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Abstract 

    
 

Optical transparency is an essential characteristic of solids used in many 

engineering applications such as automotive windshields, electronic displays, aircraft 

windows and canopies, hurricane resistant windows, bullet resistant enclosures, personnel 

helmet visors, and transparent armor used by the military. In some of these applications, 

the ability of a structure to continue to remain transparent and bear load after impact is 

also critical for personnel safety. 

Motivated by these, an optical, full-field measurement technique called Digital 

Gradient Sensing (DGS) has been introduced in this dissertation for measuring angular 

deflections of light rays propagating through transparent solids subjected to non-uniform 

quasi-static and dynamic stress fields. The technique is based on the elasto-optic effect 

exhibited by transparent materials due to the imposed stresses that cause light rays to 

deflect. The working principle of the method is explained, and the governing equations 

derived. DGS employs 2D Digital Image Correlation (DIC) technique to quantify the 

angular deflections, which can then be related to spatial gradients of stresses under plane 

stress conditions. The new method is first demonstrated by performing validation 

experiments to capture angular deflections of light rays in two orthogonal directions 

produced by a thin plano-convex lens. 

The feasibility of this method to study material failure/damage is demonstrated on 

transparent planar sheets of PMMA subjected to both quasi-static and dynamic line-load 

acting on an edge. In the latter case, ultra high-speed digital photography is used to 

perform time-resolved measurements. The quasi-static measurements are successfully 

compared with those based on the Flamant’s solution for a line-load acting on a half-

space in regions where plane stress conditions prevail. The dynamic measurements, prior 

to material failure, are also successfully compared with finite element computations. The 
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measured stress gradients near the impact point after damage initiation are also presented 

and failure behavior is discussed. 

DGS is next extended to study fracture mechanics and impact mechanics 

problems, where stress gradients near crack and punch tips in transparent PMMA sheets 

are quantified. Both quasi-static and dynamic mode-I crack problems are studied. The 

crack-tip stress intensity factors measured under quasi-static and dynamic loading 

conditions using DGS are in good agreement with the analytical and finite element 

results. The problem of a square-punch impacting the edge of a PMMA sheet is also 

studied using DGS by exploiting punch-tip – crack-tip analogy. The dynamic punch-tip 

stress intensity factors are extracted from the optical measurements and are again in good 

agreement with the ones from the finite element counterparts. 

The DGS method is finally extended to study deformation of thin structures in 

reflection mode. After suitably modifying the governing equations, full-field surface 

slopes of specularly reflective thin plates (silicon wafers) subjected to out-of-plane 

displacements are quantified for the case of a clamped plate subjected to central 

deflection. The full-field plate curvatures are also evaluated from surface slope fields in 

view of the direct dependency of stresses on curvatures in thin structures. Both surface 

slope and curvature fields are successfully compared with the analytical solutions. 

The dissertation also explores a few promising commercial applications of 

transmission mode DGS including inspection of defects and inhomogeneities in 

transparent media such as a glass pane. Quantification of process-induced stresses by 

reflection mode DGS is demonstrated by evaluating slopes and curvatures of a silicon 

wafer coated with a polymer film as it cures in situ. 
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1 

Introduction 

 

 

1.1 Motivation 

 

Precise measurement of physical and mechanical quantities is pivotal for 

performing engineering design, monitoring structural behavior or material 

characterization. Likewise, researchers often need to substantiate a conceived theory by 

measured data from real events or controlled laboratory experiments. However, accurate 

measurement of such data often proves to be a challenge. As a result, in several instances, 

experimentalists are required to rely on indirect data, because a tool capable of directly 

measuring the quantity of interest simply does not exist or the existing ones are 

inadequate. For example, in mechanics of materials and mechanical design, stress is a 

quantity of primary interest as it is central for implementing popular failure theories. 

However, there was not any method to measure stresses until the inception of 

photoelasticity. Even photoelasticity has restrictions such as specimen transparency and 

birefringence. Nevertheless, it has proved to be an extremely valuable measurement 

technique which has enabled engineers and researchers to approach engineering problems 
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with greater insight into the mechanical behavior of materials. Other methods such as 

Mach-Zehnder interferometry and Coherent Gradient Sensing (CGS) are also capable of 

measuring stresses and related quantities. Thus, every new measurement technique / tool 

or an improvisation of an existing tool has the potential to enhance capabilities of 

engineering researchers. 

 

The existing metrology tools of engineering mechanics can be broadly classified 

into point-wise and full-field methods. In general, most full-field measurement 

techniques use light as the sensing signal and are non-contact type. They also offer the 

advantage of providing abundant data for analysis when compared to point-wise 

techniques. Full-field measurement of mechanical quantities – deformations, strains, and 

stresses – is necessary for understanding failure mechanisms in solids and for quantifying 

the associated engineering parameters. Large stress gradients in structures / components 

occur near stress risers such as a crack or other geometric discontinuities which are often 

the source of failure during service. Such situations require full-field data to compute 

failure parameters such as stress intensity factor to be used in the design process. The 

implications are even greater for characterizing materials used in transparent armor, 

helmet visors, aircraft canopies, etc., (Fig. 1.1) that are used to protect/shield personnel 

and/or critical equipment. Frequently, such transparent protective structures are expected 

to withstand shock and impact loads. The fact that failure of these materials could be 

catastrophic and involve human lives makes a strong case for having a method that is 

capable of directly measuring stress gradients in transparent materials. 
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Figure 1.1: Examples of transparent objects that are required to withstand impact loads. 
(Picture source: (a) www.hd-wallpapers.com, (b) www.selpro.com.hk/mainframe.htm, 

(c) www.conceptmobiles.com/transparent-crystal-cell-concept/  
(d) www.examiner.com/article/hail-damage-and-windshields.) 

 

This dissertation presents a new full-field optical measurement technique called 

Digital Gradient Sensing (DGS) capable of measuring angular deflections of light rays 

passing through a transparent planar object subjected to external loading. The angular 

deflections can be related to gradients of first invariant of stresses under plane stress 

conditions. The DGS technique uses the elasto-optic effect and 2D Digital Image 

Correlation (DIC) method in order to quantify the in-plane stress gradients. A brief 

(a) aircraft canopy 

(b) protective shield 

(d) windshield 

(c) transparent cellphone 
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survey of the previous studies on transparent engineering materials is presented next. 

Following that is a review of some of the other optical full-field methods and their 

applications to investigate engineering mechanics problems and limitations. 

 

 

1.2 Review of transparent engineering materials literature 

 

Increased safety concerns in domestic and defense related structures have recently 

made failure studies on materials used in transparent armor gain importance. Patel et al. 

[1] presented a comprehensive discussion of transparent armor materials and thereby 

make a case for in-depth research on this topic. Senf et al. [2] used a Cranz-Schardin 

camera to record crack growth in a transparent glass-ceramic impacted by blunt steel 

cylinders. Strassburger [3] subjected stacked layers of transparent ceramic, soda-lime 

glass and polycarbonate to ballistic impact to study the projectile-target interaction. He 

recorded the event using flash X-ray cinematography. Wright et al. [4] performed 

ballistic testing of thick and thin polycarbonate plates and identified different 

mechanisms of dynamic failure including elastic dishing, petalling, deep penetration, 

cone cracking and plugging. References [5, 6] analyze the mechanisms involved in the 

formation of conical chips in glass produced due to spherical indenters near the specimen 

edge. Irrespective of the indentation distance from the edge, early material failure has 

been shown to be characterized by a sub-surface median crack directly under the contact 

point. 
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Over the years, there has also been a great deal of interest in developing novel 

transparent composites for a variety of other engineering applications which could benefit 

from this research. Iwamoto et al. [7] performed transparency and thermal expansion 

studies of an optically transparent organic nano-fiber reinforced composite that has 

promising characteristics such as enhanced Young’s modulus and tensile strength. In 

1989, Pope et al. [8] measured mechanical properties such as modulus of rupture, 

compression strength and Vickers hardness for a silica gel – PMMA composite for 

various constituent volume fractions. Ravi [9] developed a transparent photoelastic 

composite that could be used as a model material to study stress fields in structures made 

of anisotropic materials. For the first time, Yano et al. [10] developed a transparent 

composite reinforced with networks of bacterial nano-fibers that possess mechanical 

strengths five times that of engineered plastics. The increased need for transparent 

structural composites has prompted an increased need to develop new techniques to study 

stresses. 

 

 

1.3 Brief review of existing full-field optical methods 

 

Some of the widely used optical methods to study solid mechanics problems in 

general and stress concentration problems in particular include photoelasticity, moiré 

methods, laser speckle photography/interferometry, coherent gradient sensing (CGS), 

optical caustics and DIC. Each of these methods serves to measure different mechanical 

quantities such as in-plane or out-of-plane displacements and in-plane stresses or stress 
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gradients. This section provides a brief overview of the above methods, their capabilities, 

limitations, and past applications to solid mechanics problems. 

 

 

1.3.1 Photoelasticity 

 

Photoelasticity is one of the popular optical methods used to visualize and 

quantify mechanical stresses. It requires the specimen to be transparent (or its coating to 

be reflective) as well as birefringent. Birefringence involves refraction of light by an 

optically anisotropic material into ordinary and extraordinary rays. Certain materials such 

as polycarbonate, epoxy, polyurethane, etc., when subjected to mechanical load, become 

optically anisotropic. That is, the material displays two refractive indices at each location. 

When the polarized light is passed through the stressed object, it gets resolved into 

ordinary and extraordinary rays along the two principal stress (1 and 2) directions. The 

two phase-separated rays when brought together using a plane or circular polariscope, 

optical fringe pattern representing contours of constant (1 - 2) can be visualized. By 

analyzing the fringe pattern, the state of stress in the loaded specimen can be assessed. 

 

Among its extensive range of applications, photoelasticity has been used to study 

problems involving dynamic events and stress concentrations. For example, in 1958, 

Wells and Post [11] used photoelasticity to obtain transient stress fields surrounding a 

propagating crack. de Graaf [12] used photoelasticity to witness stress waves around a 

dynamically growing crack in steel. Dally [13] also used photoelasticity to obtain 
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instantaneous stress fields around a growing crack-tip to establish a relationship between 

the instantaneous stress intensity factor and the crack propagation velocity. Recently, 

Ayatollahi and Nejati [14] used photoelasticity to study singular stress fields in V- 

notched Brazilian disks (see Fig. 1.2) subjected to two diametrically opposite loads. 

Photoelasticity also continues to be popular in the study of fast fracture/failure events [15, 

16].  

 

  

 
Figure 1.2: Isochromatic fringes in a diametrically loaded V- notched Brazilian disk 

(Reproduced from Ref. [14]) 

 

 

1.3.2 Laser speckle interferometry 

 

 When an expanded beam of coherent laser light is used to illuminate an optically 

rough surface – the mean pitch of the surface feature greater than the wave length of light 

– scattering occurs. The scattered wavelets from the object surface interfere among 
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themselves randomly produce a stochastic interference pattern called laser speckles in the 

space in front of the object surface. The speckle pattern that is present on a plane adjacent 

to the specimen surface gives it a granular appearance. The speckles adjacent to the 

specimen surface also follow the in-plane surface deformation. In practice, two exposures 

of speckles corresponding to reference and deformed states are recorded on the same 

film/sensor. After processing the film, the in-plane displacements can be extracted using 

optical spatial filtering or digital speckle correlation of reference and deformed images. 

This method initially found applications in areas such as vibration analysis of thin plates 

[17] and strain concentration measurements [18]. It continues to be popular in its modern 

day variation as electronic laser speckle interferometry. For example, it has recently been 

used for studying strain distribution in ply wood [19] and wood-fiber based composites 

[20]. 

 

 

1.3.3 Moiré methods 

 

When a periodic geometric pattern (such as equally spaced linear gratings) is 

superposed on a nearly identical pattern with a small difference in its period, an optical 

pattern referred to as moiré fringes appear. These occur due to optical interference of the 

two geometric patterns. The commonly used geometric patterns are lines, cross grid, 

concentric circles and radial lines, and are referred to as gratings. The moiré phenomenon 

can be used to measure in-plane or out-of-plane displacements. The resolution of the 

measured quantities directly depends on the pitch of the grating. Hence, when greater 
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displacement resolutions are desired, high density gratings (say > 200 lines per mm) are 

printed on object surface using an elaborate microlithography process. 

 

The in-plane moiré method is used to measure in-plane displacements on planar 

surfaces. Typically, one of the gratings is affixed to the specimen surface by either 

cementing or using microlithography. The reference grating is floated on the specimen 

surface and aligned such that a null field occurs under no-load condition. As the 

specimen deforms, the gratings attached to it also deforms relative to the reference 

grating, thereby forming moiré fringes. Alternatively, photographs of the reference 

grating can be superposed manually or digitally on the deformed gratings to obtain the 

moiré fringes. Theses fringes denote contours of constant in-plane displacements. 

 

Another variation of the moiré method is the so-called shadow moiré technique 

used to measure out-of-plane displacements. In this method, the reference grating is 

allowed to cast its shadow on the object surface using illumination at an angle to the 

observation direction. The shadow grating acts as the specimen grating, as shown 

schematically in Fig. 1.3 (top). When the specimen deforms, the master and shadow 

gratings interfere, resulting in moiré fringes, representing contours of constant out-of-

plane displacement, w as seen in Fig. 1.3 (bottom). These fringes can be recorded using a 

camera and analyzed. One significant limitation to this method is that the grating density 

cannot be too high (typically >200 lines per inch) as it will lead to increased diffraction 

effects and poor contrast between the reference and shadow grating. 
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Figure 1.3: Schematic of the shadow moiré method (top) and shadow moiré fringes of 
out-of-plane displacements in a clamped plate subjected to uniform pressure (bottom). 

 
 

When the specimen to be analyzed is large in terms of its in-plane dimensions, 

and a grating of the same size is not available or feasible, projection moiré method is 

used. It involves projecting a grating pattern onto the specimen surface at an angle while 

recording the specimen surface normally. 
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When higher resolution (sub-micron to microns) is required, moiré interferometry 

(or, high resolution moiré) is used. In this, the specimen is first printed with a diffraction 

grating that is highly reflective. Then, the specimen surface is illuminated by two 

coherent plane waves at two equal but opposite angles relative to observation direction 

such that the first order diffracted beam corresponding to the two plane waves emerge 

normally from the specimen surface along the observation direction. In the undeformed 

state, a null-field occurs in the field of view. When the specimen is deformed, the two 

first order diffracted rays interfere resulting in moiré fringes. These fringes represent 

contours of constant in-plane displacement. 

 

Moiré methods and moiré interferometry are used to study deformation of thin 

films and planar structures such as electronic packages. Park et al. [21] used micro-moiré 

interferometry to measure thermal shear strain that causes delamination between a chip 

and the adhesive in anisotropic conductive film (ACF) package. Rozenburg et al. [22] 

used moiré method to obtain displacement fields around a bi-material interface crack and 

obtained mixed-mode stress intensity factors. Savalia and Tippur [23] used moiré 

interferometry to study the evolution of debonding of a cylindrical glass inclusion ahead 

of a crack-tip in an epoxy matrix. 
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1.3.4 Schlieren photography 

 

 August Toepler invented Schlieren photography during 1859-1864 [24] and used 

it to study density gradients in transparent fluids. A Schlieren system (Fig. 1.4) consists 

of a beam of light illuminating an object. The object waves are then collected by a lens 

(or, mirrors) and imaged. At the focal plane of the imaging lens (or, mirror), a knife-edge 

is used to block half the collected rays. When the field of observation has uniform density 

distribution, the image will appear as a uniform light field. In the presence of density 

variations, the focal plane distribution of the light field is non-uniform (will not be a well 

defined focal spot). Blocking off one-half of the light field will result in an image with 

enhanced gray scales corresponding to the density variations in that medium. 

 

When a transparent fluid (say air) of uniform density exists in front of the object, 

the image recorded by the camera will be uniform. However, when the fluid density 

becomes non-uniform (due to temperature gradients or shock waves), light rays get 

refracted due to the resulting spatial variation of refractive indices. This in turn results in 

an enhanced contrast in the image recorded by the camera. A Schlieren image revealing 

the density variations surrounding an air jet (J) in a cross-flow reproduced from Ref. [25] 

is shown in Fig. 1.4. This method can also be used for studying structural mechanics 

problems that involve transparent objects. One example is the use of Schlieren optics by 

Forde et al. [26] to investigate shock waves near fracture fronts in impact loaded 

borosilicate glass. 
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Figure 1.4: Schematic of Schlieren system (top) and Schlieren image of air jet (J) 
interacting with a supersonic cross-flow (bottom, Reproduced from Ref. [25]). 
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1.3.5 Coherent Gradient Sensing (CGS) 

 

 CGS is a coherent light interferometer for quantifying the refractive index and/or 

thickness changes in transparent planar solids to produce contours of constant angular 

deflections of light rays passing through the material. It can also be configured for 

opaque objects that are specularly reflective. Like photoelasticity and moiré methods, 

CGS is insensitive to rigid body motions. The experimental setup involves the specimen, 

two Ronchi gratings (separated by a known distance) of identical pitch with their 

principal directions parallel to each other, and a recording device (camera). Optical 

spatial filtering of the signal is also integral to the apparatus. A collimated beam of laser 

light is allowed to pass through the specimen (object waves) under load. The light rays 

emerging from the back of the specimen are diffracted into several wavelets by the first 

grating. All the diffracted waves undergo one more diffraction by the second grating. The 

interference occurring between the two adjacent parallel waves beyond the second 

grating is selectively acquired by filtering out all other waves using optical spatial 

filtering. The resulting interference fringes correspond to contours of angular deflections 

of light rays. The angular deflections can further be related to in-plane gradients of the 

first stress invariant.  

 

 The ability of CGS to measure stress gradients made it an important measurement 

tool particularly in the field of fracture mechanics, as stress gradients can be used to 

quantify stress intensity factors for a crack. Tippur and Rosakis [27] were the first to 

implement CGS to study crack growth problems. These authors, in subsequent years and 
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along with others have used CGS to study a variety of fracture problems [28-30]. Figure 

1.5 shows CGS fringes of stress gradients along the crack direction in a PMMA sheet 

subjected to mode-I fracture experiment, as presented by Tippur et al. [28]. Very 

recently, Budyansky et al. [31] have employed CGS to obtain micro-scale curvatures. 

Dhanotia and Prakash [32] have presented an interesting work on CGS, where they have 

demonstrated its feasibility to test the degree of collimation of an optical beam. 

 

        

Figure 1.5: CGS fringes of stress gradients along (left) and perpendicular (right) to crack 
direction in a mode-I fracture specimen made of PMMA. (Reproduced from Ref. [28]). 

 

 

1.3.6 Method of caustics 

 

 The method of caustics is not a full-field optical method in a conventional sense. 

A caustic curve is a dark/shadow region surrounded by a bright optical curve, cast behind 

a deformed transparent object illuminated with a collimated light beam. In Fig. 1.6, let 

the dashed lines represent the deformed shape of a transparent planar specimen. When a 
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collimated beam of light passes through this deformed region, light rays deflect away 

from the optical axis in this case, and intersect on a curve behind the specimen. The 

region inside this curve is dark as it receives no light, and is called the shadow spot. The 

deflection of light rays occurs due to the local refractive index change as well as the 

thickness change in the planar specimen. The size of this caustic curve depends on the 

distance between the specimen and the screen, as well as the local stress state (and hence 

the stress intensity factor in a fracture mechanics problem). 

 

 

 

 

 

 

 

 

 
 

Figure 1.6: Schematic representing the phenomenon of caustics (top, dashed lines 
represent deformed shape of the transparent specimen) and evolution of the caustic with 

increased load near a crack-tip (bottom, reproduced from Ref. [33]). 
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A monograph edited by Sih [34] presents an elaborate description of the method 

and its applications to fracture mechanics problems. Zender and Rosakis [35] 

demonstrated the applicability of the method of caustics to obtain the J-integral for planar 

cracked bodies with elastic-plastic yielding. Yao et al. [33] used caustics measurements 

to obtain crack-tip stress intensity factors in functionally graded materials; representative 

images of caustics from their work are reproduced in Fig. 1.6. The presence of triaxial 

stress zone near a crack-tip and the associated difficulty to position the initial curve (that 

produces the optical caustic) outside the zone of triaxiality during stress-wave loading 

event led to a shift away from using this method [36]. 

 

 

1.3.7 Digital image correlation (DIC) 

 

DIC is based on the principle of locating a point in a deformed image relative to 

its location in the undeformed image, and computing the relative displacement 

components. The method requires the object surface to be coated with a random gray-

scale pattern (also called a speckle pattern) and uses ordinary white light for illumination. 

The speckle pattern on the specimen under no-load conditions is first photographed using 

a digital camera, which serves as the reference image. After the application of load, the 

speckle pattern distorts. This distorted pattern recorded by the camera serves as the 

deformed image. The two images are then segmented into an array of rectangular sub-

images, each sub-image containing a rectangular array (say 20 × 20) of pixels as shown 

in Fig. 1.7. Each sub-image represents an intensity distribution. Now, for every sub-
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image (intensity distribution) in the reference image, its location in the deformed image is 

searched and located. If a sub-image centered at O in the undeformed image has 

translated such that its new center becomes O' in the deformed image, the displacement 

components u and v can be obtained using affine coordinate transformations. 

   

 

 

 

 

 

Figure 1.7: DIC principle – top: segmentation of the reference and deformed images into 
sub-images, bottom: displacement mapping between undeformed and deformed sub-

images. 
 

 

The method of DIC has gained prominence in the past decade as a metrology tool 

for investigating solid mechanics problems. The recent advances in digital photography, 

the simplicity of surface preparation and relatively low cost of implementation, combined 

with ubiquitous computational capabilities, are some of the major factors for its current 
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popularity. Further, DIC methods are capable of accurate measurement of displacements 

limited only by the experimental parameters such as pixel resolution of the camera, 

optical magnification, gray scale depth (texture, decoration) and image correlation 

algorithm employed. The work of Chao et al. [37] to study deformations around a 

dynamically propagating crack with the aid of a Cranz-Schardin film camera is an early 

attempt in the area of dynamic fracture mechanics. They digitized analog film recordings 

using a scanner to correlate successive images and estimate displacements.  With the 

advent of modern digital high-speed cameras offering recording rates from a few 

thousand to a few million frames per second, there has been a significant interest in this 

method for studying highly transient problems [38-40]. 

 

 

1.4 Objectives 

 

 The primary objective of this dissertation is to establish the DGS method as a 

viable tool for measuring angular deflections of light rays propagating through 

transparent objects subjected to external loads and quantifying the local stress gradients. 

The following are the major items to be addressed: 

 

 Develop the governing equations for the DGS method that relate the specimen’s 

elasto-optic effect to the physical quantity to be measured namely, the angular 

deflections of light rays. 
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 Relate angular deflections of light rays to the mechanical fields namely, the two 

orthogonal in-plane stress gradients. 

 Develop a viable experimental apparatus to implement DGS method on transparent 

polymers under static and dynamic loading conditions. 

 Perform calibration experiments using well defined wave fronts to validate the 

working principle of DGS. 

 Examine the effects of different experimental parameters such as the depth of field, 

sub-image size, target distance, optical uniformity of the medium, etc., on 

measurements. 

 Conduct quasi-static experiments for the stress concentration problem of a line-load 

acting on the edge of a planar sheet, and measure light ray deflections near the load 

point. Use the angular deflection fields to determine the stress gradient fields around 

the stress concentration. Investigate the feasibility of estimating the stress field from 

the measured stress gradients. 

 Develop a long-bar experimental setup capable of dynamically loading the edge of a 

planar object. Using the setup, conduct a dynamic line-load experiment on a 

transparent planar sheet, measure instantaneous angular deflection fields near the load 

point, and compare the results with the ones from finite element (FE) simulation of 

experiments. 

 Demonstrate the feasibility of DGS to study deformation fields around a quasi-

statically loaded crack. Using the measured fields, extract the crack-tip stress 

intensity factors and examine the results relative to the analytical solutions. 
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 Perform dynamic fracture experiments using DGS to measure deformation fields 

around the crack-tip, both before and after crack initiation. Use the crack-tip field 

equations to extract instantaneous stress intensity factors and obtain fracture 

parameter histories. Compare measurements with FE results until crack initiation. 

 Using the long-bar setup previously developed, conduct a dynamic experiment where 

the edge of a planar specimen is subjected to square punch impact. Using the punch-

tip – crack-tip analogy, extract instantaneous stress intensity factors at the punch 

corner. 

 Examine the feasibility of extending DGS to reflective objects to study surface slopes 

and curvatures in thin structures. 

 

 

1.5 Organization of the dissertation 

 

 This dissertation is organized into 10 chapters including the current one. Chapter 

2 presents the experimental setup, working principle and the derivation of governing 

equations for the DGS method. Chapter 3 presents a calibration and benchmark 

experiments to validate the method. The implementation of the DGS method to a stress 

concentration problem, where angular deflections of light rays produced in a transparent 

PMMA specimen subjected to a quasi-static line-load on its edge is presented in Chapter 

4. Subsequently, Chapter 5 will include the dynamic counterpart of the line-load 

experiment, where the development of the long-bar setup is discussed. 
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 Chapters 6 and 7 are dedicated to quasi-static and dynamic fracture experiments, 

respectively, in which crack-tip stress intensity factors are obtained from the measured 

angular deflection fields. Chapter 8 presents the dynamic punch experiment performed 

using the long-bar setup. The last of the experiments correspond to the ones performed to 

demonstrate the feasibility of DGS to measure surface slopes of reflective surfaces, and 

are presented in chapter 9. Major conclusions of this work are presented in Chapter 10. A 

few miscellaneous topics and a few promising applications of the DGS method are 

presented in the Appendix. 
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2 

The Digital Gradient Sensing (DGS) Method: 
Experimental Details and Working Principle 

 

 This chapter deals with the working principle and an analysis of the DGS method 

for experimental mechanics. First, the details of a typical experimental setup needed to 

implement the method are provided. A ray analysis that takes into account the elasto-

optic effect exhibited by transparent objects under stress is presented. Using simplified 

2D assumptions, the optical measurements are subsequently linked to the mechanical 

fields. 

 

 

2.1 Experimental setup 

The schematic of the experimental setup for DGS method is shown in Fig. 2.1. It 

consists of a uniformly illuminated speckle target, a planar transparent test object and a 

digital camera. The target is a planar surface coated with a random speckle pattern 

produced by spraying it with fine mists of black and white paint. The transparent 

specimen to be tested is placed in front of and parallel to the target plane at a known 

distance   (= distance between the mid-plane of the specimen and the target plane). A 

camera fitted with a relatively long focal length lens is placed behind the specimen at a 
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large distance L (>> ) and focused on the target plane through the specimen in the 

region of interest. 

 

 

Figure 2.1: Schematic of experimental setup for Digital Gradient Sensing (DGS) method 
to determine planar stress gradients in phase objects. 

 
 

 The target is uniformly illuminated using two white light sources. The 

illumination sources are situated sufficiently far away from the specimen to minimize 

thermal currents that may distort the speckle images and/or heat the specimen during the 

experiment. The digital camera settings and lens parameters are selected such that the 

aperture is sufficiently small for achieving a good depth of field to keep speckles on the 
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target in focus, whilst keeping the salient features of the specimen plane (say, specimen 

edges, load point, etc.) discernible in the recorded image. 

 

 

2.2 Working principle 

In Fig. 2.1, let the in-plane coordinates of the specimen and target planes be 

denoted (x, y) and (x0, y0), respectively, and the optical axis of the setup coincide with the 

z-axis. Let the speckles on the target plate be photographed normally through the 

transparent specimen of nominal thickness B and refractive index n in its reference (or, 

no-load) state. That is, a generic point P on the target plane, corresponding to point O on 

the specimen (object) plane, is recorded by the camera in the reference state. When 

subjected to mechanical load (say, due to force F acting on the edge of the specimen in 

Fig. 2.1), both refractive index and thickness changes occur throughout the specimen 

depending on the local state of stress. A combination of these changes causes light rays to 

deflect. That is, the light ray OP  in the reference/undeformed state now corresponds to 

OQ  after the specimen deforms. By quantifying the spatial vector PQ  and knowing the 

separation distance  between the mid-plane of the specimen and the target, the angular 

deflection   of the light ray relative to the optical axis can be determined. 

 

Let ˆ ˆ,i j and k̂  denote unit vectors for the Cartesian coordinates defined with 

point O as the origin. When the specimen is free of any in-plane deformation, the unit 

vector k̂  is collinear with OP  bringing point P(x0, y0) to focus when imaged by the 

camera via point O(x, y). Upon deformation, the optical path is locally perturbed, thereby 
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bringing a neighboring point Q( 0 0,x yx y   ) to focus. Here x  and y  denote 

components of the vector PQ  in the x- and y-directions. 

 

 

Figure 2.2: Schematic of the working principle of DGS. 

 
 

Let the unit vector corresponding to the perturbed optical path OQ  be, 

  ˆ ˆˆ ˆd i j k     , (2.1) 
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where  ,   and   are the direction cosines of d̂ , and, x  and y  are the components of 

the angular deflection   in the x-z and y-z planes, respectively, as shown in Fig. 2.2.If the 

initial thickness and refractive index of the specimen are B and n, respectively, the optical 

path change, S, for symmetric deformation of the specimen about the mid-plane in the z-

direction, is given by the elasto-optical equation [28], 

        
1 2 1 2

0 0
, 2 1 2zzS x y B n d z B B n d z B      . (2.2) 

 

The two terms in the above equation represent the contribution of normal strain in 

the thickness direction, zz , and the change in the refractive index, n , to the overall 

optical path change, respectively. The refractive index change caused by the local normal 

stress in the specimen is given by the well known Maxwell relation [41],  

    1, xx yy zzn x y D      , (2.3) 

where D1 is the stress-optic constant and , , andxx yy zz   are normal stresses in the x-, y- 

and z-directions, respectively Using the generalized Hooke’s law for an isotropic, linear 

elastic solid, the normal strain component zz  can be related to normal stresses 

1
( ) .zz zz xx yyE

           
 That is, Eq. (2.2) can be written as, 

               
1 2

1 20
2 1 1 zz

xx yy

xx yy

S B D n D d z B
E

   
  

                        
 , (2.4) 
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where,    2 1 11 1D D n E D n E             , E is the Young’s modulus and   is 

the Poisson’s ratio of the transparent solid. In the above equation, the term 

 2
zz

xx yy

D


  

 
 
  

 represents the degree of plane strain, which can be neglected for 

situations where plane stress assumptions (in-plane dimensions >> thickness of the 

specimen and 0zz  ) are reasonable. Thus, for plane stress conditions, Eq. (2.4) reduces 

to, 

  ( , ) xx yyS x y C B    , (2.5) 

where,   1 1C D E n     is the elasto-optic constant of the transparent material. In 

Eq. (2.5), the stresses xx and yy denote integrated values over the specimen thickness. 

The angular deflection of a generic light ray is caused by the change in the optical path 

due to elasto-optic effects. Hence, the propagation vector can be related to the optical 

path change as [28], 

 
   ˆ ˆˆ ˆS S

d i j k
x y

  
  

 
 (2.6) 

for small spatial gradients. From Eqs. (2.1), (2.5) and (2.6), for small angular deflections, 

the direction cosines   and   are proportional to the in-plane stress gradients as, 

         
   xx yyS

C B
x x

 


 
 

 
     and     

   xx yyS
C B

y y

 


 
 

 
. (2.7) 
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A geometric analysis of the perturbed ray OQ   reveals the relationship between 

direction cosines  and  and angular deflection components x and y , respectively. 

Referring to Fig. 2.2, the perturbed ray subtends solid angles x  and y  with the x- and y-

axes. The angular deflections x and y  as defined earlier are also shown in Fig. 2.2 along 

with their resultant  . With reference to the planes defined by OQC, OQA, OPE and 

OPD, 

                        
cos x

x R

   ,
 
cos y

y R


   , tan x

x

 


 and tan y
y


 


 ,   (2.8) 

where R  2 2 2
x y      is the distance between O and Q. From the above, the 

expressions for the angular deflection components can be obtained as, 
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 (2.9) 

It can be noted from Eqs. (2.9), that for small angular deflections (or, ,x y    ), the 

expressions reduce to cosx x     and cosy y    . Thus, for the case of small 

angular deflections of light rays, Eqs. (2.7) reduce to 

 

 
,

,

xx yyx
x

xx yyy
y

C B
x

C B
y





  

 
 

 
  
 

 
  
 

     (2.10) 
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which serve as the governing equations for the method and can be used to obtain stress 

gradients when specimen parameters andC B are known.  

 

The above governing equations reveal that the angular deflections x and y , and 

hence stress gradients in the x- and y-directions can be obtained by quantifying local 

displacements ,x y   values first and then dividing them by the separation distance  . 

The displacements ,x y 
 
can be evaluated by carrying out a conventional 2D digital 

image correlation (DIC) between speckle images recorded in the reference and deformed 

states of the specimen. Hence the new method is aptly named Digital Gradient Sensing 

(DGS). A subtle but important point to note here is that displacements ,x y  are 

evaluated on the target plane whose coordinates are (x0, y0), but can be replaced with the 

specimen plane coordinates (x, y) for L  (see, Fig. 2.1). Further justification of this 

assumption is provided in the next chapter. 

 

From Eq. (2.10) it can be noted that the sensitivity of measurement of angular 

deflections x and y  
is dependent on two parameters x (or y) and   which provides 

added flexibility. The sensitivity of in-plane displacement measurement (of x or y) is 

typically dictated by a number of parameters that affect 2D digital image correlation 

methods including speckle characteristics/size, pixel size, sensor resolution, image 

processing algorithm employed, etc. The discussion of those issues is avoided here and 

can be found elsewhere [42]. For the speckle parameters used in this study, in plane 
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displacement resolution is ~3 m as demonstrated in a few earlier works of Tippur and 

his co-workers [38]. 

 

It is also interesting to note that Eq. (2.10) shows that DGS method measures 

quantities identical to the ones measured by the Coherent Gradient Sensing (CGS) 

method [29, 38, and 39]. However, unlike CGS, DGS can be used to measure two 

orthogonal stress gradients in transparent solids simultaneously and does not use any 

coherent optics. This capability can be exploited for determining stresses ( xx yy  ) 

from measured stress gradients, as will be shown later in Chapter 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

32 
 

 

 

 

3 

Calibration and Benchmark Experiments 

 

 

 This chapter presents a series of experiments conducted to validate the principle 

behind DGS, and to assess the influence of various experimental parameters on optical 

measurements. The DGS method is first verified by measuring a well characterized 

angular deflection field produced by a thin plano-convex lens. Following that is a 

discussion of the influence of the perspective effects. Later, the effects of depth of field, 

target distance and sub-image size used on measurements are presented. The chapter 

concludes with a discussion on the role of optical homogeneity of a planar specimen on 

measurement accuracy using DGS. 

 

 

3.1 Angular deflection fields due to a thin plano-convex lens 

 

To verify the DGS method, first a well-defined angular deflection field of light 

rays produced by a plano-convex lens was studied using the setup shown in Fig. 3.1. A 

target plane with the speckle pattern was placed at a relatively large distance (L ~ 1000 

mm) from a recording camera (Nikon D100 digital camera fitted with a 28-300 mm lens 
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using an extension tube and aperture setting #11). A reference (undeformed) image of the 

speckle pattern was recorded first. Then, a thin plano-convex lens of a relatively long 

effective focal length, 1000lf  mm and clear aperture of 80 mm diameter was 

introduced between the camera and the speckle plane. The choice of a long focal length 

lens produced relatively small angular deflections of light rays similar to the ones 

expected in the mechanical tests to be performed on transparent polymer sheets. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3.1: Schematic of the setup used to measure angular deflections of light rays 
caused by a spherical lens. 

 
 

The distance from the effective center of the lens to the speckle plane was 

19.4  mm. Care was exercised to align the center of the plano-convex lens close to the 

optical axis of the camera. A second image of the speckle pattern, this time through the 

plano-convex lens, was recorded. The size of the image recorded by the camera was 

approximately 60 40 mm2 rectangle in the central region of the plano-convex lens. The 
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recording of the reference and perturbed speckle fields used a pixel resolution of 1504 x 

1000 pixels (1 pixel = 39.5 m on the target plane). The second speckle image can be 

considered to be the “deformed” or “perturbed” image whose angular deflection fields are 

given by, 

 
2 2

2x
l l

x y x

x f f


  
    

     and     
2 2

2y
l l

x y y

y f f


  
    

, (3.1)
 

 

where 
2 2

2 l

x y

f

 
 
 

 describes the spherical wave-front due to the plano-convex lens, and x  

and y  are the angular deflection fields with respect to the unperturbed speckle image. As 

evident from Eqs. (3.1), the two orthogonal angular deflection fields are linear functions 

of the lens plane coordinates, x and y. Hence, the contours of constant x  and y   should 

be equally spaced with their principal directions in the x- and y-directions, respectively. 

To obtain the x  and y  fields, the in-plane displacement fields (x and y) were first 

extracted from images by performing 2D digital image correlation between the reference 

and perturbed speckle recordings using a commercial DIC software, ARAMIS. During 

the analysis, the images were segmented into 64 x 91 non-overlapping facets or sub-

images resulting in an array of 64 x 91 data points. For small in-plane displacements (x 

and y << ) angular deflection fields were obtained as,
 

x
x

 


    and    y
y


 


. (The 

maximum values of x and y were less than 300 m.) 
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Figure 3.2: Contour plots of angular deflections (top to bottom) x, y and fields caused 
by a plano-convex spherical lens. Contour interval = 2.5 x 10-3 radians. (The heavy dot in 

the angular deflection field is due to a reference mark on the speckle plate.) 
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The contour plots of the experimentally obtained x  , y  and the resultant angle 

   2 2
x y    fields are shown in Fig. 3.2. As predicted, the contours of x  and y  are 

equidistant parallel lines along the x- and y-directions, respectively, and that of   are 

equally spaced concentric circles centered on the optical axis of the lens. If the angular 

deflection fields are known, it is also possible to quantify the focal length of the plano-

convex lens using Eq. (3.1) as, l
x y

x y
f

 
  . For this experiment, the measured focal 

lengths were 973 32  mm from the x field and 988 42  mm from the y  field. These 

are within 3% of the manufacturer specified focal length of 1000 mm for the lens. 

 

 

3.2 Perspective effect 

 

As noted in the last section, the camera is focused on the target plane through the 

transparent object. Yet, the analysis uses the coordinates of the specimen’s (phase object) 

mid-plane, situated at a distance  from the target, interchangeably. This introduces a 

perspective effect. That is, a point O(x, y) on the specimen corresponds to a point P(x0, y0) 

on the target plane as shown in the 2D schematic (see, Fig. 3.3). This can be taken into 

account by a mapping function between the specimen and the target planes. With 

reference to Fig. 3.3, tan s ty y

L L
  

 
, where ys and yt are coordinates of the 

specimen and target planes. This can be used to account for the coordinates of the 
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specimen plane as s t

L
y y

L
     

. A similar mapping function for the horizontal 

coordinate is obvious and implied. 

 

Using these relations, the contours of x  and y  for the plano-convex lens were 

obtained and are shown (broken lines) in Fig. 3.4 along with the contours without any 

correction (solid lines). Evidently, for the chosen experimental parameters, the 

differences are rather negligible in the entire field. The errors close to the optical axis are 

minimum whereas they increase as one moves away from the optical axis. 

 

 

Figure 3.3: Schematic for mapping the coordinates of specimen and target planes. 
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Figure 3.4: Contour plots of angular deflections of corrected (broken lines) and 
uncorrected (solid lines) x (top) y (middle) and (bottom)fields caused by a long focal 

length plano-convex lens. Contour interval = 2.5 x 10-3 radians. 
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3.3 Optical homogeneity and measurement accuracy 

 

The DGS method assumes optical homogeneity of refractive index and specimen 

thickness in the unloaded/reference state. Mass produced materials (such as PMMA 

sheets used in this work) could have spatial variations of these parameters or an initial 

residual stress state when machined from a large sheet stock. To examine the role of such 

variations on measurement errors, an experiment was carried out on a PMMA specimen 

using a setup shown schematically in Fig. 3.5 but without applying any mechanical load. 

 
 

 

Figure 3.5: Schematic of the experimental setup used to check for residual stresses in 
transparent planar specimens. 
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distance of ~1575 mm from a recording camera (Nikon D3000 digital camera fitted with 

camera 
PMMA

P 



yo 

z 

L

O



ap
er

tu
re

 

tr
an

sl
at

io
n 

speckle 
target 

y 



 

40 
 

a 70-300 mm lens (aperture setting #11) and an extension tube. Then, the specimen, a 

clear, 9.3 mm thick PMMA plate, was mounted on a multi-axis translation stage with 

micrometer adjustments and introduced between the camera and the speckle plane. A 40 

mm square window/aperture, placed in front of the specimen, was used to fix the region 

of observation during the test. 

 

The distance from the mid-plane of the specimen to the speckle plane,  was 30 

mm. The camera was focused on the speckle plane through the specimen and a reference 

image of the speckle pattern was recorded. Then, while the target plate held stationary, 

the specimen alone was translated horizontally in steps of 1 mm and speckles were 

recorded at each step. (The choice of these translational steps was based on the maximum 

anticipated displacement due to mechanically imposed loads, expected not to exceed a 

couple of mm.) The same was repeated in the vertical direction as well. A pixel 

resolution of 1936 x 1296 pixels (1 pixel = 38 m on the target plane) was used for 

recording the speckles. In these translated positions, the speckles were recorded through 

points of the specimen different (shifted) from the corresponding points in the reference 

position. The presence of any non-homogeneity in the specimen between these shifted 

positions would cause the light rays to deflect. Hence, the images recorded at each 

translational step were considered ‘perturbed’ or ‘deformed’ images relative to the initial 

recording. By correlating the speckle images from the reference and perturbed states, the 

optical uniformity of the specimen was assessed. 
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Figure 3.6: Contour plots of x (top) and y (bottom) fields corresponding to a horizontal 
specimen translation of 2 mm of the PMMA specimen. Contour labels are in radians. 
 
 

The horizontal and vertical angular deflection fields (x and y) for one case 

corresponding to a horizontal translation of 2 mm is shown in Fig. 3.6. Clearly, the 

resulting field shows random angular deflections variation with the largest angular 

deflection magnitude of less than 1×10-4 radians. Thus, the accuracy of angular deflection 

measurements based on optical homogeneity is limited to values above this threshold. 
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Further, the displacement measurement accuracy based on the type of speckles, the 

recording parameters, and the correlation algorithm used in this study is 2-3 m [38, 39].  

This also translates into an angular deflection measurement accuracy of 0.5×10-4 - 1×10-4 

radians when the separation distance () between the target and the specimen is in the 20-

30 mm range. Thus, for the measurements to be credible, the load induced angular 

deflections during experiments should exceed this value. 

 

 

3.4 Effect of depth of field 

 

Being a method that uses digital image processing, the accuracy of measurements 

using DGS depends on the camera parameters used. One significant parameter that 

potentially affects the images captured is the lens aperture used during recording of the 

speckle field. It is common knowledge that to obtain a good depth of field a narrow 

aperture is required. This would diminish the light intensity recorded over the exposure 

time. Also, narrow apertures could limit / block light rays traveling at larger angles 

relative to the optical axis from reaching the image or sensor plane. This produces a 

shadow spot in regions of severe stress concentration. Accordingly, to study the effect of 

aperture size on angular deflection measurements, a stress concentration experiment on a 

PMMA sheet of 9.2 mm thickness was performed using different lens aperture settings. 

The stress concentration is produced by applying a line-load of 1000 N on an edge of the 

specimen resting on a rigid platform along the other edge, resulting in steep stress 

gradients near the loading point. 
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Figure 3.7: Deformed images of a PMMA sheet subjected to line-load captured using 
apertures 9 (top) and 16 (bottom). 

 

The speckle patterns were recorded before and after the application of load. Two 

images of the speckle pattern corresponding to the deformed state are shown in Fig. 3.7. 

The influence of the aperture size on light intensity and depth of field are self evident 

(note the sharpness of the speckles as well as the focus of the loading pin between the 
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two images). Also evident is a small change in the size of a semi-circular region of severe 

angular deflections directly under the loading point / pin. The corresponding undeformed 

and deformed images were correlated using DIC to obtain x and y throughout the field. 

The process was repeated for three different aperture stops (F# = focal length/aperture 

diameter) 9, 11 and 16. For each case, the angular deflection contours (x and y) were 

obtained from the measured x and y values. Figure 3.8 shows the contours 

corresponding to F#’s 9 and 16 overlaid on top of each other. Evidently, the contours 

corresponding to the different lens apertures are in good agreement with each other. The 

differences in the contours are attributed to the practical issue of being able to position 

the specimen exactly the same way for every repetition. 

 

For a closer analysis, the radial variation of x along 0˚ and y along 45˚ with 

respect to the x-axis, are plotted for all three aperture cases in Fig. 3.9. Evidently, the 

agreement among the curves is rather good even near the load point which is closer to the 

optical axis of the camera, whereas, the differences among the curves are relatively more 

farther away from the optical axis. This may be attributed to the quality of focus achieved 

using different apertures. In addition, it could also be because of the lower magnitudes of 

angular deflections in the far field that are prone to larger errors. 
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Figure 3.8: Contours of x (top) and y (bottom) obtained using different F#’s (9 and 16) 
corresponding to a PMMA sheet subjected to line-load on one of its edges. 
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Figure 3.9: Radial variation of x  along 0˚ (top) and y  along 45˚ (bottom) obtained 
using different F#’s (9, 11 and 16) from a PMMA sheet subjected to line-load on one of 

its edges. 
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3.5 Effect of sub-image size 

 

 DGS relies on 2D DIC for evaluating displacement components x and y. 

Therefore, the accuracy of the measured angular deflections and hence stress gradients 

depends on the parameters used for performing image correlation. The size of the sub-

image (Section 1.3.7) used during image correlation, therefore needs to be examined as 

well. The image processing software, ARAMIS used for all the image processing done in 

this work recommends a sub-image size of 15 × 15 pixels. However, in order to verify 

this default choice, it was necessary to correlate a single undeformed / deformed image 

pair using different sub-image sizes and compare the results. This was accomplished by 

subjecting a PMMA sheet (thickness B = 9.4 mm) to a line-load of 1077 N on one of its 

edges causing a severe stress gradient field, and comparing the angular deflections 

obtained using four different sub-image sizes. The sub-image sizes used were 10 × 10, 15 

× 15, 20 × 20 and 25 × 25 pixels without any overlap. Representative x and y contours 

corresponding to the 10 × 10 and 25 × 25 sub-image sizes are shown in Fig. 3.10 overlaid 

on each other. Aside from the obvious difference in greater computational effort when 

more subsets are present for an image, the overall agreement between the two sub-image 

sizes is good. The smaller sub-image size results in greater noise in the measurement 

when compared to the larger sub-image size that produces smoother contours due to 

higher certainty in relative speckle location caused by deformation. The larger sub-image 

also produces a higher degree of averaging while generating contours due to a smaller 

data array as opposed to the one with smaller sub-image size. 
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Figure 3.10: Contour plots of x (top) and y (bottom) obtained using different sub-image 
sizes (10 × 10 and 25 × 25 pixels) corresponding to a PMMA sheet subjected to line-load 

on one of its edges. 
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Figure 3.11: Radial variation of x  along 0˚ and y along 45˚ obtained using different 
sub-image sizes (10 × 10, 15 × 15, 20 × 20 and 25 × 25 pixels) corresponding to a 

PMMA sheet subjected to line-load on one of its edges. 
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Furthermore, there is a small offset in the two sets of contours in Fig. 3.10. Prior 

to discussing the reason for this apparent offset, it is to be understood that a data point in 

the contour plot corresponds to a sub-image, and not a pixel. Therefore, the spatial 

resolution or the accuracy of manually selecting a point in the image is influenced by the 

sub-image size. In other words, smaller the sub-image size, greater is the ability to 

accurately represent a point in the specimen. In the current scenario of the line-load 

problem, the origin (loading point) needs to be selected to plot the contours in the 

specimen coordinates. It is this difference in the spatial accuracy of selecting the origin 

that caused the apparent offset. The radial variation of x along 0˚ and y along 45˚ with 

respect to the x-axis are plotted in Fig. 3.11. Clearly, the agreement among the curves is 

very good. After careful consideration, it was determined that a sub-image size of 15 × 15 

pixels offered reasonable spatial accuracy without introducing noise, and became the 

choice for all experiments. 

 

 

3.6 Effect of target distance 

 

Another important parameter used in DGS experiments is the separation distance, 

 between the specimen’s mid-plane and the speckle target. It is understood from Fig. 2.2 

that smaller the , smaller will be x and y, the basic quantities measured during the 2D 

DIC process. This in turn results in diminished measurement accuracy for smaller values 

of x and y, which carries over to the angular deflections. 
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Figure 3.12: Contour plots of x (top) and y (bottom) obtained using different  (22.7 
and 41.9 mm) corresponding to a PMMA sheet subjected to line-load on one of its edges. 
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Figure 3.13: Radial variation of x along 0˚ and y along 45˚ obtained using  (22.7, 30.0 
and 41.9 mm) corresponding to a PMMA sheet subjected to line-load on one of its edges. 
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In order to examine this effect, a PMMA sheet of thickness B = 9.4 mm was 

subjected to the line-load experiment similar to the one in Section 3.5 using three 

different  values, 22.7 mm, 30 mm and 41.9 mm. The load applied was 1000 N which 

introduced a stress gradient field near the loading point. The reference and deformed 

image pairs corresponding to the three values were correlated using DIC. Figure 3.12 

shows the contours of x and y corresponding to the smallest and largest 's superposed 

on one another. The noisier contour lines correspond to  = 22.7 mm, which is to be 

expected as discussed earlier in this section. Figure 3.13 shows the radial variations of x 

and y along 0˚ and 45˚, respectively. The noise corresponding to  = 22.7 mm observed 

in the contour plots is evident in Fig. 3.13 as well. Particularly, it can be seen that the 

noise is pronounced in regions of relatively low angular deflection values (farther from 

the stress riser). Therefore, during analysis, an appropriate should be chosen guided by 

the expected angular deflection magnitudes as well as the accuracy offered by the DIC 

process. 
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4 

Line-Load on the Edge of a Planar Sheet: Static Case 

 

 

 The study of a stress concentration problem using DGS is documented in this 

chapter. Details on the experimental setup, measurements and comparison between 

measured and analytical quantities are included. A transparent planar sheet of PMMA is 

subjected to a quasi-static line-load on its edge which resulted in a singular stress field 

near the loading point. This stress gradient field is measured using the DGS method. 

Subsequently, measurements are used to estimate stresses in the load point vicinity with 

the aid of the analytical solution for the problem. The feasibility of estimating the stress 

field via numerical integration of either of the two orthogonal stress gradients is also 

examined.  

 

 

4.1 Experimental details 

 

The specimen used for this experiment was a 180 x 69.5 mm2 rectangular sheet of 

clear PMMA (Young’s modulus = 3.3 GPa, Poisson’s ratio = 0.35 and C ~ -0.90×10-10 

m2/N) of thickness (B) 9.4 mm. A photograph of the experimental setup is shown in Fig. 
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4.1. The specimen was placed on a flat rigid platform and subjected to line-loading using 

a cylindrical steel pin (diameter 7.7 mm). An Instron 4465 universal testing machine was 

used for loading the specimen in displacement control mode (cross-head speed 0.005 

mm/sec). A target plate painted with random black and white speckles was placed at a 

distance = 30 mm away from the specimen mid-plane (Fig. 2.1). A few heavy black 

dots were marked on the speckle plane to relate the image dimensions to the actual 

specimen/target dimensions. 

 

A Nikon D100 digital SLR camera with a 28-300 mm focal length lens (aperture 

setting #11) and an extension tube were used to record speckles through the specimen in 

the load point vicinity. The camera was situated at a distance (L) of approximately 1040 

mm from the specimen. A reference image of the target was recorded through the 

transparent specimen in the region of interest at a small load of a few Newtons (< 10 N). 

As the load was increased gradually, speckle images were recorded using time-lapse 

photography (12 frames per minute). One of the speckle images in the load point vicinity 

corresponding to a 3520 N load is shown in Fig. 4.2. It shows that due to specimen 

deformation, the speckles are noticeably blurry very close to the loading point whereas 

they appear relatively unaffected at far-away locations. The digitized speckle images 

(1504 x 1000 pixels) recorded at different load levels were correlated with the one 

corresponding to the reference condition using a 2D digital image correlation software 

ARAMIS®. As described previously, an array of in-plane speckle displacements on the 

target plane (and hence the specimen plane) was evaluated and converted into local 

angular deflections of light rays x  and y . A facet/sub-image size of 15 x 15 pixels (1 
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pixel = 36.5 m on the target plane) without any overlap was used in the image analysis 

for extracting displacement components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.1: Photograph of the experimental setup used for studying stress concentration 
caused by a line-load acting on the edge of a large PMMA sheet (top). The close-up 
(below) shows loading pin resting on the top edge of the transparent specimen and 

speckles on the target. 
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Figure 4.2: Schematic of the line-load acting on a half-space (left) and an actual speckle 
image recorded (right). Note the blurred/distorted region adjacent to the loading pin in the 

enlarged speckle image. 
 

 

4.2 Comparison of measurements and analytical solution 

 

Figure 4.3 shows the resulting contours of x  and y  for three representative load 

levels in a reduced square region around the loading point. It is important to note that, 

accounting for rigid body motions and imposing the appropriate boundary conditions of 

the problem to quantify the contour levels for further analysis is needed.  That is, in the 
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the y-direction relative to the x-axis, symmetric stress gradients in the x-direction about 

the x-axis, vanishing stress gradients far away from the loading point and stress free 

surfaces along the loading edge of the specimen could all be used. 

 

Knowing that the plane stress field, near the line-load acting on an elastic half-

space is described by Flamant problem [43] for which, 

    cos2
, 0, 0,xx yy rr r

F

B r  


    


        (4.1) 

where F  is the applied load, B  is the thickness of the half-space and  ,r   are the polar 

coordinates, as shown in Fig. 4.2. Note that the hoop and shear stresses vanish in this 

solution. Further,    xx yy rr     for plane stress, and the radial stress rr  becomes 

singular/unbounded as the loading point ( 0r  ) is approached. From Eqs. (2.10) and 

(4.1), 

 
 rr

x C B
x








    and    

 rr
y C B

y








. (4.2) 

Using Eqs. (4.1) and (4.2), the expressions for x  and y  fields become, 

                                           
   
2 2

cos 2 sin 22 2
, .x y

F F
C B C B

B r B r 

 
 

 
        (4.3) 
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Figure 4.3: Measured x (left) and y  (right) contours near the loading point for different 

load levels. Contour interval = 1 x 10-3 radian. (The left vertical edge of each image 
corresponds to the loading edge where F acts at the origin.) 
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Figure 4.4: Comparison of experimental and analytical angular deflection (top: x and 

bottom: y ) contours for F = 2022 N. Contour levels are in 1×10-3 radians. 

 

 

For comparison, the experimental and analytical angular deflection contours for a 
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loading point. In cracked bodies where a stress singularity of 1/ 2r  occurs, a region of 

dominant stress triaxiality is shown to exist near the crack-tip ( 0 1 2r B  ) [28]. Based 

on that observation, it is reasonable to expect that stress triaxiality dominates over a 

region of similar size in the current case as well (verification of this assumption is 

provided in Appendix A1). 

 

 

Figure 4.5: Comparison of experimentally extracted load to the known applied load; 
quasi-static line-load problem. 

 
 

Accordingly, a good agreement between analytical solutions and experimental 

measurements are not expected at least up to r/B = 0.5.  This region is shown in Fig. 4.4 

as the one bounded by a semi-circle centered at the origin. In the regions outside the zone 

of dominant triaxiality, a good qualitative and quantitative agreement between 

experimental and analytical contours is apparent. The x  and y data corresponding to a 
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particular applied load can be used to back calculate the load using Eqs. (4.3). Figure 4.5 

shows the plot of calculated load at each measurement point (sub-image) as a function of 

r/B along θ = 0° and θ = 45° from x  and y  fields, respectively, for the case of F = 2022 

N. From the graph, it can be seen that, after an initial non-conformity up to r/B ~ 0.5-0.6, 

the extracted load values agree with the applied load quite well. 

 

 

4.3 Estimation of Stresses from Stress Gradients 

 

Since DGS is capable of measuring stress gradients in two orthogonal directions 

simultaneously, one can estimate the stresses  xx yy  ( rr  in this case) for this 

particular case only, in the region of interest from measured stress gradients. This can be 

done as follows:   

Using Eqs. (4.3), the resultant of x  and y  can be obtained as, 

 2 2
2

2
x y

F
C B

Br  


   . (4.4) 

Evidently, the expression for   in Eq. (4.4) is independent of  suggesting that contours 

of  are circular (semicircular in this case) relative to the origin. 
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Figure 4.6: Measured resultant angular deflection of light rays   (left) and estimated 
radial stress rr (right) contours for various load levels. Contours are plotted every 1 x 

10-3 radian and 2 MPa, respectively. (The left vertical edge in each image is the edge 
where the line-load acts horizontally at the origin.) 
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This can be verified by generating contours of   from measured x  and y . That 

is, for each facet/sub-image,   was computed in the load point vicinity. The first column 

in Fig. 4.6 shows the measured contours of   for the three load levels considered in Fig. 

4.3. The resulting contours are indeed semicircular (except near the free edge of the 

specimen where edge effects affect x  and y computations) centered about the loading 

point, confirming the prediction by the Flamant’s solution. A direct comparison of 

measured  values with the predicted ones from Flamant’s solution is presented in Fig. 

4.7 (top) for a representative case showing a good agreement between the two. Now, by 

inspecting the analytical expressions of   (Eq. (4.4)) and Eq. (4.1), it becomes clear that 

stress ( )rr xx yy    can be estimated under plane stress conditions by simply 

multiplying   values with the corresponding  cosr  values if   data are available from 

experimental measurements as, 

    cosxx yy rr r
C B

      . (4.5) 

The second column in Fig. 4.6 shows the stress contours thus obtained for all the 

three load levels considered in Fig. 4.3. The contour plots of the experimentally estimated 

and analytical stress fields for a representative case of F = 2022 N are shown in Fig. 4.7. 

Again a good agreement between the estimated and predicted contours of normal stress 

rr  near the loading point where plane stress conditions exist is seen demonstrating the 

viability of DGS method for stress estimation purposes besides stress gradient 

measurement in this case. 
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Figure 4.7: Comparison between experimental and analytical   contours (top; contour 

interval = 1×10-3 radian), and radial stress  rr  contours (bottom; contour interval = 2 

MPa) for F = 2022 N. 
 

 

 

 

 

 

F = 2022 N

Analytical 

Experimental

r/B=1/2

1 

2

            2 mm

3

1 

2
3

 F = 2022 N

Analytical 
Experimental

r/B=1/2

-8

-10
-12

    2 mm

-14

-8

-10
-12

-14



 

66 
 

4.4 Stress estimation by numerical integration 

 

 Previously the stress fields were estimated using x , y ,   along with the 

analytical field equations for  xx yy  . In practice, however, the analytical field 

equations may not be known a priori. In such situations, stresses can be estimated by 

direct numerical integration of measured angular deflection fields. This, however, 

requires knowledge of far field stresses and stress gradients in one or both Cartesian 

directions depending upon the nature of the integration scheme adopted. For example, the 

stress field  xx yy  from the angular deflection fields can be obtained as, 

 

 

 
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1
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1
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xx yy x

d

xx yy y

x y dx C
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



  

  

  

  




 (4.6) 

where C1 and C2 denote integration constants along constant y and x coordinates, 

respectively.  In the present case of a line-load acting on a half-space, the stress gradients 

(or angular deflections of light rays) vanish at far-away locations from the loading point. 

That is, as x  , 0x   and  1 xx yy x
C  


  , the value of the stress invariant in 

the far-field if x field is considered for integration. In practice, however, experimental 

limitations do not allow recording of speckles at sufficiently far away distances with 

sufficiently high resolution. In such cases, the x- and y-coordinates of the region of 

interest are bounded by say, (x = b, y) and (x, y = d), respectively, as implied in Eq. (4.6). 

The integration constants can be evaluated in these cases as  1 ( , )xx yy x b y
C  


   or 
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 2 ( , )xx yy x y d
C  


 

 
provided stress gradients are negligibly small or known at (x = b, 

y) or (x, y = d).  

 

 

 

Figure 4.8: Comparison of analytical and experimental stress invariant contours obtained 
by cumulative numerical integration of x (top) and y (bottom) fields. 

Contour interval = 2 MPa. 
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To demonstrate the feasibility of extracting  xx yy rr    by numerical 

integration, the gradient field x  and y  corresponding to the load level, F = 2022 N 

were integrated using a simple trapezoidal rule in increments of one facet/sub-image size. 

The constants of integration 1C  along (x = b = 35.6 mm, y) for this case were obtained 

using Flamant’s solution (alternatively, a simple finite element computation to evaluate 

stresses along (x = b=35.6 mm, y) could be used as well). The resulting stress fields 

obtained from integrating the x  and y  fields are shown in Fig. 4.8. As observed, the 

stress contours obtained from the y  field have more pronounced experimental error 

relative to the analytical stress contours than the ones from the x field. This is in part due 

to the practical inability to choose a larger d (in order to make the “ 0y   in the far 

field” assumption more appropriate). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

69 
 

 
 
 
 
 
 
 
 

5 

Line-Load on the Edge of a Planar Sheet: Dynamic Case 

 

 

 This chapter details the feasibility study of the DGS method to study material 

failure/damage in transparent planar sheets subjected to a transient line-load acting on an 

edge. Ultra high-speed digital photography is used to record the speckles and hence the 

deformation in the load point vicinity. The dynamic measurements are examined relative 

to the finite element computations before observed material failure. The measured stress 

gradients near the impact point after damage initiation are also presented and failure 

behavior is discussed. 

 

 

5.1 Experimental details 

 A schematic of the experimental setup developed for studying the problem of 

dynamic line-load acting on the edge of a planar sheet using DGS is shown in Fig. 5.1, 

and Fig. 5.2 shows the actual photograph of the actual setup. The loading device 

consisted of an Al 7075-T6 long-bar (2 m long, 25.4 mm diameter) with a cylindrical 

(bull-nose) head, a gas-gun and a high-speed digital image acquisition system. The long-
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bar was aligned with the gas-gun barrel containing a 305 mm long, 25.4 mm diameter 

cylindrical striker also made of aluminum. A Cordin model-550 ultra high-speed digital 

camera equipped with 32 CCD sensors and a five-facet rotating mirror, and two high-

energy flash lamps was used for recording speckles on the target plane. A computer 

connected to the camera was used to control parameters such as trigger delay, flash 

duration, framing rate and image storage. The specimen, a 129 × 67.5 × 9.4 mm3 clear 

PMMA plate, was placed on an adjustable platform and its long edge was registered 

against the cylindrical head of the long-bar as shown in Fig. 5.2. The loading was 

initiated by suddenly releasing the compressed air in the gas-gun cylinder using a 

solenoid valve to propel the striker placed inside the barrel. The accelerating striker 

impacted the long-bar and initiated a compressive stress wave that traveled the length of 

the bar before imparting a transient line-load to the edge of the specimen. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic of the dynamic line-load experiment. 
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Figure 5.2: Experimental setup used to measure angular deflections of light rays caused 
by a deforming transparent specimen when subjected to dynamic line-load (top). Close-

up of the specimen, speckle target, and the long-bar (bottom). 
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Figure 5.3: Measured strain history in the long-bar used to deliver a dynamic line-load on 
the edge of the transparent PMMA specimen. (time = 0 corresponds to the start of data 

acquisition and not impact loading) 
 
 

An electrical circuit, completed when the striker contacted the long-bar, was used 

to trigger a delay generator which in turn activated the camera with a user-specified 

delay. A strain gage (CEA-13-062UW-350 from Vishay Micro-measurements) affixed to 

the long-bar, and connected to a LeCroy digital oscilloscope via an Ectron signal 

conditioner, was used to measure the strain history (Fig. 5.3) in the long-bar during 

loading [44]. The measured strain history was used to calculate the particle velocity 

history in the specimen at the specimen/bar interface. The distance between the specimen 

and the camera lens plane (L) was ~1000 mm and the one between the specimen mid-

plane and the target plane () was 30 mm. 
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Figure 5.4: Measured x (left) and y  (right) contours near the loading point for different 

time instants. Contour interval = 1 x 10-3 radian. (The left vertical edge corresponds to the 
loading edge with impact load F(t) acting at the origin along the x-axis.) 
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consecutive images of the specimen undergoing deformation were captured at the same 

framing rate. The deformed-undeformed image pairs for each of the 32 CCD sensors 

were then correlated to obtain the in-plane displacement fields, x and y. A facet/sub-

image size of 15 x 15 pixels (1 pixel = 29.2 m on the target plane) without any overlap 

was used in the image analysis for extracting displacement components. The 

displacement fields were then used to compute the angular deflection fields (x and y), 

and are shown in Fig. 5.4. Appropriate boundary conditions were imposed as discussed in 

Chapter 4 for quantifying the contour levels. 

 

 

5.2 Comparison of measurements and numerical solution 

 

The dynamic angular deflection fields were also numerically obtained by 

performing an elasto-dynamic finite element (FE) analysis to compare with the measured 

fields. The elastic modulus and Poisson’s ratio of PMMA used in the simulation were 

from ultrasonic pulse-echo measurement of longitudinal and shear wave speeds [45] and 

mass density. Using the measured incident strain history, I(t), in the bar during loading, 

and the measured parameters listed in Table 5.1, the transmitted particle velocity, VT, was 

calculated using [46], 

 
2

,I I I
T I

I I I T T T

C A
V V

C A C A


 




 (5.1) 

where I I IV C  is the particle velocity in the incident bar, and , C, and A denote the 

mass density, bar wave speed and area, respectively, and subscripts I and T denote the 
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incident and transmitted values. The area values used in this work were assumed to be 

proportional to length over which stress wave transmission occurred. 

 

Parameter Value 

Density of bar material (Al 7075-T6)  2730 kg/m3 
Longitudinal wave speed in bar 5700 m/s 
Width of cylindrical head 25.4 mm 
Density of specimen material (PMMA)  1010 kg/m3 
Longitudinal wave speed in PMMA 2657 m/s 

 
Table 5.1: Material properties of long-bar and PMMA specimen used in the dynamic 

line-load experiment. 
 

 

                                                

Figure 5.5: Discretized finite element model used to simulate a PMMA sheet 
experiencing a dynamic line-load (left) and particle velocity history (right) used as an 

input. 
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The transmitted particle velocity history shown in Fig. 5.5 was used as the input 

for FE computations using structural analysis software package ABAQUS. The FE model 

consisted of 17,004 four-node quadrilateral elements (total DOF = 33964) with the 

smallest element of size ~ 0.5 mm. The numerical model was solved using explicit time 

integration scheme and the instantaneous in-plane stress invariant  xx yy  field near 

the loading point was obtained. 

 

 

5.3 Extraction of dynamic force history from optical measurements 

 

The representative  xx yy  contours corresponding to the time instants in Fig. 

5.4 are as shown in Fig. 5.6. From this field, the   , , xx yyx y  
 data along = 0o, 30o 

and 60o were extracted and the in-built differentiation scheme in ABAQUS was used to 

compute spatial derivatives of  xx yy  in the x- and y-directions. For comparison with 

measurements, these numerically obtained stress gradient data along with the 

experimental ones corresponding to a time instant 30 s after the arrival of the stress 

waves at the specimen/bar interface are shown in Fig. 5.7. From the graphs, a rather good 

agreement between the computational and experimental results is evident beyond the 

triaxial zone (r/B ~ 0.5). The  xx yy  contours in Fig. 5.6 are generally circular 

(except very close to the loading point) and are similar to the ones expected from the 

Flamant solution (Eq. (4.1)). This suggests that the functional form of the instantaneous 

deformation fields near the transient line-load can be approximated reasonably well by 
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the Flamant’s equations. Accordingly, an attempt was made to use Eqs. (4.3) in the 

dynamic line-load problem to extract the load history. 

 

     

Figure 5.6: Contour plots of in-plane stress invariant at various time instants during the 
dynamic loading of PMMA from finite element analysis. Dotted lines correspond to paths 
along 0o, 30o and 60o relative to the loading direction used for computing stress gradients. 

 

 

Three sets of discrete values of angular deflection fields at various (r, ) locations, 

excluding the immediate vicinity of the loading point (within r/B = 0.4, 0.5 and 0.6) 

where triaxial deformations dominate, were collected for each time instant. These values 

were then used along with Eqs. (4.3) to extract three values of the instantaneous load 

(F(t)) using an overdeterministic least-squares analysis [41] for every time instant. For 

each time instant, the intermediate value is plotted in Fig. 5.8 and the error bars show the 

upper and lower bounds of F(t) resulting from three different data sets. The load history 

was also assessed from the strain gage measurements on the long-bar as, 

   ( )b b b I R bF t E A   
 
where Eb (= 72 GPa) and Ab are the elastic modulus and cross-

section area of the bar, respectively, and I and R denote incident and reflected strain 

signals. 

t = 15 s t = 25 s t = 35 s 
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Figure 5.7: Comparison of analytical, finite element and experimental angular deflections 
(column 1: x and column 2: y ) in PMMA plate subjected to a 

dynamic line-load at t = 30 s. 
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noticeably deviate from each other.  It is evident from the graph that just after the start of 

local crushing/pulverization of PMMA at ~40 s, the measured load history starts to 

decrease for about 20 s before rising again. These differences are to be expected as the 

closed form solutions used for optical data extractions do not hold in the post-failure 

regime. 

 

 

Figure 5.8: Load histories measured using DGS (symbols) and strain gage (broken line).  
The agreement between the two is good up to the start of the material crushing/cracking 

at the impact point. 
 

 

Further, the local crushing and micro-cracking events of PMMA are sensed by the 

strain gage data as a drop in the signal whereas the load extracted by analyzing the optical 
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squares information. Furthermore, the optically extracted loads based on over-

deterministic analysis provide an averaged response over the region. 

 

  

 

   

Figure 5.9: Failure progression (column 1) and corresponding angular deflection 
contours, x (column 2) and y (column 3) contours in PMMA plate subjected to a 

dynamic line-load. Contour interval = 1 × 10-3 radian. 
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the optical data used for least-squares analysis had to be collected well beyond r/B = 0.5, 

based on the position of the instantaneous damage front. These load estimates thus 

correspond to optical data analyzed using measurements from 1.0 < r/B < 1.8.  The 

corresponding errors in the post-failure regime were based on data analysis for different 

inner radii used during the analysis. 

 

 

5.4 Stress gradients in the post-failure regime 

 

 The analytical and/or numerical solutions are generally valid only until the onset 

of failure - crushing and/or cracking. In addition, they are dependent on assumptions 

associated with failure modes and post-failure material behavior. In such scenarios, only 

direct experimental measurements offer reliable data for structural analyses/design. In 

view of this, stress gradients even after the material has undergone cracking and crushing 

near the loading point is also presented. The first column in Fig. 5.9 shows failure 

progression in the specimen after the initiation of failure at the loading point. This causes 

the image correlation to fail in the region of intense damage.  The highly saturated (or, 

decorrelated) gray scale around the loading point represents the damaged zone. The 

second and third columns in Fig. 5.9 show contours of x and y. The observed changes in 

contour density and their shapes relative to the ones prior to damage initiation 

qualitatively indicate contributions of a smeared loading front as well as the arrival of the 

reflected stress waves from the far edges of the specimen to the load point vicinity. 

Figure 5.10 shows photographs of the failed specimen as well as a close-up of the load 
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point vicinity. Due to the dynamic load, PMMA is symmetrically chipped off from the 

plate relative to the mid-plane. However, there is a slight non-symmetry observed in the 

chip cavities about the loading axis. This can be attributed to the magnitude difference 

between the reflected stress waves from the top (free) and bottom (supported) edges of 

the plate. All of the compressive stress wave that reach the top free edge reflect as a 

tensile wave, whereas, part of the stress waves that reach the bottom (supported by denser 

than PMMA steel platform) edge get transmitted into the support and the rest reflect as a 

tensile wave, thereby causing a stress magnitude difference about the loading axis. 

 

A close-up of the failure surface reveals the typical mirror and hackle regions. 

References [5, 6] describe the mechanisms involved in the formation of conical chips in 

glass produced due to spherical indenters near the specimen edge. Irrespective of the 

indentation distance from the edge, early material failure has been shown to be 

characterized by a sub-surface median crack directly under the contact point. However, 

higher material compliance in the near-edge region and the bending moment experienced 

by a growing crack have been suggested as sources of chip formation when the 

indentation distance from the specimen edge is small (less than 0.05 mm) [5]. In the 

current case, the entire specimen thickness makes a line contact with the cylindrical 

impactor head. Given the symmetric nature of the contact, it is reasonable to expect 

symmetric chipping about the specimen’s mid-plane as in Fig. 5.10. Chai et al. [6] add to 

the above inferences by attributing chip initiation and the radial striations in the hackle 

region to stress enhancement in the specimen edge and multiple stress-wave reflections at 

the edge respectively. 
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Figure 5.10: Failed PMMA specimen after experiencing a dynamic line-load on the edge 
(top).  Close-up of the damaged/cracked region (bottom). 
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6 

Crack-tip Deformation Measurement: Static Case 

 

 

Failure characterization in structural components plays a vital role in material 

selection and engineering design. In particular, measurement of fracture parameters such 

as stress intensity factors is of importance due to the instantaneous nature of failure 

caused by sharp discontinuities / cracks. Accordingly, this chapter presents the feasibility 

of DGS for measuring crack-tip stress gradient fields under quasi-static loading. In this 

chapter, the experimental procedure, optical measurements and extraction of crack-tip 

stress intensity factors are described. The experimental results are compared with the 

ones from an analytical solution. 

 

 

6.1 Experimental details 

 

Using the DGS method, a quasi-static symmetric 3-point bend experiment on an 

edge cracked specimen (mode-I) was performed. A photograph of the experimental setup 

is shown in Fig. 6.1. A transparent PMMA specimen of dimensions 220 x 62.5 x 9.2 

mm3, with an initial crack of length 12 mm was used as the test specimen. An Instron 

4465 universal testing machine was used to load the sample resting on two anvils (span 

210 mm) in a displacement controlled mode (cross-head speed = 0.005 mm/sec). A target 
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plate painted with black and white speckle pattern was placed at a distance of  29.9 

mm behind the mid-plane of the specimen. Multiple reference points were marked on the 

target to help relate the image dimensions to the actual specimen dimensions. A Nikon 

D100 digital SLR camera with a 28-300 mm focal length macro lens was placed in front 

of the specimen at approximately one meter distance. The camera also used an adjustable 

extension tube to achieve good focus of speckles on the target plane. Further, a relatively 

small aperture (F# = 11) was selected to achieve a good depth of field to resolve specimen 

features while maintaining the target plane focus.  Before loading, a reference image was 

recorded using a camera resolution of 1504 × 1000 pixels (one pixel covered 43.6 m on 

the target).  Subsequently, speckle images were captured in the deformed state once every 

5 seconds during loading using time-lapse photography. As the crack-tip vicinity suffered 

deformation, light rays passing through the specimen were deflected by the local non-

uniform state of stress distorting the speckle images relative to the reference state. The 

images corresponding to the deformed state along with the one from the reference state 

were then used to extract the angular deflection fields ( x  and y ) using 2D digital image 

correlation as described earlier. The images were segmented into 15  15 pixel non-

overlapping sub-images during image correlation. This yielded an array of 99 x 65 data 

points to analyze. 
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Figure 6.1: Experimental setup used to measure angular deflections of light rays caused 
by a mode-I crack in a planar transparent 3-point bend specimen subjected to quasi-static 

loading. 
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    Figure 6.2: Experimental x (column 1) and y  (column 2) contours near the crack-tip 

for different load levels. Contours are plotted every 25 x 10-5 radian. 
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consideration of boundary conditions [47] of the problem on hand. For example, in the 

mode-I crack problem, boundary conditions such as symmetric x and asymmetric y 

about the x-axis, vanishing stress gradients far away from the crack-tip and stress free 

surfaces along the edges behind the crack are all considered while assigning the contour 

levels. It should be noted that the contour lines adjacent to the crack faces in Fig. 6.2 

appear smeared due to unavoidable edge effects. Additionally, diffraction effects and 

residual stresses incurred during machining of the crack itself also contribute to the loss 

of information along a narrow band adjacent to the two crack faces. 

 

 

6.2 Extraction of stress intensity factor (KI) 

 

From Williams’ asymptotic stress field expansion for mode-I cracks, the 

expressions for angular deflections (or in-plane gradients of stresses) can be expressed as 

[28], 
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 (6.1) 

where 10 20.9 10 m NC
   is the elasto-optic constant of PMMA [48], B = 9.2 mm is 

the thickness of the specimen,  ,r   are the crack-tip polar coordinates and 1

2
IA K


  

with IK  being the mode-I stress intensity factor. In the above equations, if K–dominance 

is assumed (or, terms with N   3 in Eq. 6.1 are neglected), we get 
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 (6.2) 

 

The above angular deflection field equations were used to obtain the mode-I stress 

intensity factor (KI) using overdeterministic regression analysis of measured data. 

Discrete angular deflection values around the crack-tip in the region  0.3 1.6r B   

and an angular extent (-150˚ ≤ ≤ +150˚) were used in the regression analysis. This 

ensured that data close to the crack-tip where triaxial effects are dominant are excluded 

from the regression analysis. The upper bound (r/B ~ 1.6) of the radial extent makes sure 

that only those data points rich in the K-dominant mode-I crack-tip field are included in 

the analysis. Further, these help deal with any uncertainty with the crack-tip location due 

to edge effects introduced by the image correlation operation.  The results thus obtained 

are plotted in Fig. 6.3 for different load levels. The error bars shown in the graph 

correspond to stress intensity factors obtained by using different subsets of 

 0.3 1.6r B   range. 
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Figure 6.3: Experimental vs. empirical stress intensity factors for a static 3-point-bend 
crack problem for various load levels. 

 
 

 

6.3 Comparison of measurements and closed-form solutions 

As a means for comparison, the crack-tip stress intensity factors for different load 

levels calculated using a result based on boundary collocation method [49], 
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are also presented in Fig. 6.3. In the above equation, F is the applied load, S is the 

distance between the supports, a  is the initial crack length, and W is the specimen width. 

The stress intensity factors thus obtained were in turn used in Eqs. (6.2) to obtain the 

analytical x and y contours. Figure 6.4 shows a comparison of the experimental and 
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analytical angular deflection contours for a representative load level of F = 624 N. 

Evidently the agreement between the analytical and experimental contour lines is rather 

good, further validating the feasibility of the method. 

 

 
 

 
 

Figure 6.4: Comparison of experimental and analytical x (top) and y  (bottom) contours 

near the mode-I crack-tip corresponding to a load of 624 N. 
Contours are plotted every 25 x 10-5 radian. 
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7 

Crack-tip Deformation Measurement: Dynamic Case 

 

 

This chapter describes a dynamic mode-I fracture experiment using the DGS 

method. An ultra high-speed digital camera is used to record time resolved deformations 

in the specimen. Similar to the quasi-static crack counterparts, stress intensity factor 

history measurements are compared with an independent calculation by performing an 

elasto-dynamic finite element computation up to crack initiation. 

 

 

7.1 Experimental details 

 

 The dynamic fracture experiments were performed on edge cracked PMMA 

samples using a drop-tower facility and ultra high-speed photography. A schematic of the 

experimental setup used is shown in Fig. 7.1. The specimen was a 130×51×8.9 mm3 

transparent PMMA sheet with an initial crack of length 12 mm. The specimen was placed 

on two instrumented anvils of the drop-tower, symmetrically about the crack line and the 

plunger (hemispherical impact head), as shown in Fig. 7.2. The speckle target was placed 

at a distance of  = 29.8 mm from the mid-plane of the specimen. A Cordin model 550 
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ultra high-speed digital camera equipped with 32 CCD sensors and a five-facet rotating 

mirror, two high-energy flash lamps and a delay generator was used to record the real 

time speckle images during stress wave loading. A computer connected to the camera 

was used to control the experimental parameters such as trigger delay, flash duration, 

framing rate and image storage. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Schematic of the experimental setup used in the dynamic mode-I fracture 
study. 

 
 

Prior to impact loading, a set of 32 images, one for each of the 32 CCD sensors of 

the high-speed camera, was captured at 200,000 frames per second. Then, the plunger, 

initially held at a predetermined height was launched to impact the mid-plane of the 

specimen at ~4.5 m/s.  The propagating stress waves upon reflection from the free edges 

behind the crack load and initiate the crack-tip. When the plunger came in contact with a 

copper tape adhered to the top edge of the specimen, an external circuit was closed 
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triggering the flash lamps and the high-speed camera previously brought to speed to 

record at 200,000 frames per second. A second set of 32 images were recorded during the 

impact/fracture event. The latter set of images correspond to distorted speckle patterns as 

the deformation in the specimen cause the light rays passing through it to deflect 

according to the instantaneous local stress field. 

 

 

 
 

 
 

Figure 7.2: Experimental setup used in the dynamic mode-I fracture study. 
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Figure 7.3: Experimental x (column 1) and y  (column 2) contours near the crack-tip for 

different load levels. Contours are plotted every 50 x 10-5 radian. 
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pixels (1 pixel = 32 m on the target plane) without any overlap was used in the image 

analysis for extracting displacement components along and normal to the crack direction. 

The displacement fields were then used to compute the angular deflections fields (x and 

y) as described earlier. A few representative results are shown in Fig. 7.3. In these 

figures, the first two rows correspond to pre crack initiation regime, and the third to that 

of post crack initiation. It is obvious from the contour plots that the crack has propagated 

along its initial orientation of the crack, without any kink. The contour interval in Fig. 7.3 

was chosen to be 50x10-5 radians which is an order of magnitude higher than the angular 

deflections that can be measured for commercial PMMA sheet of similar thickness [47, 

50]. As in case of the static fracture problem (Chapter 6), boundary conditions such as 

symmetric stress gradients about the x-axis and asymmetric stress gradients in the y-

direction relative to the x-axis, vanishing stress gradients away from the crack-tip and 

stress free edges behind the crack were all utilized to quantify the contour levels. Again, 

as noted earlier, image correlation operations introduce edge effects.  This coupled with 

residual stresses (along the initial notch) and diffraction effects make contours not 

discernible in a narrow band along the two crack faces. 

 

 

7.2 Extraction of stress intensity factor (KI) 

 

The expressions for angular deflection fields corresponding to a steadily growing 

crack are given by [51], 
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 (7.1) 

where, f and g are functions of crack velocity, v, dilatational and shear wave speeds, CL 

and CS, respectively and    1

2
IA t K t


  with IK  being the mode-I stress intensity 

factor. In the above, HoT represents higher order terms of the asymptotic expansion for 

the angular deflection fields.  Further, for plane stress conditions,  
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where, 
2

: 2
:

1L S
L S

v

C
   . The instantaneous crack velocity corresponding to each 

deformed image was calculated by measuring the change in the crack length between 

successive images and dividing by the temporal separation between them (Fig. 7.4). The 

post initiation crack velocities were in the 190 – 300 m/s range. The dilatational and shear 

wave speeds were measured using ultrasonic pulse-echo measurements [45]. The angular 

deflection fields were then used with Eqs. (7.1) to extract the dynamic mode-I stress 

intensity factor (KI) history by performing an overdeterministic least-squares analysis of 

the measured data. As in the quasi-static case, data in the  0.3 1.6r B   range were 

used in the regression analysis. For the dynamic analysis, 101.08 10C
   m2/N was 

used in Eqs. (7.1) based on the dynamic elasto-optic constant of PMMA reported in Ref. 

[52]. 
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Figure 7.4: Crack growth history in PMMA 

 

 

Figure 7.5: Dynamic mode-I stress intensity factor histories from overdeterministic least-
squares analysis of angular deflection data. Solid line is obtained from finite element 

analysis. 
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Figure 7.5 shows the crack-tip IK  histories computed using the measured x  and 

y  fields. The error bars in Fig. 7.5 correspond to stress intensity factors obtained by 

using different subsets of the radial extent  0.3 1.6r B   of optical data used in the 

analysis. The plot shows a monotonic increase in IK  prior to crack initiation.  The crack 

initiation (~1.8 MPam) is signified by a noticeable dip in the history at approximately 

90 s after impact. Following crack initiation, again a monotonic increase in IK  seems to 

ensue over the next 50 s time window. Also included in Fig. 7.5 is the numerically 

determined KI history up to crack initiation, represented as a solid line, from a 

complementary finite element analysis. 

 

The finite element simulation was performed using ABAQUSTM/Explicit software 

package, and used a half symmetric model of the experiment. The model was discretized 

with 29979, four node bi-linear plane stress quadrilateral elements with reduced 

integration and hourglass control. The time steps during the analysis were allowed to be 

automatically controlled by the explicit integration scheme. The dynamic elastic modulus 

and Poisson’s ratio of PMMA used in the simulation were obtained from ultrasonic 

pulse-echo measurement of longitudinal and shear wave speeds [45] and mass density of 

PMMA. The measured plunger velocity of 4.5 m/s was used as an input in the simulation. 

The boundary conditions shown in Fig. 7.6 correspond to a half symmetric model of the 

dynamic crack experiment. 
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Figure 7.6: One-half finite element model used for performing elasto-dynamic fracture 
analysis. 

 
 

The crack opening displacements (COD) along the upper crack face were 

extracted every 5 s after imposing the constant velocity input and the mode-I stress 

intensity factor (KI) computed using [52]  
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where E = 5.8 GPa is the dynamic elastic modulus [47] of PMMA and 2u  is half COD of 

the crack flanks. These simulations were limited to the case of a dynamically loaded 

stationary crack and hence the comparison of KI histories from measurements and 

simulations are valid up to crack initiation. Accordingly, the numerical data from 

simulations are superposed on the experimentally extracted KI values up to the observed 

crack initiation time. A good agreement between the two is evident, supporting the 

feasibility of DGS method for studying dynamic fracture problems. 
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8 

Dynamic Punch Experiment 

 

 

 In this chapter, the results from a DGS experiment in which a plate subjected to 

dynamic load by a square punch are presented. A long-bar setup similar to the one used 

in the dynamic line-load experiment (Chapter 5) has been used. The elasto-optic changes 

in the transiently deforming PMMA sheets are captured using high-speed photography as 

in the cases of dynamic line-load (Chapter 5) and dynamic fracture (Chapter 7) 

experiments. The angular deflection fields in the specimen, near the punch-tip are 

measured for different time instants. Further, by using the punch-crack analogy, the 

crack-tip angular deflection field equations are used to obtain the stress intensity factor 

(KP) histories at the punch corner. 
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8.1 Punch-tip – crack-tip analogy 

 

 Material failure due to high strain-rate loading is often initiated by shear 

localization [53]. Such a scenario can be realized experimentally when a plate specimen 

is impacted on its side by a square punch. This results in shear bands originating at the 

punch-tip. One way of characterizing dynamic failure in such a scenario is by evaluating 

dynamic stress intensity factor history at the punch-tips [54]. This is done by using the 

analogy between the problem of a square punch loading a semi-infinite plate and the 

problem of two semi-infinite edge cracks being loaded in compression [53, 54], as shown 

in Fig. 8.1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (a)                    (b) 
 
 

Figure 8.1: Analogy between (a) compressively loaded semi-infinite double crack and (b) 
punch loaded semi-infinite plate. 
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8.2 Experimental details 

 

The schematic of the experimental setup used for studying the dynamically loaded 

planar sheet by a square punch using DGS is shown in Fig. 8.2. The loading device 

consisted of an Al 7075-T6 long-bar (2 m long, 25.4 mm diameter), a gas-gun and the 

high-speed digital image acquisition system used in the dynamic crack experiment. The 

long-bar was aligned with the gas-gun barrel containing a 305 mm long, 25.4 mm 

diameter cylindrical striker also made of Al 7075-T6. Its leading head was machined flat 

as shown in the inset of Fig. 8.3 so that it makes a square contact with the specimen’s 

side. The height of the punch was 23.1 mm. The specimen, a 160 × 90 × 5.7 mm3 clear 

PMMA plate, was placed on an adjustable platform and its long side was registered 

against the head of the long-bar as shown in Fig. 8.3. 

 

 

 

 

 

 

 

 

 

 

Figure 8.2: Schematic of the dynamic punch experimental setup. 
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Figure 8.3: Dynamic punch experimental setup (top), and close up of the punch-specimen 
edge (bottom). 
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The loading was initiated by suddenly releasing compressed air stored in the gas-

gun cylinder using a solenoid valve to propel the striker placed inside the barrel. The 

accelerating striker impacted the long-bar and initiated a compressive stress wave that 

traveled the length of the bar before imparting a transient punch-load to the side (edge) of 

the specimen. An electrical circuit, closed when the striker contacted the long-bar, was 

used to trigger a delay generator which in turn activated the camera with a user-specified 

delay. A strain gage (CEA-13-062UW-350 from Vishay Micro-measurements) affixed to 

the long-bar, and connected to a LeCroy digital oscilloscope via an Ectron signal 

conditioner was used to measure the strain history ( )I t  in the long-bar during loading 

[44]. The distance between the specimen and the camera lens was L ~1000 mm and 

between the specimen mid-plane and the target plane was  28.2 mm. Using the high-

speed camera, a set of 32 reference (undeformed) images, one for each sensor, were first 

captured under no-load condition at 200,000 frames per second. Next, the specimen was 

subjected to a dynamic line-load using the long-bar setup. During loading, a set of 32 

consecutive images of the deforming specimen were captured at the same framing rate. 

The deformed-undeformed image pairs for each of the 32 CCD sensors were then 

correlated to obtain the in-plane displacement fields, x and y. A facet/sub-image size of 

15 x 15 pixels (1 pixel = 37 m on the target plane) without any overlap was used in the 

image analysis for extracting displacement components. The displacement fields were 

then used to compute the angular deflection fields (x and y), and are shown in Fig. 8.4. 
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Figure 8.4: Experimental x (column 1) and y  (column 2) contours near the punch-tip 

for different time instants. Contours are plotted every 50 x 10-5 radian. 
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8.3 Extraction of punch-tip stress intensity factor 

 

From the x contours in Fig. 8.4, it can be seen that the contours above the x-axis 

resemble the x contours in Fig. 7.3 corresponding to a crack-tip x field. However, the y 

counterparts from the punch experiments differ from that of the crack experiments near 

the x-axis. This difference is due to the compressive stress waves caused by the punch 

load at and near the contact area. Nevertheless, the x and y contours obtained from the 

punch and the crack experiments are qualitatively similar in the 70˚ ≤ ≤ 180˚ range, 

which serves to further support the punch-tip – crack-tip analogy as discussed earlier. 

Therefore, it is reasonable to use Eqs (7.1) to extract the punch-tip dynamic stress 

intensity factor, KP after replacing KI with KP as, 

 

3

2

3

2

2 1 3
( ) cos ,

2 2

2 1 3
( ) sin ,

2 2

x P

y P

C B K t r

C B K t r











  
 

  
 

          
     

          
     

 (8.1) 

in the mode-I crack-tip equations. In the above equation, B = 5.7 mm is the thickness of 

the sample. Using the above equations and the measured angular deflection field data in 

the (0.3 ≤ r/B ≤ 1.6, 70˚ ≤ ≤ 160˚) range, the dynamic stress intensity factor (KP) 

history at the punch corner was computed by performing an overdeterministic least-

squares analysis of measured data. 
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Figure 8.5: Experimental vs. numerically obtained stress intensity factors for a dynamic 
punch problem. 

 

The results are shown in Fig. 8.5. The error bars for symbols in the graph 

correspond to KP values obtained using different subsets of the (0.3 ≤ r/B ≤ 1.6, 70˚ ≤ 

≤ 160˚) range. The rate of increase in KP is initially shallow, in agreement with the 

slope of the loading curve (see graph in Fig. 8.6), after which it monotonically increases. 

The KP histories from both the angular deflection fields follow a similar trend. When 

compared to the dynamic crack-tip stress intensity factors (Fig. 7.5), the dynamic punch-

tip stress intensity factors are substantially higher. For example, at 65 s after the first 

non-zero stress intensity factor, the punch-tip counterpart registers a value nearly four 

times the magnitude of the crack-tip KI.  This is expected as the plate experiences 

compressive stress waves, unlike the dominant tensile stresses at the crack-tip. 
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Figure 8.6: Transmitted particle velocity input obtained from strain gage measurements in 
the long bar (top). Finite element model showing load and boundary conditions used to 

simulate the crack-analogous punch problem (bottom). 
 

 

The experiments were again numerically simulated using transient elasto-dynamic 
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model along with the loading and boundary conditions used are shown in Fig. 8.6. It 

consisted of 33,574 four-node quadrilateral elements with the smallest element size ~ 0.5 

mm. The time steps were allowed to be automatically chosen by the explicit integration 

scheme. 

 

The particle velocity (VT(t)) transmitted from the long-bar into the PMMA 

specimen was used as the input. The VT history is shown in Fig. 8.6 was calculated using 

Eq. (5.1). The measured material properties of the long-bar and PMMA are shown in 

Table 5.1. Analogous to the crack problem, displacements ( 2u ) in the loading direction 

along the free edge of the impacted side of the PMMA sheet were extracted at 5 s 

intervals. These displacements were then used to extract the punch-corner stress intensity 

factor (KP) using [52]  

    2

2
; ( , )

4
P

E
K t u t r

r

    . (8.2) 

The numerically obtained KP history is plotted as a solid line in Fig. 8.5, which reveals a 

good agreement with the experimentally obtained values. This further substantiates the 

use of the punch-tip – crack-tip analogy. 
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9 

Measurement of Surface Slopes: 
Feasibility of Reflection Mode DGS 

 

 

Measurement of surface characteristics such as deflection, slope and curvature of 

thin plates are of importance in many engineering fields including aerospace and 

electronic industries. This is partly because bending stresses in plates can be quantified 

from curvatures which in turn are the first and second derivatives of slopes and 

deflections, respectively. However, since numerically or graphically differentiated 

quantities are prone to errors, the use of deflections to obtain stresses by performing two 

successive differentiations is not desirable if stresses are the primary quantities of 

interest. In such cases, direct measurements of surface slopes are preferred. Kao and 

Chiang’s [55] work provides a comprehensive description of various moiré methods that 

can be used for contouring surface slopes and curvatures. The application of reflection 

moiré to dynamic vibration of plates has been investigated by Ritter [56]. These 

conventional techniques require grid patterns, and in some cases have restrictions such as 

monochromatic light [55]. These aspects motivate to reconfigure the DGS method to 

measure slopes of reflective surfaces. If successful, it could be a preferred method over 

the current techniques for surface slope measurements, as DGS has advantages such as, 
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relatively simple experimental setup, inexpensive optical components and digital 

measurements.  The prevalence of DIC as a popular optical metrology tool, its ability to 

measure orthogonal displacement components simultaneously, and the availability of 

several commercial image analysis software tools to measure displacements as well as 

their derivatives all make reflection mode DGS for slope and curvature measurement 

attractive.  

 

In the previous chapters, it was shown that DGS can measure angular deflections 

of light rays passing through a deformed planar transparent object. There, the deflection 

of light rays is caused by a combination of thickness as well as refractive index changes 

in the specimen. In the reflection mode, the light ray deflection upon reflection from a 

non-planar reflective surface due to non-uniform deformations is due to out-of-plane 

displacements only. A light ray that is normally incident on a specularly reflective surface 

will result in a reflected ray that is collinear with the incident ray. However, when the 

reflective specimen is subjected to out-of-plane displacements, the reflected ray 

corresponding to the initially normal incident ray will make an angle r with the local 

normal to the deformed specimen surface. This angular deflection can be quantified using 

DGS, and thus surface slopes measured. Furthermore, it is also possible to obtain 

curvatures by differentiating the surface slopes once. The current chapter details the 

principle of measuring surface slopes of reflective objects, and also presents an 

experiment where surface slopes of a thin silicon wafer are measured and verified using 

closed form solutions. 
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9.1 Experimental details 

 

The schematic of the setup to measure surface slopes of reflective planar 

specimens using the DGS method is shown in Fig. 9.1(a). It consists of an imaging device 

(Nikon D3100 digital SLR camera), a beam splitter and a planar speckle target. The 

camera was fitted with an extension tube and a 70-300 mm lens. The beam splitter is 

placed in between the specimen and the target, and is oriented at 45 degrees to the optical 

axis of the camera. The camera is now focused on the target plane via the reflective 

surface of the specimen and through the beam splitter. 

 

 

 

 

 

 

 

 

 

 

 

     (a)                        (b) 

Figure 9.1: (a) Schematic of DGS experimental setup in reflection. (b) Optical path 
between the specimen and target (without beam splitter for simplicity); n and t denote 

unit vectors normal to and tangential to the specimen surface. 
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9.2 Working principle 

 

Let (x, y) and (x0, y0) be the in-plane coordinates of the specimen and target 

planes, respectively.  (Refer to Fig. 2.2 for a relative comparison with the schematic for 

the transmission mode DGS). Let a point P on the target plane be initially in focus when 

the specimen is flat and undeformed. In this condition, the incident (i) and reflected (r) 

rays will be collinear and parallel to the optical axis. Now, when the specimen undergoes 

out-of-plane deformation, OP gets deflected to OQ by an angle y (= i + r; i = r and n 

denotes the unit normal to the object surface at O) and brings point Q to focus as shown 

in Fig. 9.1(b). If the distance y (and x in the orthogonal direction) can be measured, and 

 known, the local surface slopes can be calculated as, 

   :
:

1 1
tan

: 2 2
x y

x y

w

x y


  

     
. (9.1) 

For small angular deflections, this can be written as, 

 

:
:

1 1

: 2 2
x y

x y

w

x y




 
  . (9.2) 

 

 

 

9.3 Surface slopes of a silicon wafer subjected to central load 

 

Next, the feasibility of reflection mode DGS method to measure surface slopes in 

planar reflective surfaces is demonstrated. The experimental setup is schematically 

shown in Fig. 9.2. The specimen is a one-side polished, 280 m thick silicon wafer of 
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diameter 50.8 mm. The unpolished side of the wafer is glued onto a thick steel washer 

using epoxy adhesive. The inner and outer diameters of the washer are 25.7 mm and 76.2 

mm, respectively. Another steel plate with a circular aperture was mounted with a 

micrometer (least count = 10 m) and placed behind the silicon wafer inside a cylindrical 

holder. Both the steel washer (with the wafer) and the steel plate (with the micrometer) 

were secured tight by the retaining ring of the cylindrical holder. The entire assembly was 

then placed in front of a Nikon D3100 DSLR camera such that the reflective side of the 

wafer was facing the camera. The camera was fitted with an extension tube and a 70-300 

mm lens. Then, a beam splitter was positioned between the wafer and the camera at an 

angle of 45 degrees to the optical axis of the camera. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9.2: Schematic of the experimental setup for reflection mode DGS to measure 
surface slopes in a silicon wafer subjected to out-of-plane displacement. 
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The target plane, coated with a random black and white speckle pattern was 

placed perpendicularly by the side of the specimen at a distance of  = 66 mm. Now, the 

camera was focused on the speckle plane via the reflective face of the silicon wafer and 

an image was recorded. This recording is the reference or the undeformed image. Then, 

using the micrometer, a central out-of-plane displacement, w = 30 m was applied to the 

wafer. This introduced a deformation of the specimen in the central circular region of 

25.7 mm diameter resulting in a distorted speckle field relative to the undeformed 

counterpart (Fig. 9.3). This distorted / deformed image produced due to the deflection of 

light rays was recorded by the camera. The two images were correlated using the method 

of 2D DIC to extract x and y fields. Then, using Eq. 9.1, the surface slopes 
w

x




 and 
w

y




 

were calculated over the entire circular region and are shown in Fig. 9.4. The surface 

slopes for a thin elastic plate subjected to a central deflection by a point force is given by 

[57] 

 

2 2

2

2 2

2

4
log ,

4
log ,

x yw xw

x R R

x yw yw

y R R

 
  

   
 

  
   

 (9.3) 

where w is the out-of-plane displacement and R is the clamped radius of the wafer. The 

analytical results from the above equations are superposed on the experimentally 

obtained contours in Fig. 9.4 as broken lines. Figure 9.5 shows plots of radial variations 

of 
w

x




 and 
w

y




 along the x- and y- axes, respectively. 
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Figure 9.3: Reference (left) and deformed (right) images of speckles photographed off a 
thin silicon wafer subjected to central out-of-plane displacement of 30 m. 

 
 

From the two plots, it can be seen that the experimental results generally agree 

with the closed form solutions. Careful observation of Fig. 9.5 reveals that the peaks of 

the measured data occur farther from the wafer center when compared to the analytical 

counterparts. This can be attributed to the fact that the epoxy used to glue the wafer to the 

washer is compliant to some extent, whereas the analytical solution assumes an ideally 

rigid clamp. The measured data being non-zero at x:y  R further substantiates this 

possibility. Another reason is the steeper deflections of light rays at the wafer center that 

cause the speckles to appear smudged in the deformed image, which in turn introduces a 

degree of speckle decorrelation in that region. 
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Figure 9.4: Experimental (solid lines) and analytical (dashed lines) contours of  
w

x




 (top) 

and 
w

y




  (bottom) corresponding to a circumferentially fixed silicon wafer subjected to a 

30 m central out-of-plane displacement. Contour levels are in 1×10-4 radians. 
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Figure 9.5: Analytical (solid lines) and experimental (symbols) data of w,x = 
w

x




 (top) 

along the x-axis and w,y = 
w

y




 (bottom) along the y-axis corresponding to a clamped 

silicon wafer subjected to a 30 m central out-of-plane deflection. 
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9.4 Surface curvatures of a silicon wafer subjected to central load 

One of the advantages of digital image processing is being able to obtain full-field 

derivatives from the measured data. In reflection DGS, x and y measurements being 

proportional to surface slopes, the measurements can be differentiated with respect to the 

spatial coordinates to obtain curvatures. Most DIC softwares offer such a facility since 

displacement derivatives are integral to speckle/texture correlation algorithms. 

Accordingly, derivatives of DGS measurements were obtained using the in-built 

algorithms of ARAMIS, and related to the respective curvatures as, 

 

2

2

2

2

1
,

2

1
.
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y y





        
  

     

 (9.4) 

For the parameters used in the DGS results, curvatures of the order of 10-4 mm-1 were 

discernible from the measurements. 
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Figure 9.6: Experimental (solid lines) and analytical (dashed lines) contours of 
2

2

w

x




(top) 

and 
2

2

w

y




(bottom) corresponding to a circumferentially fixed planar silicon wafer 

subjected to a central 30 m out-of-plane displacement. 
Contour levels are in 1×10-4 mm-1. 
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Figure 9.7: Experimental (solid lines) and analytical (symbols) plots of w,xx =  
2
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x


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 (top) 

along horizontal diameter and w,yy =  
2

2
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


  (bottom) along vertical diameter 

corresponding to a circumferentially fixed silicon wafer subjected to a 30 m central out-
of-plane displacement.  
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The contour plots of curvatures thus obtained are shown in Fig. 9.6. As expected, 

larger curvatures occur close to the loading point. For comparison, the analytical 

curvature fields given by [57] 

 
 

 

2 2 22

22 2 2 2

2 22 2

2 2 2 2 2

4 4
log

4 4
log

x yw x ww
R Rx R x y
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   
 

  
   

 (9.5) 

are also superposed on the experimental contours. The measured curvature distribution is 

in qualitative agreement with the predictions. From Fig. 9.6, a slight non-conformity 

between measured data and analytical solutions is evident. This can be partly attributed to 

the numerical error from the differentiation process. Figure 9.7 shows plots of radial 

variations of 
2

2

w

x




 and 
2

2

w

y




 along the x- and y- axes, respectively. Given the fact that the 

epoxy used to glue the wafer to the steel plate is not perfectly rigid, the agreement 

between the measured and analytical fields are indeed good. 

 

The availability of full-field digital / numerical data also facilitates numerical 

differentiation of one surface slope field with respect to either of the two orthogonal 

coordinates. Therefore, it is possible to calculate gradients of 
w

x




 and 
w

y




 with respect to 

the y- and x- axes to obtain 
2w

x y


 

 and
2w

y x


 

, respectively. The results thus obtained are 

shown in Fig. 9.8. As expected, the two curvature fields are nearly identical qualitatively 

as well as quantitatively after allowing for experimental and numerical errors. 
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Figure 9.8: Contour plots of 
2w

x y


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 (top) and 
2w

y x


 

  (bottom) corresponding to a 

circumferentially fixed silicon wafer subjected to a 30 m central out-of-plane 
displacement. Contour levels are in 1×10-4 mm-1. 
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10 

Conclusions 

 

 

An optical full-field measurement technique called Digital Gradient Sensing 

(DGS) was developed for measuring angular deflections of light rays in transparent and 

reflective objects which can be further related to stress gradients and surface slopes, 

respectively. The transmission mode DGS method is based on the elasto-optic effect and 

uses 2D digital image correlation methodology to quantify the angular deflections in two 

orthogonal planes. DGS employs a relatively simple experimental setup and requires 

ordinary white light for illumination. The availability of sophisticated digital recording 

technology and image processing algorithms offer enhanced capabilities to the DGS 

technique. The potential of the method to inspect and evaluate phase objects (such as 

lenses) or characterize the mechanical performance of transparent structural materials 

(such as transparent armor) are enormous. 

 

 The working principle of transmission mode DGS has been explained and the 

necessary governing equations have been derived. The analysis shows that the method is 

capable of measuring small angular deflections of light rays produced by non-uniform 

changes in the thickness and/or refractive index of the material. In mechanically loaded 
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planar objects, the angular deflections are in turn related to the gradients of first invariant 

of stresses, 
 xx yy

x

  


or

 xx yy

y

  


 under plane stress conditions. The DGS method 

has been first demonstrated using angular deflection fields produced by a plano-convex 

spherical lens. The measured contours of constant angular deflection of light rays and the 

deduced focal length are in good agreement with the expected value. Subsequently, 

several calibration and benchmark experiments have been performed to validate the DGS 

measurements. For the chosen experimental/optical parameters in this work, the 

achievable accuracy is approximately 1x10-4 radians. 

 

The method has been successfully implemented to study a stress concentration 

problem involving a line load acting on the edge of a large planar sheet under both quasi-

static and dynamic loading conditions. In regions outside the zone of dominant stress 

triaxiality, the measured angular deflections are in good agreement with the ones based 

on the Flamant’s solution for a line load acting on the edge of a half-space. For the 

impact loading case, the angular deflections are compared with the numerical results 

obtained by performing a complementary elasto-dynamic finite element analysis of the 

problem. The angular deflections corresponding to post failure regime are also reported. 

It has also been shown that by combining the two simultaneously measured orthogonal 

stress gradients and with the aid of the analytical solutions, it is possible to estimate the 

stresses  xx yy 
 
in the load point vicinity. In addition, the feasibility of using far field 

data as boundary conditions to integrate the stress gradient fields and obtain stresses has 

also been demonstrated. 
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The transmission DGS method has also been successfully implemented to 

measure the stress gradient fields around a crack tip under both quasi-static and dynamic 

loading conditions. The quasi-static and dynamic stress intensity factors were computed 

by performing overdeterministic least-squares analysis on the measured optical data using 

prevailing crack tip field equations. The evolution of static and dynamic stress intensity 

factor histories were successfully compared with the ones obtained from the analytical 

solutions and finite element simulations. In addition, a good full-field qualitative and 

quantitative agreement between the measured angular deflection values and the analytical 

solutions was also seen. Further, the problem of a flat punch impacting the edge of a 

planar sheet was studied and the stress gradient fields around the punch tip were 

measured using DGS. Using the analogy between the problem of a compressively loaded 

double edge crack and the square punch problem, the analytical crack tip angular 

deflection field equations were used to extract the punch tip stress intensity factor history 

from measured deformation fields. The results are again in good agreement with the 

numerically obtained punch tip stress intensity factor history computed from the same 

analogy, but extracted using crack opening displacements. 

 

The DGS technique has also been demonstrated in reflection mode by measuring 

angular deflections of reflected light rays from a polished silicon wafer subjected to out-

of-plane displacements. The measured deflection contours with respect to the two in-

plane specimen coordinates were related to the wafer surface slopes and compared with 

closed form solutions for a thin plate. A good agreement between the two is observed. 



 

128 
 

Furthermore, the surface slope fields were differentiated to obtain wafer curvatures which 

also show a good agreement with the ones from closed form solution of the problem. 

 

The capabilities of the DGS technique make it a promising non-contacting, full-

field measurement tool for various applications where deflection of light rays occur and 

need quantification. A few such possibilities have been explored towards the end of this 

work, and have been presented in the Appendix. Other venues where DGS could be 

applied are thermal stresses in aircraft windows, temperature field measurement in 

flames, density variations in jet flows, vibration/defect analysis of reflective thin plates, 

etc. 
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Appendix 

 

 

A1 Stress triaxiality near a line-load on an edge 

 

 In Chapter 4, the DGS-based load measurements deviated from the imposed value 

in the close vicinity of the loading point. This was attributed to three dimensional 

deformations approximated by a plane stress state. This section serves to quantify the 

stress triaxiality zone near a line load acting on the edge of a planar sheet. A 3D finite 

element model of a rectangular PMMA sheet subjected to a line load on its edge was 

developed. The dimensions (180 × 69.5 × 9.4 mm3) of the model used were same as that 

of the specimen used in experiments described in Chapter 4. Symmetries about the mid-

plane of the specimen and the loading axis were used in the model. An arbitrary line load 

was applied on one side of the model (Fig. A1.1). The face opposite to the load was 

simply supported (sliding was permitted in the direction perpendicular to the loading 

direction). The model was discretized into 225180 linear hexahedral elements (~1 mm 

edge length) with 5 elements along the (half) thickness.   
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Figure A1.1: Schematic (left) and discretized geometry (right) of the finite element model 
for a line-load problem. 

 

  

Figure A1.2: Radial variation of plane strain constraint (C) near a line load in a planar 
sheet of thickness 9.4 mm. 
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From the 3D elasto-static numerical solution, the plane strain constraint [58] 

parameter  
z

x y

C


  
 


 was obtained on the mid-plane of the model. For a plane 

stress condition to prevail, the above quantity should vanish. To verify the radial extent 

from the loading point where plane stress conditions in the PMMA model prevails, 

Cwas obtained along 0˚ and 45˚ from the loading axis, and are plotted as functions of 

normalized radial distance in Fig. A1.2. From the figure, it is clear that the triaxial stress 

zone in a plate of dimensions used in Chapter 4 subjected to a line-load extends up to 

approximately r/B = 0.5. 

 

 

A2 Effect of in-plane displacements on DGS 

 

In a transmission mode DGS experiment, a specimen deforms while the target (speckle) 

plane remains stationary. Further, a uniform state of stress producing constant thickness 

and refractive index changes should not result in non-uniform angular deflection field. To 

ensure this experimentally, an experiment using DGS was carried out. For the sake of 

discussion, let a point P on the speckle plane be initially in focus through a point O in the 

specimen under no-load condition as shown in Fig. A2.1. Now, assume that the specimen 

deforms uniaxially in the y-direction. Let the deformation cause an adjacent point O' to 

move to the position initially occupied by O. Moreover, as the stress state in the specimen 

would have changed after deformation, light rays would deflect and bring a point, say Q 

to focus instead of P. Therefore, a question arises as to whether the in-plane 
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displacements of the specimen would have any influence in the angular deflection 

measurements in addition to thickness and refractive index changes. 

 

 

  

 

 

 

 

 

 

 

 
 
 
 
 

Figure A2.1: Schematic of a DGS experiment to evaluate angular light deflections 
produced by a uniaxially loaded PMMA plate. 

 
 
 

To investigate this, a uniaxial tensile test was carried out on a PMMA sheet. The 

resulting contours should be uniformly zero, due to the absence of stress gradients. If 

there is any influence of the linearly varying displacement field, a regular contour pattern 

should occur. To verify the above, a PMMA sheet, 19.6 mm wide and 5.9 mm thick was 

subjected to a uniaxial tension using Instron 4465 universal testing machine. The other 

experimental parameters used were, L = 1450 mm and = 28.3 mm. A reference image 
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was recorded under a preload of a few Newtons. Then, a tensile force of 4000 N was 

applied (yy = 34.6 MPa), which resulted in a uniform thickness change of ~ 20 m in the 

specimen. 

 
 

 

 

Figure A2.2: Angular deflection contours of y for a uniaxially loaded PMMA strip. 
Contour levels are in ×10-3 radian. 

 
 

The angular deflection field in the loading direction was obtained from the 

reference and deformed images and is shown in Fig. A2.2. The deflection field is uniform 

in the direction of specimen displacement, which substantiates that the in-plane 

displacements have no influence on the DGS measurements. The deflections recorded in 

the field are approximately 3 × 10-4 radians which is close to the resolution of the 

method. 
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A3 Refractive index measurement using DGS 

 

Light rays refract as they travel through media having different refractive indices. 

Therefore, it is possible to quantify the refractive index of a transparent constant 

thickness sheet using DGS, since it is capable of measuring angular deflections of light 

rays. In Fig. A3.1, assume a light ray traveling in air be incident at a point O on a  

transparent, optically homogeneous, planar medium of thickness B and refractive index n 

at an angle of i relative to the surface normal. Due to the difference in refractive indices 

of air and the planar medium, the light ray will deflect towards the normal (assuming n > 

1) to the surface. Let this refracted ray form an angle r with the normal. As the light ray 

exits the planar medium at Q',  it will now deflect away from the normal, parallel to the 

original incident direction. On the other hand, path of the light ray would have been OQ 

if there was no second medium. It is obvious that the vertical distance y between Q and 

Q' is a result of the difference in densities (refractive indices) of the two media. This 

displacement can be measured using DGS and related to the refractive index of the 

transparent medium. For verification, a PMMA plate was used to experimentally obtain 

displacement fields x  and y and compared with the analytical counterparts. 

 

Experimental details  

 

The schematic of the experimental setup to capture y is shown in Fig. A3.2. A 

target plane with the speckle pattern was placed at a sufficiently large distance of ~1275 

mm from a camera (Nikon D100 digital camera fitted with a 28-300 mm lens using an 
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extension tube and aperture setting #11). A reference (undeformed) image of the speckle 

pattern was recorded first. Then, a clear 9.4 mm thick PMMA plate was introduced 

between the camera and the speckle plane. The distance from the mid-plane of the 

specimen to the speckle plane,  was 30.7 mm. A second image of the speckle pattern, 

this time through the PMMA plate, was recorded. The size of the image recorded by the 

camera was approximately 64 x 42 mm2 rectangle in the central region of the PMMA. 

 

 

Figure A3.1: Schematic to explain the optical path change of light rays traveling through 
media of different refractive indices. 

 
 

The recording of the reference and perturbed speckle fields used a pixel resolution 

of 1504 x 1000 pixels (1 pixel = 43.54 m on the target plane). The second speckle image 

can be considered to be the “perturbed” image whose y field is given by, 

  tan tany i rO Q O Q B        . (A3.1)
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Also, from the Snell’s law, 
sin

sin 1
i

r

n


 . For small angles (paraxial approximation), 

i
r n

  . Therefore, Eq. (A3.1) becomes 

 
1

1y iB
n

     
 

. (A3.2) 

Now, from Fig. A3.2, tan t
i

y

L
 

 
. Substituting this relation in Eq. (A3.2), and 

assuming small i and r, we get, 

              
1

1t
y

By

L n
       

.     (A3.3) 

 

 

 

  

 

 

 

 

 
 
 
 
 

Figure A3.2: Schematic of the experimental set up used to capture the optical path change 
of light rays traveling through media of different refractive indices. 
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Figure A3.3: Contour plots of measured x (top) and y (bottom) fields. 
Contour levels are in mm. 

 

 

A similar expression for the horizontal component of displacement, x is to be 

implicitly understood. By rearranging Eq. (A3.3), the refractive index of the specimen 
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can be obtained. As evident from the above equation, the displacement fields, x and y 

are linear functions of the specimen’s x- and y-coordinates, respectively. Hence, the 

contours of constant x and y 
should be equally spaced. In addition, for an optically 

homogeneous medium, the contours should be equally spaced lines parallel to the two 

coordinates. These can be used to verify Eq. (A3.3). The in-plane displacement fields 

were extracted from the undeformed and deformed images by performing 2D digital 

image correlation. The contour plots of the experimentally obtained x and y are shown 

in Fig. A3.3. As predicted, the contours are approximately equidistant and parallel lines. 

Any departure from the parallelism can be attributed to the optical inhomogeneity and 

non-uniform thickness of the specimen besides other experimental errors. An average 

value of refractive index computed based on the contour spacing is n = 1.44, which is 

close to that of commercial PMMA found in the literature [59, 60]. 

 

 

A4 Inspection of glass for inhomogeneities and defects using DGS 

 

This section presents a promising commercial application of DGS as an 

engineering inspection tool. The application is to measure angular deflections of light 

rays in commercial glass, where DGS can be easily implemented as an inspection tool to 

investigate the optical homogeneity qualitatively as well as quantitatively. To 

demonstrate the feasibility to measure angular deflections caused by inhomogeneities and 

defects, a borosilicate plate of dimensions 50×50×2.8 mm3 was deliberately subjected to 

a thermal load caused by a brief exposure to its center the flame of a blow torch. This 
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introduced thermal stresses in the glass specimen upon cooling. The schematic of the 

experimental setup used to visualize and quantify the inhomogeneity is shown in Fig. 

A4.1. A Nikon D100 digital camera fitted with a 28-300 mm lens and an extension tube 

was placed at a distance L ~ 1000 mm from where the glass specimen is to be positioned. 

A target plane decorated with a random black and white speckle pattern was placed 

behind the specimen location at a distance 27.1mm from the mid-plane of the 

specimen. The camera was focused on this plane when the specimen was not in the path 

of observation. The aperture was set to #11 in the lens and the sensor resolution used was 

1504 × 1000 pixels (1 pixel = 35.6 m). 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure A4.1: Schematic of the experimental set up used to measure angular deflections in 
a thermally stressed borosilicate glass plate using DGS. 
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A reference image of the speckle plane was recorded. Then, the thermally stressed 

specimen was moved into position as shown in Fig. A4.1. This made the speckles appear 

distorted when looked through the defective specimen (Fig. A4.2). The distorted / 

deformed image was now recorded using the same camera settings. The two images were 

then processed using 2D DIC to obtain x and y fields. The angular deflection fields (x 

and y) were then obtained by dividing x and y by the separation distance  (Section 

2.2). The results are plotted in Fig. A4.3. The angular deflection contours show a clear 

evidence of a nearly circular heat affected zone (HAZ) in the mid-field of view, signified 

by a dense cluster of contours along the periphery of the HAZ. Away from the HAZ, the 

field consists of nominally parallel angular deflection contours along the horizontal and 

vertical directions in the x and y fields. The parallel contours can be explained by the 

reasons provided in Section A3. 

 

      

Figure A4.2: Reference (left) and deformed (right) image of speckles recorded through an 
optically inhomogeneous borosilicate glass plate. (The perturbation of speckles is not 

discernible to the human eye) 
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Figure A4.3: Angular deflection contours, x (top) and y (bottom) in a thermally stressed 
borosilicate glass plate. Contour levels are in 10-4 radian. 
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A5  Curing induced surface slopes of a polymer coated silicon wafer 

  

One of the potential applications of the proposed reflection DGS methodology is 

to monitor the evolution of surface slopes and curvatures (and hence stresses) during 

deposition and curing of dissimilar material films on silicon wafers during 

microelectronic fabrication.  To demonstrate this feasibility, an experiment in which 

slopes and curvatures of a thin silicon wafer, spin-coated with a layer of uncured epoxy 

and monitored during the initial stages of the curing process, was conducted. As evident 

from Fig. 2.2, by increasing the separation distance between the object and target 

planes, the displacements (x and y) can be magnified using the optical arm, for the same 

angular deflection values. This feature is of significance in situations where very small (< 

1 × 10-4 radians) angular deflections are encountered / expected, as the resolution of DGS 

could be intrinsically adjusted thereby minimizing measurement errors associated with 

small angular deflections. Equipped with this information, a feasibility experiment to 

measure the small surface slopes induced by in situ curing of a thin layer of epoxy film 

on one face of a thin silicon wafer was performed. A schematic of the experimental setup 

used is shown in Fig. A5.1. A 50.8 mm diameter, 100 m thick double side polished 

silicon wafer was spin-coated on one side with 20-30 m thick epoxy (Epothin® - a two 

part, low viscosity epoxy from Buehler Inc., USA; gel time ~20 mins at room 

temperature) layer. The epoxy-coated wafer was freely rested on a rigid platform with a 

square clear aperture placed parallel to the table top. The uncoated, side faced the speckle 

target positioned parallel to it, at a distance of  = 472 mm (note that a large  is chosen 

since the expected deformations are relatively small in this experiment). A beam splitter 
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was placed in-between the coated wafer and the target and oriented at 45˚ to the wafer 

surface. A Nikon D3000 DSLR camera fitted with an extension tube and a 70-300 mm 

focal length lens was positioned at a distance of L = 1505 mm from the wafer surface. 

Then, the camera was focused on the speckled target via the beam splitter and the silicon 

wafer. Then, a reference image of the speckles was recorded at time t = 0 mins 

(corresponding to 10 minutes after the start of mixing the two-part epoxy resin and 

hardener). 

 

 

  

 

 

 

 

 

 

Figure A5.1: Schematic of experimental setup used to measure surface slopes of a 100 
m thick silicon wafer caused by the in situ curing of thin epoxy film. 

 

 

The images were recorded through a 70-300 mm lens with F# 22 aperture, and a 

resolution of 1936 × 1296 pixels, each pixel corresponding to 59.4 m on the target 

plane. Subsequently, perturbed images of the speckles while the epoxy cured at room 

temperature, were recorded at every 5 minute intervals for up to one hour. The 
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‘deformed’ speckle images were then correlated with the reference image to obtain the 

w

x




 and 
w

y


  

contours and results for a few select times are shown in Fig. A5.2. As noted 

earlier, the coordinates of the contour plots were corrected for perspective effect 

introduced by the large  (Section 3.2) using coordinate mapping functions. During 

analyses, the recorded images were segmented into 15 × 15 non-overlapping sub-images 

which resulted in 75 × 98 data points at each time step. 

 

The time-resolved contour plots in Fig. A5.2 show the evolution of surface slopes 

in the silicon wafer as the epoxy film cures. In the early stages of curing, the contours (t = 

0-25 mins) are randomly shaped and oriented whereas subsequent contours (t = 35 mins) 

reveal a definite organization in terms of shape and orientation. The increase and 

decrease in contour densities between t = 35 mins and 55 mins is indicative of the time 

dependent deformation in the wafer caused by the curing of epoxy film. There is a 

monotonic increase in the number of slope contours up to ~45 minutes of the curing cycle 

as the film continues to polymerize and cross-link.  Subsequently, a drop in the number 

of contours (and the magnitude of surface slopes) is evident suggesting a degree of 

relaxation of the wafer from progressive warping, possibly attributed to micro-scale 

debonding between the wafer and the epoxy film. In this first qualitative demonstration of 

the curing induced deformations, the continuous monitoring of the epoxy coated wafer 

was discontinued beyond the last frame in view of the demonstrative nature of the work. 

The slope contours at t = 35, 45 and 55 mins suggest a relatively uniform deformation of 

the wafer as suggested by the near-parallel and uniformly spaced orthogonal slope 

contours. 
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Figure A5.2: Evolution of orthogonal surface slopes w,x and w,y of silicon wafer as epoxy 

film cures on the wafer. Contour levels are in 1×10-5 radians. 
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