. The challenge is to extract a signal representative of the underlying process 

with as much of the noise removed as possible. Moving average filters tend to fail on this type of 
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analysis since they attenuate high frequency components and create time shifts (Figure 37). In 

spectroscopy applications both the position and height of the peaks are important. 

 

Figure 36: Synthesized spectrometric data set denoted as (Clean) and a noise corrupted 

version of the same signal (Noisy) 

 

Figure 37: Moving average filter of length 65 applied to the synthetic data set 
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Figure 38: Savitzky-Golay smoothing applied to the noisy data set with a window length 

of 65 and a model order of 10 

The SG method can also be used to estimate derivatives of noisy data. To illustrate why 

this is important a sinusoidal signal corrupted with white noise is synthesized. By calculating a 

numeric derivative using the rise over run method as shown in equation (72), the derivatives 

quickly become meaningless white noise. Notice the values of the vertical axis in Figure 39. 

  

  
|
       

 
       
       

 
(72) 
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Figure 39: Numeric derivatives estimated for a sinusoidal signal corrupted with white 

noise 

 

Figure 40: Savitzky-Golay estimates of derivatives of noisy data with a window of 41 and 

a model order of 3 

In contrast to the numeric derivative example, the SG method provides smooth 

derivatives of higher derivatives. The first d derivatives are available with the SG method. 

Despite the premise of performing a least squares fit to every data window it is surprising that 

the SG filter can be implemented as efficiently as a FIR filter due to the fact that the filter 

coefficients can be calculated offline and could therefore be considered a real time method. 

Commonly in prognostics there is a need to smooth noisy measurements and to estimate smooth 

derivatives. Smooth derivatives are important because they are used in the prediction process and 

ultimately create smooth predictions of failure times. The three drawback of the SG method are 

the lag of length M between the most recently available data point, and the data point that is 

being smoothed. The window size and model order must be known a priori and the inability to 

quantify the uncertainty associated in the filter estimates of the signal and the derivatives. 
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5.2 State Estimator Approaches 

State estimator approaches are a class of algorithms that are closely related to least 

squares problems, but that are formulated in a manner that is conducive to use in prognostic 

algorithms. The famous Kalman filter, and its related implementation the extended Kalman filter 

and particle filter are classified as state estimators. The simplest version of a Kalman filter will 

be derived in this section and the equations for implementing the other versions of the state 

estimator algorithms will be presented.  

5.2.1 Kalman Filter 

The Kalman filter was first described in [Kalman 1960]. The elegant notation from 

[Zarchan 2000] will be used to present the Kalman filter equations. The first assumption of the 

Kalman filter is the ability to model the system you are tracking as a set of linear differential 

equations. In equation (73)   is a vector of system states,  ̇ is the derivative of the system states, 

F is the system dynamics matrix, G is the input gain matrix, u is a known control vector and   is 

a white (Gaussian) noise vector.  

 ̇          (73) 

Equation (73) is called the state space or matrix form of the differential equations. The 

quintessential example of a state space model is the position, velocity, and acceleration of an 

object that you are tracking. The process noise matrix   is defined by the process noise vector. 

   [   ] (74) 

Another assumption when using the Kalman filter is that measurements are linearly 

related to the system states. Tracking an object using range and bearing information converted 

into a Cartesian coordinate system is an example where measurements are not linearly related to 

system states. 
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       (75) 

In equation (75) z represents the measurement vector, H is the measurement matrix,   is 

the true system state and   is the Gaussian measurement noise vector. 

   [   ] (76) 

In a manner similar to the process noise matrix, the measurement noise matrix is defined 

by the measurement noise. A transition or fundamental matrix   can be used to exactly 

propagate forward the state of any linear time invariant (LTI) system from time     to   [Zarchan 

2000]. The time step is defined as        . The exact method for determining the 

fundamental matrix is shown in equation (77) and the Taylor series approximation is shown in 

(78). 

 ( )     [(    )  ]  (77) 
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Digitally sampled systems are by their nature discrete time systems. The discrete 

fundamental matrix, at time step k, is calculated by substituting the time step for t as in equation 

(79). Similarly the discrete measurement vector, and measurement matrix are calculated in 

equations (80) and (81). 

    (  )  (79) 
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Conveniently in polynomial Kalman filters the measurement noise matrix is a scalar. The 

discrete process noise matrix is evaluated as an integral shown in equation (82). 
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The one step ahead projection  ̅ based on the system dynamics and any known inputs to 

the system is calculated in equation (83). This term represents the projected state of the system 

one time step into the future. This projection should not be confused with the multiple time step 

projections described later in the document when the state estimation algorithms are used as part 

of a prognostic algorithm. 

 ̅      ̂             (83) 

Finally the Kalman filter equation is presented. 

 ̂     ̂             (    ̅)  (84) 

Where    is the Kalman gain and the discrete input gain matrix is calculated as, 
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It is assumed that      is constant between time steps. It is difficult to draw comparisons 

of the most general Kalman filter equation to the recursive least squares update equation (50). If 

a number of constraints are to the equation (82), as in the case of the scalar Kalman filter 

presented in the next section, the similarities will become more obvious. It can be shown that the 

matrix Riccati equations can be  used to solve for the Kalman gain. 

            
     (86) 

      
 (    

    )
  

 (87) 

   (     )   (88) 

Where    is the covariance matrix representing errors in the state estimates prior to a 

measurement update, but after calculating the one step ahead projection.    is the covariance 
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matrix representing errors in the state estimates after a measurement update. To initialize the 

recursive Kalman filter you must define  ̂              . You must determine before running 

the filter the differential equations that describe your system, and cast them in state or matrix 

form. To build intuition about the Kalman filter and Riccati equations the simple case of a scalar 

Kalman filter will be discussed next.  

5.2.2 Derivation of Scalar Ricatti Equations 

The scalar Kalman filter is a simple case where the matrix equations degenerate into 

scalar equations and provide a useful insight into the operation of the filter. If there are no inputs 

into the system the discrete system model reduces to a scalar equation (89). The only state in this 

filter is the state being measured. Higher order filters allowing the estimation of derivatives and 

model parameters was described in the previous section and will be demonstrated in practice 

later in the document during the baseline code validation examples. 

              (89) 

The one step ahead projection is also simplified under the no input constraint. 

 ̅      ̂    (90) 

The Kalman update equation (91) is now in a form that is much more similar to the 

recursive least squares update equation shown in (50). In the Kalman filter the residual is 

between the measurement and the projected state of the system,     ̅. Recursive least squares 

filtering uses previous state values for updating, while the Kalman filter uses projected state 

values for updating system states. The most important distinction is how the gain term is 

calculated in the Kalman filter. It will be shown that under the restrictive set of constraints 

implied by applying the Kalman filter equations that the gain is the optimal gain for minimizing 

the variance in state estimates. Later sections will address the relaxation of strict linear time 
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invariant system dynamics and Gaussian noise models with the extended Kalman filter and 

particle filter. 

 ̂     ̂      (    ̅)  (91) 

In the scalar Kalman filter the measurement vector, measurement matrix, true state and 

noise vector  reduce to a scalars. 

          (92) 

The error in the estimate  ̃  is the difference between the true state and the estimated 

state. 

 ̃      ̂        ̂      (    ̅)  (93) 

By using equations (89), (92), and (95) the error can be written in terms of only the state 

estimate, measurement scalar, Kalman gain and noise terms.  

           (         )     (94) 

 ̃      ̂   ̃          ̂     (95) 

 ̃  (     ) ̂    (     )         (96) 

The covariance scalar representing errors in the state estimates after a measurement 

update is defined as the expectation of the square of the estimation error. 

    [ ̃ 
 ]  (     )

 (      
    )    

     (97) 

The scalar versions of the process noise and measurement noise are. 

    [  
 ]  (98) 

    [  
 ]  (99) 

To simplify the error covariance matrix define   . This is the scalar equivalent of the 

first Ricatti equation originally presented in equation (86). 
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      (100) 

Substituting (100) into (97) and expanding gives. 

   (     )
      

                
        

     (101) 

To find the Kalman gain that minimizes the variance of the state estimate, set the 

derivative of (101) equal to zero. 

   
   

    (     )  (  )        
(102) 

Solving (102) for    provides a scalar expression that is equivalent to the second Ricatti 

equation originally presented in (87). 

   
   

       
 

(103) 

To derive the scalar version of the final Riccati equation re-arrange (103) and substitute 

into (101). By simplifying the result you obtain the equivalent formulation of the third Ricatti 

equation in equation (107). 

          
      (104) 

               
        (     

    )  (105) 

               
              

      (106) 

   (     )   (107) 

It is insightful to investigate the influence of the process noise and measurement noise 

terms on the scalar Ricatti equations. There are best practices for choosing the process and 

measurement noise terms, but ultimately these terms act as free parameters and can drastically 

influence the performance of the filter. For most applications selecting the parameters within the 

correct order of magnitude is sufficient. In other scenarios it may be desirable to add fictitious 
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noise to the filter to achieve better smoothing performance. The scalar Kalman gain equation is 

repeated here for convenience. Note that the process noise term directly effects the    term. 

   
   

       
 

(108) 

 Case 1: if Mk is much smaller than 1, then Kk is much smaller than 1, therefore disregard 

the measurement  

 Case 2: if Mk is much greater than Rk, then Kk = 1/H, therefore disregard the estimate  

 Case 3: if Rk is much greater than Mk, then Kk is much smaller than 1, therefore disregard 

measurement  

5.2.3 Extended Kalman Filter 

Describing processes with linear differential equations and measurement equations that 

are linear functions of the underlying states may not always accurately model real world 

phenomena. The Extended Kalman filter allows a system to be described by a set of non-linear 

differential equations and non-linear measurement equations. The extended Kalman filter applies 

a first order linearization in the Riccati equations. The more general particle filter discussed later 

does not require linearization. 

A set of higher order differential equations can be cast as a set of first order differential 

equations through the repeated substitution of intermediate variables [Kreyszig 2010]. To 

implement an Extended Kalman filter, a system of nonlinear first order differential equations is 

used to describe the system. 

 ̇   ( )    (109) 

Where   is the vector of system sates,  ( ) is a non-linear function of the system states, 

and   is still a Gaussian noise term. The measurement equation is no longer limited to linear 

equations.  
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   ( )    (110) 

Where  ( ) is a nonlinear function of the measured states and   is still a Gaussian noise 

term. An example of a nonlinear measurement equation is the situation where navigation 

measurements are reported in bearing and range format (i.e. Polar coordinates) and must be 

transformed into Cartesian coordinates through the use of nonlinear trigonometric relationships. 

To calculate the system dynamics matrix   and measurment matrix   required in the matrix 

Riccati equations a first order approximation is used to represent the nonlinear functions  ( ) 

and  ( ). 

  
  ( )

  
|
   ̂

 
(111) 

  
  ( )

  
|
   ̂

 
(112) 

The logic used earlier in the Kalman filter section to describe the discrete versions of the 

process noise, measurement noise, and fundamental matrix is reproduced here for convenience. 

    [    
 ]  (113) 

   [   ] (114) 

   ∫  ( )   
    

  

 

  
(115) 

    (  )   
          

(   )
 

  
   

(   )
 

  
 

(116) 

The discrete form of the measurement equation incorporates the nonlinear measurement 

function 

    (  )     (117) 
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The extended Kalman filter equation relates the projected one step ahead state of the 

system with a residual and the Kalman gain term. The Kalman gain is calculated with the matrix 

Riccati equations. 

 ̂   ̅    (    ( ̅ ))  (118) 

There are no constraints on how the one step ahead projection is calculated. In this work 

Euler integration will be used to calculate the projection. 

Where TE is the Euler integration time step. If appropriate TE and Ts may be equal, but 

they do not have to be. Due to the linear approximation in the Riccati, the extended Kalman filter 

is dependent on the appropriateness of the linear approximation over the length of the time step. 

5.2.4 Bayesian Filtering 

The particle filter represents the state of the art in non-linear filtering and is a 

generalization of Kalman and extended Kalman filtering methods. Particle filtering follows the 

same general steps as the Kalman family filters, but utilizes a Bayesian framework for 

calculating state estimates as probabilities. The risk based decision making framework used in 

this document is also based on Bayesian statistics, so the two methods dovetail nicely.  

5.2.4.1 Bayesian Statistics and Baye’s Theorem 

Frequentist statistics are the class of statistics used widely in traditional reliability 

approaches. In the frequentist framework, a probability is defined as the limiting value of an 

event occurring as a number of observations approaches infinity. It can be seen from the 

definition that there are a number of problems that can arise when applying frequentist statistics 

to ensure the correct operation of safety and mission critical electronic systems. For example the 

frequentist approach requires a large number of observations and generalizes reliability in terms 
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of large population sizes. Safety and mission critical electronics require probabilities of failure 

defined for a single component. Further it is prohibitively expensive to generate a large number 

of observations for large complex engineering systems. The consequences of a failure in a many 

systems (e.g. nuclear power generation, jet engines) may make the acquisition of run to failure 

data impossible to obtain. 

Bayesian statistics state that a probability is the belief that a variable is a certain value. 

This approach has many advantages in its formulation when applied to ensuring reliability of 

safety and mission critical electronics. Inherently Bayesian statistics are applicable to a single 

system. Frequentists readily point out that Bayesian statistics are subjective because they depend 

on your belief in the state of the system prior to performing inference. It is acceptable in some 

cases to assume initially that you are ignorant about the state of your system and avoid the need 

for expensive run to failure data.  

Bayesian statistics depend heavily on the use of Baye’s theorem. The theorem is easy to 

derive from first principles of probability. First the sum rule and product rule for probabilities are 

stated. Then the two rules are manipulated into Baye’s theorem. 

The sum rule is stated as the probability of an event   occurring, plus the probability of 

the same event   not occurring is defined as one. The tilde symbol represents the NOT operator. 

 ( )   (  )      (119) 

The product rule is stated as the probability that two events   and   will both occur and is 

equal to the conditional probability of   occurring if   occurs times the probability that   occurs. 

 (   )   ( | ) ( )   (120) 
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Where the comma is the AND operator and the bar “|” is the conditional operator. The 

probability  ( | ) reads as the probability that   occurs given that   occurred. 

To derive Baye’s theorem transpose the events in equation (120). 

 (   )   ( | ) ( )   (121) 

Since  (   )   (   )  

 ( | ) ( )   ( | ) ( )   (122) 

Rearranging the previous equation results in Baye’s theorem. 

 ( | )  
 ( | ) ( )

 ( )
  

(123) 

In terms of the scientific process, the theorem can be stated as the probability of a 

hypothesis being true given observed data  

 (          |    )  
 (    |          ) (          )

 (    )
  

(124) 

The value in the denominator is not easily observed in practice in the form of a marginal 

probability. Using the law of total probability relates the marginal probability to its conditional 

probabilities. 

 ( )  ∑  ( |  ) (  )
 

   
(125) 

For the case of a binary variable, the law of total probabilities reduces to  

 ( )   ( | ) ( )   ( |  ) (  )   (126) 

And equation (124) becomes 
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 (          |    )

 
 (    |          ) (          )

 (          |    ) (    )   (          |     ) (     )
  

(127) 

To illustrate this point consider a hypothetical example of a crack in an airplane wing. 

From historical records it is known that after 1000 flight hours there is a 1% probability of a 

crack existing in a wing. Traditional inspection methods can only detect cracks after they grow to 

a dangerous length. A new experimental method has been introduced to aid in detecting cracks 

before traditional methods to enable extended use out of the wing and thereby reduce operating 

costs. Under the traditional method wings are replaced after 1000 flight hours. The method 

correctly identifies wings with cracks before any other method is capable of detecting a crack 

80% of the time. Unfortunately there is a 9.6% false positive rate associated with the technique. 

If a wing is flagged by the new system as having a crack, what is the probability that the wing 

actually has a crack? 

Using Bayes theorem as stated in (127), the following probabilities are extracted from the 

hypothetical problem. The hypothesis is a crack in the wing. The observed data is the positive 

flag from the new test method. It is desired to know  (     |        ). 

 (          )   (     )       (128) 

 (    |          )   (        |     )      (129) 

 (    |           )   (        |      )        (130) 

 (          |    ) (    )
  (          |     ) (     )
  (        |     ) (     )
  (        |      ) (      )
 (   )(    )  (     )(    )        

(131) 

 (          |    )   (     |        )  
(   )(    )

     
            

(132) 
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Given the hypothetical inputs, and using Baye’s theorem provides us with the inference 

that there is a 7.8% probability of a crack existing in the wing. In addition to demonstrating the 

use of Baye’s theorem, this example highlights the disastrous effect of uncertainty that false 

positive predictions can have on an inference. Even with a hypothetical method that gives a 

perfect prediction of a crack if it exists, the inference can still be quite low.  

Table 6: Inference with a perfect test and different false positive rates 

True Positive Rate: 

 (        |     ) 

False Positive Rate: 

  (        |      ) 

Inference:  (     |        ) 

100% 9.6% 9.5% 

100% 1.0% 50.3 

100% 0.1% 91% 

 

Bayesian statistics are considered subjective because your initial belief in the state of the 

system affects your results. Table 7 shows the results of taking different initial beliefs that a 

crack exists in the wing at 1000 hours.  

Table 7: Inference with a perfect test and different initial beliefs in the system state 

True Positive Rate: 

 (        |     ) 

False Positive Rate: 

  (        |      ) 

Initial Belief: 

 (     ) 

Inference: 

 (     |        ) 

100% 9.6% 1% 9.5% 

100% 9.6% 10% 53.6 

100% 9.6% 50% 91.2% 
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5.2.4.2 Bayesian Framework for State Estimation 

The Bayesian framework for state estimation is derived from first principles described in 

the previous section. Restating the product rule with new variables. The ‘and’ operator has been 

omitted for brevity. 

 (  )   (  )   ( | ) ( )   ( | ) ( )   (133) 

Baye’s theorem for two events is stated as 

 ( | )  
 ( | ) ( )

 ( )
  

(134) 

Baye’s theorem for three events is derived by substituting B = BC into the two event 

formula and then repeatedly applying the product rule. 

 ( |  )  
 (  | ) ( )

 (  )
 
 ( |  ) ( | )

 ( | )
  

(135) 

A discrete form of the Champman-Kolomgoron equation can be derived starting with the 

product rule. 

 ( | )  
 (  )

 ( )
 
∑  (   ) 

 ( )
 ∑ ( |  ) ( | )

 

  
(136) 

For a continuous probability density function, equation (136) can be rewritten as 

 ( | )  ∫ ( |  ) ( | )   
(137) 

In the Bayesian state estimation framework future states    are a function of prior states 

     and a noise term     . 

       (         ) (138) 

Similarly the measurement equation is a function of the system states and a separate noise 

term. 
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     (     ) (139) 

Lower case    represents a single measurement. Uppercase    represents the vector of all 

previous observations such that    {         }. Filtering follows the same steps as the 

Kalman family of filters, except states are represented as generic PDF’s.  

5.2.4.2.1 One Step Ahead Prediction 

The future state of the system predicted one time step into the future using the prior 

knowledge about the system is calculated using (137). Assuming that  (    |    ) is available, 

 (  |    )  ∫ (  |         ) (    |    )      
(140) 

Future system states are not dependent on prior measurements, so  

 (  |         )   (  |    ) (141) 

The one step ahead prediction  ̅  is therefore 

 ̅   (  |    )  ∫ (  |    ) (    |    )      
(142) 

The first term in the one step ahead prediction integral is calculated from equation (138), 

and the second term inside the integral is assumed to be known.  

5.2.4.2.2 Measurement Step 

The measurement step is performed according to equation (139), and    has now been 

observed. There are no restrictions on the equations in the measurement equation. The equations 

can even be represented by non-continuous PDF’s. For example if there is known to be a wall in 

the environment a robot is operating in this can be reflected in the measurement equation in the 

form of a non-continuous PDF. 
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5.2.4.2.3 State Estimate Update 

The estimated state of the system  ̂   (  |  ) is desired by updating the belief in the 

one step ahead projection using the newly available measurement.  

 (  |  )    (  |       ) (143) 

Using the two event Baye’s theorem from equation (135). 

 (  |  )   
 (  |       ) (  |    )

 (  |    )
 

(144) 

The fact that future measurements are not dependent on past measurements was used to 

simplify the previous equation. 

 ̂   (  |  )   
 (  |  ) (  |    )

 (  |    )
 

(145) 

Finally the update equation can be written. Note that the denominator, often denoted as 

the normalizing constant can be expanded using (137). 

 (  |    )  ∫ (  |  ) (  |    )    
(146) 

In the integral in equation (146) the first term is calculated from (139). In theory the 

second term is calculated from equation (142), but in practice equation (146) is an intractable 

integral that is not solvable. The implementation of the particle filter that will be presented in the 

next section is designed to evaluate the predict-measure-update equations presented in this 

section without evaluating the integral in the denominator of the update equation. 

5.2.4.3 Particle Filter 

The particle filter represents the probability distribution over the current value of each 

state variable using a discrete probability mass function. Unlike with Kalman filtering there are 

no restrictions on the shape of the distribution function being approximated. The N discrete 
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weighted samples of the probability density function are called particles and located in the states 

space at   
 . Probability of each particle is denoted by its weight,   

 .  

 (  |  )   ∑  
  (     

 )

 

   

 

(147) 

 

Figure 41: Approximation of an ideal and continuous probability density function by a set 

of particles. Particles locations  represented as   
  and specify the position on the x-axis. Weights 

specify the height of the stems and are represented by   
  

As the number of particles increases to infinity the approximation converges on the 

underlying continuous probability density function. In general particles will not be evenly 

spaced. Particles far from the regions with the highest probability will have a negligibly low 

weight. The Driac delta function   is defined such that 

 (   )              ∫  (   )    
 

  
 

(148) 

Weights are normalized to represent a proper probability mass function 

∑  
   

 

   

 

(149) 
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The particle filtering algorithm is summarized below. Notice how the process is identical 

to the Kalman family of filters, but the details of the process now utilize Bayesian statistics. 

 

SIR Particle Filtering Algorithm 

1. Initialize a distribution of particles, {  
    

 }                  

2. Project the particles forward one time step  to find  ̅ 
   (  |    ) 

3. Make a new system measurement, zk 

4. Assign new weights based on the relevance of each particle compared to the new measurement  ̂ 
  

 (  |  )  
5. Resample: If a few particles contain a majority of all possible weights, kill low probability particles and 

replace them with new more relevant particles 

 

5.2.4.3.1 Initialize a distribution of particles 

The particle filter is initialized with a probability mass function to represent the initial 

state guess of all the state variables. Common choices are to draw from a normal distribution 

with mean   and standard deviation  , or alternatively to draw from a unifom distribution 

 (   ) with possible values defined on the interval [a,b]. 

5.2.4.3.2 One step ahead projection 

There are no restriction on how to propagate the particles for the one step ahead 

prediction. Euler integration will be used in this document, but any model that can propagate the 

discrete sets of particles in time will suffice.  

 ̅ 
   ̂   

  
  ̂ 

 

  
      

(150) 

The addition of the process noise term,    (    ), provides enough variation in the 

particles to account for un-modeled effects.  

5.2.4.3.3 System Measurement 

Any measurement methodology is acceptable for obtaining    in the particle filtering 

framework. 
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5.2.4.3.4 Update state estimate and assign new weights 

When a new measurement    becomes available at time k, a penalty function is used to 

describe (  |  
 ) and re-assign weights based on the relevance of each particle compared to the 

new measurement. Choice of weights   
 , are chosen based on the principle of importance 

sampling. If the particles   
  are drawn from an importance density  (  

 |  ), then the weights 

are represented by: 

  
   

 (  
 |  )

  (  
 |  )

     
 
 (  |  

 ) (  
 |    

    )

 (  
 |  

    )
 

(151) 

Where   
  {  

        }. The optimal importance density function that minimizes 

the variance of importance weights, conditioned upon    and    has been shown to be to take the 

importance density to be equal to the prior probability [Ristic 2004]: 

 (  
 |  

    )   (  
 |    

    ) (152) 

This results in the update equation  

  
      

  (  |  
 ) (153) 

The particle filter is not limited to any particular penalty function, so Gaussian kernel 

function was used for re-assigning weights. 

  
      

 
 

√    
 
 (     

 )
(    )  

(154) 

It is important after re-assignment to normalize the weights to maintain the approximated 

probability mass function as a proper distribution where the sum of the weights equals unity.  

  
  

  
 

(∑   
 )  

   
 

(155) 
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5.2.4.3.5 Resample as necessary 

If a few particles contain a majority of all of the possible weights, kill the low probability 

particles and replace them with more relevant particles moved to higher probability locations. 

This problem is called particle degeneracy and a simplistic case is shown in Figure 42. If 

degeneracy is not severe, this step is skipped until needed. Resampling is required if  

 

∑(  
 )
  

 

  
(156) 

 

Figure 42: a) initial probability mass function represented by five particles, b) cumulative 

distribution function, c) assigning draws from uniform distribution U(0,1) to new particle 

locations based on cumulative distribution function, d) importance re-sampled distribution 

 

For a complete discussion beyond the brief intuitive overview of particle filtering 

provided here see  [Ristic 2004, Cappé 2007].  
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Figure 43: Evolution of Model Prediction in Particle Filter 

 

5.3 Tracking Example: Physics of a Ballistic Object Re-entry Path  

To facilitate a fair benchmark test for the recursive algorithms implemented in this 

document, a widely used synthetic data set [Farina  2002, Srinivasan 2006, Ristic 2004, Zarchan 

2000] describing the re-entry of a ballistic object into the earth’s atmosphere will be studied. By 

benchmarking performance against a simulated event the true, noise free, state is available for 

judging performance of the implemented filter. In practice the true underlying state of the system 

can never be fully observed.  

The flight of a ballistic object can be categorized into three phases [Ristic 2004]. Phase 

one is a powered launch, where both gravity and air drag act on the object. Phase two, is an un-

powered flight above the earth’s atmosphere where only the force of gravity is significant. Phase 

three, which will be simulated for the benchmark test, is the un-powered re-entry of the ballistic 

object into the earth’s atmosphere under the influence of both gravity and air drag. Due to the 

gradually increasing influence of drag as the atmosphere becomes denser with decreasing 

elevation, the dynamic models describing the third and final stage of a ballistic objects flight are 

usually non-linear. A simplistic one dimensional non-linear dynamic model with additive 
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Gaussian noise is used to create the synthetic benchmark data set. Besides the obvious 

applications of this data set to missiles and defense applications, the re-entry of space debris 

[Welford 2008] can be modeled and tracked in a similar manner. 

 

 

Figure 44: Simple example problem for generating a baseline data set 

Drag, denoted as D, is a function of the air density  , the velocity of the object, and a 

ballistic coefficient parameter,  . Air density is itself a function of height  . 

  
 ( )  ̇ 

   
(157) 

 ( )        (158) 

The position, velocity, and acceleration of the system can be written in state space form 

as 

   {
 
 ̇
 ̈
} 

(159) 

 
 ̇
 ̈

  
  
  

    ̇
  ̇  (   ) 

 ̈
 

(160) 

Or in the more useful matrix form, 
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 (  )       ( (  )   )

 [
    
   
   

] {
 
 ̇
 ̈
}  {

 
 
 
} ( (  )   ) 

(161) 

Using a popular set of input parameters 

(                   
  

  
                   

 

  
             ̇      

 

 
  ̈  

 
 

   
        ) the following ideal trajectory was simulated. 

 

Figure 45: Simulated position of ballistic object 

  

 

Figure 46: Simulated velocity of ballistic object 
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Figure 47: Simulated acceleration of ballistic object 

The effect of the ballistic coefficient,  , can be quite dramatic on the trajectory of the 

object. 

 

Figure 48: Effect of drag coefficient on simulation 
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Figure 49: Simulating a noisy measurement from the ground truth simulation. The 

simulation line is essentially the same, and therefore not visible in the plot,  as the noisy 

measurement at this level of resolution 

 

Figure 50: Zoomed view of the noisy measurement 

If a noisy measurement is taken with a standard deviation of 7.62 meters (25 ft.), then the 

following noisy measurement is available for tracking. Viewed from the 60000 meter level, the 

measurement is quite accurate. A zoomed view of the same noisy measurement is provided to 

put the scale of the variation in perspective. 

The remainder of the document will use the noisy measurement data set as the input into 

all of the different algorithms. A variety of cases will be investigated involving the Kalman filter 

and extended Kalman filter. The case of a known ballistic coefficient, an unknown ballistic 

coefficient, and finally the case of a time evolving ballistic coefficient will be demonstrated to 

compare and contrast the algorithms. 

5.3.1 Tracking a known object (  is known and constant) 

For the case of a known, constant ballistic constant two filters are compared. First the 

Kalman filter, and then the extended Kalman filter. Based on the known noise level in the radar 

measurement the variance for both filters is taken to be   (      )          . The 

maximum change in acceleration during tracking is estimated to be 10g’s. Therefore the process 
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noise term is estimated as the variance of the expected acceleration divided by the length of the 

tracking time,    
(   )  

  
    .  

5.3.1.1 Kalman Filter 

The state vector for the Kalman filter is taken as 

   {
 
 ̇
 ̈
}  

(162) 

In this case the derivative of acceleration is taken to be white noise with a standard 

deviation of   . The state space equation becomes 

{
 ̇
 ̈
 ⃛
}  [

    
   
   

] {
 
 ̇
 ̈
}  {

 
 
  

}  

(163) 

By inspection, 
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] 
(164) 

            
(  ) 
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(166) 
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] 

(167) 

Since the   matrix is used to propagate the state estimate, it would be desirable to extend 

the Taylor series approximation to many terms. Unfortunately the    term and above are 
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identically zero, so the two term approximation is the upper limit of the accuracy of the 

approximation.  

The discrete process noise matrix is formed from the continuous process noise matrix as 

    [
   
   
   

]     ∫  ( )  ( )   
  

 
 

(168) 
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(169) 

 

Figure 51: Tracking results for a two term PVA Kalman filter 
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Figure 52: Residual of the error between the estimated and simulated (no noise) states 

Results from the implemented Kalman filter are shown in Figure 51. As the influence of 

the non-linear drag term becomes numerically significant around 10 seconds into the simulation 

the tracking on the acceleration state starts to degrade. The position and velocity states are 

estimated with good accuracy even if assumptions about linearity in the system are being 

violated. Figure 52 shows a plot of the residual between the estimated state and the simulated 

actual position (no noise). When the Kalman filter is implemented in an optimal manner, the 

residuals fall inside the    bounds 63% of the time [Zarchan 2000].  

5.3.1.2 Extended Kalman Filter 

The state vector for the Extended Kalman filter is taken as 

   {
 
 ̇
 ̈
}  

(170) 

In this case the derivative of acceleration is taken to be white noise with a standard 

deviation of   . The state space equation becomes 
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 (  )  [
    
   
   

] {
 
 ̇
 ̈
}  {

 
 
  

}  

(171) 

The fundamental matrix is now determined using the Jacobian of the state vector 

  
  

   
|
  

 [
    
   
   

] 
(172) 

This result is the same as the Kalman filter, which is not surprising since nothing about 

the dynamics of the system has been assumed to be different than the case of the Kalman filter. 

The next EKF development will use a more detailed acceleration model which will change the 

implementation of the filter. 

5.3.1.3 Extended Kalman Filter with Non-Linear Acceleration 

The state vector for the Extended Kalman filter is taken as 

   {
 
 ̇
 ̈
}  

(173) 

In this case the derivative of acceleration is taken to be white noise with a standard 

deviation of   . The state space equation becomes 

 (  )       [ (  )   ]  (174) 

Where 
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Equivalently this the same as 
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(176) 

Which means that the differential equations for the system are 
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The terms for the Jacobian become 
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The   and Qk matrices become verbose, and are calculated using the symbolic math 

toolbox in the Matlab. During the prediction step equation (188) is used to supplement 

fundamental matrix with the more accurate acceleration estimate.  
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5.3.1.4 Particle Filter with Non-Linear Acceleration 

There are no matrices to derive when implementing the particle filter. Equations (176) 

and (199) describe how system states were propagated for the prediction step of the filter. By 

itself, initializing the noise terms in a particle filter can be challenging. Approaches for 

remedying this usually involve algorithms applied outside of the particle filtering framework, 

such as an optimization [Bréhard 2004, Wang 2007]. To make a fair comparison a simple 

implementation of the particle filter known as sequential importance resampling (SIR) is used for 

benchmarking, and a guess and check strategy was used to determine reasonable noise terms for 

initialization. 

5.3.2 Comparison of Tracking Results for a Known Ballistic Object 

The case of tracking a known ballistic object is a very simplistic scenario and not very 

realistic. It is unlikely in practice that you would have a perfect model that incorporates all inputs 

that affect the dynamics of a system. Furthermore it is unreasonable to think that you would have 

a priori knowledge of the free parameters in the model (drag coefficient  ) and the initial state of 

the system. None the less it provides a foundation for comparing the performance of the different 

algorithms implemented in this work. 

Figure 53 compares the results of applying the ballistic object tracking benchmark data 

set using various recursive algorithms. For each algorithm four measurement frequencies were 

simulated (0.1, 0.01, 0.005, and 0.001 seconds/measurement) to investigate the effect that 

linearization in the EKF has on performance. For the Kalman family of filters implementation 

with both a one term and two term approximation of the fundamental matrix is investigated. 

Each algorithm was initialized with the same noise terms,   (     )     (   )
   ⁄ , and 

the same initial conditions,  ̂  ⌊                         ⌋  which is the same as 



99 

 

the simulation. The PF requires additional noise terms to avoid particle degeneracy. The noise 

terms for the position, velocity and acceleration in the PF were set as (     ) , 10 m/sec, and 

10 m/sec
2
. The standard deviation for the penalty function in the PF was set at 10 m. The particle 

population size for the PF was 30. As derived above, the Kalman filter was implemented with a 

simple position, velocity, acceleration state vector. The EKF and PF were implemented with 

position, velocity and non-linear acceleration. Because this is a benchmark test on a simulated 

data set it is possible to evaluate performance for the observed position estimate of the ballistic 

object as well as the unobserved velocity and acceleration estimates. For the Kalman family of 

filters the root mean squared error between the estimated state and the actual (simulated) state 

are used as a measure of performance. In theory if a Kalman filter is operating correctly, about 

63% of the residuals between the estimated and true value should fall inside the uncertainty 

bounds prescribed in the covariance matrix. To determine the theory bounds for the filter the 

square root of the position term in the covariance matrix,   (   ) ,is calculated. If the absolute 

value of the residual between the estimated position and the true (simulated) position is less than 

√  (   ), then the estimate is considered inside the theoretical error bounds. This calculation is 

repeated for every measurement step, and reported as a percentage of estimates that fell inside 

the theory bounds. This calculation can also be performed using the residual between the 

projected state and measured state of the filter. For the Kalman filter, this is one of the few 

known methods for monitoring for filter divergence online. 
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Figure 53: Benchmark Testing for Various Implementations of recursive filters 

A few points to notice in the comparison of tracking a known ballistic object 

 Results for the one term and two term Kalman filters are negligibly different 

 The percent improvement in the EKF improves as the sampling time decreases 

 The residuals of the EKF are inside the theory bounds more often than the KF 

 The PF is more dependent on sampling time than the EKF 

Algorithm State Vector Terms Time Step

Position 

[m]

Velocity 

[m/s]

Acceleration 

[m/s^2]

Percent Inside 

[%]

KF PVA 1 0.1 4.81 12.37 22.26 60.80

KF PVA 1 0.01 1.70 6.39 16.60 68.58

KF PVA 1 0.005 1.43 5.45 15.49 64.94

KF PVA 1 0.001 0.72 3.49 13.68 66.94

KF PVA 2 0.1 4.81 12.37 22.26 60.80

KF PVA 2 0.01 1.70 6.39 16.60 68.58

KF PVA 2 0.005 1.43 5.45 15.49 64.94

KF PVA 2 0.001 0.72 3.49 13.68 66.94

EKF PVNA 1 0.1 3.75 6.51 11.60 76.74

EKF PVNA 1 0.01 1.59 3.97 10.04 71.74

EKF PVNA 1 0.005 1.23 3.42 9.93 71.32

EKF PVNA 1 0.001 0.66 2.28 9.84 71.50

EKF PVNA 2 0.1 3.73 6.21 11.58 77.08

EKF PVNA 2 0.01 1.59 3.94 10.04 71.81

EKF PVNA 2 0.005 1.23 3.41 9.93 71.35

EKF PVNA 2 0.001 0.66 2.28 9.84 71.52

PF PVNA N/A 0.1 16.92 56.45 16.06 N/A

PF PVNA N/A 0.01 8.35 141.11 23.11 N/A

PF PVNA N/A 0.005 8.34 199.79 40.25 N/A

PF PVNA N/A 0.001 8.28 561.68 62.28 N/A

Eror is estimated state minus actual state (no noise)

KF = Kalman Filter 

EKF = Extended Kalman Filter

PF = Particle Filter

PVA = Position, Velocity, Acceleration

PVNA = Position, Velocity, Non-linear Acceleration

Terms = Terms in the approximation of the fundamental matrix

RMS of Error
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 The choice of noise terms for the PF is a function of the sampling time. In this 

comparison the noise terms were optimized for the 0.1 seconds/measurement simulation 

and never modified for other sampling rates. 

This concludes the comparison of the KF and EKF for the very simple case of a constant 

known ballistic coefficient. In more realistic situation the ballistic coefficient is not a known 

value. The next section will address estimating the ballistic coefficient, which is itself an 

intermediate step towards tracking an object with a time varying ballistic coefficient. 

5.3.3 Tracking an Unknown Object (  constant, with unknown a priori value) 

The more realistic case of tracking an object with an unknown ballistic coefficient is 

demonstrated using the PVA state vector for the KF, and a position, velocity, ballistic coefficient 

( -parameter) state vector with the EKF and PF. This state vector is abbreviated as the PVB state 

vector. 

   {

 
 ̇
 
}  

(190) 

Similar to previous cases the ballistic coefficient is assumed to be a constant, and the 

derivative of the ballistic coefficient is taken to be white noise with a standard deviation of   . 

The differential equations become 

 ̇
 ̈
 ̇

  
  
  

  ̇
 ( (  )   )  
       (    )

        ̇ 

  
   

(191) 

The units and uncertainty surrounding the beta term are different than the    used 

previously for the non-linear acceleration state. If the ballistic coefficient can be assumed to be 

chosen to within +/- 1000 kg/m-s
2
, then the process noise term can be set at 

   (     )
   ⁄       . The terms for the Jacobian become 
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5.3.4 Comparison of Tracking Results for a Unknown Object 

The case where the characteristics of the ballistic object are not known a priori makes the 

simulation more realistic. The beta coefficient is a model term that is desired to be estimated 

online in a joint state parameter estimation framework. To realize joint state parameter 

estimation the beta coefficient has been integrated as one of the system states being estimated by 

the filter. It is assumed that the beta coefficient is a constant. Figure 54 and Figure 55 show the 

tracking results for the EKF and PF implementations of the PVB filter. In both filters the beta 

parameter was incorrectly initialized as           (      )⁄ . In the simulation   
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        (      )⁄ . The EKF’s estimate of the beta parameter (xk[3]) increased during the 

simulation, but never converged on the true value. The PF implementation did not show any 

trend towards estimating the correct parameter. The failure of the PF to jointly estimate states 

and parameters is not surprising for the simple PF implementation. Modifications to the PF for 

performing joint state and parameter estimation are discussed in [Saha 2011]. A chart comparing 

each of the different filters is found in Figure 56. 

 

Figure 54: Tracking results for EKF PVB filter with a poorly initialized ballistic 

coefficient 
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Figure 55: Tracking results for PF PVB filter with a poorly initialized ballistic coefficient 

 

Figure 56: Tracking performance for PVB filters with the beta parameter initialized 

correctly and incorrectly 

A few points to notice in the comparison of tracking an unknown ballistic object 

 Performance of the EKF PVA filter (Figure 53) is inferior to the PVB filter for a well 

initialized filter. 

Algorithm State Vector

Beta Initialized 

[kg/(m-sec^2)]

Time Step 

[sec/meas.]

Position 

[m]

Velocity 

[m/s]

Acceleratio

n [m/s^2]

Beta                 

[kg/(m-sec^2)]

Percent 

Inside [%]

KF PVA 19161 0.01 1.70 6.39 16.60 N/A 68.58

EKF PVB 19161 0.01 0.80 1.71 N/A 15.96 71.91

PF PVB 19161 0.01 8.42 231.49 N/A 32.64 N/A

KF* PVA 10000 0.01 1.70 6.39 16.60 N/A 68.58

EKF PVB 10000 0.01 2.47 3.45 N/A 4377.10 67.54

PF PVB 10000 0.01 8.39 270.93 N/A 9177.10 N/A

Eror is estimated state minus actual state (no noise)

KF = Kalman Filter 

EKF = Extended Kalman Filter

PF = Particle Filter

PVA = Position, Velocity, Acceleration

PVB = Position, Velocity, Ballistic Coeficient (Beta)

Beta Actual = 19161 kg/(m-s^2)

*Result is independent of choise of beta, exactly same result as first KF implementation

RMS of Error
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 The KF implementation is independent from the choice of   and performs better at 

tracking in the case where the ballistic coefficient of the object being tracked is not well 

known.  

 For the case of a poorly initialized filter, the KF slightly out performs the EKF 

 The EKF can perform joint state parameter estimation without modifications to the state 

vector or filtering framework 

 Note how in Figure 57 the estimate of the ballistic coefficient does not stabilize until the 

impact of air resistance becomes numerically significant. 

 

Figure 57: Estimate of ballistic coefficient. Note the very fine scale on the y-axis. 

If the only criteria for judging the performance of a filter is the quality of the tracking, the 

PVA and PVB perform nearly identically in this example for well initialized filters. In practice 

with prognostic applications the ability to perform joint state and parameter estimation can have 

a significant effect on the quality of a prognostic algorithms performance.  

The KF has a very low error when tracking, but is simply data driven, the ballistic 

coefficient is not part of the update equations. An estimate of the ballistic coefficient can be 

made by re-arranging the governing equation for acceleration. 

  
   ̇ 

 ( ̈   ) 
(203) 
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Unfortunately since the estimated acceleration is not very smooth the estimate of the 

ballistic coefficient is not very smooth and off by a couple orders of magnitude in some 

locations.  

The previous discussion has established a methodology for quantifying the operation of a 

filter, and shown how uncertainty in initial parameters effect the tracking and parameter 

estimation of an algorithm. The final section will discuss the situation when the model 

parameters are time evolving. 

5.3.5 Tracking an object with time evolving parameters 

In this section the ballistic coefficient is initially unknown, and additionally is time 

evolving. The simulation has been changed to represent the case where at 15 seconds the object 

being tracked splits in half causing the ballistic coefficient to decrease by 50%. The PVA KF, 

and PVB EKF and PF are used for tracking 

The effect of the change in the ballistic coefficient on the true state vectors is shown 

below. 
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Figure 58: Simulation with the added complexity of a time varying drag coefficient 

 

Figure 59: Change in the simulated beta coefficient. The value is reduced by 50% for the 

final 15 seconds of the simulation.  

 

Figure 60: Tracking performance for the KF with an evolving beta parameter 



108 

 

 

Figure 61: Tracking performance for the EKF with an evolving beta parameter 

 

Figure 62: Tracking performance for the PF with an evolving beta parameter 
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Figure 63: Tracking performance for a poorly initialized EKF with an evolving beta 

parameter 

 

Figure 64: Tracking performance for a poorly initialized PF with an evolving beta 

parameter 
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Figure 65: Comparison of recursive filters for a time evolving beta parameter 

By simply looking at the tracking accuracy the PVB filter appears to be the worst 

performer, but it will be shown that it is actually the best filter for prognosticating RUL. The 

advantage of the EKF-PVB filter is the ability to perform joint state and parameter estimation 

which can be seen by looking at the comparison of the actual ballistic coefficient and estimated 

coefficient. 

 

Algorithm State Vector

Beta Initialized 

[kg/(m-sec^2)

Time Step 

[sec/meas.]

Position 

[m]

Velocity 

[m/s]

Acceleration 

[m/s^2]

Beta                 

[kg/(m-sec^2)]

Percent 

Inside 

[%]

KF PVA 19161 0.01 2.24 10.85 32.13 - 58.48

EKF PVB 19161 0.01 6.20 19.97 - 1677.20 62.05

PF PVB 19161 0.01 8.47 360.93 - 6759.90 -

EKF PVB 15000 0.01 6.59 20.13 - 4685.30 35.69

PF PVB 15000 0.01 8.40 172.69 - 6494.50 -

Eror is estimated state minus actual state (no noise)

KF = Kalman Filter 

EKF = Extended Kalman Filter

PF = Particle Filter

PVA = Position, Velocity, Acceleration

PVB = Position, Velocity, Ballistic Coeficient (Beta)

Beta Actual = 19161 kg/(m-s^2) for 15 seconds, 9581 for 15 seconds

*Result is independent of choise of beta, exactly same result as first KF implementation

RMS of Error
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Figure 66: Filter estimate of the drag coefficient 

5.4 Conclusion 

This chapter presented a number of methods for estimating the state of a system. To 

provide context, batch least squares methods were introduced, then a recursive least squares 

approach. It was shown that the recursive estimate matched with the batch estimate at the very 

last data set. Savitzky-Golay smoothing was discussed as a possible least squares based 

algorithm for prognostics. Three state estimation techniques, the Kalman filter, Extended 

Kalman filter, and particle filter were introduced. A large number of simulations were conducted 

to highlight the performance of different filters when subjected to different scenarios. 

Specifically the effect of approximations in the fundamental matrix, measurement sampling time, 

initialization states, and joint state parameter estimation were conducted. Each filter has its own 

strengths and weaknesses which were highlighted. Recursive filtering is only part of a PHM 

algorithm, and the benefits of applying each algorithm to real data sets, as opposed to the 

simulations presented in this section will be performed in the following sections.



112 

 

6 Quantifying performance of PHM implementations 

Methods for quantifying the performance of PHM implementations are discussed in this 

section. A review of traditional statistical time series metrics and their shortcomings when 

applied to prognostics are discussed in [Saxena 2008a,b, 2009a,b]. Definitions and metrics used 

to describe the performance of a PHM implementation are introduced through an example PHM 

implementation on a simulated data set. The same set of metrics will be used to quantify 

performance of various PHM implementations implemented on actual systems in the proceeding 

sections and provides a standard measure of performance across widely disparate setups and 

experimental conditions. 

6.1 Example PHM Implementation 

Hypothetically assume you can monitor a feature of a system that is incurring physical 

damage from an environmental stress, and believe the damage degradation to follow a quadratic 

model. 

     (204) 
 

 

 Define failure as the time when the feature vector y is at or above a value of 4. A 

measurement of the system is represented as the true system y, with additive white noise of 

standard deviation  . 

     (   ) (205) 

A time history (created in simulation) of the measured system as it progresses from a 

health state at level zero, to a failed state at level 4 is shown in Figure 67. 
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Figure 67: Noisy measurement. Units are purposefully omitted to avoid accidently 

mistaking this data as a real experimental observation. 

The goal is to predict the expected time of failure, or the point when the feature will have 

a value greater than four. The expected time of failure is also referred to as the remaining useful 

life of the system. Estimates of the remaining useful life to will be updated after every 25 

measurements until failure occurs. A Kalman filter is used to recursively process each new 

measurement as it becomes available. The Kalman filter was initialized as a three state filter. The 

feature vector is the measured state. The first and second derivative of the measured state are 

also used as state variables. 

 ̂  {

 
 ̇
 ̈
} 

(206) 

In state space form the system is represented as 
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 ⃛
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(207) 

It is assumed that  ̈ is a constant and therefore its derivative should be white noise. A two 

term approximation is utilized for the fundamental matrix. 
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The simulation was created by adding white noise with a standard deviation of 0.1 to the 

true underlying system. The Kalman filter will be initialized with a noise term R that has a 

standard deviation of 0.1. The process noise variance w is estimated by the assumption that the 

feature vector will at most change from zero to four over a time period of two units of time. 

   
  

  
(209) 

The time step for the simulation and filter will be 0.008 units of time. Initial state values 

were initialized as zero due to ignorance of how the system might actually be operating. To make 

a prediction of the remaining useful life the current state estimate provided by the Kalman filter 

will be combined with the expected future behavior of the system stated in equation (204). The 

failure threshold    is defined as four. Using the current estimated state of the system, and the 

failure threshold a quadratic equation can be written.  

    ̂   ̂          ̂     
 

 (210) 

Solving the proceeding equation for      provides an estimate of the remaining useful 

life at the time of the prediction. As new measurements become available before the failure of 

the system, the same equation can be utilized with the most recent estimate of  ̂ to calculate 

updated remaining useful life. The uncertainty (standard deviation) surrounding the prediction is 

calculated using diagonal terms from the posterior error covariance matrix P [Swanson 2001]. 
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For completeness the tracking and filtering results from the Kalman filter are shown in  

 

Figure 68: Tracking results from the Kalman filter for the synthetic data set 

 

Figure 69: The Kalman filter successfully tracked the noisy data and provides smooth 

estimates of the first two derivatives. As initially assumed, the second derivative is 

approximately constant 
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Figure 70: Residuals between the estimated and actual state estimates falls within the 

theoretical error bounds 66% of the time and indicates that the Kalman filter is operating 

correctly. Unfortunately this provides no insight if RUL predictions are accurate and correct 

6.2 Prognostics Hindecaste 

This section will present a proof of concept for a prognostic system to monitor and 

manage the health of a fictitious system that was simulated in the previous section. By simulating 

the data set the true underlying state that generated the noisy data is known, and makes 

performance evaluation easier. In practice the true state is not possible to obtain. To borrow 

terminology from hurricane forecasting, a forecast is the real time prediction of future events 

based on observations. A hindecaste is a simulated real time prediction of future events, using 

previously observed data. New hurricane models are validated using the hindecaste method on 

more than one hundred years of climatology data [Rappaport 2009]. A major pitfall of this 

approach is inadvertently creating a future information leak. Future information leak is the use of 

information for a prediction that is not yet available. An example of a future information leak is a 

three day moving average centered on the current day. When designing and testing PHM 

algorithms is preferable to simulate performance so you do not have the time delay or expense of 
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running a system to failure. Unfortunately this method can also result in a implementation that 

only performs good on the available data set, but does not perform well on real data. Methods for 

designing more robust PHM algorithms is discussed in the particle swarm optimization section. 

The simulated data set used in this example simply provides an easy discussion of the relevant 

ways to quantify the performance of a PHM algorithm.  

Illustrating the prediction process is difficult because a prediction without a frame of 

reference cannot be judged as successful. Therefore when discussing the example problem we 

commit the logical fallacy of a future information leak on purpose. Figure 71 shows an 

illustration of an early prediction from the PHM algorithm described earlier. The upper plot 

shows the data that was available at the time of the prediction overlaid on clean system state. In 

practice the clean system state is not available. To provide a frame of reference for the prediction 

the lower plot is an overlay of the prediction on top of the full simulated data set. Again this 

would not be possible to create if this was a true forecast, and not a simulated hindecaste.  

 

Figure 71: Illustration of the Prediction Process with an Overlay on the reference data set. 

With little trend in the measured data provides little insight into the nature in which damage will 

propagate in the system 
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After every 25 measurements the prediction process described in equation (210) is 

repeated with the most recent state estimate from the Kalman filter. The next eight predictions 

are shown in a similar manner. 

 

Figure 72: Prediction after 50 measurements. With an observation of available data that is 

not above the noise floor, the prediction of RUL is significantly over estimated 

 

Figure 73: Prediction after 75 measurements. At this point in time enough measurements 

have been made to more accurately estimate the form of the underlying process that is generating 

the noisy data. The algorithm is still slightly overestimating the actual RUL  
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Figure 74: Prediction after 100 measurements. In contrast to the previous predictions, at 

this point in time the RUL is slightly under predicted. 

 

Figure 75: Prediction after 125 measurements. This prediction represents the first 

prediction that has a very high accuracy compared to the actual RUL 
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Figure 76: Prediction after 150 measurements. At this point in the simulation it is 

apparent that the PHM algorithm has converged to the actual RUL. 

 

Figure 77: Prediction after 175 measurements. Even though the PHM algorithm has 

converged to a accurate prediction updates are still made in the event that the underlying process 

is affected by an un-modeled input 
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Figure 78: Prediction after 200 measurements. During the final stages of the simulation 

the fictitious product is incurring damage at a much faster rate.  

 

Figure 79: Prediction after 225 measurements. The final prediction before failure occurs. 

For such short time scales the specific shape of the failure propagation curve is no longer 

important. A linear model would perform nearly as well as a quadratic model. 

Reporting prediction results in the manner shown above are impossible for 

implementation that are making predictions in real time. Even if you are using previously 

recorded data in a hindecaste the density of information is very low, and not very easily 

converted into a quantitative analysis. To summarize the accuracy of the predictions presented 
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above a remaining useful life plot can be created. The horizontal axis of the plot is time. The 

vertical axis of the plot is remaining useful life. Only after a system has been run to failure is the 

actual remaining useful life observable. On the RUL plot the actual remaining useful life is a 

straight line. The predicted RUL is also plotted on the same scales to compare the accuracy of 

the predictions to the actual RUL. It is implicitly assumed that the stresses that caused the system 

to fail were relatively constant or repeatable. There are a number of cases where this type of 

comparison would be less useful, but currently there are no known alternatives and the metric 

has been historically used to communicate results from PHM algorithms. Figure 80 shows a very 

simple implementation of an RUL plot as an illustrative example. Figure 81 summarizes the 

predictions shown in Figure 72 through Figure 79 along with predictions made after every new 

data point that were not shown. The light pink band is a user defined band of acceptable 

prediction accuracy that will facilitate quantifying performance. The alpha bounds are simply 

   percent of the actual remaining useful life and are considered arbitrary based on the required 

performance of the PHM implementation.  Because the actual remaining life is a number that 

decreases with time, the alpha bounds consequently become tighter as the point of failure draws 

closer.  

 

Figure 80: An illustrative example to demonstrate how RUL plots are calculated 
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Figure 81: Summary of RUL predictions for the hindcaste on the fictitious data set 

6.3 PHM Specific Offline Performance Metrics 

The alpha lambda plot is the starting point for a family of offline PHM performance 

metrics introduced in [Saxena 2008a,b, 2009a,b]. The RUL plot successfully illustrates the 

accuracy of the PHM predictions, but is more difficult to use to interpret the precision of the 

predictions. To provide more insight into algorithm performance a metric known as the   metric 

is introduced to quantify precision. The relative accuracy metric is considered a more meaningful 

description of accuracy than simply the error between the predicted and actual RUL. Relative 

accuracy penalize errors closer to the end of life more harshly than errors at the beginning of the 

prediction time. Each of the metrics are described in more detail in this section. The metrics are 

considered offline metrics because they require the system to fail before being calculated. 

Unfortunately this metrics can provide no real time insight into the accuracy of the RUL 

predictions. 
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6.3.1 Alpha-Lambda Metric 

In addition the predicting remaining useful life, risk based decision making schemes 

require an estimate of the uncertainty surrounding the prediction. This is reported as the standard 

deviation for the RUL prediction in equation (211). The uncertainty information can be 

communicated on an alpha-lambda plot. The alpha-lambda plot is closely related to the RUL 

plot, but the horizontal axis is replaced with the normalized time to failure and the uncertainty 

bounds for each prediction are also plotted. A normalized time scale is used to facilitate 

comparisons between different tests that may have different run to failure times. 

         (212) 

 

Figure 82: Alpha-Lambda plot which shows both RUL predictions and the uncertainty for 

each prediction 

 

6.3.2   Metric 

Used to quantify the precision of a predicted RUL compared to the actual RUL, the   

metric is calculated differently depending on the method used to describe uncertainty. In 



125 

 

algorithms based on the Kalman filter or the extended Kalman filter it is implicitly implied that 

all values are Gaussian in nature.  

6.3.2.1 Gaussian   metric 

In the case of a normal distribution only the mean   and standard deviation   are needed 

to fully describe the distribution. In this work the mean is the estimate of remaining useful life 

and the standard deviation is calculated from equation (211) or a similar method. In a normal 

distribution the area under the distribution is defined as unity. The   metric is evaluated as the 

percentage of the area under the normal distribution that falls within the user defined alpha 

bounds. Predictions where most of the probability mass represented by the distribution is inside 

the alpha bounds represent a prediction that is successfully achieving the precision required by 

the user. A prediction that is accurate, but not very precise is not very helpful when making 

decisions in the risk based framework. If only a small amount, or none, of the probability mass is 

inside the alpha bounds the prediction is either not accurate or not precise. The probability mass 

inside the alpha bounds is represented as 

   ∫    ( )  
  

  
 

(213) 

The PDF, in this case a normal distribution, is integrated between the alpha bounds to 

evaluate the metric. At each prediction time the PDF may be different and the   metric may have 

a different value. Due to the decreasing size of the alpha bounds closer to the point of failure the 

beta metric score will fall off even if the uncertainty has converged to a constant value. 

To calculate the   metric for a normal distribution a cumulative distribution function is 

used. The area under a normal distribution between negative infinity and an arbitrary value a is 

defined as  
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(214) 

Where erf is the error function ,   is the mean or predicted RUL, and   is the standard 

deviation of uncertainty in the predicted RUL. To calculate the area between two points, such as 

the upper alpha bound  ( )and the lower alpha bound  ( ) equation (214) is applied twice. 
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(215) 

 

Figure 83: Illustration of the Beta calculation for a Gaussian distribution at a prediction 

60% of the way to failure 

The optimal score for a beta metric is unity at each prediction point. The minimum value 

for the beta metric is zero at each prediction point. For a time series of k predictions the beta 

metric is a vector with k entries. For the simulated data set the beta metric is shown in Figure 84. 
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Figure 84: Beta metric for the simulated data set. Note the decrease in the metric score 

near the actual time of failure 

 

6.3.2.2 Generic   metric 

When the distribution describing uncertainty in the RUL prediction is a generic 

distribution as is the case in the particle filter a probability mass function is used to describe the 

distribution. Integrating a probability density function is straightforward using a simple 

integration technique for a discretely defined function. If the probability mass function is defined 

with a fine discretization of points, the rectangular rule for integration can be implemented. 

   ∫    ( )  
  

  

 ∑(         )

  

    

   (   )     (     )

  

(216) 

Where           is the set of probability mass points inside the alpha bounds and 

PMF is the value of the probability mass function at each discrete point 
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Figure 85: Numeric integration could be used to evaluate the area between two alpha 

bounds defined by the probability mass function denoted as the approximation to the blue ideal 

curve. This situation is common in a particle filter implementation base PHM algorithm. 

6.3.3 Relative Accuracy 

Relative accuracy is defined as  

      |
                      

         
| 

(217) 

A perfect relative accuracy score is one, and the worst score is zero. In the case of a 

prediction that severely deviates from the actual RUL the metric can be negative. If a negative 

value for the metric is calculated the metric is reported as zero. For a time series of k predictions 

the RA metric is a vector with k entries. The relative accuracy score for the simulated data set is 

shown in  
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Figure 86: Relative accuracy for the simulated PHM predictions. Note the sharp drop off 

in relative accuracy towards the end of life. 

6.3.4 Cost Function 

To facilitate comparisons of different data sets/PHM algorithm results using a single 

number a cost metric is created. The cost metric is arbitrary and user specific. In this paper we 

took an equal weighting of accuracy and precision to determine the performance of the 

algorithm. 

  
 

 
∑(             )

 

 
(218) 

Where,   and RA are vectors containing a value between zero and one for each 

prediction time step and N is the total number of predictions.    and     are weights that sum to 

a value of unity. In this case           . The resulting performance function for the 

hindcaste was 0.443. 
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6.4 Conclusion 

In this section the off line performance metrics that will be used to quantify performance 

of presented prognostic algorithms was defined and their use was demonstrated on a synthetic 

data set.  A remaining useful life plot succinctly summarizes the performance of algorithms to be 

quantified as a function of time. The alpha lambda metric was helps quantify the precision of 

RUL predictions. The beta metric quantifies the accuracy of RUL predictions. Relative accuracy 

is the preferred method for summarizing the error between actual and predicted RUL. To assign 

a single number to the performance of an algorithm, a cost function was defined as a weighted 

average of the beta metric and relative accuracy metric. When used together, the PHM metrics 

provide a method for quantitative comparison between competing algorithm implementations.
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7 Prognostics with Resistance Spectroscopy for Grid Array Packaging 

Leading indicators of failure have been developed based on high-frequency 

characteristics, and system-transfer function derived from resistance spectroscopy measurements 

during shock loadings.  The technique is intended for condition monitoring in high reliability 

applications where the knowledge of impending failure is critical and the risks in terms of loss-

of-functionality are too high to bear.  Previously, resistance spectroscopy measurements 

[Constable 1992] have been used during thermal cycling tests to monitor damage progression 

due to thermo-mechanical stresses.  The development of resistance spectroscopy based damage 

pre-cursors for prognostication under shock and vibration is new.  In this section, the high-

frequency characteristics, and system transfer function based on resistance spectroscopy 

measurements have been correlated with the damage progression in electronics during shock.  

Packages being examined include ceramic area-array packages.  Second level interconnect 

technologies examined include copper-reinforced solder column, SAC305 solder ball, and 

90Pb10Sn high-lead solder ball.  Assemblies have been subjected to 1500g, 0.5 ms pulse [JESD-

B2111].  Continuity has been monitored in-situ during the shock test for identification of part-

failure.  Models for healthy and damaged packages have been developed based on package 

characteristics.  Data presented shows that high-frequency characteristics and system-transfer 

characteristics based on resistance spectroscopy measurements can be used for condition-

monitoring, damage initiation and progression in electronic systems.  A positive prognostic 

distance has been demonstrated for each of the interconnect technologies tested.   
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7.1 Test Vehicle 

Test board A, was manufactured in four different configurations. The boards have daisy-

chained ceramic packages with 400 I/O each.  Each test board has 8-packages on one side of the 

test board.  All packages on a test-assembly have the same interconnect type.  Interconnect 

technologies studied include, copper-reinforced solder column grid array (CCGA), Eutectic tin-

lead solder (63Sn37Pb), high lead solder (Sn10Pb90) and SAC305 solder (Sn3Ag0.5Cu). Table 

8 shows the package parameters for test board A. A representative board with each package 

numbered U1 – U8 is shown in Figure 87.   

 

Figure 87: Test Vehicle 

Table 8: Package Architectures for Test Board A 

Parameter 

C
C

G
A

 

S
o
ld

er
 

C
o
lu

m
n
s 

C
B

G
A

 

6
3
S

n
3
7
P

b
 

C
B

G
A

 

S
n
1
0
P

b
9
0
 

C
B

G
A

 

S
n
3
A

g
0
.5

C

u
 

Length (mm) 21 21 21 21  

Width (mm) 21 21 21 21 

Thickness 

(mm) 

2.4 2.4 2.4 2.4 

 

U1

U2

U3

U4 U6

U5 U7

U8

U1

U2

U3

U4 U6

U5 U7

U8



133 

 

I/O 400 400 400 400 

Pitch (mm) 1 1 1 1 

Ball Dia (mm) 0.6 0.6 0.6 0.6 

Joint Height 2 mm 0.6 mm 0.6 mm 0.6 mm 

 

7.2 Resistance Spectroscopy Approach 

Leading indicators of damage have been developed based on resistance spectroscopy and 

impedance response phase shift of interconnects.  The interconnect impedance response has been 

measured as a function of input signal frequency during shock and vibration.  Interconnect 

resistance change can be represented by the equation,  

   
 

  
(219) 

Where R is the resistance,   is the material property resistivity, and L and A are the 

length and cross sectional area respectively. 
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The temperature coefficient of resistivity, is a function of temperature. Since the primary 

focus is on resistance spectroscopy measurements and their correlation with damage, the 

resistance change due to temperature has removed from the measurements.  The temperature 

during damage initiation and progression has been held constant during experiments.  The 

resistance change can thus be attributed to damage in the interconnects.   
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Figure 88: Schematic representation of solder ball denoting length and cross sectional 

area 

Solder interconnects may be strained during shock and vibration.  Homologous 

temperature, which expresses the temperature of a material as a fraction of its melting point 

temperature using the Kelvin scale, is in the neighborhood of 0.5 times its melting temperature at 

room temperature or normal equipment operating temperatures for several solder alloys.  In 

electronics applications, where circuits typically operate over a –55°C-+125°C range, solder may 

be operating at 0.5-0.8 Tmelt.  Shock loading in electronic interconnects at equipment operating 

temperature will result in plastic deformation, residual strain and eventual failure of the 

interconnects.  Resistance spectroscopy has been used to monitor the frequency dependent 

impedance response of the interconnects for monitoring damage initiation and progression.   

7.3 The Effect of Shear Strain on Change in Resistance 

It has been hypothesized that when dynamic loadings, such as drop and vibration, bend a 

printed circuit board the strains imparted on the solder joints are predominantly axial [Darveaux 

2006, Chong 2006, Lall 2007b]. The modulus of rigidity of the package, shown in black in 
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Figure 89, is much higher than the equivalent modulus of rigidity of the layer of solder joints. 

Therefore when a curvature is applied to the printed circuit board, shown in green, the solder 

joints have the least rigidity and are stretched in the axial direction by the applied curvature of 

the PCB.   

 

Figure 89: Hypothesized effect of PCB bending on solder joint interconnects 

Resistance of a cylindrical conductor, as described in equation (219), is a function of the 

material characteristics and the geometry of the conductor. If it can be assumed that changes in 

the materials resistivity are negligible, then only changes in geometry affect the resistance of a 

conductor. To understand the effect of shear and axial strain on a solder joint with a more 

complicated geometry, a finite element simulation of a single solder joint was created. Separately 

axial strains and shear strains were applied to the joint and the change in resistance was 

calculated for the deformed solder joint geometry. The simulation used linear elastic material 

properties for the solder, which is known to not be realistic, therefore only a qualitative 

comparison between the axial strain case and the shear strain case will be examined. 
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Figure 90: Mesh convergence study for the solder joint geometry under an axial loading 

 

Figure 91: Axial strain case with the top of the solder joint constrained and the bottom of 

the solder joint is displaced downward. The grid represents the unreformed shape, and the solid 

represents the deformed shape 



137 

 

 

Figure 92: Shear strain case with the top of the solder joint constrained and the bottom of 

the solder joint is displaced to the right. The grid represents the unreformed shape, and the solid 

represents the deformed shape 

 

Figure 93: Comparison of trends in the calculated change of resistance for the two 

simulations 

In Figure 90 the mesh convergence study for the solder joint model is shown. Figure 91 

and Figure 92 shows the deformed states of the solder joint for the axial and shear stain 

simulations respectively. Figure 93 highlights that the contribution to change in resistance from a 

solder joint is predominantly from axial strains. In general the change in resistance from shear 
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strain is many orders of magnitude less than the contribution from axial strain, but not exactly 

zero. Introductory mechanics texts [Hibbeler 2004] often describe pure shear strain as a process 

that causes no volume change in a material. The small but non zero change in resistance seen in 

the above simulation is believed to be the result of not applying a pure shear boundary condition. 

 

Figure 94: The simulated state of shear, shown on the left, is not a pure state of shear and 

adds small amounts of axial strain to the simulation. A pure state of shear creates no change in 

length of a strain element and is shown on the right. The pure state of shear is difficult to apply 

to a solder joint geometry. 

7.4 Phase Sensitive Detection 

Phase sensitive detection was described in detail in a previous section and has been used 

for measurement of the resistance change and phase change. .  For an electronic package with an 

initial resistance of 2.5Ω, and a residual strain of 1000μє, a change in resistance of 1.1mΩ could 

be expected.  Resistance spectroscopy has been previously used for thermal fatigue damage of 

solder interconnects [Constable 1992, Constable 2001, Lizzul 1994, Prassana 1995].  The use of 

the technique for prognostication of shock and vibration induced damage is new.  Even though 

commercial multimeters are available with resolution near 1mΩ, many factors such as contact 

resistance and metals relatively high thermal coefficient of resistance can skew a measurement in 

the 1mΩ range.  Resistance spectroscopy is a technique that can be used to measure changes in 

resistance well below the 1mΩ level.  An AC Wheatstone bridge has been used in conjunction 

with a lock in amplifier that measures the magnitude and phase shift of the signal.  The work 
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presented in this paper utilizes the phase shift of the signal output from the AC bridge instead of 

the magnitude of the signal.  The setup is shown in Figure 95.  

 

Figure 95: Wheatstone Bridge with capacitors C1, C2 and resistors R1, R2, R3, PKG 

 Two capacitors have been added to the bridge balancing resistors and the constant 

voltage source replaced with a signal generator.  The daisy chained package has been denoted by 

the acronym, PKG in Figure 95.  A change in package resistance will produce a change in the 

magnitude and phase shift of the output signal. The transfer function for the circuit can be 

represented by, 

        
         

(     )(     )
 

(224) 

The driving frequency of the input signal has been swept in the frequency range of 1 Hz 

to 1 MHz to measure damage initiation and progression due to shock and vibration.  The bridge 

response has been measured for both magnitude and It is believed that data at the high end of the 

frequency range starts to be dominated by high frequency characteristics such as the skin effect 

and deviates from the theoretically predicted model. 



140 

 

7.5 Experimental Setup 

The test assemblies were mounted face down on a Lansmont Model 23 drop tower and 

subject to a 0.5 millisecond, 1500G impact pulse in accordance with JEDEC standard JESD-

B211. Continuity for damage detection was done during the drops.  Electrical continuity was 

monitored at 10 million samples per second during the test. High speed digital video for use with 

digital image correlation software was also recorded during the drop test.  The boards were 

subjected to resistance spectroscopy including both magnitude and phase-shift measurements 

between drops. Phase shift measurements were repeated between drops until all packages on the 

board failed.  The packages show varying degrees of damage when electrical continuity failures 

occur.  A metric has been created to quantify the damage sustained by the packages. Figure 97 

shows how the number of open events, multiplied by the severity of the event to arrive at a point 

system quantifying the severity of the failure.  Each package is interrogated by the resistance 

spectroscopy technique individually. Switching has been used to cycle through all the packages 

on the test board.   

 

Figure 96: Lansmont Model 23 Shock Test System 
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Figure 97: Failure Metric Calculation from Electrical Continuity. 

7.6 Training Signal and Identification of Onset of Failure 

Each measurement data-set has been processed for measured magnitude of the output 

signal and the phases shift with respect to the input signal.  The phase shift of the output signal 

from the Wheatstone bridge at has been measured at 19 different frequencies. At each frequency 

a sample size of 200 data points has been recorded. Figure 98 shows the bode plot of the healthy 

package.   

 

Figure 98: Phase shift of healthy package (Test Board-A, SAC305) 
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Bode plots have been constructed for each package on the test board after each drop and 

finite time increments during vibration.  A training data-set has been constructed for healthy 

packages on the test assemblies.  Variation in the transient data set for healthy assemblies and the 

deviation from the training data set in the damaged assemblies has been quantified using the t-

statistic.   

  
 ̅   ̅ 

√
  
 

  
 
  
 

  

 
(225) 

   
(
  
 

  
 
  
 

  
)
 

(
  
 

  
 )
 

     
 

(
  
 

  
 )
 

     

 

(226) 

Where   is the standard deviation, n is the number of samples in the data-set,  ̅ is the 

data-set mean, subscripts 1 and 2 represent the two data-sets, and DF is the number of degrees of 

freedom.  Figure 99 shows the repeatability of the phase shift measurement for healthy packages 

at different locations on the same board.   

 

Figure 99: Repeatability of phase shift measurement on pristine healthy packages (Test 

Board-A, SAC alloy) 
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The data for the healthy pristine configuration of a package is used as a baseline for the 

confidence value calculation.  The deviation in the magnitude and phase shift characteristic has 

been monitored from pristine state to a damaged state prior to failure, and eventual failure.  

Figure 100 shows the confidence value based on phase shift measurements of a package versus 

number of shock events in order to determine the statistical significance of the change in the 

phase shift of a package at a single frequency with respect to its original baseline healthy 

configuration. The confidence value degradation has been overlaid with the failure metric 

defined as the number of open events multiplied by the severity of the event to arrive at a point 

system quantifying the severity of the failure.   

 

Figure 100: Confidence value as a lead indicator of failure during a drop test (Test Board-

A, SAC alloy) 

A higher failure metric value implies the number and severity of electrical opens is 

increasing.  The failure metric indicates that the package failed electrical continuity in the 

neighborhood of the twelfth drop.  Degradation in the confidence value precedes failure in the 

package interconnects.  The correlation of the decrease in confidence value as a leading indicator 

of failure is not identical for all of the frequencies used in this experiment. In this plot only data 

measured at input signal frequency of 127kHz is displayed. In general it has been noticed that the 
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correlation between the degradation in confidence value and increase in resistance is better at 

higher input frequencies.   

7.7 Prognostic Distance 

A prognostic distance metric has been used for analyzing the damage proxy’s ability for 

use as a leading indicator of failure. Statistical significance of phase shift with respect to the 

training signal has been used as one of the leading indicators of failure.  Prognostic distance is 

defined as the lead-time between the indication of impending failure and electronic assembly 

failure.  For shock-loads the prognostic distance has been measured in number of shock events.  

Impending failure is indicated by degradation in the confidence value that damage proxy in 

current assembly configuration is identical to that in the pristine undamaged assembly.  Table 9, 

Table 10, Table 11 show the prognostic distances measured on various interconnect systems in a 

shock environment at input signal frequencies of 127 kHz, 2.33 MHz, 6MHz respectively.  The 

prognostic distance is positive in all cases with no false positives measured in any configuration 

examined.  The positive prognostic distance indicates that the damage proxy significantly 

precedes catastrophic failure of the package interconnects.   

Table 9: Prognostic Distance (Test Board A, 127kHz) 
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SAC305 127kHz 90 3 6.33 3.06 0 
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63Sn37Pb  127kHz 90 4 24.75 8.62 0 

90Pb10Sn 127kHz 95 6 18.67 6.02 0 

Cu-

CCGA 127kHz 30 4 41.5 9.47 0 

Table 10: Prognostic Distance (Test Board A, 2.33MHz) 
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SAC305 2.33MHz 50 3 8.33 5.03 0 

63Sn37Pb 2.33MHz 70 4 23.75 13.43 0 

90Pb10Sn 2.33MHz 85 6 18.17 10.65 0 

Cu-

CCGA 2.33MHz 30 4 22.75 10.9 0 

 

Table 11: Prognostic Distance (Test Board A, 6MHz) 
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SAC305 6 MHz 35 3 9 4 0 

63Sn37Pb 6 MHz 20 4 18.75 4.65 0 
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90Pb10Sn 6 MHz 25 6 13.17 9.85 0 

Cu-

CCGA 6 MHz 30 4 43.5 23.39 0 

 

 Figure 101 shows the confidence value degradation preceding failure. Zero drops 

on the x-axis in Figure 101 indicates the time when failure of the electronic assembly was 

detected.  The significant degradation in statistical confidence values indicates that the 

impending failure can be detected before failure of the electronic assembly.  Figure 102 shows 

the repeatability of the confidence value degradation trend for various interconnect types 

including the SAC305, 63Sn37Pb, 90Pb10Sn, and Cu-CCGA.   

 

Figure 101: Degradation of confidence value during drop test (Test Board-A, CBGA 

Package U2, f = 6MHz) 
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Figure 102: Degradation of confidence value during drop test (Test Board-A, f = 6MHz) 

 

In each case, the degradation in confidence value significantly precedes failure exhibiting 

the ability of the damage proxy to serve as the leading indicator of failure.  The difference in the 

degree of monotonic degradation is expected because of differences in the failure manifestation 

in the different interconnect systems.  Figure 103 and Figure 104 show the consistency and 

repeatability of confidence value degradation trends for various packages of same interconnect 

type.  The graphs show good repeatability.   
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Figure 103: Degradation of confidence value during drop test of packages U4,U6 and U7 

on for all interconnects. U4 is shown with blue circles, U5 is shown with green squares and U6 is 

shown with red crosses (Test Board-A, 127 kHz) 

 

Figure 104: Degradation of confidence value during drop test of packages U4,U6 and U7 

on a normalized scale for all interconnects. U4 is shown with blue circles, U5 is shown with 

green squares and U6 is shown with red crosses (Test Board-A, 6MHz) 

 A threshold value of 20-percent has been used to signify impending failure and 

calculation of prognostic distance.  Figure 105 shows the confidence value threshold for SAC305 

interconnects.  The aggressive threshold value has been chosen to achieve statistical significance 

of difference to minimize occurrence of false positives. Figure 106 shows the distribution of 

prognostic distance for various input signal frequencies for SAC305 interconnects.  Figure 106 

illustrates the tradeoff between the prognostication distance and likelihood of a false positive. 

The prognostic distance is the highest for the 2.33 MHz input frequency, however the likelihood 

of false positives is also the largest.  The prognostic distance is the smallest for the 6MHz input 

signal, however the propensity of false positives is also the smallest.  For high reliability 

electronic applications false positives are completely unacceptable and therefore the system 

would be designed to avoid that type of error. 
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Figure 105: Method for determining prognostic distance using a threshold value shown in 

red. Each trace is an individual package.  (Test Board-A, SAC305 alloy) 

 

Figure 106: PDF of prognostic distance at varying frequencies. (Test Board-A, SAC 

alloy) 

7.8 Failure Modes 

Package failure modes have been verified with x-sectioning of the samples after failure.  

Several failure modes in the second interconnects have been observed.  These include, trace 

cracking, solder interconnect failure in bulk or at the interfaces, and pad cratering.  Figure 107 to 

Figure 110 show representative failures for all of the test board A interconnect types. 
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Figure 107: Damaged SAC interconnect (Test Board A) 

 

Figure 108: Broken trace on EUT interconnect (Test Board A) 

 

Figure 109: Cracks through HIPB interconnect (Test Board A) 
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Figure 110: Failed CCGA interconnect (Test Board A) 

7.9 Conclusion 

A new technique has been developed for prognostication of second-level interconnect 

failures in electronic assemblies.  The technique is based on damage pre-cursors derived from 

phase shift of the measured frequency response of the electronic assemblies using resistance 

spectroscopy measurements during shock loadings.  Package architectures studied include 

ceramic area-array packages with multiple different second level interconnects including 

63Sn37Pb, SAC305, copper reinforced solder columns, and 90Pb10Sn solder interconnects.  

Resistance spectroscopy based damage precursors have been measured during 1500g, 0.5ms 

shock and step-stress random vibration profiles.  Data on eventual failure of the electronic 

assemblies has been gathered with high speed data-acquisition systems.  Measurements of 

prognostic distance exhibit that the presented techniques can be used for early detection of 

impending failure in electronic assemblies.  Prognostic distances have been quantified for the 

various interconnect structures examined and have been shown to be positive.  The trade-off 

between prognostic distance and the propensity of false positives has also been examined and 

shown to have an inverse relationship.  The failure modes have been studied in the packages 

after failure.
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8 Recursive Least Squares (RLS) Filtering Based Prognostic Algorithm 

Implemented for Electrical Connectors 

In this section a simple data driven prognostics algorithm is presented to predict failure in 

an electrical connector during an accelerated connector fretting test. While this work was 

originally intended for fielded electrical connectors, there has been interest in using the described 

techniques to shorten the duration of long running qualification tests. Specifically if a product is 

not going to pass qualification, advanced warning would allow the test to be canceled and save a 

considerable amount of time and money. Mechanical fretting increases the contact resistance in a 

connector and can ultimately lead to a failure in the electrical function of the system even if the 

mechanical connection is structurally sound. 

8.1 Introduction 

Mechanical fretting is a type of corrosion caused by the relative motion between two 

materials with a common interface. Fretting of electrical connectors has been studied in various 

forms, but the application of prognostics to predict a failure by mechanical fretting in electrical 

connectors is new. The mechanisms of fretting in electrical connectors similar to those used in 

this work have been studied [Flowers 2004, 2005, 2006, Xie 2009] in unpowered tests. Studies 

of connector fretting for powered tests have also been carried out [Angadi 2008, Polchow 2010, 

Fu 2010]. All tests for this work were performed at room temperature, but other authors have 

investigated the effects of connector fretting under a variety of different loading boundary 

conditions, and ambient temperatures/pressures [Daniel 2004, Lam 2006, Jedrzejczyk 2009, 

Swingler 2009, 2010]. Besides experimental investigations, analytical approaches aimed at 

modeling and predicting fretting in connectors has been performed [Bryant 1994, Zhang 2011, 
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Cartwright 2011]. Lastly this work tested a common tin coated connector, but various surface 

finishes have been shown to reduce the significance of fretting in electrical connectors [Swingler 

2009, Fouvry 2011, Noel 2011] 

8.2 Test Setup 

In this test a connector system commonly found in desktop computers was investigated 

under the influence of vibration. The connector was a pin/spring configuration with 12 pins 

spaced 0.100” apart. Connectors were purchased from the Molex-Waldom corporation 

(Manufacturer Part Numbers, Header:22-23-2121, Housing: 22-01-2127). Traditionally the 

header portion of the connector is soldered to a circuit board and wires attached to the housing is 

routed from a distant source. To accelerate fretting in the connector a vibration input was applied 

to the header and the wires connected to the housing were mechanically tied off (constrained). 

This configuration is known to mimic the actual forces applied to connectors in fielded 

applications. The setup is also known to cause relative motion between the pin and spring inside 

the connector and therefore result in fretting corrosion and increased contact resistances. 

 

Figure 111: Diagram of Experimental Setup 
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Figure 112: Diagram showing the internal configuration of the connector. Relative 

motion between the pin (rigidly attached to the header) and the spring (rigidly attached to the 

housing) results in fretting at the mating interface. 

 

Figure 113: Fixture used to apply input to the connector header 
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Figure 114: Zoomed view of the fixture used to apply vibration inputs to the connector 

header 

 

Figure 115: During testing the shaker table vibrates in the vertical direction (right side of 

picture). The motion of the shaker  table has caused the image of the connector to blur. The rigid 

mechanical connection on the left shows no motion and did not blur in the photograph 

8.3 Resistance Monitoring 

Every second pin on the header was soldered together to allow sets of connections to be 

monitored using a two wire resistance measurement on an Agilent 34970A data logger. During 

vibration testing, resistance measurements were made on the first set of pins/springs every four 

seconds. The failure was defined as a rise in resistance of 0.3Ω. Since the data was very noisy a 1 

minute moving average was applied to define the time of failure, which for the data shown in 

Figure 116 was at 5.2 hours.  
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Figure 116: Time history of two wire resistance measurements and the increase in contact 

resistance caused by connector fretting 

To ensure that the change in resistance was the result of fretting, and not an unrelated 

source the connector was disassembled and photographed with a light microscope. 

 

Figure 117: Contact surface of the spring before testing 
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Figure 118: Deep grooves and asperities on a tested spring caused by relative motion 

between the spring and pin 

The damage caused by testing is visible on the images of the spring part of the connector. 

The surfaces of the pin show similar damage as a result of vibration testing. 

8.4 Prognostic Hindecaste 

To simulate the ability to monitor and predict an increase in contact resistance that would 

cause the connector to fail the previously described data set was processed with a recursive least 

squares algorithm. Using the method of batch least squares a best fit line can be calculated. The 

R^2 value for the fit is 0.698 indicating a significant amount of un-modeled features in the data. 

Despite the less than desirable fit, it will be assumed that a linear model adequately describes the 

increase in contact resistance of the connector. 
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Figure 119: Batch least squares fit of a linear model to the experimentally observed data 

 

The underlying principle of the prognostics approach is to recursively fit a line to the data 

available at the time of the prediction. By knowing the resistance at the prediction time, and an 

estimate of the change in the measurements with time, it is possible to prognosticate when the 

resistance of the connector will rise above the failure threshold of 0.3Ω. The two state recursive 

least squares equations described earlier are repeated for convenience.  
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The RLS filter estimates the current change in resistance, and the slope of the resistance 

change measurement. At each time step that a measurement is taken, a prediction of remaining 

useful life will be made. RUL predictions at time step k are calculated using the state estimates 

from the RLS filter per equation (234). 

     
    ̂ 

 

 ̂ 
  

(234) 

Where    represents the failure threshold of 0.3Ω and  ̂ 
  is the current estimate of the 

change in resistance in the connector at time k. The second state estimate,  ̂ 
  is the first 

derivative, or slope of the best fit line. 

The uncertainty surrounding the RUL prediction is based on a moving window of 

previous estimates of the slope of the recursively best fit line. The smallest and largest estimated 

slope for the last L measurements is propagated though equations (235) and (236) to bound the 

longest and shortest RUL that would be predicted at the current time based on the last L 

estimates. 
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The uncertainty is reported as the difference between the high and low estimate for RUL 

                    (237) 

Along with the state estimates from the RLS filter, equations (234)-(237) are repeated for 

each new measurements. For this work the length of the window L was taken as 300 data points 

or 20 minutes. The result of RLS filtering is shown in Figure 120: Recursive least squares state 
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estimates. Initially the noisy data does not provide a significant trend to estimate meaningful 

state variables from. Due to the low estimated trend in the connector’s resistance, RUL estimates 

greatly over predict the actual RUL. 

 

Figure 120: Recursive least squares state estimates 

Approximately half way through the test the RLS filter converges on the true slope of the 

data set and RUL predictions converge to correct values.  The accuracy of the PHM algorithm is 

summarized in Figure 121. At approximately the same time that the RLS filter converges on the 

correct slope for the best fit line, RUL predictions converge to values close to the actual RUL. 
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Figure 121: Remaining useful life predictions 

 

Figure 122: Comparison of batch least squares to recursive least squares estimates for the 

slope of the best fit line. Note that the batch and recursive estimate for the slope of the best fit 

line are identical for the full data set. 

A comparison of the batch and least squares approaches are shown in Figure 122. 

Unfortunately the batch least squares method requires the entire data set for processing and is not 

a candidate for prognosticating failure before the connector has failed. Snapshots of the 

prediction process are shown in Figure 123 through Figure 126. 
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Figure 123: Prediction snapshot from early in the test. The lack of trend in the data results 

in an RUL prediction that is overly optimistic 

 

Figure 124: Further into the test RUL predictions are improving but still have not 

converged 
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Figure 125: At this point in the test sufficient data is available to estimate the slope of a 

best fit line through the data 

 

Figure 126: At the end of the test the estimate of the slope of the best fit line is nearly 

identical the RLS fit 

Uncertainty surrounding the RUL predictions are summarized in Figure 127. The 

uncertainty is very large in the beginning of the test before the measured data has risen above the 

noise floor. As the algorithm converges, the uncertainty in the predictions quickly converges to a 

very small value. At the end of the test the uncertainty estimates are almost zero even though the 
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predictions are not absolutely correct. Figure 128 shows the time history of the predicted 

uncertainty without the RUL predictions. The uncertainty denoted on the y-axis varies from 10^5 

hours (~11 years) to 10^-5 hours (<1 minute).  

 

Figure 127: Alpha-lambda plot summarizing the uncertainty in the RUL predictions 

 

Figure 128: Time history of the uncertainty reported by the PHM algorithm. Note the log 

scale on the y-axis. 

The beta and relative accuracy metrics are reported in Figure 129 and Figure 130 

respectively. The binary performance of the beta metric as either very good or very bad is a 
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result of the very tight predictions of uncertainty. After converging about halfway through the 

test, the relative accuracy is good for this data set. The cost metric for this hindecaste was 0.622, 

where a perfect score would be zero.  

 

Figure 129: Beta metric calculation for the PHM hindecaste 

 

Figure 130: Relative accuracy metric for the PHM hindecaste 
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8.5 Conclusion 

Admittedly the PHM algorithm implemented for this data set is very limited in its 

applicability. The model for failure degradation is completely data driven and implicitly assumes 

that usage conditions and inputs will not change. By its nature the RLS filter gives less and less 

emphasis to new measurements as the algorithm collects more data points and therefore would 

not tolerate a drastic increase or decrease in the rate of degradation. Regardless of its drawbacks 

this algorithm efficiently models the general procedure for PHM and how to apply and interpret 

the performance metrics.  
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9 Kalman Filter (KF) Based Prognostic Algorithm Implemented for BGA’s 

Structural damage to ball grid array (BGA) interconnects incurred during vibration 

testing has been monitored in the pre-failure space using resistance spectroscopy based state 

space vectors, rate of change of the state variable, and acceleration of the state variable.  The 

technique is intended for condition monitoring in high reliability applications where the 

knowledge of impending failure is critical and the risks in terms of loss-of-functionality are too 

high to bear.  Future state of the system has been estimated based on a second order Kalman 

Filter model and a Bayesian Framework.  The measured state variable has been related to the 

underlying interconnect damage in the form of inelastic strain energy density.  Performance of 

the prognostic health management (PHM) algorithm during the vibration test has been quantified 

using performance evaluation metrics. The methodology has been demonstrated on lead-free 

area-array electronic assemblies subjected to vibration. Model predictions have been correlated 

with experimental data. The presented approach is applicable to functional systems where corner 

interconnects in area-array packages may be often redundant.  Prognostic metrics including 

alpha-lambda precision, β accuracy, and relative accuracy, have been used to assess the 

performance of the damage proxies. The presented approach enables the estimation of residual 

life based on level of risk averseness.   

9.1 Introduction 

Kalman filtering is a recursive algorithm that estimates the true state of a system based on 

noisy measurements [Zarchan 2000]. Use of Kalman Filtering for prognostication of electronic 

reliability based on the underlying damage mechanics is new.  The Kalman filter has been 

utilized for this work since it is a robust tool for real time tracking of noisy signals, with a long 
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history of successful implementation. In this paper, a prognostic and health monitoring capability 

for electrical components based on changes in resistance has been presented. The presented PHM 

framework enables the estimation of remaining useful life in deployed electronics by 

interrogation of the system state and evolution of the state vector.  The methodology has been 

demonstrated on area-array package board assemblies subjected to mechanical shock and 

vibration.  Failure modeling of BGA interconnects is combined with Kalman filtering for plastic 

strain state estimation and a Bayesian framework for PHM.  Prognostics metrics have been used 

to quantify the degree of uncertainty in the estimated remaining useful life.   

9.2 Test Vehicle 

A set of test boards with multiple package architectures were used for experimental 

measurements. The test board includes package architectures such as plastic ball-grid arrays, 

chip-array ball-grid arrays, tape-array ball-grid arrays, and flex-substrate ball-grid arrays . The 

experimental matrix has ball counts in the range of 64 to 676 I/O, pitch sizes are in the range of 

0.5mm to 1mm, and package sizes are in the range of 6mm to 27mm.  The package parameters 

of this board are shown in Table 12.  Representative sample of the test board is shown in Figure 

131.  
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Figure 131: Test Board 

Table 12: Package architectures on test board 
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I/O 64 84 144 196 280 676 

Pitch (mm) 0.5 0.5 0.8 1 0.8 1 

Die Size (mm) 4 5.4 7 6.35 10 6.35 

Substrate 

Thick (mm) 

0.36 0.36 0.36 0.36 0.36 0.36 

Pad Dia. (mm) 0.28 0.28 0.30 0.38 0.30 0.38 

Substrate Pad NSMD NSMD NSMD SMD NSMD SMD 

Ball Dia. (mm) 0.32 0.48 0.48 0.5 0.48 0.63 

 

The test assemblies were subjected to vibration testing on a LDS Model V722 vibration 

table.  A step stress profile was used to gradually ramp up the stress level to induce damage 

(Figure 132).  The individual random stress profiles used in the step stress are shown in Figure 
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133. The next section will discuss how the transient response of a package during random 

vibration testing was monitored for a leading indicators of failure.  

 

 

Figure 132: Step stress profile for vibration testing that fatigues interconnects to failure. 

 

Figure 133: Random vibration profile at varying g levels corresponding to the step stress 

profile outlined in Figure 132 
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9.3 Transfer Function for Interconnect Strain to Resistance 

The daisy chained resistance of a package was used as a leading indicator of failure in 

this paper. The observed history of the resistance of the package during vibration testing is 

shown in Figure 134. 

 

Figure 134: Raw resistance data. The data used as an input data vector is shown in the 

brackets 

At approximately 5.8 hours the package experiences its first intermittent open event.  In 

the following plots large resistance values have been truncated for clarity.  The resistance of an 

open event of 300Ω or more makes it difficult to discuss mili-ohm changes on a plot. The 

resistance of the daisy chained package was recorded using an Agilent 34970A data acquisition 

unit with a two wire resistance measurement setup. Measurements were taken at a frequency of 

0.2 Hz. Since data measurements were recorded every few seconds, but the test lasted for 

approximately 6 hours, this was deemed to be an effectively high sampling frequency to capture 

trends in the leading indicator of failure. Additional details quantifying the applicability of the 

measurement system for capturing intermittent events in advance of the traditional definition of 

failure can be found in [Lall 2009a-d]. 
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Figure 135: Zoomed view of resistance data between 2 hrs and failure 

The failure criteria for resistance change outlined in industry standards JESD22-B103 

[JEDEC 2006], and IPCSM785 [IPC 1992] for the number, duration, and severity of intermittent 

events is used as the definition of failure. It should be noted that the smaller step increases of 

0.05 Ω during the first 90 minutes of the test are experimental noise which can be reproduced by 

motion of the system connections during shock and vibration.  Resistance data two-hours after 

the initiation of the test till failure has been studied for the construction of a feature vector for 

identification of impending failure.  A subset of the resistance data has been used since field data 

will often involve electronic assemblies with accrued damage and not involve pristine 

assemblies.  Figure 135 shows a zoomed view of the input data highlighting the experimental 

noise between two hours and failure. The experimental noise is due in part to the challenges with 

overcoming the variance in contact resistance in the presence of transient dynamic motion in 

shock or steady-state vibration. Step changes in the resistance data can be seen at 2.8 and 4.9 

hours respectively.  However, the distinctive increase of about 25 mΩ during the vibration test is 

easily discernible even in the presence of experimental noise.  

2 2.5 3 3.5 4 4.5 5 5.5

3.1

3.105

3.11

3.115

3.12

3.125

3.13

R
e

s
is

ta
n

c
e

 [
o

h
m

]

Time [Hr]

1 2 3 4 5 6
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

R
e
s
is

ta
n
c
e
 [
o
h
m

]

Time [Hr]



173 

 

The change in resistance is attributed to change in geometry, since the resistivity of the 

solder interconnect is expected to stay constant. Change in trace geometry is the basis of 

operation for traditional strain gages and can be explained in a cylindrical conductor by 

ALR  , where R is the resistance of the conductor,  is the material property resistivity, L is 

length and A is the cross sectional area. By logarithmically differentiating both sides and 

assuming linear elastic properties, a relation between strain and resistance can be derived as 

  21RdR a0
, where dR is the change in resistance, R0 is the initial resistance, εa is the elastic 

axial strain and  is the Poisson ratio. Since the material properties and geometry of a solder ball 

are non-linear, a finite element simulation (FEM) was used to map the change in resistance of an 

interconnect to the state of plastic strain that the interconnect was feeling. The simulation was 

implemented in ANSYS Version 12 using Anand's Viscoplasticity and VISCO107 elements. 

The Anand's constants used for the simulation are shown in Table 13 

Table 13: Anand's Constants for SAC305 

So 45.9 MPa 

Q/K 7460 1/K 

A 5.87e6 1/sec 

 2 

M 0.0942 

ho 9350 MPa 

n 0.015 

a 1.5 

s 58.3 MPa 
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Table 14: Undeformed geometry of solder ball 

Parameter Specification 

Solder ball diameter (mm) 0.63 

Solder ball land (mm, board and 

package) 

0.45 

Solder ball height after reflow 

(mm) 

0.48 

 

 

Figure 136: Constraints on solder ball for FEM simulation 

Table 14 shows the dimensional parameters for the undeformed geometry of a typical 

solder ball based on the manufacture’s data sheet.  Previous studies have shown that tensile stress 

in the out-of-plane z-direction is the primary stress during the shock test in the solder 

interconnects [Darveaux 2006, Chong 2006, Lall 2009e].  The solder interconnect deformation 

during the shock test was simulated using non-linear finite elements by constraining the solder 

interconnect along the bottom of the joint and applying a displacement load on the top (Figure 

136).  

y

x
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Figure 137: Meshed model of solder ball 

 

Figure 138: Deformed and undeformed geometry of solder ball 
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Figure 139: Simulated change in resistance of solder ball during pull test. Arrows indicate 

expected change in resistance at a strain of 0.1. 

Resistance of the solder interconnect was computed by converting the VISOC107 

elements to SOLID5 elements after intermediate steps in the deformation.  A steady state 

conductance simulation was run using the deformed geometry after each sub-step.  Using the 

built in macro command GMATRIX, the conductance of the solder ball in the deformed state 

could be calculated.  The conductance is the inverse of the resistance. The meshed geometry 

before deformation can be seen in Figure 137, while the deformed geometry can be seen in 

Figure 138. Deformation was applied to the solder joint at a specified strain rate of 1 sec
-1

 typical 

of a shock test.  An example of this mapping is shown in Figure 139. 

Following a method similar to [Lall 2004c] the assumed criteria for failure in the 

simulated solder joint was based on the joint exceeding a critical plastic strain value. The critical 

plastic strain value was determined from a BGA pull test. Based on the experimental data at a 

strain rate of 1/sec, an overall strain of the solder joint of 0.1 corresponded to failure. Model 

predictions indicate a change in resistance of 5x10
-5

 Ω correlates with interconnect strain of 0.1 

prior-to-failure of the interconnect. This critical resistance value derived from the FEM 
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simulation will be used as a threshold value to define failure for the PHM algorithm. Since the 

daisy chained resistance of a package is monitored in this study the critical resistance calculated 

from the FEM simulation must be scaled up from a single solder ball to account for changes in 

resistance of the entire package. This was achieved by approximating that every interconnect 

feels the same strain. Therefore the critical resistance is multiplied by the number of I/O in the 

package, i.e. 676 for the PBGA 676 to obtain the overall critical resistance value (676x5x10
-5

 Ω 

= 3.38x10
-2

Ω). Assuming that every interconnect feels the same strain is not strictly correct since 

failure most often occurs in the corner interconnects. This implied averaging of strain across all 

interconnects is justified since deflections were small for the vibration test. Ultimately, errors 

from this approximation add uncertainty to the remaining useful life calculation. As will be 

demonstrated later in the paper, this uncertainty must be managed to obtain meaningful results. 

9.4 Filtering and RUL Prediction 

System damage state estimation in the presence of measurement noise and process noise 

has been achieved using the Kalman Filter.  Previously, the Kalman Filter has been used in 

guidance and tracking applications [Kalman 1960, Zarchan 2000].  System state has been 

described in state space form using the measurement of the feature vector, the velocity of feature 

vector change and the acceleration of the feature vector change.  System state at each future time 

has been computed based on the state space at the preceding time step, system dynamics matrix, 

control vector, control matrix, measurement matrix, measured vector, process noise and 

measurement noise.  Figure 140 represents the data-flow through the system, where    is the 

control vector or input for the system,    is process noise,    is the state space vector at the k
th

 

time step, H is the measurement matrix which is a constant in this implementation,    is the 

measurement noise, zk the measured state, and    is the fundamental matrix.   



178 

 

 

Figure 140:Graphical state space representation of a system 

The equivalent Kalman Filter equation for state space representation in the presence of 

process noise and measurement noise is: 

 ̅      ̂              (238) 

 ̂     ̂             (    ̅)  (239) 

          (240) 

 

where  ̂  is the Kalman Filter estimate of system-state at time k
th

 time step,    is the 

actual system state at the k
th

 time-step, and    is the control vector.  The Kalman gain has been 

computed and updated at each time-step, while the filter is operating from the Riccati equations 

[Zarchan 2000]. The Ricatti equations can be represented in matrix form as:  

            
     (241) 

      
 (    

    )
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   (     )   (243) 

where Mk is the covariance of errors in state estimates before update, k is the 

fundamental matrix which represents the system dynamics, Qk is the discrete process noise 

matrix, Kk is the Kalman gain, H is the measurement matrix, and Pk is the covariance matrix 

representing errors in the state estimate after an update. Rk is the process noise matrix and has 

been used as a device for telling the filter that we know that filter’s model of the real world is not 

precise.  The diagonal elements of Pk represent variance of the true state minus the estimated 
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state. Mk is sometimes referred to as the a priori covariance matrix, and Pk may be referred to as 

the posterior covariance matrix. 

The feature vector used for prognosis of the system health is not a constant or a straight 

line, therefore the zeroth and first order systems were ruled out and a second order system was 

used for representation of system state evolution with progression of underlying damage.  The 

choice of the second order filter was also influenced by the general observation that feature 

vectors evolve non-linearly and generally accelerate towards the end of life.  The rate of 

evolution of a second order system can be represented as follows: 

{
 ̇
 ̈
 ⃛
}  [ ] {

 
 ̇
 ̈
}  [

   
   
   

] {
 
 ̇
 ̈
} 

(244) 

The fundamental matrix has been computed from the Taylor series expansion of the 

system dynamics matrix, F, as follows: 
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Note that the F
3
 terms and above are identically zero; therefore, the expansion only has 

three non-zero terms. A model based on the accrued plastic work in interconnects of the system 

has not been used because the inputs to the system are not always known or measurable and 



180 

 

cannot be assumed to always be constant or known in advance.  Therefore the feature vector 

based on resistance spectroscopy has been related to the underlying plastic work and its 

evolution used for prognostication of system state and residual life.  The first and second 

derivatives of the feature vector based on resistance spectroscopy have been computed to 

estimate the state of the feature vector at future time-steps.  The system state vector is 

represented as   ⌊   ̇  ̈⌋
 , where   is the interconnect resistance of the daisy chained 

package,  ̇ is the ramp rate of the interconnect resistance, and  ̈ is the second derivative with 

respect to time of the interconnect resistance.  The state vector evolution is represented as 

follows:  

{

 ̇   
 ̈   
 ⃛   

}  [
   
   
   

] {

  
 ̇ 
 ̈ 

} 

(248) 

The uncertainty of each prediction was quantified using the posterior error covariance. As 

an engineering approximation the uncertainty is calculated using a straight line approximation. 

Then the uncertainty from the linear approximation is superimposed on the failure prediction 

obtained from iteratively solving for the intersection of a quadratic equation with the critical 

resistance threshold.  This is a trade off in accuracy, for the benefit of algorithm simplicity.  

Assuming that the feature vector and its first derivative are normal random variables 

(Gaussian), then a straight line approximation of the time to failure can be 

   
    ̂( )

 ̂( )  
(249) 

where tf is the time to failure, xf is the failure threshold,  ̂( ) is the estimated state of the 

system (resistance) and  ̂( ) is the estimate of the first derivative. The numerator will have a 

variance equal to the variance of the position estimate, which is directly available in the posterior 
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error covariance matrix as P(1,1). The denominator will have a variance equal to the variance of 

the first derivative estimate, directly available as P(2,2). If   

  
   (   ) (250) 

  
   (   ) (251) 

then it is demonstrated in [Swanson 2001] that the non-Gaussian distribution resulting 

from the ratio of two normal distributions with variances of   
  and   

   can be integrated to find 

the equivalent 68.4% probability range around the mean. 

      
  
  

 
(252) 

The mean of the distribution from the straight line approximation is disregarded since the 

more iterative method was used to solve for the intersection of the quadratic equation with the 

critical resistance threshold. 

The uncertainty estimate around the RUL prediction includes a number of simplifying 

assumptions about the nature of the system and should only be taken as a rough estimate. It will 

be shown later that this metric is still useful in understanding the operation of the algorithm and 

is necessary for fully utilizing the PHM framework to make risk based decisions. 

The extrapolation of the estimated state into the future to determine the RUL was 

accomplished by using the state evolution equation to iteratively solve the intersection of a 

quadratic equation with the critical resistance threshold. The parameters of the quadratic 

equation are estimated from the Kalman filter.  

The Kalman filter equations are recursive and must be initialized before the first 

measurement. The initial state estimate was taken as zero since the system is expected to have 

zero change in resistance before incurring damage. The measurement noise term was obtained 
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from the observed variance in the measurement system during the first 30 seconds of testing (Rk 

= 5e-6). The process noise term was taken as Qk = 1e-9 and represents the uncertainty in the 

process dynamics. The diagonals of the posterior error covariance matrix were set arbitrarily 

large to 1000, which indicates a complete lack of trust in the initial state estimate. The filtering 

and prediction algorithm is summarized below. 

Algorithm: Kalman Filtering and RUL prediction 

1. Initialize variables at time step     

2. Project state at the next time step,  ̅      ̂    

3. Calculate error covariance before update,             
     

4. Calculate Kalman gain,       
 (    

    )
   

5. Take measurement,        

6. Update estimate with measurement,  ̂     ̂      (    ̅) 

7. Calculate error covariance after measurement update,    (     )   

8. Extrapolate feature vector many time steps, n, to the failure threshold value,  ̂           

9. Report predicted RUL (and uncertainty) 

10. Iterate to step 2 for next measurement (k = k +1) 

 

9.5 Estimation of Remaining Useful Life 

The Kalman filter tracking results used for prognostication are shown in Figure 141. The 

measured data has been obtained from resistance spectroscopy. The red line in the first plot is the 

state estimate from the Kalman filter. Note that the state estimate from the Kalman Filter is 

smoother than the raw data based feature vector. Smoothing facilitates faster convergence in the 

PHM algorithm. The lower two plots are estimates of the first and second derivative of the field 

quantity measured for construction of the feature vector. Any time the velocity is negative, the 

PHM algorithm cannot make a prediction. This causes the RUL predictions to oscillate before 

convergence. The convergence of the Kalman gain is shown in Figure 142. 



183 

 

 

Figure 141: Results of Kalman Filtering 

 

Figure 142: Convergence of the Kalman gain for the resistance estimate term. 

The Newton-Raphson’s method has been used for calculation of the RUL. A threshold 

value of 1x10
-6

 has been used as the threshold for convergence.  

        
 ( )

  ( ) 
(253) 

          
 ̂( )   ̂( )        ̂( )   

    

 ̂( )   ̂( )   
 

(254) 

Where  ( )   ̂( )   ̂( )        ̂( )   
    , x is the state variable in the state 

space vector, tfn is the estimate of the failure time at the time-step n, and xf is the failure 

threshold for the state variable.  The estimate of the failure time is updated in accordance with 

evolution of state-space vector which correlates with the underlying damage.   

2 2.5 3 3.5 4 4.5 5 5.5

0
10
20

x 10
-3

R
e

s
is

ta
n

c
e

[O
h

m
]

 

 

Actual

KF

2 2.5 3 3.5 4 4.5 5 5.5

0

10

20
x 10

-3

R
a

m
p

 R
a

te
[O

h
m

/H
r]

2 2.5 3 3.5 4 4.5 5 5.5

0

5

10
x 10

-3

Time [Hr]

A
c
c
e

le
ra

ti
o

n
R

a
te

[O
h

m
2
/H

r]

2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6
x 10

-3

K
a

lm
a

n
 G

a
in

Time [Hr]



184 

 

 

Figure 143: RUL prediction at 2.6 Hrs, the red circle shows what data was available for 

the prediction. The blue line in both plots is the feature vector, and the green line is the 

extrapolated state value used to predict RUL 

 

Figure 144: RUL prediction at 3.8 Hrs 

 

Figure 145: RUL prediction at 5.6 Hrs 

The results of the RUL prediction are shown in Figure 143 Figure 144, and Figure 145. 

Figure 143 is a prediction from early in the test. Based on the data available, which shows very 
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little change in the state variable resistance, the RUL prediction is considerably longer than the 

actual RUL. Figure 144 shows a prediction where more information is available to the algorithm. 

Figure 145, a prediction at the very end of the test shows the measured feature vector increasing 

in an exponential nature. The use of a quadratic model for predicting future states many time 

steps into the future was adequate for most of the test, but results in a prediction error at the 

extreme end of the test where failure propagation is highly non-linear. A higher order model or a 

non-linear model (implemented with an extended Kalman filter [Lall 2011a]) may provide better 

tracking and performance near the end of life, at the cost of implementation complexity. Using 

the PHM performance metrics, design decisions could be made to continue developing better 

system models, or to consider the error as an acceptable engineering approximation. A summary 

of all the RUL predictions compared against the actual RUL is shown in Figure 146. The initial 

estimates of the RUL oscillate and then gain traction in terms of accuracy following evolution of 

state space vector with underlying damage. PHM metrics for this implementation are shown in 

Figure 147 through Figure 149. The cost function for this implementation was 0.843. 

 

Figure 146: Comparison of actual RUL vs predicted RUL 
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Figure 147: Alpha-Lambda accuracy metric illustrating the uncertainty surrounding RUL 

predictions 

 

Figure 148: Beta metric illustrating the percentage of the RUL PDF that overlapped with 

the alpha bounds for each prediction 
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Figure 149: Relative Accuracy of the RUL predictions 

9.6 Sensitivity Study 

A sensitivity study was conducted to quantify the relationship each user definable 

parameter had on the performance of the PHM algorithm. Filtering methods are very sensitive to 

posterior “tweaking” that can improve reported performance. In practice a training data set 

would be required to enable prior knowledge of reasonable user definable parameters. To 

quantify the severity of incorrectly picking these parameters a cumulative beta was calculated to 

provide a single number that could represent the performance of the algorithm while user 

definable parameters were varied.  Larger values of cumulative beta sum indicate better 

performance of the algorithm. 
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Figure 150: Variation in the sum of the beta calculation for variations in the critical-

threshold of state variable.   

Parameter variations studied include: state variable failure threshold and measurement 

noise in the Kalman filter. State variable failure threshold is the value at which the system is 

deemed to have failed.  The process noise is a user-definable parameter signifying the underlying 

noise in the measured process.  Increasing the measurement noise makes the estimated resistance 

measurement smoother, but less reactive to error between predicted and actual state values. 

Figure 150 shows the variation in the results of the algorithm when the critical value of the state 

variable was varied. Figure 151shows the cumulative beta with respect to the process noise. 

 

 

Figure 151: Variation in the sum of beta calculation for variations in tunable the process 

noise parameter 
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The sensitivity study shows that underestimating the critical value of state variable can 

severely hurt the performance of the PHM algorithm.  A physics-based understanding of the 

degradation mechanism and its relationship to system performance is critical for implementation 

of the PHM algorithm.  The cumulative beta score is less sensitive to process noise and therefore 

was varied over a number of orders of magnitude.  An incorrect selection of either critical 

threshold for state variable or the process noise will have an adverse effect on the performance of 

the PHM algorithm.   

9.7 Risk Based Decision Making 

The practical result of predicting RUL is to make decisions.  In the Bayesian framework 

used in this section, critical decisions about future use and replacement of a component can be 

justified using statistics.  In an ultra-high reliability system, a critical decision is whether to 

replace a component.  In high risk, mission critical systems for which this technique was 

designed, the maximum acceptable probability of failure is limited to 1%. This conservative 

restriction reflects the highly undesirable consequences of an unplanned failure.  
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Figure 152: Time to order replacement component calculation vs time, which 

demonstrates one method of statistically defendable decision making using estimates of RUL.  

The calculation to determine when to order a replacement part and schedule downtime 

for maintenance is based on the mean and standard deviation of the RUL prediction. In normally 

distributed data, the proportion of values within z standard deviations of the mean is 

               (
 

√ 
) 

(255) 

where erf is the error function. A z value of 2.3263 represents the case where 98% of 

samples would be contained within +/-2.3263σ standard deviations of the mean. One percent of 

the samples outside +/-2.3263σ  would fall on the negative side of the distribution, and the other 

one percent would fall on the positive side of the distribution. For predicting failures, we are only 

concerned with the negative side of the distribution or the one percent probability of failure. 

Using this approach, the appropriate time to order a replacement can be calculated. Assume that 

it takes 1-hour to order and receive a replacement component from the warehouse. Based on the 

predicted RUL, predicted RUL standard deviation, and a maximum acceptable probability of 

failure of one percent, the time until a replacement part should be reordered can be predicted by 

where RUL is the standard deviation of the RUL, and tleadtime is the lead time for receiving 

the component after placement of the order.  This equation is implemented on the data in this 

section and is shown in Figure 152.  The order for the replacement component is placed when the 

torder parameter reaches a value of zero, indicated by a red arrow in Figure 152.   

                                          (256) 
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9.8 Conclusion 

A framework for prognosis of area-array electronics has been developed based on state-

space vectors from resistance spectroscopy measurements, Kalman Filtering and Bayesian PHM 

framework.  The measured state variable has been related to the underlying damage state by 

correlating the resistance change to the plastic strain accrued in interconnects using non-linear 

finite element analysis.  The strain-resistance relationship has been used to define the critical 

resistance failure threshold for the component.  The Kalman filter was used to estimate the state 

variable, rate of change of the state variable, acceleration of the state variable, and to construct a 

feature vector.  The estimated state-space parameters were used to extrapolate the feature vector 

into the future and predict the time-to-failure at which the feature vector will cross the failure 

threshold.  This procedure was repeated recursively until the component failed. Remaining useful 

life was calculated based on the evolution of the state space feature vector.  Standard prognostic 

health management metrics were used to quantify the performance of the algorithm against the 

actual remaining useful life. An example application to part replacement decisions for ultra-high 

reliability systems was demonstrated.  Finally the techniques described in the paper were used to 

determine the correct time to order a replacement for the component being monitored.
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10 Extended Kalman Filter (EKF) Based Prognostic Algorithm Implemented 

for BGA’s 

A technique has been developed for monitoring the structural damage accrued in BGA 

interconnects during operation in vibration environments.  The technique uses resistance 

spectroscopy based state space vectors, rate of change of the state variable, and acceleration of 

the state variable in conjunction with an Extended Kalman Filter and is intended for the pre-

failure time-history of the component.  Condition monitoring using the presented technique can 

provide knowledge of impending failure in high reliability applications where the risks 

associated with loss-of-functionality are too high to bear.  The methodology has been 

demonstrated on SAC305 lead-free area-array electronic assemblies subjected to vibration.  

Future state of the system has been estimated based on a second order Extended Kalman Filter 

model and a Bayesian Framework.  The measured state variable has been related to the 

underlying interconnect damage using plastic strain.  Performance of the prognostication health 

management algorithm during the vibration test has been quantified using performance 

evaluation metrics.  Model predictions have been correlated with experimental data.  The 

presented approach is applicable to functional systems where corner interconnects in area-array 

packages may be often redundant.  Prognostic metrics including alpha-lambda metric, beta, and 

relative accuracy have been used to assess the performance of the damage proxies.  The 

presented approach enables the estimation of residual life based on level of risk averseness. 

10.1 Introduction 

Kalman filtering is a recursive algorithm that estimates the true state of a system based on 

noisy measurements [Kalman 1960, Zarchan 2000].  Prognostication of failure using Kalman 
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filtering has been demonstrated in steel bands and aircraft power generators [Batzel 2009, 

Swanson 2000, 2001]. Numerous applications in prognostics also exist for algorithms using more 

advanced filtering algorithms, known as particle filters. The state of charge of a battery was 

estimated and remaining useful life was predicted in [Saha 2009
a,b

]. Use of Extended Kalman 

Filtering for prognostication of electronic reliability based on the underlying damage mechanics 

is new.  In this paper, a prognostic and health monitoring capability for electrical components 

based on changes in resistance has been presented. Failure modeling of BGA interconnects is 

combined with Extended Kalman filtering for plastic strain state estimation and a Bayesian 

framework for PHM.  In contrast to the traditional Kalman filter, the extended Kalman filter 

allows the use of non-linear models to model damage in the interconnect being monitored. This 

work was an attempt to improve the results shown in the previous section by replacing the 

quadratic model with a more general exponential model. To make a fair comparison the data set 

used in the previous section will be used to hindcaste failure using the extended Kalman filter 

based PHM algorithm. 

10.2 Test Vehicle 

A set of test boards with multiple package architectures were used for experimental 

measurements. The test board includes package architectures such as plastic ball-grid arrays, 

chip-array ball-grid arrays, tape-array ball-grid arrays, and flex-substrate ball-grid arrays . The 

experimental matrix has ball counts in the range of 64 to 676 I/O, pitch sizes are in the range of 

0.5mm to 1mm, and package sizes are in the range of 6mm to 27mm.  The package parameters 

of this board are shown in Table 15.  Representative sample of the test board is shown in Figure 

153.  
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Figure 153: Test Board 

Table 15: Package architectures on test board 

 

 

6
 m

m
 

T
ap

e 
A

rr
ay

 

7
 m

m
 

C
h
ip

 A
rr

ay
 

1
0
 m

m
 

T
ap

e 
ar

ra
y

 

1
5
 m

m
 

P
B

G
A

 

1
6
 m

m
 

F
le

x
 B

G
A

 

2
7
 m

m
 

P
B

G
A

 

I/O 64 84 144 196 280 676 

Pitch (mm) 0.5 0.5 0.8 1 0.8 1 

Die Size (mm) 4 5.4 7 6.35 10 6.35 

Substrate 

Thick (mm) 

0.36 0.36 0.36 0.36 0.36 0.36 

Pad Dia. (mm) 0.28 0.28 0.30 0.38 0.30 0.38 

Substrate Pad NSMD NSMD NSMD SMD NSMD SMD 

Ball Dia. (mm) 0.32 0.48 0.48 0.5 0.48 0.63 

 

The test assemblies were subjected to vibration testing on a LDS Model V722 vibration 

table.  A step stress profile was used to gradually ramp up the stress level to induce damage 

(Figure 132).  The feature vector described in the previous section will be used for the 
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prognostics hindecaste. The same failure threshold of 3.125Ω obtained from the finite element 

simulation will again be used to define failure. 

 

 

Figure 154: Step stress profile for vibration testing that fatigues interconnects to failure. 

 

Figure 155: Zoomed view of resistance data between 2 hrs and failure 
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10.3 Filtering and RUL prediction 

System damage state estimation in the presence of measurement noise and process noise 

has been achieved using the Extended Kalman Filter (EKF).  System state has been described in 

state space form using the measurement of the feature vector, velocity of feature vector change 

and the acceleration of the feature vector change.  System state at each future time has been 

computed based on the state space at preceding time step, system dynamics matrix, control 

vector, control matrix, measurement matrix, measured vector, process noise and measurement 

noise.  The equivalent Extended Kalman Filter equation for state space representation is in the 

presence of process noise and measurement noise is: 

 ̇   ( )    (257) 

Where x is the vector of system states being estimated, F is the system dynamics matrix 

that describes the evolution of the system, f(x) is a non-linear function of states, w is random 

zero mean noise defined as w ~ N(0,w).  The system dynamics matrix, f, is a nonlinear function 

of the states.  In extended Kalman filtering the relationship between system states (x) and 

measurements (z) can also be nonlinear, but in this paper are assumed to remain linear and occur 

at discrete time intervals, k. 

   ( )    (258) 

Where H is the measurement matrix, z is the measurement vector, h(x) is a measurement 

function which is a nonlinear function of states, v is zero-mean random process described by the 

measurement noise matrix.  Since the system-dynamics (F) and measurement equations are 

nonlinear, a first-order approximation is used in the continuous Riccati equations for the systems 

dynamics matrix F and the measurement matrix H. The matrices are related to the nonlinear 

system and measurement equations according to 
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Where  ̂ is the Extended Kalman Filter estimate of system-state at the future time step.  

The Kalman gain has been computed and updated at each time-step, while the filter is operating 

from the Riccati equations [Zarchan 2000]. The Ricatti equations can be represented in matrix 

form as:  

            
     (261) 
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where Mk is the covariance of errors in state estimates before update, k is the 

fundamental matrix which represents the system dynamics, Qk is the discrete process noise 

matrix, Kk is the Kalman gain, H is the measurement matrix, and Pk is the covariance matrix 

representing errors in the state estimate after an update. Rk is the process noise matrix and has 

been used as a device for telling the filter that we know that filter’s model of the real world is not 

precise.  The diagonal elements of Pk represent variance of the true state minus the estimated 

state. Mk is sometimes referred to as the a priori covariance matrix, and Pk may be referred to as 

the posterior covariance matrix. 

The resistance of the package is measured directly in the experimental method. But the 

first and second derivatives are also desired to help extrapolate the state of the feature vector into 

the future. Simple numerical derivatives calculated from the raw feature vector are too noisy to 

be helpful. The Kalman filter is a powerful tool for smoothing and estimating the state of all of 

the desired variables. The general form of the resistance data is assumed to be. 
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       (264) 

Where a and b are constant parameters, t is time, e is Euler’s constant and x is resistance. 

The derivative of resistance with respect to time and the b-parameter have been used to construct 

the state vector.  The state vector is: 

   ⌊  ̇  ⌋  (265) 

 

Where, the resistance derivatives have been represented by: 

 ̇           (266) 
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The state evolution equation is written as: 
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Where w is a white process noise that has been added to the rate of change of 

acceleration equation for possible future protection.  A model based on the accrued plastic strain 

in interconnects of the system has not been used because the inputs to the system are not always 

known or measurable and cannot be assumed to always be constant or known in advance.  

Therefore, the feature vector based on resistance spectroscopy has been related to the underlying 

plastic work and its evolution used for prognostication of system state and residual life.  The 

derivatives of the feature vector based on resistance spectroscopy have been computed to 

estimate the state of the feature vector at future time-steps.  The system dynamics matrix based 

on Equation (270) is given by: 
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The fundamental matrix has been computed from the Taylor series expansion of the 

system dynamics matrix, F, as follows: 
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The discrete process noise matrix is described as: 
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As part of the Extended Kalman filter current state estimates are projected into the future. 

This was accomplished by Euler integration. In the following equations bars represent quantities 

projected into the future and hats represent current state estimates. All values with hats are 

estimated by the filter. The Euler integration time step, Ts, is the time step between 

measurements.   

 ̈   ̂( ) ̂( )  (276) 
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 ̇   ̂( )   ̈    (277) 

   ̂( )   ̇    (278) 

The filtering and prediction algorithm is summarized below. 

 

Algorithm: Filtering and RUL prediction 

11. Initialize variables at time step t = 0 

12. Project state to the next time step,    

13. Calculate error covariance before update,  

k

T

kkkk QPM  1  
14. Calculate Kalman gain,             

     

15. Take measurement,    

16. Update estimate with measurement,  ̂     ̂      (    ̅) 

17. Calculate error covariance after measurement update,    (     )   

18. Extrapolate feature vector to failure threshold value using ‘n’ repeated applications of Euler integration, 

     

19. Report predicted RUL (and uncertainty) 

20. Iterate to step 2 for next measurement (k = k +1) 

 

10.4 Prognostic Hindecaste 

To simulate the EKF based PHM algorithms ability to forecast failure, a prognostic 

hindcaste was performed using the data set described above. The results of Extended Kalman 

filtering are shown in Figure 156. The red line in the first plot is the state estimate from the 

Extended Kalman filter. Note that the state estimate from the Extended Kalman Filter is 

smoother than the raw data based feature vector. Smoothing facilitates faster convergence in the 

PHM algorithm. The lower two plots are estimates of the first derivative and the model 

parameter b which was introduced in equation (264) measured for construction of the feature 

vector. Any time the first derivative is estimated to be negative, the PHM algorithm cannot make 

a prediction and the algorithm reports a non-prediction error code. The middle trace in Figure 

156 shows multiple occurrences where the derivative is estimated as negative. This causes the 

RUL predictions to oscillate before convergence. The convergence of the Kalman gain is shown 

in Figure 157. 
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Figure 156: EKF filtering results 

 

Figure 157: Convergence of Kalman gain 

The Euler integration method has been used for calculation of the remaining useful life. 

Equations (276) through (278) are again used to project the current state estimate one time step 

into the future. If the projected state is greater than the failure threshold, the projected time step 

is taken as the time of failure. If the system state has not reached the failure threshold the 

following substitutions are made 

 ̂( )   ̇  (279) 
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 ̂( )     (280) 

After substituting estimates back into the equation as state estimates the process in 

repeated ‘n’ times until the failure threshold is broken. The RUL is then calculated as the number 

of time steps required to propagate the system to failure multiplied by the length of the 

measurement time step. The calculation of RUL does not influence estimates provided by the 

filter. The uncertainty of each prediction was quantified using the posterior error covariance.  

The results of the RUL prediction are shown in Figure 158, Figure 159, Figure 160. 

Figure 158 is a prediction from early in the test. Based on the data available, which shows very 

little change in the state variable resistance, the RUL prediction is considerably longer than the 

actual RUL. Figure 159 shows a prediction where more information is available to the algorithm. 

Figure 160, a prediction at the very end of the test shows how as the feature vector increases in 

an exponential nature that the assumption that the process dynamics are quadratic causes poor 

results.  A summary of all the RUL predictions compared against the actual RUL is shown in 

Figure 161. The initial estimates of the remaining useful life oscillate and then gain traction in 

terms of accuracy following evolution of state space vector with underlying damage.   
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Figure 158: RUL prediction at 4.4069 Hrs, the red circle shows what data was available 

for the prediction. The blue line in both plots is the feature vector, and the green line is the 

extrapolated state value used to predict RUL 

 

Figure 159: RUL prediction at 5.0564 Hrs 

 

Figure 160: RUL prediction at 5.7059 Hrs 
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Figure 161: Comparison of actual RUL vs predicted RUL 

Unreported RUL predictions around the time of 2.1,3 and 3.5 hours are the result of 

estimating the first derivative of the resistance as being negative. One of the advantages of this 

implementation is the ability to estimate model parameters in real time. The last state variable, 

denoted as model parameter ‘b’, was estimated online while the filter was recursively processing 

the data set. The residual between the one step ahead state estimate in the Kalman filter and the 

measurement is defined as 

      ̅ ( )      (281) 

An error in the assumed model, or a sub optimal value for the model parameter can 

increase the residual. If the residual is positive the model is over predicting the dynamics of the 

system. If the residual is negative the model is under predicting the dynamics of the system. A 

plot of the residual compared to the estimated model parameter is shown in Figure 162. 
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Figure 162: Residual between the estimated one step ahead prediction and the noisy 

measurement 

It can be seen that when the residual is positive the filter decreases the estimate of the b 

parameter in an effort to match the observed true dynamics of the system. When the residual is 

negative the filter increases the estimate of the b parameter.  

10.5 PHM Metrics 

To facilitate a comparison of the presented algorithm against alternative implementation 

the standard PHM metrics were calculated for the EKF based PHM algorithm. The cost function 

for this implementation was 0.521. 
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Figure 163: Alpha-Lambda  Performance Metric 

 

Figure 164: Beta Precision Metric 

 

Figure 165: Relative Accuracy Metric 

10.6 Comparison Against the Kalman Filter 

To compare the performance of the Kalman filter based PHM algorithm and the EKF 

based algorithm the PHM metrics for each implementation have been reproduced in a side by 

side format. Besides the changes inherent with filtering with the Kalman and extended Kalman 
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filters, there were differences in the prognostic section of each algorithms. As discussed 

previously the underlying assumptions about the form of the equations generating the observed 

system were different. The Kalman filter used a closed form equation to predict RUL, while the 

EKF used Euler integration. As with linearizing the system model, there is also a risk of not 

using a small enough time step in the Euler integration step to propagate damage states forward. 

The uncertainty quantification approach was the same for both filters, but the reported values 

were not the same because different models were being used in the filters. The EKF is believed 

to a more flexible implementation because it has the ability to estimate online parameters in its 

own model. Lastly the EKF performed significantly better that the KF when judged by the PHM 

metrics. The cost function, which is used to summarize performance into a single number, shows 

that the EKF implementation was an improvement over the KF based PHM algorithm. 

Component Kalman Filter Extended Kalman Filter 

Model Order Quadratic Exponential 

Prediction Mechanism Closed form equation Euler integration 

Uncertainty Quantification             

Parameter Estimation NO YES 

Cost Function 0.843 0.521 
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Figure 166: a) RUL plot for KF, b) RUL plot for EKF 

 

Figure 167: a) Alpha-Lambda plot for KF, b) Alpha-Lambda plot for EKF 

 

Figure 168: a) Beta metric for KF, b) beta metric for EKF 
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Figure 169: a) Relative accuracy for KF, b) Relative accuracy for EKF
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11 Particle Filter (PF) Based Prognostic Algorithm Implemented for BGA’s 

In this section, the effectiveness of a proposed particle filter and resistance spectroscopy 

based approach in a prognostic health management framework has been demonstrated for 

electronics. The particle filter has been used to estimate the state variable, rate of change of the 

state variable, acceleration of the state variable and construct a feature vector.  The estimated 

state-space parameters have been used to extrapolate the feature vector into the future and predict 

the time-to-failure at which the feature vector will cross the failure threshold.  This procedure has 

been repeated recursively until the component failed. Remaining useful life has been calculated 

based on the evolution of the state space feature vector.  Standard prognostic health management 

metrics were used to quantify the performance of the algorithm against the actual remaining 

useful life. Application to part replacement decisions for ultra-high reliability system has been 

demonstrated.   

11.1 Introduction 

Particle filtering is a recursive algorithm that estimates the true state of a system based on 

noisy measurements. Previously the particle filter has been used for projectile tracking 

[Arulampalam 2002, Gustafsson 2002, Ristic 2004], robot localization [Verma 2004], fatigue 

crack growth estimation [Cadini 2009], and prognostics for helicopters [Orchard 2007,2009], 

batteries [Saha 2009a,b], and pneumatic valves [Daigle 2009] . Particle filtering may also be 

known as sequential importance sampling, bootstrap filtering, or Monte Carlo filtering. In 

general particle filtering is classified as a sequential Monte Carlo technique [Doucet 2001]. The 

Kalman filter is a special case of the particle filter with constraints of linear Gaussian behavior 

on the underlying system and accompanying measurements. The benefits of using the particle 
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filter are a fully encompassed methodology for tracking non-linear/non-Gaussian damage 

variables with seamless incorporation of uncertainty management [Saha 2008] into the failure 

prediction algorithms. 

11.2 Test Vehicle 

A set of test boards with a single package architecture were used for experimental 

measurements. This unique assembly allows very precise failure analysis to be performed. The 

test board package architectures was a plastic ball-grid array with 324 I/O. The package 

parameters of this board are shown in Table 16.  A representative sample of the test board is 

shown in Figure 170.  

 

Figure 170: PBGA324-1mm-19mm test board 

Table 16: Package Architectures used for Test Board B 

Characteristic Parameter 

Package Plastic BGA 

Pitch 1mm 

Body Size 19mm 

Alloy SAC305 

Board surface finish ImAg 
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Pad (Package) SMD 

Pad (Board) NSMD 

Daisy Chains 4 

Total Daisy chain 

resistance 

1.30Ω ± 0.2Ω 

Package Manufacturer Practical Components 

Board Assembly CAVE
3
 , Auburn 

University 

11.3 Test Environment 

The test assemblies were mounted face down on an LDS LV217 electro-dynamic shaker 

table and subject to an 11gn random vibration profile, as shown in Figure 171. Continuity 

measurements for damage detection per IPC-SM785 and resistance spectroscopy measurements 

(both phase and magnitude) for prognostics were alternated every two seconds.  

Testing was stopped when the traditional definition of failure which was taken as 10 

intermittent events of >300Ω, each lasting >1μsec, per industry standard IPC-SM785 (1992 pg. 

15-16) was met. Conveniently during testing resistance spectroscopy measurements alerted the 

experimenter that failure was imminent and to prepare to stop the test.    
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Figure 171: Vibration profile used for testing 

11.4 Test Circuitry 

The test circuitry used to monitor both resistance spectroscopy and daisy chain resistance 

comprised of two separate Wheatstone bridges that were switched between during testing using a 

single pole double throw relay. This setup effectively moves the device under test (daisy chained 

package) between the two measurement systems. The relay was transitioned between 

measurement devices every two seconds for the length of the test. The high level functional 

diagram of the test setup is shown in Figure 172. 

 

Figure 172: Functional diagram of test circuitry. The block labeled package represents 

the daisy chain resistance of the package under test 
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11.4.1 IPC-SM785 Continuity measurement 

The electrical continuity was monitored using a LeCroy WR-Xi digital signal 

oscilloscope and a standard DC Wheatstone bridge. The daisy chained resistance of the package 

being tested was incorporated as an arm in the Wheatstone bridge. Changes in resistance of the 

package due to damage to solder interconnects is converted into a voltage through the bridge 

circuit at Vout,DC,  and monitored with the digital signal oscilloscope. The sampling rate was set 

at 1x106 Samples/second to satisfy the requirement of high speed sampling. High resistance 

open events were automatically recorded to the internal hard drive of the oscilloscope for offline 

tallying. Every two seconds the continuity measurement was turned off to allow for a resistance 

spectroscopy measurement. The error introduced by this gap in measurement is considered 

acceptable since it only introduces a few seconds of uncertainty into the detected failure time for 

a test that lasts over an hour. It was observed that upon the initiation of failure, the occurrence of 

open events was very prevalent and nearly constant unlike thermal cycling failures which tend to 

be more intermittent in nature. 

11.4.2 Resistance Spectroscopy 

The experimental setup for a resistance spectroscopy measurement is similar to a 

continuity measurement, but utilizes additional equipment to detect very small changes in 

resistance that the continuity equipment does not have adequate resolution to detect. RS 

measurements are capable of detecting changes in resistance as small as a milli-ohm well before 

the traditional definition of failure and therefore contain prognostic value. A detailed diagram of 

the RS measurement setup is shown in Figure 4. Capacitors C1 and C2 help eliminate stray 

inductances from wires running between the test board and measurement equipment. Resistors 

R1, R2, and R3 are used to balance the bridge. The single pole double throw relay has a small 
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but non-negligible resistance that must be balanced out by specifying an appropriate value of 

resistor R3. Unlike traditional bridges, an AC voltage source drives this bridge, resulting in a 

sinusoidal output whose amplitude and phase shift are proportional to the resistance of the 

package. The lock-in amplifier performs the phase sensitive detection which effectively increases 

the resolution of the RS measurement compared to the continuity measurement. The outputs 

from the lock-in amplifier, the magnitude and phase shift of the signal Vout,AC, are recorded using 

a data logger. 

 

Figure 173: Resistance spectroscopy measurement setup. A differential output from the 

bridge is input into the lock-in amplifier for phase sensitive detection. Magnitude and phase data 

are recorded with the data logger. 

Calculating the change in resistance of the package based on the measured output voltage 

from the bridge follows closely to that of a traditional Wheatstone bridge [Wheeler 2004], but 

must now incorporate impedances into the calculation. The general impedance bridge equation 

becomes 

              
           

(     )(     )
 

(282) 

Where Z1 is the combined impedance of R1 and C1, and similarly for Z2. Impedances Z3 

and ZPKG are simply resistive impedances and therefore reduce to the value of resistor R3 and the 
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daisy chained resistance of the package respectively (i.e. Z3=R3, ZPKG=RPKG). In a perfectly 

balanced bridge the numerator cancels out and the output voltage is zero. The resistance of the 

package can be solved for algebraically.  

          
                  (         )

       (     )          
 

 

(283) 

Table 17: Discrete component values used in resistance spectroscopy AC Wheatstone bridge 

Component Value 

R1,R3 10Ω 

R2 1.28Ω 

Initial RPKG 1.30Ω 

C1,C2 10 nF 

Vin,AC 177.5 mVRMS  at 95 

kHz 

11.4.3 Phase Sensitive Detection 

Inside the lock-in amplifier phase sensitive detection is used to measure very small 

changes in resistance which are converted to very small changes in voltage Vout,AC by the bridge. 

Phase sensitive detection is a unique measurement method that allows the interrogation of very 

small signals corrupted with noise. Detection of signals with a signal to noise ratio considerably 

less than one is possible. Implementation involves multiplying a reference signal, Vin,AC, by the 

measured signal, Vout,AC. The resulting signal, Vm, is passed through a low pass filter to remove 

frequency components that are not of interest. In practical realizations the low pass filter is a 

higher order filter (e.g. 8
th

 order Butterworth) than depicted in the diagram. The output from the 

phase sensitive detection, VPSD, is a signal that is proportional to the magnitude of the measured 
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signal, Vin,AC, without noise corruption. See [Lall 2009
b
] for a detailed discussion of phase 

sensitive detection including a derivation of pertinent equations. Since the components of the 

Wheatstone bridge are known quantities, the change in resistance of the package can be 

calculated to the milli-ohm resolution using the phase sensitive detection technique. A lock-in 

amplifier is a traditional method for performing the phase sensitive calculation, but other 

techniques based on switch type amplifiers or commercially available generic data acquisition 

hardware [Varcic 2001, Batra 2003] are alternative methods.  

 

Figure 174: Phase sensitive detection performed inside the lock-in amplifier uses digital 

signal processing to multiply two sinusoids together and then eliminate high frequency 

components with a filter. 

The resulting resistance measurement for the daisy chained package is shown in Figure 

175. Notice how the resistance changes prior to the traditional definition of failure. This advance 

warning of failure validates the use of resistance spectroscopy as a prognostic indicator for 

failure in solder joint interconnects. If the test were allowed to continue past the point shown in 

the figure the resistance of the package would quickly rise to a very high level (>300Ω) 

permanently due to the violent nature of the test. In this test failure occurred at 70.55 minutes.  



218 

 

 

Figure 175: Change in resistance measured with the resistance spectroscopy method. 

Notice the significant change in resistance that is detectable well before the traditional definition 

of failure. 

11.4.4 Transfer Function for Interconnect Strain to Resistance 

To apply traditional strain based failure criteria [Lall 2007
f
] to solder interconnects the 

strain state in the interconnect is desired. Therefore a transfer function relating the measured 

resistance using the resistance spectroscopy technique to the non-observable strain state is 

needed. Previously [Lall 2009
a,b

, 2010
a,b

] a correlation between interconnect strain and measured 

resistance was obtained using finite element modeling. This approach is advantageous for 

situations where no run to failure test data is available (e.g. new interconnect architectures, or 

projects still in the design phase). For this paper, the failure time is available from the IPC-

SM785 continuity measurement will be used in place of simulation results. Previously, without 

IPC-SM785 continuity measurements, the actual resistance failure threshold has never been 

known as definitively.  

11.5 Filtering and RUL Predictions 

System damage state estimation in the presence of measurement noise and modeling 

uncertainty has been achieved using the sequential importance re-sampling (SIR) particle filter 
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[Arulampalam 2002].  In this implementation the monitored system state is the interconnect 

resistance which is a proxy for interconnect strain. The system state has been described in state 

space form using the measurement of the feature vector, velocity of feature vector change and 

the acceleration of the feature vector change.  The estimated system state at each future time has 

been computed based on the state space at the preceding time step, and an assumed model for 

damage propagation. It is important to note that estimates and predictions are made in a recursive 

manner after each new measurement on the system and do not rely on prior knowledge of future 

measurements. Furthermore only one data measurement is stored in the system at a time and 

therefore requires minimal data storage. The preceding sub-sections will individually address 

damage modeling, damage tracking with the particle filter, and finally predicating remaining 

useful life. 

11.5.1 Damage Modeling 

In harsh environments, such as drop/shock and vibration, stress causes plastic 

deformation/strain to occur in solder interconnects. As described earlier traditional strain based 

failure criteria are used to describe failure in solder. Fatigue cracks initiate and propagate 

through local regions of sufficient plastic strain and are the observable result of plastic strain. 

From failure analysis it is known that the loss of electrical continuity in solder interconnects 

subjected to violent loadings is caused by a crack propagating through a multiphase material 

interface. Unfortunately this is a complicated process that is difficult to observe, which is why in 

this paper electrical resistance is used as a proxy. Experimental determination of fracture 

parameters has been demonstrated for relatively large geometries under quasi-static conditions 

[Marur 1999], but unfortunately solder material strength has been shown to be highly dependent 

on strain rate [Darveaux 2006]. Computationally expensive finite element methods have 
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correlated crack propagation with failure [Lall 2007
f
] but require a priori knowledge of failure 

locations. Extended finite element modeling (XFEM) techniques have been demonstrated for 

solder joint failure [Lall 2010
c
] that do not require explicit meshing of crack surfaces, but are still 

computationally expensive for real time applications. Material characterization for representative 

geometries and strain rates that are applicable to electronic packaging subjected to drop/shock 

and vibration are ongoing [Lall 2010
d
] and will someday be very useful for damage modeling. 

For the current work an empirical lumped parameter model based on exponential growth is used 

to model changes in resistance due to interconnect cracking. Traditionally a power law is used to 

model phase II crack growth. In this implementation phase III crack growth is also important 

since electrical continuity is not broken until crack propagation is completely across the 

interconnect severing electrical continuity. Therefore an exponential crack growth model 

[Mohanty 2009] capable of handling phase II and phase III crack growth is used.  

Resistance of a cylindrical conductor is related to its respective geometry and material 

constants (  is electrical resistivity) through the relation  

 

Figure 176: Theoretical relation between resistance, material properties, and geometry for 

a cylinder. A similar, more complicated  relation exits for a solder interconnect 

The relationship between resistance and geometry for a solder interconnect is more 

complicated and non-linear due to the shape of the interconnect but is expected to exist in a 

similar manner. As a crack propagates through the interconnect the effective area for conducting 
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current decreases in a non-linear fashion before the resistance ultimately spikes to infinity (a 

completely open crack). 

 

Figure 177: Proposed possible method of crack propagation in a solder interconnect 

resulting in a change in resistance. Electrical continuity is lost when crack length, a, reaches one. 

Based on this intuition the resistance of the interconnect is assumed to grow 

exponentially, but the exact material and geometry effects are lumped into the model parameters. 

The state variable resistance, x(t), is modeled as 

 ( )       (284) 

 ( )  {
 ( )
 ( )

}  {
 
 
} 

(285) 

Where a and b combine together a number of material factors and geometry parameters 

into a single term. The model parameters can be a function of time, but are taken as constants to 

reduce complexity. Model parameters must be learned from existing run to failure data. The 

choice of model parameters is a decades old controversy inside the state estimation and filtering 

community which is discussed in the next section. The remaining state variables are simply 

derivatives of the damage model 

Crack Length: a=0.1 Crack Length: a=0.2 Crack Length: a=0.3

Crack Length: a=0.4 Crack Length: a=0.5 Crack Length: a=0.6

Crack Length: a=0.7 Crack Length: a=0.8 Crack Length: a=0.9
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11.5.2 Damage tracking 

A SIR particle filter is used to track the damage state of the interconnect and provide 

probability distributions on state variables which are passed to the prediction algorithm. The 

particle filter represents the probability distribution over the current value of each state variable 

using a discrete probability mass function. Unlike with Kalman filtering there are no restrictions 

on the shape of the distribution function being approximated. 

SIR Particle Filtering Algorithm 

6. Initialize a distribution of particles, {  
    

 } 

7. Project the particles forward one time step  to find  (     |     ) 

8. Make a new system measurement, zp+1 

9. Assign new weights based on the relevance of each particle compared to the new measurement 

 (     |       ) 

10. Resample: If a few particles contain a majority of all possible weights, kill low probability particles and 

replace them with new more relevant particles     

 

One difficult task when using any recursive filter is the choice of model parameters and 

noise terms. In the widely used Kalman filter this has been an acknowledged problem for at least 

30 years [Grewal 2010], yet the Kalman filter has been applied successfully in a myriad of 

practical applications. The large number of possible fixes to the parameter problem with Kalman 

filters are cataloged in [Simon 2006]. The SIR particle filter suffers from the same problem. A 

possible solution is to include the model parameters into the state variable vector and allow the 

parameters to perform a random walk to identify appropriate values [Daigle 2009, Saha 2009
b 

, 

2011a]. In this implementation fictitious process noise was added to account for ignorance about 

the other parameters. Table 18 summarizes the parameters used for the results shown in this 

paper. 
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Table 18: Parameter values used for damage model and particle filtering 

Parameter Value 

a 0.5 

b 0.4 

    0.01 

    1x10
-4 

N 50 

 

Figure 178: Results of particle filtering applied to feature vector shown in Figure 175 

11.5.3 Damage Propagation and RUL prediction 

The final remaining useful life prediction combines all of the algorithms described up to 

this point into a recursive algorithm that first calculate the predicted end of life (EOL) and then 

reports a remaining useful life (RUL) as a probability density. Using the latest state estimate 

from the particle filter each particle is projected forward in time until the failure threshold is 

crossed (CEOL=1). The RUL prediction  (   (  )|     ) is reported and the algorithm loops 

through to the next measurement. Damage states are propagated forward many time steps using 

Euler integration. 
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Damage Propagation and RUL Algorithm  

for each Measurement 

1. Initialize 

a.   
 ̃     

  

b.  ̇ 
 ̃   ̇  

  

c.  ̈ 
 ̃   ̈  

  

2. While CEOL = 0 for any  ̃ 
  

a. Propagate damage state forward 

i.  ̈   
 ̃       

 ̃  

ii.  ̇   
 ̃   ̇ 

 ̃     ̈ 
 ̃  

iii.     
 ̃    

 ̃     ̈ 
 ̃     

iv.       
3. Report:  

  (   (  )|     )         {    ( ̃   
 )   }  

4.    (  )     (  )     

 

 

Figure 179: Damage propagation to predict EOL with a particle population size of N = 50 

The complete algorithm that includes measuring damage proxies, tracking damage, and 

then predicting failures is repeated in a loop as long as it is deemed appropriate to continue 

running the system. A few of the predicted EOL distributions are shown in Figure 180. 
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Figure 180: Predicted end of life distributions reported at decreasing times to failure. 

Darker lines represent predictions closer to the true end of life. 

11.6 Prognostic Metrics 

The resulting performance function for this implementation is 0.479. 

 

Figure 181: Remaining useful life predictions 
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Figure 182: Alpha-Lambda Performance of PHM Algorithm 

 

Figure 183: Beta calculation showing area under RUL prediction PDF that falls within 

the alpha bounds 
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Figure 184: Relative Accuracy of RUL prediction 

11.7 Comparison Against the Extended Kalman Filter 

To compare the performance of the particle filter based PHM algorithm and the EKF 

based algorithm the PHM metrics for each implementation have been reproduced in a side by 

side format. The particle filter was implemented on the same data set used for the Kalman and 

Extended Kalman filter implementations. Unlike the changes inherent with filtering with the 

Kalman and extended Kalman filters, there were fewer differences in the prognostic section of 

the EKF and PF algorithms. The EKF linearizes the assumed exponential model, while the 

particle filter makes no linearizations or assumptions about Gaussian distributions. Without 

supplementing the particle filter with additional states or other ad-hoc methods, the ability of the 

particle filter to perform joint state parameter estimation is very limited. If the assumed model 

parameters are not close enough to actual values the particle filter can diverge and provide 

erroneous results. It is much more straight forward to perform joint state parameter estimation 

using the EKF. The uncertainty quantification approach was different for both filters. The EKF 

used the covariance matrix to quantify uncertainty, and the particle filter used a Monte Carlo 

implementation to propagate estimated states forward in time. The use of a Monte Carlo 

simulation seems like a better approach, but the impact that simplifying assumptions about 

uncertainty have on risk based decision making are hard to understand with the systems that are 

studied in this work. 

Component Particle Filter Extended Kalman Filter 

Model Order Exponential Exponential 

Prediction Mechanism Monte Carlo Euler integration Single Point Euler Integration 

Uncertainty Quantification Based on Monte Carlo Results       
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Parameter Estimation Limited YES 

Cost Function 0.479 0.521 

 

 

Figure 185: a) RUL plot for PF, b) RUL plot for EKF 

 

Figure 186: a) Alpha-Lambda plot for PF, b) Alpha-Lambda plot for EKF 
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Figure 187: a) Beta metric for PF, b) beta metric for EKF 

 

Figure 188: a) Relative accuracy for PF, b) Relative accuracy for EKF 

Based on the PHM metrics the PF algorithm performs slightly better than the EKF 

implementation. A better implementation would be to combine the strengths of both algorithms. 

The EKF is better at online parameter estimation, while the uncertainty quantification using the 

particle filter is the superior approach. 

11.8 Conclusion 

In this paper a prognostic health management framework for electronics has been 

demonstrated that uses resistance spectroscopy measurements and a particle filter to track 

damage and predict remaining useful life. The test environment was a relatively violent vibration 
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test used for accelerated life testing of electronics. The prognostic value of resistance 

spectroscopy measurements has been quantified by monitoring for the traditional definition of 

failure (IPC-SM785) while simultaneously monitoring the solder interconnect using resistance 

spectroscopy. The use of the described algorithms in conjunction with described  risk based 

decision making  techniques provide a fully encompassed framework for tracking damage, 

managing uncertainty and making statistically defendable decisions. The outputs from the PHM 

algorithms presented here could be inputs into safety critical decisions about the future use of a 

product with an electrical subsystem. The algorithms could also support optimization of 

condition based maintenance for electronic rich systems. Standard performance evaluation 

metrics have been used to quantify the performance of the described PHM framework for 

electronics and has been shown to perform well compared to previous efforts.
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12 PHM for electronics subjected to multiple simultaneous stress 

environments 

Electronics in harsh environments may be subjected to extended periods of simultaneous 

high temperature and vibration.  Further, electronics may be stored for prolonged periods of time 

prior to, and during deployment.  Methods for assessment of accrued damage under simultaneous 

stresses are scarce.  Test to failure data has been measured to study the effect of simultaneous 

thermal and vibration loadings on the reliability of BGA components. Two groups of pristine and 

isothermally aged components have been tested at both room temperature and 125°C while 

simultaneously being subjected to vibration loadings. The transient response of printed circuit 

boards under the overlapping stresses has been characterized.  Damage accrued under 

overlapping stresses has been investigated using physics-based leading indicators of damage.  

The leading indicators are state vectors based on resistance spectroscopy and phase sensitive 

detection.  An extended Kalman filter is employed to predict remaining useful life of the BGA 

components. 

12.1 Introduction 

Field deployed electronics, unlike controlled laboratory testing, may experience a variety 

of simultaneous mechanical stresses during its lifetime. In many applications such as automotive, 

aerospace, military, and electrical power generation, deployed electronics will experience 

simultaneous thermal and vibration stresses. By itself, single stress tests may not adequately 

characterize the reliability of an assembly. Further, usage may be preceded by prolonged storage 

in uncontrolled environments which can age assemblies. Traditional lifetime prediction methods 

may not accurately predict future performance if assemblies are deployed into unplanned usage 
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conditions that were not tested previously or if compounding reliability factors exist. This paper 

will present results from four test groups at a variety of test conditions. Lastly it is shown that 

resistance spectroscopy is a candidate for monitoring accrued damage in BGA components in 

simultaneous stress environments to provide real time reliability assurances. Bounds on the 

accuracy of prediction algorithms that could be expected in fielded components are presented.  

Literature on simultaneous (aka: concurrent, overlapping) thermal and vibration stresses 

for BGA components is scarce compared to other standardized test methods such as temperature 

cycling, drop/shock, and vibration. There is no agreed upon test methodology, published results 

are contradictory, and direct comparisons are difficult to make. Nearly simultaneous testing was 

performed by [Rorgen 1998] for automotive electronics applications. [Zhao 2000] used moiré 

inferometry to conclude that solder joint strains were larger at elevated temperatures in cross 

sectioned SnPb assemblies subject to temperature and sinusoidal vibrations. The effect of 

thermal cycling and vibration on SAC305 LCCC, BGA, and resistors was studied by [Qi 2005]. 

Unfortunately the effect of temperature on the circuit board vibration response published in that 

paper could not be compared to [Matkowski 2005] because the boards and packages were 

significantly different. An interesting study on the variations in material properties with 

temperature of FR4 was given by [Hutapea 2003]. The authors argued that dampening from 

surrounding air was significant in calculating material properties so tests were performed inside a 

bell jar which was itself inside an oven. This highlights challenges in determining elevated 

temperature material properties for circuit boards.  Also of note was the conclusion that the PCB 

shear modulus decreases by 50% between room temperature and 150°C.  The elastic moduli 

decreases only slightly over the same temperature change.  
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While not directly applicable to simultaneous heating and vibration, literature concerning 

the effect of ageing on vibration only testing, and ageing/cycling on drop reliability provides 

insight into failure mechanisms and mechanics. Isothermal ageing decreases vibration only 

reliability [Tu 2001] and drop reliability [Ma 2007]. The effect of thermal cycling on drop 

reliability has been shown to increase reliability in some cases [Mattila 2006]. In [Mattila 2011] 

simultaneous heating and drop/shock loadings increased longitudinal strain on the PCB with 

increasing temperature. Further compounding the understanding of the mechanics and its effect 

on reliability is the effect of ageing [Ma 2009] and strain rate [Mattila 2005] in tensile tests on 

SAC solders.  

Interrogation of system state and prognostication of accrued damage under simultaneous 

stresses is new, but previously for single stress conditions damage initiation, damage 

progression, and residual life in the pre-failure space has been correlated with micro-structural 

damage based proxies, feature vectors based on time, spectral and joint time-frequency 

characteristics of electronics [Lall2004a-d, 2005a-b, 2006a-f, 2007a-e, 2008a-f].  Methods 

applicable for the real time sequential processing of monitored damage indicators have been 

demonstrated for BGA interconnects subjected to single stress environments [Lall 2010
a-b

, 2011
a-

b
].   

To characterize the transient response of the circuit board, digital image correlation has 

been used as a non-destructive method for monitoring in-situ, full field, circuit board strains 

during simultaneous temperature and vibration testing. Test vehicles include 324 I/O PBGA 

components assembled with SAC305 solder on two layer FR-4-06. Non-destructive, real time 

monitoring of solder joints was achieved with resistance spectroscopy [Lall 2009
a-c

]. Resistance 
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spectroscopy measurements were processed sequentially with an extended Kalman filter to 

facilitate the prediction of remaining useful life of components while being stressed.  

12.2 Test Vehicle 

A set of test boards with  a single package architecture were used for experimental 

measurements. This unique assembly allows very precise failure analysis to be performed. The 

test board package architectures was a plastic ball-grid array with 19mm, 324 I/O, 1mm pitch 

package. The package parameters of this board are shown in  

Table 19: Package Architectures used for Test Board 

Characteristic Parameter 

Package Plastic BGA 

Pitch 1mm 

Body Size 19mm 

Alloy SAC305 

Board Surface 

Finish 

ImAg 

Pad (Package) SMD 

Pad (Board) NSMD 

Daisy Chain 4 

Daisy Chain 

Resistance 

1.3Ω±0.2Ω 
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Figure 189: PBGA324 test vehicle 

12.3 Test Environment  

The test assemblies were mounted face down on an LDS LV217 electro-dynamic shaker 

table surrounded by a thermal chamber and subject to an 11gn random vibration profile, as 

shown in Figure 2. Continuity measurements for damage detection per IPC-SM785 and 

resistance spectroscopy measurements (both phase and magnitude) for prognostics were 

alternated every two seconds.  Testing was stopped when the traditional definition of failure 

which was taken as 10 intermittent events of >300Ω, each lasting >1μsec, per industry standard 

IPCSM785 (1992, pg. 15-16) was met. It was observed that once a package suffered its first 

intermittent open event, the remaining nine events occurred within a few seconds, and continued 

to occur until the input vibration was halted. Figure 192 highlights the effect of temperature on 

the mechanics of the printed circuit board. Non-contact deflection and strain measurements were 

obtained using digital image correlation [Lall 2007b] while simultaneous temperature and 

vibration testing was occurring. A window at the top of the thermal chamber provided in-situ 

optical access to the board. 
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Figure 190: Vibration profile used for testing 

 

Figure 191: Thermal chamber with upper window mounted on top of the shaker table 

 

Figure 192: Deflection of the center of the board during vibration testing at different 

ambient temperatures 
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12.4 Test Circuitry  

The test circuitry used  to monitor both resistance spectroscopy and daisy chain resistance 

comprised of two separate Wheatstone bridges that were switched between during testing using a 

single pole double throw relay. This setup effectively moves the device under test (daisy chained 

package) between the two measurement systems. The relay was transitioned between 

measurement devices every two seconds for the length of the test. The high level functional 

diagram of the test setup is shown in Figure 193. 

 

Figure 193: Functional diagram of test circuitry. The block labeled package represents 

the daisy chain resistance of the package under test 

12.4.1 IPC-SM785 Continuity measurement  

The electrical continuity was monitored using a LeCroy WR-Xi digital signal 

oscilloscope and a standard DC Wheatstone bridge. The daisy chained resistance of the package 

being tested was incorporated as an arm in the Wheatstone bridge. Changes in resistance of the 

package due to damage to solder interconnects is converted into a voltage through the bridge 

circuit at Vout,DC,  and monitored with the digital signal oscilloscope. The sampling rate was set at 

1x10
6
 Samples/second to satisfy the requirement of high speed sampling. High resistance open  

events were automatically recorded to the digital storage oscilloscope for offline tallying. 

Continuity measurement and resistance spectroscopy measurement were alternatively made 

every two-seconds. It was observed that upon the initiation of failure, the occurrence of open 
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events was very prevalent and nearly constant unlike thermal cycling failures which tend to be 

more intermittent in nature. 

12.4.2 Resistance Spectroscopy  

The experimental setup for a resistance spectroscopy (RS) measurement is similar to a 

continuity measurement, but utilizes additional equipment to detect very small changes in 

resistance that the continuity equipment does not have adequate resolution to detect.  RS 

measurements are capable of detecting changes in resistance as small as a milli-ohm well before 

the traditional definition of failure and therefore contain prognostic value. A detailed diagram of 

the RS measurement setup is shown in Figure 4. Capacitors C1 and C2 help eliminate stray 

inductances from wires running between the test board and measurement equipment. Resistors 

R1, R2, and R3 are used to balance the bridge. The single pole double throw relay has a small but 

non-negligible resistance that must be balanced out by specifying an appropriate value of resistor 

R3. Unlike traditional bridges, an AC voltage source drives this bridge, resulting in a sinusoidal 

output whose amplitude and phase shift are proportional to the resistance of the package. The 

lock-in amplifier performs the phase sensitive detection which effectively increases the 

resolution of the RS measurement compared to the continuity measurement. The outputs from 

the lock-in amplifier, the magnitude and phase shift of the signal Vout,AC, are recorded using a 

data logger.   
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Figure 194: Resistance spectroscopy measurement setup. A differential output from the 

bridge is input into the lock-in amplifier for phase sensitive detection. Magnitude and phase data 

are recorded with the data logger. 

Component Value 

R1,R3 10Ω 

R2 1.28Ω 

Initial Rpkg 1.30Ω 

C1,C2 10 nF 

Vin,AC 177.5mVRMS at 95 

kHz 

Figure 195: Discrete component values used in resistance spectroscopy AC Wheatstone 

bridge 

12.4.3 Phase Sensitive Detection  

Phase sensitive detection has been used to measure very small changes in resistance 

which are converted to very small changes in voltage Vout,AC by the bridge. Phase sensitive 

detection is a unique measurement method that allows the interrogation of very small signals 

corrupted with noise. Detection of signals with a signal to noise ratio considerably less than one 

is possible. Implementation involves multiplying a reference signal, Vin,AC, by the measured 
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signal, Vout,AC. The resulting signal, Vm, is passed through a low pass filter to remove frequency 

components that are not of interest. In practical realizations the low pass filter is a higher order 

filter (e.g. 8th order Butterworth) than depicted in the diagram. The output from the phase 

sensitive detection, VPSD, is a signal that is proportional to the magnitude of the measured signal, 

Vin,AC, without noise corruption. See [Lall 2009b] for a detailed discussion of phase sensitive 

detection including a derivation of pertinent equations. Since the components of the Wheatstone 

bridge are known quantities, the change in resistance of the package can be calculated to the 

milli-ohm resolution using the phase sensitive detection technique. A lock-in amplifier is a 

traditional method for performing the phase sensitive calculation, but other techniques based on 

switch type amplifiers or commercially available generic data acquisition hardware [Varcic 

2001, Batra 2003] are alternative methods.   

 

Figure 196: Phase sensitive detection performed inside the lock-in amplifier uses digital 

signal processing to multiply two sinusoids together and then eliminate high frequency 

components with a filter 

12.5 Simultaneous Temperature and Vibration Testing 

A 2x2 full factorial test matrix was implemented to study the effect of simultaneous 

temperature and vibration loadings on the reliability of BGA components. Vibration loadings 

were held constant as an 11gn random vibration profile in all tests. Ambient temperatures were 

chosen at two levels, 25C and 125C. Two levels of ageing conditions were studied, pristine (no 

ageing) and isothermally aged at 125C for 7 days.  
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Table 20: Full factorial test matrix used to study effect of simultaneous stresses and 

ageing effects 

 Pristine Aged (125C for 7 days) 

11gn random vibration at 25C Pristine-25C Aged-25C 

11gn random vibration at 

125C 

Pristine-125C Aged-125C 

 

Test vehicles were drawn from the same lot of PCB’s and assembled components. Test 

conditions were alternated between 25C and 125C to help negate the effects of systematic errors 

in the experimental procedure. Time histories of the component daisy chain resistance measured 

using resistance spectroscopy are shown in Figure 197through Figure 200. IPC failure definitions 

are overlaid on the time histories. Each group consisted of five individual tests, but all five time 

histories may not be clearly visible in each plot. A summary of failure times and corresponding 

Weibull statistics is shown in Table 21. Weibull statistics were obtained by fitting models to 

experimental data using a maximum likelihood parameter estimation approach.  

 

Figure 197: Time history of daisy chain resistance for pristine boards tested at 25C 
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Figure 198: Time history of daisy chain resistance for pristine boards tested at 125C 

 

Figure 199: Time history of daisy chain resistance for isothermally aged boards tested at 

25C 
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Figure 200: Time history of daisy chain resistance for isothermally aged boards tested at 

125C 

Table 21: Summary of fitting IPC failure data to a Weibull model 

Board Condition Test Condition Shape Parameter Scale Parameter R
2
  

Pristine 25 2.16 68.31 0.97 

Pristine 125 2.85 53.48 0.99 

Aged 25 8.52 114.47 0.99 

Aged 125 14.54 14.4 0.99 

 

 

Figure 201: Graphical representation of failure distributions from extracted Weibull 

parameters 
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Figure 202: Zoomed view of pristine-25C, pristine-125C, and aged-25C failure 

distributions 

The Weibull distributions highlight that the failure distributions for the two levels of 

pristine samples are not statistically different from each other. There is a significant difference in 

failure times between the aged and pristine samples. There is also a significant difference 

between the 25C and 125C test conditions for isothermally aged boards. If isothermal ageing in 

general reduces the mechanical properties of SAC solders subjected to 1-D tensions tests [Ma 

2009], then the observation that aged-125C components failed before pristine components 

matches with the current understanding of reliability based on underlying mechanical properties. 

The increased time to failure for aged-25C boards is not well explained in this context. It is 

unclear if this result is a product of the experiment, or a result of compounding reliability issues. 

FR4-06 is not a certified lead free board and may be more susceptible to changes in material 

properties during isothermal ageing. Furthermore the effect of dynamic strains on the aged board 

and assembly has not been fully quantified.  

 

12.6 Prognostic Capability 

Closer inspection of the resistance time histories shows that in many cases there is a 

noticeable increase in resistance before the traditional definition of failure. This advanced 

warning of failure will be used as a leading indicator to facilitate the prediction of failure in 

fielded components. The resistance at which the component fails (per IPC criteria) provides a 

correlation between a quantity that is observable non-destructively, and the unobservable system 

state of the solder joint. This resistance value is termed the critical resistance for failure. 

Techniques borrowed from machine learning [Alpaydin 2004], such as leave one out cross 
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validation, will be used to help ensure that the logical fallacy known as future information leak is 

avoided. An example of future information leak would be using the critical resistance at which a 

component fails as the definition of failure for the same component. Obviously the critical 

resistance at failure is not observable until after failure, which makes its use a logical fallacy. It 

is however appropriate to use the critical resistance at failure from other tests as a guide to 

establish a critical resistance for the current test, and is the method implemented in this paper. 

 

 

Figure 203: Zoomed view of Figure 8 at the time just before failure occurs. The 

resistance spectroscopy technique is sensitive to a measurable change in the resistance of the 

packaged before the traditional IPC definition of failure 

12.7 Critical Resistance 

The resistance value that coincides with failure of the solder joint is used as a failure 

threshold when trying to prognosticate remaining useful life. A summary of the critical 

resistances at failure for each of the previously tested boards is listed in Table 22. 

Table 22: Summary of critical resistances for each test 
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Test Number 

 

Board 

Condition 

Test 

Condition 1 2 3 4 5 

Mean 

Critical 

Resistance 

Std. 

Dev. 

Pristine 25 0.20 1.10 0.60 1.55 0.75 0.84 0.51 

Pristine 125 1.05 1.32 2.00 1.60 2.10 1.61 0.44 

Aged 25 0.90 0.80 0.45 1.00 2.00 1.03 0.58 

Aged 125 1.00 1.00 1.52 1.95 1.50 1.39 0.40 

 

In the prognostic algorithm presented in this paper, a single failure threshold is required. 

A failure threshold of 1 ohm was chosen as a conservative value.  

12.8 Conclusion 

The effect of simultaneous temperature and vibration testing on the reliability of BGA 

components have been investigated in a two level full factorial experiment. Tests at room 

temperature and elevated temperatures have been performed on both pristine and thermally aged 

components. The test conditions were designed to represent actual usage conditions that 

electronics deployed in harsh environments may be subjected to. Isothermal ageing had a 
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statistically significant impact on the reliability of tested assemblies as well as the test 

temperature in some of the test conditions. In addition to monitoring for failure using traditional 

IPC failure criteria, resistance spectroscopy measurements were made. The ability to monitor in 

a real time, and predict impending failures prior to the true failure were simulated. Together the 

monitoring, tracking and prediction capability discussed creates a complete PHM algorithm.  
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13 Particle Swarm Optimization for PHM 

To avoid the logical fallacy of future information leak, another set of five pristine boards 

were run to failure in an ambient temperature of 25C. Only resistance spectroscopy 

measurements were recorded. Based on previous data a failure threshold of 1 ohm was used to 

define failure. The test will be repeatedly divided into a group of four tests, and a separate group 

with the test that was left out. Optimum parameters will be derived from the group of four, and 

then implemented on the left out data set to validate performance. This will be repeated so that 

each data set is left out resulting in five validation data sets. This technique is known as leave 

one out cross validation and is commonly used to validate machine learning algorithms. Particle 

swarm optimization (PSO) was the optimizer of choice due to its robust ability to cover an 

unfamiliar optimization space. The results presented in this section will provide insight into the 

performance that could be expected from a PHM algorithm on a fielded system. 

13.1 Introduction 

The same PBGA324 package architecture used in the simultaneous stress section was 

again used for this study. Five new pristine boards were mounted face down on a shaker table 

and run to failure during a 11gn random vibration testing sequence. During testing the full daisy 

chain of each board was monitored using the resistance spectroscopy measurement. 
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Figure 204: Additional tests run to create a test set for the PHM algorithm 

 

Figure 205: Leave one out cross validation procedure repeated for each data set 

An extended Kalman filter (EKF) based PHM algorithm is used to facilitate the tracking 

of the resistance signal in a recursive manner. At a time prior to the failure of the component, the 

challenge is to predict when the resistance will increase to its critical value which coincides with 

component failure. The details of the prediction algorithm are described in detail in [Lall 2011a], 

but it is important to note that the algorithm requires initialization of four free parameters to 

function correctly. Free parameters include a process (  ) and measurement noise (R) term 

which effect the accuracy of the EKF, and a two model terms that effect both filtering and 

prognostics. It is assumed that the resistance increase before failure follows an exponential curve 

of the form 
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       (  ) (287) 

Where R is resistance, a is a constant model parameter, and b is a time varying parameter 

that is estimated inside the Kalman filter. With these free parameters many different usage 

conditions can be fit to the same model, but correct performance also requires successful 

initialization of these parameters at reasonable values. The parameters can be selected by posing 

the problem as an optimization. Particle swarm optimization will be used to find an optimum set 

of parameters to apply on the ‘left out’ data set used for validation. Note that the optimization of 

the free parameters is not influenced by the ‘left out’ data set.   

13.2 Particle Swarm Optimization 

The particle swarm optimization technique is a population based algorithm rooted in 

social information sharing which was originally developed to study the flight of a flock of birds, 

school of fish [Kennedy 1995]. PSO models social information sharing where the collaborative 

intelligence of the group is used to benefit each individual. Each candidate solution in PSO is 

called a particle. The PSO algorithm is initialized with a population of particles or candidate 

solutions represented by random particle locations and random particle velocities in n-

dimensional solution space. The problem-solution is searched through an iterative process in the 

search space by adjustments in the particle locations and velocities based on prior knowledge. 

The particle swarm has memory capabilities while moving through the search space, which 

enable the swarm to remember its global best position (gbest) attained by any of the particles in 

the swarm and the corresponding solution or fitness. In addition each particle remembers their 

personal best position (pbest) and the associated fitness value attained while moving through the 

solution space. PSO has been shown to solve non-linear, differentiable, multimodal optimization 

problems [Krohling 2004, Clerc 2002]. Each particle evaluates its fitness value and compares the 
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fitness value with its best position. If the current fitness value is better than pbest, the particle 

sets the current fitness value to pbest and saves the current location in the n-dimensional space to 

the pbest location. PSO also compares the particle’s fitness evaluation to the swarm’s overall 

previous best, gbest. If the particle’s current fitness value is better than gbest, then the gbest is 

reset to the current particle array index and fitness value. In this paper the fitness values is 

evaluated by the cost function: 

 (        )    
 

 
∑(             )

 

 
(288) 

Where,   is a PHM metric that quantifies the precesion of predictions,  and RA is the 

relative accuracy of each prediction. PHM metrics are represented as vectors containing a value 

between zero and one for each prediction time step and N is the total number of predictions.    

and     are weights that sum to a value of unity. In this case           , which indicates an 

equal importance of precision and accuracy. The first two inputs, a and b, are parameters used in 

the state propagation model, equation (287). The other two respective inputs,    and R, are the 

process noise and measurement noise terms from the Kalman filter. To calculate the cost 

function the specified free parameters are input into the PHM algorithm and run on a data set. 

Predictions are simulated as if they were being made in real time. Standard performance metrics 

are used to quantify the success of the predictions. The result of the cost function is a number 

between 0 and 1, where a lower score is better. PSO will aim to find the optimum parameters to 

minimize the cost function, and as a result maximize performance of the PHM algorithm. A 

particle swarm optimization starts by seeding particles at random in the feature space. Two of the 

four free parameters being optimized are shown in Figure 206. Initial particles are chosen to span 

many orders of magnitude, so all calculations are performed in the log space to avoid biasing the 
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swarm metrics with very large or very small numbers. The position of the i
th

 particle in n-

dimensional space is represented by: 

   ⌊          ⌋  ⌊          ⌋  (289) 

 

Figure 206: Initialization of particles for two of the free parameters 

 

The velocity of the i
th

 particle in n-dimensional space is represented by: 

   ⌊          ⌋  (290) 

Location of the particle’s previous best position based on the obtained fitness value in n-

dimensional space is represented by: 

   ⌊          ⌋  ⌊              ⌋  (291) 

The index g represents index of the best particle among all particles in the swarm. This 

term is also known as the global best position of the swarm: 

   ⌊          ⌋  ⌊          ⌋
 

 
(292) 

In the original Kennedy [1995] formulation, velocity of the particle is changed according 

to the equation: 
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  (   )    ( )      [     ( )]      [     ( )] (293) 

Where   ( ) is the velocity of the i
th

 particle at time t,   (   ) is the velocity of the i
th

 

particle at time t+1,     and     are random numbers between 0 and 1,    and    are the scaled 

weights for the cognitive and social terms respectively. Kennedy [1995] specifies a value of 2 for 

both the scaled weights    and   . The second term in equation (293) is the cognitive term 

which represents the independent behavior of the particle itself. The third term in equation (293) 

is the social term which represents the collaboration between the particles. The weights   and 

   are used to adjust the weighting of the social and the cognitive parts that pull the particles 

towards the pbest and gbest positions. Krohling’s [2004] formulation has been used in this paper, 

which involves using a Gaussian distribution of random numbers (   and   ) instead of a 

uniform distribution of random numbers which is used in standard PSO. The larger standard 

deviation provided by the Gaussian distribution compared to the uniform one, improves the 

ability of the PSO algorithm to escape from local minima. 

 ( )   
 

√    
 
 (   ) 

    
(294) 

Where f is the probability density function representing a Gaussian distribution for 

random variables x,   is the standard deviation, and    is the mean value of the random variable 

distribution, which has been set to zero for this optimization. The following form of the equation 

(28) has been used for PSO: 

  (   )    ( )  |  |[     ( )]  |  |[     ( )] (295) 

Where    and    are positive random numbers generated according to the absolute value 

of the Gaussian distribution. The static scaled weights have been omitted in this formulation. The 

position of the particle is then changed as follows: 
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  (   )    ( )    (   ) (296) 

Since this present optimization is 4-dimensional, and surfaces of greater dimensionality 

do not allow for easy visualization, a set of metrics has been used to assess the status of the 

swarm during the simulation. The swarm metrics have been observed over time as the swarm is 

allowed to iterate through  the search process. The swarm metrics used include:  

(1) global best position (gbest)  

(2) swarm standard deviation or the spread of the swarm during any iteration   

(3) distance moved by the global best position.  

This has been calculated from the particle positions as follows: 

       √
 

 
∑(    ̅) 
 

   

 

(297) 

Where m is the number of particles in the swarm,    is the position of the i
th

 particle,  ̅ is 

the mean of the particle positions in the n-dimensional space for m-particles and is computed as 

follows: 
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In the present case, n = 4, corresponding to the variables: a, b,  , and R. The distance 

travelled by the global best position is calculated as follows: 

  ( )  ⌊   ( )    ( )     ( )⌋
 

 
(300) 
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Figure 207: Time history of swarm metrics. PSO terminates when the metrics converge 

below a specified tolerance. 

 

Figure 208: Search space of the PSO algorithm visualized for the process noise and 

measurement noise terms in the Kalman filter 

For the parameters a and b, the time history of the swarm metrics is shown in Figure 207. 

Each of the four data sets in the training set are optimized individually using PSO. Then the 
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optimized parameters are averaged to obtain a single set of parameters to pass to the PHM 

algorithm used in the test/validation stage. The search space for a typical data set is shown in 

Figure 208. From the plot it can be seen that it is important to choose the measurement noise 

term correctly. A comparison of optimizing the free parameters by hand, and using the PSO 

algorithm is shown in Figure 209. 

Table 23: Results of leave one out cross validation 

Validation Run a b    R cost 

1 1.45 12.42 0.10 0.06 0.66 

2 0.76 12.55 0.12 0.06 0.78 

3 1.59 9.64 0.07 6.73E-04 0.50 

4 1.67 14.31 0.12 0.06 0.77 

5 1.34 9.64 0.06 0.06 0.96 

 

Average Cost: 0.73 

 

Figure 209: Comparison of PSO method against previously published results to show the 

improvement using the new method. 

Unfortunately optimizing a PHM algorithm using the full data set is a future information 

leak. Therefore to demonstrate the performance one could expect from the algorithm on a data 
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set not used to train the algorithm the data set was divided two parts. The first N% of the data set 

was used as an input to the PSO algorithm to determine optimum parameters. Then the 

performance of the algorithm using optimum parameters derived from the initial N% of the data 

set on the remaining (100-N)% of data was used as a test. Figure 210 shows that only a small 

portion of the full data set is needed to derive optimum parameters. After the signal reaches 

approximately 25% of the failure threshold the PSO algorithm converges to an optimum value 

for the free parameters in the Kalman filter and results in the best possible performance of the 

PHM algorithm. The choice of 1 ohm as the failure threshold for this data set was based on 

previous data described in the temperature/vibration section. Cross validation prediction results 

shown in Figure 210 provides insight into the performance that could be expected if the PHM 

algorithm was implemented in a functional product.  

 

Figure 210: Performance of PHM algorithm when using only portion of the initial data 

set to find optimum parameters 

13.3 Conclusion 

Leave out cross validation was utilized to evaluate the expected performance of the PHM 

algorithm as if it were implemented in a functional system. Results from the run-to- failure tests 

shown in this section highlight the robustness and repeatability of the described techniques. 

Particle warm optimization was used to find an optimum set of free parameters that would 
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quickly converge to an acceptable configuration for prognosticating failure in safety and mission 

critical electronics. 
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14 Cost justification for Implementing PHM on circuit boards 

Prognostic health management is a method for assuring the reliability of a system by 

monitoring the system in real time as it is used in the field. As the system wears out, but before 

failure, information that facilitates decision making about the future use of the system is 

delivered to the user.  In this section, a cost justification has been developed for incorporating the 

additional circuitry needed to enable prognostics for electrical components directly onto a 

functional circuit board.  Implementing PHM capability for circuit boards will add additional 

cost to a system, so high reliability systems where the cost of failure is high are easiest to cost 

justify for prognostics. Aerospace, defense and automotive, applications qualify as high 

reliability systems. Application domains that require high uptime, minimal amounts of 

unplanned maintenance, and controllable operating costs can also be cost justified for 

prognostics since they can benefit from the pro-active management of failures facilitated by 

PHM. Intangible criteria such as safety or the cost of human life also motivated the need for 

PHM, so often time’s projects are labeled strategic, and not subjected to the discipline of a 

financial analysis. This paper will show rigorous methods for assessing the decision to invest in 

PHM for electronics. The uncertain nature of research and development (R&D) and difficult to 

predict future economic conditions is not well captured by traditional discounted cash flow 

(DCF) methods.  An approach known as the Datar-Mathews (DM) method will extend the DCF 

methods to be equivalent to a real options analysis and the Black-Scholes formula. The DM 

method is intuitive and uses concepts familiar to most engineers and technical managers.  
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14.1 Introduction 

Prognostic health management for electronics has reached a technology readiness level 

where proof of concept demonstrations exist [Lall 2010
a
, 2011

a-c
]. Previously technical 

information about the sensors [Lall 2009a-c], prediction algorithms [Orchard 2007, Goebel 2008, 

Saha 2009, Lall 2010
a
, 2011

a-c
] and risk based decision making techniques [Engle 2009, Lall 

2010
a
] that combine to form a complete PHM framework for BGA components were published. 

A long history of the study of failure mechanics and leading indicators of failure in electronics 

under a variety of loads and conditions [Lall2004
a-d

, 2005
a-b

, 2006
a-f

, 2007
a-e

, 2008
a-f

] has 

provided the foundation for the most recent work that closely embodies the PHM methodology. 

To date all proof of concepts have used jumper wires to a connect circuit boards under test to 

custom circuitry sitting on a lab table to enable prognosticating system health (predicting future 

failures based on measured leading indicators of failure, in real time).  While this is sufficient for 

a proof of concept, it is not in the form of a functional product. A complete PHM implementation 

would embed all necessary circuitry onto the board being monitored while maintaining the same 

form factor. From a system level there would be no difference in the PHM enabled board and the 

non-PHM enabled version, except for the availability of prognostic health information on output 

pins.  Currently there is no method for modifying an existing circuit board to facilitate real time, 

non-destructive, computationally and financially tractable health monitoring techniques. This 

paper proposes a method for cost justifying the research and development costs needed to 

convert an existing proof of concepts into an embedded PHM solution on a new circuit board. To 

handle the financial uncertainty of an investment that depends on hard to predict future economic 

conditions a modified Black-Scholes formula is used. The presented approach [Mathews 2007] is 

an algebraically equivalent formulation to the traditional Black-Scholes formula. Motivation for 
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using the DM method in place of the Black-Scholes formulation is discussed. Many of the 

concepts used in the DM method will be familiar for engineers and technical managers.  

It is important to distinguish the approach presented in this paper as a bottom-up PHM 

cost justification, as opposed to the top-down approach that has been extensively studied [Byer 

2001, Wilkinson 2004, Goodman 2005, Carraco 2006, Banks 2007, 2009, Sandborn 2007, 

Feldman 2009, Luna 2009]. A top-down approach starts with high level requirements like safety, 

availability and operating cost of a large system (airplane, car, turbine, etc.) and argues that 

savings can be realized if prognostic technology that predict failures were to be implemented. 

Often times it is brazenly assumed that the system can be characterized to the granularity where 

PHM can be efficiently implemented on components.  Many of these approaches do not delve 

into technical details, or linger on the possibility that the technology for the level of insight they 

assume does not exist. Top-down analysis tend to be overly general, or overly application 

specific. In contrast, bottom-up approaches start with a single component (in this paper, part of a 

circuit board). A cost justification is made for the component to determine if it is beneficial to 

invest in the development of PHM for that specific component. Both approaches are appropriate 

in certain situations, but the bottom-up PHM cost justification is less studied because it requires a 

prototype as a starting point.  

To motivate this work, Figure 211 shows the price index for agricultural inputs (land, 

fuel, feed, etc.) compared against the cost index of agricultural outputs (grain, dairy, wheat, etc.). 

The relative price of agricultural inputs has increased in pace with the overall US price index. 

The cost of food has remained relatively steady. This gap can be attributed to improved 

efficiencies in the agriculture industry. From this data it can be seen that now more than ever 

there is a significant opportunity cost associated with unplanned downtime and lost productivity. 
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Modern agricultural equipment, like most modern systems, have multiple critical subsystems that 

rely on electronics to perform correctly. 

 

Figure 211: Price index for 1948-2004 showing trends in agriculture inputs and outputs. 

Re-drawn from Fuglie, Keith O., James M. MacDonald, and Eldon Ball. Productivity Growth in 

U.S. Agriculture. EB-9, U.S. Dept. of Agriculture, Econ. Res. Serv. September 2007. 

Many other sectors such as aerospace, automotive and the military also depend heavily 

on electronic subsystems performing an expected function at a certain time. Electronic rich 

systems are becoming increasingly common and this work attempts to quantify if it is beneficial 

to implement PHM for electronics into a particular system. Incorporating PHM capability into a 

new circuit board design is relatively straight forward. Incorporating PHM capability into an 

existing board design requires a reversion of the board, which can be an expensive hurdle to 

overcome. 

14.2 The Real Option for R&D Investment in Prognostic Technology 

A real option is a class of problems where an investor has the option, but not obligation, 

to purchase an investment at a set value at some time in the future. Of course you must pay for 

such an option, so the challenge is to determine if given the future uncertainty of the investments 

value, is it beneficial to pay for an option today that may or may not be valuable to exercise at a 
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later date. This problem was famously solved for financial options [Black 1973]. Real option 

analysis uses the analogy of financial options which are traded on exchanges as commodities as a 

framework for making business decisions and capital investments. Real option analysis has been 

used in engineering economics problems relating to maintenance decision making [Heredia-

Zavoni 2004]. A typical net present value analysis is not well suited for this class of problems 

and will undervalue the true value of the real option to perform maintenance. 

In the terminology used in the real option literature, investing in R&D for prognostics 

gives you the right, but not obligation, to purchase PHM technology at below market value in the 

future. The purchase price is represented as the launch price for the product. It goes without 

saying that you would not launch the product if you did not think you would make money. Real 

options analysis helps quantify the probability that you will make a certain payoff if you launch 

the product, so you can decide if the R&D expenditure is a prudent investment in advance. 

14.3 Black-Scholes Formula 

A standard real option analysis uses the Black-Scholes formula (BSF). The approach 

presented in this paper [Mathews 2007] is algebraically equal to the BSF, but has the benefit of 

representing uncertainty with easier to define values.  A Black-Scholes analysis assumes that the 

value of an investment in the future is a function of time, t, and volatility,  . The closed form 

solution for valuing a financial option is the BSF [Hull 2000], 
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Where CBSF is the value of an option known as a European call option. So is the current 

price of the asset, N(x) is the cumulative probability density function for a standard normal 

distribution, K is the strike price or exercise price, Rf is the risk free rate of return compounded 

continuously. The BSF implicitly assumes that the future price of the asset can be modeled as a 

stochastic process (aka Brownian motion, Figure 212) and that the volatility of the underlying 

process is constant. Volatility can be easily calculated for many financial options using historical 

trading records that are readily available. When valuing a real option, as opposed to a 

commodity, the analogy of volatility may not have much physical meaning. Brownian motion of 

an investment can be modeled in recursive form as [Higham 2004] 

  ttSS tt    2

1 5.0exp
 

(303) 

Where St is price at time step t,  is the growth rate, t is the length of the time step, and 

 is a normal random number drawn from N(0,1).  

 

Figure 212: Hypothetical evolution in time of an investment using Equation (1). In this 

example the volatility is 50%. Discretely simulated values have been connected with lines to 

show trends 

For this relatively simple case a closed form solution of the distribution of possible future 

prices, denoted as S, that an investment would be expected to be worth at the end of the 
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investment time window is available. oS represents the starting price and T is the length of the 

total investment window. 
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Figure 213: Comparison of a Monte Carlo simulation of the  future price of an investment 

compared to the analytical result. The analytical solution is a lognormal distribution. The Monte 

Carlo simulation used 106 trials of Equation (1) binned at 60 locations. 

14.4 Datar-Mathews Approach 

The Datar-Mathews (DM) approach is an alternative method for valuing a real option. 

Under the right set of assumptions, it can be shown to be algebraically equivalent to the Black-

Scholes formula. The DM approach is useful because it can be used in situations where 

application of the BSF may be impractical.  

The DM method can be represented as  

  0,max KeSeEC
tRtR

DM
fr




 
(305) 



266 

 

Where CDM is the value of the European call option, E represents and expectation or 

mean. The max operator takes the maximum between the value in the curly brackets and zero. 

Two different interest rates are utilized in this formula. Rf is the previously defined risk free rate 

of return. Rr is the risky asset discount rate, commonly called a hurdle rate. Cash flows subjected 

to market risk can be discounted by the risky asset rate. Cash flows controlled by less risky 

sources, such as management, can be discounted with the risk free rate of return. The upcoming 

example will expand on the differences and applications of Rf and Rr. The S  term represents a 

distribution of possible future values of an asset. There are no limitations on how the S term is 

obtained. It can be a closed form distribution or obtained through any other simulation method 

such as Monte Carlo.  

14.5 Equivalence of Black-Scholes and Datar-Mathews Approach 

Under a set of assumptions, the Black-Scholes and Datar-Mathews approaches can be 

shown to be algebraically equivalent [Datar 2004]. Take for example the business decision to 

invest in research and development (R&D) to commercialize a new technology. This example is 

a simplified example of the decision to invest in R&D to develop PHM capability for electronics.  

If you believed that the commercialization of a technology could realize an operating 

profit with an investment in R&D in three years you could frame the option to invest in R&D as 

a real option. In year zero you would invest in the research. In year two if the R&D was 

successful, you would have the option to launch the product. There would be a launch cost to 

buy tooling and start production of your new product. You could also expect to earn an operating 

profit in year two. There are no certainties in R&D, so you judge that you have a 50% chance of 
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success. The value of the option to launch your product at year two determines how much money 

you should spend on R&D in year zero. 

 

Figure 214: Cash flow diagram for example problem 

You model the expected future operating profits as a lognormal distribution with a mean 

(OPmean) of $1569 and a standard deviation of $1651. The launch cost is estimated as $500. For 

the purposes of using the BSF, your volatility is 50%. The risk free rate of return (Rf) is taken as 

the cooperate bond rate, 5%. The risky asset discount rate (Rr) is taken as your corporations 

weighted average cost of capital, 15%. The time frame for the investment is three years. 

Asset (S) )( mean

tR
OPe r

 
1000 

Exercise (K)  500 

Volatility (σ)  50% 

d1, d2  1.4069, 0.5409 

N(d1), N(d2)  0.9203, 0.7057 

Option Value 

(CBSF) 

 616.84 

 

This result implies that you should not expend more than $616 on research and 

development. Similarly the DM method can be used to value the option of investing in R&D. 
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Asset Make N draws 

from the OP 

distribution  

S  

Exercise (K)  500 

Pay Off   0,max KeSe
tRtR fr


  

Option Value 

(CDM) 

E[pay off] 616.84 

 

 

 

Figure 215: Convergence of the DM method to the Black-Scholes value for the example 

problem. Error bars represent one standard deviation determined from 30 different trials. 

Figure 215 shows that the DM method converges quickly to the closed form solution 

obtained using the BSF. When assuming a lognormal distribution of future prices for an asset the 

BSF and DM methods give the same result. The advantage of using the DM method is that the 

approach is generic enough to use models that describe the future value of an asset in alternative 

methods. In practice, having knowledge of the volatility of an investment, especially a capital 

investment such as the payout on a circuit board with PHM capability is very difficult to 

quantify. PHM capability for electronics is not a traded commodity, and there is currently no 

historical data to determine volatility since no commercialized products exist. It would be 
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reasonable to match the volatility of an investment in an unknown situation with the known 

volatility from a company operating in a different sector where product development is risky, 

such as a bio-technology firm, but it would be difficult to validate your choice since it not based 

on a model. An alternative method to determine the value of the option to invest in PHM 

technology is to use the Monte Carlo pricing approach and relax the assumption that the value of 

the investment follows a Brownian motion model and that volatility is constant over the 

investment time frame. An alternative model could use operating profit projections to predict 

future values of the investment instead of the Brownian motion model. Operating profit 

projections are intuitive approach to thinking about the future value of an investment and 

standardized methods for creating predictions in your specific market sector probably already 

exist. This alternative approach will be used in this paper to assess the value of implementing 

PHM capability into a circuit board.  

Because it is widely introduced in introductory finance classes, the net present value will 

be used to will be used to discount cash flows in the remainder of the paper. The net present 

value (NPV) is defined as [Higham 2004]. 
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(306) 

Where n is the year, T  is the total number of years in the investment window, CFn is 

the cash flow for year n, and r is the annual discount rate. Note the subtle shift from continuously 

compound interest rates used in the BSF to annually compounded interest because of their 

familiarity. As long as units are consistent, the DM method can use either type of interest rate. 

Annually compounded interest rates will be denoted with lower case variable names to provide a 

distinction. In an NPV calculation the discount rate is usually taken as the risk free rate of return. 
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In real options analysis some cash flows are not dependent on market risk, and can be assigned a 

different discount rate. For example the cash required to launch a new project is controlled by 

management, and not the market, and therefore is not as risky. 

Using the language of discounted cash flows helps ease the transition to real options 

thinking because of the similarity to more commonly used financial analysis. Furthermore the 

method can help bridge the gap between engineers, engineering managers and financial 

managers. Engineers are involved in the R&D and manufacturing, but probably have limited 

training in financial analysis. Financial managers are less familiar with the technical details of 

the engineering but have the appropriate financial training. To make the best possible business 

decision both groups need to collaborate effectively, and the DM method can provide a bridge to 

successful collaboration. 

14.6 Calculating the Value of the Option to Invest in PHM 

The real option is formulated as:  

If I invest in R&D to develop PHM capability for a circuit board, what will the option, 

but not obligation, to build PHM embedded circuit boards be worth given future uncertainties? 

Research and development costs would involve building prototypes for testing, and 

electrical engineering design to layout and route test circuitry that will be incorporated into the 

boards to facilitate PHM. Accelerated life testing will be used to quickly stress prototypes to 

failure and test the success of a PHM implementation. Multiple iterations will be needed to 

develop the technology to a sufficiently mature level. 

Description Quantity Unit Cost Extended Cost 
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EE Design  10 wks. $ 100 / hr. $40,000 

PCB Builds 5 builds $2,000 / build $10,000 

Accelerated Testing 9 Months $ 5,000 / month $45,000 

  Total R& D Costs $95,000 

Assumptions: Components and circuit boards to build 60 assemblies assume raw material costs 

of $1000, plus an additional $1000 in labor for layout and assembly time. Two weeks of EE 

Design per build. 

 

Consider the following scenario. In year zero an investment in R&D is made to increase 

maturity of existing PHM proof of concepts. In year one, if the PHM technology matures 

sufficiently during the R&D phase it will be incorporated into production boards which will 

require a re-design of the board and incur large project launch costs. If at the end of the R&D 

phase the outlook for sales is revised downwards, the relatively small R&D investment becomes 

a sunk cost that cannot be recovered. In this example, year one is the decision point for the 

project and we desire to know the value of the option to terminate the project. Failure to 

sufficiently mature the technology is an example of an event that would revise sales downward. 

Adding uncertainty to the analysis helps address the question: what is the risk adjusted payoff, 

knowing that in some cases the project may fail and the R&D investment will be lost. The launch 

cost, or cost of revising and re-tooling an existing PCB design is estimated at $1M dollars and 

will be incurred as the project launch cost in year one. By year two production will be at full 

speed, and profit modeling can generate a scenario of pessimistic/likely/optimistic operating 

profits.  

 

Year 0 1 2 3 4 5 6

Pessimsitic ($) (597,918)  (557,710)  (513,481)  (464,829)  (411,312)  

Most Probable  ($) 161,195    275,374    406,680    557,682    731,335    

Optimistic  ($) 921,857    1,166,229 1,459,474 1,811,369 2,233,644 
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Figure 216: Three predicted levels of operating profits. These numbers are derived from a 

more detailed analysis shown in the appendix. 

Each scenario represents a potential future reality. In the pessimistic case unit costs are 

high and poor results from the R&D phase result in a low technology diffusion level. In the 

optimistic case year to year growth is better than expected as the technology is quickly adopted 

and costs are lower than expected. A full derivation of each scenario is shown in the appendix. 

 

Figure 217: Cash flow diagram for the most probable set of operating profits 

 

Figure 218: Three levels of predictions for the future operating profits 



273 

 

 

Figure 219: The triangular distribution which approximates more complicated types of 

distributions. Since values are uncertain, assigning values more accurate than high/medium/low 

is probably overly thorough 

 

Figure 220: Triangle distributions for each year superimposed on the operating profits 

graph 

 

Figure 221: The first 10 (of many) operating profit simulations 
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Due to its intuitive benefits in practical situations a triangle distribution, which roughly 

approximates a lognormal distribution, is used to represent future values, but any distribution can 

be used with this method. A Monte Carlo simulation is used to simulate thousands of scenarios 

where discrete profits are drawn from the defined probability distributions at random. For each 

run of the simulation a discrete operating profit (OP) is generated for each year based on the 

pessimistic/likely/optimistic predictions. Draws between successive years were 80% correlated 

since it would be unlikely to move from the extreme upper end of a profit prediction to the 

extreme lower end of a prediction between years. Then the present value is calculated with the 

annual risky asset rate of return, rr over the period of the investment horizon T .   
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The present value of the launch cost, LC, is a function of its less risky discount rate, such 

as the corporate bond rate rf, over the period of time to the decision point    . 
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The real option for each run is evaluated as either zero in the case when at the decision 

point the project is unfavorable and is cancelled ,and the R&D cost becomes a sunk cost. Or in 

the case where at the decision point the project is favorable and the project is launched. The 

value of the option, RO, for each Monte Carlo run, k, is calculated as: 

ROk = max({
OP

kPV
-

LC

kPV
}  )                      

(309) 

Where 
OP

kPV  is the present value of the discrete operating profit simulation, and  
LC

kPV  

is the present value of the launch cost. Performing many runs of the Monte Carlo simulation 
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allows the range of possible scenarios to be investigated. Figure 222 examines two hypothetical 

runs out of many runs in a Monte Carlo simulation to demonstrate how the value of the option to 

launch a product is calculated. 

 Run 1 Run 2 

Simulated 

discrete 

operating 

profit ($) 

(Random 

Draws) 

Yr. 2: -500,000 

Yr. 3: -300,000 

Yr. 4: 100,000 

Yr. 5: 300,000 

Yr. 6: 500,000 

Yr. 2: 100,000 

Yr. 3: 500,000 

Yr. 4: 800,000 

Yr. 5: 1,000,000 

Yr. 6: 1,250,000 

 

Discount 

Rate 

The risky asset rate of return is taken as 15% and used to discount operating profits. 

The cash for the product launch is controlled by management, not the market, and is 

discounted at 5%. Note that year zero counts as the first year in the investment 

window. 

Present 

Value of 

Launch Cost 

   
    

       

(      ) 
            

    
       

(      ) 
         

Net Present 

Value of 

discrete 

operating 

profit 

   
    

       

(      ) 
 
       

(      ) 

 
      

(      ) 

 
      

(      ) 

 
      

(      ) 

          

   
    

      

(      ) 
 

      

(      ) 

 
      

(      ) 

 
       

(      ) 

 
       

(      ) 

          

Project Net 

Present 

Value 

        
      

                      
      

           

Real Option 

Value 

       {      }            {      }          

Success/ 

Failure 

In this scenario the operating profits are 

not favorable. Do not launch the product. 

Project is a failure and the R&D 

investment would be lost. 

In this scenario the operating profits are 

favorable and the option to launch the 

product is valuable. Project is a success. 

Figure 222: Two hypothetical runs of a Monte Carlo simulation to illustrate the 

simulation method 
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Figure 223: Results of Monte Carlo simulation used to value the option of investing in 

R&D 
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Figure 224: Flowchart of the simulation process 

The value of the option for each run in the simulation is averaged to be $394000 in our 

example. A number of the runs result in a negative NPV, for which case the real option is valued 

at zero (see Figure 223b). Runs with a negative NPV indicate that the project would have been 

terminated, and capture the option to make contingency decisions based on the results of the 

R&D and the outlook for future sales. The risk adjusted payout is calculated with the related 

success rate. 

Risk Adjusted Payout = (successes per total runs)*(mean RO 
value) – (R&D cost) 

 

(310) 

This establishes a single number that quantifies all of the uncertainty in the future to 

describe the value of investing in R&D. Using the operating profit assumptions in Figure 218, 
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the success rate is about 70% and the risk adjusted payout for investing in R&D is $182,000. For 

the values used in this example, the option to invest in maturing the technology to enable PHM 

for electronics is a profitable option. 

The real option value distributions from this method are not lognormal, like in a Black-

Scholes analysis, but rather generic to the details of the profit simulation. This is an advantage 

because the Black-Scholes approach is constrained to only modeling the future with a restrictive 

set of assumptions. As long as the Monte Carlo simulation converges, any method and any 

distribution can be used to model future operating profits. Therefore the presented method can be 

tailored to meet the specific needs of a wide variety of practical situations. 

14.7 Comparison of Real Option Analysis with Net Present Value Approach 

The presented approach is an extension of traditional NPV analysis. Using a traditional 

approach and the cash flow predictions for the most probable scenario, the net present value for 

the project can be calculated at $164347. Compared to the value derived from the real option 

approach, the NPV calculation undervalues the option to build a product with PHM capability. 

More importantly the traditional NPV analysis provides no insight into the risk associated with 

the investment or the option to abandon if the future is not as predicted.  
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14.8 Comparison with Decision Tree Modeling Approach 

Another alternative to real option analysis is the use of a decision tree. Decision trees are 

known to over value an option [Mathews 2007]. In our example, the decision to launch a product 

with PHM capability is made in year one. Using the operating profit distributions from Figure 

218, the  present value of the investment at year one, or the decision year can be calculated. 

Based on this simulation, the project would be profitable 77% of the time, the remainder of the 

time the project would be cancelled. The mean value of the profitable portion of the distribution 

is about $684000. Plugging this information into a decision tree, Figure 226, it can be shown that 

the decision tree over values the option to launch a product enabled with PHM technology.  

 

Figure 225: Present value of profit predictions at the decision point (year 1) 

 

Figure 226: The decision tree approach can be shown to over value the option 
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14.9 Convergence of Monte Carlo Simulations 

Convergence of the Monte Carlo simulation will vary depending on the specifics of your 

simulation and the number of parameters with distributions. Convergence needs to be proven 

before making any decisions based on the results. To test convergence, simulations were 

conducted with a varying number of runs per simulation. Thirty independent simulations were 

performed at each level, and the output prediction of the option value was recorded. Means and 

averages were calculated for each group of 30 simulations.  

 

Figure 227: Convergence of the Monte Carlo Simulation 

The spread of the uncertainty associated with the simulation decrease approximately as 

M

1
 where M is the number of runs per Monte Carlo simulation. 

 

Figure 228: Convergence of uncertainty in the Monte Carlo simulation 
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14.10 Conclusion 

A defendable method for assessing the cost of investing to mature PHM technology for 

electronics has been presented. To include the technical and financial uncertainty involved in 

assessing the cost of a PHM implementation, a real option approach has been used. Due to 

practical limitations with applying the Black-Scholes equation, an alternative called the Datar-

Mathews method has been used to assess the value in investing in the R&D project for 

prognostics. The DM method is an extension of a DCF analysis, which most engineers and 

managers are familiar with. The advantages over a standard DCF approach include capturing 

uncertainty in the future and including the option of canceling the project as part of the value of 

the option. Alternatives to the real option analysis, NPV and decision trees, have been shown to 

under and overestimate respectively the value of the option to build PHM enabled circuit boards. 

The presented techniques are not limited to a single modeling methodology or a particular usage 

scenario, so they are useful in developing cost assessments for a wide range of applications. 

14.11 Appendix 

14.11.1 Derivation of operating profits for each year for three different scenarios 

Relying on a single profit estimate over an extended period of time is risky when 

calculating the expected value of a project. A high/medium/low approach is used to allow for 

uncertainty in the prediction process. It is argued that anything more sophisticated than this type 

of estimation may put too much faith in a difficult and error prone prediction process, but that it 

is superior to a single profit prediction. There are however no restrictions on how operating profit 

estimates are obtained. 
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14.11.2 Unit Cost 

The unit cost for a single board was calculated as the composite of the cost of the PCB, 

functional circuitry, and additional circuitry needed for PHM. Furthermore a premium was added 

for the additional real estate that the PHM circuitry will take up on the board. It is assumed that 

adding PHM circuitry to the board will cause design choices to be made that will increase the 

cost of producing the circuit board. For example smaller traces may be needed to properly route 

the functional components in a smaller area, increasing the cost of the board. It is assumed that 

eight channels of PHM monitoring will be included on each board. This would allow the 

monitoring of eight corner solder joints. This design decision is influenced by the limitations of 

the  SCANSTA476 voltage monitor which has eight input channels. Details for the three 

prediction levels are shown in Figure 231. 

The quantities column indicates that for example a resistor may be priced at $0.087, but 

24 resistors are required per board. Prices are shown on a per component basis, but the extended 

price accounts for the full quantity required per board. PCB board costs are derived from low 

production run (<100) of off shore PCB fabrication costs for a 7” by 7” test board approximately 

the same size as JDES test board 3. As described in a later appendix section, only a few 

capacitors and resistors are needed to build the PHM monitoring circuitry. To extract the PHM 

signals from the board through existing diagnostic channels a voltage monitoring chip, the 

SCANSTA476, is required. All passive component pricing is representative of the cost at price 

breaks for <100, 100 and 1000 piece order from Newark.com. Labor and overhead were 

estimated for a high volume production line that is running low volume runs. This represents a 

worst case scenario where a significant amount of startup time is required to produce relatively 

few PHM capable boards.  
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Figure 229: Three possible levels of unit costs for a PHM enabled circuit board 

 

14.11.3 Sales Price 

PHM capable circuit boards are a new product that has no historical records for pricing. 

Therefore pricing was based on a percentage markup. Based on the high level discussion of 

justifying the added cost of including PHM capable circuit boards for situations where safety, 

cost, and logistics were important to an organization, the markup for PHM capable circuit boards 

could vary widely. In safety related applications the markup could be quite high, but in cost 

sensitive maintenance applications the markup would have to competitive with traditional 

maintenance costs. Based on these criteria three markup levels were chosen to cover a wide 

range of possibilities.  

 

Figure 230: Pricing markup based on the uncertainty of the customers willingness to risk 

unplanned failures 

 

Figure 231: Unit costs for the three scenarios 

Pessimistic Most Probable Optimistic Qty

4 layer PCB 25 20 15 1

100 75 50 1

*PHM Circuit Components

Resistors 0.087 0.054 0.021 24

Capacitors 0.055 0.052 0.042 16

Scansta476 7.1 6.4 5.04 1

Labor per board 100 50 25 1

Overhead per board 100 50 25 1

Real estate premium 1.2 1.1 1.05

Extended Cost 402.08$     223.88$            127.28$    

*Assumes eight monitoring channels 

Functional Components

Pessimistic Most Probable Optimistic

1.50 1.85 2.20

Pessimistic Most Probable Optimistic

603.12$     414.18$            280.01$    
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14.11.4 Annual Sales Quantity 

Predicting anticipated sales for a product that does not exist in any form today is 

challenging. Three levels of sales estimated to match with three possible situations. In the 

pessimistic scenario the need for PHM enabled products remains niche, and only a few units are 

sold each year for use in relatively expensive applications. The most likely scenario is the 

product in accepted in a slightly higher volume product, but still faces adoption challenges in the 

first year. It is expected as a larger database of averted failures are documented, and longer 

running cost comparisons are completed the demand for PHM related products will increase 

drastically. For example, the Toyota Prius was a good example of untested technology that users 

were slow to adopt. To sell the first one million Prius’ took 11 years, while the next million were 

sold in two years. Even the optimistic scenario does not assume widespread early adoption, but 

bases sales numbers on the assumption that an external government contract would increase sales 

volumes.  

 

Figure 232: Possible levels of unit sales quantities 

Sales growths were based on generic assumptions about usual growth rates for products 

in the pre-adoption stage. 

14.11.5 Recurring Costs 

Support for a new product will require engineering support. For the sake of argument a 

new team of between 4 and 6 engineers will be required to support a new PHM capable circuit 

board. A portion of the engineers would be expected to interface directly with customers and 

Pessimistic Most Probable Optimistic

Initial Units Produced 2000 4000 8000

Annual Sales Growth 1.1 1.15 1.2
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possibly provide onsite training. It is assumed that the engineers will be trained at the graduate 

level to handle the highly cross disciplinary nature of the new product. 

 

Figure 233: Estimated levels of engineering support for new PHM product 

14.11.6 Operating Profit 

The compilation of the profits and costs described above are shown in the table below. 

Redesigning a circuit board is an expensive undertaking and the launch cost of the project is 

estimated to be very high at $1M. The launch cost would encompass all of the electrical 

engineering design and layout required to add the PHM circuitry to the board. The launch cost 

would also include all tooling, product qualifications and other costs associated with designing a 

new board. Compared to the single time product launch cost, the R&D expenditure is very 

insignificant. The pessimistic/most probable/optimistic approach allows the incorporation of 

uncertainty into the calculation. Using the three levels of operating profits, a risk adjusted payout 

can be calculated. With the calculated risk adjustment decision makers can quantify the 

probability of the R&D investment returning a good payout.  

 

Pessimistic Most Probable Optimistic

Engineers (M. Sc.) 4 3 2

Annual Salary 125,000$    100,000$          75,000$     

Benefit Costs 125,000$    100,000$          75,000$     

Extended Cost 1,000,000$ 600,000$          300,000$   

Year 0 1 2 3 4 5 6

Pessimistic

Unit Sales 2000 2200 2420 2662 2928

Unit Cost 402$             402$             402$             402$             402$             

Unit Price 603$             603$             603$             603$             603$             

Revenue 402,082$      442,290$      486,519$      535,171$      588,688$      

Recuring Costs (1,000,000)$ (1,000,000)$ (1,000,000)$ (1,000,000)$ (1,000,000)$ 

Launch Cost (1,000,000)$ -$             -$             -$             -$             -$             

R&D Cost (95,000)$ -$             -$             -$             -$             -$             -$             

Operating Profit (95,000)$ (1,000,000)$ (597,918)$    (557,710)$    (513,481)$    (464,829)$    (411,312)$    



286 

 

 

 

Figure 234: Three levels of predicted operating profits. A summary of this chart is 

presented as Figure 216 in the main body of the text

Year 0 1 2 3 4 5 6

Most Probable

Unit Sales 4000 4600 5290 6084 6996

Unit Cost 224$             224$             224$             224$             224$             

Unit Price 414$             414$             414$             414$             414$             

Revenue 761,195$      875,374$      1,006,680$   1,157,682$   1,331,334$   

Recuring Costs (600,000)$    (600,000)$    (600,000)$    (600,000)$    (600,000)$    

Launch Cost (1,000,000)$ -$             -$             -$             -$             1$                 

R&D Cost (95,000)$ -$             -$             -$             -$             -$             -$             

Operating Profit (95,000)$ (1,000,000)$ 161,195$      275,374$      406,680$      557,682$      731,335$      

Year 0 1 2 3 4 5 6

Optimistic

Unit Sales 8000 9600 11520 13824 16589

Unit Cost 127$             127$             127$             127$             127$             

Unit Price 280$             280$             280$             280$             280$             

Revenue 1,221,857$   1,466,229$   1,759,474$   2,111,369$   2,533,643$   

Recuring Costs (300,000)$    (300,000)$    (300,000)$    (300,000)$    (300,000)$    

Launch Cost (1,000,000)$ -$             -$             -$             -$             1$                 

R&D Cost (95,000)$ -$             -$             -$             -$             -$             -$             

Operating Profit (95,000)$ (1,000,000)$ 921,857$      1,166,229$   1,459,474$   1,811,369$   2,233,644$   
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15 PHM for the Micro-Coil Spring Interconnect 

In an effort to meet reliability requirements for long term human presence in space 

without the need for resupply, a new interconnect for grid array packages has been developed. 

The interconnect utilizes beryllium copper springs which are 0.05 inches in height as 

interconnects between the package and PCB.  These novel interconnects are known as micro coil 

springs (MCS). The configuration is approximately the same height as copper column 

interconnects, but has increased compliance compared to traditional column interconnects. 

Because the interconnect is still in the design stage, the feasibility of integrating prognostic 

health management capability into the interconnect is being studied. Failure prognostics, or the 

prediction of impending failure for individual components, would help ensure the reliability of 

systems deployed on long duration space missions and provide warnings of potential failure with 

adequate time to formulate contingency plans. Prognostic monitoring circuitry, prediction 

algorithms, and performance validation are discussed for micro coil packages subjected to JDEC 

standard drop testing. 

15.1 Introduction 

The correct operation of electrical subsystems are critical for manned space flight. New 

micro coil spring interconnects developed at the Marshall Space Flight Center [Strickland 2011], 

are a proposed solution for creating increased confidence in critical electrical subsystems for 

extended human presence in space without the need for resupply. As part of a larger testing 

program, a small subset of boards has been proportioned for a preliminary evaluation of drop and 

shock reliability. Because the interconnect is still in its design phase, the feasibility of monitoring 

the interconnects for wear, and then predicting the remaining useful life of the component from a 
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live sensor data stream is being investigated. If prognostic capability can be integrated into a 

circuit board during the electrical design phase, significant improvements in reliability may be 

realized. Incorporating prognostic capability into a circuit board after design and fabrication is 

very challenging. The authors are not aware of any techniques that allow real time interrogation 

of damage due to drop and shock loadings for in service electronics, without modifications 

specifically made to facilitate prognostics. Monitoring  a system for wear, and predicting end of 

useable life is commonly known as prognostic health management (PHM) and allows the life 

cycle of the component being monitored to be actively managed as opposed to the reactive 

nature of responding to a failure diagnosis. 

Previously a variety of grid array interconnects have been studied and shown to be good 

candidates for failure prognostics [Lall 2009a-d]. A wide variety of leading indicators of failure 

in electronics have been studied for fault diagnosis, fault mode detection, and failure prognostics 

[Lall 2004a-d, 2005a-b, 2006a-f, 2007a-e, 2008a-f, 2009a-d, 2010a-h]. Methods applicable for 

the real time sequential processing of monitored damage indicators have been demonstrated for 

BGA interconnects [Lall 2010a, 2011a,b]. Monitoring and failure prognosis for the micro coil 

springs is new.  

In this paper a method of monitoring and prognosticating failure for micro coil springs 

(MCS) is demonstrated. Details of the JDEC standard drop testing and analysis of the MCS using 

high speed video and digital image correlation to extract full field strains during testing are 

discussed. Due to the increased compliance of the MCS, the interconnect experiences a 

noticeable relative displacement between the printed circuit board and the grid array component. 

This relative displacement has been observed and quantified. The required circuitry and its 

calibration needed to non-destructively monitor MCS for damage in a real time manner is 
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discussed. Hybrid prognostic algorithms influenced by both a preliminary understanding of 

failure mechanisms and data driven methods are created specifically for the MCS. Validation of 

the prediction algorithm on test cases and validation of the algorithms performance is quantified 

to benchmark the technique. A method for detecting algorithm divergence is shown to correctly 

detect erroneous results. Finally the PHM techniques demonstrated in the paper are compared 

against the traditional Weibull analysis to quantify the relative skill of the PHM predictions.  

15.2 Test Vehicle 

The novel geometry of the test vehicle is shown in Figure 235, and a schematic of the 

design with dimensions is shown in Figure 236. The assembly process for the MCS involves 

placing a package into a graphite fixture and vapor phase soldering the springs to the grid array 

component. A second graphite fixture is used to hold the populated package for assembly to the 

circuit board. Full details of this process are included in [Strickland 2011]. Each test board 

included a single MCS and a variety of traditional components for reliability benchmarking 

purposes. A single MCS was tested on each board to ensure that the stress profile seen by each 

component was as consistent as possible.  Based on strain measurements discussed in the next 

section, strain histories at different locations on a JDEC style drop test board can vary widely. 

Table 24 shows the pertinent details of the MCS design. The MCS packages were daisy chained 

through all 400 interconnects. 
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Figure 235: View of the micro-coil spring under an optical microscope at 20x 

magnification 

 

Figure 236: Schematic representation of the micro-coil spring 

The electrical resistance of the daisy chained MCS interconnect is significantly higher 

than traditional BGA or copper column array interconnects. After assembly the MCS has a 

resistance of approximately 15 ohms. For comparison, daisy chained BGA components with a 

similar I/O count have a nominal daisy chain resistance on the order of a few ohms.  

Table 24: Micro-coil spring package details 
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Figure 237: Micro-coil spring test vehicle 

15.3 Experimental Setup 

For the drop test matrix five MCS boards were tested according to JDEC standard 

JESD22-B111 drop tests [JDEC 2003]. The test was performed on a Lansmont drop test tower 

and controlled through a Labview graphical user interface. For each drop a time history of the 

impact pulse was recorded and monitored for compliance with the standard. The JDEC standard 

specifies that shock impulses remain within +/-10% of the stated 1500g, 0.5ms pulse. In practice 

tolerances of +/- 4% were obtained.  

In addition to the impact pulse, a 20ms time history for each electrical continuity 

channels was recorded for each drop. A Lecroy WR-Xi digital signal oscilloscope was used to 

capture the shock impulse and continuity. LabView facilitated the transfer of the recorded time 

Parameter Value

Interconnect Micro-coil spring

Package size 22 mm

Package 

Type

Ceramic with 

aluminum heat sink

Package 

Alloy
Sn63-Pb37

I/O count 400

Grid Pattern Full
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history through the GPIB (IEEE-488) communication standard.  The specifics of the circuit used 

to monitor the MCS are discussed in the health monitoring circuit section. 

 

Figure 238: Representative drop test setup. For the data shown in this document the 

package was mounted face down on the drop table. The configuration shown in the picture 

allows the individual MCS to be monitored with high speed video during a drop event. 

Because the interconnect is new, and failure mechanisms are still being studied, a variety 

of techniques were used to quantify the dynamic response of the system when subject to drop 

loadings. First a traditional strain gage was mounted on the board to acquire baseline data using a 

Vishay 2311 signal conditioning amplifier. Next the board was monitored during drop testing 

with high speed digital video cameras. Digital image correlation was used to extract full filed 

strain values from the high speed video.  

Using the high speed cameras and a zoom lens focused only on the MCS reveals a 

relatively large amount of relative motion between the package and the circuit board. Figure 239 

quantifies the relative displacement observed between the package and PCB. The influence of 

this dynamic behavior during drop testing on failure modes is still being studied. As a result of 

this uncertainty in the failure modes a hybrid model/data driven approach was utilized for 

implementing prognostics. 
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Figure 239: Relative displacement of package vs circuit board with MCS interconnects 

 

15.4 Health Monitoring Circuit 

The health of the MCS was interrogated non-destructively using electrical resistance as 

an easily measured quantity that correlates with damage. As the MCS accumulates damage in the 

form of plastic deformations and partial cracks, the geometry of the interconnect changes. 

Changes in geometry of the interconnect causes changes in the path through which current flows, 

and finally is measured as a change in electrical resistance of the interconnect. Previously for 

BGA components very precise resistance measurements [Lall 2009a-d] were utilized to monitor 

interconnects for damage. A special technique called resistance spectroscopy was required to 

measure the small changes in resistance in the BGA interconnects. The increased initial starting 

resistance of the MCS allowed a simpler measurement technique to be implemented.  

Typical BGA components have a daisy chain resistance on the order of a few ohms.  

When BGA packages become damaged they experience changes in resistance on the order of a 

micro-ohm, followed shortly thereafter by a full interruption of electrical continuity (infinite 

resistance), which is the traditional definition of failure. A robust measurement technique for 

monitoring small changes in resistance is to use a Wheatstone bridge. The Wheatstone bridge 
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circuit is used extensively with resistive strain gages. Variations of the circuit have been 

previously used for prognostics [Lall 2010a, 2011a,b]. To use the Wheatstone bridge the daisy 

chain resistance of the package being monitored is integrated as one of the resistive arms of the 

bridge. As the package becomes damaged, the subsequent changes in electrical resistance can be 

detected with the Wheatstone bridge. Other methods exist for making resistance measurements 

including micro-ohm meters and four point kelvin setups, but the Wheatstone bridge has four 

practical characteristics which make it easier to use. Every package has a slightly different 

resistance. The Wheatstone bridge measures changes in resistance, not absolute resistances, 

therefore small manufacturing variations do not need to be calibrated out and do not affect the 

PHM algorithms. Electronics routinely experience wide fluctuations in operating temperatures. 

Unlike ceramic resistors, metal conductors have a high thermal coefficient of resistance. It is 

easy to temperature compensate the Wheatstone bridge by picking appropriate resistors. 

Wheatstone bridges are very simple, comprising of only a few resistors. Real estate on the 

surface of a PCB is always at a premium, so the implementation cost of adding a Wheatstone 

bridge circuit to a PCB to facilitate embedded PHM capability would keep additional costs at a 

minimum. Finally the technique can be adapted to monitor any number of interconnects. For 

example the techniques demonstrated in this paper can be modified to monitor only the corner 

solder joints of a fully functional package[Voutilainen 2009, 2010]. 
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Figure 240: Schematic of a Wheatstone bridge circuit 

The traditional Wheatstone bridge output equation that relates the resistances in the arms 

of the circuit to the voltage measured across the bridge (Figure 240: Schematic of a Wheatstone 

bridge circuit) is stated as [Dally 2005 pg. 324]  
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The driving voltage, V, is a constant voltage source and is not affected by changes in the 

resistance of the bridge. Assuming that the bridge is initially balanced (         ) the output 

equation can be rewritten as 
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Note that higher order terms have been neglected in this formulation and that this 

particular formulation is only valid for small changes in resistance. When trying to measure very 

small signals such as changes in resistance caused by damage to solder interconnects, optimizing 

sensitivity is important. The first term in the equation,   (   ) ,scales the output, and so 

maximizing this term maximizes sensitivity. To initially balance the bridge and obtain maximum 

sensitivity all resistors should be equal.  
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A BGA package with a nominal daisy chain resistance of two ohms, when incorporated 

into a bridge with two ohm resistors in each arm it has a total equivalent resistance of two ohms. 

If the bridge is driven with a constant 5V source, then the circuit draws 2.5 Amps and tries to 

dissipate 12.5 Watts, which would surely melt/destroy the resistors in a matter of minutes. To 

keep currents at acceptable limits, 500 ohm resistors are used in each arm of the bridge. The 500 

ohm resistor in series with the resistance of the package, shown in Figure 241, unfortunately 

decreases the sensitivity of the bridge by making the 
   

     
 term much smaller, where Rx is the 

resistance of the package being monitored. To balance the bridge resistor R1 is replaced with a 

potentiometer. The MCS has a resistance of approximately 15 ohms, and the interconnects 

change resistance upon incurring damage, but prior to failure of electrical continuity. 

 

Figure 241: Wheatstone bridge with the resistance of the MCS daisy chain included as an 

arm in the bridge 
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Figure 242: Raw data recorded from Wheatstone bridge for test number one. 

 

Figure 242 shows the raw data that is recoded using a Lecroy WR-Xi digital signal 

oscilloscope at a frequency of 5x10
6
 samples/second. During drop 506, of test number one, the 

package experiences an intermittent open event and is defined as failed. The voltage signal is 

measured as the output of the Wheatstone bridge and therefore is proportional to change in 

resistance. The calibration curve in Figure 243 shows the close correlation between theory and 

observed results for the bridge. Above 20 ohms the circuit saturates and does not provide a 

reliable measurement. 
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Figure 243: Calibration curve for Wheatstone bridge 

 

15.5 Health Monitoring Algorithm 

The Wheatstone bridge setup is as a non-destructive sensor for interrogating the health of 

the solder interconnects being monitored. To facilitate prognostic health management the raw 

stream of sensor data must first be converted into information appropriate for decision making. 

Figure 244 highlights the major sections of the health monitoring algorithm. Initial data 

processing is handled by a recursive filtering algorithm, the Kalman filter. The Kalman filter 

tracks and smooth’s the noisy data stream coming from the sensor. Next the current state of the 

system is used as a starting point to prognosticate (predict) into the future when the component 

will fail. Lastly the prediction is converted into statistically defendable information appropriate 

for decision making. 
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Figure 244: Process flow of information through the various parts of the PHM system 

 

A variety of health monitoring algorithms have been utilized for implementing PHM on 

BGA components, including the Kalman filter (KF) implementation shown in this paper. All of 

the algorithms are recursive in nature, which is beneficial for two reasons. First, recursive 

algorithms process data in real time as a stream of information from a sensor. This is opposed to 

traditional curve fitting algorithms where all the data is processed in bulk. The task of measuring 

and storing in memory a full time history for every component being monitored becomes un-

tractable in practice. Secondly filters efficiently reject noise from the measured signal. The 

algorithms demonstrated in this paper are generic enough to be applicable to any physical system 

that is wearing out assuming you have sufficient domain specific knowledge of failure 

mechanisms. The applicability of the KF to prognostics was demonstrated previously on BGA 

components, and is adapted for MCS in this paper. 

To implement the KF an approximate damage model of the MCS must be created. At this 

stage in development of the MCS the system model is very coarse. As more information about 

specific failure mechanisms becomes available, improved models would be expected to enhance 

the PHM algorithms performance.  The remainder of the paper will be dedicated to developing 

an approximate system model, verifying correct operation of the PHM algorithms, and validating 

algorithm performance. 
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15.6 Prognostics Hindecaste 

This section will present a proof of concept for a prognostic system to monitor and 

manage the health of MCS interconnects using data acquired during run to failure drop tests. To 

borrow terminology from hurricane forecasting, a forecast is the real time prediction of future 

events based on observations. A hindecaste is a simulated real time prediction of future events, 

using previously observed data. New hurricane models are validated using the hindecaste method 

on more than one hundred years of climatology data [Rappaport 2009]. The prediction scheme 

demonstrated here uses a database of five run to failure tests. Leave one out cross validation will 

be used to quantify the performance of the algorithms given the relatively smaller database 

available for validation. 

 

Figure 245: Time history of five run to failure drop tests. The dotted red line represents 

the average resistance increase of each component at failure 

 Figure 245 shows the time history of the MCS’s resistance for five fun to failure tests. 

When the resistance increases dramatically, the electrical continuity has been broken and the part 

will soon have an infinite resistance and therefore is defined as failed. The challenge is to 
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sequentially process the data stream before the part fails and predict the remaining useful life 

based on the information available up to the current time.  

 

Figure 246: Zoomed view of the resistance time history plots. The dotted red line 

represents the average resistance increase of each component at failure 

The experimental setup section described how for each drop a 20ms time history of the 

output from the Wheatstone bridge was recorded. The data shown in Figure 245 and Figure 246 

represent the average resistance over each 20ms time history to reduce the dimensionality of the 

data. From visually inspecting the data it can be seen that during each test the component failed 

after an increase in resistance on average of about 0.8 ohms. Table 25 details the failure time and 

resistance of each test. The average resistance increase at failure, will be used as the failure 

threshold as described in the validation section.   

Table 25: Drops to failure, and corresponding change in resistance 
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The nearly linear increases in resistance up to failure was not expected to occur before 

testing began. Based on previous experience from BGA packages [Lall 2011a], the initiation of 

failure coincided with an increasingly noisy signal that trended exponentially to failure. Because 

the experimentally observed linear increase in resistance does not match with previous 

experience we dedicated significant effort to eliminate it from testing results. Initially it was 

assumed that the increase in resistance was a relic of the experimental setup. At first it was 

hypothesized that the slow increase in resistance was the result of Joule heating. Joule heating 

was eliminated as the cause of the resistance ramp up by leaving the board wired into the test 

circuit for eight hours without performing any drops. Over the course of the static test no ramp in 

resistance was observed. Next it was hypothesized that the resistance ramp up was the result of 

the test circuit. This possibility was eliminated by wiring a traditional BGA package into the 

circuit and performing a drop test. No ramp up was visible when using a BGA package, only the 

MCS exhibited this unusual behavior. Again it was hypothesized that some unknown effect from 

the MCS was causing heating during the test. This possibility was eliminated by pausing a MCS 

test halfway through the test and leaving the monitoring circuit on. Again no ramp in resistance 

was ever observed without stressing the package during drop testing. Another hypothesis was 

that the continuity wires leading from the package to the Wheatstone bridge were the cause of 

the resistance increase. A variety of methods for securing the continuity wires to the drop table 

were tested, using both solid and braided wires. By process of elimination we ultimately decided 

that the linear increase in resistance was a result of damage occurring in the MCS interconnects. 

Run
Drops to 

Failure

Change in 

Resistance at 

failure (Ω)

1 506 0.824

2 154 0.771

3 254 0.850

4 166 0.677

5 285 0.863
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Based on observations of the run to failure data, it is assumed that a first order model (y = 

mx + b) is sufficient to model failure. Therefore, two system states are needed to predict future 

values of a MCS change in resistance. The change in resistance of the MCS and the first 

derivative of change in resistance with time. The notation for the discussion below was taken 

from the excellent book [Zarchan 2000] and more details about the KF as it pertains to 

prognostics for electronics can be found in [Lall 2010a]. The discussion here will describe the 

components needed to create a filter for the purposes of tracking damage in MCS interconnects. 

The system states are denoted as 

    {
   
  ̇
} (314) 

   
Because only change in resistance can be directly monitored, the measurement equation 

is formulated as 

 
   ⌊  ⌋ {

   
  ̇
} 

 
(315) 

By inspection the measurement matrix is   ⌊  ⌋. The derivative of change in 

resistance with respect to time is assumed to be a constant value and can therefore be considered 

white noise denoted as     (    ). A state space model of a system that only depends on its 

resistance and change in resistance is represented as 

 
{  ̇
  ̈
}  [

  
  

] {
   
  ̇
}  {

 
  
} 

 
(316) 

After this point, every KF implementation is the same, which makes the algorithms 

presented here applicable to any system as long as there is sufficient information about failure 

modes to write a state space model. By inspection the system dynamic matrix is 
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  [

  
  

] 

 
(317) 

Subsequently the fundamental matrix can be shown to be approximately represented by a 

Taylor Series expansion 

            
(  ) 

  
   

 
(318) 

Where I is the identity matrix. In the case being examined in this paper the second order 

terms and above of the fundamental matrix are zero, so only a first term approximation is 

meaningful. 
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Substituting the sampling time, Ts, for the variable ‘t’ in the equation above provides the 

discrete form of the fundamental matrix 
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] 
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The continuous process noise matrix is influenced by our assumption that the change in 

resistance should be a constant 
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] 
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The discrete process noise matrix is calculated from the continuous process noise matrix 

 
   ∫  ( )  ( )    
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(322) 

For each time step where a measurement becomes available the KF is used to track and 

estimate the state of the MCS.  



305 

 

Using the components derived above, the matrix Riccatti Equations [Zarchan 2000], are 

used to solve for the estimates of the resistance and ramp rate of the resistance. 

1. Using the uncertain system model, predict where the next measurement is expected to be, 

 ̅     ̂     

2. Project the error covariance ahead,          
     

3. Calculate the Kalman gain,       
  (    

   ) 

4. Make a measurement of the MCS change in resistance,    

5. Update the system state estimate,  ̂   ̅    (     ̅ ) 

6. Update the error covariance matrix    (     )   

The process noise term,   , and the measurement noise term, R, must be initialized at the 

start of the algorithm and their choice is discussed after the full tracking/prediction algorithm is 

presented.  

The result of the KF implementation is a smooth estimate of both the change in resistance 

and the ramp rate of the change in resistance (Figure 247). Notice how the estimate of the ramp 

rate of change in resistance adjusts down as the slope decreases slightly in the last half of the 

test.  
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Figure 247: Filter results for the data set from test one. The top plot is the filter track of 

the measured resistance. The bottom plot is the estimate of the ramp rate of change in resistance 

(ie: derivative). 

The assumptions outlined earlier assumes that the change in resistance can be modeled as 

a first order system. If the current state of the system is known, future states can be predicted by 

extrapolation. 

 
               (  )̇     

 
(323) 

When the value of          is taken as the failure threshold, and equation (323 can be 

solved for   , which is the equivalent to remaining useful life. Smoothed estimates of    and   ̇ 

from the Kalman filter are used for the RUL calculation.  

7. Report the remaining time until ΔR is estimated to break the failure threshold, 

      
    ̂ ( )

 ̂ ( )
 

8. Report the uncertainty in the estimate using [Swanson 2001],            (
 (   )

 (   )
) 

9. Increment,      , and return to step one 
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During the prediction step it is assumed that damage will accumulate at the same rate that 

has been observed previously. This is not ideal, but the future usage of the system cannot be 

deterministically known in advance. The prediction of the remaining useful life, and prediction 

uncertainty, for the interconnect at the current time is recorded for offline validation purposes, 

then the procedure begins again with a new measurement of the system. By using the KF, the 

ability to have an uncertain system model that adjusts to observations allows the algorithm to 

adapt to the case where the usage profile may be time evolving.  

The KF is a recursive algorithm and must be initialized. The output from the Wheatstone 

bridge is near zero for a balanced bridge, so the resistance is initialized as zero ohms. No bridge 

can have a perfectly balanced starting condition, but the filter quickly converges to the proper 

estimate of the resistance. The resistance ramp rate has no physical justification for an 

initialization value, so an ignorant guess of zero is made. Again the filter quickly converges to a 

reasonable estimate for the resistance ramp rate. The process error covariance matrix effects the 

initial convergence of the filter and is set with arbitrarily high diagonal terms, which indicates 

that there is no confidence in the initialization conditions. 

 
 ̂  {

 
 
} 

 
(324) 
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Lastly the process noise term and the measurement noise term help the filter 

appropriately weigh the value of measurements when estimating system states. Based on 

standard deviations of steady state measurement when the test circuit was turned on, but no 

testing was occurring a value of 0.005 ohms was assigned to the measurement noise term. The 

standard deviation of the process noise term was taken as the expected variation in resistance 
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between time steps (0.005 ohms) divided by the expected number of time steps before failure 

(300 drops). 

It is important to note the benefit of using a Kalman filter to estimate smooth derivatives. 

A numeric derivative would be calculated as 

 
(  )̇         

         
  

 

 
(326) 

Taking a numeric derivative of noisy data results in white noise. A comparison between 

the numeric approach and the derivative estimated by the Kalman filter is shown in Figure 248. 

Smooth derivatives are essential for making accurate RUL predictions and motivate the use of 

the Kalman filter. Without a smooth derivative the RUL prediction would also be white noise. 

 

Figure 248: Comparison of the numeric derivative and estimated derivative for test 

number one. Smooth derivatives are essential for accurately predicting remaining useful life and 

motivate the use of the Kalman filter 

Results of the prognostic hindecaste for test number one (Figure 245) are shown in Figure 

247 (tracking) and Figure 249 (remaining useful life predictions). It can be seen that the filter 

closely tracked the measured data and estimated a nearly constant first derivative.  A confidence 
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interval for the remaining useful life (RUL) prediction is reported with each prediction and is 

based on the KF’s uncertainty in the state estimates. This helps decision makers quantify the 

confidence in the predictions coming from the PHM algorithm, and if the prediction is trust 

worthy. Results for test number one are representative of tests two through five. Results for the 

tests not shown in the body of the paper can be found in the appendix. 

 

Figure 249: Remaining useful life predictions for the MCS 

 

The next section will deal extensively with verifying and validating the operation of the 

PHM algorithm. Standard PHM metrics will be used to quantify the results, and a short 

discussion of each metric as it applies to the data set shown above will be discussed. 
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Figure 250: Alpha-lambda accuracy plot 

 

The resulting performance function for the hidcaste on the first resistance history was 

0.63. A perfect score would be  zero, and the worst possible score is a value of one. 

15.7 Verification and Validation 

The methodologies of Verification and Validation (V&V), can be used to rigorously 

demonstrate the capability of a system to show that it was built correctly and performs as 

intended. V&V is a popular technique in system engineering and computational mechanics. It is 

easiest to understand V&V from a systems engineering standpoint, but the methodologies used in 

prognostics are probably closer related to computational mechanics since they rely heavily on 

algorithms and differential equations. From a systems engineering perspective, V&V can be 

loosely stated as 

 Verification: Did you build your product correctly to the specifications of the technical 

drawing 

 Validation: When you use your product, does it perform as intended  
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15.7.1 Verification 

To verify the correct operation of the Matlab code used to perform the prognostic 

hindecasts a variety of different simulated test problems were used. Simulated test problems 

were used so that results could be compared against known ground truths. All implementations 

of the KF are identical beyond the formulation of the system model, which makes testing code 

easy. A variety of elementary dynamic systems are used to verify the correct operation of the 

code under a variety of circumstances. Test cases involving steady state signals, ramped signals, 

sinusoidal signals, and harmonically damped signals (Figure 251) were used to test the KF 

algorithm for correct performance. 

 

Figure 251: Verification of code using the case of a damped harmonic system 

Health monitoring circuits were verified for correct operation by substituting a 

potentiometer in place of the daisy chain resistance of the package being tested as described in 

Figure 243.  
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15.7.2 Performance validation 

Leave one out cross validation was used to validate the performance of the PHM 

algorithm using all five run to failure tests. In leave one out cross validation four of the tests are 

used to train the PHM algorithm, while the last test is used to validate the performance. In turn 

the process is repeated five times, leaving out a different test each time to validate. This 

procedure is alternatively called k-fold cross validation, where in this paper k=5. At the end of 

the validation an average performance score is reported. 

Minimal training time is required for each validation run. The average voltage at failure 

is calculated using the four training sets. Then the PHM prediction algorithm is run on the “left 

out” data set as a hindcaste to validate the performance of the algorithm. After the conclusion of 

the hindcaste, the standard PHM metrics are used to calculate a cost metric that quantifies the 

algorithms performance in to a single number.  

Training consists of calculating the average    at time of failure to establish a failure 

threshold (  ). The failure threshold defines failure when projecting system states into the future. 

For some of the validation runs this results in the situation where the component fails after the 

failure threshold is crossed. To handle this scenario if the    estimated by the filter is above the 

failure threshold, RUL predictions are set to be zero, and the uncertainty in the prediction is 

taken as the standard deviation of the    at failure for the training set. Using a failure threshold 

that does not perfectly correlate with actual failures adds error to the PHM predictions. For 

example the predictions previously shown for test number one show a systematic error when 

using the average failure threshold (Figure 252).  Only after seeing all of the data can it be 

known that the failure threshold was not optimal. Leave one out cross validation simulates what 

the expected performance would be given the situation where the future is not known. Using the 
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failure threshold for run number one when testing run number one would constitute a logical 

fallacy known in data mining as a future information leak [Elder 2005]. Another example of a 

future information leak is taking a three day moving average, centered on the current day.  

Table 26: Discrepancy between actual failure and failure threshold derived from training 

sets. 

 

 

Table 27 summarizes the results for each run of the leave one out cross validation matrix. 

 

Figure 252: Systematic error introduced by using an average failure threshold derived 

from the training set. 

Test 

Set

Mean Change in 

Resistance at Failure of 

Training Sets [ohms]

Actual Change in 

Resistance at Failure 

of Test Set [ohms]

Run #1 1 0.824 0.790

Run #2 2 0.771 0.804

Run #3 3 0.850 0.784

Run #4 4 0.677 0.827

Run #5 5 0.863 0.780
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Figure 253: Process flow for leave one out cross validation discussed in this section and 

the comparison against traditional Weibull methods discussed in the next section 

 

Table 26: Discrepancy between actual failure and failure threshold derived from training 

sets. 

 

 

Table 27: Leave one out cross validation matrix. A cost metric of zero is a perfect score. 

Test 

Set

Mean Change in 

Resistance at Failure of 

Training Sets [ohms]

Actual Change in 

Resistance at Failure 

of Test Set [ohms]

Run #1 1 0.824 0.790

Run #2 2 0.771 0.804

Run #3 3 0.850 0.784

Run #4 4 0.677 0.827

Run #5 5 0.863 0.780
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15.8 Filter Divergence 

Filter divergence is the term used when the filter does not accurately track the desired 

system states. If the system model is incorrect beyond the uncertainty provided for with the    

term, then the residual between the estimated state and measured state increases.  Theoretically if 

the filter is operating correctly the residual error should be bounded by the value of 
 

 
√  (   )  

for at least 68% of the measurements. 

 

Figure 254: Residual between the estimated state and actual state demonstrates that the 

filter was tracking correctly for test number one 

Test 1 Test 2 Test 3 Test 4 Test 5 Cost Metric

Run 1 Test Train Train Train Train 0.6775

Run 2 Train Test Train Train Train 0.6857

Run 3 Train Train Test Train Train 0.533

Run 4 Train Train Train Test Train 0.8424

Run 5 Train Train Train Train Test 0.6738

Average: 0.6825
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In the case of test number four it is hypothesized that a different failure mode occurred, 

and the resulting time history was significantly different than the other tests. The behavior of the 

system violated the assumptions of the system model and the results were not good. Monitoring 

for filter divergence would provide an online method of detecting the when reported RUL 

predictions may be in error.   

 

Figure 255: Residual between the estimate state and actual state for test #3. After drop 65 

the filter divergence could have been used to warn that predicted RUL may be in error 

15.9 Skill Against Weibull Baseline 

In this section the skill of the PHM algorithm will be compared against a Weibull 

baseline to motivate the inclusion of PHM capability in the development of systems with MCS 

interconnects.  This method is borrowed from weather forecasting [Roebber 1996]. Predicting 

the average failure time from Weibull analysis requires no skill on the part of the forecaster, 

assuming that they correctly operate the Weibull software. For this reason the failure predictions 

from a Weibull analysis are taken as an arbitrary baseline to compare the skill of the forecast 

generated with the PHM algorithms. Any baseline could be used, but historically Weibull 
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analysis has been widely used to model failure rates in electronics. The prediction algorithms in a 

PHM algorithm require a user to pick a recursive  tracking algorithm, establish failure thresholds, 

choose a system model and a number of other inputs that effect the performance of the 

algorithm. If the resulting predictions from a PHM algorithm are better than predictions obtained 

from Weibull analysis then the prediction is said to be skill full. The skill of the forecast is 

quantified as 

 
   [

     

  
]      

 
(327) 

Where the skill of the forecast,   , is a function of the error between the baseline 

prediction of failure, and the actual failure (  ), and the error between the forecast and the actual 

failure (  ). For our example the skill of the PHM predictions,     , is a function of the baseline 

Weibull error and is denoted as     , the error from the PHM prediction denoted as     .   

 
     [

         
    

]      

 
(328) 

A skill greater than zero represents an improvement in forecasting accuracy over the 

baseline method. A skill less than zero represent a forecasting accuracy that is less effective than 

the baseline method. A positive skill score implies the forecast was skillful. Because the PHM 

algorithm outputs a time series of predictions the error was calculated as a mean squared error.  

Following the method outlined in Figure 253, during each leave one out run, the training set was 

used to calculate failure by traditional Weibull analysis. Then the predicted failure times from 

the PHM algorithm are compared against the mean failure time for the Weibull distribution as 

described in equation (328. The process is repeated for each leave one out run so that the relative 

skill for each test can be independently evaluated. 
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Figure 256 visualizes the improvement in the PHM predictions over the baseline Weibull 

approach for the data from the first test. At the end of the test the estimated    is above the 

failure, but the part has not failed.  When the estimate is above the failure threshold the algorithm 

predicts failure is imminent (RUL = 0) and reverts to using the standard deviation of the failure 

data to assign a level of uncertainty. Both the accuracy and precision of the PHM predictions are 

significantly better than the Weibull baseline for test one. 

 

Figure 256: Overlay of a few PHM predictions on top of the baseline weibull distribution 

15.10 Conclusion 

The feasibility of including prognostic health monitoring capability for a novel 

interconnect has been investigated. Correlations between changes in electrical resistance and 

failure have been used to prognosticate failure in components during JDEC standard drop testing. 

Details of the health monitoring circuitry were discussed. Leave one out cross validation has 

been used to estimate the performance of the failure prognostics techniques on data sets that do 

not exist yet. Validation and verification of the health monitoring circuitry, and failure prediction 

algorithms have been demonstrated. Filter divergence, a technique for online detection of 
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improper operation of the prediction algorithm, was shown to correctly identify the data set that 

reported bad predictions. Finally the results demonstrated in the paper were compared against 

traditional Weibull analysis to quantify the skill of the failure prognostics. An appendix 

including results from all of the run to failure tests was included to show the repeatability of the 

presented methods. 

15.11 Appendix 

The following is a summary of the results from the leave one out cross validation test. 

These results simulated the effectiveness of the PHM algorithms for data sets that been strictly 

divided into test sets and training sets. The results here represent the performance of the filter 

that could be expected in practice. 

Test Number One 

Drops to failure 506 

ΔR at failure: 0.790 Ω 

ΔR at failure based on tests {2-5}: 0.824 Ω 

Skill against Weibull baseline: +38% 
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Comments on test number one: The tracking and performance of test number one was 

good. The systematic error in the PHM predictions is a result of the true failure being below the 

average failure threshold. This test represents an outlier in the data set and PHM successfully 

predicted significantly longer remaining useful life. 

Test Number Two 

Drops to failure 154 

ΔR at failure: 0.804 Ω 

ΔR at failure based on tests {1,3-5}: 0.824 Ω 

Skill against Weibull baseline: +98% 
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Comments: Tracking performance was moderate for test number two, but the algorithm 

did successfully provide advanced warning for a component that failed prior to the mean failure 

time. This test showed the best relative skill against the Weibull baseline. 

Test Number Three  

Drops to failure 254 

ΔR at failure: 0.784 Ω 

ΔR at failure based on tests {1,2,4,5}: 0.850 Ω 

Skill against Weibull baseline: +6% 
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Comments: Tracking and prediction for this test were excellent, but the failure occurred 

very close to the mean failure time predicted by Weibull analysis so the relative skill does not 

appear as good as other tests. Note that the failure threshold was low for this test and the last 

10% of the test the PHM algorithm thought failure was imminent. 

Test Number Four 

Drops to failure 166 

ΔR at failure: 0.827 Ω 

ΔR at failure based on tests {1-3,5}: 0.677 Ω 

Skill against Weibull baseline: -4810% 
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Comments: This test represents the bad apple from the test group. It is hypothesized that 

a failure mode different from the other four components occurred on this test. The test could 

have been easily substituted with a better test, but for the sake of academic integrity the first five 

consecutive test were used to form the failure database. Looking at the residual plot shows that 

the erroneous results could have been flagged as problematic in real time. 

Test Number 5 

Drops to failure 285 

ΔR at failure: 0.780 Ω 

ΔR at failure based on tests {1,3-5}: 0.863 Ω 

Skill against Weibull baseline: -1429% 
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Comments: This test, like test number one, tracked and predicted well, but the 

discrepancy in the actual failure threshold and the average failure threshold resulted in a 

systematic error. The mean failure time according to Weibull analysis was only in error by 

twelve drops, so the relative skill of this prediction was not good. From looking at the overlay of 

PHM predictions it can be seen that the precision of the PHM predictions was superior to the 

Weibull baseline. 



325 

 

16 PHM Matlab Toolbox 

A number of technical limitations exist during the workflow of designing and testing 

PHM algorithms. For instance laboratory tests at a single stress level may not be representative 

of field usage conditions. Many different failure modes can occur in a product than those 

explored through accelerated life testing. And lastly it is difficult to validate that a PHM 

algorithm will meet its specified requirements during actual field use. In an effort to increase the 

ease of building, verifying and validating PHM algorithms a PHM matlab toolbox has been 

created.  

16.1 Introduction 

The PHM toolbox is a collection of functions that can be combined with sensors to create 

PHM implementations. The recursive filtering based algorithms presented in this document were 

implemented in the toolbox. Many of the illustrative examples found in this document are used 

to validate the functions in the toolbox. Two levels of use are imagined for the toolbox. In the 

first scenario the toolbox would be used as a finished product as part of a turn-key solution. In 

the second scenario the toolbox would form a stable foundation for new and innovative 

improvements to existing PHM algorithms. 

16.1.1 Turn-key Solutions 

If a user needs a verified and validated solution that is immediately ready to implement, 

the PHM toolbox has a variety of complete PHM algorithm implementations. Because the code 

has been used to develop the work in this document it is easy to estimate the accuracy of the 

implementation when applied to other applications. The user would implement the code as is into 

a product knowing that the code has a long history of use and development. The turnkey 
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approach is readily applicable to feasibility studies on new and existing products and to help 

decrease the time and cost of accelerated life testing. 

16.1.2 Building Block Solutions 

If a user needs a strong foundation on which to build new PHM implementations, the 

PHM toolbox is a verified and validated foundation to begin with. Instead of starting with a 

blank slate, the PHM toolbox provides code for commonly used routines such as the PHM 

metrics and components for recursive filtering. The nature of the code is very modular and 

encourages innovation. In PHM algorithm development, sensor and code development is not 

easily separated. The PHM toolbox provides quick access for developing baseline measures of 

success and then can be extended to include any additional functionality that is needed to fuse 

new sensor developments with the constantly changing software requirements. 

16.2 Verification and Validation Scripts 

A number of script files exist to verify and validate the correct operation of the toolbox. 

These script files are heavily commented and can also be considered tutorials for how to use the 

code in the toolbox to build PHM algorithms. Utilizing code blocks that have been verified in 

numerous different applications allows the user of the toolbox to focus on more pressing 

design/development matters in the PHM algorithm workflow. 

I. Kalman Filter V&V Scripts 

A. Tracking 

1. Re-entry of a ballistic object 

B. Prognostics 

1. Re-entry of a ballistic object  
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2. Failure in a BGA (ECTC 2010 data set) 

II. Extended Kalman Filter V&V scripts 

A. Tracking 

1. Re-entry of a ballistic object  

2. Tracking frequency of a sine wave 

3. Tracking amplitude of a sine wave 

4. Tracking a harmonically damped system (simple) 

5. Tracking a harmonically damped system (improved) 

B. Prognostics 

1. Re-entry of a ballistic object  

2. Failure in a BGA (ECTC 2010 data set) 

III. Particle Filter V&V scripts 

A. Tracking 

1. Re-entry of a ballistic object  

2. Quadratic system simulation 

B. Prognostics 

1. Re-entry of a ballistic object  

2. Failure in a BGA (ECTC 2010 data set) 

16.3 Code documentation 

For the sake of usability and scalability the PHM toolbox is very well documented. In 

addition to defining inputs and outputs for each function, the code documentation cross 

references the code to quickly direct users to relevant examples and other related functions. 

Matlab contains internal toolset that allow custom toolboxes, like the PHM toolbox, to integrate 
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documentation in the same manner as built in documentation for functions natively packaged 

with matlab. The result is quick and efficient access to documentation from the Maltab command 

window.
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17 Conclusion 

This document focused on predicting (prognosticating) failure in mission and safety 

critical electronics. Emphasis was placed on developing a measurement technique known as 

resistance spectroscopy to monitor the health of a component, and implementing algorithms 

capable of providing advanced warning of failure that could be used to take mitigating action and 

avoid catastrophic unplanned failures. A risk based decision making framework provided a 

statistically defendable method for using failure predictions from prognostic algorithms. A 

variety of BGA package architectures and environmental conditions were used to stress 

components to failure. The technique was also shown to work for other electrical components, 

specifically pin and socket connectors. Simulations known as a prognostic hindecaste were used 

to estimate the future success of proposed prognostic algorithms. The most important 

components of the presented work will be reviewed, and a discussion of future work will be 

discussed. 

17.1 Salient Features of the Presented Work 

A number of novel contributions are found in this work. As a whole, the contributions 

represent a paradigm shift in the way that mission and safety critical electronics should be 

analyzed, designed, tested, and maintained. An in depth understanding of traditional reliability 

methods, and a practical view of how electronics are actually used in fielded products, motivates 

the development of improved reliability tools such as prognostic health management. The 

foundation for the experimental topics, the resistance spectroscopy technique, was used in a very 

different application than it was originally developed for and has been tailored for 

implementation in embedded applications. The adoption of risk based decision making, recursive 
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filtering, and prognostic metrics provided a complete framework that could result in a viable 

product to meet the actual needs of end users. For example, John Deere Electrical Systems has 

started to implement the techniques described in this document into developmental products and 

may one day become one of the first fielded prognostic systems that explicitly monitor electrical 

components. The PHM toolbox highlights contributions that can be bifurcated from any specific 

package architecture or test conditions. Many of the insights developed in the creation of the 

toolbox represent fundamental insights into methods for combining existing knowledge of the 

behavior of electronic assemblies into a new paradigm for reliability of mission and safety 

critical electronics. The PHM toolbox also provides insight into areas that are not well developed 

and will require additional work in the future. 

17.1.1 Resistance Spectroscopy for Prognostics 

The resistance spectroscopy method was developed by prior authors. The novelty of its 

use in this work was its application to the problem of condition monitoring for electronics. The 

application of the technique for a prognostic system was successful for three key reasons. The 

measurement resolution is superior to many other techniques. The circuit is easy to temperature 

compensate, and the circuit uses a small footprint on a circuit board. Resistance spectroscopy can 

be implemented with low frequency circuit boards and therefore is cheaper than many other 

online monitoring techniques. Typically two of the least reliable components on a circuit board, 

chip resistors and BGA’s are good candidates for monitoring using the RS technique.  

Proving the repeatability of the RS technique has been another contribution of this work. 

The technique has been demonstrated on both SnPb and lead-free alloys. Package architectures 

tested include controlled collapsed solder balls (high lead, SnPb, SAC305, plastic core), copper 

column arrays, and micro coil spring arrays. Test environments where the RS technique was 
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successfully applied include drop/shock, vibration, and simultaneous temperature and vibration 

testing. RS has been shown to successfully monitor both pristine and thermally aged 

components. The RS technique was also implemented for monitoring changes in contact 

resistance for pin and socket electrical connectors. There have been no situations where the RS 

technique was applied and failed to provide a leading indicator of failure. 

17.1.2 User-Centric Prognostic Health Management Framework 

Individually risk based decision making, recursive filtering, and prognostic performance 

metrics were developed by prior authors. Their collective use for mission and safety critical 

electronics was novel. The combined used of the three techniques allowed prognostic systems 

that are capable of meeting requirements for products outside of the academic laboratory. In this 

document risk based decision making guided the development of many of the techniques to 

ensure that the resulting measurement or algorithm would efficiently meet the needs of end users 

and not simply appeases the imagination of a researcher. Recursive filtering provides a realistic 

method for real time tracking and dovetails nicely with physics and model based engineering 

methods. Lastly the prognostic algorithms provide methods for quantitatively defining the 

performance of an algorithm, and therefore improving performance. The systematic application 

of leave one out cross validation provided some of the first published insight into the 

performance that could be expected from an implemented prognostic algorithm on unseen data 

sets. In much of the prior literature on prognostics, and specifically prognostics for electronics, 

the logical fallacy of future information leak undermined the ability to fully quantify the 

expected future performance of a prognostic technique. The strongest argument for the success 

of the combined framework is the implementation of the presented techniques by an industrial 

partner outside of the scope of a funded academic research project. 
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17.1.3 Application Independent Contributions  

The contributions of the PHM Matlab toolbox provides a distinction in the work between 

contributions that are application specific, such as resistance spectroscopy, and fundamental 

insights into changes necessary for transitioning from traditional reliability methods to 

prognostic health monitoring. Recursive filtering has a long history when being applied to 

tracking and navigation problems. Admittedly some of the initial difficulties when learning about 

recursive filtering were the highly unfortunate choice of notation used in the recursive tracking 

literature that originated with Kalman’s original optimal tracking paper. The PHM toolbox helps 

bifurcate the nuances of filtering from the formidable challenges in understanding the physics 

and mechanics of a system that is degrading. It is envisioned that the overhead involved in 

developing and testing the recursive algorithms, can be drastically reduced by using the PHM 

toolbox which will allow the researched to concentrate on the challenging task of developing 

appropriate models to describe/predict damage propagation.  

The PHM algorithms tend to be named after the tracking algorithm that is used to 

implement them, but the prediction phase of the algorithm has just as much effect on 

performance as the tracking. An understanding of the specific requirements for propagating 

damage, and uncertainty into the future are application independent contributions from this work. 

The joint online tracking and parameter estimation of the Extended Kalman filter typically 

achieves a superior performance over other baseline tracking implementations, while the particle 

filter typically has the best baseline architecture for propagating uncertainty into the future. An 

unwieldy number of variations exist for tracking and prognostic algorithms which could alter the 

conclusion about the best tracking algorithms for prognostics. The PHM toolbox helps provide 
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baseline implementations as a foundation for comparing and developing new and advanced 

algorithms. 

17.1.4 Summary of PHM Algorithm Performance 

Many factors influence the performance of a PHM implementation including the test 

type, orientation, and stress levels. PHM metrics have been used to quantify the performance of 

over 30 tests in this document. Each situation is different, but it can be conservatively estimated 

that the presented algorithms will converge to within an accuracy of      of the actual RUL 

after about 50% of the time between the feature vector crossing the detection threshold and the 

failure of the system. Notable exceptions include the results presented for the particle filter and 

micro-coil spring interconnects where performance was significantly better than average with 

convergence after only 25% of the time between detection and failure. The two demonstrations 

of leave one out cross validation provide useful insight into the expected future performance of 

the demonstrated methods using a rigorous independent evaluation of performance. In the two 

separate data sets used for leave one out cross validation, the PHM algorithm converged between 

25 and 50% of the time after the detection threshold. Furthermore the average cost function using 

an equal weighting of precision and accuracy for all the experimental results presented in this 

document have an average score of 0.71, where a score of zero is optimal. For comparison, the 

best cost function score obtained from an idealistic synthetic data set is calculated as 0.44.  

17.2 Future Work 

Prognostics in general, and specifically prognostics for electronics is a very young field 

and much future work is needed. The state of the art, including many of the aspects introduced in 

this document, still only provide a partial solution to the challenges inherent in designing and 

operating mission and safety critical electrical systems. Model (physics) based prognostics, as 



334 

 

opposed to purely data driven (data mining) prognostics, seems like the most reasonable 

approach moving forward, but challenges still exist. 

17.2.1 Initialization Concerns 

 In model based prognostics initialization of recursive filters can be important, and few 

methods other than experience currently exist to inform the initialization state. In many systems  

such as turbines, nuclear reactors, and implanted biomedical devices, run to failure data is not 

available because the cost of catastrophic failure of a system, even in a controlled environment, 

is too expensive to bear. The limitations of experience for many systems makes initializing 

prognostic algorithms difficult. 

17.2.2 Assumptions about Future Usage 

During the damage propagation and failure prediction phase assumptions about future 

usage conditions are important and difficult to defend. In the special case of accelerated life 

testing, future usage conditions are tightly controlled and predictable. There is a strong argument 

that the state of the art prognostic algorithms could be used to reduce the time and cost of 

accelerated life testing programs in product development activities. In fielded applications future 

usage conditions are usually less reliably controlled and many challenges exist for quantifying 

observations and making assumptions about future usage.  

17.2.3 Defendable Uncertainty Quantification 

The challenges associated with assumptions about future usage of a system leads to a 

discussion of the challenges associated with quantifying uncertainty in a defendable manner. 

With such limited information on fielded prognostic implementations, it is hard to quantify if the 

current methods for quantifying uncertainty are acceptable. In mission and safety critical systems 
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low probability events are very important to understand and mitigate. Errors in uncertainty 

quantification using traditional reliability methods are known to result in unbearable failures. It 

could be reasoned that uncertainty quantification in prognostics will undermine the effectiveness 

of PHM unless improvements can be realized in the future. As discussed earlier, the best 

combination of tracking and damage propagation has not even been clearly identified, with EKF 

and PF based implementation both having some merit. 

17.2.4 Challenges in the Design, Verification & Validation of PHM Implementations 

Another inherent challenge for prognostics is the design, verification and validation of 

prognostic implementations. Accelerated life testing is popular for product design because it is 

timely and cost effective compared to actual usage tests which could last for years or decades. 

State of the art PHM techniques could be applied directly to predicting failures in ALT’s. 

Unfortunately the needed to validate the correct operation of a fielded PHM implementation does 

not yet have a clear analogy to ALT because future loading conditions are not explicitly known 

in advance. In many cases the cost of run to failure testing is unbearable even in a controlled 

environment and therefore leaves a designer with little justifiable motivation for choosing one 

design over another. Even if a system is not considered mission or safety critical, the intangible 

damage caused by experimenting with the reliability of a paying customers products is difficult 

to justify. Currently only in a few select cases is there enough information and experience to 

develop PHM implementations for a select few components.  
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