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THESIS ABSTRACT 
 

MODELING INERTIAL MEASUREMENT UNITS AND ANALYZING THE  

EFFECT OF THEIR ERRORS IN NAVIGATION APPLICATIONS 

 

Warren S. Flenniken, IV 
 

Master of Science, December 16, 2005 
(B.A., Auburn University, 2005) 

(B.M.E., Auburn University, 2000) 
(B.A., Auburn University, 1998) 

 
165 Typed Pages 

 
Directed by David M. Bevly 

 
In this thesis, a simple model that statistically represents an Inertial Measurement 

Unit (IMU) output has been studied.  This model is then expanded to produce a model 

that incorporates terms that account for errors associated with high dynamics.  Several 

techniques are used to determine the error statistics of the IMU model and categorize the 

performance of the IMU.  These techniques include Allan variance charts, Monte Carlo 

simulations and autocorrelation functions.  Equations for the position, velocity and 

heading error in a two and six degree of freedom system are developed.  These analytical 

equations for the error growth are then verified using Monte Carlo simulations.  Monte 

Carlo simulations are also used to compare the error bounds using both the simple model 

and high dynamic model.  A novel Kalman filter is developed to couple GPS with an 

inertial measurement unit in order to bound the error growth.  The Kalman filter 

estimates both a constant and drifting bias.  The error bounds on the position, velocity 

and heading state estimations are compared to the error bounds in the simple model’s 

uncoupled case.  The framework formulated from these models is intended as an aid for 

understanding the effects that the different error sources have on position, velocity, and 
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heading calculations.  With this information it is possible to determine the correct inertial 

measurement unit with identified error characteristics for a specific application. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Motivation 

 

When an instrument is used to collect data, the measurement obtained from that 

device is always corrupted by some error sources.  Some of these errors are constant, 

some have known frequency content, and some are random.  These errors are common in 

instruments used to calculate position, velocity, or heading of a vehicle.  Because the 

errors are in the instruments measurement, it is inevitable that the calculations will 

contain errors. 

A common technique used to calculate position, velocity, and heading of a vehicle 

is dead reckoning.  One form of dead reckoning is to document an initial position, 

velocity, and heading relative to some known coordinate frame and then measure the 

accelerations and rotation rates of the vehicle versus time.  As the accelerations and 

rotation rates are measured, they are integrated to calculate the vehicle’s position, 

velocity, and heading.  Because the acceleration and rotation rate measurements are noisy 

or imprecise, the calculated position, velocity, and heading will contain errors as well.  

This work is an analysis of these errors and how we as engineers can evaluate them, 

classify them, and remove them from the position, velocity, and heading calculations 

when accelerometers and rate gyros are used to dead reckon. 
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1.2. Background and Literature Review 

 

Position, velocity and heading calculations have errors. In order to compensate for 

these errors, the errors found in the accelerometer and rate gyro used must be identified.  

A simple model has been developed that does this [Demoz].  The simple model classifies 

the common errors found in accelerometers and rate gyros into three categories: a 

constant offset error source, a moving bias error source and a random error source.  A 

procedure has also been developed to obtain the statistics of each of these error sources.  

When the statistical values for each of the error sources are known, it is possible to use 

the simple model to statistically simulate an accelerometer’s or rate gyro’s output. 

The outputs of rate gyros are normally integrated to obtain a heading estimate.  

Because the rate gyro measurements have errors, the calculated heading will contain 

errors as well.  Error equations that depict the growth of the error in the heading 

calculation have been derived [Bevly].  However, these error equations were derived with 

the assumption that the rate gyro has only one error source, wide band noise.  The value 

of this error model is that it may be used to obtain an estimation of the standard deviation 

of the heading estimate error over time. 

The simple sensor model used to statistically represent the output of an 

accelerometer and rate gyro has been used in conjunction with the Global Position 

System to bound the errors found in position, velocity and heading calculations [Demoz].  

A two state Kalman filter is used to estimate heading, and a five state Kalman filter is 

used to estimate position and velocity.  In each of these filters, the error sources are 

assumed to be wide-band noise and either a moving bias error or a constant offset error. 
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More advanced models have been developed that incorporate errors that are 

affected by the true accelerations or rotation rates [Grewal].  These errors include scale 

factor errors, misalignment errors and nonorthogonality errors. 

 

1.3. Purpose 

 

The primary purpose of this work is to use the existing simple sensor model to 

identify the common error sources found in accelerometers and rate gyros, and then 

validate the procedure used to evaluate the statistical properties of each of these error 

sources.  The simple model is then used to classify accelerometers and rate gyros into 

different grades.  Error bounds of some component grades are provided which can be 

used to determine the utility of a specific grade sensor. 

The second purpose of this work is to develop Kalman filter models that contain 

enough states so that all the errors in the simple sensor model can be estimated.  With 

these Kalman filter models, it is shown that the errors during a loss of a GPS signal are 

minimized when compared to the existing Kalman filter models.  A Kalman Filter is a 

state estimator that uses the knowledge of the input error sources to assist in estimating 

the true state over time.  It is an ideal coupling tool to use in this scenario due to the fact 

that the GPS measurements are very precise but are received at a very low frequency, and 

the IMU measurements are relatively imprecise and can be received at relatively high 

frequencies when compared to GPS. 

The third purpose of this work is the evaluation of the effects gravity has on a 

group of accelerometers and rate gyros when used in an inertial measurement unit.  The 
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error growths of the position, velocity and heading calculation are shown when a gravity 

field is in place, and then the error growths are shown when the gravity field is removed.  

The comparison reveals the effect a gravity field has on an inertial measurement unit’s 

total error. 

The final purpose of this work is to identify the effects the error terms found in 

the more advanced sensor models have on the position, velocity and heading calculations 

[Grewal].  Simulated trajectories will be used to evaluate the contribution level each of 

these errors has on the calculated position, velocity, and heading.  The simulated 

trajectories are designed to be some what practical and still excite the advance sensor 

model’s error terms  

 

1.4. Outline 

 

In this thesis a simple sensor model is first defined that is used to classify error 

sources commonly found in accelerometers and rate gyros.  Many error sources are 

incorporated in the model; they include a constant bias error source, a moving bias error 

source, and a random error source.  The model is used to statistically simulate the output 

of an accelerometer and rate gyro [Demoz].  Each term in the simple model will be 

described statistically in the form of norms and variances.   

In this work a navigation technique known as dead reckoning is then used to 

determine a vehicle’s position on the earth.  Dead reckoning is the determination, without 

the aid of celestial observations, of the position of a ship or aircraft from the record of the 

courses sailed or flown, the distance made, and the known or estimated drift [Webster].  
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The position is calculated by integrating three accelerometers and three rate gyroscopes 

mounted to the vehicle platform.  These sensor packages are commonly referred to as 

inertial measurement units or IMU’s.  The category of the sensors contained in the IMU 

determines the precision of the corresponding vehicle’s position estimate.  The dead 

reckoning technique is analyzed to determine the magnitude of the errors in the position, 

velocity and heading calculations.  The magnitude of the error is then analyzed to 

determine how it is affected by the different error sources found in accelerometers and 

rate gyros 

Using the simple sensor model, a one and two degree of freedom system 

simulations are set up to predict the error growth of tactical and consumer grade sensors.  

The Global Position System or GPS is used to correct the IMU position errors in a 

coupling algorithm.  The algorithm chosen to couple the GPS and IMU’s measurements 

is a Kalman Filter.  Experimental data is used to show the utility of the Kalman filter 

models. 

Finally, in this thesis a six degree of freedom system is developed.  It is used to 

show the error growth of position velocity and heading over time.  The accuracy of the 

simple model as well as a more advanced model is shown.  The effects of each of the 

advanced IMU model’s parameters are taken into account as well as the introduction of a 

gravity field.  A Monte Carlo Simulation is used to show the bounds on the error growths 

for the position, velocity and heading calculations. 
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CHAPTER 2 
 

SIMPLE SENSOR MODEL 
 

2.1 Introduction 

 

In this chapter a simple sensor model is laid out that incorporates three common 

error sources. They are a moving bias, a constant bias, and a random error.  Other error 

sources such as gravitational errors, cross-coupling errors and sensor scale factor errors 

are considered in later chapters.  In this chapter the biases and random error sources are 

analyzed statistically.  The numerical values for the time constants, means, and variances 

are obtained by using common statistical methods, Allan variance charts, autocorrelation 

functions, and Monte Carlo simulations.  The statistical parameters of the error sources 

are used to categorize and characterize the sensors.  Inertial sensors can be categorized 

into four basic grades: navigational, tactical, automotive, and consumer.  While the 

navigation sensors are the most precise they also cost the most at around $100,000.  The 

tactical sensors cost in the $20,000 range, the automotive cost in the $1,000 range and the 

consumer sensors, the least precise cost less than $1,000.  Several sensor grades are 

simulated and experimentally validated.  The simulated sensors are used in later chapters 

to determine resulting levels of performance that can be achieved when combined with 

GPS.  A table is provided at the end of this chapter which contains a number commonly 
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used in rate gyros and accelerometers with their specifications.  An additional chart is 

provided that is used to classify the sensors into the grades mentioned above. 

 

2.2 Sensor Model 

 

One simple model of a gyro assumes that the gyro output ( ) consists of the true 

vehicle rotation rate (

rg

r ) plus a constant offset ( c ), a moving or walking bias ( ), and 

wide band sensor noise ( ).  It is shown below. 

r rb

gyrow

 

gyrorrr wbcrg +++=  (2.1)

 

The wide band sensor noise ( ) is assumed to be normally distributed with a zero 

mean and sampled covariance 

gyrow

 

[ ] sgyrogyro fwE 22 σ=  (2.2)

 

Observe in Equation (2.2) that wide band noise increases as the sample rate ( ) of the 

sensor increases [Demoz].  The gyros moving bias ( ) will be modeled as a first order 

Markov process.  The Markov process takes in account the sampling frequency of the 

sensor.  This is shown in Equations (2.3 – 2.5).  For a more explicit definition of a first 

order Markov Process see Appendix B. 

sf

rb
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We assume the moving bias has the following statistics. 



 

[ ] 0=rbE  and [ ] 22
biasgyrorbE σ=  (2.3)

and that 

biasgyror
r

r wbb +−=
τ
1&  (2.4)

where 

v
f

w
r

gyros
gyro

bias

bias τ
σ 22

=  (2.5)

 

The noise that drives the bias, , is normally distributed with zero mean and a sampled 

covariance of one. 

v

 

[ ]1,0~ Nv  (2.6)

 

An Allan variance and autocorrelation analysis is used to determine the time 

constant ( rτ ), random walk ( gyroσ ), and bias variation (
biasgyroσ ).  The numerical values 

are evaluated with experimental data and verified with the manufactures specifications 

and documents containing published values.  Once this method is validated, it is used for 

future analysis when exact sensor specifications are not known. 

An accelerometer is modeled in the same fashion as a rate gyro.  A simple model 

that relates the accelerometer output ( ) to the true vehicle acceleration ( ), a constant 

offset or bias ( ), a moving or walking bias (b ) and a white sensor noise ( ) can be 

written as 

xa && x&&

wxc && x&& accel
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accelxxx wbcxa +++= &&&&&& &&  (2.7)

 

The accelerometer sensor noise  is assumed to be normally distributed with 

zero mean.  The bias is modeled as a first order Markov process as shown in the gyro 

model where the noise is also normally distributed with zero mean and the sampled 

covariance [4] 

accelw

 

[ ] saccelaccel fwE 22 σ=  (2.8)

 

[ ]
x

accels
accel

bias

bias

f
wE

&&τ
σ 2

2 2
=  (2.9)

 

2.3 Random Walk Evaluation 

 

Figure 2.1 is a plot of a fourteen hour static run for a KVH-5000 rate gyro.  The 

top plot is the actual sensor output.  The bottom plot is a filtered version of the sensor 

output.  The moving bias can partially be seen in the filtered inertial sensors data. For 

more thorough and theoretical treatment of the filtering methodology, see reference 

[Demoz]. 
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Figure 2.1  KVH-5000 Experimental data (top) and filtered experimental data (bottom) 

 

An Allan variance chart is used to determine the statistics of the wide band noise 

present in a sensor.  This noise is commonly referred to as the random walk of a sensor 

and is represented by the  in the model given in Equation (2.2) above.  Allan variance 

charts have been used extensively to characterize noise and bias drift of inertial sensors 

[Allan].  Figure 2.2 shows the Allan variance of the raw unfiltered experimental data 

collected on the KVH-5000 rate gyroscope. 

w
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Figure 2.2. 
 

Allan variance chart for the experimental data of the KVH-5000 
 

The Allan variance chart provides a plot of the gyros Allan variance ( )avτσ  

versus the time averaging blocks avτ .  The angular random walk  can be found at the 

intersection of 

gyrow

1=avτ .  From the Allan Variance chart in Figure 2.2, the angular random 

walk  of the KVH-5000’s experimental data is found to be 8 deg/sec.  The 

slope of the data in the chart determines the error mechanism that dominates the data.  

For this data the slope is near - ½ , which is characteristic of wide-band noise [4].  This 

indicates that this data is dominated by the random walk statistics, and all other error 

statistics are nearly negligible. 

gyrow 410−×5.
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Shown in Figure 2.3 is a plot of a 3 hour static run for a Systron-Donner AQRS-

104 rate gyro.  The top plot is the actual sensor output while the bottom plot is a filtered 

version of the sensor output.  Unlike the KVH-5000 static data, a moving bias can be 

seen in both the unfiltered data and in the filtered data. 

 

Figure 2.3  AQRS-104 Experimental Data Filtered and Unfiltered 

 

Observe in Figure 2.4 that the angular random walk  for the AQRS-104 is 

equal to deg/sec.  Observe that the curve in Figure 2.4 changes slope from – ½ 

to + ½ at approximately 

gyrow

2101.2 −×

10=avτ  seconds.  The initial slope of the curve is approximately 
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- ½ , which is characteristic of wide-band noise.  The slope of the region after avτ  is equal 

to ten seconds is approximately + ½ , which is characteristic of exponentially correlated 

noise, or a first order Markov Process. 

 

Figure 2.4 

Allan Variance Chart for the Unfiltered Experimental Data of the AQRS-104 

 

 

 

 

 
 13



 

 

2.4 Walking Bias Evaluation 

 

From the Allan Variance chart in Figure 2.4, it is clear that the effect of the 

exponentially correlated noise begins to dominate other sensor errors after a time constant 

of 10 seconds.  This information is good, but in order to model the sensor accurately the 

time constant of the gyros walking bias (b ) must be evaluated with much more 

precision.  This is done with an autocorrelation function.  Appendix D contains a detailed 

description of the autocorrelation function.  Figure 2.5 shows the autocorrelation function 

of the AQRS-104 filtered experimental data.  Since the gyros walking bias (b ) is 

modeled as a first order Markov process, the time constant (

r

r

rτ ) of the process can be 

determined by picking the value of the autocorrelation function after it decays to a point 

36.8% of its point of origin, which is the defining point for a first order differential 

equations time constant.  For this sensor, rτ  has a value of 1171 seconds. 
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Figure 2.5  AQRS-104 Experimental Autocorrelation Plot 

 

In order to model the gyro’s walking bias (b ) as a Markov process, the variance 

of the input noise ( ) must be known as well as the time constant (

r

biasgyrow rτ ).  This is 

obtained by using the filtered experimental data and calculating its standard deviation. 

This standard deviation is considered to be 
biasgyroσ .  Calculate the variance of  by 

using the following equation. 

biasgyrow

 

[ ]
r

gyros
gyro

bias

bias

f
wE

τ
σ 2

2 2
=  (2.10)
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2.5 Constant Bias Evaluation 

 

The constant offset bias of a sensor is simply the mean of the sensor output.  It is 

important that the data used to calculate the constant offset bias be of a sufficient length 

to ensure that the actual sensor measurement has reached a steady state output.  When the 

sensor has reached a steady state output, the calculated mean will be consistent with a 

constant offset bias of the actual sensor measurement.  This may be observed in the 

Systron-Donner and KVH rate gyro measurements in Figures 2.1 and 2.3.  

 

2.6 Rate Gyro Model Validation 

 

Figure 2.6 is a comparison of the Allan Variance Charts for simulated data of a 

KVH-5000 rate gyro and the experimental data shown previously in Figure 2.2.  The 

simulated data was created by using the simple sensor model presented in Equation (2.1).  

The initial numerical values used for the model error sources are found in the 

manufactures specification sheet [Bennett].  It is possible to obtain all of the values 

needed to model the sensor from the manufactures specification sheet because the sensor 

is dominated by wide-band noise. 
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Figure 2.6 

Allan Variance Comparison I of the KVH 5000 Experimental and Simulated Data 

 

A comparison of experimental data to simulated data is given in Figure 2.6.  

Observe that the angular random walk for the experimental data and simulated data do 

not match.  The angular random walk of the simulated data is 1 deg/sec and the 

angular random walk of the experimental data is 8 deg/sec.  Figure 2.7 is a 

comparison of the Allan Variance charts after the angular random walk of the simulated 

data was set to the value of the experimental data. 

3103. −×

4105. −×
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Figure 2.7 

Allan Variance Comparison II of the KVH 5000 Experimental and Simulated Data 

 

In Figure 2.8 a comparison of the Systron-Donner AQRS-104 Allan Variance 

Charts is shown.  The experimental data used is the same as presented in Figure 2.4, and 

simulated data was produced by using the sensor model presented in Equation (2.1).  The 

angular random walk and bias drift statistics for the model errors were found in the 

manufactures specification sheet [BEI].  The time constant of the Markov Process was 

found in previous work [Demoz].  The published angular random walk and bias drift for 

this sensor are 0.025 deg/sec and 0.05 deg/sec, respectively.  The angular random walk 
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and bias drift of the experimental data are 0.02373 deg/sec and 0.054 deg/sec, 

respectively. 

 

Figure 2.8 

Allan Variance Comparison of the AQRS-104 Experimental and Simulated Data 

 

The time constant of the sensor is published to be 1000 seconds.  Figure 2.9 is a 

comparison of a decaying exponential curve with a time constant of 1000 seconds and the 

autocorrelation of the experimental data.  The experimental data decays reasonable close 

to the exponential curve envelope.  The actual time constant of the experimental data is 

1171 seconds.  The discrepancies in the slopes of the Allan variances are due to the fact 
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that the experimental data contains many more error sources that contribute to the sensors 

output.  Recall that the simple model provided in this chapter only accounts for two error 

sources, wide-band noise and exponential correlated noise modeled as a 1st Order Markov 

Process.  Therefore, the possibility of exact slope alignment is rare.  However, the fact 

that the angular random walk values, the bias drift, and bias time constants values are 

very close provides some level of confidence that the simulated data is characteristic of 

the experimental data. 

 

Figure 2.9 

AQRS-104 Autocorrelation Comparison of the Filtered Experimental Data 
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2.7 Accelerometer Model Validation 

 

The same type of data and algorithms used to validate the rate gyros can be used 

to validate the accelerometer model.  Figure 2.10 is static data from a Humphrey 

accelerometer.  The top plot is raw unfiltered data.  The bottom plot is the same data 

filtered through a Butterworth filter. 

 

Figure 2.10  Humphrey Accelerometer Actual Data filtered and Unfiltered Data 

 

In Figure 2.11 the autocorrelation plot of the filtered data is shown.  From the 

autocorrelation, the time constant of the moving bias can be estimated to be 700 seconds.  
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The standard deviation of the moving bias is estimated to be 8 g’s.  Using an 

Allan variance chart, the wide-band noise is estimated to be 

5105. −×

6105 −×.9
Hz

sg ' .  Figure 

2.12 is a comparison of the Allan variance charts using the experimental and simulated 

data.  The simulated data was produced by using the estimated values for the time 

constant, bias standard deviation and random walk.  From the figure, it is clear that the 

wide-band noise is modeled correctly for a period of time.  Unfortunately, the point at 

which the exponentially correlated errors become dominate is not as defined in the 

simulated data as it is in the experimental data.  This validation is similar to that of the 

rate gyro model.  Even with the discrepancies, the analytical model’s accuracy is 

sufficient enough to describe the dominate errors seen in the actual data.  
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Figure 2.11   

Humphrey Accelerometer Autocorrelation of the Filtered Experimental Data   
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Figure 2.12 

Allan Variance Comparison of the Humphrey Accelerometer Experimental and 

Simulated Data 

 

2.8 Sensor Categorization  

 

Table 2.1 lists three sample accelerometers and their respective sensor model 

characteristic values.  Table 2.3 lists seven sample rate gyros and their respective sensor 

model characteristic values.  The various sensor characteristics were grouped into three 

categories [Demoz]:  consumer, automotive and tactical grade.  Table 2.2 and Table 2.4 

show the characteristic values for each grade.  Representative values from the actual 
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sensors in Table 2.I and Table 2.III can be compared to the values in Table 2.II and Table 

2.IV to categorize a specific sensor. 

 

Table 2.1  Accelerometer Characteristics Used for this Analysis 

Accelerometer Attribute Units Specification

LN-200 IMU     

  White noise Micro g/√Hz  50 

  Scale Factor Stability ppm 300 

  Bias Variation micro-g 50 

  Rate ±g 40 

HG-1700 IMU     

  Random walk Micro-g/√Hz  30 

  Scale Factor Stability ppm 300 

  Bias Variation Micro-g 50.00 

  Rate ±g 50 

HG-1900 IMU     

  Random walk Micro-g/√Hz 30 

  Scale Factor Stability ppm 300 

  Bias Variation Micro-g 1 

  Rate ±g 70 
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Table 2.2  Classification Characteristics Used to Categorize Accelerometers 

Accelerometer Attribute Units Specification

Consumer     

  Random Walk g/√Hz .003 

  Bias Time Constant sec 100 

  Bias Variation g 3104.2 −×  

Automotive    

  Random Walk g/√Hz .001 

  Bias Time Constant sec 100 

  Bias Variation g 3102.1 −×  

Tactical    

  Random walk g/√Hz .0005 

  Bias Time Constant sec 60 

  Bias Variation g 51050 −×  
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Table 2.3  Gyro Characteristics Used for this Analysis 

Gyro Attribute Units Specification 

LN-200 IMU     

  Random walk °/√hr 0.04 - 0.10 

  Scale Factor Stability ppm 100 

  Bias Variation °/hr 0.35 

  Rate ±°/sec 1000 

HR-1700 IMU     

  Random walk °/√hr 0.125 - 0.300 

  Scale Factor Stability ppm 150 

  Bias Variation °/hr 2.00 

  Rate ±°/sec 1000 

HG-1900 IMU     

  Random walk °/√hr 0.1 

  Scale Factor Stability ppm 150 

  Bias Variation °/hr 0.3 - 10.0 

  Rate ±°/sec 1000 

KVH-5000     

  Random walk °/√hr 0.083 

  

Scale Factor Stability 

(±200°/sec) ppm 500 
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Scale Factor Stability 

(±500°/sec) ppm 1000 

  Bias Variation °/hr 1.00 

  Rate ±°/sec 500 

Autogyro Navigator    

  Random walk °/√hr 0.33 

  Scale Factor Stability % rms 0.5 

  Bias Variation °/hr 90.00 

  Rate °/sec 100 

    Systron-Donner 

AQRS-000640-104 

  Random walk °/sec/√Hz ≤0.025 

  Scale Factor Stability ±% 3 

  Bias Variation °/hr ≤180.00 

  Rate ±°/sec 64 

    Systron-Donner 

AQRS-000640-109 

  Random walk °/sec/√Hz ≤0.025 

  Scale Factor Stability ±% 5 

  Bias Variation °/hr ≤180.00 

  Rate ±°/sec 75 
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Table 2.4  Classification Characteristics Used to Categorize Rate Gyros 

Rate Gyro Attribute Units Specification 

Consumer     

  Random walk °/sec/√Hz .05 

 Bias Time Constant sec 300 

  Bias Variation °/hr 360 

Automotive    

  Random walk °/sec/√Hz .05 

  Bias Time Constant sec 300 

  Bias Variation °/hr 180 

Tactical    

  Random walk °/sec/√Hz .0017 

  Bias Time Constant sec 100 

  Bias Variation °/hr 0.35 
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2.9 Summary and Conclusions  

 

In this chapter, a simple sensor model was laid out that incorporated a moving 

bias term, a constant bias term, and a random error term.  The biases and random error 

sources were analyzed statistically.  The numerical values for the time constants, means, 

and variances were obtained by using common statistical methods, Allan Variance charts, 

Autocorrelation functions, and Monte Carlo Simulations. The statistical parameters of the 

error sources were used to categorize and characterize the sensors.  The Inertial sensors 

were categorized into four basic grades: navigational, tactical, automotive, and consumer.  

Several sensor grades were simulated and experimentally validated.  The simulated 

sensors will be used in later chapters to determine resulting levels of performance that 

can be achieved when combined with GPS.  A group of tables was provided which 

contained the specification for a number of commonly used rate gyros and 

accelerometers.  Additional tables were provided which are used to classify the sensors. 
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CHAPTER 3 
 

INTEGRATION ERRORS IN A TWO DEGREE OF FREEDOM 
INERTIAL MEASUREMENT UNIT 

 
3.1 Introduction 

 

In this chapter the errors associated with the numerical integration of a single rate 

gyro and single accelerometers, to calculate position, velocity and heading in a planar 

setting, are presented.  The error growth of the position, velocity, and heading calculation 

are depicted with the use of a Monte Carlo Simulation.  Both consumer and tactical grade 

sensor characteristics are compared and experimental data is used to validate the bounds 

of the Monte Carlo simulations.  The Monte Carlo simulations are validated by showing 

the error growths of rate gyros and accelerometers, which contain moving biases, and 

comparing these error growths to simulations where the only error source is wide-band 

noise.  Analytical equations for position, velocity and heading errors are derived that plot 

the error growths depicted by the integration of rate gyros and accelerometers, which 

contain only one error source, wide-band noise.  Finally the effects a gravity field as on 

the error growths of the position, velocity and heading calculations are shown.  The errors 

resulting form the gravity field are shown by a comparison.  The comparison contains the 

error growths when there is a gravity field in the system and the error growths when there 

is not a gravity field in the system. 
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3.2 IMU Integration Errors 

 

The heading of the platform must first be calculated in order to determine the 

position of a 2 DOF IMU.  This is accomplished by numerically integrating the 

gyroscope yaw rate measurement.  The method chosen to do this is the Runge-Kutta 

Method [Burden].  This method’s procedure is laid out below in the state space format.  

The following equations are the state space matrices used to calculate platform heading. 

 

[ ]0=A  [ ]1=B  (3.1)

 

[ ] [ ]ψψ &BAfheading +=  (3.2)

 

A Runge-Kutta order four integration routine is used to propagate the heading 

state ψ  forward to the next time step.  The routine is as follows 
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 (3.3)

 

A yaw angle (ψ ) of zero corresponds to due north.  Therefore any positive angle 

change is a rotation in the eastwardly direction.  Likewise any negative angle change is a 

rotation in the westward direction. 
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After the yaw angle of the platform is calculated, the position and velocity of the 

platform must be calculated by integrating the accelerometer measurements. The Runge-

Kutta method was also used for this calculation.  The state space matrices required to 

calculate position and velocity are given below. 
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[ ] [ ]xBstatesAf positon &&+=  (3.5)
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Again, a Runga-Kutta order four integration routine shown below is used to 

propagate the position and velocity states forward. 

( )
( )
( )
( )

( ) 622
,,

,,2
,,2

,,
0

43211

34

23

12

1

0

kkkkstatesstates
xkstatesfTk

xkstatesfTk
xkstatesfTk

xstatesfTk
states

ii

iiipositons

iiipositons

iiipositons

iiipositons

++++=

+=

+=

+=

=
=

+

&&

&&

&&

&&

ψ

ψ

ψ

ψ

 (3.7)

 

 33



 

The initialization of the states vector to zero is convenient for this analysis.  

However, if this were done in practice, the initial longitude and latitude of the vehicle 

platform would need to be recorded.  With the initial longitude and latitude recorded, it 

would be possible to convert the position calculations into longitude and latitude 

Figures 3.1-3.6 are results from a Monte Carlo simulation when the above 

integration is performed with the constant bias removed from the static sensor’s 

measurements.  The results for a tactical grade IMU are presented in Figures 3.1-3.3.  

The results for a consumer grade IMU are presented in Figures 3.4-3.6 

 

Figure 3.1  Tactical Grade IMU Position Error Bounds (Static) 
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Figure 3.2  Tactical Grade IMU Velocity Error Bounds (Static) 
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Figure 3.3  Tactical Grade IMU Yaw Angle Error Bounds (Static) 
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Figure 3.4  Consumer Grade IMU Position Error Bounds (Static) 
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Figure 3.5  Consumer Grade IMU Velocity Error Bounds (Static) 
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Figure 3.6  Consumer Grade IMU Yaw Angle Error Bounds (Static) 

 

From the figures it is clear that the errors on the calculated position, velocity, and 

yaw angle do not stay constant.  In fact, they appear to grow at an exponential rate.  

When a consumer grade IMU is used to calculate the north position, the error after a 

twenty second period has a standard deviation of nearly one meter.  An additional ten 

seconds brings the position calculation standard deviation to nearly four meters.  A 

tactical grade IMU has similar error characteristics; however, the error is much lower in 

magnitude.   After a 20 second period, the standard deviation in the north position 

calculation is close to 0.05 meters.  An additional ten seconds brings the standard 

deviation to 0.10 meters.  The difference in the errors between the tactical and consumer 
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grade IMU’s is significant.  There is a 1900% improvement in the northerly position 

calculation when a tactical grade IMU is used.  Although this improvement is great, it is 

accompanied by significant increase in price.  A tactical grade IMU costs in the 

neighborhood of $20K where the consumer grade IMU costs less than $1000.   

 

3.3 Monte Carlo Validation 

 

In this section the Monte Carlo simulations used in the previous section are 

validated by showing the error growths of rate gyros and accelerometers which contain 

moving biases and comparing them to Monte Carlo simulations where the only error 

source is wide-band noise.  Figure 3.7 is a plot of the error bounds for the calculated yaw 

angle of a KVH-5000 rate gyro.  Two error bounds are presented, one is derived from the 

Chapter 2 sensor model with a Monte Carlo simulation, and the other is derived from the 

equation below.  The equation below is the analytical solution for the standard deviation 

of integrated wide band noise.  A full derivation of the below equation can be found in 

reference [Bevly]. 

 

kTswσσ =  (3.8)

 

[ ]wNw σ,0~  (3.9)
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The KVH was chosen for this comparison because it is dominated by wide-band 

noise.  Therefore the results from a Monte Carlo simulations produced from its 

specifications should match the results from the analytical solution reasonably well.  It is 

clear from Figure 3.7 that after a period of time the error bounds of the Monte Carlo 

simulation begin to grow faster than the error bounds of the analytical equaiton.  This is 

caused by the moving bias modeled in the sensor model. 

 

Figure 3.7  KVH Error Bound Comparison I 

 

Figure 3.8 is also a comparison of the error bounds; however, now the moving 

bias has been removed from the sensor model.  From the comparison, it is clear that the 
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Monte Carlo results match Equation (3.8).  Because of this, it is reasonable to assume that 

the bounds derived from the Monte Carlo simulation with all errors present are valid.  To 

help further this validation, the data form the KVH-5000 rate gyro presented in Chapter 2 

will be used as well as data produced by the sensor model.  Figure 3.9 is the calculated 

heading from that experimental data presented in Figure 2.1 and simulated data produced 

using the simple sensor model.  As seen in Figure 3.9, both data sets fall well within the 

bounds resulting from the Monte Carlo simulations. 

 

Figure 3.8  KVH Error Bound Comparison II 
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Figure 3.9  KVH Error Bound Comparison III 

 

3.4 Longitudinal Velocity Error Equations 

 

In the above section 3.3 it was shown that the moving bias definitely plays a key 

role in the heading error growth.  To determine if the effects are similar in the position 

and velocity error growths analytical equation are derived. The derivations are for the 

analytical error growth of position and velocity errors due only to the integration of the 

wide band noise in the IMU. 

To begin the derivations the bias of the accelerometer is assumed to be negligible.  

Therefore, the accelerometer measurement becomes 
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accelx wxa += &&&&  (3.10)

where  is uncorrelated wide band noise of the accelerometer.   accelw

Integration of the accelerometer times the heading angle to get longitudinal 

velocity (V ) results in  North

( ) ( )dtwxVV e
accel

e
NorthNorth ψψ ++=+ ∫ cos&&  (3.11)

Assume the mean acceleration and heading are equal to zero to obtain 

0
0
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=
=
=
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a
ψ  (3.12)

Therefore, the longitudinal velocity error (V ) is due to the integration of the 

accelerometer’s wide band noise time heading error. 

e
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e
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An Euler integration of the accelerometer output results in, 
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Squaring and take the expected value of both equations results in 
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Simplify to get the following 

( )[ ] ( )[ ]∑
=

=
k

k

T
accelaccels

Te
North

e
North kk

wwETVVE
1

2  (3.16)

Substitute in the covariance of the accelerometer wide band noise to obtain 
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( )[ ] tkTkTVVE sws
Te

North
e

North accel
== 22σ  (3.17)

The above equations yield the following approximation for the longitudinal velocity error 

growth due to the integration of the yaw gyroscopes and accelerometers noises. 

( )[ ] 2
accelws

Te
North

e
North tTVVE σ=  (3.18)

Simplify to solve for the standard deviation of the longitudinal velocity. 

tTswV accelNorth
σσ =  (3.19)

 

3.5 Longitudinal Position Error Equations 

 

The integration of the longitudinal velocity results in the longitudinal position. 

( )dtVVPP e
NorthNorth

e
NorthNorth ∫ +=+  (3.20)

Assume the mean longitudinal velocity and position are zero. 
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Therefore, the longitudinal position error ( ) is due to the integration of the 

longitudinal velocity error (V ). 
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Again, an Euler integration method is used and results in 
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Squaring and take the expected value of both equations results in, 
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Simplify to get the following. 
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From the above section 3.4 the covariance of the longitudinal velocity was found to be, 

kT
accelNorth wsV

222 σσ =  (3.26)

Therefore, substituting in this for the longitudinal velocity covariance results in the 

following. 
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The above equations result in the following approximation for the longitudinal position 

error growth due to the integration of the longitudinal velocity error: 
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Simplify to solve for the standard deviation of the Northerly Position 

3

3
1 tTswP accelNorth

σσ =  (3.29)

 

3.6 Lateral Velocity Error Equations 

 

As in the longitudinal case the bias of the accelerometer will be assumed to be 

negligible in the accelerometer measurement.  Because of this the following equation is 

derived: 
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accelx wxa += &&&&  (3.30)

where  is uncorrelated wide band noise of the accelerometer.  Integration of the 

accelerometer times the heading angle to get lateral velocity (V ) yeilds  
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Assume the mean acceleration and heading are equal to zero, i.e 
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Then, the lateral velocity error (V ) is due to the integration of the accelerometer’s 

wide band noise time heading error. 
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An Euler integration of the accelerometer output results in 
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Squaring and take the expected value of both equations results in, 
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Knowing that the expected value of the square of the accelerometer noise is simply the 

covariance of the accelerometer wide-band noise ( ) and that the gyroscope wide-

band noise is uncorrelated to the accelerometer wide-band noise the lateral variance can 

be simplified to the following. 

2
accelwσ
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From reference [Bevly] and the above section 3.5: 
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Therefore, 
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The above equations result in the following approximation for the lateral velocity error 

growth due to the integration of the yaw gyroscopes and accelerometers noises: 
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Simplify to solve for the standard deviation of the lateral velocity, 

2
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3.7 Lateral Position Error Equations 

 

The integration of the lateral velocity results in the lateral position. 
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Assume the mean lateral velocity and position are zero, 
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So that, the longitudinal position error ( ) is due to the integration of the longitudinal 

velocity error (V ), i.e. 
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Again, an Euler integration method is used and results in, 
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Squaring and take the expected value of both equations results in, 
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Simplify the position variance to get the following 

( )[ ] ( )[ ] ∑∑
==

==
k

k
Easts

k

k

Te
East

e
Easts

Te
East

e
East kTVVETPPE

kk
1

22

1

2 σ  (3.48)

From the above section the covariance of the longitudinal velocity was found to be, 

22242

2
1 kT

gyroaccelEast wwsV σσσ ≈  (3.49)

Therefore substituting in this for the longitudinal velocity covariance results in, 
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The above equations result in the following approximation for the longitudinal position 

error growth due to the integration of the longitudinal velocity error: 

( )[ ] 22242264

8
1

8
1

gyroaccelgyroaccel wwswws
Te

East
e

East TtTkPPE σσσσ =≈  (3.51)

Simplify to solve for the standard deviation of the Northerly Position 

8
12tTswwP gyroaccelEast

σσσ =  (3.52)

 

3.8 Bias Contribution in the IMU Integration Error 

 

The equations for the position and velocity errors provided in sections 3.4 -3.7 

make it possible to evaluate the effect a moving bias has on the error growth.  Figures 

3.10 and 3.11 are a comparison of these analytical equations and the position and velocity 

error growths from a Monte Carlo simulation.  The Monte Carlo simulation was done 

with the simple model in chapter 2 using Tactical Grade IMU characteristics. 
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Figure 3.10  Comparison of a Tactical Grade IMU Position Error Bounds (Static) 
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Figure 3.11  Comparison of a Tactical Grade IMU Velocity Error Bounds (Static) 

 

The error growth rates in the curves of the Monte Carlo simulations, which 

contain both the wide band noise and bias errors, are much faster than the growth rates of 

the curves which only contain the wide band noise error source.  This is confirmation that 

the moving bias, even in the best of sensors, plays a key roll in error growth over time.  

Figures 3.12 and 3.13 contain curves of the difference between the error bound equations 

derived in sections 3.4-3.7 above and the error bounds which resulted from the Monte 

Carlo simulations, which contain all of the error sources. 
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Figure 3.12  Effect of Tactical Grade IMU Biases on Position Error (Static) 
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Figure 3.13  Effect of Tactical Grade IMU Biases on Velocity Error (Static) 
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3.9 Gravitational Effects 

 

The navigation scenario laid out in section 3.1 is one which involves planar 

motion in the East-North coordinates.  In some cases it is necessary to measure the 

distance traveled in the North-Up coordinates.  When it is necessary navigate up the 

accelerometer is affected by the gravitational field of the earth.  This introduces an 

additional error in the upward acceleration measurement because of errors in the pitch 

angle ϑ  calculation.  Below are the state space matrices modified to account for the 

gravitational effects on the accelerometer.   

The state space gravity input matrix is: 

( )

















=

ϑsin
0
0
0

G  (3.53)

Where, 

280665.9
s
mg =  (3.54)

The position calculation then becomes 

[ ] [ ] [ ]gGxBstatesAf positon −+= &&  (3.55)

 

Figures 3.14 and 3.15 are the position and velocity bounds when tactical grade 

IMU characteristics are used.  Figures 3.16 and 3.17 are the position and velocity bounds 

when consumer grade IMU characteristics are used 

.
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Figure 3.14 Tactical Grade IMU Position Error Bounds with Gravity Field  
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Figure 3.15 Tactical Grade IMU Velocity Error Bounds with Gravity Field 
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Figure 3.16 Consumer Grade IMU Position Error Bounds with Gravity Field 
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Figure 3.17 Consumer Grade IMU Velocity Error Bounds with Gravity Field 
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3.10 Summary and Conclusions 

 

In this chapter the errors associated with the integration of a single rate gyro and 

single accelerometers to calculate position, velocity and heading in a planar setting were 

discussed.  The error growths of the position, velocity, and heading calculation were 

depicted with the use of a Monte Carlo Simulation.  Both consumer and tactical grade 

sensor characteristics were compared and experimental data was used to validate the 

bounds of the Monte Carlo simulations.  The Monte Carlo simulations were validated by 

showing the error growths of rate gyros and accelerometers which contain moving biases, 

and comparing them to simulations where the only error source was wide-band noise.  

Analytical equations for position, velocity and heading errors were derived which plot the 

error growths depicted by the integration of rate gyros and accelerometers, which contain 

only one error source, wide-band noise. Finally, a gravity field was introduced.  The error 

growths of the position and velocity calculations were compared with a gravity field and 

without. 
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CHAPTER 4 
 

INTEGRATION ERROR CORRECTIONS FOR A TWO DEGREE 
OF FREEDOM INERTIAL MEASUREMENT UNIT 

 
4.1 Introduction 

 

A Kalman Filter will be implemented to combine the GPS position, velocity and 

heading measurements with the inertial sensor measurements.  The Kalman filter will 

incorporate the sensor model presented in Chapter 2.  The coupling of the GPS 

measurements and the sensor model to calculate the position, velocity and heading from 

the combined GPS and IMU measurements will result in new error bounds for position, 

velocity and heading.  The Kalman Filter will also provide an estimation of the biases 

associated with each sensor.  Experimental data will be used to validate the bias and error 

bound estimations.  This will be useful when designing controllers that need a better 

estimation of position, velocity and heading than a normally received from an integrated 

IMU measurement. 

 

4.2 Heading Error Reduction with a Two State Kalman Filter 

 

The position, velocity and heading calculations from an integrated IMU contain 

several errors, as shown in the previous chapters.  The goal of this chapter is to reduce 
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these errors with the aid of the Global Positioning System.  GPS returns a calculated 

position, velocity and heading that is very precise.  However, in order to preserver the 

precision of GPS, the messages are typically restricted to an output frequency of 1-10 Hz.  

This is not a very desirable output rate when precise and high update rate navigation is 

required.  To increase the output rate, the GPS and an IMU can be coupled together with 

a Kalman filter. 

A Kalman filter is a state estimator that uses the knowledge of the input error 

sources to assist in estimating the true state through time.  A Kalman filter is a good 

coupling tool to use in the above scenarios due to the fact that the GPS measurements are 

unbiased, but are received at a very low frequency, and the IMU measurements are 

relatively imprecise and can be received at relatively high frequencies.  For a more 

detailed description of a Kalman filter refer to Appendix C. 

Below is the first state space navigation model that is commonly implemented in 

a Kalman filter to estimate heading.  This two state model allows the Kalman filter to 

estimate the heading of the platform and approximates the bias in the rate gyro 

measurement as a constant.  Note that the actual variance on the bias is not zero.  If it 

were zero the bias state would be modeled as a constant.  Since there is variance in place, 

the bias state is actually modeled as a random walk.  This is to keep the Kalman filter 

from “going to sleep”.  The Kalman filter is considered to be “asleep” when the gains are 

unchangeable.  In ether case, the bias estimate will remain as a constant when no GPS 

measurement is available. 

2-State Kalman filter state space matrices: 

 62



 









=

tconsbias
x

tan

ϑ
 (4.1)
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 −
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00
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kalA  (4.2)









=

0
1

kalB  (4.3)

[ ]01=
onGPSkalC  (4.4)

[ ]00=
offGPSkalC  (4.5)

[ ]0=kalD  (4.6)

The following noise covariance matrices were used to calculate the Kalman filter 

gains. 
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
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01

wB  (4.7)



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
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


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00

0
2

s

noise

w fQ
σ

 (4.8)

[ ]2
GPSR σ=  (4.9)

82 10−=
constbiasσ

Below is the second state space navigation model that is commonly implemented 

in a Kalman filter to estimate heading.  This two state model allows the Kalman filter to 

estimate the heading of the platform and approximates the bias in the rate gyro 

measurement as a first order Markov process.  Note that the bias estimate will tend to 

zero when there is no GPS measurement available.  This is because the model assumes 
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the Markov process is zero mean.  Therefore, the best estimate is that the bias is zero over 

all time if no other information is available. 

2-State Kalman filter state space matrices: 
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 (4.10)
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[ ]01=
onGPSkalC  (4.13)

[ ]00=
offGPSkalC  (4.14)

[ ]0=kalD  (4.15)

The following noise covariance matrices were used to calculate the Kalman filter 

gains. 
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[ ]2
GPSR σ=  (4.18)

The selection of each of these models is important before setting up a Kalman 

filter.  However, the effects are only seen during GPS outages and will be discussed in 

the following section. 
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The following figures are a comparison of the error bounds when the 2-State 

Kalman Filter is used versus when the rate gyro is integrated using Rugge-Kutta order 

four.  Figure 4.1 is a plot of the results from a consumer grade rate gyro.  Figure 4.2 is a 

plot of the results from a Tactical grade rate gyro. 

 

Figure 4.1 

Consumer Grade Heading Error Comparison between the 2 state Kalman Filter Model 

and Rugge-Kutta Order Four. 

 

As seen in Figure 4.1, coupling the rate gyro with GPS bounds the error.  For a 

consumer grade rate gyro, the Kalman filter reaches steady state around 15 seconds.  
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Once the Kalman filter has reached steady state, the heading error is bound between 0.1 

degrees and 0.2 degrees.  

 

Figure 4.2 

Tactical Grade Heading Error Comparison between the 2 state Kalman Filter Model and 

Rugge-Kutta Order Four. 

 

For a tactical grade rate gyro, the Kalman filter takes much longer, approximately 

700 seconds, to reach steady state.  However, once the Kalman filter reaches steady state, 

the heading error is bound between .015 degrees and .02 degrees. 
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4.3 Heading Errors during a GPS Outage 

 

Since it has been shown that the errors of an inertial sensor can be bound by 

coupling them with GPS, the effects of a GPS outage are now investigated.  The first case 

illustrates what happens during a GPS outage while modeling the bias as a first order 

Markov process using a consumer grade sensor.  Figure 4.3 shows the heading and bias 

states of the Kalman filter.  GPS is denied to the Kalman filter at  seconds, this is 

known as a GPS outage.  As seen in Figure 4.3, once the outage begins, the bias state 

converges to zero.  This is expected since the bias is being modeled as a first order 

Markov process which has a zero mean. 

180=t
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Figure 4.3 

State Estimates for a Two State Kalman Filter with the Second State Modeled as a 1st 

Order Markov Process  

 

The second case is a GPS outage with the bias modeled as a constant (random 

walk).  Figure 4.4 shows the heading and bias states of the Kalman filter.  Again a GPS 

outage was simulated at 180 seconds.  As seen in the figure, the bias state remains 

constant after the GPS outage.  This is expected since the bias is modeled as a constant. 
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Figure 4.4 

State Estimates for a Two State Kalman Filter with the Second State Modeled as a 

Random Walk 

 

Two Monte Carlo simulations were performed with a consumer grade gyro to 

determine which bias model (constant or Markov) performs better.  The first Monte Carlo 

simulation assumes a moving bias dominates the sensor measurement.  This simulation 

used a constant bias of zero.  The second Monte Carlo simulation assumes a constant bias 

of 1 deg/sec dominates the sensor measurement. 

As seen in Figure 4.5, the error bounds on the heading estimate grow much faster 

when the bias was modeled as a constant.  The difference between the error bound 
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estimated by the Kalman filter and the error bound calculated when the bias was modeled 

as a Markov process can most likely be contributed to the number of iteration used in the 

Monte Carlo simulation.  Sixty iterations were used for this simulation because of 

computer memory constraints. 

 

Figure 4.5 

Error Bound Comparison between the Two State Kalman Filter Models when the 

Dominate Bias is not Constant 

 

As seen in Figure 4.6 the error bounds on the heading estimate grows much faster 

when the bias is modeled as a Markov process.  The difference between the error bound 
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estimated by the Kalman filter and the error bound calculated when the bias was modeled 

as a constant is again most likely contributed to the number of iteration used in the Monte 

Carlo simulation.  Sixty iterations were used because of computer memory constraints. 

 

Figure 4.6 

Error Bound Comparison between the Two State Kalman Filter Models when the 

Dominate Bias is a Constant 
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4.4 Heading Error Reduction with a Three State Kalman Filter 

 

Accurately modeling a sensor bias with a two state Kalman filter is difficult 

because the bias can contain both constant and moving components.  To improve the 

heading estimate of a Kalman filter, the following three state model was created.  With 

this model, it is possible to estimate both the moving and constant biases of an inertial 

sensor, instead of estimating only one or the other with the two state Kalman filter. Note 

that during a GPS outage the constant bias estimate will remain constant, and the moving 

bias estimate will tend to zero. 

3-State Kalman Filter state space matrices: 
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The following noise covariance matrices were used to calculate the Kalman filter 

gains. 
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This three state model allows the Kalman Filter to estimate the heading of the 

platform as well as the moving bias and constant bias of the rate gyro.  The following 

figures are a comparison of the error bounds when a 3-State Kalman Filter is used, a 2 

state Kalman Filter is used and a Rugge-Kutta order four integration scheme is used.  

Figure 4.7 is a plot of the results from a consumer grade rate gyro. As seen in the figure, 

when the inertial sensor is integrated the error bounds continue to grow through time.  

When the two state Kalman filter is implemented, the error bounds grow and are 

eventually bound between a thresholds.  The three state Kalman filter is also able to 

bound the errors to the same threshold but not before a time of extreme uncertainty.  This 

is due to the initialization of the Kalman filter covariance matrix. 
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Figure 4.7 

Consumer Grade Heading Error Comparison between the 3 State Kalman Filter Model, 

the 2 State Kalman Filter Model and A Rugge-Kutta Order Four Integration Method. 

 

4.5 Kalman Filter Comparison 

 

Two show the utility of the three state Kalman filter, the experimental data taken 

form the Systron-Donner AQRS-104 presented in Figure 2.3 will be filtered with each of 

the two state Kalman filter models and then the three state Kalman filter.  During the 

filtering process, a GPS outage was created after 30 minutes.  Figure 4.8 is a plot of the 

heading and bias states estimated by the Kalman filter when the two state Kalman filter 
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that models the bias as a constant (random walk) is used.  As seen in the figure the bias 

remains constant after the GPS outage begins.  The important thing to notice is at what 

value the bias remains.  Because the actual bias is not constant but rather moving about 

some mean value that is not zero when the outage begins, the Kalman filter holds the bias 

state at its last estimated value.  Since the value is not exactly equal to the actual bias, 

there is an error introduced into the heading estimate.  

 

Figure 4.8 

Systron-Donner State Estimates for a Two State Kalman Filter with the Second State 

Modeled as a Random Walk 
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The sensor data is now filtered by using the two state Kalman filter model that 

models the bias as a first order Markov process.  Figure 4.9 is a plot of the heading and 

bias states estimated by the Kalman filter.  As seen in the figure, the bias estimate begins 

to converge to zero after the GPS outage begins.  Because the bias estimate converges to 

zero and the actual bias is walking about a mean value less than zero degrees per second, 

the heading estimate will contain large errors after the GPS outage begins. 

 

Figure 4.9 

Systron-Donner State Estimates for a Two State Kalman Filter with the Second State 

Modeled as a 1st Order Markov Process. 
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This actual sensor is dominated by a bias that contains more than one component, 

and the components are of similar magnitudes.  The bias has a definite mean value that is 

not equal to zero, but this mean value has stability issues.  Because of drift issues, the 

bias is not always at that mean value.  This occurs frequently in consumer grade sensors.  

To show the utility of the three state Kalman filter model, the experimental date taken 

from the Systron-Donner rate gyro is filtered using the three state Kalman filter.  Again a 

GPS outage was created after 30 minutes.  Figure 4.10 are the Kalman filter states shown 

versus time while the three states model was used.  As seen in the figure, the filter is able 

to correctly estimate the heading, moving bias and constant bias while GPS is in place.  

When the GPS outage occurs, the moving bias estimate converges to zero, and the 

constant bias estimate remains constant.  With the bias states behaving according to their 

statistical values, the error in the heading estimate is minimized. 
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Figure 4.10 

Systron-Donner State Estimates for a Three State Kalman Filter with the Second State 

Modeled as a 1st Order Markov Process and the Third State Modeled as a Random Walk.

 

4.6 Position Estimation with a Six State Kalman Filter 

 

Like the heading calculation, the position calculation can also be improved by 

using a Kalman filter.  However, because the inertial sensor measurement is acceleration, 

the Kalman filter must double integrate to estimate the position.  The following is a six 

state Kalman filter which estimates the accelerometer moving bias and constant bias, as 

well as the velocity and position of the platform.   
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The six state Kalman filter model includes the following states: 

 



























=

tcons

walking

y

x

y

x

bias
bias
position
position
velocity
velocity

x

tan

 (4.28)

where the state space matrices are, 
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The noise covariance matrices for the system are defined as: 
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The utility of this six state model is similar to the three state model presented in 

section 4.4.  This six state Kalman filter model is able to estimate two components in a 

bias.  These components include a constant offset or mean that is not zero as well as a 

moving component. 

 

4.7 Summary and Conclusion 

 

A Kalman Filter was implemented which combined the GPS position, velocity 

and heading measurements with the inertial sensor measurements.  The Kalman filter 

incorporated the sensor model presented in Chapter 2.  It was shown that the coupling of 

the GPS measurements and the sensor model to calculate the position, velocity and 

heading from the combined GPS and IMU measurements resulted in new error bounds 

for position, velocity and heading.  It was shown that the steady state error bounds were 

the same for both the two state Kalman filter and the three state Kalman filter when used 

to estimate heading.  The two state Kalman filter provided an estimation of the rate gyros 

biases.  However, the bias had to be either modeled as a random walk or a first order 

Markov process.  Monte Carlo simulations were used to demonstrate the difficulty in 

choosing the model type.  The three state Kalman filter provided an estimation of the rate 

gyros bias and was able to estimate both a constant component as well as a moving 

component of the actual sensor bias.  Experimental data was used to validate the bias 

estimations in the three state Kalman filter.  A five state model was laid out which 

estimates two bias components in an accelerometer.  These components include a 

constant part and a moving part. 

 81



 

 
 
 
 

CHAPTER 5 
 

INTEGRATION ERRORS IN A SIX DEGREE OF FREEDOM 
INERTIAL MEASUREMENT UNIT 

 
5.1 Introduction 

 

In this chapter the errors associated with the integration of three rate gyros and 

three accelerometers to calculate position, velocity and heading in a 3 dimensional setting 

are discussed.  First, the model used to simulate the inertial measurement unit (IMU) will 

be laid out along with the integration method.  The error growth of the position, velocity 

and heading calculation is then depicted using Monte Carlo simulations.  Additionally, 

both a consumer grade and tactical grade inertial measurement unit will be compared 

with and without a gravity field in place. 

 

5.2 Six Degree of Freedom Inertial Measurement Unit Model 

In Chapter 2, a simple model for a rate gyro and an accelerometer were presented.  

This chapter will utilize these models to simulate an inertial measurement unit with six 

degrees of freedom.  The degrees of freedom include three translational degrees of 

freedom (vertical, lateral, and longitudinal) and three rotational degrees of freedom (roll, 

pitch, and yaw).  The following figures are a pictorial representation of these degrees of 

freedom. 
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Figure 5.1a  Longitudinal (X) 
(Motion Forward and Backward) 

 Figure 5.1b  Vertical (Y) 
(Motion Upward and Downward) 

   
 

Figure 5.1c  Lateral (Z) 
(Motion Left and Right) 

 Figure 5.1d  Pitch (ϑ ) 
(Nose Pitches Up or Down) 

   
 

Figure 5.1e  Roll (φ ) 
(Wings Roll Up or Down) 

 Figure 5.1e  Yaw (ψ ) 
(Nose Moves from Side to Side) 

Figure 5.1  Definition of the Six Degrees of Freedom 
 83



 

The vertical, lateral, and longitudinal accelerations will be modeled with three 

simple accelerometer models as was used in Chapter 2.  The roll, pitch and yaw rates will 

also be modeled with the three simple rate gyro models from Chapter 2.  These rate gyro 

triad model equations and accelerometer triad model equations for the entire simple six 

degree of freedom inertial measurement unit are shown below. 

 

φφφφφ gyrowbcrg +++=  (5.1)

ϑϑϑϑϑ gyrowbcrg +++=  (5.2)

ψψψψψ gyrowbcrg +++=  (5.3)

xaccelxxx wbcxa &&&&&&&& && +++=  (5.4)

yaccelyyy wbcya &&&&&&&& && +++=  (5.5)

zaccelzzz wbcza &&&&&&&& && +++=  (5.6)

 

The above equations contain the actual gyro measurements for roll rate ( ), 

pitch rate ( ), and yaw rate ( ) as well as the actual roll rate ( ), the actual pitch rate 

( ) and the actual yaw rate ( r ).  Each rate gyro contains a constant bias term  and a 

moving bias term b .  The moving bias in each rate gyro is modeled as a first order 

Markov process with the following variances. 

φg

ϑg ψg

ψ

φr

ϑr c

 

[ ] 22

φ
σφ biasgyrobE =  (5.7)
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[ ] 22

ϑ
σϑ biasgyrobE =  (5.8)

[ ] 22

ψ
σψ biasgyrobE =  (5.9)

 

Each rate gyro also contains a wide band noise term .  The variances and 

means of the wide band noise term for each of the rate gyros are defined as follows. 

gyrow

 

[ ]
s

gyro
gyro f

wE
2

2 φ

φ

σ
=  (5.10)

[ ] 0=
φgyrowE  (5.11)

[ ]
s

gyro
gyro f

wE
2

2 ϑ
ϑ

σ
=  (5.12)

[ ] 0=
ϑgyrowE  (5.13)

[ ]
s

gyro
gyro f

wE
2

2 ψ

ψ

σ
=  (5.14)

[ ] 0=
ψgyrowE  (5.15)

 

The above equations contain the longitudinal acceleration measurement ( ), the 

vertical acceleration measurement ( a ), and the lateral acceleration measurement ( a ).  

They also contain the actual longitudinal acceleration ( ), the actual vertical acceleration 

( ) and the actual lateral acceleration ( ).  Each accelerometer contains a constant bias 

xa &&

y&& z&&

x&&

y&& z&&
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term  and a moving bias term b .  The moving bias in each accelerometer is modeled as 

a first order Markov process with the following variances. 

c

E

E

E

[E

E

[E

[ ] 22

xbiasaccelxb
&&&& σ=  (5.16)

[ ] 22

ybiasaccelyb
&&&& σ=  (5.17)

[ ] 22

zbiasaccelzb
&&&& σ=  (5.18)

 

Each accelerometer also contains a wide band noise term .  The variances 

and means of the wide band noise term for each of the accelerometers are defined as 

follows. 

accelw

 

]
s

xaccel
xaccel f

w
2

2 &&
&&

σ
=  (5.19)

[ ] 0=xaccelwE &&  (5.20)

[ ]
s

yaccel
yaccel f

w
2

2 &&

&&

σ
=  (5.21)

[ ] 0=yaccelwE &&  (5.22)

]
s

zaccel
zaccel f

w
2

2 &&
&&

σ
=  (5.23)

[ ] 0=zaccelwE &&  (5.24 
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5.3 Six Degree of Freedom Inertial Measurement Unit Integration 

 

To determine the position of a six degree of freedom IMU the roll, pitch, and yaw 

of the platform must first be calculated.  This is accomplished by numerical integrating 

the rate gyro measurement.  The method chosen to do this is the Runge-Kutta order four 

integration routine.  This method is laid out below for a State Space format 

The state space matrices for calculating heading of a six DoF IMU are: 

 
















=

000
000
000

A   (5.25 
















=

100
010
001

B  (5.26 

















+















=

ψ
ϑ
φ

ψ
ϑ
φ

&

&

&

BAfheading  (5.27)

 

The Runge-Kutta order four procedure for integrating the above state space 

equations is defined in the following equations. 

 

[ ] [ ] ( ) 622 4321111 kkkkT
iii

T
iii ++++=+++ ψϑφψϑφ  (5.28)

 

where 
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[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )T

iii
T

iiiheadings

T
iii

T
iiiheadings
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ψϑφψϑφ
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 (5.29)

 

The initial conditions in this thesis were always set to zero such that: 
















=

















0
0
0

0

0

0

ψ
ϑ
φ

 (5.30)

 

The initialization of the roll angle (φ ), pitch angle (ϑ ), and yaw angle (ψ ) all to 

zero corresponds to an alignment where the x-axis is pointing due North, the y-axis is 

pointing straight Up, and the z-axis is pointing due East. 

After the roll, pitch, and yaw angles of the platform are calculated, the position 

and velocity of the platform must be calculated by integrating the accelerometer 

measurements. The Runge-Kutta method was also used in a state space format: 

The state space matrices for calculating position of a six DoF IMU are: 

 



























=

000100
000010
000001
000000
000000
000000

A   (5.31)
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[ ]



























=

000
000
000

ENUR

B  (5.32)

Where  is a transformation matrix from the x-y-z body frame to the ENU 

coordinate frame as defined below. 

ENUR

[ ] 111 −−−= zyxENU RRRR  (5.33)

The individual body coordinate transformation matrices ( , , ) are: xR yR zR

( ) ( )
( ) ( )
















−
=

φφ
φφ

cossin0
sincos0

001

xR  (5.34)

( ) ( )

( ) ( ) 













 −
=

ψψ

ψψ

cos0sin
010

sin0cos

yR  (5.35)

( ) ( )
( ) ( )
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












−=

100
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ϑϑ
ϑϑ

zR  (5.36)

The state vector derivative ( ) can then be defined as shown below. positionf
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

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x
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x
z
y
x

Af positon

&&

&&

&&

&

&

&

 (5.37)

Where G  is the gravity field ( 281.9 sm ) 
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The Runge-Kutta order four procedure for integrating the above state space 

equations is shown below. 

( ) 622 4321
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where: 
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Again the initial conditions for the system are set to zero. 
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 (5.40)

 

The initialization of the states vector to zero is convenient for this analysis.  

However, if this were done in practice, the initial longitude, latitude and altitude of the 

vehicle platform would need to be recorded in order to properly propagate the vehicle 

motion. 
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In the next sections, a six degree of freedom inertial measurement unit is 

simulated to study how the heading, velocity, and position errors grow over time.  A 

tactical and consumer grade IMU is used.  The simulation used the model provided in 

Equations (5.1-5.6), which include a Markov bias, wide band noise and a constant bias.  

The constant bias term was removed in order to focus on the errors generated from the 

combination of a Markov bias and wide band noise.  The simulations were run with a 

gravity field in place and with it removed.  This was done to emphasize the effect gravity 

has on the navigation capabilities of an IMU. 

 

5.4  Six Degree of Freedom IMU Integration Heading Errors 

 

Figure 5.2 is a plot of the roll, pitch, and yaw angle errors produced when a 

tactical grade IMU is integrated.  The angles shown are between the body frame and the 

ENU coordinate frame.  The Monte Carlo simulation was run with a gravity field and 

without a gravity field.  As seen in the plot the introduction of gravity does not effect the 

heading calculations for a tactical grade IMU.  This is due to the fact that the gravity field 

is only seen by the accelerometers.  Since the heading calculation only uses the 

measurements form the three rate gyros the introduction of a gravity field will never 

affect there error growths. 
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Figure 5.2 Heading Error in a Six DoF Tactical Grade IMU 

 

Figure 5.3 is a plot of the roll, pitch, and yaw angle errors produced when a 

consumer grade IMU is integrated.  The angles shown are between the body frame and 

the NEU coordinate frame.  Again, the Monte Carlo simulation was run with and without 

a gravity field.  As seen in the figure the introduction of gravity does not effect the 

heading calculations for a consumer grade IMU due to the reasons mentioned above. 
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Figure 5.3  Heading Error in a Six DoF Consumer Grade IMU 

 

5.5 Six Dof Inertial Measurement Unit Velocity Errors 

 

Figure 5.4 is a plot of the longitudinal, lateral, and vertical velocity errors 

produced when a tactical grade IMU is integrated.  The velocities shown are in the North 

East Up coordinate frame.  The Monte Carlo simulation was run with and without a 

gravity field.  As seen in the figure, the introduction of a gravity field causes the 

longitudinal and lateral velocity errors to grow at a rate slightly higher than the vertical 

velocity errors. 
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Figure 5.4  Velocity Errors in a Six DoF Tactical Grade IMU 

 

Figure 5.5 is a plot of the longitudinal, lateral, and vertical velocity errors 

produced when a consumer grade IMU is integrated.  The velocities shown are in the 

North East Up coordinate frame.  The Monte Carlo simulation was run again and without 

a gravity field.  As seen in the figure, the introduction of a gravity field causes the 

longitudinal and lateral velocity errors to grow at a much faster rate than the vertical 

velocity errors. 

From an observational stand point, it is important to notice that the introduction of 

a gravity field causes the velocity error bounds to change.  The magnitude of the change 

is dependent on the grade IMU. 

 94



 

 

 

Figure 5.5  Velocity Error in a Six DoF Consumer Grade IMU 

 

5.6 Six Dof Inertial Measurement Unit Position Errors 

 

Figure 5.6 is a plot of the longitudinal, lateral and vertical position errors 

produced when a tactical grade IMU is integrated.  The positions shown are in the North 

East Up coordinate frame.  In the previous figures, it was shown that the introduction of a 

gravity field causes the longitudinal and lateral velocity errors to grow at a slightly faster 

rate than the vertical velocity errors.  It should be expected that these increased errors will 
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induce similar errors in the longitudinal and lateral positions.  This can be seen in Figure 

5.6. 

 

 

Figure 5.6  Position Error in a Six DoF Tactical Grade IMU 

 

Figure 5.7 is a plot of the longitudinal, lateral, and vertical position errors 

produced when a consumer grade IMU is integrated.  The positions shown are in the 

North East Up coordinate frame.  In the previous figures it was shown that the 

introduction of a gravity field causes the longitudinal and lateral velocity errors to grow 

at a much faster rate than the vertical velocity errors.  It should be expected that the 
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increased errors will induce similar errors in the longitudinal and lateral positions.  This 

can be seen in Figure 5.7.  

 

 

Figure 5.7  Position Error in a Six DoF Consumer Grade IMU 

 

5.7 Summary and Conclusion 

 

This chapter discussed the errors associated with the integration of three rate 

gyros and three accelerometers to calculate position, velocity and heading in a 3 

dimensional setting.  First, the IMU model was laid out along with the Rugge-Kutta 

integration method.  Then the error growth of the position, velocity, and heading 
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calculations were depicted using Monte Carlo simulations.  Both a consumer grade and 

tactical grade inertial measurement unit were simulated and the effects of a gravity field 

were pictorially shown for each. 
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CHAPTER 6 
 

ADVANCED SENSOR MODELING 
 

6.1 Introduction 

 

This chapter will lay out a more advanced six degree of freedom inertial sensor 

model for the rate gyros and accelerometers in the inertial measurement unit.  The model 

presented in this chapter will introduce a variety of new terms.  Each term is an error 

source which can be seen in the inertial sensors measurements.  The advanced terms in 

the accelerometer model will include misalignment, nonorthagonality, scale factor, scale 

factor asymmetry ,and nonlinearity.  The advanced terms in the rate gyro model will 

include misalignment, nonorthagonality and scale factor.  Each of these terms will be 

defined and pictorially presented.  Finally, this chapter will define the errors due to 

incorrect initial conditions given to the integration routine.  These errors are commonly 

known as the inertial measurement unit’s initialization errors. 

 

6.2 The Inertial Measurement Unit Accelerometer Triad Error Model 

 

The inertial measurement accelerometer triad error model [Grewal], which 

contains a scale factor error, an asymmetric scale factor error, a nonlinear scale factor 
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error, misalignment errors, nonorthogonality errors and all the error terms presented in 

Chapter 5 is given as, 

( ) ( ) ( )
xaccelxx

AyAyAzAzxxxx

wbc

zyxSFNxSFAxSFa

+++

−∆++∆++++=

&&&&

&& &&&&&&&&&& δδ sinsin1 2

 (6.1) 

( ) ( ) ( )
yaccelyy

AxAxAzAzyyyy

wbc

zxySFNySFAySFa

+++

+∆+−∆++++=

&&&&

&& &&&&&&&&&& δδ sinsin1 2

 (6.2) 

( ) ( ) ( )
zaccelxz

AxAxAyAyzzzz

wbc

yxzSFNzSFAzSFa

+++

−∆++∆+++++=

&&&&&&

&& &&&&&&&&&& δδ sinsin1 2

 (6.3) 

where, 

xa&& ,  and  are the measured accelerations, ya && za &&

x&& ,  and  are the true accelerations,  y&& z&&

and 

x&& , y&&  and z&&  are the absolute value of the true accelerations. 

The definitions of the error terms for the accelerometer are provided in Table 6.1. 

The wide band sensor noise, , is assumed to be normally distributed with a 

zero mean and have the following sampled covariance: 

accelw

 

[ ]
s

accel
accel f

wE
2

2 σ
=  (6.4) 

 

The gyros walking bias, b , will be modeled as a first order Markov Process with 

defined statistics which account for its drift and are shown below: 
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[ ]2,0
biasaccelb σ⊂  (6.5) 

biasgyrowbb +−=
τ
1&  (6.6) 

 

6.3 The Inertial Measurement Unit Rate Gyro Triad Error Model 

 

The inertial measurement rate gyro triad error model [9], which contains scale 

factor errors, misalignment errors, nonorthogonality errors and all the error terms 

presented in Chapter 5 is given as, 

 

( ) ( ) ( )
φφφφφ ψδϑδφ gyroGzGzGyGy wbcSFg +++−∆++∆++= &&& sinsin1  (6.7) 

( ) ( ) ( )
ϑϑϑϑϑ ψδφδϑ gyroGxGxGyGy wbcSFg +++−∆++∆++= &&& sinsin1  (6.8) 

( ) ( ) ( )
ψψψψψ ϑδφδψ gyroGxGxGzGz wbcSFg ++++∆+−∆++= &&& sinsin1  (6.9) 

where, 

φg ,  and  are the measured rotation rates, ϑg ψg

φ& ,  and ϑ& ψ&  are the true rotation rates,  

and 

φ& , ϑ&  and ψ&  are the absolute value of the true accelerations. 

The wide band sensor noise, , is assumed to be normally distributed with a 

zero mean and have the following sampled covariance: 

gyrow
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[ ]
s

gyro
gyro f

wE
2

2 σ
=  (6.10)

The gyros walking bias, b , will be modeled as a first order Markov Process with 

defined statistics which account for its drift and are shown below: 

 

[ ]2,0
biasgyrob σ⊂  (6.11) 

biasgyrowbb +−=
τ
1&  (6.12) 

A list of all of the error terms used in the triad accelerometer model (6.1-6.3) and 

the triad rate gyro model (6.7-6.9) are given below in Table 6.I 

 

Table 6.1 Advanced IMU Error Parameters   
Error Parameter Symbol Units 

Roll Gyro Wide Band Noise Variance φ
σ 2

gyro  ( )2seco

Pitch Gyro  Wide Band Noise Variance φ
σ 2

gyro  ( )2seco

Yaw Gyro Wide Band Noise Variance ψ
σ 2

gyro  ( )2seco

Roll Gyro Constant Offset φc  seco  
Pitch Gyro  Constant Offset ϑc  seco  
Yaw Gyro Constant Offset ψc  seco  

Roll Gyro Bias Variance 2
φ

σ
biasgyro  ( )2seco

Pitch Gyro Bias Variance 2
ϑ

σ
biasgyro  ( )2seco

Yaw Gyro Bias Variance 2
ψ

σ
biasgyro  ( )2seco

Roll Gyro Bias Time Constant φτ  sec  
Pitch Gyro Bias Time Constant ϑτ  sec  
Yaw Gyro Bias Time Constant ψτ  sec  

Roll Gyro Scale Factor Error φSF  ppm  

Pitch Gyro Scale Factor Error ϑSF  ppm  

Yaw Gyro Scale Factor Error ψSF  ppm  
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Gyro Triad Misalignment about X Gxδ  radµ  

Gyro Triad Misalignment about Y Gyδ  radµ  

Gyro Triad Misalignment about Z Gzδ  radµ  
Gyro Triad Nonorthogonality about X Gx∆  radµ  

Gyro Triad Nonorthogonality about Y Gy∆  radµ  

Gyro Triad Nonorthogonality about Z Gz∆  radµ  

Longitudinal Accelerometer Wide Band Noise Variance xaccel
2σ  2g  

Vertical Accelerometer Wide Band Noise Variance yaccel
2σ  2g  

Lateral Accelerometer Wide Band Noise Variance zaccel
2σ  2g  

Longitudinal Accelerometer Constant Offset xc&&  g  

Vertical Accelerometer Constant Offset yc &&  g  

Lateral Accelerometer Constant Offset zc &&  g  

Longitudinal Accelerometer Bias Variance 2
φ

σ
biasaccel  2g  

Vertical Accelerometer Bias Variance 2
ϑ

σ
biasaccel  2g  

Lateral Accelerometer Bias Variance 2
ψ

σ
biasaccel  2g  

Longitudinal Accelerometer Bias Time Constant xτ  sec  
Vertical Accelerometer Bias Time Constant yτ  sec  
Lateral Accelerometer Bias Time Constant zτ  sec  
Longitudinal Accelerometer Scale Factor Error xSF  ppm  

Vertical Accelerometer Scale Factor Error ySF  ppm  

Lateral Accelerometer Scale Factor Error zSF  ppm  

Longitudinal Accelerometer Scale Factor Asymmetry xSFA  ppm  

Vertical Accelerometer Scale Factor Asymmetry ySFA  ppm  

Lateral Accelerometer Scale Factor Asymmetry zSFA  ppm  

Longitudinal Accelerometer Scale Factor Nonlinearity xSFN  ppm  

Vertical Accelerometer Scale Factor Nonlinearity ySFN  ppm  

Lateral Accelerometer Scale Factor Nonlinearity zSFN  ppm  

Accelerometer Triad Misalignment about X Axδ  radµ  

Accelerometer Triad Misalignment about Y Ayδ  radµ  
Accelerometer Triad Misalignment about Z Azδ  radµ  
Accelerometer Triad Nonorthogonality about X Ax∆  radµ  

Accelerometer Triad Nonorthogonality about Y Ay∆  radµ  
Accelerometer Triad Nonorthogonality about Z Az∆  radµ  
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6.4 Model Error Parameter Descriptions 

 

Figure 6.1 illustrates the individual input/output error types found in the advanced 

sensor model.  Figure 6.1a, 6.1b and 6.1c are the graphical representation of scale factor, 

an offset bias and asymmetry, respectfully.  Figure 6.1d is the graphical representations 

of nonlinearity. 

 

  

(a) Scale Factor (b) Offset Bias 

  

(c) ±  Asymmetry (d) Nonlinearity 

Figure 6.1  Inertial Measurement Unit Input/Output Error Types 

 

Input 

Output 

Input

Output 

Input

OutputOutput 

Input
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Figure 6.2 illustrates the individual input axis misalignments.  The large arrows in 

the figure represent the nominal input axis directions (labeled X, Y and Z).  The smaller 

arrows (labeled mij) represent the directions of scale factor deviations when ji =  and 

axis misalignment when ji ≠ . 

 

myy 

myz 

myx 
Y

mzy 
mxz XZ

mzx mxx 
 

Figure 6.2  Inertial Measurement Unit Triad Misalignment  

mzz mxy 

 

The following equations can be used to obtain the angular misalignment about a 

particular axis. 









=








=

Z
m

Y
m zyyz

x arcsinarcsinδ  
(6.13) 
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
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




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Z
m

X
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(6.14 









=








=

Y
m

X
m yxzy

z arcsinarcsinδ  
(6.15) 

 

Figure 6.3 illustrates the individual input axis nonorthogonality.  The large arrows 

in the figure represent the nominal input axis directions (labeled X, Y and Z). The smaller 

arrows (labeled mij) represent the directions of scale factor deviations when ji =  and 

axis nonorthogonality when ji ≠ . 

 

nyy 

nyx nyz 
Y

nxy nzy 

X

Z

 

 

Figure 6.3  Inertial Measurement Unit Triad Nonorthogonality 

nxx nzx nxz nzz 
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The following equations can be used to obtain the angular nonorthogonality about 

a particular axis. 
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Y
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(6.13) 
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(6.14 
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


=








=∆

Y
n

X
n yxzy

z arcsinarcsin  
(6.15) 

 

6.5 Inertial Measurement Unit Initialization Errors 

 

Before navigation can begin, the initial condition of the states must be given to 

the integration routine.  The mean error of the calculated initial condition for each of the 

states are the initialization errors.  In the previous chapter, the position of the body frame 

was represented in terms of the North-East-Up coordinate frame.  This chapter will 

continue with that transformation.  The initial attitude and position of the body frame will 

be input into the integration procedure.  As the body frame moves, the position will then 

be calculated in terms of the NEU coordinate frame.  The accuracies of the initial attitude 

and position measurement for the body frame are the initialization errors of the inertial 

measurement unit. Each degree of freedom will contain an initialization error, which are 

defined in Table 6.2 below. 
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Table 6.2 IMU Initialization Error Parameters   
Error Parameter Symbol Units 

North Position Error @ Beginning of Navigation Nρ  Degrees 
East Position Error @ Beginning of Navigation Eρ  Degrees 
Up Position Error @ Beginning of Navigation Uρ  Degrees 
Roll Error @ Beginning of Navigation errorφ  Meters 
Pitch Error @ Beginning of Navigation errorϑ  Meters 
Yaw Error @ Beginning of Navigation errorψ  Meters 

 

Figure 6.4 shows the initialization vectors for a body coordinate frame.  The 

perceived origin of the body frame is located at point ( )000 ,, UENO = ,  The perceived 

heading of the body frame is ( )000 ,, ψϑφ .  From Figure 6.4 the initialization errors can be 

defined as follows: 

xxN i=ρ  (6.16) 

yyE i=ρ  (6.17) 

zzU i=ρ  (6.18 
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=



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
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Z
i

X
i zxxz

error arcsinarcsinψ  (6.21) 

The actual origin of the body frame can be found with the following equations. 

( )UENactual UENO ρρρ +++= 000 ,,  (6.22) 

( )orrorerrorerroractualHeading ψψϑϑφφ +++= 000 ,,  (6.23) 
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6.6 Summary And Conclusion 

 

This chapter laid out a more advanced six degree of freedom inertial sensor model 

which contained three rate gyros and three accelerometers with a variety of input/output 

error terms.  The input/output error terms in the three accelerometer models included 

misalignment error, nonorthagonality error, scale factor error, scale factor asymmetry 

error and scale factor nonlinearity error.  The input/output error terms in the three rate 

gyro models included misalignment errors, nonorthagonality errors and scale factor error.  

Each of these terms was defined and pictorially presented.  Finally, this chapter defined 

the inertial measurement unit’s initialization errors. 
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CHAPTER 7 
 

INTEGRATION ERRORS OF THE SIX DEGREE OF FREEDOM 
ADVANCED INERTIAL MEASURMENT UNIT MODEL 

 
7.1 Introduction 

 

This chapter will discus the integration errors of the six degree of freedom 

advanced inertial measurement unit model presented in Chapter 6.  A comparison of the 

advanced model versus the simple model of chapter five will be illustrated with a 

common rocket launch trajectory.  The comparison will identify the effects the advanced 

models error parameters have on the inertial measurement unit’s navigation capabilities. 

 

7.2 Launch Trajectory Profile I 

 

The trajectory chosen for this comparison is one which simulates a rocket launch.  

The rocket is elevated to a pitch angle of 55 degrees before ignition.  The longitudinal 

and lateral axes are aligned with the north and east axis.  A maximum thrust of 8 g’s is 

introduced in the rockets longitudinal axis.  The thrust is sufficient to project the rocket a 

distance of 84 km due north.  The body frame accelerations and heading angles are 

shown in Figure 7.1a and Figure 7.1b.  The rocket velocities in the NEU coordinate frame 
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are shown in Figure 7.1c.  A graph of the rockets altitude versus range is shown in Figure 

7.2. 

As seen in Figure 7.1a, an initial thrust of 8 g’s is introduced in the rockets 

longitudinal axis.  Since the rocket is elevated to a pitch angle of 55 degrees, the 

longitudinal accelerometer will read a negative component of gravity.  As the rocket 

peaks and begins its downward slope, the longitudinal accelerometer will begin to read a 

positive component of gravity.  The existence of the gravity field will introduce a slight 

error in the position calculation as shown previously in Chapter 5 

As seen in Figure 7.1b, the rocket is elevated to a 55 degree pitch angle.  After the 

initial thrust is introduced, the rocket maintains this pitch angle for approximately 6 

seconds.  After 6 seconds, a -10 degree per second pitch rate begins for 15 seconds.  This 

results in a final pitch angle of -88 degrees. 

As seen in Figure 7.1c, the initial thrust brings the northern and upward velocities 

to approximately 550 meters per second.  After the rocket peaks and begins its downward 

part of the trajectory, it reaches a final impact velocity of nearly 600 meters per second. 

As seen in Figure 7.2, the rocket travels down range 86 kilometers in 165 

seconds.  In 40 seconds it reaches a peak altitude of 24 kilometers 
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Figure 7.1 

Rocket Launch Trajectory I 
Body Accelerations, Body Headings and ENU Velocities 
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Figure 7.2  Rocket Launch Trajectory I Altitude Vs. Range 

 

7.3 Comparison of the Simple and Advanced IMU Models 

 

To compare the simple model to the advanced model, the above trajectory was 

used.  Each six degree of freedom model was run in a Monte Carlo simulation for 200 

iterations.  Tactical grade IMU specifications were used in both the simple and advanced 

models.  The purpose of this comparison is to evaluate the effects that the additional 

terms in the advanced model have on the navigation capabilities of an IMU.  To do this, 

the constant bias offset must be very small or non existent.  Normally a tactical grade 

IMU contains as little as 1 deg per hour of bias offset in the rate gyros and as little as 400 
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micro g’s of bias offset in the accelerometers.  For this comparison, the constant bias 

offset of the tactical IMU was set to zero.  The initialization errors discussed in chapter 6 

were also neglected in order to identify the input/output parameter with the larges impact.  

The comparison point was chosen to be at the point of impact.  Figure 7.3 is a scatter plot 

of the calculated impact point for both of the inertial measurement unit models. 

 

 

Figure 7.5  Rocket Launch Trajectory Impact Point Scatter Plot 

 

The blue data clusters represent the impact point calculated by the simple model.  

The red data clusters represent the impact point calculated by the advanced model. The 

standard deviation for both clusters is 50 meters downrange and 50 meters cross range.  
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However, from the plot it is evident that the two clusters have different downrange and 

cross range means.  The simple model of chapter five has a mean center line at the origin 

of the downrange and cross range axes.  This is expected because the wide band noise 

and Markov process for each inertial sensor in the simple model have a mean of zero.  

The advanced model has a mean cross range center line of 450 meters east of the actual 

impact point and a mean downrange center line of 86 meters south of the actual impact.  

Because the moving bias and wide band noise statistics are the same for each model, the 

shifting of the center line can only be contributed to the additional input/output 

parameters modeled in the advanced model. 

 

7.4 Advanced Model Error Parameter Contribution Levels 

 

To determine the contribution level each of the input output error parameters has 

on the total error, a simulation was run for each error parameter individually.  The 

magnitude of the contribution level for each error parameter was calculated by taking the 

second norm of an error vector at the impact point.  Figure 7.4 is a bar graph of each of 

the error parameters contribution levels as well as the total error level. 
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Figure 7.4  Rocket Launch Trajectory I Error Parameters Contribution Levels 

 

From the bar graph, it is now possible to identify the error parameters which 

contribute the greatest to the total error in the impact point calculation for this rocket 

launch trajectory.  The gyro misalignment about Y has the highest contribution level for 

this simple trajectory.  This is due to the fact that the roll measurement is directly affected 

when there is a pitch rate applied to the body frame, as seen in Equation (6.7).  The 

accelerometer misalignment about Y is the second highest contributor to error.  This 

effect is due to the fact that the lateral acceleration is directly affected when there is a 

longitudinal acceleration applied to the body frame, as shown previously in Equation 

(6.3). 
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7.5 Summary and Conclusion 

 

This chapter discussed the integration errors of the six degree of freedom 

advanced inertial measurement unit model presented in Chapter 6.  A comparison of the 

advanced model versus the simple model of Chapter 5 was illustrated with a common 

rocket launch trajectory.  The comparison showed that the advanced models error 

parameters caused the calculated position to be skewed away from the actual position.  It 

was also shown that the contribution level for each of the error parameters was dependent 

on the trajectory. 
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CHAPTER 8 
 

CONCLUSION 
 

8.1 Summary 

 

In Chapter 2, a simple sensor model was laid out that incorporated a moving bias, 

a constant bias, and a random error.  The biases and random error sources were analyzed 

statistically.  The numerical values for the time constants, means, and variances were 

obtained by using common statistical methods, Allan Variance charts, Autocorrelation 

functions, and Monte Carlo Simulations. The statistical parameters of the error sources 

were used to categorize and characterize the sensors.  The inertial sensors were 

categorized into four basic grades: navigational, tactical, automotive, and consumer.  

Several sensor grades were simulated and experimentally validated.  A group of tables 

was provided which contained the specification for a number commonly used rate gyros 

and accelerometers.  Additional tables were also provided which can be used to classify 

the sensors. 

Chapter 3 discussed the errors associated with the integration of a single rate gyro 

and single accelerometers to calculate position, velocity and heading in a planar setting.  

The error growths of the position, velocity, and heading calculation were depicted with 

the use of a Monte Carlo Simulation.  Both consumer and tactical grade sensor 

characteristics were compared and experimental data was used to validate the bounds of 
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the Monte Carlo simulations.  The Monte Carlo simulations were validated by showing 

the error growths of rate gyros and accelerometers which contain moving biases and 

comparing them to simulations where the only error source was wide-band noise.  

Analytical solutions for position, velocity and heading errors were derived which plot the 

error growths depicted by the integration of rate gyros and accelerometers which contain 

only one error source, wide-band noise.  Finally, a gravity field was introduced.  The 

error growths of the position and velocity calculations were compared with a gravity field 

and without. 

Chapter 4 implemented a Kalman Filter which combined the GPS position, 

velocity and heading measurements with the inertial sensor measurements.  The Kalman 

filter incorporated the sensor model presented in Chapter 2.  It was shown that the 

coupling of the GPS measurements and the sensor model to calculate the position, 

velocity and heading from the combined GPS and IMU measurements resulted in new 

error bounds for position, velocity and heading.  It also was shown that the steady state 

error bounds were the same for both the two state Kalman filter and the three state 

Kalman filter when used to estimate heading.  The two state Kalman filter provided an 

estimation of the rate gyros biases.  However, the bias had to be either modeled as a 

random walk or a first order Markov process.  Monte Carlo simulations were used to 

demonstrate the difficulty in choosing the model type.  The three state Kalman filter 

provided an estimation of the rate gyros bias and was able to estimate both a constant 

component as well as a moving component.  Experimental data was used to validate the 

bias estimations in the three state Kalman filter.  A five state model was laid out which 
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estimates two bias components in an accelerometer.  These components include a 

constant part and a moving part. 

Chapter 5 discussed the errors associated with the integration of three rate gyros 

and three accelerometers to calculate position, velocity and heading in a 3 dimensional 

setting.  First the IMU model was laid out along with the Rugge-Kutta order four 

integration routine.  Then the error growth of the position, velocity, and heading 

calculations were depicted using Monte Carlo simulations.  Both a consumer grade and 

tactical grade inertial measurement unit were simulated and the effects of a gravity field 

were pictorially shown for each. 

Chapter 6 laid out a more advanced six degree of freedom inertial sensor model 

which contained three the rate gyros and three accelerometers with a variety of 

input/output error terms.  The input/output error terms in the three accelerometer models 

included misalignment error, nonorthagonality error, scale factor error, scale factor 

asymmetry error and scale factor nonlinearity error.  The input/output error terms in the 

three rate gyro models included misalignment errors, nonorthagonality errors and scale 

factor error.  Each of these terms was defined and pictorially presented.  Finally, this 

chapter defined the inertial measurement unit’s initialization errors. 

Chapter 7 discussed the integration errors of the six degree of freedom advanced 

inertial measurement unit model presented in Chapter 6.  A comparison of the advanced 

model versus the simple model of Chapter 5 was illustrated with a common rocket launch 

trajectory.  The comparison showed that the advanced models error parameters caused 

the calculated position to be skewed away from the actual position.  It was also shown 
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that the contribution level for each of the error parameters was dependent on the 

trajectory. 

 

8.2 Recommendations for Future Work 

 

Future work should include using the procedure laid out in Chapter 2 to determine 

the statistical properties of a variety of other consumer, automotive and tactical grade 

sensors not listed in this work.  The error analysis performed in Chapter 3 should be done 

for cases where the sensors are not static in order to validate the robustness of the 

procedure.  Equations should be derived that represent the error growth for a non static 

sensor and compare these equations to the ones derived in Chapter 3.  This comparison 

can be used to analyze the effects dynamics play in the sensor error growth.  Equations 

should be derived which depict the error growth for the contribution of the walking bias.  

These equations, in conjunction with the equations derived in Chapter 3, then can be used 

to predict the total error growth due to wide band noise and the walking bias modeled as 

a first order Markov process.  Equations should be derived which depict the error growth 

due to the introduction of a gravity field.  These equations can then be used to analyze the 

effects gravity has on the error growth in a two degree of freedom scenario and possibly a 

six degree of freedom scenario.  The bounded error shown in Chapter 4, which is the 

result of the coupling of the IMU with a GPS signal, should be derived analytically.  With 

the analytical solution for these error bounds, it would be possible to determine what 

grade sensor is necessary for a particular coupling application.  The error bounds for a six 

degree of freedom in Chapter 5 should be derived analytically.  With the analytical 
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solution of a six degree of freedom system, it would be possible to compare them to the 

error bounds of a two degree of freedom system.  The comparison could reveal the effects 

the rotation matrix has on the error growth.  The stability of the input/output terms 

presented in Chapter 6 should be studied and a procedure to determine their stability 

should be created.  Finally, more trajectories should be used to analyze the contribution 

levels of these input/output terms.   
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APPENDIX A 
 

THE ALLAN VARIANCE 
 

A.1 Introduction 

 

The Allan variance was developed by David W. Allan.  A full explanation of the 

technique can be found in [3].  The Allan variance can be viewed as the time domain 

equivalent of the power spectrum.  However, the Allan variance plots power as a function 

of time averaging blocks as opposed to plotting power as a function of frequency.  This 

appendix introduces the basic equations needed to plot an Allan variance.  Examples are 

provided showing how the Allan variance chart changes for various values of wide band 

noise. Finally Allan variance charts are given for various Markov process parameters.  

For a more detailed description of the Allan variance, including error identification, 

review Appendix C [4]. 

 

A.2 The Allan Variance Computation 

 

To construct an Allan variance for some process ( )tω , the data is sampled at a 

predefined frequency ( ).  The total number of data points will then be defined as, sf

TfN s=  (A.1) 
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where T  is the duration of the series in seconds 

Once the data series has been sampled, the Allan variance chart is constructed 

using the following procedure: 

1. Create a vector of averaging times, avτ : 





=

2
....21 T

avτ  seconds (A.2) 

2. For each avτ , divide the series ( )tω  into M clusters 

( )
av

av
TM ττ =  (A.3) 

3. For each cluster M  computeω , the time average of ( )tω . 

( ) ∑
=

=
L

i
iav L

k
1

1, ωτω , avsfL τ= , and ( )[ ]avMk τ....21=  (A.4) 

4. Use each of these cluster averages from a specific avτ  to form a new variable 

called the Allan variance ( )avτσ 2 . 

( ) ( ) ( )[ kkE avavav ,1,
2
12 τωτωτσ −+= ] (A.5) 

5. Plot each Allan variance, ( )avτσ 2 , versus avτ  on a log log scale.  This plot is 

known as the Allan variance chart. 

 

A.3 Wide Band Noise Characteristics  

 

The power of the Allan variance can be seen when analyzing data that is 

dominated by wide band noise, which is defined below. 
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[ ]noiseNw σ,0~  (A.6) 

By using the Allan variance chart, it is possible to determine the random walk 

statistics of a data series.  The random walk of a series ( )tw  is defined at the point where 

 crosses ( avτσ 2 ) 1=avτ .  The follow equation can be used to calculate this intersection. 

( )
s

noise

f
σσ =12  (A.6) 

Figure A.1 is an Allan variance chart for 7 sets of data.  The data used was created 

with a random number generator with a sampling frequency of 100 Hertz, each having a 

different variance  The sets of random series have a range of variances from 10  to 10 .  

It is clear that  maps exactly where the above equation predicts. 

6− 6

( 12 =τσ )
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Figure A.1 Wide Band Noise Allan Variance Comparison 

 

A.4 Markov Process Characteristics 

 

Another strength of the Allan variance is the ability to recognize noise 

characteristics which are easily modeled as 1st Order Markov Processes.  A 1st Order 

Markov Process is defined as: 

ω
τ

+= bb 1&  

[ ]bNb σ,0~  
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The rate at which the differential equation decays is determined by the time 

constant, τ .  When evaluating noise characteristics with an Allan variance chart, an 

upward sloping curve of 
2
1  denotes a noise which is best modeled as a Markov process 

with a very slow decay, other Allan variance characteristic errors are given in Table A.1.  

Curves with flatter slopes denote noises which are best modeled as Markov processes 

with faster decay time (as determined by the time constant (τ ).  Downward sloping 

curves indicate noises with very fast time constants and are better modeled as wide band 

noise but can be modeled as a Markov Process if enough information is available.  Figure 

A.2 is a comparison of Allan variances from data generated by Markov Processes with 

time constants ranging from 10  to 10  seconds and a variance of   equal to 1. 2− 4 2
bσ
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Figure A.1 Wide Band Noise Allan Variance Comparison 

 

Table A.1  Allan Variance Characteristic Error Mechanisms 
Error Mechanism Allan Variance Slope 

Wide-Band Noise - 1/2 
Exponentially Correlated Noise (First 
Order Markov Process 1/2 

Rate Random Walk 1/2 
Linear Rate Ramp 1 
Quantization Noise -1 
Sinusoidal Input 1 
Flicker Noise 0 
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APPENDIX B 
 

MARKOV PROCESS STATISTICS 
 

B.1 Introduction 
 

This appendix presents a derivation of the statistics for the input white noise of a 

First Order Markov Process.  A Markov process is a stochastic process where all future 

values are scaled values of past values plus a random input (described by a first order 

differential equation).  In the case of a first order process, the future value is only 

dependent on a scaled portion of the first previous value.  The follow differential 

equation represents this: 

ω
τ

+= bb 1&  
(B.1) 

 

One purpose of a the Markov Process is to filter wide band noise and produce a 

data set which is zero mean specific standard deviation.  The following is a statistical 

representation of this. 

[ ]bb σ,0~  (B.2) 
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B.2 Derivation  

 

The ability to control the output statistics is the key to the Markov process. The 

derivation of the standard deviation of the input noise (ω ) is obtained by: 

( )dtbb ∫= &  (B.3) 

 

Substituting the Markov differential equation (B.1): 

dtbb ∫ 





 +−= ω

τ
1  

(B.4) 

 

Use Euler integration to simplify, 







 +−+=+ kkskk bTbb ω

τ
1

1  
(B.5) 

 

( )ksk
s

k TbTb ω
τ

+





 −=+ 11  

(B.6) 

 

The expected value of both sides is then taken to find the covariance of the bias. 

[ ] ( )[ ]T
ss

T
ssT TTEb

T
b

T
EbbE ωω

ττ
+


























 −






 −= 11  

(B.7) 

 

222
2

2 1 ωσσ
τ

σ sb
s

b T
T

+





 −=  

(B.8) 

 136



 

 

2
2

2 12
b

sT
σ

ττ
σω 








+=  

(B.9) 

 

Because the time constant (τ ) is generally a large value, the inverse square can be 

assumed to be very small and the second term in Equation (B.9) can be ignored.  This 

results in the following equation for the standard deviation of the input noise. 

τ
σ

σω
s

b

T

22
=  

(B.10)

Where  is the sampling interval.  sT

 

B.3 Example 

 

To help better understand the use of the Markov process an example with the 

following desired statistics is performed. 

[ ]

01.
100

1,0~

=
=

sT

b
τ  

 

 Note: τ  and  are both expressed in seconds. sT

Using Euler’s integration method and a random number generator the following 

data series was created using the following statistical values. 
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Figure B.1a provides a plot of the Markov process input noise.  Equation B.1 is 

used to produce the Markov output seen in Figure B.1b. 

 

 

Figure B.1 Input and Output Data for a Markov Process 

 

The actual statistical values which are represented by the red lines in Figure B.1 

are as follows. 
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9029170.99952355
2

6289491.01246110
2

==

=

τ
σ

σ

σ

ω
s

b

b

T
 

 

 

The desired output statistic was met to within 1%.  An autocorrelation function 

shown below in Figure B.2 was used to validate that the time constant (τ ) was preserved. 

 

 

Figure B.2 Markov Process Autocorrelation function 
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B.5 Monte Carlo Simulation 

 

A Monte Carlo simulation (using 100 iterations) was used to verify that as the 

frequency, time constant and bias standard deviation are changed, the first order Markov 

process continues to meet the desired output requirements.  The results of the Monte 

Carlo simulation are shown in Figure B.3.  Although there are some discrepancies in the 

magnitude of the Markov outputs, as the desired bias standard deviation increases these 

errors are still acceptable.  The errors are acceptable for this work because the average 

Markov output used will be much less than ten. 

 

Figure B.2 Markov Process Comparison Plot 
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APPENDIX C 
 

AN INTROCUCTION TO THE KALMAN FILTER 
 

C.1 Introduction 

 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process in a way that 

minimizes the mean of the squared error. The filter is very powerful in several aspects.  It 

supports estimations of past, present, and even future states, even when the precise nature 

of the modeled system is unknown.  It also allows for methods to fuse high rate input, 

such as rate gyroscopes and accelerometers with GPS.  Although these estimates are not 

observable, they have been shown capable of being used in many navigation and control 

systems.  [Bevly] [Demoz] 

 

C.2 System Format 

 

The Kalman Filter will estimate the states, , of a discrete system that are 

governed by the linear stochastic difference equation 

nx ℜ∈

111 −−− ++= kkdxdk wuBxAx  (C.1)

and are observed with the measurements  which are represented as ny ℜ=∈
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kkdk vxCy +=  (C.2)

The random variables  and v  represent the process and measurement noises.  

They are assumed to be white, normally distributed and independent of each other. 

kw k

[ ] 0=wvE  

[ ] 0=wE , [ ] 0=vE  

[ ] 2
w

T
d wwEQ σ== , [ ] 2

v
T

d vvER σ==  

[ ]dQNw ,0~ , [ ]dRNv ,0~  

 

In practice, the process noise covariance matrix, Q  and the measurement noise 

covariance matrix,  might change with each time step.  However, in this work both are 

assumed to be constant for all time. 

d

dR

The  matrix  relates the state at the current time step  to the state at the 

next time step k .  The 

nn×

+

dA

n

k

1 l×  matrix  relates the input u  to the states dB lℜ∈ x .  The 

 matrix  relates the states to the measurements .  In this work, the matrix C  

will change depending on the output rate of the IMU and the output rate of the GPS 

receiver. 

nm× dC z d

 

C.3 State Format 

 

Defining  to be the state estimate at time step  given knowledge of the 

process prior to step k , and defining 

( ) n
kx ℜ∈−ˆ k

( ) n
kx ℜ∈+ˆ  to be the state estimate at step  given 

measurement , the state estimate error then becomes 

k

kz
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( ) ( )−− −= kkk xxe  

( ) ( )++ −= kkk xxe  

(C.3) 

(C.4)

The state estimate error e  covariance matrix is defined as ( )−
k

( ) ( ) ( )( )[ ]T
kkk eeEP −−− =  (C.5)

and the state estimate error ( )+
ke  covariance matrix is defined as  

( ) ( ) ( )( )[ ]T
kkk eeEP +++ =  (C.6)

The equation which computes the state estimate ( )+
kx̂  is a liner combination of the state 

estimate  and a weighted difference between an actual measurement  and a 

predicted measurement .  This measurement update equation is as follows: 

( )−
kx̂ kz

( )−
kd xC

( ) ( ) ( )( )−−+ −+= kdkdkk xCzLxx  (C.7)

The difference ( )( )−− kdk xCz  is called the measurement innovation.  It reflects the 

discrepancy between the predicted measurement and the actual measurement.  A 

innovation of zero would mean that both are in complete agreement. 

 

C.4 Gain Format  

 

The  matrix  is the gain that minimizes the error covariance matrix mn× kL ( )+
kP , 

known as the Kalman gain.  The following equation is used to calculate the Kalman gain. 

( )

( )
d

T
dkd

T
dk

k RCPC
CP

L
−

= −

−

 
(C.8)
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By observation, it can be seen that when the measurement noise covariance matrix R  

approaches zero, the gain matrix  weights the measurement innovation more heavily. L

1

0
lim −

→
= dkR

CL
d

  

However, when the state estimation error covariance matrix ( )−
kP  approaches zero, the 

gain matrix  weights the measurement innovation less heavily. L

( )
0lim

0
=

→− k
P

L
k

  

Therefore, the measurement noise covariance matrix approaches zero and the actual 

measurement is trusted more and more while the predicted measurement is trusted less 

and less.  Likewise, when the state estimation error covariance matrix approaches the 

actual measurement it is trusted less and the predicted measurement is trusted more 
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C.5 Kalman Filter Flow Chart 

 

The steps laid out in the above sections are shown a flow chart below. 

 

( ) ( ) 0,,ˆ 00 =−− kPx

( ) ( )[ ] 1−−− += k
T
dkd

T
dkk RCPCCPL

( ) ( ) ( )( )−−+ −+= kdkkkk xCyLxx ˆˆˆ

( ) ( ) ( )−+ −= kdkk PCLIP

( ) ( )
k

T
dkdk QAPAP += +−

+1

( ) ( )
kdkdk uBxAx += +−

+ ˆˆ 1 ky

1+← kk

Initial Conditions:

Compute Kalman Gain:

Propagate to next time step:

Update Estimate with :

Update Covariance:

 

Figure C.1  Kalman Filter Flow Chart 
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APPENDIX D 
 

THE AUTOCORRELATION FUNCTION 
 

D.1 Introduction 
 

For a discrete-time stochastic series, ( )kx , the autocorrelation function ( )τxR  is 

defined by the following equation: 

( ) ( ) ( )[ ] ( ) ( )τττ −=−= ∑
=∞→

kxkx
N

kxkxER
N

kN
x

0

1lim  (D.1)

Note that the autocorrelation function is symmetric therefore the following is true: 

( ) ( )ττ −= xx RR  (D.2)

The 2nd Moment of a stochastic series is defined as: 

( )[ ] ( )∑
=∞→

=
N

kN
kx

N
kxE

0

22 1lim  (D.3)

Therefore the autocorrelation function is equal to the 2nd Moment of the stochastic series 

when τ  is equal to zero as shown below 

( ) ( ) ( )[ ] ( ) ( )0100
0

lim −=−= ∑
=∞→

kxkx
N

kxkxER
N

kN
x  (D.4)

( ) ( )∑
=∞→

=
N

kN
x kx

N
R

0

210 lim  (D.5)

( ) ( )[ ]20 kxERx =  (D.6)
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The autocorrelation function can be thought of as a means to determine how much 

the series, , looks like the series, ( )kx ( )τ−kx , a delayed version of .  To understand 

the utility of the autocorrelation function, a known discrete series will be shown. 

( )kx

Given the function: 

( ) 





= kkx
100
2sin π  

(D.7)

where the second moment is: 

( )[ ] ∞→= kkxE 5.02  (D.8) 

Figure D.1 contains a plot of the above function.  It also contains a plot of the 

above function shifted for various values of τ .  As expected, the plot shows the function 

diverging from itself as 0 50≤< τ  and then converging on itself as 50 100≤< τ . 
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Figure D.1  Plot of a Sine Wave 

 

The autocorrelation function can be used to represent this convergence and 

divergence numerically.  For any giving value of τ , a numerical value of the 

autocorrelation function can be calculated.  The larger this numerical value is, positive or 

negative, the better the prediction of how the series will look in the future.  Figure D.2 is 

a plot of the autocorrelation for the previous function.  As seen in Figure D.2, the highest 

correlation is when τ  is equal to 100 and 50.  The lowest correlation is when τ  is equal 

to 25 and 75 (representing the sine wave being 180  out of phase). o
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Figure D.2 Autocorrelation of a Sine Wave  

 

To better understand the autocorrelation function, the following discrete random 

series is now examined. 

( ) ( )[ ]2,0~ kxNkx σ  (D.9) 

( ) ∞→= kkx 5.2σ  (D.10)

Figure D.3 contains a plot of a random series with the above statistics.  It also 

contains a plot of the above series shifted for various values of τ .  By definition, a 

random series can not predicted by shifting the series in time. Therefore, as seen in 

Figure D.3, the series will always diverge form itself when 0≠τ . 
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Figure D.3  Plot of a Random Series 

 

Since the random series will never repeat itself the autocorrelation is derived to be 

as follows.  A full derivation can be found in [11]. 

( ) 20 xxR σ=  (D.11)

( ) 00 =>τxR  (D.12)

Figure D.4 is a plot of the autocorrelation for the above random series.  At τ  

equal to zero the autocorrelation is equal to the 2nd Moment of the series and for 0>τ  

the autocorrelation is approximately equal to zero.  The error in the autocorrelation for 

the values of 0>τ  can be contributed to the number of data point in the series and the 

integrity of the random number generator used. 
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Figure D.4  Autocorrelation of a Random Series  

 


