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Abstract

The problem of elastic contact between one nominally flat rough surface and one rigid

flat is studied. A variety of contact models have been applied to this problem since the

pioneering work of Archard in 1956. Those contact models can be divided into 4 categories

namely, the statistical, multi-scale, semi-numerical and deterministic numerical models. In

Chapter 1, the methods of describing and generating rough surfaces are introduced. Addi-

tionally, the Hertzian contact theory is briefly illustrated. In Chapter 2, the developments

of the statistical, multi-scale and semi-numerical models are reviewed briefly by introducing

several important models, e.g., the Greenwood-Williamson (GW) model. The contact area

to load relations predicted by those models are compared to that by deterministic numerical

model (the finite element model) which is treated as the ”exact” solution. In Chapter 3

and 4, the developments and applications of two popular deterministic numerical methods

namely, the boundary element method (BEM) and the finite element method (FEM), for the

elastic rough surface contact are reviewed in detail. The contact area to load relations pre-

dicted by the BEM and the FEM are compared. The contact areas and the contact pressure

distributions at different stages of deformation are also explored. Conclusions of this study

can be drawn in the following aspects: (1) the asperity-based models, e.g., the statistical and

semi-numerical models, are only valid for low load condition, (2) the simplified multi-scale

model is good for both early contact and complete contact, (3) the contact area to load

relations predicted by the FEM and the BEM have very good agreement, at least for the

case of isotropic surfaces.
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Ā Contact area on the single asperity

P̄ Contact load on the single asperity

δ Deflection (or penetration, indentation) of the single asperity

∆, λ Amplitude and wavelength

δc Critical asperity deflection

∆x, ∆y Resolutions in the x and y directions

ηs Asperity density

ν1, ν2 Poisson’s ratio of contact body 1 and 2

Φ Probability density function

σs Root mean square of asperity height

A Total contact area

a Radius of contact area on the single asperity

A∗ Dimensionless contact area, A∗ = A/An

An Nominal contact area

Ar Real contact area

B Ratio of amplitude to wavelength, B = ∆/λ

ix



Bmax Maximum value of B

d Surface separation between the rigid flat and the mean level of undeformed rough

surface

d′ Surface separation between the rigid flat and the mean level of deformed rough

surface

d∗ Dimensionless surface separation, d∗ = d/σ

E∗ Effective material modulus, E∗ = [(1− ν2
1)/E1 + (1− ν2

2)/E2]−1

E1, E2 Young’s modulus of contact body 1 and 2

g Gap between the rigid flat and the deformed rough surface

G,D Fractal parameters

H Thickness of the substrate of the rough surface

h Rough surface height

H ′ Hurst exponent

h′x, h
′′
x Slope and curvature in the x direction

h′y, h
′′
y Slope and curvature in the y direction

Kijkl(Dms) Influence function

Lx, Ly Sampling length in the x and y directions

m0,m2,m4 Spectral moments

P Total contact load

p Pressure distribution

x



P ∗ Dimensionless contact load, P ∗ = P/(E∗An)

R Average radius of asperities or effective radius in the Hertzian contact theory, R =

(R−1
1 +R−1

2 )−1

R(τ) Autocorrelation function

Ra Center-line average

Rq(σ) Root mean square (RMS) roughness

Rx, Ry Radius of asperity in the x and y directions

S(w) Power spectrum density

Sy Yield stress

w Rough surface deformation

xi



Chapter 1

Introduction

1.1 Rough surface geometry

1.1.1 Statistical description of rough surface

In this section, methods of describing rough surface geometries are introduced. Two

popular ways of generating the rough surface by computer code will be discussed. At the

end of this section, details of two rough surfaces data, one generated by computer code and

another obtained from profilometer, will be illustrated. These two rough surface data will

be used as the inputs of all the elastic rough surfaces contact models discussed in the rest of

the thesis.

Figs. 1.1 and 1.2 illustrate the typical rough surface and rough surface profile along the

x direction at certain y coordinate measured by profilometer. Fig. 1.3 shows a 2D asperity

profile from the rough surface profile in Fig. 1.2. The peaks on the rough surface or rough

surface profile are called asperities. Sampling points, i− 2, i− 1, i, i+ 1 and i+ 2, and their

connecting lines form the profile of a 2D asperity in Fig. 1.3. Sampling point on the asperity

is called summit, i in Fig. 1.3, when its height is larger than all of its neighboring sampling

points, i− 1 and i+ 1.

If we neglect the surface roughness when two elastic bodies are in contact, the corre-

sponding contact area is called nominal contact area, An. When the contact interfaces are

rough, the real contact area, Ar, is a fraction of nominal contact area, An. The ratio of Ar

to An is called the contact ratio.

According to the size, rough surface features can be divided into 3 categories [1] namely,

macrodeviation, waviness and roughness. Surfaces of road and landscape are belonging to

1



Figure 1.1: Real rough surface measured by profilometer.

macrodeviation because the asperity height of those surfaces is within macroscale and usually

the ratio of amplitude to wavelength is considerably large. For waviness surfaces, the ratio

of distance between neighboring asperities to the asperity height is usually more than 40

[1]. However, the waviness profile is still visible. Roughness are defined as peaks and valleys

which have very small value of height deviations comparing to dimensions of sampling length

(length of nominal contact area) and are generally invisible to the unassisted eye.

It is difficult to describe rough surface deterministically due to its multi-scale structure,

which will be discussed later, and random nature. Therefore, simplifying mathematics such

as statistical parameters are used. Here we only illustrate the statistical parameters of a

rough surface profile (2D). Extension to rough surface (3D) is very similar to the 2D case.

hi, i = 1, ..., N is the height of rough surface profile obtained from a profilometer with the

resolution ∆x and one small portion of a rough surface profile with 15 sampling points is

2
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Figure 1.2: Real rough surface profile measured by profilometer.

plotted in Fig. 1.4. N is number of sampling points. Ra, center-line average, describes the

roughness of rough surface profile

Ra =
1

N

N∑
i=1

|hi|

and level at the average height of surface profile is called mean level. Another similar param-

eter, the root mean square (RMS ) roughness, σ or Rq, is also widely used as a measurement

of average roughness

σ =

√√√√ 1

N

N∑
i=1

h2
i

and σ is more sensitive to large deviations from the mean level [2]. However, the center-line

average, Ra, and root mean square, σ, cannot uniquely describe the rough surface profile

3
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Figure 1.3: Details of a 2D asperity profile in rough surface profile in Fig. 1.2

statistically, thus the spectral moments method are introduced [11]

m0 =
1

N

N∑
i=1

hi
2

m2 =
1

N − 2

N−1∑
i=2

h′i
2

m4 =
1

N − 2

N−1∑
i=2

h
′′

i

2
.

h′i and h
′′
i are the slope and curvature of sampling point i, respectively. h′i and h

′′
i can be

numerically determined by using central difference

h′i =
hi+1 − hi−1

2∆x

h
′′

i =
hi+1 − 2hi + hi−1

∆2
x

, i = 2, ..., N − 1. (1.1)
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Figure 1.4: Details of a 2D rough surface profile with 15 sampling points from Fig. 1.2

m0 is the same as the square of σ, i.e., m0 = σ2. m2 and m4 are called skewness (SK) and

Kurtosis (K) and commonly normalized by σ2 and σ4.

In many elastic rough surfaces models, only the heights of the summits are used as

the input due to the fact that contacts dominantly occur on asperities. Greenwood and

Williamson [3] found that asperity height in many real surfaces can be described by a Gaus-

sian distribution

Φ(h) =
1√

2πσs
exp

(
−h2

2σ2
s

)
where surface height is centered about the asperity mean level, see Fig. 1.4. σs is the root

mean square of the asperity height (σ is the root mean square of the rough surface profile).

Asperity mean level is determined by averaging the asperity heights.

1.1.2 Method of generating rough surface

Commonly, rough surface data is obtained using a profilometer. For model evaluation,

an alternative is to generate fractal surfaces, which will be discussed later, by the com-

puter code. Two popular algorithms of generating fractal surfaces namely, the Weierstrass-

Mandelbrot function and the Random Midpoint Algorithm, can be found in the past litera-

tures.

Fractal geometry

5



Fractal geometry [22, 23] can be used to characterize the multi-scale nature of the rough

surfaces. A fractal geometry should be continuous, non-differentiable and statistically self-

affine, in a mathematical sense. Real rough surfaces obtained from profilometer show exactly

the continuous and non-differentiable properties. If a similar surface profile is obtained as

the sampling resolution ∆x decreases, it can be described as statistically self-affine. Due to

the above reasons, fractal geometries can be used to approximate real rough surfaces with a

multi-scale structure. It is found that the Weierstrass-Mandelbrot (WM) function meets all

the properties of a fractal geometry. The following WM function [23] can be used

h(x) = G(D−1)

nmax∑
n=n1

cos(2πγnx)

γ(2−D)n
, 1 ≤ D ≤ 2 (1.2)

to approximate the real 2D rough surface profile. G is the length scale of the rough surface

profile. D is the fractal dimension. γn describes the frequency spectrum of the surface

roughness. n1 and nmax relate to the cut-off frequencies which are dependent on sampling

length Lx and sampling resolution ∆x. Since a rough surface profile has a finite length,

frequency cannot be less than the lowest frequency γn1 ≤ 1/Lx. Also, the rough surface

profile does not have any surface height information beyond the highest frequency level

γnmax ≥ 1/∆x. For a 3D rough surface [24, 25], rough surface height can be written as

h(x, y) = L

(
G

L

)(D−2)(
lnγ

M

)1/2 M∑
m=1

n′max∑
n=1

γ(D−2)n{cos(φm,n)−

cos

[
2πγn(x2 + y2)1/2

L
cos
(

tan−1
(y

x

)
− πm

M

)
+ φm,n

]
}, 2 ≤ D ≤ 3 (1.3)

where n′max = int
(

log(L/∆)
logγ

)
is the maximum frequency level. L and ∆ are the sampling

length and sampling resolution (same in the both directions) of the 3D fractal surface, re-

spectively. M denotes the number of superposed ridges used to construct the surface. φm,n

is a random variable which can be achieved by any random generator. Majumdar and Tien

[27] showed γ = 1.5 is a suitable value for high spectral density and phase randomization.
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Fractal parameters G and D can be extracted from rough surface data. A fourier transfor-

mation of the autocorrelation function R(τ) of fractal surfaces generated by Eq. 1.2 and 1.3,

i.e., the power spectrum density S(w), may result in the following power law form

S(w) =
G2(D−1)

2lnγ

1

w(5−2D)
(1.4)

where w is the frequency of roughness. If S(w) is plotted in a log-log plot, D is related

to the slope of S(w) and G can be extracted from S(w = 0). It is obvious that G and D

are scale-independent parameters comparing to the scale-dependent surface parameters, e.g.,

m0, m2 and m4 [27, 26].

Random Midpoint Algorithm

Another way of generating self-affine fractal surface, which is called random midpoint

algorithm, is developed by Voss [28]. In stead of scale-invariant fractal parameters used

in WM function, Eqs. 1.2 and 1.3, only one parameter H ′, Hurst exponent, is needed.

The relationship between Hurst exponent and Fractal dimension is: H ′ = 3 − H(3D) and

H ′ = 2−H(2D).

1.1.3 Rough surfaces data used in this study
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Figure 1.5: 3 dimensional profile (a) and colored contour (b) of surface 1, i.e., fractal surface.
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Table 1.1: Statistical and fractal parameters of two surfaces

Parameter Surface 1 Surface 2 Parameter Surface 1 Surface 2
m0 (m2) 6.7081× 10−16 5.9061× 10−14 m2x 3.6506× 10−4 2.6607× 10−5

m4x (m−2) 8.2388× 109 8.7907× 105 m2y 3.9087× 10−4 9.7553× 10−5

m4y (m−2) 9.1915× 109 2.3517× 107 σs(m) 3.4070× 10−8 2.4331× 10−7

ηs (m−2) 8.8281× 1011 1.3600× 109 R(m) 1.2098× 10−5 0.0013
G (m) 9.4600× 10−14 D 2.4400
Lx (m) 1.6000× 10−5 9.9200× 10−4 Ly (m) 1.6000× 10−5 9.9200× 10−4

∆x (m) 1.25× 10−7 8× 10−6 ∆y (m) 1.25× 10−7 8× 10−6
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Figure 1.6: 3 dimensional profile (a) and colored contour (b) of surface 2, i.e., real rough
surface.

Two rough surfaces data namely, surface 1 and surface 2, are used throughout the rest of

the thesis as the inputs of all the elastic rough surfaces contact model. Surface 1 is generated

by the WM function, Eq. 1.3, and surface 2 is measured by profilometer from a standard

rough surface sample. The main statistical and fractal parameters are illustrated in Table.

1.1. ηs and R are the asperity density and average radius of asperity, respectively. ηs is the

ratio of number of asperities to the nominal area An. The radius of curvature, Ri, of each
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asperity i can be defined as

Ri = (Rx +Ry)/2 (1.5)

Rx = (1− (h′x)
2)1.5/h

′′

x

Ry = (1− (h′y)
2)1.5/h

′′

y ,

h′x, h
′
y, h

′′
x and h

′′
y are slopes and curvatures of asperity i along x and y directions (Eq. 1.1).

Lx and Ly are sampling lengths in x and y directions, An = Lx × Ly. ∆x and ∆y are the

resolutions along x and y directions. Surface 1 consists of 129 × 129 sampling points and

surface 2 is 125× 125.

m2 and m4 along both x and y are m2x, m2y, m4x and m4y and are listed in Table 1.1.

Differences between spectral moments of surface 1 in the x and y directions are negligible

comparing to that of surface 2. However, they differ greatly for surface 2. Consequently,

surface 1 can be treated as an isotropic surface and surface 2 as an anisotropic surface.

1.2 Single asperity contact

Between two approaching rough surfaces, contacts initially occur at the summits of

asperities. Thus, at low load conditions, the majority of contact areas grow independently

(without interactions between them). Thus the resultant rough surface contact load P and

contact area A are the superpositions of contact load P̄ , and the area of single contacting

asperities Ā.

P =
Nc∑
i=1

P̄i

A =
Nc∑
i=1

Āi (1.6)

Note that Nc is the number of contacting asperities at a given surface separation d. Com-

monly, rough surface contact models are called asperity-based contact models if Eq. 1.6 is
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used to obtain the total contact force P and area A. As a result, it is necessary to derive an

accurate single asperity contact model for the elastic contact accounting for different shapes

of contact interfaces.

It is unlikely to accurately approximate the complex shapes of asperities using simple

geometrical entities. At the low load condition, nearly all the contacts occur near the tips

of the asperities and many efforts have been put on modeling the geometry of the tip of

asperity and its corresponding asperity contact model. The most popular geometrical entity

used to approximate the shape of tip is a hemisphere, see Fig. 1.7.

1.2.1 Elastic asperity contact

Deformed
Undeformed

R Rigid Flat

a

Figure 1.7: Asperity contact model

As we mentioned before that spherical cap is the most popular geometrical entity to

approximate the tip of asperities where contacts are more likely to occur, thus the well-

known Hertzian spherical contact theory can be used here to model the contact between two

hemispherical caps of radius R1 and R2, respectively. Contact between two hemispherical

caps can be further simplified to the contact between an equivalent hemispherical cap and

one rigid flat, see Fig. 1.7. The effective radius, R, can be written as

R = (R−1
1 +R−1

2 )−1

and the Young’s modulus of the equivalent hemispherical cap (effective material modulus,

E∗) is

E∗ = [(1− ν2
1)/E1 + (1− ν2

2)/E2]−1
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where Ei and νi, i = 1, 2, are Young’s modulus and Poisson’s ratio of the two hemispherical

caps, respectively. In the rest of the article, the contact between two asperities will always

be simplified as the contact between one asperity of effective radius R and one rigid flat.

Thus the contact area, Ā, and contact load, P̄ , due to contact between two hemispherical

caps, are described by Hertz [32]

Ā = πa2 = πRδ (1.7)

P̄ =
4

3
E∗R

1
2 δ

3
2 . (1.8)

where a is the radius of contact area. δ is the deflection (or penetration, indentation) as

illustrated in Fig. 1.7. The pressure distribution defined in polar coordinate, p(r), within

the contact area is

p(r) = p0

√
1− r2/a2, r ∈ [0, a]

where p0 is maximum contact pressure.

Commonly, critical deformation, δc, is used to predict the onset of yielding in the sphere.

Yielding first occurs beneath or on the contact interface between two asperities with hemi-

spherical tips. When deformation is larger than δc, i.e., δ > δc, deformation beneath or on

the contact interface may become elastoplastic. For the ductile material, the onset of first

yield is governed by the von-Mises criterion. Chang et al [4] and Jackson and Green [5]

derived similar expressions of δc based on the von-Mises criterion. The one from Jackson

and Green is

δc =
( πp0

2E∗

)2

R

where

p0/Sy = 1.295 exp(0.736ν)

where Sy is the yield stress of the material in unidirectional tension (or compression). Sy

and ν are the values corresponding to the minimum p0. For the brittle materials, onset of
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first yield is governed by Tresca maximum tensile stress criterion and the corresponding δc

is derived numerically by Brizmer et al[6].

The above derivation of critical deformation δc is only valid for the perfect slip condition.

δc for full stick conditions can be found in [6]. δc for the partial slip condition is currently

not available.
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Chapter 2

Statistical, multi-scale and semi-numerical rough surfaces contact model

2.1 Statistical rough surfaces contact model

The statistical type of contact model is still the most popular model used in rough

surfaces contact. In stead of using the complete roughness data, only probability density

function Φ(h) is used. Φ(h) means the probability of the asperity with the height between

h and h+ dh. Assume we know the exact expression of Φ(h), then the number of asperities

with height h is

N(h) = Φ(h)N̄

where N̄ is the total number of asperities in the rough surface. Thus, the total contact load

(P ) and area (A) as a function of d can be written as

P (d) =N̄

+∞∫
d

P̄Φ(h) dh (2.1)

A(d) =N̄

+∞∫
d

ĀΦ(h) dh (2.2)

d is the surface separation between rigid flat and mean asperity level, see Fig. 1.4. Defor-

mation δ of each contacting asperity is

δ = h− d

Commonly, two rough surfaces contact can be simplified as one equivalent rough surface

contacting a rigid flat. The height of equivalent surface, h(x), can be written as h(x) =
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h1(x)+h2(x). h1 and h2 are two rough surfaces. Additionally, the spectral moments, m0,m2

and m4, of the equivalent rough surface profile are

m0 = (m0)1 + (m0)2 (2.3)

m2 = (m2)1 + (m2)2 (2.4)

m4 = (m4)1 + (m4)2 (2.5)

(m0)i, (m2)i and (m4)i, i = 1, 2, are spectral moments of two rough surfaces. Eq. 2.1 was

first developed by Greenwood and Williamson [3].

2.1.1 Greenwood-Williamson (GW) model

In 1966, Greenwood and Williamson combined random process with classical Hertzian

contact to deal with rough surfaces contact. In their pioneering theory, they adopted the

following assumptions:

1. The asperity height distribution is Gaussian, i.e., the probability density function Φ(h) is

Φ(h) =
1√

2πσs
exp

(
− h2

2σ2
s

)
(2.6)

where σs is the standard deviation of asperity height. The asperity height h is centered

about mean asperity level.

2. Asperity contact is modeled by the Hertzian spherical contact theory (Eq.1.7);

3. The radius of all asperities are assumed constant (R);

4. Ignore adhesion, shoulder-shoulder contact, neighboring asperity interaction and asperity

coalescing.

By using dimensionless asperity height h∗ = h/σs and dimensionless surface separation

d∗ = d/σs. Asperity probability density function Φ(h∗), total contact load P (d∗) and area
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A(d∗) in the GW model can be written as

Φ(h∗) =
1√
2π

exp

(
−(h∗)2

2

)
(2.7)

P (d∗) = Anηs

+∞∫
d∗

P̄Φ(h∗) dh∗ (2.8)

A(d∗) = Anηs

+∞∫
d∗

ĀΦ(h∗) dh∗ (2.9)

An and ηs are nominal contact area and asperity density, respectively. Multiplication of

An and η is the total number of asperities in the rough surface sample (N̄). P̄ and Ā are

calculated by Eq. 1.7.

2.1.2 Advanced statistical models

Whitehouse and Archard (WA) model

Whitehouse and Archard [9] (WA) abandoned the assumption of a constant asperity ra-

dius. Rough surfaces obtained from a profilometer show that higher asperities have sharper

tips. Whitehouse and Archard incorporated this correlation into the surface statistics and

assumed an exponential-like autocorrelation function, R(τ). They derived the joint prob-

ability density function, Φ(h∗, C), of both summit height and summit curvature. C is a

non-dimensional summit curvature. Their joint probability density function was used by

Onions and Archard [10] in deriving elastic contact load (P ) and area (A) following the

framework of the GW model, Eq. 2.7.

Nayak Model

Nayak [11] (1971) derived more generalized joint probability functions for both surface

profile (2D) and rough surfaces (3D) based on 2 and 3 dimensional joint probability function:

Φ(h, ∂h
∂x
, ∂

2h
∂x2

) and Φ(h, ∂h
∂x
, ∂h
∂y
, ∂

2h
∂x2
, ∂2h
∂x∂y

, ∂
2h
∂y2

).

Bush et al (BGT) Model
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For simplicity, the curvatures of the contacting summits used in Nayak’s statistical

model is mean curvature κm = (−∂2h
∂x2

+ ∂2h
∂y2

)/2 and Hertzian spherical contact theory is

used. Bush et al [12] (BGT) (1975) extended the Nayak statistical model by considering

two principle curvatures of asperities along the x and y directions. Asperity contact model

in the BGT model becomes more generalized Hertzian elliptic contact model. Due to its

complexity, only the asymptotic solution of the BGT model [14] is written here

A/An =

√
π

m2

P

E∗An
(2.10)

which has a linear relation between contact area A and contact load P .

McCool Model

The above mentioned advanced statistical models all introduced more than one random

variables in their joint probability density function Φ which cause their models to be more

complex (multiple integrals) than the GW model and inconvenient to apply. The GW model

has a clean-cut expression but the inaccurate inputs of asperity density ηs, asperity r.m.s

σs and constant radius R may cause the inaccurate contact load (P ) and area (A). McCool

[13] (1987) derived the following closed-form expression of inputs for GW model

ηs =
1

6π
√

3

(
m4

m2

)
(2.11)

R = 0.375

(
π

m4

)0.5

(2.12)

σs =

(
1− 0.8968

α

)0.5

m0.5
0 (2.13)

based on the Nayak statistical model for isotropic rough surfaces. α = m0m4

m2
2

is called the

bandwidth parameter introduced by Nayak [11].

Zhao and Chang (ZC) Model and Ciavarella et al (CGP) Model

In the above statistical models, the substrate beneath the rough surface is assumed to be

rigid, thus the interaction between the neighboring asperities due to the elastic deformation
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of substrate is neglected and the local asperity deformation is calculated as: δ = h− d. Due

to the asperity interaction, the contact load may cause the redistribution of asperity height.

Consequently, the probability density function Φ of undeformed asperity distribution may

no longer be the same. Zhao and Chang (ZC)[15] derived a modified asperity deformation

equation

δ = h− d+ 1.12

√
wlpm

E∗

by introducing the displacement of the mean asperity level caused by contact load. wl is the

contact load on the single asperity and pm is the average pressure over the nominal contact

area An, i.e., pm = P/An. When modified asperity deformation δ is applied in the GW

model, Eq. 2.7, the modified GW model becomes nonlinear and the iterative method has

to be used in order to obtained a convergent solution. Ciavarella et al (CGP) [16] derived a

similar modified asperity deformation equation.

δ = h− d− pmA1/2
n /E∗

A comprehensive comparison between GW+McCool (GW model with McCool’s inputs),

full BGT and Nayak models have recently been performed by Carbone and Bottiglione [14].

Two important conclusions have been drawn:

1. The contact area-load curve of all the models quickly deviate from the linear relation

obtained at the light load condition.

2. The slope of contact area-load curve predicted by BGT and Nayak models converges to

unity as surface separation d reaches a very high value with vanishing contact load and area.

However, GW+McCool doesn’t have such unity slope at high values of d.

Even though the advanced statistical models, e.g., Nayak and BGT models, are derived

from a complete joint probability density function with multiple random variables, they are

proved to be inaccurate by numerical simulations [34] at medium and heavy load conditions.

The major reason that causes the inaccuracy is that the statistical model is based on single
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asperity contact model. At the low load condition (small contact area and large surface

separation), the majority of contact areas of single asperities grow independently, i.e. no

asperity coalescing occurs. Thus the contact load and area are the summation of contact

loads and areas on single asperities. The contact load-area curve shows a linear relation

only at vanishing load condition. When rough surface contact reaches medium and even

heavy load conditions, asperity coalescing becomes more and more severe. Usually statistical

models may therefore overestimate both the contact area and load [34].

2.2 Multi-scale model

Experimental results [2, 23, 26] show that the statistical surface parameters, e.g., spec-

tral moments m0,m2 and m4, are dependent on sampling resolution. Consequently, results of

statistical model may deviate from each other if the same rough surface is measured with dif-

ferent resolutions. Due to the multi-scale nature of rough surfaces, Archard [21] developed

the first multi-scale elastic rough surfaces contact model (perhaps the first rough surface

contact model). The structure of rough surfaces used in Archard’s model is described as

”protuberances on protuberances” type. Each protuberance has the hemispherical shape

and more smaller protuberances are uniformly distributing on its surface. As more scales

are being involved, the contact area-load relation approaches linearity. However, Archard’s

multi-scale model cannot be practically used on a real rough surface because of its unrealistic

rough surface structure.

2.2.1 Majumdar and Bhushan (MB) fractal contact model

Majumdar and Bhushan (MB)[23] developed the first elastic multi-scale contact model

based on fractal geometry. The MB model can only deal with a 2-D rough surface profile

with the fractal dimension D lying between 1 and 2. They assumed that the contact spot

distribution n(a) is

n(a) =
D

2

a
D/2
l

aD/2+1
(2.14)
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where al is the maximum contact spot area and can be calculated by al = A2−D
D

. A is the

contact area and can be obtained by the relation

A/An =
1√
2πσ

+∞∫
d

exp(−h2/2) dh (2.15)

which assumes that the surface profile follows a Gaussian distribution. σ is the r.m.s of

rough surface profile. Actually, the fractal surface can be treated as the stack of sinusoidal

waves with random phases based on the mathematical expression (Eq. 1.2), and contact load

P calculated in the MB model is the superposition of contact load P̄ of different frequency

domain. P̄ is calculated based on Hertzian spherical contact theory and asperity deformation

is assumed as the amplitude of each sinusoidal wave. Then we have

P =

al∫
0

4
√
πE∗GD−1a(3−D)/2

3
n(a) da. (2.16)

Eq. 2.15 and Eq. 2.16 show a nonlinear relation between A and P . The MB fractal model

has been criticized due to the following reasons:

(1) The contact spot distribution, Eq. 2.14, is only geometrically-dependent and it has

nothing to do with the elastic properties and contact condition;

(2) The real contact area function, Eq. 2.15, is only valid for the surface follows Gaussian

distribution, which is unrealistic for the fractal surface.

(3) Using amplitude of each sinusoidal wave as the asperity deformation is too simplified.

2.2.2 Jackson and Streator (JS) multi-scale model

Jackson and Streator (JS)[29] developed an isotropic 3-D multi-scale contact model

based on 3D sinusoidal contact model ([30, 31]). The main ideal of the JS model is that a

2-D rough surface profile can be decomposed into stacks of sinusoidal waves with different

frequencies fi (or wavelength λi) and amplitude ∆i. Asperity density ηi and asperity contact
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radius Ri of each sinusoidal waves can be easily determined:

ηi = 2fi

Ri =
1

4π2∆if 2
i

on each frequency level. Johnson et al [31] provided two asymptotic solutions about contact

between a sinusoidal surface and a rigid base. When p̄� p∗,

(ĀJGH)1 =
π

f 2
i

3

8π

p̄

p∗

and p̄ approaches p∗

(ĀJGH)2 =
1

2f 2
i

(1− 3

2π
[1− p̄/p∗])

where p̄ is the average contact pressure over nominal contact area (λ2
i ) and p∗ is the average

pressure to cause complete contact

p∗ =
√

2πE∗∆i/λi.

Jackson and Streator curve-fitted the two asymptotic solutions to bridge the gap between

them:

Āi = (ĀJGH)1

(
1−

(
p̄

p∗

)1.51
)

+ (ĀJGH)2

(
p̄

p∗

)1.04

(2.17)

Āi = (ĀJGH)2 (2.18)

The above empirical functions have been validated by both finite element method [33] and

FFT-based deterministic model [34]. The assumptions made in the JS model are:

1. Higher frequency domains are superimposed upon lower frequency domain, which is

similar to Archard’s model [21]. The difference is that the shape of protuberance used in
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Archard’s model is spherical and while it is sinusoidal in the JS model.

2. Each scale carries the same total load

3. A given scale cannot increase the contact area beyond what is experienced by the frequency

level below it. Assumption 3 ensures real contact area, Ar, is bounded (Ar ≤ An) and

guarantees the convergence of Ar as frequency level increases.

4. The load at each frequency level is shared equally among all the asperities at that level.

Thus the following contact model can be gained

A =

(
imax∏
i=1

Āiηi

)
An (2.19)

P = P̄iηiAi−1 (2.20)

By using fast Fourier transformation (FFT), we can decompose the rough surface into imax

frequency levels. For a given contact load P , contact load P̄i = p̄i(λ
2
i ) on each asperity

within frequency domain i can be determined by Eq. 2.20. Then corresponding contact area

Āi can be calculated. These steps are iteratively performed until frequency level (imax) is

reached. Based on Eq. 2.19, the real contact area (A) can be determined.

Jackson [35] further simplified the JS model by using

A =
P√

2πE ′Bmax

, Bmax = max(B) (2.21)

and this simplified multi-scale model, Eq. 2.21, can be applied for both 2D and 3D rough

surface data. For 3D rough surface data, B = βi/λi is derived by taking the FFT of each 2D

row of 3D surface and then averaging the results [34].

2.3 Semi-numerical deterministic model

In the above sections, we briefly introduced the statistical models, e.g., the GW model,

and multi-scale models, e.g., the MB and JS models. In the statistical models, the concept
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of asperity contact is essential in determining the contact load and area. Additionally, only

limited information of roughness, e.g., spectral moments (m0, m2, and m4) in the GW

model, is utilized. This is also true for the multi-scale. Only frequencies and amplitudes of

each sinusoidal components are used as the inputs. In the next chapter, the application of

deterministic numerical methods for rough surface contact will be introduced in detail. Since

a majority of contacts occur at the vicinity of asperities, coordinates of asperities (strictly

speaking the summits) are essential in predicting the contact load-area relation. This ideal

can be achieved by using the coordinates of summits and corresponding radius of curvatures

as the inputs. Because the real surface roughness data is still partially utilized, we call the

rough surfaces contact models, which adopt the above ideal, the semi-numerical models in

this thesis.

Considerable efforts are been placed on the development of semi-numerical deterministic

models in the following aspects:

(1) The Radius of curvature distribution are considered and more complex methods of eval-

uating the radius of curvature at each contact asperity are developed [72, 73, 74];

(2) More accurate asperity interaction models are included [75, 76, 65, 77];

(3) Asperity coalescing is included [78, 79, 80, 81, 77].

The concept of asperity contact is retained which makes these models different from

numerical deterministic models. However, in order to model more accurate asperity interac-

tion, asperity coalescing and asperity radius of curvature, coordinates of summits are utilized

instead of statistical parameters.

In this section, only one typical semi-numerical deterministic model, developed by

Ciavarella et al [75],are introduced.

2.3.1 Ciavarella et al’s model

Contact model studied by Ciaverella et al. [75] consists of one rigid rough surface

and one elastic half-space. Since only asperities are essential for the rough surface contact
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according to the GW model, the rough surface is characterized by the vectors of asperity

coordinates x, y and z and radius of curvature R. Asperities are determined based on the

criterion that it should be the maxima comparing to the neighboring 4 sampling points. The

radius of curvature R can be determined by

Rx =
(1− h′x

2)1.5

h′′x

Ry =
(1− h′y

2)1.5

h′′y

R = (Rx +Ry)/2,

where h′i and h
′′
i , i = x and y, are calculated by Eq. 1.1.

As the rigid rough surface approaches the elastic half-space, the contact areas grow

independently on the top surface of the elastic half-space. The shape of each contact area

can be determined by Hertzian spherical contact theory:

p(r) = p0

√
1− r2/a2 r ∈ [0, a]

δ = a2/R

a =

(
3

4

P̄ R

E∗

)1/3

. (2.22)

p0 is maximum contact pressure. a is contact area radius. δ is the deformation of asperity.

P̄ is external load acting on asperity. For a typical Hertzian pressure distribution within the

contact area aj, the corresponding vertical displacement of asperity i, wi, may be written as

[31]

wi =
1

Rj

(a2
j − r2/2), r ≤ aj (2.23)

wi =
1

πRj

[
(2a2

j − r2)asin
(aj

r

)
+ aj

√
r2 − a2

j

]
, r > aj (2.24)
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where r is the distance between asperity i and asperity j: r =
√

(xi − xj)2 + (yi − yj)2.

Total displacement of asperity i due to all the Hertzian contact is

wi =
Nc∑

j=1,i 6=j

(
1

πRj

[
(2a2

j − r2)asin
(aj

r

)
+ aj

√
r2 − a2

j

])
+

1

Ri

a2
i (2.25)

where Nc is the number of contacting asperities. Eq. 2.25 assumes that only one asperity,

itself, lies within the contact area of radius ai. This assumption is reasonable when contact

areas grow independently. However, the prediction of contact load and area at high load

conditions may not be accurate due to the fact of asperity coalescing. For those contacting

asperities, the following governing equation should be obeyed:

hi = d+ wi, i = 1, ..., Nc

where hi is asperity height measured from the mean level. d is surface separation.

Because the contacting asperities are unknown in advance, an iterative scheme needs to

be adopted. Ciavarella et al. [75] introduced the following correction scheme

∆ai =
Ri

2ai
(hi − d)

ai+1 = ai + ∆ai (2.26)

by differentiating Eq. 2.22. The contact area ai are updated iteratively until ∆ai is suffi-

ciently small.

2.4 Results and discussion

In the above sections, we have briefly introduced some important models in the de-

velopment of statistical (GW, Nayak, BGT, ZC and CGP) and multi-scale (Archard, MB

and JS) models. In this section, statistical (GW, Nayak, asymptotic BGT and CGP) and
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the simplified multi-scale, Eq. 2.21, models are compared to the finite element model, the

solution of which is treated as ”exact” and will be discussed later.

Surface 1 and surface 2, discussed in the Section 1.1.2, are used as the inputs of the

elastic rough surfaces contact models. Surfaces are compressed by the rigid flat. The essential

statistical parameters of both rough surfaces needed as inputs for all of the statistical models,

are listed in Table 1.1. m0, m2 and m4 are the average values of that along the x and

y directions. Contact load (P ) contact area (A) are in the dimensionless forms: P ∗ =

P/(AnE
∗), A∗ = A/An.
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Ciavarella et al model
The simplified multi−scale model
FEM

Surface 1

Figure 2.1: Contact area-load relation of surface 1 predicted by statistical, multi-scale and
FEM models.

Figs. 2.1 and 2.2 illustrate the relations between A∗ and P ∗ predicted by the GW, Nayak,

asymptotic BGT, CGP, Ciavarella et al’s semi-numerical model, the simplified multi-scale

model and the FE model. Value of Bmax used in the simplified multi-scale model is the

average value of Bmax of each row of rough surface data.
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Figure 2.2: Contact area-load relation of surface 2 predicted by statistical, multi-scale and
FEM models.

Fig. 2.1 shows the relations between A∗ and P ∗ of (nearly) isotropic surface, e.g., surface

1. All the statistical models discussed above are based on the assumption that the rough

surface is isotropic. The asymptotic BGT model has a better accuracy than the GW and

Nayak models since it includes both the joint probability function and more generalized

elliptic contact model. The multi-scale model is very similar to the asymptotic BGT model.

As a results, the Nayak model has a better accuracy than the GW model. At the low load

condition, the CGP and GW models have the same prediction because the effect of asperity

interaction is not severe. As the load P ∗ increases, the contact area A∗ predicted by the

CGP models deviates from that predicted by the GW model. In CGP model, however, only

displacement of mean asperity level is used to show the redistribution of asperity height

caused by asperity interaction. Relative changes of asperity heights between neighboring

asperities are not included. Under the frame work of the statistical models, it is impossible to
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include a more accurate asperity interaction model because asperity coordinates are unknown

and that is one of the main reasons to develop the semi-numerical deterministic models. Even

though Ciavarella et al’s semi-numerical deterministic model includes more accurate asperity

interaction, its accuracy is only better than that of the Nayak models and worse than that

of the BGT model, the simplified multi-scale model and the FE model. Two reasons can

explain the defects of Ciavarella et al’s semi-numerical deterministic model: (1) Surface 1 is

not perfectly isotropic. The spherical asperity contact model used in Ciavarella et al’s semi-

numerical model may not accurately describe the asperity contact than the more generalized

elliptic asperity contact model used in the asymptotic BGT model. (2) Asperity coalescing is

not included. It is surprising to see that both the simplified multi-scale and the asymptotic

BGT models has the the same and most accurate prediction of the relation between A∗ and

P ∗. This confirms that Archard’s type of structure of rough surface combined with sinusoidal

protuberances is reasonable to be used in predicting the A∗ to P ∗ relation, although the

selection of Bmax may be important.

Fig. 2.2 illustrates the relations between A∗ and P ∗ of the anisotropic surface, i.e.,

surface 2. Spectral moments, m4x and m4y, are not in the same order of magnitude, see

Table. 1.1, which causes surface 2 to show a strong anisotropic nature. As the results of

all the statistical models based upon the isotropic assumption, they may not have good

predictions. Ciavarella et al’s semi-numerical model uses the spherical asperity contact

model and cannot accurately capture the asperity contacts of the anisotropic rough surface

(a majority of them are elliptic contacts). The gap between the predictions of the simplified

multi-scale and FE models becomes smaller as the load P ∗ increases within the small load

range. The reason of the high accuracy of the simplified multi-scale model is because the

parameter Bmax is the average value of the Bmax of each row of the rough surface data.

This average process may more or less capture the strong effect of anisotropic nature on the

relation between A∗ and P ∗.
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Figure 2.3: Contact area-load relation of surface 1 predicted by simplified multi-scale models
[34] with different definition of Bmax.

Figs. 2.3 and 2.4 illustrate the relations between A∗ and P ∗ predicted by the simplified

multi-scale and FEM models. Different definitions of Bmax:

“ave(Bmax)”, Bmax value used in Eq. 2.21 is the average of Bmax of each row of rough surface;

“max(Bmax)”, Bmax value used in Eq. 2.21 is the maximum of Bmax of each row of rough

surface;

“min(Bmax)”, Bmax value used in Eq. 2.21 is the minimum of Bmax of each row of rough

surface.

are used in the simplified multi-scale model in order to test the effect of Bmax on the relations

between A∗ and P ∗.

Solutions of the FE model of both isotropic and anisotropic surfaces lie between two limit

solutions, i.e., min(Bmax) and max(Bmax). As the load P ∗ (or contact area A∗) increases, the

FE solution transits from min(Bmax) curve to max(Bmax) curve. This may be explained by
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the following reasons: The definition of B is the ratio of the amplitude ∆ to the wavelength

λ. After the Fourier transformation of the 3D isotropic rough surface heights, we may have

stacks of isotropic sinusoidal surfaces with different values of B. Assume we have two cross-

sections of 3D isotropic sinusoidal surfaces with different values of B, i.e., B1 and B2. The

wavelength, λ, of both sinusoidal waves are the same. The total load, needed to flatten those

surfaces, is dependent on the B. Thus, the sinusoidal surfaces with the larger value of B

have larger resistance to the deformation. Consequently, at the beginning of rough surface

contact, i.e., low load conditions, a majority of deformation is due to the components of

sinusoidal surfaces with smaller value of B. That is why the relation between A∗ and P ∗ with

min(Bmax) matches the solution of the FE model at the low load condition for both isotropic

and anisotropic cases. As the load P ∗ increases, more and more sinusoidal components have

been flattened. At the point of complete contact, the sinusoidal component with the largest
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B, i.e., max(Bmax), is finally flattened. That is why when the A∗ = 1, prediction of P ∗ by

the simplified multi-scale model with max(Bmax) has a good agreement with that of the FE

model. The two limiting solutions, i.e., min(Bmax) and max(Bmax), can exactly predict the

asymptotic solutions at the early and complete contact when rough surfaces are isotropic,

i.e., surface 1. For the anisotropic surfaces, i.e., surface 2, small mismatches can be found.

This may due to the fact that the simplified multi-scale model is based on the isotropic

assumption.

2.5 Conclusion

Some important statistical, multi-scale and semi-numerical models are discussed in this

chapter. The statistical (the GW, Nayak, asymptotic BGT and CGP), the simplified multi-

scale, Eq. 2.21, models and Ciavarella et al’s model are compared to the finite element

model. Conclusions drawn from the above comparison can be generalized as:

(1) Statistical models are only valid for extremely small load conditions which has already

been accepted. Numerical results shown in Figs. 2.1 and 2.2 cannot prove it because the

FEM solution is not accurate at low load conditions. The limited capability of the FEM

model will be discussed in the following chapter.

(2) Except for adjacent asperity interaction, asperity coalescing may have even larger effect

on the relation between A∗ and P ∗. The difference between Ciavarella et al.’s model with and

without asperity coalescing can be found in Afferrante et al’s paper [77]. Clearly, the accuracy

of the one including the effect of asperity coalescing increases dramatically. Unfortunately,

Afferrante et al’s solution is not included in the above comparison because it is too difficult

to recreate within the scope of this work

(3) The effect of the anisotropic nature of rough surfaces considerably influences the accuracy

of all the elastic rough surface contact models, especially the statistical models.
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Chapter 3

Finite element method

As the computational capabilities have become cheaper and more powerful, more and

more efforts have been placed on the application of deterministic numerical methods in

the simulations of rough surface contact. Due to the fact that it is not easy (sometimes

impossible) to obtain the accurate contact area data from the experimental results, numerical

solutions have always been treated as “exact”even though it definitely deviates from real

solutions because of discretized and round off error. The finite element method (FEM) and

the boundary element method (BEM) are two popular methods used in rough surfaces contact

simulation.

Comparing to the massive usage of the BEM in the research of rough surface contact, the

application of the FEM (especially 3 dimensional rough surfaces analysis) starts to appear

just at the beginning of this century. Komvopoulos and Choi [59] may be the first to applied

the FEM to rough surface contact. However, their finite element (FE) model was restricted

to plane-strain problem. Rough surface is modeled by uniformly distributed cylindrical

asperities and it is not real rough surface. As the storage capacity and computation speed

increase, solving a million nodes model is no longer as much of a challenge. Thanks to the

parallel computation technique, the computational time is dramatically saved by running the

simulation in super computers with multiple cores. Hyun et al. [60, 61] and Pei et al. [62]

applied the FEM in elastic and elastic-plastic rough surface contact with nearly one million

nodes, respectively. Similar analysis have also been done by Sahoo and Ghosh [63], Walter

and Mitterer [64], Yastrebov et al [65], Bryant et al [66], Olshevskiy et al [67] and Megalingam

and Mayuram [68]. Additionally, Thompson [69] studied thermal contact resistance between

contacting rough surfaces using the commercial software ANSYSTM. Timzer [70] studied the
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thermomechanical contact between randomly rough surfaces. A complete literature review

of the development and application of the FEM in rough surfaces contact is provided by

Thompson and Thompson [36].

In the current work, a FE model of rough surface contact is built and excuted using

the commercial software ANSYSTM. The FE modeling in ANSYSTMis achieved by using the

APDL language [71]. The advantage of using APDL language instead of the GUI operation

is that the input parameter can be easily adjusted and data and solutions of the FE model

can be easily accessed and exported.

3.1 Surface modeling

x

z
y

Lx
Ly

H

Node

Element

A

Δx

Δy

Figure 3.1: Schematic representation of uniformly meshed elastic solid with smooth surface
(only the mesh on the nominal contact surface are visible).

Generally, the rough surfaces used in FEM analysis can be divided into computer-

simulated surfaces [60, 62, 63, 70, 68] and real surfaces[64, 65, 66, 67, 69]. No matter what

kind of rough surfaces data are used, meshing the rough surfaces and its sub-surface is always
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a challenging task. Currently, two methods have been widely used in the above references,

namely, moving nodes and direct surface generation.

Moving Nodes [60]

Assume we have a rectangular volume with a flat top surface of Lx×Ly and a thickness,

H (see Fig. 3.1). This volume has been discretized using a uniform mesh. Node A is

locating on the boundary or inside the volume, with the coordinates (x, y, z). Coordinate z

is measured from bottom surface. In order to obtain the rough surface h(x, y) on the top

surface and to prevent the moving procedure from distorting the shape of the elements, we

move the node A by

∆z = h(x, y)
( z
H

)a
only along the z direction. a is a constant defined by users. H is the dimension measured

between the top and bottom surface. Nodes on the top surface will move by the amount of

h(x, y) and the coordinate change along the z direction drops exponentially to zero until the

changes reach the nodes on the bottom surface.

Direct Surface Generation

The idea of this method is to directly generate the rough surface through the sampling

point cloud, then the bottom-up technique [69] is used to create a volume for meshing. Four

neighboring sampling points can form a Coon’s patch [71] (those sampling points are not co-

planar). By using the Boolean operation, we can create the entire rough surface. However,

great care should be placed when using Boolean operation, especially in ANSYSTM, to avoid

failure.

Due to the fact that direct surface generation is not robust in ANSYSTM, we choose

the method of moving nodes as the strategy for generating the rough surface mesh in the

current work. Usually, meshing of a solid with a rough surface results in more than 200, 000

nodes, and therefore moving all the nodes may cost considerable operation time during

pre-processing. In the current work, only nodes on the top surface are moving.
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Figure 3.2: Schematic representation of a badly distorted rough surface element.

The elastic solid, see Fig. 3.1, is meshed uniformly at intervals ∆x and ∆y along the

x and y directions. ∆x and ∆y are the resolutions of the profilometer along the x and

y directions. Since only the nodes on top surface are moved, the value of ∆z(x, y) equals

h(x, y). If the amount of moving (hij) at node (xi, yj) is larger than the dimension of interval

∆x and ∆y, the shape of the element may be badly distorted (see element A2B2C2D2EFGH

in Fig. 3.2). In order to avoid distorted elements, a rough surface is selected for which the

max(|h|), the maximum absolute value of the rough surface height, is less than the mesh

interval (min(∆x,∆y)). Fig. 3.3 and 3.4 illustrates the details of the mesh of surface 1 and

surface 2 when the procedure of the moving nodes is achieved in ANSYSTM. When max(|h|)

of the rough surface is larger than the min(∆x,∆y), all the nodes need to be moved, as was

done in [60], in order to avoid element distortion.

Size of the rigid flat is chose to be much larger than that of the nominal contact area of

rough surface in this study.
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Figure 3.3: Details of surface mesh of surface 1.

3.2 Boundary condition and effect of thickness

It is easy to achieve the assumptions namely, cyclic symmetry and infinite thickness,

declared in the beginning of this chapter in ANSYSTM.

For the former one, i.e., cyclic symmetry, we should couple all the degrees of freedom

(D.O.F) of nodes on the opposite side surfaces. Fig. 3.5 shows the top view of the infinite

rough surface consists of finite rough surface cells. All the rough surface cells are the same

and only one of them has been modeled in ANSYSTM. Points A and B are two nodes on

the opposite side surfaces 1 and 2, respectively, and share the same coordinates on cyclic

symmetric boundary. During each iteration, ANSYSTMcalculates the nodal displacement at

A in the x, y and z directions, i.e., Ux(A), Uy(A), Uz(A) and assigns the same Ux, Uy and

Uz values to node B. Similarly, the values of Ux, Uy and Uz are enforced to be the same at
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Figure 3.4: Details of surface mesh of surface 2.

nodes C and D. In the current work, only weak-coupling is applied in the FE model, i.e.,

Ux(A) = Ux(B) and Uy(C) = Uy(D).

Besides the cyclic symmetric boundary condition (Fig. 3.6(a)), other two boundary

conditions namely, the constrained side surfaces (Fig. 3.6(b)) and free side surfaces (Fig.

3.6(c)) are also studied in the current work. All the nodal displacements on side surfaces are

constrained in Fig. 3.6(b) and are free in Fig. 3.6(c).

The contact area to load (A∗−P ∗) and the contact area to surface separation (A∗−(d′)∗)

relations from the FE models with the above three boundary conditions are obtained in

ANSYSTMand compared in Figs. 3.7-3.10. It is surprising to find that the A∗ to P ∗ and

A∗ to (d′)∗ relations of the three different boundary conditions are almost identical. This

phenomenon may result from the negligible displacements along the in-plane directions, x

and y, compared to that in the vertical direction during the rough surfaces contact.
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Figure 3.5: Schematic representation of cyclic symmetry and displacement coupling

The second assumption is infinite thickness and in other words: the contact results, at

least contact load, P ∗, area, A∗, and surface separation, (d′)∗, relations, should be indepen-

dent of thickness, H. We tested the FE models with different values of thickness namely,

H = 0.5Lx, H = Lx and H = 5Lx. If we represent the thickness in the function of RMS

roughness σ, we have: surface 1, H = 308.88σ, H = 617.76σ and H = 3088.80σ, surface

2, H = 2041.6σ, H = 4082.6σ and H = 2041.6σ. The corresponding contact area to load

relations are plotted in Figs. 3.11-3.14. We can conclude from Figs. 3.11-3.14 that the

contact load, P ∗, area, A∗, and surface separation, (d′)∗, relations are independent of the

thickness H, at least, when thickness is larger than 0.5Lx.

3.3 Results and discussion

In the above section, we have shown that the A∗ to P ∗ and A∗ to (d′)∗ relations predicted

by the FE models with three different boundary conditions have good agreement (see Figs.
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Figure 3.6: Schematic representation of boundary conditions: (a) cyclic symmetry, (b) con-
strained side surfaces and (c) free side surfaces

3.7-3.10). Additionally, the A∗ to P ∗ and A∗ to (d′)∗ relations are independent of thickness,

H, when H > 0.5Lx (see Figs. 3.11-3.14). The A∗ to P ∗ solution used in the comparison

in Chapter 2 is obtained by the FE models with free side surfaces boundary condition and

H = Lx.

Fig. 3.15 and 3.16 illustrate the contact area and pressure distribution of surface 1 and

surface 2 at different contact stages and are the solutions of the FE model with free side

surfaces boundary condition and H = Lx. At the low contact force (see Fig. 3.15(a-b) and

3.16(a-b)), contact spots of asperities grow independently. At the medium load condition (see

Fig. 3.15(c-d) and 3.16(c-d)), asperity coalescing becomes severe and independent contact

spots form into contact patches with irregular shapes. At the high load condition (see Fig.

3.15(e-f) and 3.16(e-f)), only the not in contact spots grow independently. For the nearly

isotropic surface, i.e., surface 1, shapes of the contact spots at the low load condition (a)

and the not in contact spots at high load condition (e) are close to circular and ellipsoid.

For surface 2, which shows a strong anisotropic nature, the shapes of contact spots at the

low load condition (a) and the not in contact spots at high load condition (e) are more like

long strips and ellipsoids.
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The correlation between rough surface height distribution and pressure distribution can

be found in Figs. 3.17 and 3.18 when complete contact is nearly achieved. Because the

contact has not been reached complete, the correlation of surface 2 is not obvious.
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Figure 3.7: Dimensionless contact area A∗ to dimensionless load P ∗ relation of surface 1.
The FE models with different boundary conditions illustrated in Fig. 3.6.

3.4 Conclusion

Application of the finite element method is discussed in this chapter. The following

conclusions may be drawn from the above discussion:

1. Pre-processing in the FEM is tedious and time consuming, especially during the meshing

procedure.

2. According to the contact area to load results with different boundary condition, the FE

model in this study is valid for periodic domain problem.

3. Global contact results (contact load, area and surface separation) relations are indepen-

dent of the thickness of the substrate of the rough surface, at least when H > 0.5Lx.
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Figure 3.8: Dimensionless contact area A∗ to dimensionless load P ∗ relation of surface 2.
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Figure 3.9: Dimensionless contact area A∗ to dimensionless surface separation (d′)∗ relation
of surface 1.
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Figure 3.10: Dimensionless contact area A∗ to dimensionless surface separation (d′)∗ relation
of surface 2.
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Figure 3.11: Dimensionless contact area A∗ to dimensionless load P ∗ relation of surface 1.
Value of thickness: H = 0.5Lx, Lx, 5Lx.
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Figure 3.12: Dimensionless contact area A∗ to dimensionless load P ∗ relation of surface 2.
Value of thickness: H = 0.5Lx, Lx, 5Lx.
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Figure 3.13: Dimensionless contact area A∗ to dimensionless surface separation (d′)∗ relation
of surface 1. Value of thickness: H = 0.5Lx, Lx, 5Lx.
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Figure 3.14: Dimensionless contact area A∗ to dimensionless surface separation (d′)∗ relation
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Figure 3.15: Contact area contours and contact pressure distribution of surface 1 when
contact load is light(a-b), medium(c-d) and high(e-f). Light load: P ∗ = 4.49 × 10−4, A∗ =
0.0489. Medium load: P ∗ = 0.00218, A∗ = 0.283. High load: P ∗ = 0.00438, A∗ = 0.948.
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Figure 3.16: Contact area contours and contact pressure distributions of surface 2 when
contact load is light(a-b), medium(c-d) and high(e-f). Light load: P ∗ = 1.91 × 10−5, A∗ =
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Figure 3.17: Correlation of rough surface geometry (a) and pressure distribution (b) of
surface 1.
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Figure 3.18: Correlation of rough surface geometry (a) and pressure distribution (b) of
surface 2.
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Chapter 4

Boundary element method

Rough surface modeling is always the biggest problem when the FEM is chosen to

simulate the contact. The accuracy of the FEM can be directly affected by the mesh quality.

Each potential contact geometrical entity, i.e., asperities, and its subsurface needs to be

discretized using a highly refined mesh. Usually, for a small or medium size rough surface

contact problem, the ultimate number of nodes required to obtain an “accurate ”result is on

the order of millions or even more [36].

The BEM, however, has a natural advantage in solving rough surface contact problem.

Based on the help of the influence function, only the boundary of the problem domain needs

to be discretized, i.e., more nodes are saved to discretize the rough surface model with a

finer mesh. Additionally, the solution of stress and displacement within the domain are

more accurate than that on the boundary [37]. While the BEM has long been criticized

for its dense, full rank, non-symmetrical coefficient matrix (symmetrical and sparse in the

FEM) created during the formulation, thus the storage of the coefficient matrix and solving of

the whole system becomes a challenging task for the personal computer (PC) with a limited

storage capacity or even the workstation. Looking back into the history of the development of

the BEM, there is a long period, during which only thousands of D.O.Fs can be solved by the

BEM due to the limited storage capacity of typical computational device [37, 38]. However,

as the source point is closer to the boundary of the domain, the solution may become less

accurate due to the singular integration. Thus the subsurface stress distribution, which is

close to the rough surface, may not be as accurate as expected. The first disadvantage, dense

coefficient matrix, can be overcome by using a fast multipole boundary element method [38].
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Even though the BEM can handle more rough surface sampling points than the FEM,

it is always unfeasible to include an entire fully detailed sampled surface in any numerical

method. Generally, only a part of the surface data is collected by a profilometer with

relatively fine resolution down to the nano scale. The sampled area may result in millions

of sampling points and not to mention the entire rough surface. In order to overcome both

computation and storage capacity limits, we assume:

1. Rough surface contact pair, including rough surface and rigid flat, is cyclicly symmetric

along x and y(Fig. 3.5). Each rough surface cell in Fig. 3.5 represents the same sampled

rough surface which cyclicly distributes along the x and y directions.

2. Nominally elastic flat rough surface has an infinite depth.

Assumption 1 enables the analysis of rough surface contact to restrict within a small

sampled area with fine resolution and surface data to reveal the multi-scale structure of

rough surfaces as much as possible. Additionally, assumption 1 dramatically decreases the

computation time and storage memory. Assumption 2 actually is a byproduct of assumption

1, since the in-plane dimensions of the sampled surface is negligible compared to the in-plane

dimensions of entire rough surface. The combination of assumptions 1 and 2 are equivalent

to the assumption of an elastic half-space.

In the rest of this chapter, applications of the BEM in modeling the rough surface contact

are discussed thoroughly. A special kind of the BEM is derived by adopting some essential

assumptions. Methods of solving the nonlinear boundary integral equation are discussed.

Additionally, fast algorithms for deformation integral are also introduced. Solutions, the

relations of contact area and load, of the BEM are compared to that of the FE model.

4.1 Boundary integral equation

Boundary integral equation of three dimensional elastostatic problem is [37]

ui(p) +

∫∫
Ω′

Tij(p,Q)uj(Q) dS(Q) =

∫∫
Ω′

Uij(p,Q)tj(Q) dS(Q), p, Q ∈ Ω′ (4.1)
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where u and t indicate the surface displacement and surface traction on boundary Ω′. Tij is

the traction kernel denotes the traction at point p which lies on a certain plane due to the

unit point load at point Q. Uij is the displacement kernel denotes the displacement of point

p due to the unit point load. Tij and Uij are derived from Kelvin fundamental solution of

an infinite solid. i, j = x, y and z.

z
y

Lx

Ly

x

Roughness

Elastic half-space

Rigid Flat

z

x

h(x,y)

Figure 4.1: Semi-infinite contact body and its rough boundary.

Let us consider a special case, in which contact occurs between one nominally flat rough

surface and one rigid flat, see Fig. 4.1. The body with the rough surface is assumed to be a

semi-infinite body with the boundary z = h(x, y) which is measured from mean level. The

rigid flat has a finite dimension in the x (Lx) and y(Ly) direction, see Fig. 4.1. Consequently,

boundary Ω′ in Eq. 4.1 now indicates the rough surface which is the only boundary of the

semi-infinite contact body. Commonly, the height of the rough surface, h, is negligible when

comparing to the in-plane dimension of the contact body, e.g., Lx and Ly. Thus we can

further assume that z = 0 plane can approximate the boundary of semi-infinite contact

body.

Define domain Ω as part of domain Ω′ which coincides with the in-plane region of rigid

flat: {(x, y) ∈ Ω|0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly}. The traction components within the region Ω′−Ω

is zero, i.e., tx(Q) = ty(Q) = tz(Q) = 0, Q ∈ Ω′ − Ω. Because the contact is frictionless,

thus tx(Q) = ty(Q) = 0, Q ∈ Ω. ux(Q) and uy(Q) are negligible comparing to the dominant
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deformation uz(Q) within the contact region Ω. Based on above assumptions, Eq. 4.1 can

be rewritten as

uz(p) +

∫∫
Ω′

T33(p,Q)uz(Q) dS(Q) =

∫∫
Ω

U33(p,Q)t3(Q) dS(Q), p, Q ∈ Ω (4.2)

T33 is the traction kernel indicating the value of traction in z direction at point p, i.e.,

t3(p), due to the unit displacement in z direction at point Q, i.e., u3(Q). Point p and Q are

two points inside the infinite body according to Kelvin fundamental solution. In our special

case, Eq. 4.2, p and Q are all on the boundary Ω. From a physical perspective, point Q

cannot “feel ”any load due to the unit displacement at point p, because of lack of continuum

medium to transfer the traction. As a results of above explanation, T33 = 0 within the

boundary Ω and Eq. 4.2 can be further simplified as

uz(p) =

∫∫
Ω

U33(p,Q)t3(Q) dS(Q), p, Q ∈ Ω (4.3)

Eq. 4.3 is the original equation which is wildly used in modeling the contact problem in

tribology, especially contact mechanics with smooth interfaces [32]. The main assumptions

used in deriving the Eq. 4.3, the reduced form of three dimensional boundary integral

equation of elastostatic problem, are:

(1) One contact solid with a rough boundary is assumed to be a semi-infinite body with the

simplified boundary z = 0;

(2) Rough surface displacements along x and y are negligible comparing to that in z, i.e.,

ux � uzand uy � uz;

(3) The contact is frictionless.
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4.2 Formulation of rough surfaces contact problem

x-y plane of coordinate system coincides with the mean level of rough surface. d is the

surface separation measured between rigid flat and mean level. The origin of the coordinate

system is placed at the bottom left corner of the Ω domain. Ω is discretized a into uniform

2D grid such that

{(x, y) ∈ Ω|xi = (i− 1)∆x, yj = (j − 1)∆y, i = 1, ..., nx, j = 1, ..., ny}

with element size ∆x × ∆y. ∆x and ∆y are also the sampling resolutions of rough surface

data in x and y directions. nx and ny are number of the sampling points along x and y

directions.

2a

2b

(xk, yl)

p=pkl

(xi, yj)

z
y

x
wij

Elastic half-space

Ω

Figure 4.2: Schematic representation of displacement due to uniform pressure distribution.

Assume a piece-wise constant contact pressure (same as traction t3) distribution p within

the domain Ω, see Fig. 4.2, i.e., the pressure p within a rectangular cell (shaded area) , 2a×2b

(same as ∆x ×∆y) centered about point (xk, yl), has a constant value pkl.

Rewriting Eq. 4.3 in a discretized form with commonly used symbols in contact me-

chanics, we have

wij =
∑

(xi,yj)∈Ω

∑
(xk,yl)∈Ω

Kijkl pkl (4.4)
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where

Kijkl =

∫∫
Ωc

U33(xi, yj, xk, yl) dxdy, (xk, yl) ∈ Ωc

wij and pkl are the displacement and contact pressure along z direction at at boundary point

(xi, yj), respectively. Ωc is the domain of shaded cell centered about point (xk, yl). Kijkl is

called influence coefficient which derived by Love [39] and expression of Kijkl can be found

in Appendix B.

Define two sub-domains: Ic and Inc. Points within domain Ic are in contact with rigid

flat and are not in contact within Inc.

The discretized governing equation of modeling the contact between a nominally flat

rough surface and one rigid flat is

gij =
∑

(xi,yj)∈Ω

∑
(xk,yl)∈Ω

Kijkl pkl + d− hij, (xi, yj) ∈ Ω, (xk, yl) ∈ Ic (4.5)

where gij is the gap in z direction between rough surface and rigid flat at point (xi, yj). The

boundary conditions for Eq. 4.5 are

pij 6= 0, gij = 0, ∀(xi, yj) ∈ Ic (4.6)

pij = 0, gij ≥ 0, ∀(xi, yj) ∈ Inc

4.3 Solver

Because the unknown in Eq. 4.5 is pressure p and the value of p within the non-contact

region Inc is zero according to the free-traction boundary condition 4.6. Eq. 4.5 only needs

to be solved within region Ic. Venner and Lubrecht [40] suggested to use the matrix D

Dms = Kijkl, m = |i− k|+ 1, s = |j − l|+ 1

52



to replace the fourth order tensor Kijkl due to the fact that influence coefficients Kijkl is only

dependent on the relative distance between (xi, yj) and (xk, yl). Then

nx−1∑
m=0

ny−1∑
s=0

Dms pkl = hij − d, (xi, yj), (xk, yl) ∈ Ic (4.7)

Because domain Ic is unknown before solving Eq. 4.7, an iterative method needs to be

carried out and an initial guess of domain Ic, Ic(0), is needed. An easy way of predicting the

Ic(0) is by finding the points (xi, yj), which is above the rigid flat.

Several numerical methods have been developed in the past 40 years in order to solve

Eq. 4.7, namely, matrix inversion [32, 41] Gauss-Seidel relaxation [40], Newton-Raphson

relaxation [40] and variational method [49, 50].

Matrix Inversion

The summation term in Eq. 4.7 can be treated as multiplication between the matrix A

and unknown pressure vector p:

p = A−1(h− d)

Matrix A is the influence coefficients assembly from the Kijkl. Pressure vector, p, can be

solved by inverting A. The disadvantage of the matrix inversion method is (1) unrealistic

memory spaces are needed to save matrix A, and (2) solving unknown pressure vector p

by the direct solver, such as Gaussian elimination, requires O(N3) operations because A is

dense and non-symmetric (here, N is the number of contacting points). Consequently, matrix

inversion can only be used in the small-scale contact problem with less than thousands of

points, even though it is robust. Matrix Inversion was a popular solver of rough surfaces

contact model during the 1980s [41, 42, 43, 44].

Gauss-Seidel Relaxation
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During one iteration, say ith iteration, contact domain Ic(i) is fixed and Eq. 4.7 is a linear

equation which can be solved by Gauss-Seidel relaxation

p̄ij = p̃ij + w1δij (4.8)

where

δij = hij − d−
nx−1∑
m=0

ny−1∑
s=0

Dms p̃kl

where p̄ij and p̃ij are the pressure value after and before the Gauss-Seidel relaxation at point

(xi, yj). D11 is the influence coefficient when (i, j) coincides with (k, l). w1 is the under-

relaxation coefficient used to stabilize and in some cases accelerate the iteration process.

However, Eq. 4.8, is not stable because changing the value of pressure at (xi, yj) may

change the deformation of all the points within the domain Ic more or less [40]. Venner and

Lubrecht [40] suggested to use the following correction scheme:

p̄ij = p̃ij + δij −
1

4
(δi+1 j + δi−1 j + δi j+1 + δi j−1) (4.9)

where

δij = (hij − d−
nx−1∑
m=0

ny−1∑
s=0

Dms p̃kl)/(D11 −D12/2−D21/2)

for 2 dimensional relaxation in order to stabilize the iteration scheme. The Gauss-Seidel

relaxation scheme with Eq. 4.9 has been wildly used in both elastohydrodynamic lubrication

[45, 40] and dry rough surface contact[46, 47, 48] problems.

Newton-Raphson Relaxation

Rewriting Eq. 4.5 here

gij =
∑

(xi,yj)∈Ic

∑
(xk,yl)∈Ic

Dms pkl + d− hij
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Expanding the above equation in Taylor series and only keeping the first direvative term, we

have

gij +
∂gij
∂pkl

δpkl = 0, (xi, yj), (xk, yl) ∈ Ic (4.10)

where
∂gij
∂pkl

= Dms. As the distance between (xi, yj) and (xk, yl) increases, value of Dms

decreases dramatically. This implies that those pressure changes far away from point (i,j)

may have little effect on the equilibrium of Eq. 4.5. Thus only 5 points: (xi, yj), (xi+1, yj),

(xi−1, yj), (xi, yj+1), (xi, yj−1), are picked

D11δpij +D21δpi+1 j +D21δpi−1 j +D12δpi j+1 −D12δpi j−1 = −gij

to join the correction scheme. Line relaxation can be used to perform more robust iteration:

D11δp̄ij +D21δp̄i+1 j +D21δp̄i−1 j = −gij −D12δp̃i j+1 −D12δp̄i j−1 (4.11)

δp̄ij and δp̃i j are the residual pressure at (xi, yj) after and before one complete Newton-

Raphson line iteration. Eq. 4.11 is a non-linear equation and an extra iteration is needed

to ensure the accuracy of δp̄ij satisfies the required convergence criterion. An even simpler

method can be achieved by only using 3 points along the same dominant direction, e.g.,

D11δp̄ij +D21δp̄i+1 j +D21δp̄i−1 j = −gij (4.12)

to avoid the nonlinearity. Pressure solution p is then updated by Eq. 4.8.

Variational Method

Kalker and van Randen [49] established the variational principle for the frictionless con-

tact problem and applied it to frictionless non-Hertzian contact problems. The unique pres-

sure solution causes the total complementary energy to take the minimum value. However,

variational method cannot guarantee the solution satisfying exactly the boundary condition
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in Eq. 4.6 [50]. Application of the variational method can be found in rough surface contact

[50] and rough contact with coated layer [51].

4.4 Fast algorithm for deformation integral

Let us rewrite the deformation integral, Eq. 4.4, in the governing equation Eq. 4.5

wij =
nx−1∑
m=0

ny−1∑
s=0

Dms pkl, (xi, yj), (xk, yl) ∈ Ω.

If iterative methods, e.g., Gauss-Seidel, Netwon-Raphson and variational methods, are used

in solving Eq. 4.5, then the above integral equation needs to be evaluated in each iteration

(see Eq. 4.8 and 4.12). For the current 3D rough surface contact, O(N2) operations are

required to compute the whole surface deformation. As more and more sampling points

are used in modeling the rough surface, computational time for each iteration increases

dramatically to an unrealistic value. Currently, the maximum number of sampling points

used in rough surface contact modeling with the application of BEM is 16385× 16385 [48].

In order to speed up the evaluation of surface displacement, two fast algorithms, namely

Multi level multi integration (MLMI) and fast Fourier transformation (FFT), are developed

and wildly used in tribology.

Multi Level Multi Integration (MLMI)

Multi level multi integration (MLMI) method was developed by Brandt and Lubrecht

[52] based on the idea of the multi-grid method which was originally used in solving elasto-

hydrodynamic lubrication problem. Evaluation of wij is done on the coarsest level with the

minimum number of points. Pressure distribution pij on the finest grid is transformed to the

coarsest level by a restriction technique. After the evaluation of wij on the coarsest level,

wij is transformed back to finest grid by a prolongation technique. By the help of MLMI,

only O(NlogN) operations are required to solve the deformation integral. The application

of the MLMI method can be found in the area of elastohydrodynamic lubrication [45, 40]
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and contact mechanics [46, 53, 57, 47, 48].

Fast Fourier Integration

The fast Fourier transformation method was first introduced by Stanley and Kato [50]

for solving deformation of rough surface contact. Johnson et al. [31], however, may be the

first to apply the Fourier transformation in waviness contact. In the Westergarrd solution

of sinusoidal surfaces contact [30], we can find the correlation between the pressure p and

surface displacement u when complete contact occurs:

p(x, y) = cos(αx)cos(βy)

w(x, y) =
2

E ′ (α2 + β2)1/2
cos(αx)cos(βy)

α =
2πn

Lx
, β =

2πm

Ly
.

A similar conclusion can also be found in sinusoidal profile (2D) contact. By decomposing

the known pressure distribution p into the frequency domain by FFT [58], we can obtain

the corresponding amplitudes of surface displacement. Then surface displacement wmn cor-

responding to the certain frequency pair (m,n) can be found by an inverse FFT. Then the

resultant surface displacement w can be evaluated by the superposition of wmn. Again,

O(N2) operations are reduced to O(NlogN). The FFT-based method developed by Stanley

and Kato, however, is strictly applicable to the periodic discrete domain only. Consequently,

this makes the FFT-based method ideal for solving contact problems for nominally flat rough

surfaces which can be modeled periodically, see Fig. 3.5. Rough surfaces in concentrated

contact problems, i.e., finite nominal contact areas, are non-periodic and application of this

FFT-based method in such cases may introduce error [53, 55].

To address this issue, Nogi and Kato [54] developed a different FFT-based method.

Their ideal is to transfer the deformation integral: w = D p to frequency domain. By

multiplying the Fourier transforms of D and p, we can obtain the value of wij through
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inverse Fourier transformation

w = ifft2(fft2(D) fft2(p))

where ifft2() and fft2() are 2 dimensional inverse FFT and FFT, respectively. Different

from the FFT-based method developed by Stanley and Kato, this method is only valid for

non-periodic domain, i.e., valid for concentrated contact problems only.

However, the FFT-based method developed by Nogi and Kato may bring errors at

boundary of nominal area [55]. Liu et al. [55] developed a FFT-based method (DC-FFT

method) and can help to avoid the errors at the borders of the domain.

4.5 Convergence criterion and surface separation

Different numerical methods, e.g., matrix inversion, Gauss-Seidel, Newton-Raphson and

variational methods, are discussed in details in Section. 4.3. As the ith iteration is finished,

convergence of the predicted pressure p̄(i), is checked by

||p̄(i) − p̄(i−1)||2/||p̄(i)||2 < δp (4.13)

where ||(•)||2 is the 2-norm. In order to make sure that contact area, A, converges and has

similar accuracy, the contact area solution after each iteration is also checked via

||Ā(i) − Ā(i)||2/||Ā(i)||2 < δa (4.14)

where δa = 1/(nx ny). The iteration process will be terminated until the above two criterions,

Eq. 4.13 and Eq. 4.14, is satisfied simultaneously.

As the total contact load, P , increases, the deformation of the surfaces becomes more

severe and this may bring numerical difficulties to the iterative method. In order to gain a

convergence solution, the under-relaxation coefficient, w1, in Eq. 4.8 needs to be adaptively
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adjusted by w1 = w1/a, 1.2 is selected as the value of a in this study, if solution is found to

be divergent. 0.1 is chosen as the initial value of w1. Also, in order to increase the convergent

rate, the load step is divided intoN substeps and the converged pressure solution p(i) obtained

at substep i is used as the initial pressure guess at substep i+ 1.

According to the assumption of a semi-infinite body, if the surface separation d is mea-

sured from the mean level of the undeformed rough surface, the surface separation may

finally reach negative infinity as contact load increases. It is possible, however, to defined a

new surface separation, d′, measured from the mean level of deformed rough surface

d′ = d− (
nx∑
i=1

ny∑
j=1

wij)/(nxny) (4.15)

which excludes the rigid body displacement of the mean level. wij is the displacement on

z = 0 plane along the z direction at (xi, yj). Evidently, d′ varies from an initial value of d

at first contact to 0 when complete contact is reached. A similar approach is considered by

Wilson et al. [56]

4.6 Results and discussion

In this study, the governing Eq. 4.7 is solved by two different methods. One uses the

Newton-Raphson iterative method and the FFT-based fast integral method by Liu et al. [54]

(NR+DC-FFT). Another one uses the variational method and the FFT-based fast integral

method by Stanley and Kato [50] (VM+FFTSK). The same dimensionless group are used

for the results in order to compare with the FE model: P ∗ = P/(AnE
∗), A∗ = A/An.

Fig. 4.3 shows a good agreement of the contact load to area relation of surface 1

predicted by the VM+FFTSK and the FE model. The FE Model is proved earlier that

it is suitable for modeling the nominally flat rough surface contact with periodic domain.

NR+DC-FFT overestimates the contact load for a given contact area and the difference

increases as contact area increases. A possible reason causing the solution of NR+DC-FFT
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to be different from that of VM+FFTSK and the FE model can be found in Fig. 4.5.

When the DC-FFT is selected as the fast integral method, the contact problem is defined

as shown in Fig. 4.5(a). As shown, a finite rigid flat is contacting a semi-infinite body with

a rough surface. When the load P is applied on the rigid flat, deformation of rough surface

is dominant comparing to that of the domain out side the rough surface contact region, see

Fig. 4.5(c). Tension on the top surface of the semi-infinite body can be found and this may

cause more material to slip from the borders of the contact region in stead of occupying the

gap between the rough surface and the rigid flat. This tension force may dramatically cause

a drop of contact area. When the FFTSK is solved using the fast integral method, rough

surface contact pairs distributes periodically (cyclically), as shown in Fig. 4.5(b). As the

load P is applied on the rigid flat, the top surface of the semi-infinite body deforms uniformly,

see Fig. 4.5(d). According to mass conservation, surface points within the contact region

have no where to flow except to occupy the gap between the rough surface and the rigid flat.

In Fig. 4.5(c), the tangential displacement of surface points is considerable due to surface

tension. Those tangential displacements may delay the formation of a larger contact area.

That is why the contact area A∗ predicted by NR+DC-FFT is underestimated for a given

contact load P ∗. However, the gap can be found between the solutions of surface 2 predicted

by VM+FFTSK and the FE model (Fig. 4.4). Difference may be caused by anisotropic

nature of surface data.

4.7 Conclusion

In this chapter, application of the boundary element method is discussed in details. The

contact load to area relations obtained from the BEM and the FEM are in good agreement

if the same boundary conditions are chosen. For elastic rough surface contact, the boundary

element method has a great advantage in saving computation time. The rough surface

meshing process in the commercial FEM software, e.g., ANSYSTM, is tedious and a large

number of sampling points (> 400× 400) is not allowed due to unrealistic computation time
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Figure 4.3: Contact area to load relation of surface 1 predicted by the boundary element
method and the finite element method.

and lack of storage capacity. The FEM, however, may have advantage when deformation

between rough surfaces is nonlinear, e.g., elastic-plastic, viscous-elastic and creep.
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Figure 4.4: Contact area to load relation of surface 2 predicted by the boundary element
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P

P

Rigid Flat

Surface Tension

Rough Surface

 Rigid Flat

Rough Surface is periodically distributing

(a) (b)

(c) (d)

P

P

Figure 4.5: Schematic representation of rough surfaces deformation corresponding to differ-
ent FFT-based fast integral method: NR+DC-FFT before (a) and after (c) deformation;
VM+FFTSK before (b) and after (d) deformation.

62



Chapter 5

Conclusion and future work

In the current thesis, developments and applications of statistical, multi-scale, semi-

numerical and deterministic numerical models are discussed. According to the conclusions

of each chapter, we can conclude that the BEM has the advantages in modeling the rough

surface contact among all the numerical models.

In the future work, current rough surface contact model built by the BEM will include

the effect of friction for both full stick and partial slip conditions. Additionally, elastoplastic

and adhesion can also be easily embedded in the framework of BEM.

The two asymptotic solutions with min(Bmax) and max(Bmax) in the conclusion of

Chapter 2 can be used to curve-fit the empirical solution of elastic rough contact for isotropic

surface. For anisotropic surface, the accurate model of anisotropic sinusoidal contact should

be derived.
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Appendix A

Influence Coefficient Kijkl

Finding the stresses and displacements in an elastic half-space due to the point load

belonging to the Boussinesq problem [32]. Love [39] derived the vertical displacement of an

arbitrary surface point (xi, yj) due to the uniform pressure distribution p = pkl within the

rectangular area 2a× 2b with the center (xk, yl), see Fig. 2.1.1.

πE∗wij
p

= Kijkl =(x+ a) ln

[
(y + b) + {(y + b)2 + (x + a)2}1/2

(y − b) + {(y − b)2 + (x + a)2}1/2

]
(A.1)

(y + b) ln

[
(x + a) + {(y + b)2 + (x + a)2}1/2

(x− a) + {(y + b)2 + (x− a)2}1/2

]
(x− a) ln

[
(y − b) + {(y − b)2 + (x− a)2}1/2

(y + b) + {(y + b)2 + (x− a)2}1/2

]
(y − b) ln

[
(x− a) + {(y − b)2 + (x− a)2}1/2

(x + a) + {(y − b)2 + (x + a)2}1/2

]

where

x = |xi − xk|, y = |yj − yl|
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