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Abstract 

 

 

 The increase of coal and nuclear power steam turbines over the past few decades 

combined with transmission line series capacitors creates a potential drawback known as 

subsynchronous resonance (SSR) by increasing the risk of interaction between electrical power 

systems and turbine-generators’ rotor torsional systems. Current work presented here adds to a 

growing body of solutions and preventive measures developed by power industry professionals 

to address this problem by proposing a new methodology to estimate the shaft spring constants 

non-intrusively using measurement signals from the shaft systems. 

A significant contribution of this work has been in determining, after a thorough 

investigation of eigen properties of several steam turbine generator shaft systems, which of the 

non-intrusively available measurement signals, is the best candidate to be used for extracting the 

shaft torsional modes. The finding that the use of the high-pressure rotor section speed signal is 

significantly better than the instantaneous power signal in extracting the torsional modes through 

modal decomposition has been verified using measurement signals obtained from simulations, as 

well as real measurements. The modal components, which were extracted using Prony’s method, 

were later used along with rotor section moment-of-inertia values to successfully estimate the 

shaft spring constants of steam turbine generator shaft systems that were simulated in ATP. In 

addition, an algorithm has been developed to reorder the output modes of Prony’s method to 

identify the power system modes. 
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CHAPTER 1 

INTRODUCTION  

 

Series capacitor compensation is a scheme used in power systems to alleviate problems 

that arise because of high reactance of long transmission lines. By reducing effective reactance, it 

increases transient stability and improves the load carrying capability of these lines. By 

controlling this reactance it allows better control over load sharing between parallel transmission 

lines. Because of the advantages it provides economically, it has been used widely in power 

systems. However, with the increase of coal and nuclear power steam turbines over the past few 

decades, series capacitors have become a potential drawback by increasing the risk of interaction 

between electrical power systems and turbine-generators’ rotor torsional systems- a phenomenon 

known as subsynchronous resonance (SSR) or subsynchronous oscillation. “Subsynchronous 

oscillation is an electric power system condition where the electric network exchanges 

significant energy with a turbine-generator at one or more of the natural frequencies of the 

combined system below the synchronous frequency of the system following a disturbance from 

equilibrium [1].” When these energy interchanges manifest themselves in rotors as pulsating 

torques, they have the potential to cause irreversible damage to rotor shaft systems such as cracks 

and fractures. Two such severe incidents occurred in the early 1970s in Nevada's Mohave 

Generating Station resulting in damaged rotor shafts [2]. As a result, power industry 

professionals began building a framework of solutions and preventive measures. They developed 
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definitions [1,3] of the SSR problems, identified the different aspects of SSR, developed the 

IEEE First Benchmark Model (FBM) [4] and the IEEE Second Benchmark Model (SBM) [5] 

and performed tests on some turbo-generating (TG) units.  

Building preventive measures around SSR frequencies using test simulations requires 

accurate input data. This data consists of steam turbine rotor shaft system parameters such as 

moments of inertia, shaft spring constants and the effective dampings due to mechanical 

hysteresis and system loads. In most cases, the damping is negligible. While moments of inertia 

can be determined with considerable accuracy, the spring constants are not always precisely 

known. Traditionally, turbo-generator manufacturers do not provide this information. When 

requested, the manufacturers estimate or compute these parameters by performing extensive 

simulations based on the rotor’s material composition and physical dimensions and other design 

parameters. These simulations and tests can also be performed by a third party. Because of the 

extent of effort and time required, determining spring constants is usually an expensive task. The 

main focus of this research is to develop a measurement-based methodology to estimate these 

spring constants without necessitating expensive and intrusive tests. A key advantage of this 

online measurement method is that it does not require the unit to be taken offline for testing 

procedures. 

This methodology consists of a two-step approach:  

 Monitor and record measurements of the instantaneous power at the generator terminals 

(or available rotor velocity signals) whenever a fault or disturbance occurs. When a large 

disturbance occurs, it tends to excite all the torsional modes resulting in sustained rotor 

shaft oscillations at these frequencies for a few seconds. These oscillations can be 

detected in the measured signals. This recorded ring-down signal is fed to a Prony based 
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algorithm to extract the modal information - amplitude, phase, frequency and exponential 

damping - from the signal.  

 Using the extracted frequencies and known TG system rotor masses, the necessary shaft 

spring constants are estimated using a non-linear least squares algorithm. 

The different types of SSR phenomena and the types of analysis available to detect these 

phenomena are reviewed in Chapter 2. Various techniques available to model the entire shaft 

system will be examined after reviewing the mechanical features of the STG shaft system. 

One of the main features of this work is the use of Prony's method for modal decomposition 

instead of the FFT because of its various advantages over the FFT. In Chapter 3 is provided a 

thorough review, analysis and implementation of Prony's method. 

During the course of this work, it was observed that there tend to exist certain general 

characteristics of STG torsional modes when measured in rotor speed signals or 

instantaneous power signals. This observation led to the development of a new algorithm, 

which reorders the output modes of Prony's method and enables the user to differentiate these 

torsional modes from extraneous signals such as noise etc. This algorithm is presented in 

Chapter 4. 

There are many advantages of Prony's method over the FFT. For instance, it provides 

modal damping information whereas the FFT does not. However, there are some 

disadvantages in using Prony's method. The accuracy of its results is compromised by a 

sensitivity to noise. Moreover, as with any system identification tool, its parameters have to 

be chosen carefully. These practical issues and their solutions are examined in Chapter 5.  
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Before the proposed methodology is tested using field data and data obtained from 

simulations of fully connected test systems consisting of the STG shaft systems and electrical 

machine models of generators and connected electrical networks, it is very beneficial to study the 

properties of isolated STG shaft systems. Treating the isolated lumped spring mass model of the 

STG shaft system as an LTI system, the following three analysis are performed on it: 

 Right eigen vector analysis, 

 Participation factor analysis, and 

 Analysis of impulse response determined by time-domain simulation. 

These three analyses are illustrated with the aid of an example shaft system in Chapter 6. The 

results of a thorough investigation of these three analyses on four STG shaft systems whose data 

was provided in the literature are presented in Chapter 7. All these STG shaft systems have very 

similar configuration and overall general characteristics with respect to rotor section moments-

of-inertia.  This has revealed some extremely useful information that has direct implication to the 

methodology presented. 

In Chapter 8, two test cases will be utilized to illustrate and validate the proposed 

methodology. These test cases have been built and simulated in ATP and ATPDraw software, 

which are used by power industry professionals to perform time-domain simulations. 

In Chapter 9, the analyses of real field data and the results of modal extraction performed 

using Prony’s method are presented. The real field data consists of instantaneous three-phase 

power measurements that were obtained from a steam turbine generator unit whose shaft system 

consists of six rotor sections. It is important to note that this was the only type of field data 

available for this dissertation work. Rotor section speed signals were not available. 



 

 

 

 

 

 

CHAPTER 2 

SUBSYNCHRONOUS RESONANCE REVIEW 

 

Although subsynchronous resonance was first mentioned in the literature in 1937 while 

discussing series capacitors in transmission lines and studying negative damping of electrical 

machinery [6][7], there were no issues/problems regarding SSR, so it was ignored until 1971. In 

that year, SSR caused the shaft failure of a turbine-generator shaft in the Mohave Generating 

Station in Nevada. 

Tacoma Narrows bridge (Washington, US) collapsed in 1940 because of resonance 

induced by wind, which coincided with the bridge's natural frequency, causing extremely large 

amplitude swings and ultimately the collapse of the bridge. SSR is a similar dynamic 

phenomenon which involves the TG mechanical shaft system and the electrical network that 

contains series capacitors coupled electromagnetically to the generator described by Park's 

equations. Electrical quantities in any electrical circuit can be classified into two components, (1) 

forced and (2) natural, as follows: 

)cos()cos()( 222111
2  




teAtAti
t

 

While the ω1 frequency is determined solely by the network's driving or active sources, the ω2 

frequency is dependent completely on the network parameters. In a transmission system, these 

network parameters include the transmission line reactance, capacitance and the sub transient 

reactance of the generator. These currents flowing through the generator armature create slip 
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frequency torques in the TG rotor because of Park's equations. When the frequencies of these 

slip frequency torques nearly coincide with any of the natural frequencies of the TG shaft 

system, it has the potential to cause serious damage, including loss of fatigue life or even cracks 

in the rotor. The Mohave incident refers to a TG shaft system failure that occurred in the early 

1970s because of self-excited torsional oscillations in the TG shaft system.  It occurred in the 

500 KV coal-fired Mohave Generating Station in Nevada, U.S.A., which consisted of two 798 

MW steam turbine generating units. The generating station was radially connected to the load, 

and the fault occurred when one of the two radial long transmission lines was opened with the 

other line containing series capacitors in place. The opening of the line induced heavy currents in 

the other line, which, along with the generator, transmission line and series capacitor, formed an 

LC tank circuit and thus induced 29.5 Hz current in the generator armature. These currents in 

turn induced 30.5 Hz undamped torques in the TG shaft. The resulting damage included 

circumferential cracks one inch deep, melting or burning of the TG shaft and burning of collector 

rings. One of the immediate remedies included removal of series capacitors and installing a TEX 

type relay, which tripped the unit when SSR current flowed in the armature.  But, because of the 

loss of transient stability, the removal of the series capacitors was not deemed correct, and a 

permanent solution of installing resistive filters was proposed.   

 

2.1 Types of SSR Phenomena 

There are many types of subsynchronous resonance phenomena. Three of them are 

considered important, namely: 

1. Induction generator effect, 

2. Torsional interaction, and  
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3. Transient torque. 

 

As mentioned before, these are SSR phenomenon, i.e. they include series capacitors in lines. 

The first two can be considered small signal phenomena (during the initial stages of a fault) and 

hence can be analyzed using linear analysis tools like Eigen analysis. The third is a non-linear 

phenomenon which will require a more detailed study. The first one does not include TG modal 

interaction, i.e. it occurs when the rotor is running at synchronous speed. The latter two involve 

TG modal interaction.  

 

Induction generator effect  

Any disturbance causes transient currents to flow through the electrical network and generator 

armature at the combined network’s natural frequencies, both above and below the synchronous 

frequency. When the subsynchronous frequency currents flow through the generator armature, 

they view the synchronously rotating rotor’s circuit as negative resistance. If this negative 

resistance is greater than the positive resistance encountered in the network and generator 

armature, the net negative resistance will give rise to high amplitude sustained subsynchronous 

currents. 

 

Torsional Interaction 

This phenomenon involves torsional modal interaction. As mentioned previously, any electrical 

disturbance causes subsynchronous fault currents to flow through generator armature. When 

these induce subsynchronous torques in the rotor which coincide with the rotor’s natural modes, 

they induce rotor oscillations at these subsynchronous frequencies. These induce voltages in the 
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generator armature at the subsynchronous frequencies and are sustained when they are in phase. 

If the magnitudes of these self-excited subsynchronous torques are large enough to overcome the 

overall mechanical damping involved, they will have the potential to cause large amplitude 

oscillations that can damage the rotor. This phenomenon was responsible for the Mohave 

incident. 

 

Transient Torque 

This non-linear phenomenon is caused by large short circuit currents that oscillate at one of the 

system’s natural frequencies (resulting from system disturbances). Because resultant rotor 

torques induced are directly proportional to these disturbance currents, the resulting peak torques 

can be quite large and have the potential to cause irreversible damage to the rotor.             

 

2.2 SSR Analysis Methods 

Frequency Scanning Technique 

The frequency scanning technique is a small signal analysis tool that computes the reactance and 

resistance as a function of frequency looking into the network from behind the stator winding. It 

is especially suitable for detecting IGE conditions. When, at a particular frequency, the computed 

reactance is nearly equal to zero and the resistance is less than zero, i.e. negative, then IGE 

induced stator currents can be expected. It can also aid in detecting torsional interaction and 

transient torque phenomenon, which could occur when there is series resonance or a reactance 

minimum. Because of its simplicity, it is widely used in preliminary studies in North America. 
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Eigen Analysis 

Another popular method of studying SSR problems is eigen analysis. In this method, the entire 

system is mathematically modeled using a single set of linear differential equations. These linear 

equations are solved using numerical analysis tools like singular value decomposition (SVD) to 

yield the eigen values of all system components involved. This has the advantage over frequency 

scanning techniques in that the eigen values provide damping as well as frequency values; any 

positive real values of eigen values will immediately inform the engineer of a potential unstable 

mode in the system. 

 

EMTP/ATP/ATPDraw analysis 

The EMTP/ATP simulation program is a very powerful software tool for analyzing SSR 

conditions. Because it uses stepwise numerical integration of differential equations, it allows the 

user to enter into the program detailed attributes of each component in the system. Instead of 

using linear approximations (like eigen analysis and frequency scan), this software models all the 

non-linear attributes of complex components involved in the system study. Also, in comparison 

to other stability programs, which use per phase or positive sequence models, it uses three-phase 

information allowing simulation/modeling of unbalanced events. Because it can model non-

linear phenomenon it is most suitable for transient torque analysis. The resulting plots of the 

simulation results yield amplitude information of electrical quantities, in addition to frequency 

and damping. 
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2.3 Steam Turbine Description 

The invention of steam turbine is attributed to Carl Gustav de Laval of Sweden and 

Charles Parson of Great Britain during the 1880s independently. Over the decades, steam 

turbines have grown in size and complexity. Whereas, the typical ratings for large steam turbines 

prior to the 1950s was less than 200 MW, modern large ST ratings can exceed 1200 MW. In 

contrast to older units, most modern STs rarely contain gear boxes and so their total length can 

exceed 150 ft (in the case of tandem units) and their weight can be in the range of several 

hundred tons  [8]. The rotors are usually made of Cr.Mo.V steel and are either forged or welded. 

The entire rotor system can contain, in addition to the rotor, a multitude of other parts such as 

turbine blades, discs, retaining rings, etc.. As a result, the rotor system might contain an infinite 

number of modes of torsional vibration  [8]. However, most of these modes interact with higher 

frequency electrical torques and can be safely ignored for SSR studies. Because of the extremely 

large power output (>1000 MW), the system is divided into multiple stages of turbine cylinders 

and shafts, each producing a part of the total output. There are generally two such types of 

compound units (1) Tandem-compound and (2) Cross compound units. In tandem compound 

units, all the cylinders are on a single shaft. Consequently, the total length of the shaft can be 

very large, since it includes many stages (sometimes exceeding 10 stages) in addition to the 

generator and exciter. The cross-compound unit contains two shafts which allow for lesser rating 

and reduced total shaft length. However, they have a disadvantage in that they need two separate 

sets of generator and exciter controllers, one for each shaft.  
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2.4 TG Shaft System Modeling 

  SSR is caused by series capacitors in transmission lines. This compensation is such that 

the total capacitive reactance is less than the total line reactance (usually less than 70%). This 

leads to SSR frequencies less than 60 Hz. This, in turn, greatly helps simplify the modeling 

requirements of the TG shaft. 

 

There are three types of TG system models. They are: 

1. Lumped spring mass models, 

2. Advanced continuum models, and 

3. Finite element analysis (FEA) models. 

 

While the first two are theoretical analytical models, the third one is a 

computational/numerical model. All three models lead to methods which involve assembling sets 

of linear differential equations and applying equations of equilibrium based on Hooke’s law and 

Newton’s laws of dynamics to determine eigen values and eigen vectors (mode shapes).   

In the lumped spring mass model, each stage of the turbine (HP, IP etc) as a whole is 

modeled as a rigid rotating mass, which is connected by massless springs representing the shaft 

sections. In the advanced continuum model, each rotor disk in each turbine stage is modeled as a 

rigid mass. Thus, the entire model might contain hundreds of linear differential equations. This 

fact is further confirmed in FEA analysis. 

Finite element analysis is a computational technique generally used by manufacturers for 

mechanical design purposes. Here, all the rotor’s segments, such as turbine blades, retaining 
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rings, etc, are modeled as discrete regions linked in a geometric model representing the entire 

turbine generator shaft. The results of these models reasonably match those of the basic lumped 

spring mass model. This allows us to use the lumped mass model in SSR analysis methods. 

 

2.5 Conclusion  

In conclusion, the history, the theory of SSR and the different types of analysis tools 

commonly used in power industry are reviewed in this chapter. Eigen analysis and time-domain 

simulation methods using ATP/EMTP have been used extensively to examine the characteristics 

of the shaft torsional and electrical systems involved. While FEA and advanced continuum 

models are useful, this work, like most SSR analysis in power industry, uses lumped spring-mass 

models, which yields sufficient information to aid in analysis and building of SSR preventive 

measures. Prony's method, reviewed in the next chapter, is then used for modal decomposition of 

signals obtained from time-domain simulations of lumped spring-mass models. 

 

 



 

 

 

 

 

 

CHAPTER 3 

REVIEW OF PRONY’S METHOD 

 

Prony’s method used in this work is an exponential parameter estimation technique. It is 

used to fit a linear combination of exponential terms to a uniformly sampled signal, thereby 

extracting the four parameters for each mode from the signal: amplitude, phase, frequency and 

exponential damping [9][10][11]. This technique was developed in the 1790s by Baron de Prony. 

However, because it was computationally expensive, it was not applied until the advent of 

modern fast and efficient computers. Ever since, it has been a practical tool in the field of 

modern spectrum analysis [11]. However, it is only during the last two decades that it found 

practical use in power system applications, such as extracting modal information from transient 

stability programs and system field tests [10]. Because this method also extracts modal damping 

coefficients, it has an advantage over Fourier analysis for the analysis of electromechanical 

oscillations that routinely involve exponentially decreasing (or increasing) waveforms.  

 

3.1 History and Literature Review 

Prony's Method was invented by Gaspard Clair François Marie Riche de Prony, who was 

a French mathematician at École Polytechnique in the 18
th

 century. He used the method as 

described in [12], which fitted a sum of exponentials to a set of equally spaced data points, in his 

work on expansion of gases. After the original paper by Prony, [9] is one of the earliest texts on 
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the subject in the 1900s. Hildebrand wrote this in the 1950s as part of describing other 

approximation procedures in this numerical analysis book. It is presented as an exponential 

approximation technique, which simplifies the solution of a set of non-linear equations into a 

much simpler three-step process involving two least-squares solutions and one polynomial root- 

finding process. After that, Prony’s analysis (PA), was considered a good tool among the 11 

tools used for spectrum analysis, along with Blackman-Tukey, ARMA etc.  

Different interpretations were provided for PA. It was considered that the exponential 

approximation is the homogenous solution of a non-homogenous constant coefficient linear 

difference equation. It was found that pre-filtering vastly improved the accuracy of PA results 

because PA is found to be highly sensitive to noise. In one application it was used after applying 

a moving average smoothing filter to the extraction of modal parameters in South African tie-line 

power swings and German faulty neutral-to-ground resonant voltage measurements.   

Kumaresan showed that it was possible to create a pre-filter out of the data samples 

themselves and used it to pre-filter the data samples. In [10] Prony's method was introduced to 

the field of power systems. In it, the authors introduce Prony’s method to the field of power 

system computations as a complement to eigen analysis and Fourier analysis. Also in the paper, 

the authors describe the method mathematically, list the strategic issues and shortcomings, and 

partially validate, with test cases, its viability as a modal analysis tool for transient stability 

program output. 

 

3.2 Prony’s Method Description 

Prony’s method is an exponential approximation technique that is used to fit a function 

consisting of a linear combination of exponentially damped sinusoids to a given linearly spaced 
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data sample set [9,10,11]. Extensive developments during the past few decades in linear 

prediction theory, especially in speech processing, have provided new interpretations to the 

original method [13,14,11].  

Prony's method can be best explained using the example of an LTI system such as the 

lumped spring-mass model of the turbo-generator rotor shaft shown in Figure 3-1.  Its dynamics 

are represented by the differential equation for the j
th

 rotor mass shown in (3.1) 

                        
kjjkjiijj

j

j KKT
dt

d
J 





 

   
ijjikjjkjj DDD                      (3.1) 

In (3.1), Ji and Kij represent the moment of inertia of the i
th

 rotor section and the spring constant 

of the shaft connecting the i
th

 and j
th

 rotor sections, respectively. Di and Dij represent the damping 

coefficients. Δωi, Δθi and ΔTi represent the incremental angular velocity, angular displacement 

and input torque of the i
th

 rotor mass, respectively. 

 

 

 

 

 

 

 

 

 

Figure 3-1. Lumped Spring-Mass Model of the Turbine-Generator Shaft [15] 
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These dynamics can be rewritten in state space form as given in (3.2). 

                           )(~][
)(~

txA
dt

txd
                                                             (3.2) 

In (3.2), the )(~ tx  are the states of the system consisting of n states (Δωi & Δθi) and [A] is the 

state transition matrix. Assuming the states of the system are brought to an initial state )(~
0 tx  and 

any further disturbances or inputs (ΔTi)  are removed, then the states of the system can be 

described by (3.3).  
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In (3.3), λi, ip~  and 
iq~  are the i

th
 eigen value, right eigen vector and left eigen vector, respectively  

[10].  

The output of this system y(t) is given by (3.4).  
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In (3.4), [C] and [Ri] are the output matrix of the LTI system and its i
th

 residue matrix. 

 Let y(k) be the measured signal for y(t) consisting of N equally spaced samples at intervals 

k=0,1,2,…N-1. The y(t) equation shows this exponential nature of individual components in the 

output. Prony’s method tries to address this nature by fitting a similar structure to the measured 

output as shown in (3.5). 

  



p

i

t

i
ieBty

1

)(ˆ 
                                                             (3.5) 

This exponential structure, which can also be presented as a sum of exponentially damped 

sinusoids shown in (3.6), is thus suitable to estimate the individual properties like frequencies 

and dampings of modes in the turbo-generator shaft’s output signals. 
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In (3.6), Ai, σi, fi, φi are the amplitude, exponential damping, frequency and phase values of the i
th

 

modal component.  

The discrete-time version )(ˆ ky  for )(ˆ ty can be written in a convenient form as shown in (3.7). 
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In (3.7), zi is the exponential part of the modal component as shown in (3.8). 

t

i
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Expanding (3.7) for sample instants k=0,1,2… N-1gives (3.9). 
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Rewriting (3.9) in matrix form gives (3.10). 
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[Y]=[Z][B]                                                                  (3.11) 

In (3.11), Y, B and Z represent matrices as shown in (3.12). 
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The procedure for Prony’s method formulated in linear prediction theory to solve the linear 

equations (3.10) for Bi’s and zi’s can be summarized in the following steps  [10]:  

(1) Build a linear prediction model (LPM) for y(k) where the n
th

 sample is a function of n past 

samples and unknown prediction coefficients {α1, α2, …αn}  

)0()2()1()( 21 ynynyny n                                    (3.13) 

Apply this model for all successive samples as shown in (3.14). 
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Rearranging (3.14) in matrix form gives (3.15) 
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                       (3.15) 

(2) Solve the LPM shown in (3.15) to find the predictor coefficients {α1, α2, …αn}. 

The α’s in the linear equations shown in (3.15) can be solved directly if  N=2n or by the method 

of least squares if N>2n 

(3) Construct the LPM’s associated characteristic polynomial P(z) using the predictor 

coefficients as shown in (3.16)  

               n
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(4) Determine the roots of the polynomial P(z). These roots are the required complex frequencies 

zi  [9]  [10]. 

(5) Substitute zi and y(k) in (3.10) and solve the resulting linear equations by using the least 

squares method to determine Bi. 

 (6) Substitute zi in (3.8) to find λi. 

 

MATLAB Implementation of Prony Analysis 

The basic Prony’s method has been implemented in MATLAB the following way.    

 

 | 1 |  function [ vrMagn_n_PhaseRad, vrFreqRad_n_Decay, Dc_offset ] = PronySimple3( t, fn_data, 

timestep, numModes ) 

 | 2 |   

 | 3 |  N = length(fn_data);  

 | 4 |  init_f = fn_data(1); 

 | 5 |  fn_data = fn_data(2:N)-fn_data(1:N-1); 

 | 6 |  numDataPoints = length(fn_data); 

 | 7 |  

 | 8 |  % A : #cols = number of modes 

 | 9 |  % A : #rows = number of data points - number of modes 

 |10 |      

 |11 |  A = zeros( numDataPoints-numModes, numModes); 

 |12 |       

 |13 |  for r = 1:numDataPoints-numModes 

 |14 |      for c = 1:numModes 

 |15 |          A(r,numModes-c+1) = fn_data(c+r-1);         

 |16 |      end 

 |17 |  end 

 |18 |         

 |19 |  % B is always a column vector (only one column) 

 |20 |  % #rows = number of data points - number of modes 

 |21 |  B = zeros( numDataPoints-numModes, 1); 

 |22 |   

 |23 |  for r = 1:numDataPoints-numModes         

 |24 |      B(r,1) = -fn_data(numModes+r); 

 |25 |  end 

 |26 |     

 |27 |  X = A\B; 

 |28 |   

 |29 |  mu_ =roots([ 1 transpose(X)]); 

 |30 |   

 |31 |   

 |32 |  vrFreqRad_n_Decay = log(mu_)/timestep; 

 |33 |   

 |34 |  % M : #cols = number of modes 

 |35 |  % M : #rows = number of data points  

 |36 |  M = zeros(numDataPoints, numModes); 

 |37 |   

 |38 |  for r = 1:numDataPoints 

 |39 |      for c = 1:numModes 

 |40 |          M(r,c) = (mu_(c)-1)  *  (mu_(c) )^(r-1);  

 |41 |      end 

 |42 |  end 

 |43 |   

 |44 |  % F is always a column vector (only one column) 

 |45 |  % #rows = number of data points  

 |46 |   
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 |47 |  vrMagn_n_PhaseRad = M \ transpose(fn_data)  ; 

 |48 |   

 |49 |   

 |50 |  Dc_offset = init_f - sum(vrMagn_n_PhaseRad); 

 |51 |   

 |52 |   

 |53 |  return 

 |54 |   

 |55 | 

 

 

 

 

The original PA fits a sum of complex sinusoids to a given f(t). But, when a dc offset is present 

in the signal the algorithm needs some modifications. These modifications are done in the lines 

4, 5 and 50 as follows: 

 
 

 | 4 |  init_f = fn_data(1); 

 | 5 |  fn_data = fn_data(2:N)-fn_data(1:N-1); 

 …  

 |50 |  Dc_offset = init_f - sum(vrMagn_n_PhaseRad); 

 |51 |   

 

 

 

The overall structure of the code can be be divided into mainly 3 parts:  

1: Solution of N>n linear equations in the form of AX=B to determine α’s in (3.15); 

2: Solving for the roots of an n
th

 degree polynomial; and 

3: Solution of N>n linear equations in the form of AX=B to determine magnitudes and phase 

angles. 

In both the cases of solving the linear equations, it is necessary to use the SVD method ( svd() 

command in MATLAB) to accurately compute the solution for these equations. The main reason 

for that is because the matrices are essentially Vandermonde matrices and hence they are highly 

singular relative to a computer’s working precision. These changes are shown as follows: 

 

 |11 |  A = zeros( numDataPoints-numModes, numModes); 

 |12 |       

 |13 |  for r = 1:numDataPoints-numModes 

 |14 |      for c = 1:numModes 

 |15 |          A(r,numModes-c+1) = fn_data(c+r-1);         

 |16 |      end 

 |17 |  end 

 |18 |         

 |19 |  % B is always a column vector (only one column) 
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 |20 |  % #rows = number of data points - number of modes 

 |21 |  B = zeros( numDataPoints-numModes, 1); 

 |22 |   

 |23 |  for r = 1:numDataPoints-numModes         

 |24 |      B(r,1) = -fn_data(numModes+r); 

 |25 |  end 

 |26 |     

 |27 |  X = A\B; 

 |28 | 

 

 

 |34 |  % M : #cols = number of modes 

 |35 |  % M : #rows = number of data points  

 |36 |  M = zeros(numDataPoints, numModes); 

 |37 |   

 |38 |  for r = 1:numDataPoints 

 |39 |      for c = 1:numModes 

 |40 |          M(r,c) = (mu_(c)-1)  *  (mu_(c) )^(r-1);  

 |41 |      end 

 |42 |  end 

 |43 |   

 |44 |  % F is always a column vector (only one column) 

 |45 |  % #rows = number of data points  

 |46 |   

 |47 |  vrMagn_n_PhaseRad = M \ transpose(fn_data)  ; 

 

The only non-linear process is the finding of the roots of the polynomial to determine the zi.  

 

 

 

 

3.3 Example 

 

In this section, Prony’s method will be illustrated with the aid of a numerical example. 

Assume that it is required to fit to the record given in Table 3-1 a function of the form (3.17). 

The data samples are recorded at equally spaced intervals of 1 second beginning at 0 seconds. 

The actual form and the sinusoidal parameters of the function f(x) are shown in (3.18)   

 
xaxa

eCeCxf 21

21)(                                                      (3.17)  

 

 

Table 3-1 A 6-Sample Record To Illustrate Prony’s Method 

 

x f(x) 

0 1.085950012 

1 -0.017837743 

2 -0.244420304 

3 -0.024960803 

4 0.051582021 

5 0.011677152 
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)16.0)23.0(2cos(1.1)( 75.0   xexf x                                          (3.18) 

 

 

 

It is more convenient to represent these computations if the quantities are converted using the 

identities given in (3.19a) & (3.19b) to that shown in (3.20). 

 

           1
1 

a
e                                                             (3.19a) 

               2
2 

a
e                                                            (3.19b) 

 

(3.18)  can now be written in the form of (3.20)   

 

                        
xx CCxf 2211)(                                                       (3.20) 

 

Substituting the data samples for x = 0,1,2,3,4,5 gives the following equations (3.21a) through 

(3.21f) 

 

                            085950012.1)0(21  fCC                                        (3.21a) 

 

         017837743.0)1(2211  fCC                                       (3.21b) 

 

244420304.0)2(2

22

2

11  fCC                                       (3.21c) 

 

024960803.0)3(3

22

3

11  fCC                                       (3.21d) 

 

051582021.0)4(4

22

4

11  fCC                                          (3.21e) 

 

011677152.0)5(5

22

5

11  fCC                                          (3.21f) 

 

Rewriting these equations in matrix form gives (3.22) 
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Before C1 and C2 are determined using (3.22), μ1 and μ2 need to be determined first. Let us 

assume that μ1 and μ2 are the roots of a polynomial shown in (3.23)  

 

021

2                                                                (3.23) 

or 

   021                                                            (3.24) 

 

Multiplying (3.21a) by α2, (3.21b) by α1 and adding the result to (3.21c) gives (3.25)    

         22212 085950012.1)0(   fCC  

    1122111 017837743.01   fCC  

244420304.0)2(2

22

2

11  fCC   
 

    )0()1()2( 212221

2

21211

2

1 fffCC                 (3.25) 

 

Because μ1 and μ2 are roots of the polynomial, the left hand side of the equations computes to 

zero. Repeating the same process using (3.21b), (3.21c) and (3.21d) gives (3.26b). Repeating 

again gives (3.26c) and (3.26d).     

 

    0085950012.1017837743.0244420304.0 21                             (3.26a) 

    0017837743.0244420304.0024960803.0 21                            (3.26b) 

    0244420304.0024960803.0051582021.0 21                            (3.26c) 

    0024960803.0051582021.0011677152.0 21                           (3.26d) 

 

Rearranging these equations in matrix form yields (3.27) 
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      (3.27) 

 

This is in the form of AX=B. The solution, X, can be found using the least squares method as 

shown in (3.28). However, because of the nature of the numerical values involved it was 
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observed that using singular value decomposition (SVD) resulted in considerably better results. 

The solution vector, X, found in Matlab using SVD (3.29) is shown in (3.29).   

 

  BAAAX TT 1
                                                              (3.28) 

 

 

X=A\B                                                                   (3.29) 

 

Solving (3.29) gives α1 and  α2  as shown in (3.29b)  
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Substituting α1 and α2 in (3.23) and determining its roots, yields μ1 and μ2 values as:  

 

μ1 = 0.05920322748265 + 0.46864180138360i and 

μ2 = 0.05920322748265 - 0.46864180138360i. 

 

The exponential parameters of (3.18), a1 and a2, are then determined as:  

 

 

a1 = log(μ1) = -0.75 + 1.44513262065131i  and 

a2 = log(μ2) = -0.75 - 1.44513262065131i. 

 

Substituting μ1 and μ2 in (3.22) gives (3.30). 
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11
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1

C

C

                  (3.30)

 

 

The overly determined least square problem, (3.30), is solved in Matlab using SVD to obtain C1 

and C2 as: 

 

C1 = (0.542975 + 0.087625i) and 

C2 = (0.542975 - 0.087625i). 
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Substituting a1, a2, C1 and C2 in (3.18) gives (3.31). 

 

 xexf )1.4451i + -0.7500(0.087625i) + (0.542975)(  

                                 
xe )1.4451i - -0.7500(0.087625i) - 5..(0.54297.    (3.31) 

 

Using the complex exponential identities for cosine, (3.31) is converted to its sinusoidal form as 

shown in (3.32). The parameters of this sinusoid are equal to those of the specified function in 

(3.17). Thus, we have seen that by using Prony’s method on a record consisting of six samples, 

we have been able to determine the original parameters of the function used in constructing the 

record. 

 

)16.0)23.0(2cos(1.1)( 75.0   xexf x                                      (3.22) 

 

 

 

3.4 Conclusion 

 

The mathematical analysis of Prony's method and its implementation in MATLAB are 

reviewed in this chapter. Prony’s method, an exponential parameter estimation technique that is 

used widely in communications as a signal analysis tool, has been chosen over the FFT in this 

work because of it many advantages. It is ideally suited to extract modal information from 

transient stability programs’ outputs and STG shaft signal measured data. 

While Prony’s method faithfully fits a specified number of modal components to a given 

signal, it is necessary to reorder the output resultant modes of Prony's method to distinguish the 

signal modes from the noise modes. The next chapter presents the details of a reordering 

algorithm developed during the course of this work. The practical issues such as choosing the 

proper parameters of Prony’s method to obtain better results are examined in Chapter 5. 



 

 

 

 

 

 

 

CHAPTER 4 

REORDERING ALGORITHM 

 

In this work, Prony’s analysis is used to perform modal decomposition of a given 

function. When the noise in the signal is low or negligible, the specified modal order can be set 

equal to the true order. However, usually there is noise or nonlinearities in the signal. In those 

cases, the modal order should be specified many times larger than the true internal modal order.  

Prony’s analysis is then performed to extract the modes in the given function. The resulting 

output of Prony’s analysis is in no particular order. Therefore, it is hard to distinguish the true 

modes from noise. A separate sorting algorithm is required for that purpose. One could employ 

any kind of sorting algorithm based on the constituent parameters: (1) magnitude, (2) frequency, 

or (3) exponential decay. However, these have their own limitations. Therefore, for torsional 

modes, it was observed during the course of this work, that a least-squares-error norm based 

sorting algorithm gives much better results. A weighting factor is computed for each constituent 

sinusoidal mode. These weighting factors are sorted in descending order to give the final list of 

modes in which the torsional modes are accumulated at the top of the list. As with Prony’s 

analysis, this reordering algorithm was also coded in MATLAB. 
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4.1 Proposed Reordering Algorithm 

Let fT(k) be the given linearly sampled signal. Prony’s method can be used to extract the 

constituent modal components by fitting the given signal to a sum of n complex exponentials as 

shown in (4.1) by computing the complex values Bi and zi. 

 

k

nn

kk

T zBzBzBkf  2211)(                                             (4.1) 

 

The output of the Prony algorithm is a list of n complex value pairs where each pair represents an 

exponentially decaying sinusoid. The complex conjugate pairs can be converted to parameters of 

sets of exponentially damped sinusoids as shown in (4.2). 

 

      iiiiiiii AzBzB  ,,,,,, **   

or 

 
 

 

















NNNNA

A

A







,,,

,,,

,,,

2222

1111

                                                                   (4.2) 

 

Let the i
th

 mode be reconstructed to give fi(k) as shown in (4.3). 

 

)cos(:)( ii

t

ii teAkf i 
                                                           (4.3) 

 

The given signal fT(k) can thus be represented as a sum of individual exponentially damped 

sinusoids and the error as shown in (4.4) and (4.5).  
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In (4.6), fi(k)  is the signal built using the ith set of parameters.  Let us compute the error norm for 

the first sinusoid f1(k). This indicates how much error is generated if this mode were not present 

in the reconstructed waveform fR(k). 
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In this way the error norms for each sinusoid  )(,),(),( 21 kfkfkf N  are computed resulting in the list 

L given in (4.10).
 

L: Neee ,,, 21 
                                                            (4.10) 
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Sorting the list L in descending order according to magnitude yields the required dominant 

modes list. The entire algorithm can be summarized in a flowchart as shown in Figure 4-1. 

 

 

 

 

 

 

 

Figure 4-1. Flowchart for Reordering Algorithm 

4.2 Example 

This method can be illustrated with the aid of the following example. The sampled 

waveform in this example is constructed out of four modal components (three exponentially 

decaying sinusoid modes and one exponentially decaying dc mode) and noise (w(t)) as shown in 

(4.11).                    

)(17)5.22cos(5.9)1802cos(1.0)152cos(5.3)( 05.002.08.01.0 twetetetetf tttt       (4.11) 

The MATLAB code for constructing this signal is listed in Figure 4-2.  

 

 

 

 

Figure 4-2. MATLAB Code for Creating the Sample Waveform 

Prony’s Method 

fT(k) 

Bi ,zi 

 

Reordering algorithm 

Bj ,zj 

 

clearall;clc; 

t = 0:0.0001:1; 

noise_ = (rand(size(f))-0.5) * 1e-5; 

f =  3.5 * exp(-0.1 *t) .* cos(2*pi* 15*t)  +   

0.1 * exp(-0.8 *t) .* cos(2*pi*180*t)   + ... 

     9.5 * exp(-0.02*t) .* cos(2*pi*2.5*t)  +  

17   * exp(-0.05*t)  + noise_ ; 

plot( t, f ); 
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A plot of f(t) vs time is shown in Figure 4-3. 

 

Figure 4-3. Plot of the Sample Waveform. 

Prony’s method can now be applied on this signal to extract the underlying modal components. 

Note that while applying the method, it is required to specify the method the number of modes in 

the signal. Generally speaking, whenever there is noise or any kind of non-linearities in the 

signal, a modal order much higher than the true estimated modal order needs to be specified. For 

example, in this case, the modal order is specified as 200 instead of the true modal order, four. 

Prony’s method fits these extraneous modes to noise in the signal. Experience, or trial and error, 

is usually used to estimate this modal order. 

The output, a list of modes, of the MATLAB function implementing Prony’s method is given 

in Table 4-1. Note that these modes are in no particular order. It is difficult to distinguish the real 

signal modes from the noise modes. Because the signals that are of significance in the current 

work are slowly decaying lower frequency power system signals, which span the range of 1 Hz 

to a few 100 Hz, the described method can be applied to separate the signal modes from the 

noise modes. The MATLAB code shown in Figure 4-4 implements this procedure. 
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Table 4-1. Output of Prony’s Method 

 
Mode    Magnitude  decay f(hz)    Phase  

1 17.0672167 -0.050 0.000 0.00 

2 2.78E-08 -722.469 0.000 -3.14 

3 3.248E-07 -6.565 497.942 -0.94 

4 6.276E-07 -3.990 491.587 -2.88 

5 8.207E-07 -14.330 485.991 -2.96 

6 6.989E-07 -9.757 482.354 2.10 

7 6.564E-07 -5.200 477.294 -0.45 

8 3.9346E-06 -18.105 471.655 3.11 

9 2.7019E-06 -13.365 467.724 1.24 

13 1.02827E-05 -17.819 445.327 -2.78 

14 9.9657E-06 -14.832 443.801 0.73 

 …  …  …  …  … 

94 0.0000015 -7.454 267.251 -0.69 

95 2.0571E-06 -5.710 246.345 2.58 

96 1.0887E-06 -7.345 254.272 -2.59 

97 1.7877E-06 -8.856 242.250 2.07 

98 1.2883E-06 -15.795 259.649 -1.94 

99 1.7721E-06 -25.196 262.943 3.14 

100 1.63115E-05 -121.743 247.006 -2.58 

101 0.000032574 -362.771 283.476 -0.12 

 

 

 

 

 

 

 

 

Figure 4-4. MATLAB Code for Generating the LSE Norms 

 

The MATLAB function create_vrLSE() shown in Figure 4-4 is used to reorder the list of modes 

in Table 4-1. Shown in Table 4-2 is the output of this MATLAB function (the reordered list of 

modes). 

function [ vrLSE ] = create_vrLSE(   t, 

vrMagnFinal, vrDecayFinal, vrFreqHzFinal, 

vrPhaseRadFinal, fdiff) 

vrLSE = zeros(size(vrMagnFinal));  

for k=1:length(vrMagnFinal)   

fndata_estk = RebuildFn(t, 0, vrMagnFinal, 

vrDecayFinal, vrFreqHzFinal, 

vrPhaseRadFinal, k); 

lse_k = norm(fdiff+fndata_estk); 

vrLSE(k) = lse_k;  

% LSE without mode k 

end 

return 
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Table 4-2. Reordered List of Prony’s Method Output Modes 

 

Mode #  LSE  Magnitude decay f (hz) phi 

1 5.27E+02 1.71E+01 -0.05 0 0 

2 2.10E+02 9.50E+00 -0.02 2.5 0 

3 7.45E+01 3.50E+00 -0.1 15 0 

4 1.58E+00 1.00E-01 -0.8 180 0.1 

5 2.65E-04 1.00E-05 -14.832 443.8 0.7 

6 2.65E-04 1.03E-05 -17.819 445.33 -2.8 

7 2.64E-04 9.30E-06 -16.161 361.72 -2.7 

8 2.64E-04 3.26E-05 -362.771 283.48 -0.1 

9 2.64E-04 8.10E-06 -17.014 358.89 1.6 

 …  …  …  …  …  … 

97 2.62E-04 3.00E-07 -6.072 294.37 0.6 

98 2.62E-04 3.00E-07 -6.521 97.48 1.9 

99 2.62E-04 3.00E-07 -6.565 497.94 -0.9 

100 2.62E-04 1.00E-07 -2.333 326.05 -1 

101 2.62E-04 0.00E+00 -722.469 0 -3.1 

 

 

As seen in Table 4-2, the power signal modes are all sorted at the top because of the specific 

error norm based reordering method. 

4.3 Conclusions  

An algorithm to reorder the output modes of Prony's method, which was developed 

during the course of this work, is presented in this chapter. This reordering is performed to help 

distinguish the signal modes from noise modes in the given signal. A MATLAB implementation 

is presented along with an example that illustrates the method.  In this work, this methodology 

has been applied every time after modal decomposition is performed using Prony analysis as 

shown in Chapter 5, 6, 7 and 8. However, this algorithm was not applied to real measurements in 

Chapter 9 because of reasons discussed in that chapter. 
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While the issues regarding the output of Prony's method have been dealt with in this 

chapter, the next chapter deals with the practical issues of choosing the input parameters of 

Prony's method that aid in getting better results. 

 



 

 

 

 

 

 

CHAPTER 5 

EFFECT OF PRONY PARAMETERS 

 

The main focus of the previous chapter was the reordering algorithm for the output modes of 

Prony’s analysis. The focus of this chapter will be the practical issues of applying Prony 

analysis. These discussions will focus primarily on the effects of varying Prony analysis 

parameters on the output of Prony analysis. Basically there are three parameters: 

 Modal Order ( numModes ), 

 Sampling frequency ( nSkipSample ), and 

 Window parameters - length & position.  

These parameters need to be chosen with extreme consideration just like those of other 

identification methods. The user would set these parameters before running the Prony algorithm. 

A Matlab GUI has been developed to facilitate changing and setting these parameters in an easy 

and intuitive way. This careful selection of parameters is especially needed when the data is not 

explicitly linear or contains significant noise. 

 

5.1 Prony Driver GUI Program Description 

This section contains a brief explanation of the Matlab tool that has been developed to run 

Prony’s method. This tool has a GUI shown in Figure 5-1 built using the Matlab GUIDE 

program. It facilitates setting and modification of Prony parameters and data window properties. 
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Figure 5-1. GUI Built in Matlab to Allow User Selection of Data Window Properties and Prony 

Parameters 

The user would enter “PronyDriver” at the “>>” prompt in Matlab command window. A file 

open dialog pops up and allows the user to select a data file. This data file contains two columns 

which represent time and signal data. Once the program reads the file data, it displays the signal 

data in a plot to allow the user to select data window properties such as tmin and tmax.  
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The GUI will then pop up and the user can set the required Prony parameters and data window 

properties. The program will then run Prony’s method and display its output in the Matlab 

command window. 

 

5.2 Effect of Modal Order 

The process can be explained with the aid of an example. Shown in Figure 5-2 is the plot of a 

signal built in Matlab. This signal has three sinusoidal components and noise, i.e., a linear part 

and a non-linear part. 

)()5.112cos(15.0)5.52cos(5.0)5.12cos(5.2)( 01.02.02.0 twtetetetf ttt          (5.1) 

In (5.1) w(t) represents noise. 

 

Figure 5-2 Sample Waveform Consisting Of Three Exponentially Decaying Sinusoids and Noise. 

 

Prony’s method (PM) is then applied on this signal for modal decomposition. An input parameter 

to the PM, n, determines the modal order of the constructed model. PM will try to fit this model, 

a waveform consisting of a linear combination of n sinusoids, to the given signal. Shown in 

Figure 5-3 is the output of PM. Shown in Figure 5-3a are both the given signal and the 



37 

 

constructed model. The error between these two signals is shown in Figure 5-3b. Shown in 

Figure 5-3c is the stem plot, which represents the magnitudes of LSE of each individual 

component in the model. LSE of a sinusoidal component is a kind of weighting factor which 

represents its 2-norm. Because the signal consists of three sinusoidal components, the stem plot 

should display only three non-zero stems with the rest being zero magnitudes. However, because 

of noise in the signal, PM is unable to fit the model to the given data perfectly resulting in error 

shown in Figure 5-3b. This results in non-zero LSE magnitudes of noise modes. 

 

Figure 5-3 Comparison of Actual Signal and PM’s Output: Stem Plot Showing the LSE 

Magnitudes of Constituent Sinusoids. 
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Repeating this procedure with different values of numModes while keeping all other parameters 

constant, gives Figures 5-4a through 5-4g. In these figures there are 7 sets of PM results with 

numModes = {10, 20, 30, 60, 70, 80, 90}.  

 

Figure 5-4a Comparison of Actual Signal and PM’s Output Along with Stem Plot of the 

Constituent Modes’ LSE Magnitudes with numModes Parameter = 10 
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Figure 5-4b Comparison of Actual Signal and PM’s Output Along with Stem Plot of the 

Constituent Modes’ LSE Magnitudes with numModes Parameter = 20  

 

 

 

 

Figure 5-4c Comparison of Actual Signal and PM’s Output Along with Stem Plot of the 

Constituent Modes’ LSE Magnitudes with numModes Parameter = 30 
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Figure 5-4d Comparison of Actual Signal and PM’s Output Along with Stem Plot of the 

Constituent Modes’ LSE Magnitudes with numModes Parameter = 60 

 

 

 

Figure 5-4e Comparison of Actual Signal and PM’s Output Along with Stem Plot of the 

Constituent Modes’ LSE Magnitudes with numModes Parameter = 70 
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Figure 5-4f Comparison of Actual Signal and PM’s Output Along with Stem Plot of the 

Constituent Modes’ LSE Magnitudes with numModes Parameter = 80 

 

 

 

Figure 5-4g Comparison of Actual Signal and PM’s Output Along with Stem Plot of the 

Constituent Modes’ LSE Magnitudes with numModes Parameter = 90  
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From these figures, it is evident that as numModes increases the model waveform increasingly 

matches the given signal which results in decreasing error magnitude. In other words, the 2-norm 

of the error signal decreases as numModes increases. Also, the true signal modes’ LSEs in the 

stem plot becomes increasingly obvious, i.e., they stand out from other noise stems more 

distinctly because as numModes increases the LSE magnitudes of the noise modes will gradually 

diminish. Comparing the LSE magnitudes of noise modes in set (1) and set (8), the magnitude 

has decreased from 75 to less than 0.1. This property has been used in creating an LSE based 

reordering algorithm, discussed in Chapter 4, which reorders the modes based on LSE 

magnitudes. Thereafter, another algorithm is used to separate the signal modes from the noise 

modes.  

Increasing the numModes usually results in decreased error. However, there is a 

particular characteristic to this decrease.  This characteristic is captured and illustrated in Figure 

5-5. It can be observed that the error initially decreases only slightly. However, after a threshold 

it decreases exponentially. Note that the y-axis is logarithmic. 

 

Figure 5-5 Plot of LS Error as a Function of numModes 
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Next, the same experiment is repeated with the magnitude of noise in the signal as the varying 

parameter. The relationship between these LSEs and numModes for various noise magnitudes 

are plotted as shown in Figure 5-6. It can be observed from this figure that as the noise in the 

signal increases, it takes more numModes for the LSE to fall below a certain specified level.  

 

 

Figure 5-6 Total LSE vs numModes with Noise as Varying Parameter for a 3-Sinusoid Signal 

 

Next, the previous experiment is repeated with a different modal composition in the given signal. 

This time a signal composed of only one sinusoid instead of three sinusoids is used. The 

corresponding relationship between LSE and numModes is shown in Figure 5-7. 
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Figure 5-7 Total LSE vs numModes with Noise as a Varying Parameter for a 1-Sinusoid Signal 

 

5.3 Effect of Sliding Window Parameters on Prony’s Method’s Output 

As mentioned previously, the output of the Prony analysis for a given signal depends on 

three parameters that are chosen by the user. These are the selected modal order, the sampling 

rate and the data window’s size and position. The effects of the window parameters – length and 

position – on the output of Prony analysis will be discussed in this section. For convenience sake, 

a new parameter, named nSkipSample, will be used instead of sampling rate. The nSkipSample 

parameter downsamples the given record by sampling only every n
th

 point. The window size and 

position are specified by two parameters tmin, which specifies the beginning point of the data 

window, and tmax, which specifies the ending point of the data window. 

Consider the same signal that was used in the previous chapter as shown in (5.2).  

)()5.22cos(5.9)1802cos(1.0)152cos(5.3)( 02.08.01.0 twtetetetf ttt        (5.2)  

This data record is fed to Prony’s method to extract its constituent modes using the following 

input parameters:  
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Modal Order (numModes) : 50 

nSkipSample : 4 

Window size and position: tmin = 0 and tmax = 2.0 

Shown in Figure 5-8 is the output of the Prony’s method. As seen in this Figure, the Prony model 

matches the actual given data very closely. 

 

 

Figure 5-8 Comparison of Given and Estimated Waveforms 

 

The error norm, LSE, for this window is 2.41E-5. Next, the same experiment is repeated while 

sliding the window 0.4 seconds every time. The results of these tests are shown in Figures 5-9a 

through 5-9c and Tables 5-1 through 5-4. Here, as the very small LSE numbers indicate, the 

model matches the given signal very closely.  
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Table 5-1. The LSE Values for Successive Windows 

Window #  tmin tmax LSE 

1 0 2 2.41E-05 

2 0.4 2.4 7.52E-06 

3 0.8 2.8 1.91E-05 

4 1.2 3.2 3.67E-05 

5 1.6 3.6 4.39E-05 

6 2 4 7.92E-06 

 

Table 5-2 Effect of Sliding Window on Frequency of Mode1 

Window # Magnitude Decay Frequency (Hz) Phase 

1 9.4999807 -0.02 2.5 0.0015708 

2 9.4242842 -0.02 2.5 0.0015708 

3 9.3491911 -0.02 2.5 0.0015708 

4 9.2746952 -0.0199999 2.5 0.0015708 

5 9.2007935 -0.0199999 2.5 0.0015708 

6 9.1274815 -0.02 2.5 0.0015708 

 

Table 5-3 Effect of Sliding Window on Frequency of Mode 2 

Window # Magnitude Decay Frequency (Hz) Phase 

1 3.499965 -0.1 15 0.0094248 

2 3.3627294 -0.1 15 0.0094248 

3 3.2308749 -0.1 15 0.0094248 

4 3.1041905 -0.1 15 0.0094248 

5 2.9824734 -0.1 15 0.0094248 

6 2.865529 -0.1 15 0.0094248 

 

Table 5-4 Effect of Sliding Window on Frequency of Mode 3 

Window # Magnitude Decay Frequency (Hz) Phase 

1 0.099992 -0.8 180 0.1130973 

2 0.0726091 -0.8 180 0.1130973 

3 0.052725 -0.8 180 0.1130973 

4 0.0382862 -0.8 180 0.1130973 

5 0.0278015 -0.8 180 0.1130973 

6 0.020188 -0.8 180 0.1130973 
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Figure 5-9a Comparison of Estimated and Actual Magnitudes of Mode 1 (2.5 Hz) mode 

 

 

Figure 5-9b Comparison of Estimated and Actual Magnitudes of Mode 2 (15 Hz) mode 

 

 

Figure 5-9c Comparison of Estimated and Actual Magnitudes of Mode 3 (180 Hz) mode 
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5.4 Effect of varying sampling rate parameter on Prony’s Method’s Output 

              In this section, the effects of varying the sampling-rate parameter on the PM’s output, 

and consequently its LSE, are observed. As mentioned previously, a new parameter, named 

nSkipSample, will be used instead of sampling rate. The nSkipSample parameter downsamples 

the given record by sampling only every n
th

 point.  Consider the same data set that was used in 

previous section. It is given in (5.3). 

)()5.22cos(5.9)1802cos(1.0)152cos(5.3)( 02.08.01.0 twtetetetf ttt          (5.3) 

Because of noise in the signal, the numModes parameter was set to 100 and was kept constant 

throughout all five test cases i.e., nSkipSample = {1,2,3,4,5}. This data record is originally 

sampled at 10 kHz and contains two seconds of data. Therefore the maximum number of modes 

that we could specify to PM as a parameter is 20,000/2 = 10,000. However, because the highest 

frequency is 180 Hz, we could specify a much lower numModes parameter, usually less than 

500. As mentioned previously, experience is often used in this choice. As can be seen in Figure 

5-10a through Figure 5-10e,  as the nSkipSample parameter increases, the PM fits the model to 

given data sample more and more completely, i.e., the PM model increasingly matches the given 

data sample. Consequently, the LSE decreases as seen in Table 5-5.  
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Figure 5-10a Comparison of Actual Signal and PM’s Output Along With Stem Plot of the 

Constituent Modes’ LSE Magnitudes with nSkipSample Parameter = 1 

 

 

 

 

 

Figure 5-10b Comparison of Actual Signal and PM’s Output Along With Stem Plot of the 

Constituent Modes’ LSE Magnitudes with nSkipSample Parameter = 2 
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Figure 5-10c Comparison of Actual Signal and PM’s Output Along With Stem Plot of the 

Constituent Modes’ LSE Magnitudes with nSkipSample Parameter = 3 

 

 

 

 

Figure 5-10d Comparison of Actual Signal and PM’s Output Along With Stem Plot of the 

Constituent Modes’ LSE Magnitudes with nSkipSample Parameter = 4 



51 

 

 

Figure 5-10e Comparison of Actual Signal and PM’s Output Along With Stem Plot of the 

Constituent Modes’ LSE Magnitudes with nSkipSample Parameter = 5 

 

 

Table 5-5  Sampling Rate (nSkipSample) vs LSE - A 

nSkipSample LSE-error 

1 1317.27 

2 21.1131 

3 0.52178 

4 0.06744 

5 0.05099 

 

It is to be noted that as the nSkipSample parameter rises the resolution decreases, and hence the 

PM might miss detecting some higher frequencies. In this case, because the highest frequency is 

180 Hz and the lowest sampling rate (case nSkipSample = 5) is 2 kHz, there is no such problem. 
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From Table 5-6 it can be inferred that although the total LSE is decreasing quickly, the 

individual parameters, i.e., magnitudes, frequencies, etc, converge to their correct values slowly. 

It requires nSkipSample of greater than or equal to four for the magnitude of the frequency 2.5 

Hz mode to converge to its correct value, 9.5. 

Table 5-6 Sampling rate (nSkipSample) vs LSE - B 

  Mode #  Magnitude ExpDecay Frequency(Hz) Phase(rad) 

nSkipSample:   1  1 19.7376133 -1.882675 0 0 

  2 3.9084642 -0.2312709 14.9710909 0.1716462 

  3 1.1300583 -144.9632392 0 3.1415927 

  4 0.1001143 -0.8003881 179.9999787 0.1125296 

nSkipSample:   2  1 9.695243 -0.0408697 2.5001401 -0.0012846 

  2 3.4998881 -0.0999648 14.9999748 0.0096094 

  3 0.1000002 -0.8001528 180.0000277 0.113005 

nSkipSample:   3  1 9.4940861 -0.0193665 2.4999749 0.0017882 

  2 3.4998786 -0.0999756 15.0000111 0.0093589 

  3 0.0999947 -0.8000499 180.0000022 0.1130859 

nSkipSample:   4  1 9.5007977 -0.0200874 2.5000007 0.0015574 

  2 3.4999868 -0.1000066 15.0000012 0.0094178 

  3 0.0999847 -0.7998804 180.000008 0.1130771 

nSkipSample:   5  1 9.5007017 -0.0200781 2.5000061 0.0015255 

  2 3.4999951 -0.1000082 14.9999978 0.0094376 

  3 0.0999979 -0.8001168 179.999992 0.1131259 

 

In the previous example, the numModes parameter was kept constant, while the sampling 

rate varied. Now the sampling rate is kept constant (nSkipSample = 1) and numModes is 

increased while keeping the window size and position constant. Next, the LSE for each 

numMode is recorded. Plotting the corresponding LSE vs. numMode parameter gives us data for 

one curve. Repeating the same example with varying sampling rate   (nSkipSample = 2, 3) would 

give the family of curves shown in Figure 5-11. 
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Figure 5-11 Effect of Sampling Rate on the Relationship Between numModes and LSE 

 

It can be observed from these families of curves that while it took about 150 

modes/numModes for obtaining sufficiently less final LSE with the SkipSample2 parameter, it 

took only about 80 numModes for obtaining the final LSE with the SkipSample4 parameter. One 

inference: in some cases increasing the sampling rate (thereby the number of samples) does not 

necessarily give us better results. It will take more numModes, and hence, become more 

computationally expensive and time consuming. In other words, the sampling rate can be 
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decreased to a certain extent, provided it is much higher than the highest frequency. 

Additionally, it can also be inferred that, as long as the sampling rate is much higher than the 

highest signal frequency, we can afford to reduce the sampling frequency to obtain the same 

result with the same LSE, but much quicker and less computationally expensive. 

  

5.5 Guidelines 

Based on the observations working with Prony’s method, some general guidelines have 

been developed for setting these parameters. These mostly apply for extracting power system 

torsional modal information. The guidelines for real signal measurements are slightly different 

from those of transient stability program (TSP) output signals, because of the presence of 

measurement noise and other nonlinearities in real signal measurements. 

 

Setting the modal order parameter (numModes) : 

As mentioned earlier, the real signal measurements contain measurement noise and other 

nonlinearities. To compensate for this, it is required to choose a larger numModes as an input 

parameter for Prony's method. It is difficult to choose the correct value in a single step [10]. It is 

usually an iterative process where the user sets the numModes parameter and executes Prony's 

method. The output modes are used to reconstruct the signal and if it is not a good fit, a higher 

numModes parameter is set and the process is repeated. However, it was observed that too high a 

modal order, while resulting in a good fit, could result in incorrect modal results probably 

because the matrices used in Prony’s method’s becoming increasingly singular. Therefore, 

numModes should be increased gradually, until a good fit for TSP output signals or a reasonable 

enough fit for real measurement signals is obtained. 
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Choosing the window location and size parameters: 

When choosing the window position for a given TSP output record, it is advisable to choose later 

because these torsional modes do not decay quickly in comparison to other short duration modes, 

such as electrical stator transients. For real measurement records, it is advisable to choose earlier 

because as the length of the record increases, the probability of non-linear phenomena -  

switching events or other influences because of corrective measures, such as governors and 

exciters - distorting the LTI nature of the overall signal increases. Finally, the window size 

should include at least two cycles of the lowest modal frequency in most cases. 

 

 Setting the sampling rate parameter: 

Increasing this parameter is another way of modifying numModes and the total record length. 

The sampling rate should be such that each mode in the signal would at least have four samples 

per cycle similar to the Nyquist criteria. Increasing the sampling rate parameter thereafter does 

result in a better fit. However, increasing it too much does not necessarily increase fit quality, 

because the matrices involved in Prony’s analysis tend to become singular and give incorrect 

results. 

 

5.6 Conclusions 

The process of selecting the various parameters for Prony’s method is complex. It 

requires careful consideration as there are many parameters that affect directly the results and 

their accuracy. Unlike Fourier analysis, each data record must be treated individually. While 

there are some empirical rules, as discussed in the previous section, the user does need some 

training/practice before obtaining good results. The most important parameter is numModes, 

which is used to fit not only the signal modes, but also any noise or non-linearities in the signal. 



 

 

 

 

 

 

 

 

 

 

CHAPTER 6  
 

EIGEN ANALYSIS OF STEAM TURBINE GENERATOR SHAFT SYSTEMS 

 

The main aim of this work, as mentioned earlier, is to estimate the shaft spring constants 

so that they could be used to build better models for SSR analysis. These shaft spring constants 

are estimated using rotor mass values and measured modal frequency values obtained from either 

the rotor speed signals or the power signal p(t). The accuracy of the estimated shaft spring 

constants is therefore directly dependent on the accuracy of the measured frequencies. This 

accuracy is in turn dependent on the signal-to-noise ratio of the frequencies in the signal. In other 

words, it is highly preferable to have a signal where the magnitudes of modal frequencies are 

large enough that they could be measured reliably. One of the major factors that affects the 

magnitudes of modal components in a signal is the eigen properties of the concerned shaft 

system.  In this and the next chapter, these aspects, eigen properties of the STG shaft systems, 

will be investigated to determine their effects on this work.  In order to apply eigen analysis, the 

isolated lumped-spring-mass mechanical model of the STG turbine will be treated as an LTI 

system. There are certain unique properties of STG shaft systems because of the way the rotor 

masses and the interconnecting shafts of the lumped-spring-mass model are connected. These 

properties will be examined with the aid of a few shaft systems whose data is provided in the 

literature [4][16]. 
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6.1 State-Space Theory Review [17] 

One of the main reasons eigen analysis is used here is that it makes it easier to analyze 

state systems of different sizes in a similar unified manner. Using eigen analysis allows the use 

of linear algebra principles and well-established computer routines to easily analyze the system 

characteristic features such as eigen values, eigen vectors and participation factors. A brief 

review of the relevant state space theory used in this work is provided in the following section. 

Let the dynamics of an n
th

 order non-linear system be described by the set of first order 

differential equations given by (6.1) and its outputs be described by (6.2). 

 )(),(),(),()(),(
)(

2121 tutututxtxtxf
dt

tdx
mni

i 
                                            (6.1) 

i = 1, 2, … n 

 )(),(),(),()(),()( 2121 tutututxtxtxgty mnii 
                                     (6.2) 

In (6.1) and (6.2) fi and gi are non-linear functions of variables, also known as system state 

variables x1(t), x2(t) … xn(t),  and inputs u1(t), u2(t) … um(t). 

The states, xi, are a minimal set of linearly independent system variables, either real, 

physical (such as capacitor voltage and inductor current) or abstract mathematical variables 

associated with the system equations. Knowledge of these state variables at t=t0 along with the 

inputs for t>t0 is sufficient to completely determine the system behavior and all other system 

variables. The selection of state variables is not unique. Any selected set would yield the same 

information about the state except in a different coordinate system in the dynamic system's n-

dimensional euclidean state space. If the number of state variables is chosen greater than the true 
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order of the system, then not all of them will be linearly independent as shown in the following 

example.  

There are at least two sets of state variables that can be used to represent the system 

shown in Figure 6-1: (1) v1, v2, i1, i2 and (2) v1, v2, v3, i1, i2. Only the first set one is the correct 

choice because it is a minimal set, whereas set (2) is not. Set (2) is not a minimal set because any 

one of the three voltage variables (v1, v2, v3,) can be represented as a linear combination of the 

other variables. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1. Example of a Four State System Consisting of Inductors and Capacitors 

In the case of a linear time-invariant system, the non-linear functions fi and gi can be replaced by 

constant coefficient matrices and these equations can be written in vector-matrix form as shown 

in (6.3a) and (6.3b). 

 

)()(
)(

tButAx
dt

tdx


                                                       (6.3a) 

C1 C2 C3 

L1 L2 v1 v2 v3 

i1 i2 
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)()()( tDutCxty                                                           (6.3b)
 

 

The matrix A is commonly referred to as the system’s state matrix. B, C and D are all constant 

coefficient matrices. Using the traditional transfer function approach, the transfer function of this 

system can be derived after taking the Laplace transform of the equations and setting the initial 

conditions to 0. The resulting transfer function is shown in (6.4). 

 

 
AsI

DAsIBAsIadjC
sG






)(
)(

                                                     (6.4) 

Setting the denominator of G(s), also referred to as the characteristic polynomial, to 0 gives the 

characteristic equation (6.5).  

 

0 AsI
                                                                  (6.5)

 

 

6.2 Eigen values 

The roots of the characteristic equation shown in (6.5) are called the eigen values, λi, of the 

system. When (6.3a) and (6.3b) are used to describe the dynamics of an isolated linear time-

invariant TG shaft system, these eigen values correspond to its natural frequencies or torsional 

mode frequencies.  

 

6.3 Right eigen vectors 
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A right eigen vector of matrix A associated with λi is any non-zero vector that satisfies equation 

(6.6). 

iiiA  
                                                                      (6.6)

 

i = 1, 2, … n 

Rearranging terms in (6.6) gives (6.7). 

  0 ii IA 
                                                               (6.7)

 

Because equation (6.7) is a homogenous equation, the eigen vector can only be determined  

within a scalar multiplier.  Generally, this vector is scaled such that it is of unit length. In this 

current work, for displaying purposes only, these vectors will be occasionally scaled such that 

the absolute value of the largest element in the vector is 1. In the context of TG rotor system 

analysis, these right eigen vectors, also called mode-shapes, indicate the fixed relative amplitude 

and phase of turbine rotor sections, when they are oscillating under steady state conditions at a 

given natural frequency. 

 

6.4 Left eigen vectors 

The left eigen vector, ψi, of the state matrix A associated with λi, is any non-zero vector that 

satisfies equation (6.8).  

iii A  
                                                                   (6.8) 

i  = 1, 2, … n 

Just like the right eigen vectors, the left eigen vectors, ψi, can only be determined within a scalar 

multiplier and are usually scaled to have unit length.  

1ii
                                                                           (6.9)
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Let us define matrix Λ, shown in (6.10),  as a diagonal matrix consisting of eigen values, λi, of  

the state matrix, A. 
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                                                              (6.10)

 

Let us define matrices Φ and Ψ, shown in (6.11) and (6.12), as consisting of right and left eigen 

vectors, φi and ψi, of  the state matrix, A.
 

 n 1
                                                                      (6.11)

 

 n 1
                                                                    (6.12)

 

Using (6.6) and (6.11) gives (6.13) and (6.14). 

A                                                                             (6.13) 

 A1

                                                                         (6.14) 

Using (6.9), (6.11) and (6.12) gives (6.15) and (6.16). 

I                                                                               (6.15)
 

1                                                                               (6.16)
 

The current work on eigen analysis involves computing these matrices in Matlab. First, 

the right eigen vector matrix, Φ, is computed from the state matrix, A. Then the left eigen vector 

matrix, Ψ, is computed by inverting the right eigen vector matrix as shown in (6.16). 

The formulae discussed in the previous sections have been used to study the eigen 

properties of the linear time-invariant TG shaft system. Because of the configuration, physical 

properties and the differential equations governing the system, the isolated undamped TG shaft 
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system’s state matrix, A, consists of only real elements. Furthermore, all its eigen values occur in 

complex conjugate pairs with real parts equal to 0, with each of the complex conjugate pairs 

corresponding to one undamped oscillatory mode of the form given in (6.17).  

)cos( iii ta  
                                                                        (6.17) 

 

6.5 Participation Factors [16] 

An additional important technique of quantifying how strongly the modes and states are 

associated is participation factors. These combine both the right and left eigen vectors of a mode 

to create a new vector that shows how this mode is associated with the system states as shown in 

(6.18).  









































inni

ii

ii

ni

i

i

i

p

p

p

p







22

11

2

1


                                                               (6.18) 

Collecting the participation vectors of all the modes gives us the participation matrix as shown in 

(6.19). 

 npppP 21                                                          (6.19) 

 

Because we will be dealing with a lot of TG shaft system analyses, let us first take a look at how 

they are derived with the aid of one STG shaft system example provided in [16].  

 

6.6 Derivation of State Equations for Kundur 1039 System  

These derivations are better illustrated with the aid of a test system whose rotor layout 

schematic is shown in Figure 6-2 and its electrical equivalent in Figure 6-3. This data belongs to 
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a 191 MVA 3,600 rpm STG unit. In this equivalent scheme, the rotor section masses are 

represented by capacitors and shaft spring constants are represented by inverse inductances. The 

torques transmitted in shaft springs and the rotor section velocities are represented by inductor 

currents and capacitor voltages respectively. 

 

 

 

 

 

 

 

 

 

Figure 6-2 Schematic Layout of Rotors and Shafts of Kundur pp. 1039 Problem 

 

 

 

Table 6-1  Rotor Inertias 

Rotor H (MW-s/MVA) 

HP 0.099 

IP 0.337 

LP 3.68 

G 0.946 

 

Table 6-2  Shaft Spring Constants 

Shaft K (p.u. torque/rad) 

HP-IP 37.95 

IP-LP 81.91 

LP-G 82.74 

 

 

 

 

 

 

 

 

 

 

 

 

HP IP LP G 
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Figure 6-3 Electrical Equivalent of Shaft System 

 

The following differential equations for voltage across an inductor and current through a 

capacitor will be used to represent the dynamics of the electrical equivalent circuit shown in 

Figure 6-3.   
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Applying Kirchoff’s laws on the electrical equivalent circuit shown in Figure 6-3 and using these 

equations yields equations (6.20) through (6.24). 
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Using equations (6.20), (6.21), (6.22) and (6.23) yields (6.25). 
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Because the main concern in this work is eigen values, vectors and participation factors, i.e., 

dynamics only, the non-transient part, K, can be safely ignored as shown in (6.26). 

)()()()( tvCtvCtvCtvC LPLPIPIPHPHPGG                                                       (6.26) 

 

Substituting (6.26) in (6.24c) yields (6.27).  
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Rewriting the differential equations, (6.20), (6.21), (6.22), (6.24a), (6.24b) and (6.27)  in matrix 

form yields (6.28). 
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The state matrix of the STG shaft system is now given by (6.29). 
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Using the generator ratings of 191 MVA and 3600 rpm as base values and choosing a time base 

value of 1 second establishes the base values for the rest of the relevant parameters as shown: 

ωm-base = 377 mech-rad/sec, 

VA-base = 191,000,000 VA, 
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H-base =  
 2

*2

basem

baseVA


  = 2687.6992 seconds, 

Torque-base = 506631.2997 N.m, 

J-base = 1343.849601 kg.m^2, and 

K-base = 1343.849601 N.m/mech-rad. 

 

Provided in Tables 6-1 and 6-2 are the rotor sections’ moment of inertia values and shaft spring 

values in seconds and p.u. torque/rad. Using the base values computed, these are converted to S.I 

values and p.u. values as shown in Tables 6-3 and 6-4. 

 

Table 6-3 S.I. and p.u  Values of Kundur 1039 STG Rotor Section Moment of Inertias 

J (kg-m
2
) J-p.u C-p.u (C=J) 

266.0822211 0.198 0.198 

905.7546314 0.674 0.674 

9890.733066 7.36 7.36 

2542.563446 1.892 1.892 

 

Table 6-4 S.I. and p.u. Values of Kundur 1039 STG Shaft Spring Constants 

K (Nm/m.rad) K-p.u. L p.u. ( L = 1/K ) 

19226657.82 14307.15 6.98951E-05 

41498169.76 30880.07 3.23833E-05 

41918673.74 31192.98 3.20585E-05 

 

 These tables also provide the equivalent capacitances and inverse-inductances. Plugging these 

values into the state matrix, A, gives (6.30).  
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The matrix of eigen values (W) and matrix of right eigen vectors (V), shown in Table 6-5, are 

computed using the Matlab command eig(A) on the state matrix, A. The matrix V consists of the 

right eigen vectors and the diagonal matrix W matrix gives the corresponding eigen values. The 

eigen values are 52.74, 29.66 and 22.33.   

 

 

Table 6-5 Right Eigen Vector Matrix of Kundur 1039 STG Shaft System 

0.792379 0.792379 0.326785 0.326785 0.068212 0.068212 

-0.609188 -0.609188 0.904531 0.904531 0.237142 0.237142 

0.028983 0.028983 -0.273741 -0.273741 0.969072 0.969072 

0.012077 i -0.012077 i 0.008856 i  -0.008856 i   0.002455 i   -0.002455 i  

-0.006275 i 0.006275 i 0.004600 i  -0.004600 i   0.001786 i   -0.001786 i  

0.000262 i  -0.000262 i -0.000859 i 0.000859 i   0.000709 i   -0.000709 i  

 

 

Each column in the matrix V gives the eigen vector of one eigen value in a diagonal position of 

the W matrix. Because we are interested in the rotor section velocities, these are selected and 

displayed in Table 6-6. Note that in the first column of Table 6-5, which represents the V matrix, 

there are six elements. These are the row elements in the eigen vector for the 52.74 Hz mode and 

correspond to the six state variables, iHP-IP(t), iIP-LP(t), iLP-G(t), vHP(t), vIP(t) and vLP(t), 

respectively. The row element for vG(t) is obtained using equation (6.26) and the row elements 
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for the remaining state variables are obtained as in the previous step. From these seven eigen 

vector elements, the four corresponding to the voltages are selected and normalized such that the 

maximum absolute value is 1. The resulting eigen vectors for the three modes are shown in Table 

6-6. 

Table 6-6 Three Right Eigen Vectors of Modes 52 Hz, 29 Hz, and 22 Hz Mode 

eigen vector for   52.74 hz :  

v1 HP 1 

v2 IP -0.51962 

v3 LP 0.021667 

v4 GENR -0.00383 

   
   

eigen vector for   29.66 hz :  

v1 HP 1 

v2 IP 0.519373 

v3 LP -0.097 

v4 GENR 0.087664 

   
   

eigen vector for   22.33 hz :  

v1 HP -0.6726 

v2 IP -0.48934 

v3 LP -0.19416 

v4 GENR 1 

 

 

The inverse of matrix V shown in Table 6-5 gives the matrix consisting of left eigen vectors, 

where each row is the left eigen vector of the corresponding eigen value in the W matrix. 

Multiplying the i
th

 mode’s right eigen vector and left eigen vector gives the column of 

participation factors for the i
th

 mode and the corresponding states. The participation factors for 

all the modes are given in Table 6-7. 
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Table 6-7. Participation Factors of Kundur-pp-1039 System 

Rotor 

52.73 Hz 

Mode 

29.66 Hz 

Mode 

22.33 Hz 

Mode 

HP 0.258171 0.213546 0.018504 

IP 0.237287 0.196085 0.03334 

LP 0.004505 0.074687 0.057315 

GENR 3.61E-05 0.015682 0.390841 

 

Impulse Response 

To obtain the impulse response magnitudes of the modes in individual rotor section 

velocities, the Kundur shaft system was built and simulated in ATPDraw/ATP software. The 

schematic for this system is shown in Figure 6-4. In this equivalent electrical circuit, the 

capacitors represent the rotor sections’ moments of inertia and the inductances represent the 

inverse values of the shaft spring constants. 
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Figure 6-4 ATPDraw Schematic of Simulation of Impulse Response of Kundur 1039 Shaft 

System 

All the electrical quantities in this circuit are zero when the simulations begin. The 

impulse signal is applied as a short duration torque into the generator rotor section, which is 

represented by the capacitor connected to the node labeled XX0036. This causes the quantities to 

rapidly rise (for the duration of the impulse) and then ring-down back to zero. The 

ATPDraw/ATP software writes the capacitor voltage signals into a binary output.pl4 file. 

Another program is used read to the .pl4 output file and display the saved waveforms. Shown in 
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Figure 6-5 is the plot of the HP rotor section velocity signal. Note that the HP rotor section was 

represented by the capacitor connected to the node XX0020 in Figure 6-4. 

 

 

Figure 6-5 Plot of HP Rotor Section Velocity 

 

The software also allows us to convert these waveforms to ascii format and store them in 

a .txt file. Prony’s method and the reordering algorithm presented in Chapter 4 are then used to 

extract the constituent modes in each rotor section velocity signal. The results are given in Table 

6-8. Each column in this table gives the magnitude of the particular mode in a given signal. For 
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instance, shown in Column 1 (titled HP) are the magnitudes of the 52.7 Hz, 29.7 Hz and 22.3 Hz 

modes in the HP rotor section velocity signal: 0.0000104, 0.0019394 and 0.0038962 

respectively. The purpose of performing this test is to further illustrate the association of 

different modes and the states of the shaft system. This serves as a good complement to the 

theoretical analysis involving right eigen vectors and participation factors discussed in the 

previous sections. 

Table 6-8. Impulse Response Modal Magnitudes of Kundur-pp-1039 system 

  HP IP LP GENR 

Frequency(Hz) Magnitude Magnitude Magnitude Magnitude 

52.7 0.0000104 0.0000054 0.0000002 4.87E-08 

29.7 0.0019394 0.0010071 0.0001881 0.0001703 

22.3 0.0038962 0.0028337 0.001123 0.0057919 

 

6.7 Conclusions 

The basic concepts of state space theory are revisited and reviewed in this chapter in order to 

aid in analyzing the eigen characteristics of STG shaft systems. An STG system whose data was 

provided in [16] was used to illustrate the way in which these eigen properties, such as eigen 

values, right eigen vectors and participation factors are computed. ATPDraw/ATP software was 

used to simulate the impulse response of this shaft system. The purpose of impulse response 

analysis is to verify, to a certain degree, the theoretical approximations that were obtained using 

eigen analysis. These methods are used in the next chapter, in which four STG shaft systems are 

analyzed, to help reveal general characteristics of all these shaft systems. 

 



 

 

 

 

 

 

CHAPTER 7 

APPLICATION OF EIGEN ANALYSIS ON TEST CASES 

 

 Before the proposed methodology is applied to test a complete system (in the next 

chapter) consisting  of both the mechanical shaft system and the connected electrical power 

system, it is beneficial to study the behavior of a few typical STG shaft systems whose data is 

presented in the literature [4,16]. It is hoped that applying eigen analyses on these test cases will 

help reveal crucial information about how typical STG shaft systems aspects affect the proposed 

methodology’s capabilities in determining the parameters of STG systems. 

In this chapter, the concepts of eigen analysis introduced in the last chapter will be applied to 

four separate systems. These systems will be separately analyzed to help draw conclusions 

regarding the effect of these eigen properties on the measured magnitudes of rotor speed signals. 

The four shaft systems presented are:  

1. 555 MVA, 3600 rpm STG shaft system (Kundur pp 1036) [16], 

2. 960 MVA, 1800 rpm STG shaft system (Kundur pp 1038) [16],  

3. 191 MVA, 3600 rpm  STG shaft system (Kundur pp 1039) [16], and 

4. 892.4 MVA, STG shaft system, IEEE-FBM [4]. 
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7.1 Remarks on Terminology Used 

   Eigen analysis has proved to be an extremely valuable analysis tool in this work. It has helped 

reveal some fundamental aspects of the STG shaft systems that directly affect the proposed 

methodology’s performance. While applying these analyses the actual speed signals of various 

rotor sections will be referred to as state variables in the sense that these are all purely 

mathematical variables.  

   However, in real life there are some important constraints. First is that not every state variable 

in the STG shaft system is measureable. We only have access to speed signals on either end of 

the shaft system and the instantaneous power p(t) at the generator terminals. In most cases for 

large systems, the exciter is at the extreme end of the shaft system. Therefore, we do not have 

access to generator speed in most cases. In those cases we can try to extract the modes using 

measured instantaneous signal, p(t), but only to a certain extent. The reason for this is if a mode 

is present with a very small magnitude in the generator-section velocity state, then this small 

magnitude signal of the mode after passing through the electrical stator and the rotor circuits and 

the air-gap flux, which tend to attenuate it, becomes even smaller. It is important to consider 

these constraints as we proceed with the analysis. 

 

   Because certain terms and phrases appear very frequently in all the following sections, they are 

abbreviated to help increase clarity. These terms are as follows: 

HPRSV : High pressure rotor section velocity, 

GNRSV : Generator section velocity, 

HFM : Highest frequency mode, 
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LFM : Lowest frequency mode, 

STGS : Steam turbine generator shaft, and 

REV : Right eigen vectors. 

 

7.2 System 1: 555 MVA STG System from Kundur pp 1036 

 The schematic for this STG shaft system is provided in Figure 7-1. This shaft system has 

five rotor sections and thus has four natural frequencies: {16.3 Hz, 24.1 Hz, 30.3 Hz and 44.0 

Hz} that are also provided in [16]. The STG shaft system parameters are presented in tables 7-1 

and 7-2. These are first converted to p.u. using proper base quantities as discussed in the 

previous chapter and they are used to compute the system’s state matrix, A. All the relevant 

eigen properties such as left and right eigen vectors and participation factors are then computed 

from this state matrix using Matlab. 

 

 

 

 

 

Figure 7-1 Schematic Layout of Rotor and Shaft Sections of Kundur pp. 1036 system 

 

Table 7-1 Rotor Inertias 

Rotor H (MW-s/MVA) 

HP 0.124 

IP 0.232 

LPB 1.155 

LPA 1.192 

GENR 0.855 

HP IP 

 
LPB LPA 

   

G 
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Table 7-2 Shaft Spring Constants 

Shaft K (pu. torque/rad) 

HP-IP 21.8 

IP-LPB 48.4 

LPB-LPA 75.6 

LPA-GENR 62.3 

 

7.2.1 Right Eigen Vector Analysis  

The right eigen vectors (REVs) are shown in table 7-3. Note that these are normalized such that 

the maximum absolute value of any given vector element is 1. Because we are currently 

concerned about rotor section velocity states, only the corresponding entries in each eigen vector 

are shown. These eigen vectors are plotted in Figure 7-2. The y-axis is logarithmic because the 

values are of different orders of magnitude. Only the absolute values of right eigen vectors are 

displayed because the logarithmic axis does not allow plotting negative values and, more 

importantly, we are currently interested in the actual magnitudes (not the signs). 

 

Table 7-3  Right Eigen Vectors for Kundur-pp-1036 System 

Rotor 

43.99 Hz 

Mode 

30.30 Hz 

Mode 

24.08 Hz 

Mode 

16.22 Hz 

Mode 

HP -0.76569 1 1 1 

IP 1 -0.09383 0.309226 0.686315 

LPB -0.148 -0.50002 -0.18192 0.363603 

LPA 0.033732 0.708974 -0.15883 -0.14935 

GENR -0.00739 -0.43252 0.23824 -0.61422 
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Figure 7-2 Kundur 1036 Right Eigen Vector (mode shape) Absolute Magnitudes Across Rotor 

Sections 

 

 

Shown in Figure 7-2 are four curves with each curve illustrating the relationship between a given 

mode and the five rotor section velocity states in the system. For instance, the first curve shows, 

in a free response case, the relative magnitudes of the first mode with respect to each other as 

they appear in different rotor signals. The observed magnitude of the 44 Hz mode in the 

generator rotor section’s speed signal is about 100 times smaller than the observed magnitude in 

the H.P. rotor section speed signal. It is important to note that these are not indicative of the 

absolute magnitudes because the right eigen vectors are scaled such that the absolute maximum 

value is 1. This means that these charts can be used to infer information about relative 

magnitudes of a given mode in different rotor section speeds, and not regarding magnitudes of 

various modes in a given rotor section velocity signal. For instance, the relative magnitudes of all 

modes in the generator rotor section velocity (GRSV) measurements cannot be predicted. 

However, if the highest frequency modal (HFM) magnitude in one velocity state is known, it can 

be used to predict the HFM’s magnitude in another rotor section velocity state. For instance, in 
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the next section, in table 7.3 on impulse response tests, it is given that the magnitude of the 44 

Hz mode in GNRSV is approximately 2e-7. Looking at REV of the 44 Hz mode in Figure 6-5, it 

can be predicted that the magnitude of the 44 Hz mode in HPRSV would be 100 times 2e-7 i.e., 

2e-5. This prediction is confirmed as indicated in table 7-3 where the magnitude of the 44 Hz is 

shown to be approximately equal to 2.2e-5. As mentioned earlier, using the REVs, the relative 

magnitudes of all modes in a given rotor section velocity measurement cannot be predicted. To 

do that, it is recommended to use participation factors, which will be discussed in the next 

section.   

    It can be concluded from Figure 7-2 that the measured magnitude of the highest frequency, 44 

Hz, varies significantly across rotor sections. Especially, as mentioned earlier, it appears very 

small in the generator rotor section velocity signal compared to its measured magnitude in the 

HP rotor section velocity signal. As mentioned in section 7.1, this small magnitude mode in the 

generator rotor section velocity signal would appear even smaller in the instantaneous power, 

p(t) signal.  It can also be inferred that there is only modest variation in measured magnitudes of 

lower frequencies across rotor sections when compared to the highest frequency. Thus, it can be 

deduced that the HP rotor section velocity signal is a much better candidate than p(t) for 

detection of STG shaft torsional modes, especially for higher frequency modal identification. 

 

7.2.2 Participation Factors 

    Right eigen vectors provide valuable information about the manner in which the modes show 

up in different velocity states. But, they do not represent the complete picture of how the modes 

and states are connected. To do that, it is also necessary to take into account the left eigen 

vectors, which depict how the initial conditions on states impact the magnitudes of the modes of 
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the system in a free response behavior. Participation factors combine both these vectors to 

illustrate completely how the states and modes are associated. Participation factors for the 

Kundur 1036 STGS system computed using (6.18) are given in Table 7-4 and illustrated in 

Figure 7-3. Just like in right eigen vectors charts, the y-axis in this chart is logarithmic because 

the values are of different orders of magnitude.  

 

Table 7-4. Participation Factors of Kundur-pp-1036 System 

Rotor 43.9 Hz  30.3 Hz  24.0 Hz  16.2 Hz  

HP 1.097E-01 5.281E-02 2.357E-01 8.434E-02 

IP 3.500E-01 8.700E-04 4.217E-02 7.433E-02 

LPB 3.817E-02 1.230E-01 7.267E-02 1.039E-01 

LPA 2.046E-03 2.552E-01 5.717E-02 1.808E-02 

GENR 7.047E-05 6.813E-02 9.226E-02 2.194E-01 

  

 

 

 

 

Figure 7-3 Kundur 1036 System’s Participation Factors Across All Rotor Sections 
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Each curve in this chart illustrates how strongly a given rotor velocity state is associated with the 

different modes in the system. The participation factor for the 44 Hz mode across various RSV 

states varies tremendously. The lower frequency modes participate approximately the same 

amount across all RSV states. Mode 2 (30 Hz) participates approximately the same amount 

across all RSV states except in the IP RSV. These Figures indicate there will be difficulties 

measuring mode 4 in the generator rotor section velocity signal. To compensate for this, the HP 

rotor section velocity signal could be used as a measurement signal, because in this state all the 

modes participate equally and sufficiently well.  

 

7.2.3 Impulse Response Analysis 

    The third analysis that will be performed on the Kundur 1036 STG shaft system is the 

impulse response test. As discussed in the previous chapter, instead of using frequency domain 

methods to obtain the transfer function, the impulse response includes a time domain simulation 

of the shaft system to obtain the modal magnitudes in different rotor velocity states. This is in 

contrast to the first two analyses, which used right eigen vectors and participation factors, i.e., 

eigen properties of the shaft system. This allows us to compare not only the magnitude of a 

particular mode across rotor sections but also different modal magnitudes in given rotor sections. 

This allows us the opportunity to test the theoretical inferences made using right eigen vectors 

and participation factors analyses.  

   The isolated shaft system is simulated in ATP using an equivalent LC tank circuit where 

the rotor section mass inertias are represented by capacitors, and shaft spring constants are 

represented by inverse inductance values. Just as in full simulations, where the main disturbance 

torque enters the shaft system in the generator-section through an electrical torque signal, here 
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too the disturbance enters the generator rotor section in the form of a short impulse that 

represents a disturbance torque. Prior to the disturbance, all the states, capacitor voltages and 

inductor currents, are equal to zero. The effect of the disturbance, a short current pulse for about 

20 milliseconds, is that capacitor voltages and inductor currents states display free-response type 

behavior decaying down to zero. These speed signals are measured in all rotor sections and 

modal decomposition is performed using Prony’s method to determine the resulting modal 

frequencies and magnitudes. These results are shown in table 7-5 and Figure 7-4. As predicted 

earlier from eigen analysis, the 44 Hz mode magnitude is very small in the generator rotor 

section velocity signal, as compared to the HP rotor section velocity signal. In addition, as 

mentioned in section 7.1, this small magnitude mode in the generator rotor section velocity 

signal would appear even smaller in the instantaneous power, p(t) signal. Also, all the modes 

appear well in the HP rotor section velocity signal.  

 

Table 7-5. Impulse Response Modal Magnitudes of Kundur-pp-1036 system 

  HP IP  LPB LPA GENR 

Frequency (Hz) Magnitude Magnitude Magnitude Magnitude Magnitude 

43.9975 2.26E-05 2.96E-05 4.4E-06 0.000001 2E-07 

30.31358 0.001817 0.000172 0.000909 0.001292 0.000787 

24.08246 0.005947 0.001838 0.001083 0.000944 0.001415 

16.22699 0.006954 0.004773 0.002529 0.001039 0.004274 
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Figure 7-4 Kundur 1036 System Impulse Response Results 

 

 

 

7.2.4 Conclusions for Kundur 1036 System 

Looking at the chart for participation factors in Figure 7-3, it can be inferred that the highest 

frequency mode (HFM) does not participate sufficiently well in the generator rotor section 

velocity state. This fact was confirmed by impulse response test results shown in Figure 7-4 

where the measured magnitude of the 44Hz mode (HFM) was 10,000 times smaller than the 16 

Hz mode. In real-life situations, this would mean that it would be extremely hard to detect the 44 

Hz mode in the generator rotor section velocity signal. Moreover, it would be even harder to 

detect in the instantaneous power, p(t) signal. However, there is a solution to this problem. The 

REV or mode shapes, shown in Figure 7-2, indicate that the 44 Hz mode would be 100 times 

stronger in the HP rotor section velocity signal. Moreover, the rest of the modes participate 

sufficiently well in the HPRSV. This indicates that the HP rotor section velocity signal is a much 
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better candidate for detecting these torsional modes when compared to the generator rotor 

section velocity signal and a better candidate than the associated instantaneous power signal. 

 

 

7.3 System 2: 960 MVA STG shaft system from Kundur 1038 

 

      This 960 MVA STG shaft system is identical to the previous STG shaft system with respect 

to the layout. Consequently, it also has four natural torsional frequencies. They are 8.4 Hz, 15.2 

Hz, 20.3 Hz and 23.6 Hz. Just as in the previous section, all the eigen properties were computed 

using the system’s state matrix built using the converted p.u. data. 

 

 

 

 

 

Figure 7-5 Schematic Layout of STG Shaft System of Kundur pp. 1038 Problem 

 

Table 7-6 Rotor Section Inertias 

Rotor H (MW-s/MVA) 

HP 0.176 

LPC 1.427 

LPB 1.428 

LPA 1.428 

GENR 0.869 

 

 

 

HP LPC 

 
LPB LPA 

   

G 
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Table 7-7 Shaft Spring Constants 

Shaft K (pu. torque/rad) 

HP-LPC 17.78 

LPC-LPB 27.66 

LPB-LPA 31.31 

LPA-GENR 37.25 

 

7.3.1 Eigen vectors 

The right eigen vectors for this system are shown in Table 7-8. A plot of these vectors is shown 

in Figure 7-6.  

 Table 7-8  Right Eigen vectors for Kundur-pp-1038 system 

Rotor 

23.62 Hz 

Mode 

20.22 Hz 

Mode 

8.23 Hz 

Mode 

15.18 Hz 

Mode 

HP 1 -0.49422 1 -0.9212 

LPC -0.15693 -0.07506 0.859409 -0.48095 

LPB 0.045615 0.526171 0.139315 1 

LPA -0.01861 -0.99879 -0.58708 0.106318 

GENR 0.010776 1 -0.87799 -0.84163 

 

 

 

Figure 7-6 Kundur 1038 Right Eigen Vector Absolute Magnitudes Across Rotor Sections 
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The highest frequency mode (HFM) is 23.6 Hz. There is extensive variation in the right eigen 

vector (REV) of this mode across rotor section velocity states. Just like in the Kundur 1036 

system, the smallest eigen vector value is about 100 times smaller than the largest value. Also, 

this smallest eigen vector value occurs in the generator rotor section velocity state. Although the 

variation in the rest of the mode shapes is considerable, they are smaller compared to that of the 

23 Hz mode. 

 

7.3.2 Participation Factors 

The participation factors for this system are given in Table 7-9 and a plot of these factors is 

shown in Figure 7-7. It can be inferred from this figure that although the generator rotor section 

velocity state participates in lower frequency modes approximately uniformly, it has very little 

participation in the highest frequency mode (HFM) as indicated by the blue curve with the cross 

marker. The HFM participates very well in the HP rotor section velocity state, as indicated by the 

corresponding participation factor (4.09e-1), which is more than 1,000 times larger than the 

participation factor between the generator rotor section velocity and the 23 Hz mode (2.3e-4). 

Note that the participation factor between the 20 Hz mode and the HP rotor section velocity state 

is 100 times smaller than that of the participation factor between 20 Hz mode and the generator 

rotor section velocity state. However, it is not as small as the participation factor between 23 Hz 

mode and the generator rotor section velocity state, which is 1,000 times smaller than the 

participation factor between the 23 Hz mode and the HP rotor section velocity state. This 

establishes the HP rotor section velocity state as a better candidate to detect all the modes as 

compared to the participation factor between the 20 Hz mode and the generator rotor section 

velocity state. Recall that an identical conclusion was reached for the 1036 system earlier.  
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Table 7-9. Participation factors of Kundur-pp-1038 system 

Rotor 
23.62 Hz 

Mode 

20.22 Hz 

Mode 

8.23 Hz 

Mode 

15.18 Hz 

Mode 

HP 4.0986E-01 7.8448E-03 3.6368E-02 2.9411E-02 

LPC 8.1835E-02 1.4673E-03 2.1778E-01 6.4998E-02 

LPB 6.9192E-03 7.2146E-02 5.7270E-03 2.8120E-01 

LPA 1.1511E-03 2.5996E-01 1.0170E-01 3.1785E-03 

GENR 2.3498E-04 1.5858E-01 1.3842E-01 1.2121E-01 

 

 

 

 

 

 

 Figure 7-7 Kundur 1038 System’s Participation Factors Across All Rotor Sections 

 

 

 

7.3.3 Analysis of Impulse Response Modal Magnitudes  

The impulse response modal magnitudes for this system are given in Table 7-10 and a plot of 
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indicates that all the modes show up equally well in the generator rotor section velocity signal, 

except for the 23 Hz mode whose magnitude is about 1,000 times smaller than the rest. However, 

if the HP rotor section velocity signal is chosen as the measurement signal, then all the modes 

appear approximately equally well. Moreover, these are relatively equal or higher than those 

detected in the generator rotor section velocity signal. Again, the observations in section 7.1 

would imply that the 23 Hz mode would be even weaker in the instantaneous power, p(t), signal 

leading to the conclusion that the HP rotor section velocity signal is again a better candidate for 

modal extraction than the p(t) signal. 

Table 7-10. Impulse Response Modal Magnitudes of Kundur-pp-1038 System 

  HP LPC LPB LPA GENR 

Frequency 

(Hz) Magnitude Magnitude Magnitude Magnitude Magnitude 

23.63 0.000333 5.23E-05 1.52E-05 6.2E-06 3.8E-06 

20.21 0.001348 0.000206 0.001436 0.002725 0.00273 

15.18 0.0026 0.001359 0.002816 0.0003 0.002371 

8.235 0.003453 0.002968 0.000484 0.002024 0.003029 

 

 

 

 
 

Figure 7-8. Kundur 1038 System Impulse Response Results 
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7.3.4 Conclusions 

As observed previously in the Kundur 1036 system, here too the highest frequency mode 

(23HZ mode) participates very weakly in the generator rotor section velocity state, as validated 

by the impulse response measured magnitude in the generator rotor section velocity signal. In 

contrast, the measured magnitude of the 23 Hz mode in the HP rotor section velocity signal is 

much higher than in the generator rotor section velocity signal. Moreover, the magnitudes of all 

the modal components are sufficiently large enough to be detected in the HP rotor section 

velocity signal. This makes it a better candidate than the generator rotor section velocity signal 

and an even better candidate than the p(t) signal for detecting torsional modal components. 

 

7.4 System 3: 191  MVA STG Shaft System from Kundur pp 1039 

The third STG shaft system that will be studied is the Kundur 1039 system, whose data was 

presented in the previous chapter. For convenience the shaft configuration is presented here 

again in Figure 7-9. This system has four rotor sections and thus three torsional natural 

frequencies (22 Hz, 29 Hz and 52 Hz.)  

 

7.4.1 Eigen vectors Analysis 

The right eigen vectors for this system are shown in Table 6-6. A plot of these vectors is shown 

in Figure 7-10. The mode shape for the 52 Hz mode indicates that it shows up very 

insignificantly in the GNRSV signal, as compared to the rest of the rotor states. The mode shapes 

of the rest of the modes do not vary as much, indicating that they show up well in all the rotor 

section velocity states. 
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Figure 7-9  STG Shaft System Schematic for Kundur 1039 System 

 

 

 

 
 

 

Figure 7-10 Kundur 1039 Right Eigen Vector Absolute Magnitudes Across Rotor Sections 

 

 

 

7.4.2 Participation Factors 

The participation factors for this system are given in Table 6-7, and a plot of these factors are 

shown in Figure 7-11. 
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Figure 7-11 Kundur 1039 System’s Participation Factors Across All Rotor Sections 

 

 

From Figure 7-11, it can be inferred that the three modes participate very unevenly in the 

generator rotor section velocity state with the highest frequency mode (52 Hz) participating 

approximately 10,000 times weaker than the 22 Hz mode. Also, all the modes participate 

relatively equally and sufficiently in the HP rotor section velocity. 

 

 

7.4.3 Analysis Using Impulse Response Modal Magnitudes  

  The impulse response modal magnitudes for this system are given in Table 6-8, and a plot of 

these factors is shown in Figure 7-12. 
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Figure 7-12. Kundur 1039 System Impulse Response Results 

 

 

As predicted by the participation factors and the right eigen vectors, the 52 hz mode magnitude 

in the generator rotor section velocity state is very small (100 times smaller) compared to the 

measured magnitude in the HP rotor section velocity signal.  Moreover, all the measured modal 

magnitudes are higher in the HP rotor section velocity signal than in the generator rotor section 

velocity signal. These facts again point to the conclusion that the HP rotor section velocity signal 

is a better candidate for detecting the torsional modes than the generator rotor section velocity 

signal. In addition, it is an even better candidate than the instantaneous power signal, p(t), 

because of the reasons mentioned in section 7.1. 
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data that belongs to actual generators and turbines, thus making the case more realistic. The shaft 

system configuration and data are provided in Figure 7-13 and Table 7-11. 

 

 

 

Figure 7-13 STG Shaft System for IEEE-FBM 

 

Table 7-11. Rotor Spring Mass Parameters 

Inertia 

 

Spring Constant 

Mass H (sec) 

 

Shaft K (p.u.) p.u. torque / rad 

HP 0.092897 

 

HP-IP 7277 19.303 

IP 0.155589 

 

IP-LPA 13168 34.929 

LPA 0.85867 

 

LPA-LPB 19618 52.038 

LPB 0.884215 

 

LPA-GEN 26713 70.858 

GEN 0.868495 

 

GEN-EXC 1064 2.822 

EXC 0.0342165 

    

 

 

 

7.5.1 Eigen vectors 

The right eigen vectors for this system are shown in Table 7-12. A plot of these vectors is shown 

in Figure 7-14. 
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Table 7-12  Right Eigen Vectors for IEEE-FBM System 

Rotor 47.45 Hz Mode 32.28 Hz Mode 25.54 Hz Mode 15.71 Hz Mode 20.21 Hz Mode 

HP -0.7874 0.863783 1 -0.77714 -0.10989 

IP 1 -0.0437 0.342151 -0.58376 -0.06464 

LPA -0.11328 -0.50271 -0.22972 -0.34244 -0.01499 

LPB 0.021114 1 -0.09543 0.1117 0.039498 

GENR -0.00446 -0.62049 0.165974 0.373148 0.037344 

EXCR 0.000945 0.376842 -0.25255 1 -1 

 

 

 

Figure 7-14 IEEE-FBM Right Eigen Vector Absolute Magnitudes Across Rotor Sections 

 

 

Shown in the chart are mode shapes of the five modes with frequencies 15.7 Hz, 20 Hz, 25 Hz, 

32 Hz and 47 Hz. The mode shape for highest frequency mode, i.e., the 47 Hz mode, indicates 

that this mode appears 200 times smaller in the generator rotor section velocity state than in the 

HP rotor section velocity state. Moreover, as mentioned in section 7.1, because the generator 

speed is not a measurable quantity because of the presence of the exciter on the end, these modes 

would have be detected in the instantaneous power signal, p(t). Again, as mentioned in section 

7.1, it would be even harder to measure these modes as they would be even smaller, thus leading 
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to the conclusion that the HP rotor section velocity signal is the superior candidate of all these 

signals for torsional modal extraction.  

 

7.5.2 Participation Factors Analysis 

The participation factors for this system are given in Table 7-13, and a plot of these factors is 

shown in Figure 7-15. 

Table 7-13. Participation Factors of IEEE-FBM Machine 

Rotor 

47.45 Hz 

Mode 

32.28 Hz 

Mode 

25.54 Hz 

Mode 

15.71 Hz 

Mode 

20.21 Hz 

Mode 

HP 0.128211 0.02295 0.243714 0.074609 0.014467 

IP 0.346346 9.84E-05 0.047785 0.070507 0.008383 

LPA 0.024527 0.071851 0.118883 0.1339 0.00249 

LPB 0.000877 0.292775 0.021125 0.014671 0.017789 

GENR 3.85E-05 0.110717 0.062766 0.160812 0.015619 

EXCR 6.81E-08 0.001609 0.005726 0.045502 0.441252 

 

 

 

Figure 7-15 IEEE-FBM Participation Factors Across All Rotor Sections 
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For the sake of convenience, the two significant curves, participation factors of generator rotor 

section velocity and HP rotor section velocity states from Figure 7-15, are plotted in Figure 7-16. 

It can be inferred that although GNRSV participates equally and sufficiently among the 32 Hz, 

25 Hz, 15.7 Hz and 20 Hz modes, its participation factor with respect to 47 Hz mode is 

extremely small, indicating that there is very slight likelihood that the 47 Hz mode will be 

detected in the generator rotor section velocity signal. Because these generator rotor section 

velocity signals are not measureable, the instantaneous power signal, p(t), would have to be used. 

Again, as mentioned in section 7.1, it would be even harder to measure these modes as they 

would be even smaller in p(t). However, observing the HP rotor section velocity participation 

factor curve, it is clear that it participates equally and sufficiently well in all the modes, 

dramatically increasing the likelihood of the 47 Hz mode being detected in its measured signal. 

 

 
 

 

Figure 7-16 IEEE-FBM Participation Factors Across Generator and HP Rotor Sections 
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7.5.3 Impulse Response Modal Magnitudes  

The impulse response modal magnitudes for this system are given in Table 7-14, and a plot of 

these factors is shown in Figure 7-17. As predicted earlier from eigen analysis, the 47 Hz mode 

magnitude is very small in the generator rotor section velocity signal as compared to the HP rotor 

section velocity signal. Also, all the modes appear well in the HP rotor section velocity signal. 

 

Table 7-14. Impulse Response Modal Magnitudes of the IEEE-FBM System 
Frequency 

(Hz) HP   IP   LPA   LPB   GENR    EXCR   

47.45727 8.19E-06 1.04E-05 1.18E-06 2.19E-07 4.63E-08 1.01E-08 

32.26493 0.001562 7.88E-05 0.000909 0.001809 0.001121 0.000682 

25.53284 0.005395 0.001846 0.001237 0.000515 0.000894 0.001364 

15.70381 0.00649 0.004875 0.002861 0.000932 0.003117 0.00834 

20.21083 0.00079 0.000464 0.000108 0.000284 0.000268 0.007197 

 

 

 

 
 

Figure 7-17 IEEE-FBM Impulse Response Results: Relative Magnitudes of Modes Measured in 

Different Rotor Section Speeds 
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7.6 General Conclusions from Right Eigen Vector Analysis of All Four Systems 

 

For the sake of convenience, the mode-shapes (right eigen vectors) of the highest 

frequency modes of all four systems are plotted in a single chart in Figure 7-18. Because there 

are different numbers of rotor sections in these systems, the x-axis is not labeled. However, all 

the systems share a similar configuration in the sense that the HP rotor section is on the left hand 

side of the shaft system configuration and the exciter is on the right. Thus, we can choose to 

identify the x-axis unit labeled 1 as that of HP rotor section. Similarly, the unit labeled 4 

corresponds to generator rotor section, except in the case of 1039 system where the unit labeled 4 

corresponds to generator rotor section. Note that the exciter section of the FBM system is 

omitted for the sake of clarity. From these curves, it can be inferred that there is huge variation in 

all these mode-shapes and all the modal magnitudes tend to get extremely small in the generator 

rotor section velocity state as compared to the HP rotor section velocity state.  

 

 

 
 

Figure 7-18 Comparison of Mode Shapes (Absolute Values) of Highest Frequency Modes 
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For the sake of convenience, the components corresponding to the HP rotor section velocity and 

generator rotor section velocity states of all the mode-shapes are separately plotted in Figure 7-

19. These are normalized such that the right eigen vector component corresponding to the HP 

state is 1. From this figure, it can be inferred that there is a significant amount of attenuation of 

these modal magnitudes from the HP rotor section velocity to the generator rotor section 

velocity. As mentioned in section 7.1, these modes in the generator rotor section velocity signal 

would be even more attenuated in the instantaneous power, p(t), signal. To remedy this situation, 

it is recommended that the HP rotor section velocity signal be used instead of instantaneous 

power, p(t) signal.  

 

 
 

 

Figure 7-19 Comparison of Normalized (with respect to HP State) Right Eigen Vectors of 

Highest Mode in Generator State 
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Shown in Figure 7-20 is the improvement in magnitude of the highest frequency mode obtained 

by using the HP rotor section velocity signal instead of the generator rotor section velocity 

signal. It can be observed that there is a gain of approximately 100 in all the shaft systems.  

 

 
 

 

Figure 7-20 Improvement Attained using HP Rotor Section Speed Signal Instead of Generator 

Speed Signal for Measuring Highest Modal Component 

 

 

Although using the HP rotor section velocity signal instead of the generator rotor section velocity 

yields enormous gains in the highest mode, we have to be careful to not let the other modes 

attenuate. Shown in Figure 7-21 is the plot of the lowest frequency mode which has the highest 

change compared to others. However, as observed from the figure, these do not attenuate for 

three of the systems and for the system that attenuates, it does so only modestly ( gain = 0.67 ). 

This attenuation is miniscule compared to the attenuation (gain = 3.83e-3) that occurred in the 

same shaft system (Kundur 1039) for the highest mode when using the GNRSV signal instead of 
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the HPRSV signal. It can be concluded from this data that the HP rotor section velocity signal is 

again a much better candidate for detecting the modal components than the generator rotor 

section velocity signal or the associated p(t) signal because of the reasons mentioned in section 

7.1. 

 
 

 

Figure 7-21 Normalized (With Respect To Generator Speed State) Right Eigen Vectors of 

Lowest Frequency Mode in HP Rotor Section Speed State 

 

 

7.7 Overall Analysis and Conclusions Using Participation Factors 

Show in Figure 7-22 is the comparison of participation factors between the four STGS systems 

for the highest frequency mode. 
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Figure 7-22 Comparison of Participation Factors of Highest Frequency Mode Between Generator 

and HP Rotor Section Speed States 

 

The first set, labeled Kundur 1036, shows the comparison between participation factors of the 

highest frequency mode and the HP rotor section velocity state, and participation factors of the 

highest frequency mode and the generator rotor section velocity states. The maroon bar indicates 

that the highest frequency mode participates very weakly in the generator rotor section velocity 

state (7e-5). However, it participates relatively strongly in the HP rotor section velocity state i.e., 

approximately 1,000 times better. The same trend continues in the rest of the three shaft systems. 

Overall, it can be inferred that, in all the cases, the highest frequency mode participates very 

strongly in the HP rotor section velocity state compared to the generator rotor section velocity 

state. This again leads to the conclusion that the HP rotor section velocity signal is a better 

candidate for detecting modes than the generator rotor section velocity signal, or its associated 

instantaneous power signal, p(t). 
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7.8 Overall analysis using Impulse Response Analysis 

The impulse response for all four STGS systems is shown in Figure 7-23. The first set, labeled 

Kundur 1036, indicates the measured magnitudes of the highest frequency modal component (44 

Hz) as detected in the generator rotor section velocity and HP rotor section velocity signals in the 

Kundur 1036 system. This indicates that this mode appears extremely small in the generator 

rotor section velocity signal and the measured magnitude in the HP rotor section velocity signal 

is larger (about 100 times). The remaining sets of pairs show the same relationship for the rest of 

the three STGS systems.  

 

 
 

Figure 7-23 Comparison of Measured Values of Highest Modal Component Between Generator 

and HP Rotor Section Speed Signal 

 

 

For the sake of convenience, this relationship is plotted in Figure 7-24. As shown in this 

figure there is a significant improvement, a gain of two orders of magnitude, in this modal 

magnitude when it is measured in the HP rotor section velocity signal instead of the generator 

rotor section velocity signal. It can also be inferred that the improvement occurs across all the 

shaft systems and in approximately similar amounts. This gain in modal magnitudes is going to 
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be even higher when using HP rotor section velocity signal, instead of the instantaneous power 

signal, p(t), because of the reasons mentioned in section 7.1. 

 

 
 

Figure 7-24 Improvement of Using HP Signal Instead of Generator Signal for Measuring Highest 

Modal Component 

 

 

 

7.9 Conclusions 

  In this chapter, four typical STG shaft systems were analyzed using three types of 

analysis: right eigen vector analysis, participation factor analysis and the impulse response test. 

All these shaft systems have a common configuration of rotor masses aligned linearly and 

connected from one end (usually having the high-pressure turbine) to another end (usually 

having the generator/exciter). The generator and the adjacently connected low-pressure turbine 

usually tend to have the highest moments-of-inertia when compared to other rotors in the system. 

In all four cases that were tested, it has been observed that the higher frequency modal 

components tend to show up with much higher order magnitudes (approximately 100 times 

stronger) in the HP rotor section’s velocity signal than that of the generator. This could be 
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because the generator and adjacent rotor sections are considerably heavier than the HP and 

connected rotor sections. Moreover, all the modes’ magnitudes were of similar order in the HP 

rotor section velocity state. This allows the option of choosing the HP rotor section velocity 

signal when the generator velocity signal or its associated instantaneous power signal, p(t) is 

insufficient to detect the required modal magnitudes. Thus, it can be concluded that the HP rotor 

section velocity signal is the more superior candidate for detecting STG shaft torsional modes 

than the generator rotor section velocity signal (which is not available for measurement in most 

cases) or its associated instantaneous power signal, p(t). 

 



 

 

 

 

 

 

 

CHAPTER 8 

IEEE-FBM FULL TEST SYSTEM APPLICATION AND ANALYSIS 

 

 In this chapter, two test cases, whose data have been provided in literature, will be 

utilized to illustrate and validate the proposed methodology. The first test case, the so called First 

Benchmark (FBM) case, is a standardized test case developed by the IEEE’s SSR Task Force 

based on the Navajo Project [4] for the industry to analyze different models, compare their 

results and validate their simulation programs. All the data used in this case belongs to actual 

generators and turbines, thus making the case more realistic. Moreover, the authors have 

provided enough data to help validate the proposed method sufficiently. The second test case 

consists of a similar STG shaft system, whose torsional data and generator electrical parameters 

have been provided in [16]. However, because the electrical network data was not provided, the 

FBM system’s electrical network configuration and parameters have been used. Both the systems 

have been built and simulated in ATPDraw software. The main concern is to apply the proposed 

method on this simulated model and validate it by verifying SSR frequencies and the shaft spring 

constant values. 
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8.1 Test Case 1: IEEE-FBM 

This test case consists of a six-stage steam turbine-generator connected to a series 

capacitor compensated transmission line, which is connected to an infinite bus on the other end. 

The network and the transmission line parameters are shown in Figure 8-1.  

 

 

 

 

 

 

 

 

Figure 8-1 FBM Test Case’s Network 

The electrical parameters of the 892.4 MVA generator and the rotor masses and shaft 

spring constants of the six turbine sections are given in Tables 8-1, 8-2 and 8-3.  
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Table 8-1. Generator Impedances, Time Constants and Operating Conditions 

Generator Impedances (p.u.) 

 

Time Constants (sec) 

 

   

1.79 

 

 

   
  

4.3 

 

  
  

0.169 

 

 

   
   

0.032 

  
   0.135 

 

 

   
  

0.85 

 

   

0.13 

 

 

   
   

0.05 

 

   
1.71 

 

 

   

0 

 

  
  

0.228 

   

 

  
   

0.2 

 

Generator Operating Condition 

   

power output 0.9 p.u. 

   

power factor 0.9 lagging 
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Table 8-2. Rotor Circuit Parameters (p.u.) 

Parameter D-axis Q-axis 

Rf 0.00141 0.01406 

Xf 0.062 0.326 

Rk 0.0041 0.0082 

Xk 0.0055 0.095 

Xa 1.66 1.58 

XL 0.13 0.13 

 

 

 

Table 8-3. Rotor Spring Mass Parameters 

Inertia 

 

Spring Constant 

Mass H (sec) 

 

Shaft K (p.u.) p.u. torque / rad 

HP 0.092897 

 

HP-IP 7277 19.303 

IP 0.155589 

 

IP-LPA 13168 34.929 

LPA 0.85867 

 

LPA-LPB 19618 52.038 

LPB 0.884215 

 

LPA-GEN 26713 70.858 

GEN 0.868495 

 

GEN-EXC 1064 2.822 

EXC 0.0342165 

    

 

 



110 

 

This linear system consists of six rotor masses connected by five shafts, as shown in 

Figure 8-2. Although this system would have five resonant frequencies, only four frequencies 

have been provided in [4]. These are shown in the first four rows of Table 8-4. However, because 

the rotor masses and shaft spring parameters are specified in [4], all five frequencies have been 

determined using eigen analysis as described in Chapter 6. The fifth frequency, shown in Table 

8-4, is 47.45 Hz. 

 

 

 

Figure 8-2 Lumped Spring Mass Model of the Steam Turbine 

Table 8-4. List of SSR Frequencies 

Frequency Hz 

1 15.71 

2 20.21 

3 25.55 

4 32.28 

5 47.45 

 

 

 

8.1.1Simulation in ATP/ATPDraw Software 

The test case has been built and simulated in ATPDraw and ATP software, as shown in 

Figure 8-3.  

 

Exc Gen LPB LPA IP HP 

TE ω 
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Figure 8-3 ATPDraw Schematic Showing the IEEE FBM System 

 

The generator is simulated by the UM-1 model, which accommodates all electrical 

parameters of the generator. However, the mechanical rotor components have to be simulated 

external to the electrical model. The software simulates this mechanical system, which consists 

of rotor masses, shafts and torque inputs, with an electrical analog consisting of capacitors, 

inductors and constant current sources. A three-phase ground fault is applied for a duration of 

0.02 seconds at the fault bus as shown in Figure 8-1. The instantaneous terminal power, p(t), is 

shown in Figure 8-4.  
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8.1.2 Analysis of IEEE-FBM Simulation Results 

 

Figure 8-4. IEEE-FBM Systems’ Instantaneous Power p(t) 

 

Prony’s method was used to estimate the constituent modal components in this signal. 

The resulting modes, sorted using the reordering algorithm discussed in Chapter 4, are shown in 

Table 8-5a.  The input parameters for Prony’s method are: tmin =  3.50, tmax =  4.0, numModes =    

120 and nSkipSample =  12. A comparison of actual vs. estimated signal waveforms is shown in 

Figure 8-4b.   
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Table 8-5a. List of 10 Significant Constituent Modal Components in the IEEE-FBM System’s 

Power Signal, p(t), Found Using Prony’s Method 

 

Magnitude Exp-Decay Frequency (Hz) Phase (Rad) 

0.276017667 0.0260722 15.8447405 2.1305827 

0.180805621 0.0860599 20.2470613 0.5575678 

0.094140055 0.0472314 11.9562734 0.8357333 

0.086593703 -0.0594629 25.5213181 -0.035871 

0.061468645 -7.4230014 3.2819871 1.4518369 

0.007693741 -0.7214964 31.5658185 -0.4270126 

0.021467517 -918.1780083 0 3.1415927 

0.006047653 -4.0827177 35.8677556 -1.686961 

0.009736733 -17.2561707 41.0963734 1.7500572 

0.008595033 -145.1546038 416.6666783 3.1415927 

 

 

 

Figure 8-4b Comparison of Actual Vs. Estimated Instantaneous Power Signals of IEEE-

FBM System  
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It is to be noted that not all the modes in the list shown in Table 8-5a are shaft torsional 

modes. Most are noise modes that are generated by Prony’s method because of the non-linear 

nature of p(t) signal as discussed in Chapter 3. However, it was observed that 11.9 Hz mode 

appeared consistently across multiple candidate data sets (defined by tmin and tmax). The existence 

of this mode could be attributed to the interaction of the series capacitance in the transmission 

line and other system components. For the sake of convenience, the list of shaft torsional modes 

are shown separately in Table 8-5b. 

 

Table 8-5b. Estimated Shaft Torsional Frequencies Values in the IEEE-FBM System’s Power 

Signal, p(t), Found Using Prony’s Method 

 

Magnitude Exp-Decay Frequency (Hz) Phase (Rad) 

0.276017667 0.0260722 15.8447405 2.1305827 

0.180805621 0.0860599 20.2470613 0.5575678 

0.086593703 -0.0594629 25.5213181 -0.035871 

0.007693741 -0.7214964 31.5658185 -0.4270126 

 

A comparison between the estimated frequencies and the FBM’s frequencies is given in 

Table 8-6. It is clear from the small percentage errors that the estimated frequency values match 

the FBM’s frequencies very closely. 

 

Table 8-6. Comparison Between Estimated vs. IEEE-FBM System’s Actual SSR frequencies  

SSR frequencies  (Hz)given 

in IEEE FBM paper 
Estimated SSR frequency (Hz) values extracted 

from the  power signal using Prony’s method 
Percentage 

Error 

15.71 15.8447405 0.86 

20.21 20.2470613 0.18 

25.55 25.5213181 0.11 

32.28 31.5658185 2.21 
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But, as shown in Table 8-5b, only four out of the five SSR frequencies could be 

extracted. The highest torsional frequency, 47 Hz, is missing. This is consistent with the results 

of our analysis provided in Chapter 6 using right eigen vectors, participation factors and impulse 

response tests on the IEEE-FBM shaft system. These analyses indicated that the highest 

frequency participated very weakly in the generator rotor velocity state. This causes it to show up 

even more weakly in the instantaneous power signal, p(t) resulting in it not being detected by the 

modal decomposition routine. Another reason might, among others, be the insufficient 

magnitude of the fault disturbance. To compensate for this, the process has been repeated, using 

the HP rotor section speed signal, as shown in Figure 8-5, in lieu of the power signal. It is to be 

noted from Chapter 7 analyses (Table 7-13) that the HP rotor section velocity state has a higher 

participation factor (0.128) with the 47 HZ mode compared to the generator section velocity state 

(3.85E-5).  

 

Figure 8-5. Speed Signal of the IEEE-FBM System’s HP Rotor Section 
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Prony’s method was used to estimate the constituent modal components in this signal. 

These modes, which also include the noise modes along with the shaft torsional frequencies, are 

shown in Table 8-7a.  The input parameters for Prony’s method are: tmin =  3.5, tmax =  4.0, 

numModes = 120 and nSkipSample =  10. For the sake of convenience, the list of shaft torsional 

modes are shown separately in Table 8-7b. 

 

Table 8-7a. List of 10 Significant Constituent Modal Components in the HP Rotor Section 

Velocity Signal Found Using Prony’s Method 

 

Magnitude ExpDecay Frequency (Hz) Phase (Rad) 

0.028999 0.033513 25.49858 -1.57742 

0.017561 0.048661 15.86501 0.541311 

0.00898 0.045958 20.24075 -0.77257 

0.0021 -0.03208 32.25314 0.850057 

0.000353 -10.3972 2.218337 -2.57716 

0.000238 -28.6691 0 0 

5.11E-05 0.004753 47.45543 0.662151 

6.08E-06 -3.96825 36.05672 2.404539 

4.92E-05 -652.728 173.248 1.602849 

5.72E-06 -42.2946 58.6955 1.433849 

 

 

Table 8-7b. Estimated Shaft Torsional Modal Values in the Speed Signal Found Using Prony’s 

Method 

 

Magnitude ExpDecay Frequency (Hz) Phase (Rad) 

0.028999 0.033513 25.49858 -1.57742 

0.017561 0.048661 15.86501 0.541311 

0.00898 0.045958 20.24075 -0.77257 

0.0021 -0.03208 32.25314 0.850057 

5.11E-05 0.004753 47.45543 0.662151 
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A comparison of actual vs. estimated signal waveforms is shown in Figure 8-6. As seen 

in this figure, Prony’s method was able to extract the underlying modal components with 

negligible error.  

 

Figure 8-6. Waveform Comparison of IEEE-FBM System’s Actual vs. Estimated HP signal 

 

Moreover, all five SSR frequencies have been extracted successfully. These SSR 

frequency values and the rotor mass values were used in an iterative least squares method to 

estimate the shaft spring constants. The results of the least squares method are shown in Table 8-

8. It can be seen that this method has been able to estimate the spring constants to within a 

maximum error of 5.6%.  
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Table 8-8. Comparison Between Estimated vs. IEEE-FBM System’s Actual Shaft Spring 

Constant Values (p.u.) 

Estimated Shaft Spring 

Constants ( found 

using Newton Raphson 

least squares method) 

Actual FBM Shaft Spring 

Constants (values provided 

in paper) 

Percentage 

Error 

7193.975986 7276.96 1.14 

13363.35297 13167.943 1.48 

20711.43256 19617.974 5.57 

25641.41227 26712.949 4.01 

1063.86061 1063.991 0.012 

 

On another note, shown in Table 8-7b, are the exponential decay values of the constituent 

SSR modal components along with the frequency values. Although these might indicate that the 

responses will increase exponentially to infinity, it may not necessarily be true. These damping 

values are simply the estimates determined by Prony's method for the signal for a particular 

chosen time interval. The aim of Prony's method is to minimize the error between the estimated 

and actual signal. These signals match closely with minimum error as seen in Figure 8-6. 

However, because these damping values are so small compared to the frequency values, they 

were not accurately determined.  

 

8.2 Test Case 2: Kundur 1036 System 

The second test case that will be used to validate the presented methodology is the 

Kundur 1036 system. The shaft system torsional and generator data for this system has been 

provided in Kundur [16]. This system consists of a steam turbine generator connected to a 

network similar to the one provided in FBM test case. The only exception is that the 

transmission line’s series capacitances have been reduced such that instead of providing 70 

percent compensation they provide 7 percent compensation.  The shaft system consists of five 
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rotor masses as shown in Figure 8-7. The torsional data of the shaft system is provided in Table 

8-9. The electrical parameters of the 2-pole, 555 MVA generator are given in Table 8-10. 

 

 

 

 

 

Figure 8-7 Kundur 1036 Shaft System Configuration 

 

Table 8-9 Specifications for Kundur 1036 Shaft System Parameters 

Rotor H ( MW.s/MVA) Shaft K (pu torque/rad) 

HP 0.124 HP-IP 21.8 

IP 0.232 IP-LPB 48.4 

LPB 1.155 LPB-LPA 75.6 

LPA 1.192 LPA-GENR 62.3 

GENR 0.855     

 

Table 8-10 Kundur 1036 System’s Generator Electrical Data 

Paramter p.u. value 

Ll 0.15 

Lad 1.66 

Laq 1.61 

Ld 1.81 

Lq 1.76 

Lafd 1.66 

Lffd 1.825 

Lfd 0.165 

Ra 0.003 

Rfd 0.0006 

 

JHP JIP JLPB JLPA 

KHP-IP KIP-LPB KLPB-LPA KLPA-G 

JG 
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This shaft system has the following resonant frequencies as provided in the textbook: 

16.3 Hz, 24.1 Hz, 30.3 Hz and 44.0 Hz. The schematic of the entire system consisting of the 

torsional system, the generator model and the connected electrical network, built in ATPDraw, 

is shown in Figure 8-8.   

 

8.2.1 Simulation in ATP/ATPDraw Software 

 

Figure 8-8 ATPDraw Schematic of the Kundur 1036 System 

 

Similar to the FBM test case, a three-phase ground fault is applied at the other end of the 

transmission line for 20 milliseconds and removed. The resulting ring-down signals, generator 

instantaneous power p(t) and HP rotor velocity ωHP(t), are recorded.  

 

8.2.2 Analysis of Kundur 1036 System Simulation Results 

Modal decomposition, based on Prony’s method, is used to identify the underlying modal 

components in both these signals. Results of modal decomposition on the power signal p(t) are 

shown in Table 8-11a, which includes noise modes along with a subset of shaft torsional modes. 

The input parameters for Prony’s method are: tmin =  4.5, tmax =  5.0, numModes =    180 and 
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nSkipSample =  10. For the sake of convenience, the list of shaft torsional modes are shown 

separately in Table 8-11b. A comparison of actual vs. estimated signal waveforms is shown in 

Figure 8-8b. 

 

Table 8-11a. List of 10 Significant Constituent Modal Components in the Instantaneous  

Power ,p(t), Signal Found Using Prony’s Method 

 

Magnitude Exp-Decay Frequency (Hz) Phase (Rad) 

0.100335294 -0.214798 1.0278007 1.4407871 

0.026822201 -0.0268801 16.2915718 1.4259349 

0.015395111 0.0635373 20.7025312 2.4360554 

0.007576683 0.0101545 24.1168428 3.1185639 

0.004403952 0.0200221 30.319575 -1.1807898 

0.001614289 -12.5397531 18.5551256 3.1060812 

0.000835548 -19.4412246 6.6322957 1.4899333 

0.000137558 -0.6841653 37.1079194 -2.6494426 

7.82391E-05 -3.971513 45.1327325 -1.1104041 

3.55971E-05 -2.9137386 50.9898275 1.0545063 

 

 

Table 8-11b. Estimated Shaft Torsional Modal Values in the Instantaneous  

Power ,p(t), Signal Found Using Prony’s Method 

 

Magnitude Exp-Decay Frequency (Hz) Phase (Rad) 

0.026822201 -0.0268801 16.2915718 1.4259349 

0.007576683 0.0101545 24.1168428 3.1185639 

0.004403952 0.0200221 30.319575 -1.1807898 
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Figure 8-8b. Waveform Comparison of Kundur 1036 System Actual vs. Estimated p(t) signal 

 

The 20.7 Hz mode shown in Table 8-11a was observed consistently across multiple 

candidate data sets (defined by tmin and tmax). Just as in the case of FBM system, the existence of 

this mode could also be attributed to the interaction of the series capacitance in the transmission 

line and other system components. As seen in Table 8-11b, the procedure was able to detect 

only three of the four resonant frequencies, just like in FBM case. The highest torsional 

frequency, 44 Hz, is missing. This is again consistent with the results of our analysis provided 

in Chapter 6 using right eigen vectors, participation factors and impulse response tests on the 

Kundur 1036 shaft system. These analyses indicated that the highest frequency participated very 

weakly (participation factor 7.05E-5) in the generator rotor section velocity state. This causes it 
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to show up even more weakly in the instantaneous power signal, p(t) resulting in it not being 

detected by the modal decomposition routine.  

 However, these same analyses-right eigen vectors, participation factors and impulse 

response tests-on the Kundur 1036 shaft system also indicated that all the modes participated 

strongly in the HP rotor section velocity state (participation factor = 1.1E-1). Therefore, modal 

decomposition has been performed on the HP rotor section velocity signal. The results are 

shown in Table 8-12a and Table 8-12b. The list of modal components in Table 8-12a includes 

both shaft torsional and noise modes. For the sake of convenience, the list of shaft torsional 

frequencies are shown separately in Table 8-12b. A comparison of actual vs. estimated signal 

waveforms is shown in Figure 8-8c. 

 

Table 8-12a Results of Modal Decomposition on the HP Rotor Section Velocity Signal 

Magnitude Exp-Decay Frequency (Hz) Phase (Rad) 

0.004919104 0.0004694 24.1010872 -1.7483499 

0.004633141 -0.0040039 16.2908815 -0.2803303 

0.001879906 0.0012081 30.324916 -2.9628608 

0.000735043 -0.1783341 1.0251133 2.9835261 

6.60606E-05 0.0004634 43.9975184 0.0776786 

1.1878E-06 -16.5067852 17.756971 1.2672097 

4.963E-07 -2679.291063 0 0 

2.137E-07 -34.1110417 381.9555055 0.9443255 

3.966E-07 -61.5138752 33.0911332 -3.008665 

9.29E-08 -38.2153551 99.2265085 -1.957044 

 

Table 8-12b Results of Modal Decomposition on the Kundur 1036 System’s HP Rotor Section 

Velocity Signal 

 

Magnitude Exp-Decay Frequency (Hz) Phase (Rad) 

0.004919104 0.0004694 24.1010872 -1.7483499 

0.004633141 -0.0040039 16.2908815 -0.2803303 

0.001879906 0.0012081 30.324916 -2.9628608 

6.60606E-05 0.0004634 43.9975184 0.0776786 
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Figure 8-8c. Waveform Comparison of Kundur 1036 System’s Actual vs. Estimated in HP Rotor 

Section Velocity Signal 

 

As seen in Table 8-12b, all four frequencies have been extracted precisely. Next, these 

frequencies were fed into a non-linear Newton-Raphson based algorithm to estimate the shaft 

spring constants. The results are shown in Table 8-13. The units of the spring constants are 

Nm/mech-rad. 

 

Table 8-13 Comparison Between Estimated and Kundur 1036 System’s Actual Spring Constant 

Values 

 

Estimated Actual Error  % 

30760262.08 32092838.2 4.152 

74268733.87 71251989.39 4.234 

112080995.1 111294429.7 0.707 

92176056.7 91714854.11 0.503 
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These results show that two spring constants are estimated to within 1 percent. The maximum 

error in the estimated spring constant values is about 4.2 percent. 

 

8.3 Conclusions 

 The results of time-domain simulations on two test cases were reviewed in this chapter. 

These test cases were built and simulated in ATPDraw software. The ring-down signals 

resulting from a three-phase ground fault on a transmission line were recorded. Modal 

decomposition on the instantaneous power signal revealed that most modes, except the highest 

one, were detected. This is to be expected as per the results of eigen analyses performed in 

Chapter 6. Consequently, alternative ring-down signals from other rotor sections were chosen as 

candidates for modal decomposition. These results of a modal decomposition on IEEE FBM’s 

HP rotor section velocity and Kundur 1036 HP rotor section velocity were sufficient to detect 

all the torsional modes. These modal frequency values were used in a non-linear least squares 

algorithm to estimate, within reasonable (6 percent) error, all the shaft spring constants of the 

respective rotor shaft systems. In the next chapter, real data obtained from a steam turbine 

generator unit will be used for modal decomposition using Prony’s method. 

 



 

 

 

 

 

 

CHAPTER 9 

REAL MEASUREMENT ANALYSIS 

 

Up until now, Prony's method and its refinements, eigen analysis/tools and the behavior 

of typical steam turbine generator shaft (STGS) systems have been examined. In addition, in the 

previous chapter, the proposed methodology was tested using test systems that were simulated in 

ATP software and shaft spring constants were estimated using HP rotor section velocity (RSV) 

signals and not instantaneous power, p(t), signals. However, these data sets were simulated. In 

this chapter, real measurement data will be utilized to test the methodologies presented in 

previous chapters. The effects of the behavior of typical STG shafts, studied in Chapter 7, on the 

proposed methodology will also be examined. 

This real data came from a steam turbine generator unit whose information will be kept 

confidential as requested by the plant owner. However, my advisory committee Chair, Dr. Mark 

Halpin, has full knowledge of the unit’s STGS torsional frequencies and parameters. Note that in 

this dissertation work, the only type of field data available was three-phase instantaneous power 

at the generator terminals. Rotor section speed signals were not available. 

 

9.1 Data Collection  

  A measurement device was placed for a few weeks on the premises to collect and record 

data whenever a disturbance occurred. The measurement device consists of an A/D convertor 

capable of reading six channels, three for instantaneous currents and three for instantaneous 



127 

 

voltages. Later these recorded quantities were converted to an instantaneous power signal, p(t) 

using (9.1).   

p(t) = va(t)*ia(t)+ vb(t)*ib(t)+ vc(t)*ic(t)                                (9.1) 

Because the reading of data from six channels occurred sequentially, there was a 180 Hz 

modulation frequency embedded in the p(t) signal which had to be removed using a filter. 

Whenever a disturbance occurred, a detection algorithm would trigger a procedure to record 30 

seconds of instantaneous voltage and current quantities, which included 2 seconds of data prior 

to the occurrence of disturbance. The data was recorded at 1,920 samples per second 

corresponding to 32 samples per cycle.  The collected data was written to an ascii file. All the 

data were in p.u. 

 

9.2 Analysis of Data Set 1 

A plot of the measured instantaneous power signal, p(t), from first data set is shown in 

Figure 9-1. The reason it looks like a strip of color instead of a single continuous curve is the 

aforementioned 180 Hz modulation frequency embedded in the p(t) signal. This is mainly 

because of the sequential sampling of three voltage quantities followed by three current 

quantities.  

 



128 

 

 

Figure 9-1 Plot of Actual p(t) Measurement Data 

 

To remove this modulation, this data was filtered using a seventh order low-pass 

Butterworth filter with a cutoff-frequency of 59 Hz. A plot of the filtered data is shown in Figure 

9-2. It depicts the ring-down signal as a result of a major disturbance event, which seems to 

begin at 1.7 seconds. To obtain a closer look at the data, the plot is zoomed as shown in Figure 9-

3 
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Figure 9-2 Plot of Filtered p(t) Signal from Data Set 1 

 

 

Figure 9-3 Zoomed-in Plot of the Disturbance Event in the p(t) Signal 
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The next task is to visually inspect the data and choose a proper candidate data set. The 

purpose of this visual inspection is to preclude any non-linear events such as sudden 

discontinuities. This would disqualify the data before 1.9 seconds (approximately) and after 4.5 

seconds (approximately). A data window between 2 seconds and 3 seconds has been chosen and 

Prony’s method has been applied to extract the underlying modal components. A plot of the data 

between 2 and 3 seconds is shown in Figure 9-4  

 

Figure 9-4 Plot of Proper Candidate Data Set for Prony’s Method (Data Set 1) 

 

To extract the correct underlying modal components, it necessary to select suitable 

algorithm parameters of Prony’s method as discussed in Chapter 5. After gradually modifying 

the algorithm parameters and checking the results of Prony’s method, it was found that suitable 

values for numModes and nSkipSample parameters were 90 and 5 respectively. The output of 
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Prony’s method using these algorithm parameters is shown in table 9-1. Note that only the first 

20 significant modes are shown. In addition, this list is ordered according to the LSE-based 

reordering algorithm presented in Chapter 4. 

 

Table 9-1 Prony’s Method’s Output List of Constituent Modal Components for Data Set 1 

Mode #  LSE Magnitude ExpDecay Frequency(Hz) Phase(rad) 

1 0.145430301 0.012577665 -0.3309921 1.5488809 1.0758312 

2 0.027445814 0.002169144 -0.2515075 12.0571053 -0.3224135 

3 0.007599871 0.00032536 -0.0641375 16.335785 2.9754293 

4 0.007306082 0.000376833 -0.7515305 20.8418966 2.1304798 

5 0.006588591 0.000202878 -0.6714491 59.8825575 2.2886434 

6 0.006550145 0.000184078 -0.5808247 24.952691 -3.086796 

7 0.006499929 0.000460505 -6.4398204 38.9980768 2.0071578 

8 0.006364739 0.000349181 -8.4033961 27.8239136 -0.5632267 

9 0.006357859 0.00020614 -2.9386237 56.6811368 -0.2796263 

10 0.006328438 0.000181467 -3.0516521 52.5733957 -2.0632532 

11 0.006313769 0.000164204 -3.0921935 44.8612443 -0.6163595 

12 0.006301417 0.000273349 -10.2966543 36.4077529 0.6941915 

13 0.00629955 0.00024585 -8.5860998 32.7887102 0.7029586 

14 0.006295845 0.000748658 -110.4579566 60.1552674 -1.030162 

15 0.00629521 0.000112727 -1.9587407 48.0411351 -2.931303 

16 0.006283306 0.000121469 -3.1095516 7.5468043 1.9888544 

17 0.006279016 0.003337735 -592.1246285 152.0977954 1.7286927 

18 0.006259379 5.57457E-05 -1.8085119 63.2491252 0.3082231 

19 0.006254104 0.000176545 -73.2794058 0 0 

20 0.006253283 4.86265E-05 -2.5630077 67.2675652 2.8706005 

 

A comparison of the actual signal and reconstructed signal using all the constituent 90 

modes is shown in Figure 9-5. Also shown in this figure is the difference between these two 

signals. 
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Figure 9-5 A Plot of Comparison Between the Actual and Reconstructed Signal Using the Output 

Modes of Prony’s Method for Data Set 1 

 

The LSE-based reordering algorithm, presented in Chapter 4, had been successfully 

utilized in Chapter 7 for identifying the constituent modes in impulse response signals and in 

Chapter 8 for identifying torsional modes from output signals of systems simulated in the 

ATPDraw software. However, because of the poor quality of the actual signals in the present 

cases, it was found that LSE-based reordering algorithm was not effective in identifying these 

modes. However, in the absence of that, an alternative simpler method of identifying these 

torsional modes was chosen. It utilizes a selection criteria of { -4 < exponential-decay < 4 } and 
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{ 5 < frequency < 59 } to prune away the non-STGS torsional modes and noise modes. Any 

constituent modes outside these bounds were excluded. In addition, because this method is not as 

effective in identifying these torsional modes (because of appreciable measurement error and the 

large number of cases involved), it was necessary to use a scatter plot to identify these modes. 

This method is detailed in the following sections. Applying the selection criteria on the list of 

modes in Table 9-1 gives a new list of modes as shown in Table 9-2. 

 

Table 9-2. Selected List of Constituent Modes in the Signal Detected by Prony’s Method  

magnitude Exp-Decay Frequency(Hz) Phase(rad) 

0.000121 -3.10955 7.546804 1.988854 

0.000113 -1.95874 48.04114 -2.9313 

0.000164 -3.09219 44.86124 -0.61636 

0.000181 -3.05165 52.5734 -2.06325 

0.000206 -2.93862 56.68114 -0.27963 

0.000184 -0.58082 24.95269 -3.0868 

0.000377 -0.75153 20.8419 2.13048 

0.000325 -0.06414 16.33579 2.975429 

0.002169 -0.25151 12.05711 -0.32241 

 

 

Note that as a result of using the selection criteria, Table 9-2 excludes the most dominant 

mode in the signal, which has a frequency of about 1.54 Hz, as seen in row 1 of Table 9-1. It is 

observed that this low-frequency mode, also known as the system mode [16], is present in most 

STGS signals. In the system mode, the entire STGS system oscillates in unison against the power 

system’s electrical network. In most STGS signals, this mode lies in the frequency range of 1 to 

2 Hz [16]. It was found that this mode is also present in most of the present measurement signals. 

Because the main concern is extracting individual torsional frequencies, the selection criteria’s 

lower limit was set as 5 Hz so that this mode would be omitted in further results.  
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In this procedure, a sliding window analysis was used to detect constituent modes in the 

signal because it is necessary to use it to eliminate any noise modes present in the output list of 

modes. The first window began at 2.0 seconds and ends at 3.0 seconds. The next window was 

chosen to begin at 2.1 seconds and end at 3.1 seconds. The same algorithm parameters chosen 

earlier were chosen for this data window and the rest of the data windows in this analysis. The 

output modal list is shown in table 9-3. This procedure was repeated 10 times to obtain a total of 

10 modal lists. The final list, starting at 3.0 seconds, of constituent modes is shown in Table 9-4.  

 

Table 9-3. List of Constituent Modes in the Signal Detected by Prony’s Method with Algorithm 

Parameters: tmin =  2.10 tmax =  3.10, numModes =   90 and nSkipSample =   5. 

magnitude Exp-Decay Frequency(Hz) Phase(rad) 

0.000118 -2.66588 52.56122 -0.32567 

0.000114 -3.59321 39.85057 0.6168 

0.000239 -2.80993 7.612871 0.734371 

0.000104 -1.79302 48.44691 1.229605 

8.11E-05 -1.77031 44.98968 2.002963 

0.000151 -2.99357 56.51658 -2.17675 

0.000212 -0.67029 25.0694 -0.02513 

0.000261 0.027198 20.92769 2.17706 

0.000408 -0.44486 16.37496 0.524382 

0.002154 -0.2917 12.06021 0.952535 

 

Table 9-4. List of Constituent Modes in the Signal Detected by Prony’s Method with Algorithm 

Parameters: tmin =  3.00 tmax =  4.00, numModes =   90 and nSkipSample =   5. 

magnitude Exp-Decay Frequency(Hz) Phase(rad) 

0.000106 -3.62959 32.86421 -3.01986 

0.000141 -1.94671 55.64619 -1.23221 

0.000232 -3.7667 7.118301 2.090702 

0.000325 -1.93688 25.08226 -2.77231 

0.000264 -0.60996 16.37752 -2.04934 

0.000235 -0.22158 20.80594 1.113286 

0.001679 -0.19653 12.04989 0.031397 
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  In the next step, the frequency data and exponential decay data from all 10 tables were 

chosen and combined into one list. The list is then sorted in ascending order according to 

frequency. The resulting list of modes is shown in Table 9-5. 

Table 9-5 Combined list Modal Components showing only the Exponential Decay and 

Frequency parameters 

Exp-Decay Frequency(Hz) 

 

Exp-Decay Frequency(Hz) 

 

Exp-Decay Frequency(Hz) 

-4.4149138 7.0914403 
 

-1.2673978 20.7462942 
 

-2.0158872 40.055229 

-3.7667008 7.1183011 
 

-0.2215773 20.8059387 
 

-1.4376032 40.1428554 

-4.7144464 7.1467739 

 

-0.1764114 20.8198008 

 

-2.2263055 44.8205265 

-4.4628948 7.2519218 

 

-0.7060205 20.8311284 

 

-3.0921935 44.8612443 

-1.0985038 7.3187341 

 

-0.7515305 20.8418966 

 

-4.2391012 44.9771431 

-4.4055675 7.5183069 

 

-0.8879877 20.8465696 

 

-1.7703147 44.9896791 

-1.714265 7.5407015 
 

-0.563378 20.8829791 
 

-3.6889312 45.0481237 

-3.1095516 7.5468043 
 

0.0271976 20.9276871 
 

-0.2411489 45.1271992 

-3.2565161 7.5586456 

 

-0.891101 20.9488363 

 

-3.8468226 45.1336808 

-2.8099317 7.6128714 

 

-1.2257292 20.9652567 

 

-1.6546833 45.221385 

-0.3113589 12.0355795 

 

-0.5808247 24.952691 

 

-1.4836504 45.2778428 

-0.216627 12.0457647 

 

-0.3921951 24.9758553 

 

-1.9587407 48.0411351 

-0.2209732 12.0474776 
 

-1.0349055 25.0010154 
 

-4.8350115 48.431882 

-0.2157098 12.0491428 

 

-1.4008373 25.0097467 

 

-1.7930235 48.4469058 

-0.1965312 12.0498854 

 

-1.2242982 25.0582747 

 

-4.1797655 48.6226286 

-0.1737293 12.055951 

 

-0.6702933 25.0694005 

 

-1.6994487 48.625585 

-0.2400201 12.0564182 

 

-1.9368757 25.0822632 

 

-0.2213687 52.105882 

-0.2515075 12.0571053 

 

-0.4763268 25.0870394 

 

0.3564415 52.4073332 

-0.2917031 12.0602059 
 

-0.4124591 25.1296092 
 

-3.7171471 52.4537301 

-0.2497538 12.0619462 
 

-0.8554051 25.1898511 
 

-2.6658769 52.5612168 

-0.235234 12.0674471 

 

-0.875131 25.2777751 

 

-3.0516521 52.5733957 

-0.6734198 16.2825171 

 

-4.8668484 32.062936 

 

-4.6596633 52.5916038 

-1.2011537 16.2919621 

 

-3.8070836 32.2774069 

 

-3.5227331 52.7169151 

-1.4117868 16.2957412 

 

-3.7041273 32.558519 

 

-4.7201381 52.7376111 

-0.7071557 16.3104169 

 

-4.6223211 32.7482586 

 

-3.211522 52.7600858 

-1.2077944 16.3278117 
 

-4.9038894 32.8445151 
 

-1.9467082 55.6461888 

-0.5884168 16.3301704 

 

-3.6295861 32.8642094 

 

-2.3711348 55.8850648 

-0.0641375 16.335785 

 

-4.4796474 36.197765 

 

-2.0572016 55.9123034 

-0.6497332 16.34294 

 

-4.0538193 37.5258886 

 

-3.1837891 55.9925392 

-0.4901767 16.3680153 

 

-4.727584 37.6079022 

 

-3.2786228 56.0908796 

-0.4448611 16.3749555 
 

-2.8012967 37.8163192 
 

2.6760975 56.0990834 

-0.6099618 16.3775186 
 

-3.5932084 39.8505682 
 

-2.9935713 56.5165834 

-0.5316564 20.732887 

 

-2.2440638 39.8671388 

 

-2.9386237 56.6811368 
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This list was then used to create a scatter plot as shown in Figure 9-6. From this figure it 

is obvious that there is are four clusters with large numbers of modal components, as illustrated 

in Figure 9-7, where  these four clusters were marked and labeled. It appears that there are four 

dominant modal components in the signal with frequencies: 12 Hz, 16.3 Hz, 20.7 Hz and 25 Hz.  

To illustrate the number of occurrences in these clusters a histogram based on frequency 

components is shown in Figure 9-8.  

 

 

Figure 9-6 Scatter Plot of Constituent Modes of Data Set 1 
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Figure 9-7 Scatter Plot of Constituent Modal Components with Major Clusters Demarcated to 

Show the Four Dominant Modes 

 

 

Figure 9-8. Histogram of Modal Components for Data Set 1 with Bin Width = 1 Hz 
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9.4 Analysis of Data Set 2  

The above process was repeated on another measured instantaneous power signal, p(t), 

which consists of 30 seconds of measurement data. Just as in previous case, this data was filtered 

to remove the 180 Hz and other high frequency components. Shown in Figure 9-9 is a plot of the 

resulting waveform.  

 

Figure 9-9 Plot of Filter p(t) signal from Data Set 2 

After visually inspecting the data, a data window between 5.5 seconds and 6.5 seconds 

was chosen, shown in Figure 9-10, as the proper candidate for Prony analysis. Prony’s method 

was then applied on this window, using the same algorithm parameters as used for data set 1 ( 

numModes = 90 and nSkipSample = 5.) Shown in Figure 9-11 is a comparison of the specified 

signal and the reconstructed signal using the output modal list of Prony’s method.     
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Figure 9-10 Plot of Proper Candidate Data Set for Prony’s Method (Data Set 2) 

 

Figure 9-11 A Plot of Comparison Between the Actual and Reconstructed Signal Using the 

Output Modes of Prony’s Method for Data Set 2 
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Shown in Table 9-6 are the first 20 constituent modes obtained from Prony’s method. Note these 

are sorted in descending order of the LSE norms.  

Table 9-6 Prony’s Method’s Output List of Constituent Modal Components for Data Set 2 

Mode #  LSE  Magnitude Exp-Decay Frequency(Hz) Phase(Rad) 

1 0.142834448 0.014368914 -0.8583511 1.5861547 -0.6056632 

2 0.015434505 0.000837627 -0.4167396 12.0482712 0.4570315 

3 0.014450656 0.001738426 -60.3963416 0 3.1415927 

4 0.012976919 0.000968104 -15.3660889 50.958838 2.4137976 

5 0.012738226 0.000274668 -1.1273558 25.1106227 1.2089022 

6 0.012531351 0.000472737 -9.2393103 56.9428588 -2.827555 

7 0.01251901 0.000348595 -6.6352855 43.1166366 0.9396941 

8 0.012511692 0.000628562 -226.8675358 192 3.1415927 

9 0.012493123 0.000226302 -0.4553859 21.1035697 -0.5255472 

10 0.012452034 0.000123901 -4.7570831 47.119961 1.8736162 

11 0.012438872 0.000271993 -3.3331461 52.8516535 -2.15545 

12 0.012427474 0.000160298 -39.8492623 95.0812441 2.767976 

13 0.012423201 0.000100095 -9.3272313 63.55788 1.7068752 

14 0.01241987 0.000211142 -0.6739873 16.7001269 -0.261739 

15 0.012418476 7.72883E-05 -5.2187667 67.0044016 2.4191549 

16 0.012415291 6.00817E-05 -3.55913 29.0431211 1.086974 

17 0.012399607 3.99114E-05 -20.1855681 115.7552143 2.8246925 

18 0.012398451 7.39638E-05 -35.0501387 149.7066291 1.6086517 

19 0.012395666 2.02879E-05 -6.8153595 79.0506098 -3.0683173 

20 0.01239508 1.48799E-05 -11.7363145 111.638931 1.9637448 

 

As discussed in the previous section, a selection criteria was applied to the entire list of 

constituent modes obtained from Prony’s method to obtain the list of modes shown in Table 9-7. 

Table 9-7 Selected List of Constituent Modes in the Signal Detected by Prony’s Method 

Magnitude ExpDecay Frequency (Hz) Phase (rad) 

6.00817E-05 -3.55913 29.0431211 1.086974 

0.000211142 -0.6739873 16.7001269 -0.261739 

0.000271993 -3.3331461 52.8516535 -2.15545 

0.000123901 -4.7570831 47.119961 1.8736162 

0.000226302 -0.4553859 21.1035697 -0.5255472 

0.000274668 -1.1273558 25.1106227 1.2089022 

0.000837627 -0.4167396 12.0482712 0.4570315 
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This process was repeated for a set of 14 sliding windows. The starting and ending 

position of each window was incremented by 0.05 seconds from one window to the next, with 

the final window beginning at 6.15 seconds and ending at 7.15 seconds. Each time Prony’s 

method was applied to extract the constituent modes, the resulting output list was pruned 

according to parameters discussed in the previous section and stored in a separate list. Finally, 

the output list of 14 data windows were all combined together. As before, the exponential decay 

and frequency parameters were chosen and inserted into a scatter plot as shown in Figure 9-12 

 

 

Figure 9-12 Scatter plot of Modal Components with Four Major Clusters Demarcated 
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Again, a histogram was plotted to identify the most frequent modes. Just as before, it was 

observed that there are four major clusters of modes as identified in Figure 9-13. It appears that 

there are four dominant modes with frequencies: 12 Hz, 16.7 Hz, 20.8 Hz and 25 Hz. in these 

clusters.  

 

 

 

Figure 9-13 Histogram of Modal Components in Data Set 2 with Bin Width = 1 Hz 

 

9.4 Comparison of Results and Analysis 

Shown in the first two columns of table 9-8 are the lists of the four dominant modes 

extracted from the two given measurements. It appears that the results of both cases match very 

closely. Shown in the third column are the frequencies provided by the plant owner. As shown in 
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this table, the maximum percentage difference is less than 8 percent and the rest of the 

difference-percentages are under 4 percent. However, it is to be noted that these are differences, 

and not necessarily errors. There could be many reasons for these differences, including  

different operating conditions, i.e., the plant owner may have derived these figures based on 

design data.  

 

Table 9-8 Results of Modal Decomposition using Prony’s Analysis on the two data sets 

Frequencies of Major 

Modal Constituents of 

Data Set 1 Signal 

Frequencies of Major 

Modal Constituents of 

Data Set 2 Signal 

Frequencies of the 

Shaft System 

Provided by the Plant 

Owner 

Percentage 

Difference Between 

the Estimated 

(average) and Owner 

Specified 

Frequencies 

12 Hz 12 Hz 13 Hz 7.69% 

16.3 Hz 16.7 Hz 17 Hz 2.94% 

20.7 Hz 20.8 Hz 21 Hz 1.19% 

25 Hz 25 Hz 26 Hz 3.84% 

 

This measurement data was obtained from a unit that had the STGS configuration shown 

in Figure 9-14, consisting of six rotor sections. This implies that this shaft system has five natural 

frequencies. However, we have found only 4 of the five frequencies: 12 Hz, 16.7 Hz, 20.8 Hz 

and 25 Hz. Prony’s method was unable to detect and extract the fifth frequency. One of the 

reasons could be that there were too many non-linearities in the signal, in addition to noise in 

measurements, precluding Prony’s method from detecting the fifth frequency. Another reason 

could be that the magnitude of disturbance was insufficient to excite the torsional modes 

significantly. However, a more probable reason could be the eigen behavior of the STGS system. 

Recall that all the analyses performed in Chapter 7 using right eigen vectors, participation factors 

and impulse response test, indicated that for typical STG shaft systems, the highest frequency 



144 

 

mode participates extremely weakly in the generator-section velocity state signal. This small 

magnitude signal, after passing through the generator stator & rotor circuits and the air-gap flux, 

gets even more attenuated, and thus appears indistinguishably small in the instantaneous power 

signal, p(t). The results obtained in this chapter appear to be consistent with the results of the 

analyses performed in Chapter 7 and lead to the hypothesis that HP rotor section velocity signal 

is a more superior candidate, compared to instantaneous power signal, for extracting the torsional 

modes of the steam turbine generator shaft system.       

 

 

 

 

Figure 9-14 Steam Turbine Generator Shaft System Configuration of the Studied System 

 

9.5 Conclusions 

 In this chapter, Prony’s method was applied to extract the underlying modal constituents 

of actual instantaneous power measurements, p(t), of an actual STG unit. In the analyses of two 

separate p(t) signals of the same unit, it was found that there were four dominant modal 

components in the signal related to the STGS system. These frequencies matched closely 

(difference-percentage < 8%) those that were provided by the plant owner. It was known that the 

STGS system had six rotor sections, implying it had five natural frequencies. This meant that this 

procedure was not able to identify the fifth natural frequency of the STGS system. However, 

according to the analysis in Chapter 7 regarding eigen properties of typical STGS systems, this 

was to be expected. In that chapter it was found that the highest frequency mode always 
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participated very insignificantly in the generator velocity state, precluding it from being detected 

by Prony’s method. This again emphasizes the previous finding that to estimate the shaft spring 

constants, it is highly recommended to use the HP rotor section velocity signal for modal 

decomposition.       

 

 

 



 

 

 

 

  

 

CHAPTER 10 

CONCLUSIONS 

Over the past half century, power systems have grown tremendously which brought forth 

new problems in regard to shaft systems of steam turbine generator (STG) power plants ( which 

contribute greater than 60 percent of generating capacity in the U.S.A.) interacting with long 

transmission lines consisting of series capacitors, causing potentially irreplaceable damage to 

these shaft systems. Current work presented here adds to a growing body of solutions and 

preventive measures developed by power industry professionals to address this problem by 

proposing a new methodology to estimate the shaft spring constants non-intrusively using 

measurement signals from the shaft systems.  

This work uses Prony’s method to identify the modal components in a given signal as it 

has many advantages over the FFT. The effect of various parameters of Prony’s method - 

number of modes, number of samples and window position - have been thoroughly investigated. 

Also, an algorithm has been developed to reorder the resulting output modes of Prony’s method 

to identify the power system modes.   

In Chapters 6 and 7, a thorough analysis of four typical STG shaft systems presented in 

the literature using eigen analysis concepts and metrics, such a right eigen vectors and 

participation factors, was performed. Time domain simulations of impulse responses of the shaft 

systems have also been performed to further understand these LTI shaft systems’ behavior. The 

purpose of this has been to bring forth the unique properties of STG shaft systems, with regards 

to the manner in which the modal components show up in different rotor velocity states. It has 
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been observed that high frequency modal components show up with lesser magnitudes in the 

generator and adjacent rotors section velocities relative to the high pressure (HP) turbine and 

adjacent rotor section velocities. It could be because the generator and adjacent rotors are 

considerably heavier than the HP and connected rotor sections. It has also been observed that all 

the modes show up well in the HP and connected rotor sections. This allows us options of 

choosing a proper rotor velocity signal to identify the modes. So far, the most suitable candidate 

for extracting modal components has been the HP rotor section velocity signal. 

In Chapter 8 we have tested, using ATP simulation software, a fully connected IEEE-

FBM model consisting of (1) an STG shaft system, (2) a generator d-q-o model and (3) an 

electrical network consisting of series capacitor, transmission line and infinite voltage source at 

the other end. After simulating a 20 millisecond ground fault disturbance on the line at the 

generator terminals, the resultant ring-down generator power output signal, p(t), and HP rotor 

velocity signal were analyzed using Prony’s method. The results of the modal decomposition 

revealed that while four modes showed in the generator signal, all five modes show up in the HP 

velocity signal. Using the frequency values and specified rotor moment-of-inertia values, rotor 

shaft spring values were estimated using a non-linear Newton-Raphson based least squares 

algorithm, thus validating the developed algorithm. 

An analysis of instantaneous power measurements, p(t), obtained from an STG unit, was 

presented in Chapter 9. The shaft system configuration consisted of six rotor sections, implying 

that it would have five natural frequencies. Prony's Method was applied, using the methodologies 

described in Chapters 3 and 5, to extract the underlying modal components. Four frequencies 

were identified from the list of the Prony’s output modes by applying a simple selection criteria.  

Repeating this process on two separate data sets yielded a set of four frequencies that matched 
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closely with the manufacturer specified frequencies. However, it is be noted that the shaft system 

had six rotor sections, implying that it had five natural frequencies. Because the identification 

methodology was able to identify only four frequencies, it meant that it was unsuccessful in 

identifying the fifth frequency. But, this is not particularly surprising according to the analysis 

performed in Chapters 6 & 7. Recall that the mode corresponding to the highest natural 

frequency always participated very weakly in the generator and exciter rotor sections. It can be 

hypothesized that, in this case as well, the highest mode of this shaft system is participating very 

weakly in the generator section, thereby precluding it from being identified strongly in the 

instantaneous power, p(t), measurement signals.  

In conclusion, an algorithm to estimate shaft spring constants non-intrusively using STG 

shaft measurements and an algorithm to reorder Prony’s method’s output modes have been 

presented in this work. Another significant contribution of this work has been in determining, 

after a thorough investigation of eigen properties of several steam turbine generator shaft 

systems, which of the non-intrusively available measurement signals is the best candidate to be 

used for extracting the shaft torsional modes. Taken together, these advances aim to assist the 

power engineer in designing better preventive measures and solutions to the complex and 

multifaceted subsynchronous resonance problem in power systems.  
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