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Abstract

This thesis presents three methods that provide and estimate of road bank by decoupling

the vehicle roll due to dynamics and roll due road bank. Suspension deflection measurements

were used to provide a measurement of the relative roll between the vehicle body frame and

the axle frame, or between the sprung mass and the unsprung mass respectively. A method

of scaling the suspension deflection measurements to vertical wheel motion was explored. A

deflection scaling parameter was found by both a dynamics based method and a suspension

geometry based method. The parameter was determined to effectively scale the suspension

deflection measurements with minimum error variances over varying vehicle speeds. The

relative roll measurement was then incorporated into three different estimation architectures.

A vehicle model based Kalman filter (KF) observer and two kinematic navigation model

based extended Kalman filters (EKF) were developed. The first EKF used a cascaded

approach to incorporate the relative roll measurement. The EKF second, a coupled approach,

augmented the state vector with a state for the road bank. The road bank was modeled as a

time varying disturbance and a measurement update for the relative roll measurement was

developed.

All the estimators were used to decouple the vehicle roll due to dynamics and the roll

due to bank. Each algorithm was tested in simulation with data from CarSim 6, a vehicle

dynamic modeling software package. The estimators were then tested on the Prowler ATV

experimental platform at the National Center for Asphalt Technology (NCAT). The KF

vehicle model based estimator correctly estimated the road bank under low dynamics in

simulation but was susceptible to vehicle model uncertainties and nonlinearities. Both the

cascaded and coupled approach performed well for both simulation and experimental data.
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The EKFs correctly estimated the road crown and banked turns of the NCAT Oval track.

The coupled EKF displayed the added benefit of filtering the noise on the bank estimate.

Between the three estimation approaches the coupled kinematic based EKF approach

was determined to be the best method. The vehicle model based approach proved to be very

sensitive to the vehicle model. Small deviations in the model led to large bank errors and poor

performance under high dynamics. Both of the kinematic based approaches performed well

across all ranges of dynamics and road bank disturbances. However, the coupled approach

filtered the noise on the bank estimate which was determined to be advantageous.
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Chapter 1

Background & Motivation

1.1 Introduction

Vehicle rollover is a topic which has been widely researched by the vehicle community

for some time. With the rise in popularity of high center of gravity vehicles such as sport

utility vehicles, rollover has become an important issue for vehicle safety.

In 2009, 2.954 trillion miles were traveled by motorists in the United States. Among

those miles, motor vehicle crashes resulted in 30,797 fatalities [1]. Rollover crashes account

for only 3% of vehicle crashes. However, they lead to approximately one third of all occupant

deaths. This amount of rollover related deaths is a disproportionately large number of

highway fatalities.

Some vehicle safety features recently introduced by manufacturers into motor vehicle

fleets may be contributing to a reduction in rollover crashes and the harm they cause. These

features include rollover sensors to trigger inflatable side curtain airbags (SCABs, known as

rollover protection) to mitigate occupant injury, electronic stability control (ESC) to reduce

loss of yaw control, and roll stability control (RSC) to minimize the number of rollover

crashes that occur. These safety features are typically installed in Light Trucks and Vans

(LTVs) [2].

A review of empirical evidence that ESC has the potential to reduce the number of

rollover accidents and several other fatal types of accidents is shown in [3]. In fact, the Na-

tional Center for Highway Safety (NTSHA) has issued a final rule in the Federal Register that

requires manufacturers to implement ESC systems for passenger cars, multipurpose passen-

ger vehicles, trucks, and buses with a gross vehicle weight rating of 4,536 Kg (10,000 pounds).

According to NHTSA research, preventing single-vehicle loss-of-control crashes is the most
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effective way to reduce deaths resulting from rollover crashes. “This is because most loss-of-

control crashes culminate in the vehicle leaving the roadway, which dramatically increases

the probability of a rollover. Based on the best available data drawn from crash data studies,

NHTSA estimates that the installation of ESC will reduce single-vehicle crashes of 2 passen-

ger cars by 34 percent and single vehicle crashes of sport utility vehicles (SUVs) by 59 percent,

with a much greater reduction of rollover crashes. NHTSA estimates that ESC has the poten-

tial to prevent 71 percent of the passenger car rollovers and 84 percent of the SUV rollovers

that would otherwise occur in singlevehicle crashes [4].”

1.2 Rollover Algorithms

The rollover issue has led to the development of several metrics and methodologies to

predict and prevent vehicle roll over. Although typically the motivation for these studies

has been passenger vehicle safety, the use of these metrics can also be used to aid in the

navigation and control of unmanned ground vehicles (UGV). In order for the UGV to be

effective in performing its task, it must remain in a usable and controllable state. Thus the

vehicle must avoid rolling over. Additionally, the appropriate control effort required to keep

the vehicle from rolling is dependent on the bank on which the vehicle is operating.

Work has been done to develop metrics and algorithms for rollover indication and pre-

diction. The most basic is the Static Stability Factor (SSF). The SSF is a function of the

track width and the vertical height of the center of gravity (CG) of the vehicle. Increasing

CG height or decreasing the track width will cause an increase in rollover propensity [5].

Other metrics including the Lateral Load Transfer Ratio (LLT, LTR) and the Roll Stability

Factor (RSF) use the difference in normal forces on the left and right sides of the vehicle

to indicate rollover [5, 6]. Two wheel lift off can be determined through the observation of

the RSF. A Two Wheel Lift-off Velocity (TWLV) value can then be assigned and used in

characterization of rollover propensity [5]. To predict a Time-To-Rollover (TTR), Gáspár et

al. [7] used a simple model to calculate a TTR assuming the speed and steer angle remain
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constant. In that work, a neural network is used to make up for the lack of complexity off

the simple vehicle model needed to run faster than real time.

Rajamani et al. [8] determined that if the roll motion of the sprung mass is caused

entirely by the lateral acceleration, ignoring road and other external inputs, the rollover

index can be approximated as a function of lateral acceleration and CG height. Thus the

roll angle estimates and CG height estimates need to be accurate. They then propose a

dynamic observer and a CG height estimator to estimate the real-time roll angle and CG

height in order to calculate an accurate rollover index value.

These rollover metrics and algorithms work well with the assumption the road is flat and

level. This assumption will hold for small bank angles. However, in the more extreme cases

where bank angles exceed threshold of the small angle approximation, rollover characteristics

change. In order to improve the accuracy of the roll indicator, it is beneficial to have an

understanding of the bank on which the vehicle is traveling. A vehicle operating on a large

bank will have an increased tendency to roll compared to a vehicle operating on a flat

surface. Peters and Iagnemma [9] developed a stability metric based on the distribution of

wheel terrain contact forces. They showed that the metric can successfully predict rollover on

surfaces with arbitrary geometries. Ryu and Gerdes investigated the problem of estimating

vehicle and road bank [10]. They modeled the road bank as a disturbance and used a

disturbance observer to estimate the road bank. Using a two antenna GPS system they were

able to accurately estimate roll and road bank.

1.3 Contributions

It is desirable to develop a method of estimating roll and road bank which is not re-

liant on multiple GPS antenna systems, as a multi GPS antenna system is more expensive

then a single antenna system. Reducing the number of GPS antennas needed would be

advantageous.
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This work explores two methods of estimating the vehicle road bank. The first is a

vehicle model based observer method. The vehicle model observer method uses an inertial

measurement unit (IMU), vehicle speed sensor and potentiometers to measure suspension

deflections. The IMU measures the specific force and rotation rates of the vehicle. The

vehicle’s relative roll, the amount of roll that exists between the sprung and unsprung masses,

is measured from suspension deflections and geometry. Previously, suspension deflections

have been used as an estimate of the total vehicle roll with the assumption that the road

bank was near zero and could be neglected [11]. The vehicle speed sensor could be a Hall

effect wheel speed sensor. But, for the experimental results of this work, access to the wheel

speed sensor was not available and the GPS velocity was used.

The second method for road bank estimation utilizes the kinematics of the vehicle in

lieu of a vehicle model. The method is based off the extended Kalman filter (EKF) used

for navigation which provides estimates of the attitude states of the vehicle. The total roll

angle acquired from the EKF attitude vector is then combined with a measurement of the

vehicle’s relative roll and an estimate of road bank is acquired. As in the first method, the

suspension deflections and geometry are used to provide the measurement of the vehicle’s

relative roll. This method uses a single antenna GPS and a six degree of freedom (DOF)

IMU.

This thesis makes several contributions to the research in this field:

• A vehicle model based Kalman filter observer method for road bank estimation is

modified to use the relative roll measurement with the potential to not need any GPS

measurements.

• This vehicle model based Kalman filter method was tested in simulation, but a poor

vehicle model prevented validation of experimental data.

• A kinematic model based navigation EKF cascaded with relative roll measurements is

developed to estimate road bank.
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• A kinematic model based navigation EKF coupled with relative roll measurements is

developed to estimate road bank.

• Both the cascaded and coupled kinematic model based navigation EKF approches are

validated in simulation and with experimental data.

• The cascaded and coupled approaches are compared against each other with the ex-

perimental data.

• The coupled kinematic model based navigation approach is recommended for road

bank estimation due to the filtering of sensor noise it provides on the bank estimate.

1.4 Thesis Outline

The outline of this thesis is as follows: the relationship of roll and bank is discussed

in Chapter 2. The concept of relative roll is explained and a geometry-based method that

uses suspension deflections to acquire a measurement of relative roll is presented. A scaling

parameter, η, is shown to be necessary for use of the relative roll measurement. In Chapter 3

the relationship of vehicle dynamics and η scaling factor is explored. A complete formulation

of the Kalman filter and the extended Kalman filter for navigation comprises the first half of

Chapter 4. The latter half demonstrates the navigation extend Kalman filter in simulation.

The roll estimate is then combined with the relative roll measurement and is shown to

correctly provide an estimate of bank in simulation.

In Chapter 4 the navigation filter is augmented with a road bank state. This coupled

EKF approach to the bank estimation is then simulated and shown to provide the advantage

of noise filtering on the bank state. The vehicle model approach is described in Chapter

6. The chapter then concludes with a simulation of the vehicle model observer approach.

Both the cascaded and coupled versions of the navigation EKF as well as the vehicle model

observer method are tested with experimental data in Chapter 7. The data comes from

tests with the Prowler ATV on on oval track at the National Center for Asphalt Technology
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(NCAT). The vehicle model observer performs poorly due to inaccurate knowledge of the

vehicle parameters for the Prowler ATV. The navigation filter approaches are both validated

with the experimental data. The coupled EKF is recommended as the preferred approach

due to the filtering of noise on the bank state. Finally, Chapter 8 consolidates the conclusions

from preceeding chapters and highlights areas of future work.
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Chapter 2

Roll, Relative Roll and Road Bank

2.1 Introduction

This chapter discusses the relationship between the sprung and unsprung mass of the

vehicle and the effects of road bank on each mass. A method is presented that uses the

suspension deflections in conjunction with the knowledge of the total body roll to provide an

estimate of the road bank angle. Also, it should be noted that the methodology presented

can be modified and applied to vehicle pitch and road grade estimation.

2.2 Methodology

Figure 2.1 represents the roll model of the vehicle. In this model the sprung mass rotates

about the roll center. The road bank is described by the angle φr that exist between the

road surface and the horizontal. The angle φs describes the suspension roll, or relative roll,

that is due to the suspension deflections caused by the dynamics of the vehicle. The sum of

the road bank and the relative roll is the total roll indicated by φv. The center of gravity is

denoted by CG and the gravity vector points downward and is denoted by g. The distance

from the ground surface to the roll center is hrc, the distance from the roll center to the

center of gravity is hrg and the distance between the two wheels is track width, denoted as

tw.

7



Figure 2.1: Roll Model

2.2.1 Relative Roll

The vehicle roll can be estimated using suspension deflections [11]. This measurement

of roll can be determined based on the geometry of the suspension and can be estimated

using Eq. (2.1),

φ̄s = sin−1
(

∆LLF −∆LRF + ∆LLR −∆LRR
2tw

)
(2.1)

where φ̄s is the relative roll of the suspension. It should be noted that the suspension

roll is the roll of the body relative to the surface on which it is driving. The deflections ∆Lij

are the suspension deflections at respective corners of the vehicle. The suspension roll for

the front axle is the inverse sine of the left deflection minus the right deflection divided by

the vehicle track width (tw) as observed from Figure 2.2.
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Figure 2.2: Suspension Deflection Diagram

The suspension roll for the rear axle can be determined similarly but the j subscript is

denoted by an R for rear axle. The front and rear suspension roll values can be averaged for

a suspension roll calculation of the whole vehicle. It should also be noted that this method

captures the dynamics of the suspension relative to the sample time of the deflection sensors.

2.2.2 Scale Factor η

Based on the vehicle suspension geometry, Eq. (2.1) will underestimate the true sus-

pension roll by a factor that can be determined experimentally [11]. Thus, Eq. (2.1) must

be multiplied by the scale factor η to represent the true suspension roll.

φs = ηφ̄s (2.2)

Note that η is a parameter associated with the static geometry of the vehicle’s suspension

and therefore is vehicle suspension dependent. Initial results suggest η is a constant value

unique to the vehicle and will not vary based on bank angle or other road inputs. This scale

factor can be determined by taking the ratio of the un-scaled suspension roll to the difference

of the true body roll and the bank angle, as shown in Eq. (2.3).

η = φv − φr
φ̄s

(2.3)
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In practice calculating η is most easily performed on a flat surface with no bank angle.

When the bank angle (φr) is zero, the suspension roll (φs) becomes equal to the total roll

(φv). Note the total roll (φv) should be a direct measurement or an estimate with suitable

accuracy. Figure 2.3 shows the CarSim results of the vehicle performing a double lane

change on a flat surface. The effect of the scaling factor on the suspension roll estimate can

be seen in this plot. An average of Eq. (2.3) over the length of the run in Figure 2.3 was

used to calculate the η value used in the corrected suspension roll. Although the un-scaled

suspension roll captures the shape of the vehicle roll, it under-predicts the magnitude. After

scaling the suspension roll closely matches the total roll as expected. Further details on how

the simulation was conducted is presented in the Section 4.3.
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Figure 2.3: Simulated Vehicle Performing a Double Lane Change Maneuver on a Flat Surface

Using the suspension deflections as the sole estimation of roll becomes problematic when

there are additional inputs into the suspension, such as bumps or if the vehicle is traveling

on a banked road. For a banked road, a method of measuring or estimating the total roll of

the vehicle must be used to decouple the roll due to bank and the roll due to dynamics.
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2.3 Conclusion

If the road surface is a assumed to be flat, a low fidelity roll model can be used in

conjunction with susension deflection measurements to calculate the roll of a vehicle. The

roll scaling parameter eta (η) is needed to account for the effects of the suspension geometry

on the deflection measurements. It is possible to calculate the parameter η experimentally

if a perfectly flat surface is available. For banked road surfaces the roll calculated from

suspension deflections will be corrupted due to the bank disturbance input to the suspension.

A method for measureing or estimating the total roll is needed to decouple the roll from bank

and the roll due to dynamics of the vehicle.
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Chapter 3

The Eta (η) Parameter for Roll Scaling

3.1 Introduction

The η parameter is a peculiar characteristic of the relative roll equation. The dynamic

characteristics of the η parameter were studied by altering the vehicle mass, location of the

CG and inertial properties of a simulated vehicle. It is unusual that a constant parameter

can correct for the errors from the suspension deflections. The nature and characteristics of

this scale factor, η, is discussed in this chapter.

3.2 The Effect of Speed on η

A manuever called the double lane change (DLC) is the industry standard for testing

dynamic roll properties for various vehicles. Figure 3.1 reprents the ISO 3888-2 standard for

a DLC [12]. Observe that the width of the starting lane and intermediate lane are function

of the vehicle width.

Figure 3.1: Double Lane Change ISO 3888-2
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Individual double lane change runs were created in CarSim at increments of 10 km/hr

from 10 km/hr to 250 km/hr on a flat surface. Eq. (2.3) was then used to calculate the

average η value for each run. For the η calculation, only the peaks of the Euler roll and

suspension roll were used. The average η value across all speeds was then calculated to be

1.736. The slower speeds seem to generate lower η values, but the values still remain grouped

close to the average.
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Figure 3.2: η Values for DLC on Flat Surface (10 km/hr to 250 km/hr)

The average η was then applied to each of the runs for 10 - 250 km/hr. The root mean

squared (RMS) error of the bank estimate was then calculated at each speed as shown in

Figure 3.3. The plot of RMS error shows a trend of increasing RMS as speed increases, but

the RMS remains small relative to the roll angles, which are near 8 and 9 deg at the higher

speeds.
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3.3 The effect of Mass and CG height on η.

In CarSim, a payload box was used to change the effective CG height of the sprung mass,

i.e. the vehicle body, of CarSim’s small SUV. Initially the box has dimensions of 1.2m x 0.9m

x0.3m (L x W x H) where the length is parallel to the wheel base and the width is parallel

to the track width of the vehicle. With a mass of 250 kg, the roll, pitch and yaw inertia are

18.75 kg ·m2, 31.87 kg ·m2,46.87 kg ·m2 respectively. The location of the payload’s center of

mass was placed directly on the vehicle center of mass which lies in the center of the vehicle

from driver side to passenger side, 0.88 m back from the front axle to the rear and 0.64

meters off the ground. The height of the payload was then altered according to Table 3.1

and a double lane change was performed at 50 km/hr, 115 km/hr and 140 km/hr. Note that the

payload height effectively changes the CG height.
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Table 3.1: Payload Height

Height Above CG Units
-150 mm
150 mm
640 mm
750 mm
1.05 m
1.35 m
1.65 m
1.95 m
2.25 m
2.55 m
2.85 m

As shown on Figure 3.4 the average η parameter across all the CG height runs was

1.871. It seems that adding weight increases η, especially at payload heights below and near

the CG. When the average of 1.871 is used on the same payload runs, the RMS remains

below 2 degrees except when wheel lift off occurs in the runs with a payload height greater

than 2 m for speeds of 115 km/hr and 140 km/hr as shown in Figure 3.5. Wheel lift off was

determined to be when the suspension defelction measurement reached its maximum value.

Note the data for the η calculation in which a suspension deflection measured full extension

were not used. However deflections near full extension could explain the increase in η after

2 m payload height for speeds of 115 km/hr and 140 km/hr.
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Next, the 250 kg payload was positioned at the vertical height of the CG and then

moved towards the rear in the increments found in Table 3.2. Figure 3.6 confirms that at

lower speeds a payload affects the η more than at higher speeds. However, the longitudinal
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offset does not have much affect on η. Figure 3.7 shows that using the average of 1.873

produces minimal RMS errors less than 0.1 deg across the runs.

Table 3.2: Payload Longitudinal Displacement

Longitudinal Displacement From CG to Rear Units
10 mm
50 mm
150 mm
500 mm
750 mm
1 m
1.5 m
2 m
3 m
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Figure 3.6: η Values for DLC on Flat Surface (Different Payload Longitudinal Displacements)
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3.4 η as the Kinematic Suspension Ratio

In practice, both an accurate measurement of total roll, φv, and a flat surface may

not be available. These issues present a challenge to finding the η factor. However an

alternate method is available which uses measurements from the suspension links. Known as

the kinematic suspension ratio, the method relates the vertical deflection of the suspension

spring and damper to the vertical deflection that is experienced at the tire through Eq.

(3.1). Figure 3.8 shows the geometry vertical deflections of the suspension component and

the vertical deflection at the tire.

cos
(

∆Z
a+ b

)
= cos

(
∆L
a

)
(3.1)

∆Z
a+ b

≈ ∆L
a

(3.2)
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After assuming small angles the expression for the vertical deflection of the tire becomes:

∆Z = (a+ b) ∆L
a

(3.3)

∆Z = ηr∆L (3.4)

The ηr scaling factor is thus the ratio of the upper A-arm length, (a+ b), to the length from

the upper A-arm link and vehicle frame joint to the point where the suspension component

attaches to the upper A-arm link joint, a as seen in Eq.(3.5).

ηr = (a+ b)
a

(3.5)

Figure 3.8: Suspension Diagram

The scale factor ηr should be applied directly to the suspension deflections prior to the

relative roll calculations as shown in Eq. (3.6). However, suspension roll on vehicles does

not exceed the small angle approximation. Thus the scaling method from Section 2.2.2and
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the kinematic suspension ratio method are roughly equivalent for small angles. And, ηr is

equivalent to η from Eq. (2.2) and Eq.(2.3).

φs = sin−1
(
ηr (∆LLF −∆LRF + ∆LLR −∆LRR)

2tw

)
(3.6)

Therefore, the scaling method in Section 2.2.2 was used for the CarSim simulations in which

no physical measurements of the suspension links exist to be measured. The kinematic

suspension ratio method was used to find η for the experimental data with the Prowler

ATV, because the suspension could be directly measured and a sufficiently flat surface could

not be found.

3.5 Conclusions

The effects of speed and payload loadings on the derivation of the η factor were explored.

The η factor was found to vary but the resulting errors in the bank estimate were small.

Practical issues such as finding a completely flat surface and the sensor cost of measuring

the total roll with an expensive device like a three antenna GPS receiver were found to be

non-issues with the kinematic suspension ratio. The kinematic suspension ratio was found

to be equivalent to η described in Section 2.2.2.
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Chapter 4

Road Bank Estimation using Suspension Deflections and a Cascaded Navigation EKF

4.1 Introduction

This chapter begins with the thorough description of the navigation filter methodology.

The navigation filter methodology covers the topics of inertial navigation, the formulation

of the Kalman filter (KF) to blend inertial and GPS navigation, the extension to nonlinear

system equations made possible by the extended Kalman filter (EKF), and the cascaded

integration of the navigation EKF and relative roll measurement. The cascaded navigation

EKF with relative roll measurement is then simulated to validate its efficacy at estimating

road bank.

4.2 Methodology

The EKFs used in this work utilize the methods from [13] with supplemental references

to [14]. The navigation filters are error state filters, which means that the error states are

added to the actual states during each measurement update. The filters are constructed

with a six degree of freedom IMU time update and a GPS measurement update.

The filter described in detail below is used to blend global navigation satellite system

(GNSS) solutions with inertial navigation system (INS) solutions. GNSS is comprised of

the constellations of satellites designed to provide positioning and timing information for

users on Earth or in space. The global positioning system (GPS) is the mostly widely used

GNSS currently and was designed and produced by the U.S. Department of Defense. Inertial

navigation is a method that utilizes a history of acceleration and angular velocity measure-

ments to determine the current position of the user or object. Using kinematic relationships
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the acceleration measurements, resolved in the appropriate navigation coordinate frame, are

integrated once to yield velocity. Note the navigation coordinate frame is determined from

angular velocity measurements. The velocity is then integrated again to determine position.

Acceleration is measured using an accelerometer and angular velocity is measured using

a rate gyro. When these sensors are combined they are called inertial sensors. Typically

three orthogonal axes of accelerometers and three orthogonal axes of gyros are combined to

measure the full vector of acceleration and angular velocity. This six-axis setup is called an

inertial measurement unit (IMU). The combination of an IMU, navigation algorithms and

the computer that executes the algorithms is termed the inertial navigation system (INS)

[13] .

4.2.1 Coordinate Frames

Inertial navigation algorithms use a few coordinate frames. The Earth-centered inertial,

ECI, used in navigation applications is an inertial reference frame that does not accelerate

or rotate with respect to the rest of the universe [14]. The origin of the ECI frame is at the

center of mass of the Earth with the z-axis collinear with the average spin axis of the Earth.

The ECI frame does not rotate or accelerate with the Earth. The ECI frame is denoted

by the symbol i as a superscript or a subscript. The axes of the IMU form the body fixed

frame. The assumption is made that the x, y and z axes align with the front, right and down

axes of the vehicle [13]. The body frame is denoted by the symbol b. The Earth frame or

Earth-centered Earth-fixed (ECEF) is similar to the ECI frame. However, the ECEF frame

remains fixed to the earth and thus spins as the earth spins. The x-axis points from the

center of the Earth to the intersection of the equator, 0 deg latitude, and the conventional

zero median (CZM) that defines 0 deg longitude. The z-axis points from the center towards

the true North Pole, and the y-axis points from the center to the intersection of the equator

and 90 deg longitude east completing the orthogonal triad. The ECEF frame is denoted with

the symbol e. The local navigation frame is a geodetic or geographic frame and is denoted
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with the symbol n. The origin of the body frame is termed the “point of interest” which is

typically the center of mass of the vehicle. The z-axis is referred to as the down axis and is

normal to the surface of the reference ellipsoid and points towards the center of the Earth.

The x-axis is the axis that points north in the plane orthogonal to the z-axis and is also

called the North axis. The y-axis or east axis always points east [14].

4.2.2 Inertial Navigation

The velocities and angular rate measurements of an IMU can be used for stand alone

navigation for short durations of time. This type of navigation solution is called dead-

reckoning. How long a dead-reckoning solution is suitable for use depends on the quality

of the accelerometers and the gyros in the IMU and the knowledge of corresponding biases

in each axis. The suitable length for dead-reckoning also depends on the application. For

example, given both applications share the same IMU the allowable duration of error growth

that occurs in an autonomous vehicle for lane following is different from an autonomous geo-

physical grid survey application where path errors less than 20 cm need to be maintained.

In brief, integrating the angular rates yields attitude updates, the first integration of the ac-

celerations produces velocities and positions are acquired from integration of these velocities

or the second integration of the accelerations. The integrated noise and bias degrades the

solution with each subsequent integration. However, an integrated navigation system can

provide corrections to the IMU outputs and the inertial navigation solutions from estimates

of IMU bias that can be determined with the GNSS/INS integration algorithm [13]. This

method is discussed in Section 4.2.5.

4.2.2.1 Mechanization Equations

The equations of motion expressed in the north-east-down (NED) local navigation frame

are:
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ṗ = Tvn (4.1)

v̇ =Cn
b f b − [(2ωnie + 2ωnen) ˆ] vn + gn (4.2)

Ċn
b = Cn

b

([(
ωbib

)
ˆ
]
−
[(
ωbin

)
ˆ
])

(4.3)

Note that ωcba denotes the rotation rate of frame b relative to frame a parameterized

in frame c, thus ωnib is the rotation rate of the inertial frame, or the ECI frame, relative to

the body frame, or the vehicle/IMU frame, parametrized in the local navigation frame. The

vector p is the position of interest, which is the user, expressed in the geodetic coordinates

of latitude (L), longitude (λ) and altitude (h).

p =


L

λ

h



The vector v represents the NED components of the users velocity vN , vE and vD.

v =


vN

vE

vD



Local gravity is represented by the vector g. The matrix T is the transformation matrix that

converts the linear velocities of the NED frame to angular changes in latitude and longitude

of the local navigation frame.

T =


1

RN+h 0 0

0 1
(RE+h) cosL 0

0 0 −1

 (4.4)
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The values of RN and RE are the radii of curvature of the reference ellipsoid for the

north/south (meridian) and the east/west (prime vertical) respectively [14]. These radii

are functions of latitude and are computed using standard ellipsoid models of the Earth’s

surface. In [13] the radii of curvature are given as:

RN (L) = Ro (1− e2)
(1− e2 sin2 L)3/2

(4.5)

RE (L) = Ro√
1− e2 sin2 L

(4.6)

where Ro, the equatorial radius, and e, the eccentricity of the ellipsoid are:

Ro = 6, 378, 137.0 m

e = 0.0818191908425

The matrix Cn
b is the rotation matrix. It is of the form Cb

a such that the matrix rotates

from frame a to frame b. Thus Cn
b completes the angular rotation from the body frame to

the local navigation frame. The notation [(ωcba) ˆ], used in [13], is the skew symmetric matrix

of the vector ωcba =
[
φ̇cba θ̇cba ψ̇cba

]T
and is defined as:

[(ωcba) ˆ] =


0 −ωcba,3 ωcba,2

ωcba,3 0 −ωcba,1

−ωcba,2 ωcba,1 0

 =


0 −ψ̇cba θ̇cba

ψ̇cba 0 −φ̇cba

−θ̇cba φ̇cba 0

 (4.7)
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In this work attitude is parametrized using Euler angles. Specifically the aerospace

sequence of yaw, pitch and roll (ψ, θ and φ) are used. Accordingly, the attitude vector is:

ψnb =


φnb

θnb

ψnb

 (4.8)

4.2.2.2 Update Equations

Assuming the initial position is known three steps are needed to implement and solve

the mechanization equations. The steps include an attitude update, a velocity update and

a position update. The attitude update uses the gyro measurements from the IMU. These

gyro measurements form an angular velocity vector of the body frame relative to an inertial

frame of reference, ωbib. For attitude determination, the attitude of the body frame relative

to the navigation frame and expressed in the body frame, ωbnb, is needed. To obtain ωbnb
the rotation rate of the navigation frame relative to the inertial frame expressed in the body

frame, ωbin, is subtracted from ωbib, the angular rate of the body frame relative to the inertial

frame.

ωbnb = ωbib − ωbin (4.9)

Note that ωbin is essentially the rotation of the Earth. When using low cost gyros the rotation

rates from Earth are often less than the noise sensitivity of the gyros such that the following

approximation can be made.

ωbnb ≈ ωbib (4.10)

The Euler rates are then computed from the angular velocity vector as:

ψ̇nb = F (ψnb)ωbnb (4.11)
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where

F (ψnb) = 1
cos θnb


1 sinφnb sin θnb cosφnb sin θnb

0 cosφnb cos θnb − sinφnb cos θnb

0 sinφnb cosφnb

 (4.12)

For consumer grade and automotive gyros Euler integration of Eq.(4.11) is sufficient to

generate an estimate of attitude.


φnb

θnb

ψnb


k+1

=


φnb

θnb

ψnb


k

+ τF (ψnb (tk))ωbnb (tk) (4.13)

In Eq. (4.13) tk is an instance in time at step k and τ is the change in time such that

τ = tk+1 − tk. The attitude estimate ψnb (tk) =
[
φnb θnb ψnb

]T
k
is used for the rotation

matrix Cn
b that rotates vectors from the body frame to the navigation frame in the proceeding

velocity and position updates. The Cn
b transformation matrix is populated as:

Cn
b =


cosψnb sinψnb 0

− sinψnb cosψnb 0

0 0 1


k


cos θnb 0 − sin θnb

0 1 0

sin θnb 0 cos θnb


k


1 0 0

0 cosφnb sinφnb

0 − sinφnb cosφnb


k

(4.14)

The acceleration of the vehicle in the navigation frame is a function of the specific force

measurement vector from the IMU, f b =
[
fx fy fz

]T
, the angular rate of the earth, ωnie, the

transport rate, ωnen, and the gravity vector, gn, and is given by:

v̇n = Cn
b f b − [(2ωnie + ωnen)] vn + gn (4.15)
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At time step k the following relationships are used to calculate the earth rate, transport rate

and the gravity vector:

ωnie |k= 7.292115× 10−5


cosL

0

sinL


k

(4.16)

ωken |k=


vE

RE+h |k

− vN
RN+h |k

vE tanL
RE+h |k

 (4.17)

g |k=


0

0

g |k

 (4.18)

g |k≈ 9.78032533591 + 1.931853× 10−3 sinLk√
1− e2 sinLk

(4.19)

Again e is the eccentricity of the reference ellipsoid. For low cost IMUs the measurement

errors overpower the Coriolis effect such that the acceleration can be simplified to

v̇n ≈ Cn
b f b + gn (4.20)

Applying Euler integration to Eq.(4.15) yields


vN

vE

vD


k+1

=


vN

vE

vD


k

+ τ v̇n (4.21)

The position update requires applying Euler integration to Eq. (4.1) which yields

Lk+1 = Lk + τ
(

vn
RN + h

)
|k (4.22)
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λk+1 = λk + τ

(
vE

(RE + h) cosL

)
|k (4.23)

hk+1 = hk + τ (−vD) |k (4.24)

It is important to remember that precision of latitude and longitude at the level of

meters represented in the local navigation frame will require seven or more significant digits

(1 m ≈ 1.6e−7 rad).

4.2.2.3 Error Equations

The manner in which errors propagate through an INS is useful for navigation because

the mechanization equations, Eq. (4.1)-(4.3), represent the ideal case. Perturbation analysis

of the mechanization equations yields the first-order Taylor series expansion of the mecha-

nization equations:

δṗ = T′δpn + Tδvn (4.25)

δv̇n =
[(

Cn
b f b
)
ˆ
]
δψn

nb + Cn
b δf b − [2 (ωnie + ωnen) ˆ] δvn − [(2δωnie + δωnen) ˆ] vn + δgn (4.26)

δψ̇
n

nb ≈ − [(ωnin) ˆ] δψn
nb + δωnin −Cn

b δω
b
ib (4.27)

Error is represented by δ, and the matrix T′ is the time derivative that relates positional

errors into corresponding velocities. In practice the negative skew of the transport rate,

− [(ωnen) ˆ], can be used as T′. The error in gravity is often approximated as a function of

the magnitude of gravity at the users latitude and the error in altitude.

δgn =


0

0

− 2g
Ro
δh

 (4.28)

Note that δψn
nb, the attitude errors, are the errors resolved about the NED frame not errors

in the Euler angles themselves. Also, note that ωnin is equal to the sum of the earth rate and
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transport rate.

ωnin = ωnie + ωnen (4.29)

The variables δωbib and δf b are the errors from the accelerometer and rate gyro output errors.

These errors ultimately determine the performance of inertial navigation. Simple models of

the accelerometer and gyro are:

f b = f bt + Maf bt + bba + wb
a (4.30)

ωbib = ωbibt + Mgω
b
ibt + bbg + wb

g (4.31)

The subscripts a and g denote terms from the accelerometer and gyro respectively. The

subscript t represents the true value that is being measured and the superscript b means that

the term is expressed in the body frame. The matrices Ma and Mg account for the effects

of scale factors and any non-orthogonality errors. The b term is the bias vector and the w

term is the uncorrelated output noise vector. The bias vector and the uncorrelated noise

form the error model for the accelerometer and gyro, δf band δωbib used in Eq. (4.25)-4.27.

δf b = bba + wb
a (4.32)

δωbib = bbg + wb
g (4.33)

These errors limit the performance of inertial navigation. Because they are integrated

twice accelerometer errors cause position errors to grow as a function of the time squared.

Position errors from angular velocity will grow as a function of the time cubed. Including

accurate position and velocity updates will help to mitigate the error growth problem [13].
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4.2.3 Integration of Inertial Navigation and GPS

By themselves, INS and GPS are limited in their capabilities. However, when integrated

together they provide navigation solutions that perform better than the standalone solution

from each. The INS can provide solutions at high frequencies of 50 Hz or more. The GPS

navigation solution is typically 1-20 Hz. The errors of the GPS solution are bounded while

the INS errors grow as a function of time. Also, the INS provides an attitude solution while

a GPS receiver typically does not. When INS and GPS are fused together, the position and

velocity estimates from GPS are used to estimate and reduce the effect of the INS errors.

The INS produces attitude, velocity and position estimates at a high output rate and also

provides solutions during momentary GPS signal outages.

There are three main types of integration architectures: loose, tight and deep. Some-

times deeply integrated is also called ultra tight. This work focuses only on the loose

GPS/INS integration. Loose GPS/INS integration occurs at the PVT (position, velocity

and time) level. This means that the PVT estimates from GPS are blended with the PVA

(position, velocity and attitude) estimate of the INS or IMU. The loosely coupled architec-

ture can be open or closed loop. In the closed loop configuration the inertial sensor errors

estimated by the filter are fed back to the INS equations to compensate for the accelerometer

and gyro errors. If there is no feedback than the loosely coupled filter is an open loop archi-

tecture. The open loop form can be used when a high quality INS sensor is present. In this

work, an automotive grade INS is used. Therefore the loosely coupled filter with feedback is

utilized. The most common fusing filter used for loosely coupled GPS/INS is the extended

Kalman filter (EKF) [13] and is the filter of choice for this work.

4.2.4 Kalman Filter Overview

The primary assumption of the Kalman filter is that errors of the system that are

modeled are either systemic, white noise or Markov processes or any linear combination

of each. The algorithm estimates a set of parameters known as the state vector, x. The
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actual Kalman filter estimate of the state vector is denoted x̂. A total-state implementation

estimates the absolute properties of the system. This work is mainly concerned with the

error-state implementation which is the estimation of the errors in a measurement made by

the system. The state vector residual, δx, is the difference between the true state vector and

the estimated states.

δx = x− x̂ (4.34)

For the error-state implementation the state vector residual consists of the errors that remain

in the system after the Kalman filter estimates have been used to correct the system.

The error covariance matrix, P, is the covariances and variances of the square of the

state vector residual. Specifically it is the expectation of the deviation of the state vector

estimate from the true value of the state vector.

P = E
(
(x̂− x) (x̂− x)T

)
= E

(
δxδxT

)
(4.35)

The diagonal of P contains the variances of each state estimate. The square roots of these

variances represent the uncertainty or standard deviation for each state. The off-diagonal

terms are the covariances which give information on the correlations between errors of the

individual states of the state vector. If state estimates become overly correlated then the

system becomes unobservable meaning there is not enough information to estimate the states

independently. In other words, the states have become too dependent on one another.

The state vector, x requires a-priori information for initialization. In the error-state

implementation, the state vector is typically initialized to zeros. The state vector of total-

state implementation is most often initialized with a best guess or previous estimates from

that last time the equipment was used. The covariance matrix, P, is initialized by the user

and indicates the confidence of the initial state vector, x.

The measurement vector is denoted as the vector y and is a set of measurements of the

system described by the state vector. It is comprised of a relating function h (x) and the
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noise vector, wm.

y = h (x) + wm (4.36)

The measurement innovation, δy−, is the difference between the true measurement

vector and the expected measurement vector, h (x̂−), which is computed from the state

vector estimate prior to the measurement update.

δy− = y− h
(
x−
)

(4.37)

The measurement residual, δy+, is the difference between the true measurement vector and

updated measurement vector, h (x̂+).

δy+ = y− h
(
x+
)

(4.38)

Both the measurement innovations and the measurement residuals contain state estimate

errors and measurement errors that are assumed to be uncorrelated with the state estimates.

These measurement errors are also assumed to be characterized by a zero-mean Gaussian

distribution and are uncorrelated in time. The Kalman filter models the standard deviation

of these measurement errors with the measurement noise covariance matrix, R, which is the

expectation of the square of the measurement noise.

R = E
(
wmwT

m

)
(4.39)

The diagonal terms of the measurement noise covariance matrix, R, are the variances of each

measurement. The off-diagonal terms are the covariance terms that represent the correlation

between different components of the measurement noise vector. Typically, the measurement

noises are assumed to be independent of each other, and R is a diagonal matrix.

The first steps of the Kalman filter algorithm involve propagating the system forward

in time which is the system update (also called the time-update or the time-propagation
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phase.) The transition matrix, Φk−1, is a function of the system model and defines how the

state vector changes with time. The transition matrix is a function of the time step interval,

τs. If the transition matrix is composed of parameters that are functions of time then Φk−1

will have to be calculated for each iteration.

The system model assumes that the time derivative of each state is a linear function of

the other states and of white noise sources. The true state vector, x (t), at time, t, for the

Kalman filter is described by

ẋ (t) = F (t) x (t) + G (t) ws (t) (4.40)

where ws (t) is the system noise vector, F (t) is the system matrix and G (t) is the system

noise distribution matrix. Each source of noise is assumed to have a zero-mean Gaussian

distribution. The system matrix and system noise distribution matrix parameters must

both be derived from the properties and characteristics of the system being modeled. The

expectation value of the true state vector, x (t), is the estimated state vector, x̂ (t). Taking

the expectation of Eq. (4.40) yields

E (ẋ (t)) = ∂

∂t
x̂ (t) (4.41)

E (ẋ (t)) = F (t) x̂ (t) (4.42)

Solving Eq. (4.42) gives

x̂ (t) = exp


tˆ

t−τs

F (t′) dt′
 x̂ (t− τs) (4.43)

For the discrete Kalman filter the state vector estimate is modeled as a linear function of

the previous state vector value coupled with the state transition matrix, Φk−1, and is known
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as the state propagation equation as shown in Eq. (4.44).

x̂−k = Φk−1x̂+
k−1 (4.44)

Because the discrete and continuous forms of Kalman filter are equivalent the state transition

matrix is defined as

Φk−1 ≈ exp (Fk−1τs) (4.45)

The system noise covariance matrix, Qk−1, represents how the uncertainties of the state

estimates increase with time due to noise sources such as unmeasured dynamics and sensor

noise. It too, is a function of the time step interval, τs, and is most often a diagonal matrix.

The simplest and most commonly used covariance propagation method is

P−k = Φk−1P+
k−1ΦT

k−1 + Qk−1 (4.46)

The final steps in the Kalman filter algorithm are called the measurement update or

correction phase. The measurement matrix, Hk, defines how the measurement vector varies

with the state vector.

h
(
x−k
)

= Hkx−k (4.47)

The Kalman gain matrix is

Kk = PkHT
k

(
HkP−k HT

k + Rk

)−1
(4.48)

Note that the measurement matrix Hk can vary and must be calculated at each iteration.

The covariance matrix, Rk, may also vary as a function of kinematics or signal to noise

measurements in which case it too will need to be calculated at each iteration. The Kalman
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gain matrix serves to weight the measurement information based on the uncertainties of

those measurements at the current iteration.

Next, the measurement vector, yk, must be populated with measurements. Then the

state vector, x̂−k , is updated with the measurement vector and the Kalman gain.

x̂+
k = x̂−k + Kk

(
yk −Hkx̂−k

)
(4.49)

= x̂−k + Kkδy−k (4.50)

The final step of the measurement update is to update the error covariance matrix, P−k , with

Kalman gain and the measurement matrix.

P+
k = (I−KkHk) P−k (4.51)

In summary the steps of the Kalman filter are:

1. Calculate the transition matrix, Φk−1

2. Calculate the system noise covariance matrix, Qk−1

3. Propagate the state vector estimate from x+
k−1 to x−k

4. Propagate the error covariance matrix from P+
k−1 to P−k

5. Calculate the measurement matrix, Hk−1

6. Calculate the measurement noise covariance matrix, Rk

7. Calculate the Kalman gain matrix, Kk

8. Formulate the measurement, yk−1

9. Update the state vector estimate from x−k to x+
k

10. Update the error covariance matrix from P−k to P+
k
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A closed loop implementation is common for an error state Kalman filter. The reason for

feedback is to minimize the effect of neglected higher order terms from a linearized system

model. Feedback of some or all states keeps the the filter states small. It is advantageous

to feedback the states immediately following the measurement update, Eq. (4.50). Doing so

produces zero state estimates at the start of the state propagation step, Eq. (4.44), which

implies that the state propagation phase can be omitted. However, the error covariance

matrix, P, decribed by Eq. (4.46) will still need to be propagated [14].

4.2.5 Extended Kalman Filter (EKF) Overview

In general a Kalman filter consists of a system model and a measurement model. The

system model is a representation of how the system states change with respect to time. The

measurement model describes how the observation measurements relate to the estimated

states. Specifically the extend Kalman filter (EKF) is more apt to handle nonlinear system

models.

In the extended Kalman filter the system matrix, F, and the measurement matrix, H,

are replaced by nonlinear functions of the state vector f (x) and h (x). The EKF system

dynamic model is accordingly given by

ẋ (t) = f (x (t)) + G (t) ws (t) (4.52)

where f (x) is a nonlinear function of the state vector. The state vector propagation is then

calculated by

x̂−k = x̂+
k−1 +

tˆ
t−τs

f (x̂, t′) dt′ (4.53)

For the EKF, the assumption is made that the error in the state vector estimate is much

smaller than the state vector. This enables a linear system model to be applied to the state

vector residual. The error state EKF dynamic model is defined by
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δẋ (t) = F (t) δx (t) + G (t) ws (t) (4.54)

The standard Kalman filter error covariance propagation equation

P−k = Φk−1P+
k−1ΦT

k−1 + Qk−1 (4.55)

may be used with the transition matrix linearized about the state vector estimate using

Φk−1 ≈ exp (Fk−1τs) (4.56)

where Fk−1is computed by

Fk−1 = ∂f (x)
∂ (x) |x=x̂+

k−1
(4.57)

The measurement model of the EKF is

y (t) = h (x (t)) + wm (t) (4.58)

where h is a nonlinear function of the state vector. The state vector is updated with the

true measurement vector using

x̂+
k = x̂−k + Kk

[
yk − h

(
x̂−k
)]

= x̂−k + Kkδy−k (4.59)

where the measurement innovation is

δy−k = yk − h
(
x̂−k
)

= h (xk)− h
(
x̂−k
)

+ wmk (4.60)

When the state vector estimate has converged to the true state vector values the mea-

surement innovations will be small. Thus the measurement innovation can be modeled as a
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linear function of the state vector even though the full measurements cannot. The measure-

ment innovation then becomes [14]

δy−k = Hkδx−k + wmk (4.61)

where

Hk = ∂h (x)
∂ (x) |x=x̂−

k−1
= ∂y (x)

∂ (x) |x=x̂−
k−1

(4.62)

As a result of the linearization of F and H, the error covariance matrix, P, and Kalman

gain, K, are functions of the state estimates. Thus, the linearization can cause stability

issues as the EKF is more sensitive to the tuning of the initial covariance matrix than a

standard Kalman Filter [15].

4.2.6 Navigation Error State EKF with Closed Loop Feedback

The system model for navigation states consist of the mechanization equations, Eq.

(4.1)-(4.3), which are nonlinear, and the models for the IMU biases. The linearized error

state formulation of the mechanization equations was discussed as an item of interest of

the stand alone inertial navigation algorithm and formed Eq. (4.25)-(4.27). While the INS

states are error states, the remaining states are the full bias states of the accelerometer and

gyro from the IMU. Accordingly for the cascaded navigation EKF the error state vector is

defined as

x =



δp

δvn

δψnb

bba

bbg


(4.63)
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Remember that the position vector p is a vector of latitude, longitude and altitude, vn

is a velocity vector of North, East and Down velocities, and ψnb is an attitude vector of

roll, pitch, and yaw. The two bias vectors are included to account for the biases present in

the IMU where bba is comprised of the three bias states corresponding to the accelerometer

biases and similarly bbg is a comprised of the gyro biases.

bba =


bbax
bbay
bbaz



bbg =


bbgφ
bbgθ
bbgψ


The IMU model consists of random noise and a bias added to the accelerations and angular

velocities. The biases are modeled as random walk. Specifically the bias models for a low-cost

inertial IMU are

bba (t) = bbas + bbad + wb
a (4.64)

bbg (t) = bbgs + bbgd + wb
g (4.65)

Note that the biases are a function of time with some components that are modeled as

stochastic processes. Both the accelerometer biases and the gyro biases are the sum of

three random processes. The terms bbas and bbgs represent the constant null shifts of the

accelerometer and gyro. They are essentially static biases that are modeled as random

constants. The terms bbad and bbgd are the dynamic “in-run” biases. These two time varying

components are modeled as an exponentially correlated random process, i.e. a first order

Gauss-Markov process specifically with a standard deviation σad for the accelerometer and
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σgd for the gyro. The Gauss-Markov process for the accelerometer and gyro bias models are

dbbad
dt

= ḃbad = −1
τa

I3×3bbad + I3×3µ
b
a (4.66)

dbbgd
dt

= ḃbgd = −1
τg

I3×3bbgd + I3×3µ
b
g (4.67)

As discussed in Section 4.2.5, the system matrix F is the Jacobian of the system model

equations which are Eq. (4.25)-(4.27), (4.66)-(4.67). For clarity the system model equations

are listed again

δṗ = − [(ωnen) ˆ] δpn + Tδvn

δv̇n =
[(

Cn
b f b
)
ˆ
]
δψn

nb+Cn
b

(
bba + wb

a

)
−[2 (ωnie + ωnen) ˆ] δvn−[(2δωnie + δωnen) ˆ] vn+− 2g

Ro

δh

δψ̇
n

nb ≈ − [(ωnie + ωnen) ˆ] δψn
nb + δωnin −Cn

b

(
bbg + wb

g

)
ḃbad = 1

τa
I3×3bbad + I3×3µ

b
a

ḃbgd = 1
τg

I3×3bbgd + I3×3µ
b
g

The Jacobian of the system model equations yields the system model matrix F

F =



− [(ωnen) ˆ] T 03 03 03

Gg − [2 (ωnie + ωnen) ˆ]
[(

Cn
b f b
)
ˆ
]

Cn
b 03

03 03 − [(ωnie + ωnen) ˆ] 03 −Cn
b

03 03 03
−1
τa

I3 03

03 03 03 03
−1
τg

I3


(4.68)
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where 03 is a 3 by 3 null matrix, I3 is a 3 by 3 identity matrix and

Gg =


0 0 0

0 0 0

0 0 − 2g
Ro

 (4.69)

For small propagation times the F matrix can be simplified to

F =



03 T 03 03 03

Gg 03
[(

Cn
b f b
)
ˆ
]

Cn
b 03

03 03 03 03 −Cn
b

03 03 03
−1
τa

I3 03

03 03 03 03
−1
τg

I3


(4.70)

The corresponding process noise, ws, of the system is

ws =



03×1

Cn
bwa

Cn
bwg

Cn
bµa

Cn
bµg


(4.71)

The process noise is used to define the process covariance matrix, Q. Taking the expec-

tation of the system noise vector defines the diagonal terms of Q as power spectral densities.

The expectations, E
{
wawT

a

}
and E

{
wgwT

g

}
are the accelerometer and gyro noise power

spectral densities or standard deviations. According to [14], the process noise of the bias

states, µa and µg are 2σ2
ad/τa and 2σ2

gd/τg respectively. The terms τa and τg are the time con-

stants for the Markov process error model for acceleration and gyro errors respectively. The

discrete process noise matrix, Qk, is calculated from the continuous process noise matrix,

Q, using the time interval τs = tk+1 − tk.
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Qk = τsQ (4.72)

Neglecting any lever arm effects (i.e. the kinematic displacement between the center of

gravity and the sensor location) the measurement matrix H is

H =

I3 03 03 03 03

03 I3 03 03 03


6×15

(4.73)

For the closed loop error state navigation EKF, all the states except the attitude states

of the state vector, x, need to be feedback following the measurement update prior to the

mechanization phase.

x+
k+1 = x+

k+1 − x̂+
k+1 (4.74)

The attitude errors, ψn
nb, are corrections to the rotation matrix, Cn

b , and therefore cannot

simply be added to the previous Euler angle estimates. The attitude states are updated by

executing the following equations:

Cn+
b = (I3 + [δψn

nbˆ]) Cn−
b (4.75)

The Euler angles are then extracted from Cn+
b by:

φ = tan−1
(
c32

c33

)
(4.76)

θ = − sin−1 c31 (4.77)

ψ = tan−1
(
c21

c11

)
(4.78)

where cij represents the element in the ith row and jth column of the rotation matrix Cn+
b .

Once the update is complete the Kalman filter state vector, x̂+
k+1 is reset to zero and P+

k+1

is used to initiate another time update cycle [13].
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4.2.7 NAV EKF Cascaded with Relative Roll

In lieu of using a two or three antenna GPS attitude measurement the vehicle roll can

alternatively be estimated using a single antenna GPS/INS extended Kalman filter (EKF).

This method provides an estimate of the attitude of the vehicle body in an absolute sense

based on the kinematic relationships between positions and velocities measured from a single

antenna GPS and the accelerations and roll rates measured from an inertial measurement

unit (IMU). The EKF is used for sensor fusion of the GPS and IMU for the purpose of

obtaining an estimate/observation of total roll which is not measured.

The difference between the total roll (φv) and the relative roll (φs) of the suspension

deflections is the road bank.

φr = φv − φs (4.79)

Since the suspension roll can be determined from Eq. (2.2) we can subtract it from the total

body roll estimated by the EKF to yield an estimate of road bank:

φr,est = φv,EKF − φs (4.80)

The suspension deflections and the total roll capture the dynamic motions so the dy-

namics of the vehicle body will subtract out assuming the tires remain in contact with the

ground. Note that errors in the estimate of road bank will be related to the accuracy of the

total roll estimate, φv, and how well the suspension scaling parameter,η, scales the relative

roll measurement, φs .

4.3 Simulations

In order to validate the presented methodology, vehicle simulations were conducted us-

ing the commercial software CarSim. The software, developed by Mechanical Simulation

Corporation, provides a high fidelity simulation environment, and allows the user to view
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a number of vehicle outputs. The software has been accepted by industry as accurately

representing vehicle dynamics. CarSim data is often used as a truth measurement in simu-

lation. The vehicle used in the simulations was the small SUV in CarSim which has vehicle

parameters typically associated with the small SUV class of vehicle. The parameters for the

small SUV are provided in Table A.1of Appendix A.

Since the data used is from CarSim, it is necessary to emulate the results which would be

expected from an actual GPS receiver and IMU. Therefore CarSim positions and velocities

are corrupted based on the typical noise variances associated with each of the measurements.

To emulate the IMU, noise variances and biases were added to the accelerations and gyro

rates from CarSim. The simulated IMU runs at 20 Hz and the GPS at 1Hz.

4.3.1 Navigation EKF Tuning

For the sensor model shown in Section 4.2.6tThe noise, bias and random walk character-

istics used in the simulation are given in Table 4.1. The time constants for the accelerometer

and gyro bias walk and the accelerometer and gyro measurements are representative of an

automotive grade IMU (specifically the CrossBow 440) and are shown in Table 4.2. The

values used for the initial process covariance matrix Q were the exact values from the sim-

ulation settings, while the values for the measurement covariance matrix R and covariance

matrix P are found in Table 4.3 and Table 4.4 respectively.
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Table 4.1: Simulation Noise Settings

Name Value Units
σa 0.3 m/s2

σg 0.3 deg/s

σVel 0.05 m/s

σba 0.1 m/s2

σbg 0.05 deg/s

σL 0.000001 deg
σλ 0.000001 deg
σh 1 m
σDef 0.0002 m
σφs sin−1

(4σDef
2tw

)
rad

Table 4.2: Time Constants

Name Value Units
τa 500 s
τg 1000 s

Table 4.3: Tuned Measurement Covariances

Name Value Units
σPos. Horz. 0.0000052 deg
σPos. Z 1 m
σVel. Horz. 0.05 m/s

σPos. Z 0.1 m/s
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Table 4.4: Error Covariances for P

Name Value Units
σ2
L,λP

0.001 rad
σ2
hP

2.8 m
σ2

VelP 0.1 m/s

σ2
φ,θP

0.01 rad
σ2
ψP

0.05 rad
σ2
baP

0.000001 m/s2

σ2
bgP

0.000001 rad/s

The process covariance matrix Q is:

Q =



σ2
accel 0 · · · 0

0 σ2
gyro

. . . ...
... . . . σ2

biasa 0

0 · · · 0 σ2
biasg


12×12

(4.81)

where

σ2
accel = diag

([
σ2
a σ2

a σ2
a

])
(4.82)

σ2
gyro = diag

([
σ2
g σ2

g σ2
g

])
(4.83)

σ2
biasa = diag

([
2σ2
ba

τa

2σ2
ba

τa

2σ2
ba

τa

])
(4.84)

σ2
biasg = diag

([
2σ2
bg

τg

2σ2
bg

τg

2σ2
bg

τg

])
(4.85)
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The measurement covariance matrix R is:

R =



σ2
Pos. Horz. 0 · · · 0

0 σ2
Pos. Z

. . . ...
... . . . σ2

Vel. Horz. 0

0 · · · 0 σ2
Vel. Z


6×6

(4.86)

where

σ2
Pos. Horz. =

σ2
Pos. Horz. 0

0 σ2
Pos. Horz.

 (4.87)

σ2
Vel. Horz. =

σ2
Vel. Horz. 0

0 σ2
Vel. Horz.

 (4.88)

The covariance matrix P is:

P =



σ2
L,λP

0 · · · 0

0 σ2
hP

σ2
VelP

. . . ...
... σ2

φ,θP

. . . σ2
ψP

σ2
baP

0

0 · · · 0 σ2
bgP


15×15

(4.89)

where

σ2
L,λP

=

σ2
L,λP

0

0 σ2
L,λP

 (4.90)

σ2
VelP =


σ2

VelP · · · 0
... σ2

VelP
...

0 · · · σ2
VelP

 (4.91)
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σ2
φ,θP

=

σ2
φ,θP

0

0 σ2
φ,θP

 (4.92)

σ2
baP

=


σ2
baP

· · · 0
... σ2

baP

...

0 · · · σ2
baP

 (4.93)

σ2
bgP

=


σ2
bgP

· · · 0
... σ2

bgP

...

0 · · · σ2
bgP

 (4.94)

To demonstrate the performance of the navigation EKF, two cases are presented. Both

runs consist of seven laps around the the CarSim 6 road course track, as shown in Figure

4.1, with the CarSim stock small SUV. Noise is added to all signals. The first demonstrates

the estimation of accelerometer and gyro biases when Markov random walk and bias are

artificially added to each simulated measurement of the IMU. The second run is similar

except that in addition to the Markov random walk and bias on the IMU measurements

noise is also added.
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Figure 4.1: Positions on Road Course with IMU Bias & Walk from CarSim Simulation
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Figure 4.2: Velocity on Road Course with IMU Bias & Walk from CarSim Simulation

The position solutions and position errors are shown in Figures 4.3-4.4 for the first road

course run. Note that the navy dots are the corrupted CarSim value and are shown for

reference with the estimate in orange. The error plot shows the true uncorrupted signal

subtracted from the EKF estimate. Table 4.5 shows the root mean squared error for the

errors in latitude, longitude, and altitude. For latitude and longitude the table gives the

RMS in the meter equivalent.

Table 4.5: Root Mean Squared Position Error

RMS Units
Latitude, L 1.051e-007 rad
Longitude,λ 8.304e-008 rad
Altitude,h 0.245 m
Latitude, L 0.657 m
Longitude,λ 0.519 m
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Figure 4.3: Position Estimates on Road Course with IMU Bias & Walk
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Figure 4.4: Position Errors on Road Course with IMU Bias & Walk

The velocity solutions for the road course in CarSim are shown in Figures 4.5 and 4.6

with the root mean sqaured shown in Table 4.6.
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Table 4.6: Root Mean Squared Velocity Error

RMS Units
North Velocity,vN 0.002145 m/s

East Velocity, vE 0.05826 m/s

Down Velocity,vD 0.05887 m/s
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Figure 4.5: Velocity Estimates on Road Course with IMU Bias & Walk
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Figure 4.6: Velocity Errors on Road Course with IMU Bias & Walk
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Figures 4.7 and 4.8 provide the attitude angles and errors estimated by the EKF using

data from CarSim. This data run is a vehicle negotiating a various of turns and straight

sections. The truth used for the attitudes is the Euler attitudes generated by the CarSim

model. Note that the estimates have less errors once the filter settles out. For the RMS

calculation in Table 4.7 any jumps in error to 360 deg caused by the wrap have been padded

with empty values. The empty spaces do not affect the RMS estimate as the empty values

effectively reduced the total length of the vector. Also, for the yaw error plot the error

jumps from wrapping were replaced with the value NaN (“Not a Number”) which does not

get plotted and does not alter the vector length.

Table 4.7: Root Mean Squared Attitude Error

RMS Units
Roll,φv 0.07575 deg
Pitch, θ 0.08400 deg
Yaw,ψ 0.21770 deg
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Figure 4.7: Attitude Estimates Road Course with IMU Bias & Walk
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Figure 4.8: Attitude Errors Road Course with IMU Bias & Walk

The last remaining Kalman filter states are the bias states. The first simulation on

the road course includes only bias and the Markov random walk to show that the filter

can estimate both constant bias and drift because it is hard to see the bias and walk when

noise is present. Figure 4.9 represents the bias estimation results of the artificially corrupted

accelerometer. In general the filter estimates the bias well and is able to somewhat track the

Markov walk. However, there appears to be an estimation error of roughly 0.02 m/s2 for the

X bias estimate. This discrepancy is most likely due to poor excitation in the x-axis of the

accelerometer [16].
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Figure 4.9: Accelerometer Bias Estimates on Road Course with IMU Bias & Walk

Figure 4.10 shows the estimates of the angular rate bias estimates. Note that roll, pitch

and yaw gyro bias estimates converge to the bias at similar rates despite the different levels

of bias present in each axis.
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Figure 4.10: Roll Gyro Bias Estimate Road Course with IMU Bias & Walk
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For the second run on the road course noise was added on top of the bias and Markov

walk. The RMS values in Tables 4.8-4.10 show that the noise did not alter the errors of

estimates.

Table 4.8: Root Mean Squared Position Error

RMS Units
Latitude, L 1.0493e-007 rad
Longitude,λ 8.32718e-008 rad
Altitude,h 0.2486 m
Latitude, L 0.6558 m
Longitude,λ 0.5204 m

Table 4.9: Root Mean Squared Velocity Error

RMS Units
North Velocity,vN 0.002145 m/s

East Velocity, vE 0.06165 m/s

Down Velocity,vD 0.06460 m/s

Table 4.10: Root Mean Squared Attitude Error

RMS Units
Roll,φv 0.11596 deg
Pitch, θ 0.10298 deg
Yaw,ψ 0.24104 deg

4.3.2 Cascaded EKF Road Bank Estimation

To validate the methodology for estimating bank with the roll estimate from the navi-

gation EKF and the measurement of relative roll from the suspensions potentiometers, the

vehicle was simulated driving on 15 % bank at 25 km/hr. A double lane change maneuver

was performed near the 30 second point. Note that bank percentage is the ratio of elevation

change to the horizontal distance or the slope. A 15% bank translates into a bank of 8.46

deg, or 180/π · sin−1 0.3 = 8.62. Figure 4.11 shows the total vehicle roll (φv), suspension roll
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(φs), estimated road bank (φr,truth), and the estimated road bank (φr,est) for this simulation.

The road bank truth comes from an averaging of the road bank reported at each wheel from

the CarSim variables.
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Figure 4.11: Roll Estimate from DLC on 15% (8.62 deg) Bank using CarSim

The estimated bank angle is fairly accurate. However, one may notice the variation in

the estimate during the maneuver. This can be partially attributed to the vehicles change in

heading on the slope. As the vehicle turns, the bank angle which is calculated with respect

to the body frame of the vehicle is different from the slope on which the vehicle is driving. If

the vehicle is driving down the bank instead of across it the measured bank angle would be

zero degrees. This reinforces the concept that the bank angle estimated from this method is

always relative to the vehicle.

The errors in the vehicle total roll estimate are expected to be present in the road bank

estimate. Figure 4.12 shows the error for both the total roll and the bank estimates. Notice

that there is only a small difference between the bank error and the total roll error. This

small difference confirms that the error in the bank estimate is due largely from the errors

in the roll estimate. Thus, the road bank estimation performance is limited by the EKF

performance.
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Figure 4.12: Attitude Errors from DLC on 15% (8.62 deg) Bank using CarSim

To validate the road bank estimation methodology in a more complex scenario, simula-

tions were run with the vehicle performing a double lane change on an increasing bank angle.

This was used to determine how well a dynamic bank angle can be estimated during dynamic

maneuvers. Figure 4.13 represents the roll and bank estimates and Figure 4.14 represents

the errors on the roll and bank estimates. Notice that during the lane change maneuver (14 -

23 seconds) the bank and total roll errors look to be out of “phase”. This is a small deviation

but could be the effect of either tire bounce, the axle does not remain parallel to the road

surface, or the effects of the independent front suspension on CarSim’s small SUV model.

The independent front suspension has an effective track width but the dynamics could cause

the independent suspension to behave such that the track width changes. This would affect

the suspension roll measurement as Eq. (2.1) assumes a constant track width. Since the

difference between total roll error and bank error are so small, the assumption appears to

hold.
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Figure 4.13: Simulation DLC on Increasing Bank Bank Estimate using CarSim

0 5 10 15 20 25 30 35 40 45
−0.1

−0.05

0

0.05

0.1

0.15

0.2
Roll Error

R
o
ll
A
n
g
le

(d
eg
)

Time (s)

φv Total Roll Error
φr Bank Error

Figure 4.14: Simulation DLC on Increasing Bank Bank Errors using CarSim

To test the performance of the bank estimation under changing velocities the CarSim

road course shown in Figure 4.1 was used. Figures 4.15-4.16 represent the estimates and

errors respectively from a single lap on the road course. Again under higher dynamics the
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errors in total roll and bank diverge from time to time but remain in the same bounds as

observed in Figure 4.12.
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Figure 4.15: Road Course Bank Estimate using CarSim
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Figure 4.16: Road Course Bank Errors using CarSim
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4.4 Robustness

To test the robustness of the method, simulations were run with the vehicle performing

a fishhook maneuver. This is a maneuver which is used to test the rollover propensity of

vehicles. In the maneuver the driver steers left and quickly back to the right causing the

vehicle to produce the potential for two wheel lift off and subsequently roll over. The top of

Figure 4.17 shows the roll and bank estimate of the vehicle during the maneuver, and the

bottom shows the vertical tire forces. Figure 4.18 shows the results for the vehicle performing

a fishhook maneuver on a 30% (16.7°) bank. The vertical line on both figures represents

the point at which two wheel lift off occurs. Two wheel lift off is identified by the vertical

tire forces on one side of the vehicle both going to zero. On the banked surface the lift

off occurs during the initial turn while on the flat surface it occurs during the second turn.

This difference in initial time that two wheel lift off occurs demonstrates that the vehicle

can have a significantly different response when operating on a banked terrain versus flat

ground. Additionally the difference suggests that the appropriate counter maneuver to keep

the vehicle from rolling may change dependening on the severity and direction of the bank.

The vehicle response and appropriate counter maneuver is further complicated when the

road grade and vehicle pitch is considered.

4.5 Conclusion

This chapter has shown that suspension deflection measurements and an estimate of the

total vehicle body roll can be compbined to obtain an accurate estimate of road bank. An

Extended Kalman Filter was developed to estimate the total roll state of the vehicle. Sus-

pension deflections were used to measure the relative roll between the sprung and unsprung

mass of a vehicle. Simulation results of various vehicle maneuvers demonstrated the effec-

tiveness of the method in estimating road bank. Additionally, the methodology presented

here can be modified and applied to vehicle pitch and road grade estimation.
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Figure 4.17: Vehicle Performing Fishhook Maneuver on Flat Surface
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Figure 4.18: Vehicle Performing a Fishhook Maneuver on a 30% Bank
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Chapter 5

Road Bank Estimation using Suspension Deflections and a Coupled Navigation EKF

5.1 Introduction

This chapter presents an estimation scheme for determining road bank using a navigation

EKF architecture with an additional road bank state. The basic 15 state architecture of the

navigation EKF presented in Chapter 4 is augmented with the 16th state of road bank. The

goal of the coupled approach is to see if any useful relationship between the relative roll angle

given from the suspension deflections and the total roll state of the navigation filter could

be exploited. Since the deflections are measured from potentiometers that operate at 100Hz

or better, it seemed logical to have the suspension deflections implemented inside the INS

navigation portion of the EKF filter, the time propagation phase. However, implementing

the relative roll from the suspension deflections as a second measurement update provided

better filtering of the bank estimate state.

5.2 Methodology

The coupled or augmented approach uses the same principle equations and structure

as the cascaded method described in Section 4.2.6. However there are some details that are

important to know for the coupled approach. First, the error state vector is augmented with

road bank as the 16th state.
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x =



δp

δvn

δψn
nb

bba

bbg

φnr



(5.1)

The system model, F matrix, must be adjusted as well. Ideally there would exist an equation

that propagates the road bank rate as a function of the states in the state vector. No such

function exist so the road bank rate is modeled as a disturbance with the time constant τs.

φ̇nr = −1
τs
φnr (5.2)

The new model matrix is

F =



− [(ωnen) ˆ] T 03 03 03 03×1

Gg − [2 (ωnie + ωnen) ˆ]
[(

Cn
b f b
)
ˆ
]

Cn
b 03 03×1

03 03 − [(ωnie + ωnen) ˆ] 03 −Cn
b 03×1

03 03 03
−1
τa

I3 03 03×1

03 03 03 03
−1
τg

I3 03×1

01×3 01×3 01×3 01×3 01×3
−1
τs



(5.3)

where 03 is a 3 by 3 null matrix, 03×1 is a 3 by 1 null matrix, 01×3 is a 1 by 3 null matrix,

I3 is a 3 by 3 identity matrix and

Gg =


0 0 0

0 0 0

0 0 − 2g
Ro
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For small propagation times the F matrix can be simplified to

F =



03 T 03 03 03 03×1

Gg 03
[(

Cn
b f b
)
ˆ
]

Cn
b 03 03×1

03 03 03 03 −Cn
b 03×1

03 03 03
−1
τa

I3 03 03×1

03 03 03 03
−1
τg

I3 03×1

01×3 01×3 01×3 01×3 01×3
−1
τs



(5.4)

The measurement matrix for the GPS measurement is

H =

I3 03 03 03 03 0

03 I3 03 03 03 0


6×16

(5.5)

The suspension deflection measurement are incorporated through a second measurement

update. Like the GPS update this update will occur whenever a new deflection measurement

exists. The measurement matrix for the second update is

H2 =
[
01×3 01×3 1 0 0 01×3 01×3 −1

]
1×16

(5.6)

The primary advantage of adding the road bank as a state is that the EKF is to provide a

cleaner estimate by filtering the noise on road bank state estimate.

5.3 Simulations

For comparison, the same CarSim runs presented in Section 4.3.2 for the cascaded

approach are used here for the coupled estimate algorithm. Note that the noises added to

the coupled simulations have the same characteristics but were generated separately from

the cascaded simulations. Figures 5.1-5.2 represent a double lane change performed on 15%

bank, 8.62 deg, at 25 km/hr. The bank estimate matches the bank truth just as well as the
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cascaded approach in Section 4.3.2. However, Figure 5.2 shows that the advantage provided

by the coupled approach is the filtering of the bank estimate.
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Figure 5.1: Coupled EKF Bank Estimate DLC on 15% (8.62 deg) Bank
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Figure 5.2: Coupled EKF Bank Errors DLC on 5% (8.62 deg) Bank
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The filtering provided by the coupled EKF approach is consistent for both the double

lane change on increasing bank at 50 km/hr shown in Figures 5.3-5.4 and the lap around

the CarSim road course shown in Figures 5.5-5.6.
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Figure 5.3: Coupled EKF Bank Estimate DLC on Increasing Bank
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Figure 5.4: Coupled EKF Bank Errors DLC on Increasing Bank
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Figure 5.5: Coupled EKF Bank Estimate Road Course
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Figure 5.6: Coupled EKF Bank Errors Road Course

5.4 Conclusion

The navigation extended Kalman filter was augmented with a 16th state, the road bank.

This coupled EKF architecture required a second measurement update from the suspension

roll measurements. The approach was simulated with the types of runs used for the cascaded
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EKF simulation. The coupled EKF simulations displayed smoother bank estimates than the

cascaded approach. Thus, the primary advantage of adding the road bank as a state is that

the coupled EKF will provide a cleaner estimate by filtering the noise on the road bank state

estimate.
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Chapter 6

Roll and Road Bank Estimation using Suspension Deflections, Roll model and Yaw model

Coupled with a KF disturbance observer

6.1 Introduction

This chapter presents a novel estimation scheme for road bank. In [10] the author uses

a disturbance observer to estimate unmeasured vehicles states such as the road bank. The

author uses a two antenna GPS receiver integrated with an IMU to output vehicle side slip

and the total roll of the vehicle. Additionally the IMU provides yaw rate and roll rate of

the vehicle. In this chapter, a method is presented that builds off the disturbance observer

concept. The difference is that the measurements used are the yaw rate and roll rate from

an IMU and the relative roll angle from suspension deflections (as opposed to measurements

from a dual antenna GPS).

6.2 Methodology

Coordinate frames and the transformations between various frames and intermediate

frames are used to describes the rotations and rotation rates for the vehicle axle and vehicle

body (i.e. the unsprung and sprung masses of the vehicle respectively). The angles and

angular rates will then be incorporated in to a coupled roll and yaw rate vehicle model. The

vehicle model uses steer angle as an input and equations of motion that are functions of

velocity. This model is then incorporated into an observer architecture to estimate states

not directly measured or generated from the model.
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6.2.1 Vehicle Fixed Frames

The method in this chapter builds off the roll model in Figure 2.1 and the inverse of the

rotation matrix from Eq. (4.14). The notation a represents the axle frame of the vehicle that

originates at the unsprung mass. The notation b still represents the body frame however the

body frame is now specified as originating on the sprung mass of the vehicle. Remember

that φnb is equivalent to φv. The Euler angle rotation is given by

Ca
n =


1 0 0

0 cosφv sinφv

0 − sinφv cosφv




cos θv 0 − sin θv

0 1 0

sin θv 0 cos θv




cosψv sinψv 0

− sinψv cosψv 0

0 0 1

 (6.1)

= Ca
2C2

1C
1
n

The sub and superscript 1 denote the intermediate coordinates given by the rotation about

the z axis from the navigation coordinates n. The sub and superscript 2 represent the inter-

mediate coordinates given the rotation about the y axis from the intermediate coordinates

1.

The angular velocity vector of the fixed vehicle axle frame from the navigation frame to

the body frame and expressed in the body frame is defined as

ωaan =


φa

θa

ψa

 (6.2)
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By using the angular rate of the Euler angles, the axle frame fixed velocity vector can be

written as

ωaan =


φ̇a

θ̇a

ψ̇a

 = Ca
2


φ̇v

0

0

+ Ca
2C2

1


0

θ̇v

0

+ Ca
2C2

1C1
n


0

0

ψ̇v

 (6.3)


φ̇a

θ̇a

ψ̇a

 = J


φ̇v

θ̇v

ψ̇v



The Euler rates can then be determined from the axle fixed angular velocity vector by

inverting J, the sum of successive rotations in Eq. (6.4).


φ̇v

θ̇v

ψ̇v

 =


1 sinφv tan θv cosφv tan θv

0 cosφv − sinφv

0 sinφv/sin θv cosφv/cos θv




φ̇a

θ̇a

ψ̇a

 (6.4)


φ̇v

θ̇v

ψ̇v

 = J−1


φ̇a

θ̇a

ψ̇a



Note that because the road bank angle is defined between the vehicle frame and the inter-

mediate coordinates 1, φ̇r is not the same as φ̇v unless θv the Euler pitch is zero. The road

bank rate φ̇r is the x component of the angular velocity, ω1
a1 which represents the angular

velocity of the axle frame with respect to the intermediate coordinates 1. The angular frame

rate of the vehicle axle fixed frame is
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ω1
a1 =


φ̇r

θ̇r

ψ̇r

 = C1
2


φ̇v

0

0

+


0

θ̇v

0

 (6.5)

=
(
C2

1

)−1


φ̇v

0

0

+


0

θ̇v

0

 (6.6)


φ̇r

θ̇r

ψ̇r

 =


cos θvφ̇v

θ̇v

− sin θvφ̇v

 (6.7)

Thus the road bank rate is defined as

φ̇r = cos θvφ̇v (6.8)

and from Eq.(6.4) the road bank equation can also be written as

φ̇r = cos θvφ̇a + sinφv sin θvθ̇a + cosφv sin θvψ̇a (6.9)

Typically the mounting location for an IMU in a vehicle is somewhere on the vehicle

body not the vehicle axle. The relationship between the vehicle body fixed frame and the

vehicle axles fixed frame is the transformation

Cb
a =


1 0 0

0 cosφs sinφs

0 − sinφs cosφs

 (6.10)
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where Cb
a is the transformation from the vehicle axle fixed frame to the vehicle body fixed

frame. Using Eq. (6.10) the IMU measurements in the body fixed frame can be expressed

as

ωbab =


φ̇b

θ̇b

ψ̇b

 =


φ̇s

0

0

+ Cb
a


φ̇a

θ̇a

ψ̇a

 (6.11)

This reveals that the roll rate and yaw rate equations for the body fixed frame are

φ̇b = φ̇s + φ̇a (6.12)

ψ̇b = cosφvψ̇a − sinφsθ̇a (6.13)

Note that Eq. (6.12) shows that the roll rate of the body is the sum of the roll rate from the

sprung mass (vehicle body) and the roll rate of the axle. Even though the bank of a road is

built with “x” amount of bank, the amount “x” is measured perpendicular to the direction

of travel on the road. The bank experienced by a vehicle is only equal to the amount “x”

when the orientation of the vehicle is such that the x-axis of the vehicle is parallel to the

direction of travel of the road.

To implement the equations into vehicle models, some simplifications need to be made.

Eq. (6.9) can be rewritten assuming that the total pitch angle, θv, of the vehicle vehicle is

small such that cos θv ≈ 1 and the variable εr is created to lump the effects of axle pitch

rate, axle yaw rate, total roll and total pitch ,θ̇a, ψ̇a, φv and θv, together . This yields

φ̇r ≈ φ̇a + εr (6.14)

εr = sinφv sin θvθ̇a + cosφv sin θvψ̇a (6.15)

Finally, assuming that the vehicle roll angle φs and the vehicle axle pitch rate θ̇a are small,

Eq. (6.13) can be simplified to
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ψ̇b ≈ ψ̇a (6.16)

6.2.2 Roll and Yaw Models

The vehicle dynamics are modeled with a bicycle model coupled with a roll model as in

[17]. In the bicycle model the inner and outer slip angles at the wheels are assumed to be

equal. Figures 6.2 and 6.3 represent the lateral and roll vehicle model. Figure 6.2 displays

the two dimensional relationship between the vehicle frame and the navigation frame for

reference. The navigation frame, shown in Figure 6.1, is the north-east-down frame thus the

lateral velocity for the velocity vector, V , is negative in the vehicle z-up frame. Observe that

the vehicles course, the direction of travel and denoted by ν, is not equal to the heading

of the vehicle, ψb. This results in vehicle side-slip, β, and means that a velocity exists not

only in the longitudinal, x direction, of the vehicle but also in the lateral, y direction, of the

vehicle. The change in this lateral velocity, V̇y, will be used to formulate the equations of

motion.

Figure 6.1: Navigation Frame
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In Figure 6.2 the steer angle is represented by δ, ψ̇b is the yaw rate of the vehicle body

frame, β is the side slip angle at the center of the mass, Vx and Vy are the longitudinal and

lateral velocity components of the velocity vector V. The lateral tire forces are denoted as

FyF for the front and FyR for the rear. Similarly αf and αr are the front and rear axle slip

angles.

Figure 6.2: Schematic of Bicycle Model (with all Forces and Angles Shown in Positive
Direction)

The tire force modeled using the cornering stiffness Cα as a linear relationship between

the slip angle and tire force such that

FyF = −Cαfαf (6.17)

FyR = −Cαrαr (6.18)

where Cαf and Cαr are the cornering stiffness parameters for the front and rear axle respec-

tively. Eq. (6.17) and (6.18) assume small slip angles αf and αr such that vehicle operates

in the linear region of the tire curve moleded by the cornering stiffness.
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Figure 6.3: Roll Model

Referring back to the roll model in Figure 2.1 and the bicycle model from Figure 6.2,

the coupled equations of motion for the bicycle and roll model are

V̇y = IeqC0

IxxmVx
Vy−

(
Vx + IeqC1

IxxmVx

)
ψ̇a+−

hrgBφ̇

Ixx
φ̇s
h (mghrg −Kφ)

Ixx
φs+ IeqCαf

Ixxm
δ−gφr (6.19)

ψ̈a = − C1

IzzVx
Vy −

C2

IzzVx
ψ̇a + aCαf

Izz
δ (6.20)

φ̈v = −C0hrg
IxxVx

Vy −
C1hrg
IxxVx

ψ̇a −
Bφ̇

Ixx
φ̇s + mghrg −Kφ

Ixx
φs + Cαfhrg

Ixx
δ − φ̈a (6.21)

where

C0 = Cαf + Cαr (6.22)

C1 = aCαf − bCαr (6.23)
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C2 = a2Cαf + b2Cαr (6.24)

Ieq = Ixx +mh2
rg (6.25)

In these equations, Izz is the moment of inertial about the z axis, the yaw axis. The total

mass of the vehicle is represented by m. The terms a and b denote the front and rear weight

splits relative to the center of gravity. The effect of the unsprung mass is assumed to be

minimal. Therefore, the model assumes a mass-less axle. The moment of inertia about the

x axis, the roll axis, is represented by Ixx. Kφ is the roll stiffness and Bφ̇ is the roll damping.

The term hrg is the distance from the roll axis to the center of gravity on the sprung mass.

The angular acceleration of the axle, φ̈a, is related through Eq. (6.14) because the axle frame

is assumed to remain in contact with the ground surface by means of the tires.

The coupled roll and bicycle model is represented in state space with the state transition

matrix A, input vector B, and two disturbance vectors Bw1 and Bw2 such that

ẋ = Ax + Bδ + Bw1φr + Bw2φ̈a (6.26)

where

A =



IeqC0
IxxmVx

−
(
Vx + IeqC1

IxxmVx

)
−hrgBφ̇

Ixx

h(mghrg−Kφ)
Ixx

− C1
IzzVx

− C2
IzzVx

0 0

−C0hrg
IxxVx

−C1hrg
IxxVx

−Bφ̇
Ixx

mghrg−Kφ
Ixx

0 0 1 0


(6.27)

B =



IeqCαf
Ixxm

aCαf
Izz

Cαfhrg
Ixx

0


(6.28)
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Bw1 =



−g

0

0

0


(6.29)

Bw2 =



0

0

−1

0


(6.30)

The state vector x is

x =



Vy

ψ̇a

φ̇s

φs


(6.31)

6.2.3 Kalman Filter Disturbance Observer Setup

Using the system modeled from the coupled roll and bicycle model described in Section

6.2.2, a disturbance observer can be implemented if the following measurements are available.

y =


φs

ψ̇b

φ̇b

 =


φs

ψ̇f

φ̇s + φ̇a

 (6.32)

The yaw rate, ψ̇f , and the sum of the roll rate of the sprung mass and the angular rate of

the axle frame, φ̇s + φ̇a, are measurements from the gyro according to Eq. (6.12) and Eq.

(6.16). The sprung mass roll angle is a measurement from the suspension deflection sensors

attached to the spring and damper at each corner of the vehicle. Section 7.3 gives more

detail on mounting of the suspension deflection sensors.
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The disturbances of the road bank angle, φr, and the angular acceleration of the axle,

φ̈a, found in the state space model of the coupled roll and bicycle models, Eq. (6.26), vary

independently of the system model matrix A. However φr and φ̈a are not independent of

each other as seen in Eq. (6.14). Thus, as long as the disturbances due to the road bank

variations consist of white noise forcing the angular jerk of the axle,
...
φ a, and the road bank

error rate, ε̇r, the dynamics of the disturbance developed by[18] are modeled as

ẇ = Aww (6.33)

where

w =



φr

φ̇a

φ̈a

εr


(6.34)

Aw =



0 1 0 1

0 0 1 0

0 0 0 0

0 0 0 0


(6.35)

By augmenting the state space model Eq. (6.26) with the disturbances modeled in Eq. (6.33)

the observer is modeled as

ż =

A Bw

04 Aw

 z +

 B

04×1

 δ (6.36)

ż = Fz + Gδ
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such that

z =

x

w

 =



Vy

ψ̇a

φ̇s

φs

φr

φ̇a

φ̈a

εr



(6.37)

Bw =
[
Bw1 04×1 Bw2 04×1

]
(6.38)

Bw =



−g 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0



The measurement equation is

y = Hz (6.39)

φs

ψ̇b

φ̇b

 =



0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0


z (6.40)

The full observer can now be implemented with the standard Kalman filter structure de-

scribed in Section 4.2.4.
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6.3 Simulations & Results

Simulations were again performed using CarSim 6. First the coupled roll and bicycle

model was validated against the CarSim high fidelity model for the small SUV. Steer angle

and velocity output from CarSim simulations were used as inputs to the coupled vehicle

model simulations performed in Matlab. The output states from the coupled vehicle model

were then compared to the corresponding vehicle states from the same CarSim simulations.

For testing of the Kalman filter observer, CarSim steer angle and vehicle speed were

used as inputs to the Kalman filter observer. Some simulations assume a perfect vehicle

model represented by the coupled bicycle and roll vehicle model. When the perfect vehicle

model assumption was made the measurements of roll rate, yaw rate and the roll due to

suspension deflections were created by corrupting the outputs of the coupled vehicle model

with noise. Other simulations assume that the vehicle model is imperfect. For the case that

the vehicle model is imperfect, noise was added to the output data from CarSim vehicle

states of roll rate, yaw rate and suspension deflections for the small SUV.

6.3.1 Model Validation

Figures 6.4 and 6.5 represent a double lane change (DLC) maneuver at 20 km/s. At this

speed the coupled vehicle model and the CarSim model compare quite well. Note though

that the CarSim roll does not return to zero after the DLC maneuver is completed while the

coupled vehicle model does. This is most likely a numerical issue within the CarSim software.

Also note that the roll calculated from the CarSim suspension deflections using the method

discussed in Section 2.2.1 closely matches the CarSim roll because the road surface is flat.
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Figure 6.4: Model Comparison Double Lane Change at 20 Km/hr
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Figure 6.5: Model Comparison Double Lane Change at 20 Km/hr

At higher speeds the coupled vehicle model and the CarSim models deviate. Specifically

the lateral velocity from the coupled vehicle model does not match the lateral velocity for

CarSim. The lateral velocity for CarSim model is greater in magnitude during the dynamic

event indicating that the vehicle is slipping laterally. This separation is due to the non-linear
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saturation from the tire forces that are unmodeled in the linear tire model used in the coupled

vehicle model as well as simplifications such as combining the inner and outer wheels into

front and rear axles. Figure 6.6 represents the same double lane change maneuver performed

at 70 km/hr. The amount of deviation seen in the vehicle states will cause significant errors

in the estimation of the unmodeled states. From this, it can be concluded that at low speeds

and low dynamics the coupled vehicle model is a valid model, but at high speeds and high

dynamics the coupled vehicle model is unreliable.
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Figure 6.6: Model Comparison Double Lane Change at 70 Km/hr
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Figure 6.7: Model Comparison Double Lane Change at 70 Km/hr

6.3.2 Estimation

Corrupted outputs from CarSim were used as the measurements for the coupled roll and

bicycle model. The results of this simulation were less favorable than simulations when the

model was identical to the measurements. For each run, parameters such as the axle height

and cornering stiffness needed to be adjusted due to the nonlinearities of the CarSim model.

These adjustments made estimation difficult and very impractical as an overall solution

method for estimating the bank angle.

The Kalman filter model based observer estimates the road bank well at low dynamics

and when the vehicle model output closely matches the measured states. Figures 6.8-6.11

represent the CarSim small SUV traversing a bank the increases from 0% to 30% bank while

maintaining a straight path. In this run the CarSim vehicle states of roll rate, yaw rate and

the roll due to suspension deflections were corrupted with noise and used as measurements

for the Kalman filter observer. Notice in Figure 6.10 that the axle roll rate state accounts for

the discrepancy between roll rate predicted by the roll model of Kalman filter observer and

the “gyro measurement” from CarSim shown in Figure 6.9. In Figure 6.11 the error in bank
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is misrepresented due to the fact that the CarSim’s roll and suspension deflection variables

do not settle out correctly as discussed in Section 6.3.1.
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Figure 6.8: Straight Path on Increasing Bank at 20 Km/hr
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Figure 6.9: Straight Path on Increasing Bank at 20 km/hr

86



0 10 20 30 40 50 60 70 80 90
−0.5

0

0.5

1

(d
eg
/
s)

Kalman Filter Estimates of Un-Modeled States

φ̇a Axle Roll Rate

φ̇a Axle Roll Rate CarSim

0 10 20 30 40 50 60 70 80 90
-20

0

20
φ̈a Axle Roll Accel

φ̈a Axle Roll Accel CarSim

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

(d
eg
/
s)

Time (s)

ǫ Error in Roll Rate
ǫCalc Calculated CarSim Episilon

Figure 6.10: Straight Path on Increasing Bank at 20 km/hr
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Figure 6.11: Straight Path on Increasing Bank at 70 km/hr

When the same path on the increasing bank is taken at a higher velocity, the error in

the suspension deflection measurement from CarSim is collected in the axle roll rate state

which is represented in Figure 6.12. The collection of this error into the axle roll rate states

reduces the error in the bank estimate as represented by Figure 6.13.
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Figure 6.12: Straight Path on Increasing Bank at 70 Km/hr

0 5 10 15 20 25 30
−10

0

10

20

30

B
a
n
k
(d
eg
)

Kalman Filter Estimate of Bank

φr Bank
φr Bank CarSim

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

Time (s)

E
rr
o
r
(d
eg
)

Error

φr,Error Bank Error

Figure 6.13: Straight Path on Increasing Bank at 70 Km/hr

Analyzing Kalman filter observer results of the 20 km/hr and 70 km/hr runs from the

double lane change maneuver described Section 6.3.1 confirms that the presence of high

dynamics reduces the accuracy of the the bank estimate. This could be due to the large
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difference in the lateral velocity predicted by the coupled vehicle model and the actual

lateral velocity of the CarSim small SUV.
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Figure 6.14: Bank Estimate Double Lane Change at 20 Km/hr
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Figure 6.15: Bank Estimate Double Lane Change at 70 Km/hr

Another source for the error in bank during dynamics could be that the axle roll rate is

not being correctly captured by the observer. The assumption of the model is that the axle
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moves with the surface of the road and that the stiffness of the tires is negligible. However,

in Figure 6.17, the axle roll rate from CarSim indicates that there is significant compliance

in the small SUV tires used in the model. This compliance is mostly likely from the effects

of the roll stiffness and roll dampening due to the tires. The coupled vehicle model does not

account for this effect and thus does not correctly estimate the axle roll rate. Including a

measurement of lateral velocity (through the relationship of measurements of side-slip and

longitudinal speed) would enhance the observers estimate of lateral velocity and may also

enhance the estimates of the axle roll acceleration and velocity. However, in practice this

enhancement will require a sensor capable of measuring side-slip (or lateral velocity) such

as a multi-antenna GPS which will add significantly to the sensor costs. The results show

how critical the importance of an accurate vehicle model is to producing accurate estimates.

The results also confirm that the kinematic navigation EKF based methods presented in

Chapters 4 and 5 provide much better estimates of road bank.
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Figure 6.16: Axle Roll Rate Estimate Double Lane Change at 20 km/hr
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Figure 6.17: Axle Roll Rate Estimate Double Lane Change at 70 km/hr

6.4 Conclusion

A vehicle model based observer method for estimating bank was presented and sim-

ulated. Simulation revealed that for low dynamic maneuvers, the coupled vehicle model

Kalman filter observer can sufficiently estimate the bank. However, the observer does not

perform well under high dynamic maneuvers. The coupled vehicle model Kalman filter

method presented is not recommend for road bank estimation. Adding a measurement of

the side-slip or lateral velocity could improve the axle roll acceleration and velocity estimates

such that the error in the bank estimation is reduced during the higher dynamics.
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Chapter 7

Experimental

7.1 Introduction

The Prowler ATV, a light tactical all terrain vehicle for the military, was used to test

the road bank algorithms. Maneuvers similar to those seen in simulation were performed

to validate the algorithms with real data. The Prowler has been automated and is outfit-

ted with various sensors. To test the road bank algorithm the following sensors were used:

single antenna GPS receiver, six degree of freedom IMU, and four linear potentiometers to

measure suspension deflections. In addition a three antenna GPS attitude system was uti-

lized to obtain accurate attitude truth measurements for comparison with the EKF attitude

estimates.

Since the ATV typically operates primarily off-road, there are a few issues that arise

when going to an experimental study. First, the roughness of the surface adds a significant

amount of excitation to the data of both the IMU and the suspension deflection measure-

ments. Additionally, in an off-road scenario there are likely to be localized events such as

rocks or logs which induce suspension deflections. Most importantly, the angle of bank while

off road is unknown. For these reasons the tests were performed on a road where the road

bank and road crown have been surveyed.

7.2 Equipment & Test Facilities

The 2003 ATV Prowler is a rugged all-terrain vehicle designed by ATV Corporation

for superior off-road maneuverability and durability. The power source for this ATV is a

660cc 4-stroke Yamaha engine with approximately 35 horsepower. The Prowler has a fully
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automatic transmission with Hi/Low range, reverse, and park with push button four wheel

drive (4WD). The front and rear axles both have an independent double wishbone suspension

with off road tires. The vehicle is designed with a low roll center to minmize rollover events

and 12 inches of ground clearance.

The area selected for testing of the vehicle occured at the National Center for Asphalt

Technology track (NCAT). The facility has a closed 1.7 mile oval track and a skid pad area

which allows for safe testing of autonomous vehicle operation with sufficient GPS accessibility

for various testing scenarios.

7.3 Sensor Mounting and Test Procedure

The Prowler vehicle has a range of sensors to provide information about the vehicle

states. The 6 DOF Crossbow 440 IMU provides accelerations and gyroscopic rates about

all 3 vehicle axes. As seen in Figure 7.1 the Crossbow is mounted directly behind the

driver seat and is centered with respect to the lateral axis. Various GPS sensors have

been implemented on the vehicle, including a Novatel system with integrated real-time-

kinematic (RTK) corrections and a Septentrio system which provides GPS based roll, pitch,

and yaw measurements. The Novatel antenna is located on top of the Prowler roll cage and is

laterally and longitudinally aligned with the Crowssbow IMU. Hall effect sensors mounted on

behind the wheel hubs yield wheel speeds at each wheel. Celesco potentiometers mounted on

the suspension components produce measurements of suspension deflections. Brackets were

created that position the potentiometer such that it is collinear with the shock and spring

assembly as seen in Figure 7.1. A Celesco string potentiometer is mounted on the steering

rack and measures the turns of the steering column. The string potentiometer provides a

measurement of the steering angle at the wheels with the assumption that steer angles at

the left and right wheels are equal.
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Figure 7.1: Sensor Locations

The black case mounted on the front of the Prowler holds almost all of the sensor

electronics as shown in Figure 7.2. The Septentrio and Novatel receivers are stacked on top

of one another and connect via serial port to the Advantech fan-less computer, the silver

brick furthest from the viewer in Figure 7.2. The Crossbow IMU communicates via a serial

connection also. The steering potentiometer and suspension potentiometers are both read

by an A/D converter on a Microchip PIC and custom board. Each board is housed in an

aluminum enclosure shown in Figure 7.3. The PIC sends the converted reading to the CAN

Bus which is read via a PCAN USB dongle by the Advantech computer.

The Advantech computer runs Ubuntu which is a Linux operating system. The MOOS

architecture is the C++ platform used to log the data. Sensor interfaces that inherit from a

base sensor class were written to read and log each sensor.
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Figure 7.2: Sensor Logging

Figure 7.3: Suspension Potentiometer CAN Enclosure
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It was desirable to perform tests similar to those that were performed in simulation.

However, this was not always possible due to available terrain and topography characteristics

of the NCAT track. In spite of this limitation several test sites were found to be adequate.

For maneuvers on flat terrain, the NCAT skid pad (See Figure 7.4) and the straights on the

the NCAT oval track were used (See Figure 7.5) . Note that the flat surface of the skidpad

appears to have roughly a 2 deg bank with the high portion in the north west corner and the

low portion in the south east corner. The straights of the NCAT oval track have a 1-2 deg

crown with the peak running between the two lanes. This crown is somewhat distinguishable

in Figure (7.5).

Figure 7.4: Skid Pad Constant Radius-Steady State Turns
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Figure 7.5: NCAT Oval 1-2 deg Banked Straights

Maneuvers involving bank were performed on turns of the NCAT oval track. Both

turning sections transition from the 1-2 deg crown of the straights to roughly 8 deg of bank

and then back to 1-2 deg of crown. Figure 7.6 via a chase vehicle shows the Prowler driving

through the turn on the west end of the track.
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Figure 7.6: NCAT Oval 8 deg Banked Turn

Specific maneuvers of inteterest were the double lane change (DLC), sinusoidal steer

inputs, constant radius steady state turns and straight driving at various speeds. The double

lane change maneuver was scaled down to the dimensions of the Prowlers base length and

track width. The prowler parmaters are shown in Appendix A and the DLC dimensions and

scaling are shown in Figure 3.1. The DLC is suitable for generating large amounts of roll.

Figure 7.7 shows the DLC implemented on the skidpad and Figure 7.8 shows the Prowler

during the lane change event. The forward direction of the DLC pointed roughly in the

“uphill” direction on the skidpad to avoid bias in the roll estimation. Double lane changes

were also performed on the straights and banked turns of the NCAT oval track but they did

not use any measured spacings or lengths.

The runs involving sinusoidal steer inputs were intended to provide insight into the

effects on bank estimation with respect to the high and low frequency steering inputs. The

sinusoids were created by a human driver and took place in the “uphill” and “downhill”

directions of the skidpad.
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Figure 7.7: Double Lane Change Setup

Figure 7.8: Double Lane Change Maneuver
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7.4 Results & Discussion

The results of the vehicle based Kalman filter observer with the experimental data were

very poor. As shown previously in Section 6.3.2 a near perfect vehicle model is needed to

yield useful estimates. The bank estimates from the cascaded navigation EKF and the 16

state coupled navigation EKF are comparable. As shown in Section 5.3, the coupled EKF

filters out some of the noise present in the suspension deflection measurement. For this

reason the two EKF results are initially compared and then only the coupled EKF is used

for analysis of experimental data.

From Eq. (3.5) and suspension component measurements, η was found to be 2.3. The

8 deg banked turns on the NCAT oval track were used to verify the η scale factor for the

suspension deflection measurements.

7.4.1 Coupled Vehicle Model Kalman Filter Observer Results

A portion of data from the end of a four lap run on the NCAT oval is shown in Figure 7.9

and the steer angle measurement that is the input to the coupled vehicle model is represented

by Figure 7.10. The prowler traveled in the counter clockwise direction of the the track

such that the the vehicle turned to the left through each turn. Prior to the banked turn

a sinusoid steer angle of diminishing amplitude was applied. During the banked turn a

relatively constant steer angle was maintained and after the banked turn another sinusoidal

steer input was applied.
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Figure 7.9: Position of Prowler on NCAT Oval Track Kalman Filter Observer
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Figure 7.10: Steer Angle of Prowler on NCAT Oval Track Kalman Filter Observer

Figures 7.11 and 7.12 represent some of the outputs from the coupled vehicle model

that are produced with the measured steer angle as the input. Notice that the yaw rate

output does not match the measured yaw rate during the banked turn and during the high

amplitude sinusoids after the banked turn. Some of this error is from the assumption of flat
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ground made by the model and some of the error could be from unmodeled higher dynamics.

In Figure 7.12 the Septentrio roll measurements are plotted for a reference to where the

banked turn begins and ends. Neglecting the error in the peak values, the model outputs

seem to trend well with the measurements.
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Figure 7.11: Model Output of the the Prowler on NCAT Oval Track Kalman
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Figure 7.12: Model Output of the the Prowler on NCAT Oval Track Kalman
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Figures 7.13-7.15 highlight several of the estimated states from the Kalman filter ob-

server. Note that during low dynamics through the banked turn the observer estimates and

the measurements trend nicely in Figures 7.14-7.14. The process variances were chosen such

that the measurements were trusted more than the model. However even with this tuning

the dynamics of the sinusoids are more than the observer can handle as evidence by the poor

estimates of yaw rate and roll rate during the sinusoids. Again the Septentrio measurement

is given as a reference in Figure 7.14 where the estimate of the relative roll matches a little

better than the yaw rate and roll rate estimates. Finally the estimate of bank is represented

by Figure 7.15. Here it is clear that the observer performs poorly for purpose of estimating

the bank angle. As discussed in the simulation results from Section 6.3.2 the estimates vary

greatly, but for the experimental data even during the low dynamic case the estimate of

bank still varies significantly.
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Figure 7.13: State Estimates of Kalman Filter Observer for Prowler on NCAT Oval Track
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Figure 7.14: State Estimates of Kalman Filter Observer for Prowler on NCAT Oval Track
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Figure 7.15: Bank Angle Estimate of Kalman Filter Observer for Prowler on NCAT Oval
Track

The errors in the estimates are most likely due to the inability of the model to match

precisely with the dynamics of the real vehicle. For this reason the vehicle model based

method with the coupled bicycle model is not recommend for use on vehicle as nonlinear as

the Prowler ATV.
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7.4.2 Comparison of Cascaded and Suspension Coupled Navigation EKF

Both architectures presented and Chapters 4 and 5 were adjusted to handle the timing

and structure of real data. The filter states are very similar in comparison. The bank

estimates of each architecture match the expected measurements of bank on the NCAT oval

track. For reference, Figure 7.16 represents a plot of the measured and estimated positions

of the Prowler on the NCAT oval track. The estimates are from the 15-state Navigation

EKF.
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Figure 7.16: Position NCAT Oval Track 15 State EKF Cascaded

7.4.2.1 Navigation EKF Cascaded

Recall that a three antenna Septentrio unit was mounted to the prowler to provide truth

measurements of roll, pitch and yaw of the vehicle. To demonstrate that the Navigation

EKF filter is correctly estimating the states correctly, the attitude measurements from the

Septentrio are compared with the attitude estimates of the 15 state navigation EKF. Figure

7.17 represents the roll and pitch comparison while Figure 7.18 represents comparison of

yaw. The data in both figures are from single lap around the NCAT oval track. The banked

turns are marked by the sections where the roll angle is roughly eight degrees. The sinusoids
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are purposefully induced to excite the vehicle states for the estimation of biases. Note for

the data shown in Figures 7.17-7.18 the bias states have been previously estimated and were

used as the initial biases for this data set. Accordingly the covariance matrix was set to

small initial values indicating the biases were known.

Observe in Figure 7.17 that the pitch estimate is roughly one degree different from the

Septentrio measurement. Note that the difference in the pitch data from the Septentrio

is due to slight misalignment of the Septentrio antenna frame and the IMU frame. The

mounting location behind the seat of the Prowler is not completely coplanar in the direction

of pitch with the vehicle body. The mounting surface pitches downward roughly one to two

degrees.
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Figure 7.17: Roll and Pitch Comparison on NCAT Oval Track 15 State EKF Cascaded

Figure 7.18 represents the yaw estimate and gives further confidence that the EKF filter

is estimating properly. The Estimates of yaw match quite well with the measurements from

the Septentrio.
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Figure 7.18: Yaw Comparison on NCAT Oval Track 15 State EKF Cascaded

The estimate of bank is shown in Figure 7.19. For reference the estimate of total roll, the

Euler roll, and the measured roll from the suspension deflections are displayed. The figure

shows a section of straight driving followed by sinusoidal motion. Then straight driving is

resumed during the banked turn after which sinusoidal motion is resumed. While in the

straight section, the one to degrees of road crown is observed in the estimate of bank from

time 460 seconds to 465 seconds. During the sinusoids the bank estimate remains within

reasonable bounds. Note that due to the orientation of the vehicle as it oscillates from left to

right the bank estimate is a combination of the crown and vehicle orientation. The vehicle

appears the oscillate in the right side lane from 460 - 475 seconds. This is evident from the

average bank estimate of two degrees. Evident from the average bank estimate of 0 degrees,

the vehicle oscillates about the center of the crown from 475 seconds till the bank begins

at 485 seconds. The NCAT oval track has banks of eight degrees through the turns. The

estimate of bank during this steady state turn is eight degrees. Note that roll measured by

suspension deflections is not zero.
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Figure 7.19: Bank Estimate on NCAT Oval Track 15 State EKF Cascaded

7.4.2.2 Navigation EKF Coupled

The measurements and estimates of roll, pitch and yaw are again presented to validate

that the 16 state Coupled Navigation EKF is functioning as expected. The estimates of

roll pitch and yaw in Figures 7.20 - 7.21 match very closely the estimates of the 15 state

navigation filter estimates shown in Figures 7.17 - 7.18.
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Figure 7.20: Roll & Pitch Comparison on NCAT Oval Track 16 State Coupled EKF
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Figure 7.21: Yaw Comparison on NCAT Oval Track 16 State Coupled EKF

Figure 7.22 represents a section from the NCAT oval track. The same time interval of

460 seconds to 520 seconds is used to compare the result with Figure 7.19. The estimate of

bank for the navigation EKF coupled with the bank state looks very similar to the cascaded

bank estimate approach with standard navigation EKF. However, as seen previously with the
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simulation data the 16 state coupled EKF filters the noise off the bank estimate. The noise

filtering is the primary advantage to the coupled approach. For this reason the remaining

experimental result analysis is presented with the coupled 16 state navigation filter.
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Figure 7.22: Bank Estimate on NCAT Oval Track 16 State Coupled EKF

7.4.3 Additional Validation of the Coupled Navigation EKF

A circle with a radius of 50 ft was marked on the skid pad area at NCAT. Laps were

driven around the circle. The velocity was increased about every two laps until the tires

break loose and are unable to provide enough lateral force to hold the turn for the ATV.

The idea is to demonstrate the steady state cornering capabilities of a vehicle in both the

linear section of the tire curve and the nonlinear. As the speed increases more steer angle

is required to hold the turn. In the nonlinear portion of the tire curve the required steer

angle is no longer linearly proportional to the step increase in velocity. Figure 7.23 shows

Novatel measurements of position as well as horizontal velocity profile for the duration of

the 50 ft circle run. Figure 7.24 shows the bank and total roll estimates and the relative roll

measurement from the suspension potentiometers. The peaks of the bank are represented by

triangles. In this run the Prowler is turning left which means positive roll is roll to the outside
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of the circle. Thus at 205.8 s the vehicle was pointed roughly east and experienced positive

1.5 deg of bank. At 215.0 s the vehicle was pointed roughly west the vehicle experienced

-1.25 deg of bank. Thus this area of the skidpad appears to have roughly a bank of 1 to 2

deg. Static measurements observed while testing confirm that the skidpad area does tend to

slope about 1-2 deg in direction running from the south east to the north west.
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Figure 7.23: Coupled EKF on NCAT Skid Pad 50 Ft. Circle Position and Speed

200 220 240 260 280 300
−3

−2

−1

0

1

2

3

4

5

201.0s

210.8s

205.8s

215.0s

Time (s)

R
o
ll
A
n
g
le
s
(d
eg
)

Estimated Roll & Bank

φv Euler Roll
φs Roll (Deflections)
φr Bank

Figure 7.24: Coupled EKF on NCAT Skid Pad 50 Ft. Circle Bank Estimate
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A second circle with radius of 10 ft was marked off. Again the speed was increased

about every two laps in the same manner as the 50 ft circle. The vehicle performed laps

around the 10 ft. circle turning to the right. The smaller radius required more steer angle

at lower speeds. The prowler suspension is nonlinear in that at extreme turn angles the

outer wheel turns in more than the inner wheel as seen in Figure 7.25. Also present in

Figure 7.25 is tire deformation in the outer front tire. These properties could effect the bank

angle estimate. However, Figure 7.27 shows no noticeable growth in peak bank estimates

as the vehicle increases speed towards the conditions where asymmetrical steering and tire

relaxation are prevalent.

Figure 7.25: Tire Relaxation and Asymmetrical Steering
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Figure 7.26: Coupled EKF on NCAT Skid Pad 10 Ft. Circle Position and Speed
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Figure 7.27: Coupled EKF on NCAT Skid Pad 10 Ft. Circle Bank Estimate

Revisiting the NCAT oval track run, the coupled EKF bank estimate was tested against

a change in velocity. Figure 7.28 shows the position and velocity of the Prowler as it travels

through one of the banked turns. At 585.0 s the vehicle begins to travel at a constant

velocity of 2 m/s. Time 594.0s marks the acceleration start, and 605.0 s is the end of the
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acceleration. In Figure 7.29 it is observed that the bank estimate does not change during

accelerations. More importantly notice that there is evidence in the estimate of total roll,

φv, that the increased speed causes the sprung mass of the vehicle to shift to the outside

of the turn which is positive roll for a left turn such as this. Note that there is road crown

present through the banked turns. The bank should be either roughly -7 deg, the outside

lane, or -8 deg, the steeper inside lane.
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Figure 7.28: Coupled EKF on NCAT Oval Track Acceleration on Banked Left Turn Position
and Speed
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Figure 7.29: Coupled EKF on NCAT Oval Track Acceleration on Banked Left Turn Bank
Estimate

Figure 7.30 shows the position and velocity for a banked turn on the NCAT oval track.

On this particular turn the roll axis is excited through sinusoidal steering inputs. The

sinusoids start during the transition from the crowned straight to the banked left turn and

end just before the transition back to the crowned straight. The bank estimate through the

turn shown in Figure 7.31 closely resembles the bank estimate in Figure 7.29. Notice how

even the bank estimate for the transition is unaffected by the roll excitation. Also observe

the lane changes performed in the straight after the banked turn. There appears to be a

large change in bank from the center of the road to the outer lane since the bank oscillates

from 0 to 2 deg.
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Figure 7.31: Coupled EKF on NCAT Oval Track Roll Excitation Bank Estimate

The last run shown in Figures 7.32-7.33 demonstrates double lane changes made from

the inner to outer lanes. In Figure 7.33 the estimate of crown for this section of straight is

observed to be about 1.5 deg.
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Figure 7.32: Coupled EKF on NCAT Oval Track High Speed Position and Velocity
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Figure 7.33: Coupled EKF on NCAT Oval Track High Speed Bank Estimate

The last thing to make note of is that one of the assumptions inherent in the use

of suspension potentiometer measurements is that the wheels remain in contact with the

ground. As shown in Figure 7.34 it is possible to violate this condition without rolling over.

When this occurs the estimate of bank will not be accurate. But, the value for full suspension
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extension is a known constant and the measurement can be flagged when the measurement is

greater than full extension which would indicate that the tire and surface contact condition

is violated.

Figure 7.34: Wheel Lift off in Straight on NCAT Oval Track

7.5 Conclusions

The test equipment, sensors and experiments were discussed in this chapter. The vehicle

model based observer was shown to be inadequate due to both the need for a better vehicle

model and the nature of the dynamics of the maneuvers performed during testing. The

cascaded and coupled EKF bank estimators were compared and again the filtering of the

bank estimate proved to be an advantage. Thus the coupled EKF is the preferred method.
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Chapter 8

Conclusions & Future work

8.1 Conclusions

In conclusion, several methods that utilize relative roll information given by suspension

potentiometer measurements were explored, simulated and experimentally tested. First the

η parameter that describes the reletionship between the suspension deflections and relative

roll was explored. Two methods for finding η were presented: an experimental method that

requires truth measurements of Euler roll and road bank and an analytical method based

on the suspension geometry of the vehicle. The architecture of the extended Kalman filter

was explained and then implemented alongside the relative roll measurement in a cascaded

architecture and a coupled architecture. Simulation revealed that the filtering provided by

the coupled EKF provided a preferred solution. Thus, the coupled EKF was chosen as the

recommended method between the two.

Additionally a vehicle model based-observer was constructed and tested in simulation.

Simulations showed that the vehicle model based observer could estimate the bank angle

for very low vehicle dynamics. However, as the model and real vehicle were not close the

performace of the algorithm was poor. This was evident under high dynamic maneuvers

where the assumptions of the model were violated.

All three methods were tested with real data off the Prowler ATV from runs made at

the National Center of Asphalt Technology. The experimental data confirmed what was

observed in simulation. The vehicle model based observer performed much worse than the

kinematic based-EKF approaches. The coupled EKF was determined to be the best method

for estimating road bank due to its accuracy and filtering of the bank estimate. Several

experimental runs at the NCAT facility demonstrate this efficacy.
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8.2 Future Work

For future work, the model from the vehicle model based observer could be improved.

Specific improvements to the vehicle model may include more accurate model parameter

values, a more complex model than the coupled roll and bicycle model presented in Chapter

6 and a nonlinear tire model. Also, adding a measurement of lateral acceleration via a

measurement of side-slip could aid the current model such that the observer is useful under

high dynamic maneuvers.

The cascaded and coupled EKF bank estimation methods presented in Chapter 4 and

5 could be altered to estimate road grade. This would be accomplished by subtracting the

deflections from front and rear ends of the vehicle and dividing by the wheel base, wb, for

both the left and right sides. Doing so would generate a relative pitch , θs, represnented by

Eq. (8.1).

θ̄s = sin−1
(

∆LLF −∆LLR + ∆LRF −∆LRR
2wb

)
(8.1)

A new scaling value and the relationship between the suspension geometry for the rela-

tive pitch measurement would also need to examined. Finally, the architectures could be

implemented for online use to provide estimates in real-time.
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Appendix A

Vehicle Properties

A.1 CarSim’s Small SUV

Table A.1: Small SUV Vehicle Parameters

Parameter Symbol Value Units
mass m 1142 Kg

Inertia x axis Ixx 439.9 Kg ·m2

Inertia y axis Iyy 1296 Kg ·m2

Inertia z axis Izz 1296 Kg ·m2

Track Width tw 1.79 m
Wheel Base wbor L 2.20 m
Front Split a 0.88 m
Rear Split b 1.32 m
CG Height hrg 0.64 m
Axle Height haxle .34 m

Roll Center Height hrc .3 m

Table A.2: Small SUV Suspension Parameters

Parameter Symbol Value Units
Spring Mount Separation Front s1,s 1.79 m
Damper Mount Separation Front s1,d 1.79 m

Spring Stiffness Front k1 10,000 N/m

Damper Coefficient Front b1 6000 N ·s/m

Auxiliary Roll Stiffness Front (Anti-Sway Bar) kφ,1,aux 251 N ·m/deg

Spring Mount Separation Rear s2,s 1.00 m
Damper Mount Separation Rear s2,d 1.79 m

Spring Stiffness Rear k1 10,000 N/m

Damper Coefficient Rear b1 6000 N ·s/m

Auxiliary Roll Stiffness Rear (Anti-Sway Bar) kφ,1,aux 225 N ·m/deg
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Table A.3: Small SUV Roll Stiffness and Damping

Parameter Symbol Value Units
Auxiliary Roll Stiffness Front (Anti-Sway Bar) kφ,aux N ·m/deg

Roll Stiffness kφ 1.00 N ·m/deg

Roll Damping bφ̇ 1.79 N ·m/deg

kφ,aux = (kφ,1,aux + kφ,2,aux)
2 (A.1)

kφ =

(
k1s

2
1,s + k2s

2
2,s

)
2 + kφ,aux (A.2)

bφ̇ =

(
b1s

2
1,d + b2s

2
2,d

)
2 + kφ,aux (A.3)

Table A.4: Small SUV Cornering Stiffness

Parameter Symbol Value Units
Cornering Stiffness Front Axle Cαf 1280.3 N ·m/deg

Cornering Stiffness Rear Axle Cαr 1280.3 N ·m/deg
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A.2 Prowler ATV

Table A.5: Prowler Vehicle Parameters

Parameter Symbol Value Units
mass m 1142 Kg

Inertia x axis Ixx 439.9 Kg ·m2

Inertia y axis Iyy 1296 Kg ·m2

Inertia z axis Izz 1296 Kg ·m2

Track Width tw 1.118 m
Wheel Base wb 1.448 m
Front Split a 0.8397 m
Rear Split b .6949 m
CG Height hcg 0.64 m
Axle Height haxle .34 m

Roll Center Height hrc .3 m
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