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Abstract

Let G = (V,E) be a graph and S ⊆ V . The notion of security in graphs was first

presented by Brigham et al [3]. A set S is secure if every attack on S is defendable. The

cardinality of a smallest secure set of G is the security number of G.

We give several new definitions of security. We show that some of these new definitions

are equivalent to the definition given by Brigham et al, while others are not. In these

new situations, we find necessary and sufficient conditions for security. Various Hall-type

theorems are used in these proofs. We also define analogues of the security number and find

them for various classes of graphs.
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Chapter 1

Introduction

All graphs in this paper are finite and simple. For a graph G = (V,E) and v ∈ V we

will follow convention by letting N(v) = {u |uv ∈ E}, and N [v] = {v} ∪N(v). For S ⊆ V ,

N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S. If not clear by the context, the graph G may

be indicated by the subscript: NG. The foundation for the study of security in graphs was

laid by Brigham, Dutton, and Hedetniemi in 2007 [3]. Security is a variation of the topic

of alliances in graphs, which is a just a few years older [13]. Given a graph G = (V,E),

they define an attack on S = {s1, s2, ..., sk} ⊆ V to be a collection of pairwise disjoint sets

A = {A1, A2, ..., Ak} for which Ai ⊆ N [si] − S, 1 ≤ i ≤ k. A defense of S is a collection of

pairwise disjoint sets D = {D1, D2, ..., Dk} such that Di ⊆ N [si] ∩ S, 1 ≤ i ≤ k. An attack

is defendable if there is a defense D such that |Di| ≥ |Ai| for 1 ≤ i ≤ k. In this setting,

each vertex in N [S]− S can attack only one of its neighbors in S, and each vertex in S can

defend itself or one of its neighbors in S. The set S is defined to be secure if for every attack

A on S there exists a defense of D of S such that |Di| ≥ |Ai| for 1 ≤ i ≤ k. Brigham et al

show that a set S is secure if and only if for every X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|. They

also define the security number of G, denoted s(G), to be the cardinality of a smallest secure

set in G. Some results and unsolved questions about the security number can be found in

[3, 4, 6, 12]. In the subsequent chapters we explore varying definitions of security, and their

relationship to the original definition, and to each other.
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Chapter 2

Integer and Fractional Security

We consider the cases in which a vertex may send out attack or defense to as many

appropriate vertices as it wants, so long as the total amount of attack or defense from that

vertex sums to at most one. This chapter is joint work with Dr. Garth Isaak and Dr. Peter

Johnson and appears in [10].

2.1 Definitons

LetG = (V,E) be a graph and S ⊆ V . An attack on S is a functionA:(V−S)×S → [0, 1]

such that A(u, v) = 0 if uv /∈ E and for u ∈ V − S,
∑

v∈N(u)∩S A(u, v) ≤ 1. A defense of

S is a function D:S × S → [0, 1] such that D(u, v) = 0 if u 6= v and uv /∈ E and for

u ∈ S,∑v∈N [u]∩S D(u, v) ≤ 1. Suppose that A is an attack on S and D is a defense of S.

For u ∈ S let D∗(u) =
∑

v∈N [u]∩S D(v, u) and A∗(u) =
∑

v∈N(u)−S A(v, u). An attack A is

defendable if there exists a defense D such that for each u ∈ S, D∗(u) ≥ A∗(u). The set S

is secure if every attack on S is defendable.

The definition of attack and defense given by Brigham, et al in [3] corresponds to the

case A(u, v) ∈ {0, 1} for all u ∈ (V − S), v ∈ S and D(u, v) ∈ {0, 1} for all u, v ∈ S. We will

refer to these as integer attack and integer defense respectively. This naturally leads to four

scenarios:

a) an integer attack against an integer defense, (I,I);

b) an integer attack against a defense, (I,F);

c) an attack against an integer defense, (F,I);

d) an attack against a defense, (F,F).
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(The letter F has been chosen to suggest the word “fractional”.) For each situation there

is a corresponding definition of security. For instance, a set S is (I,F)-secure if every integer

attack is defendable. We now explore relationships among the different kinds of security.

2.2 A New Proof of Theorem BDH

Lemma. If S ⊆ V is secure in G in any of the four senses, then for each set X ⊆ S,

|N [X] ∩ S| ≥ |N [X]− S|.

Proof. Suppose that, for some X ⊆ S, |N [X] ∩ S| < |N [X] − S|. Make an integer attack

A on S by letting each vertex in |N [X]− S| attack any of its neighbors in X with its whole

unit of attack. Let every other vertex in N [S]− S attack one of its neighbors in S, or none;

it does not matter. Then for any defense D of S,

∑
x∈X

D∗(x) =
∑
x∈X

∑
u∈N [x]∩S

D(u, x) =
∑

u∈N [X]∩S

∑
x∈X

D(u, x)

≤
∑

u∈N [X]∩S

1 = |N [X] ∩ S| < |N [X]− S|

=
∑
x∈X

A∗(x).

Therefore, for any such D, there must be some x ∈ X such that D∗(x) < A∗(x). Thus

A is not defendable, and so S is not secure.

Brigham et al [3] gave a necessary and sufficient condition for a set to be (I,I)-secure.

We shall refer to this as the BDH Theorem. As an aside, we give a short proof of this result

using Hall’s Theorem:

Theorem HRHV ([8, 14, 9]). Suppose P1, ..., Pn are sets and k1, ..., kn are non-negative

integers. There exist pairwise disjoint sets D1, ..., Dn such that Di ⊆ Pi and |Di| = ki for

3



1 ≤ i ≤ n if, and only if, for each J ⊆ {1, ..., n}, |∪j∈JPj| ≥
∑

j∈J kj.

Theorem BDH. A set S ⊆ V is (I,I)-secure if and only if |N [X]∩ S| ≥ |N [X]− S| for all

X ⊆ S.

Proof. The necessity of the condition follows from the Lemma. Let G = (V,E) be a graph.

Let S = {s1, s2, ..., sn} ⊆ V be a set such that |N [X] ∩ S| ≥ |N [X] − S| for all X ⊆ S.

Let A = {A1, ..., An} be an integer attack on S, by the original definition in [3]. Define

Pi = N [si]∩S for 1 ≤ i ≤ n. Thus Pi is the set of potential defenders of si. Let ki = |Ai| for

1 ≤ i ≤ n; ki is the number of attackers of si. For any J ⊆ {1, 2, ..., n}, let XJ = {sj | j ∈ J}.

Then we have
∑

j∈J kj =
∑

j∈J |Aj| ≤ |N [XJ ]− S| ≤ |N [XJ ]∩ S| =
∣∣∣⋃j∈J Pj

∣∣∣. By Theorem

HRHV we can find Di ⊆ Pi for 1 ≤ i ≤ n such that the Di are pairwise disjoint and |Di| = ki.

Thus D = {D1, ..., Dn} is an integer defense that thwarts the attack, and S is secure.

As remarked in [3], Theorem BDH shows that the problem of deciding whether or not

S ⊆ V is (I,I)-secure is in co-NP: S is not (I,I)-secure if and only if there is a certificate

proving that it is not, a set X ⊆ S such that |N [X] ∩ S| < |N [X]− S|. Reportedly, Dutton

[5] has recently shown that the problem is co-NP-complete.

2.3 The Equivalence of (I,I)-security, (I,F)-security, and (F,F)-security

In order to prove the next result, we need the following analogue of Hall’s Theorem due

to Bollobás and Varopoulos [1].

Theorem BV. Suppose that (X,µ) is an atomless measure space, M1, ...,Mn are subsets

of X of finite measure, and r1, ..., rn are non-negative real numbers. There exist pairwise

disjoint sets C1, ..., Cn such that Ci ⊆Mi and µ(Ci) = ri, 1 ≤ i ≤ n, if, and only if, for each

4



J ⊆ {1, ..., n} we have µ(
⋃
j∈JMj) ≥

∑
j∈J rj.

Theorem. Let G = (V,E) be a graph and S ⊆ V . Then (a) S is (I,I)-secure ⇔ (b) S is

(I,F)-secure ⇔ (c) S is (F,F)-secure.

Proof. We will show (c) ⇒ (b) ⇒ (a) ⇒ (c) . If S is (F,F)-secure then all attacks on S are

defendable, so all integer attacks on S are defendable. Thus S is (I,F)-secure. Now suppose

S is (I,F)-secure. By the Lemma, for any X ⊆ S it must be that |N [X] ∩ S| ≥ |N [X]− S|.

Therefore, by the BDH Theorem, S is also (I,I)-secure.

Let S be (I,I)-secure. Then |N [X]∩S| ≥ |N [X]−S| for all X ⊆ S. Let A:(N(S)−S)×

S → [0,1] be an attack on S. (We restrict the domain of the attackers to N(S)−S because all

vertices in V −N(S) will have no attack.) Recall that for v ∈ S, A∗(v) =
∑

u∈N(v)−S A(u, v).

Let {I(v)|v ∈ S} be an indexed family of pairwise disjoint unit intervals in the real numbers.

These are the defense reservoirs of the vertices of S. For v ∈ S let M(v) =
⋃
w∈N [v]∩S I(w).

This is the total defense available to v. So we have another indexed family {M(v)|v ∈ S}.

Let λ denote the Lebesgue measure. To achieve a successful fractional defense against the

attack A, it suffices to find an indexed family {C(v)|v ∈ S} of pairwise disjoint Lebesgue

measurable sets such that for all v ∈ S, C(v) ⊆M(v) and λ(C(v)) = A∗(v). If such a family

is found, define a defense D:S × S →[0,1] by D(w, v) = λ(I(w) ∩ C(v)).

Then for v ∈ S we would have

D∗(v) =
∑
w∈S

D(w, v)

=
∑
w∈S

λ(I(w) ∩ C(v))

= λ(
⋃
w∈S

(I(w) ∩ C(v))) [the intervals I(w), w ∈ S are pairwise disjoint]

≥ λ(M(v) ∩ C(v)) = λ(C(v)) = A∗(v).
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Also for each w ∈ S,

∑
v∈S

D(w, v) =
∑
v∈S

λ(I(w) ∩ C(v))

= λ(
⋃
v∈S

(I(w) ∩ C(v)) ≤ λ(I(w)) = 1.

So D is a defense of S, and it defends against A.

Now we will show that |N [X] ∩ S| ≥ |N [X]− S| for all X ⊆ S implies the existence of

such a family {C(v) | v ∈ S}. By Theorem BV, it is sufficient to show that for all X ⊆ S,∑
v∈X A

∗(v) ≤ λ(
⋃
v∈XM(v)). Suppose X ⊆ S. We have

λ(
⋃
v∈X

M(v)) = λ(
⋃
v∈X

(
⋃

w∈N [v]∩S

I(w)))

= λ(
⋃

w∈N [X]∩S

I(w)) =
∑

w∈N [X]∩S

λ(I(w))

=
∑

w∈N [X]∩S

1 = |N [X] ∩ S| ≥ |N [X]− S|

≥
∑

u∈N [X]−S

∑
v∈S

A(u, v) ≥
∑

u∈N [X]−S

∑
v∈X

A(u, v)

=
∑
v∈X

∑
u∈N [X]−S

A(u, v) =
∑
v∈X

A∗(v).

This leaves the question of how (F,I)-security relates to (I,I)-security. Clearly, (F,I)-

security implies (I,I)-security, but we will show the converse does not hold.

Example. In [3] it is seen that any
⌈
n
2

⌉
vertices of Kn form an (I,I)-secure set; however, n−1

vertices are needed to be (F,I)-secure. Let S = {s1, ..., sk} ⊆ V (Kn) such that k ≤ n − 2.

Then |V (Kn) − S| ≥ 2. Let v1, v2 ∈ V (Kn) − S. Let A(v1, si) = 1
|S| for 1 ≤ i ≤ k and

A(v2, s1) = 1 and A(v2, si) = 0 for 2 ≤ i ≤ k. A successful integer defense of this attack

requires |S|+ 1 defenders, so S is not (F,I)-defendable. So, in order for S to be (F,I)-secure,

6



|S| ≥ n− 1. Any set S such that |S| = n− 1 is (F,I)-secure.

So an (F,I)-secure set has a greater security than a set that is only (I,I)-secure. We

give a necessary and sufficient condition, in the spirit of Theorem BDH, for (F,I)-security

in Chapter 3. It may be possible to obtain results similar to Theorem BDH and the main

theorem of this chapter when attack and defense capabilities are extended to general values,

and are not necessarily constant from vertex to vertex.

7



Chapter 3

(F,I)-security

Let G = (V,E) be a graph. We now give a necessary and sufficient condition for a set

S ⊆ V to be (F,I)-secure. The (F,I)-security number of G, s(F,I)(G), is the cardinality of

a smallest (F,I)-secure set. The values of the (F,I)-security number for various classes of

graphs is determined.

3.1 Bipartite Graph Lemma

We develop a lemma about bipartite graphs for use in the proof of the Main Theorem.

This lemma is also used in determing the (F,I)-security number of various families of graphs,

including complete multipartite graphs. In the setting of (F,I)-security, the vertices that

are attacking can fractionalize, but defending vertices cannot. Thus, in order for S to be

(F,I)-secure, for any attack A there must be an integer defense D such that D∗(s) ≥ dA∗(s)e

for all s ∈ S. In this case, we may as well suppose that every s ∈ S contributes 1 to the sum∑
s∈S D

∗(s), and so we have |S| = ∑s∈S D
∗(s) ≥∑s∈S dA∗(s)e. Given an attack A on a set

S in an (F,I)-security setting, the total effective attack is
∑

s∈S dA∗(s)e.

Bipartite Graph Lemma. Let G be a connected bipartite graph with bipartition (X, Y ).

Among (F,I)-attacks on Y , the maximum total effective attack possible is |X|+ |Y | − 1.

3.1.1 A Proof Using the Max-Flow Min Cut Theorem

Lemma 1. Let G be a complete bipartite graph with bipartition (X, Y ). Among (F,I)-

attacks on Y , the maximum total effective attack possible is |X|+ |Y | − 1.

8



Proof. Let X = {x1, ..., xm} and Y = {y1, ..., yn}. Then we are looking for the largest

possible value of
∑n

1 daie where a1, ..., an are non-negative real numbers that sum to m. We

have

daie < ai + 1, i = 1, ..., n

⇒
n∑
1

daie <
n∑
1

(ai + 1) = m+ n

⇒
n∑
1

daie ≤ m+ n− 1.

To achieve the bound in this inequality, let A(x1, yj) = 1
n

for 1 ≤ j ≤ n; and let A(xi, y1) = 1

for 2 ≤ i ≤ m.

Corollary 1. Let G be a bipartite graph with bipartition (X, Y ). For any (F,I)-attack on

Y , the total effective attack is less than or equal to |X|+ |Y | − 1.

The proof of Lemma 1 gives a solution to a problem proposed in [11]. Next we use the

Max-Flow Min-Cut Theorem to show that this upper bound can be achieved when G is a tree.

Lemma 2. Let G = (V,E) be a tree with bipartition (X, Y ). Define f :V → [0,∞) by

f(v) = 1 for v ∈ X and f(v) = dG(v) − |Y |−1
|Y | for v ∈ Y . Then there exists a function

wt:E → [0,∞) such that for all v ∈ V ,

f(v) =
∑
e∈E

e incident to v

wt(e).

Proof. Create a digraph D from G by directing every edge from X to Y . Add a vertex s

and for each x ∈ X, form an arc directed from s to x. Similarly, add a vertex t and for each

y ∈ Y , form an arc directed from y to t. Let A[s,X] be the set of arcs with one end at s

9



and one end in X, A[Y, t] be the set of arcs with one end in Y and one at t, and A[X, Y ]

denote the arcs with one end in X and one end in Y . From this digraph, form a network by

designating s the source and t the sink (see Figure 3.1). Define the capacity function c as

follows: c(a) = 1 if a ∈ A[s,X], c(a) = dG(y)− |Y |−1
|Y | if a ∈ A[Y, t], and c(a) =∞ otherwise.

Note that
∑

a∈A[Y,t] c(a) = |X|, because G is a tree.

s t

X Y

A[s,X] A[X, Y ] A[Y, t]

Figure 3.1: The network formed from the bipartite graph G.

If we can find a flow in this network of value |X|, then the desired function wt on E(G)

can be found by assigning wt(e), e ∈ E(G), to be equal to the flow of the corresponding arc.

To show we can find a flow of value |X|, we will show that the minimum cut has capacity

|X|. The capacity of a minimum cut is clearly less than or equal to |X|, because we can

form a cut by taking all the arcs of A[s,X] (or all the arcs of A[Y, t]). Now we will show

that every other cut has a capacity bigger than |X|.

Any cut including an arc of A[X, Y ] will have infinite capacity. The only other cuts to

check must include some, but not all, arcs of A[s,X] and some, but not all, arcs of A[Y, t].

Let K be a cut that has at least one arc of A[s,X] and at least one arc of A[Y, t]. Let

X0 = {x|x ∈ X and (s, x) /∈K} and Y0 = {y| y ∈ Y and (y, t) /∈K}. By assumption about

K, |X0| ≥ 1 and |Y0| ≥ 1. Note that there are no arcs between X0 and Y0; otherwise K

would not be a cut. The capacity of the cut K is |X −X0|+
∑

y∈Y−Y0

(
dG(y)− |Y |−1

|Y |

)
.

10



Since each edge of G has one end in X and one end in Y ,
∑

y∈Y−Y0 dG(y) is the number of

edges of G with one end in Y −Y0. G has |X|+|Y |−1 edges. Each edge has an end in Y −Y0 or

in Y0. An edge with an end in Y0 must have its other end in X−X0, as noted above. Looking

at the forest induced in G by (X−X0)∪Y0, the most edges it can have is |X−X0|+ |Y0|−1.

Thus,
∑

y∈Y−Y0 dG(y) ≥ (|X|+ |Y | − 1)− (|X −X0|+ |Y0| − 1) = |X| − |X −X0|+ |Y − Y0|.

So we have

c(K) = |X −X0|+
∑

y∈Y−Y0

(
dG(y)− |Y | − 1

|Y |

)
≥ |X −X0|+ |X| − |X −X0|+ |Y − Y0| −

|Y | − 1

|Y | |Y − Y0|

= |X|+ |Y − Y0| − |Y − Y0|+
|Y − Y0|
|Y |

= |X|+ |Y − Y0|
|Y |

> |X|.

Let G = (V,E) be a connected bipartite graph with bipartition (X, Y ). By Corollary 1,

|X|+ |Y | − 1 is an upper bound for the total effective attack on Y . Also, G has a spanning

tree, and thus can achieve the bound of |X|+ |Y |−1 by Lemma 2. One attack that achieves

this bound corresponds naturally to the function wt.

3.1.2 A Proof by Induction

Here we prove a more general result that implies the Bipartite Graph Lemma. Let

f :V → [0,∞). A function wt:E → [0,∞) represents f if for all v ∈ V ,

f(v) =
∑
e∈E

e incident to v

wt(e).

11



Lemma 3. Let G = (V,E) be a tree and f :V → [0,∞). Let (X, Y ) be a bipartition of G.

If for all S such that S ⊆ X or S ⊆ Y , f(S) =
∑
s∈S

f(v) ≤ f(NG(S)), then there exists a

function wt:E → [0,∞) that represents f .

Proof. Let (*) be the condition that for all S such that S ⊆ X or S ⊆ Y , f(S) =
∑
s∈S

f(v) ≤

f(NG(S)), and assume (*) holds. We will proceed by induction on |X| + |Y | ≥ 2. First let

|X| + |Y | = 2. Then V = {u, v} and E = {uv}. f(v) ≤ f(u) and f(u) ≤ f(v), so

f(v) = f(u). Define wt(uv) = f(u). Now suppose that |X| + |Y | > 2. Let u be a leaf in

G. Without loss of generality, u ∈ X. Let v be the neighbor of u. By (*), f(u) ≤ f(v).

Define f̃ on G − u by f̃(v) = f(v) − f(u) and f̃(w) = f(w) for all other w ∈ V (G − u).

We will show that the tree G − u and the function f̃ satisfy (*). If S ⊆ X − u and

v /∈ NG(S) = NG−u(S), then f̃(S) = f(S) ≤ f(NG(S)) = f̃(NG−u(S)). If v ∈ NG(S), then

f̃(S) + f(u) = f(S ∪ {u}) ≤ f(NG(S ∪ {u})) = f(NG−u(S)) = f̃(NG−u(S)) + f(u). So we

get that f̃(S) ≤ f̃(NG−u(S)).

Now suppose S ⊆ Y . If v /∈ S, then f̃(S) = f(S) ≤ f(NG(S)) = f̃(NG−u(S)). If v ∈ S

then f̃(S) = f(S) − f(u) ≤ f(NG(S)) − f(u) = f(NG−u(S)) = f̃(NG−u(S)). So G − u

with f̃ satisfies (*). So there is a w̃t : E(G − u) → [0,∞) representing f̃ by the induction

hypothesis. Extend w̃t to E(G) by putting weight f(u) on the edge uv. Call this extension

wt. It is straight forward to see that wt represents f .

Lemma 4. If G is a tree with bipartition (X, Y ) then there exists an attack on Y by X with

a total effective attack of |X|+ |Y | − 1.

Proof. Define f(v) = 1 for v ∈ X and f(v) = dG(v) − y−1
y

for v ∈ Y where |Y | = y. We

will show f can be represented by a function wt by applying Lemma 2. First suppose that

S ⊆ Y . For any graph H let c(H) denote the number of connected components of H. Let

12



H(S) be the subgraph of G induced by S ∪NG(S). Note that H(S) is a forest. Then

f(S) =

(∑
v∈S

dG(v)

)
− y − 1

y
|S|

= |E(H(S))| − y − 1

y
|S|

= |V (H(S))| − c(H(S))− y − 1

y
|S|

= |S|+ |NG(S)| − c(H(S))− y − 1

y
|S|

= |NG(S))|+ 1

y
|S| − c(H(S))

≤ |NG(S))|+ 1− c(H(S))

≤ |NG(S)|

= f(NG(S)).

Now suppose that S ⊆ X. We want to show the following inequality:

f(S) = |S|

≤ f(NG(S)

=

 ∑
v∈NG(S)

dG(v)

− y − 1

y
|NG(S)|

= |E(H(NG(S)))| − y − 1

y
|NG(S)|

= |NG(S)|+ |NG(NG(S))| − c(H(NG(S)))− y − 1

y
|NG(S)|

= |NG(NG(S))|+ 1

y
|NG(S)| − c(H(NG(S))).

If NG(S) = Y , then c(H(NG(S))) = 1 and 1
y
|NG(S)| = 1

y
|Y | = 1. So we need |S| ≤

|NG(NG(S))|. This holds because S ⊆ NG(NG(S)).

Otherwise, |NG(S)| < |Y | so NG(S) ( Y . It suffices to show that |S|+ c(H(NG(S))) ≤

|NG(NG(S))|. Let u ∈ Y such that u /∈ NG(S). We will see that every component of

13



H(NG(S)) contains a vertex in NG(NG(S)) − S that is not in any other component. If a

component C of H(NG(S)) did not have any vertices in NG(NG(S))− S, then it would not

be connected in G to u, a contradiction. So C must have a vertex in NG(NG(S)) − S, and

it is not in any other component because components do not share vertices. So we have

|S|+ c(H(NG(S))) ≤ |S|+ |NG(NG(S))− S| = |NG(NG(S))|.

So we can find a function wt to represent f . Define an attack A by A(u, v) = wt(uv)

for every u ∈ X and v ∈ Y . The total effective attack is then

∑
v∈Y

df(v)e =
∑
v∈Y

⌈
dG(v)− y − 1

y

⌉
=
∑
v∈Y

dG(v) = |E(G)| = |X|+ |Y | − 1.

The Bipartite Graph Lemma follows from Lemma 1 and Lemma 4.

3.2 Main Theorem

Given a graph G = (V,E) and a set S ⊆ V , the set of edges with one end in set V − S

and one end in S induces a graph whose components are connected bipartite graphs. By

looking at the total effective attack possible from the attackers in each component, we can

develop a necessary and sufficient condition for (F,I)-security.

Let G = (V,E) be a graph and S = {s1, s2, ..., sk} ⊆ V . For X ⊆ S, let GX denote the

subgraph of G whose vertex set is X ∪ (N [X] − S) and whose edge set is E[X,N [X] − S],

the set of edges of G with one end in X and the other in N [X]−S. Let C1, C2, ..., Ct be the

components of GX . Let Xi = V (Ci) ∩X for 1 ≤ i ≤ t.

Each Ci is a connected bipartite graph with bipartition (Xi, NG[Xi] − S). So the

maximum total effective attack from NG[Xi] − S to Xi is |Xi| + |NG[Xi] − S| − 1. Since

Xi, 1 ≤ i ≤ t, are pairwise disjoint, the most attack that can be sent from V − S to X is∑t
1(|Xi|+ |NG[Xi]−S|− 1) = |X|+ |NG[X]−S|− c(GX), where c(GX) denotes the number

of components of GX .
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In order for S to be (F,I)-secure, it is thus necessary that for all X ⊆ S, |NG[X]∩ S| ≥

|X|+ |NG[X]− S| − c(GX). The Main Theorem states that this condition is also sufficient:

Main Theorem. Let G = (V,E) be a graph and S ⊆ V . Then S is (F,I)-secure if, and

only if, |NG[X] ∩ S| ≥ |X|+ |NG(X)− S| − c(GX) for all X ⊆ S.

The use of Theorem HRHV to prove the sufficiency of this condition is similar to the

use of Theorem HRHV in Chapter 2.2 and Chapter 4.1.

Theorem HRHV ([8, 14, 9]). Suppose P1, ..., Pn are sets and k1, ..., kn are non-negative

integers. There exist pairwise disjoint sets D1, ..., Dn such that Di ⊆ Pi and |Di| = ki for

1 ≤ i ≤ n if, and only if, for each J ⊆ {1, ..., n}, |∪j∈JPj| ≥
∑

j∈J kj.

Proof of Main Theorem. Necessity has already been proven. Let G = (V,E) be a graph

and let S = {s1, s2, ..., sn} ⊆ V be such that for all X ⊆ S, |NG[X] ∩ S| ≥ |X|+ |NG(X)−

S|−c(GX). Let A be any attack on S, and Pi = N [si]∩S for 1 ≤ i ≤ n. Let ki = dA∗(si)e for

1 ≤ i ≤ k. Then Pi is the set of potential defenders of si, and ki is the number of defenders

of si needed for a successful defense of A. For any J ⊆ {1, ..., n} let XJ = ∪j∈J{sj}. Then we

have
∑

j∈J kj ≤ |XJ |+|NG(XJ)−S|−c(GXJ ) ≤ |NG[XJ ]∩S| = |∪j∈J (NG[sj]∩S)| = |∪j∈JPj|.

By Theorem HRHV we can find pairwise disjoint Di ⊆ Pi, 1 ≤ i ≤ n, such that |Di| = ki

for 1 ≤ i ≤ n. Then D = {D1, ..., Dn} is a succesful defense of A.

3.3 (F,I)-security Numbers of Various Graphs

Recall that for any graph G, s(G) ≤ s(F,I)(G). Given two graphs G and H, we denote

their cartesian product by G�H and their join by G∨H. The path on n vertices is denoted

by Pn. Let Fn = K1 ∨Pn and Wn = K1 ∨Cn. As observed in [3], it is clear that a minimum

secure set is connected; that is, a minimum secure set induces a connected subgraph of the
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graph in which it is a minimum secure set. Likewise, a minimum (F,I)-secure set is connected.

Proposition. Let G = (V,E) be a graph.

1) s(F,I)(G) = 1 if and only if δ(G) ≤ 1 .

2)s(F,I)(G) = 2 if and only if δ(G) = 2 and there exists uv ∈ E such that d(u) = d(v) = 2.

3) s(F,I)(Pn�Pm) = min{m,n, 4}.

4) min{m, 2n, 6} ≤ s(F,I)(Cm�Pn) ≤ min{m, 2n, 8}.

5) s(F,I)(Fn) = 1 +
⌈
n
2

⌉
, n ≥ 2.

6) s(F,I)(Wn) = 1 +
⌈
n+1

2

⌉
, n ≥ 3.

Proof. 1) A vertex of degree zero or one is (F,I)-secure, but any vertex of greater degree is

not.

2) By the first result, δ(G) > 1 is necessary for s(F,I)(G) = 2. Let S = {u, v} be (F,I)-secure.

Since a minimum (F,I)-secure set is connected, uv ∈ E. In order to be (F,I)-secure, S must

also be secure. So |N [S] − S| ≤ 2, which forces d(u) ≤ 3 and d(v) ≤ 3. If d(u) = 3 or

d(v) = 3, then c(GS) = 1, |N [S] − S| = 2, and |S| + |N [S] − S| − c(GS) = 3 > |S|. So by

the Main Theorem, S is not (F,I)-secure. Thus d(u) = d(v) = 2 is necessary. If S = {u, v},

uv ∈ E, and d(u) = d(v) = 2, then the defense where u defends itself and v defends itself is

successful against any attack.

3) In [3] it is shown that s(Pn�Pm) = min{m,n, 3}. For the first case, suppose min{m,n} ≤

3. Then s(F,I)(Pn�Pm) ≥ s(Pn�Pm) = min{m,n, 3} = min{m,n}. The n vertices that make

up the end vertices of the Pm paths form an (F,I)-secure set, and the m vertices that make

up the end vertices of the Pn paths form an (F,I)-secure set. So s(F,I)(Pn�Pm) = min{m,n}.

Now suppose that min{m,n} ≥ 4. Then s(F,I)(Pn�Pm) ≥ s(Pn�Pm) = min{m,n, 3} = 3.

If S consists of a corner and its two neighbors, let S = {s1, s2, s3}, N [S] − S = {v1, v2, v3}
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and {s1s2, s1v1, s1v2, s3s2, s3v2, s3v3} be a subset of the edges (see Figure 3.2). Then the

attack A defined by A(v1, s1) = 1, A(v2, s1) = 0.5, A(v2, s3) = 0.5, and A(v3, s3) = 1 is not

defendable. Any other S such that |S| = 3 satisfies |S| < |N [S]−S| and is not secure, much

less (F,I)-secure. Four vertices that induce a 4-cycle and include a corner vertex forms an

(F,I)-secure set. So in this case, s(F,I)(Pn�Pm) = 4.

s1

s2 s3 v3

v1

v2

Figure 3.2: The set S = {s1, s2, s3} is not (F,I)-secure.

4) Kozawa et al [12] show that s(Cm�Pn) = min{m, 2n, 6}. This settled a conjecture of

Brigham et al [3]. This gives the lower bound for the (F,I)-security number. Two consecu-

tive copies of Pn form an (F,I)-secure set, as does an m-cycle consisting of end vertices of

the paths. If m ≥ 4 and n ≥ 2, taking the end vertex of a path and its neighbor in the path,

in four consecutive paths, gives an (F,I)-secure set of eight vertices.

5) Suppose S is a minimum (F,I)-secure set and that V (K1) /∈ S. The subgraph GS is

connected. By the Main Theorem, it is then necessary that 1 = c(GS) ≥ |N(S) − S|. So

S = V (Pn) and |S| = n. If V (K1) ⊆ S, let S ′ = V (Pn) ∩ S; then |S ′| ≤ n − 1 (otherwise

S ′ = V (Pn) and S = V (Fn)). Every vertex in V (Pn) − S ′ can attack V (K1) and there is

at least one u ∈ V (Pn) − S ′ such that u has a neighbor in S ′. Define an attack by letting

u send a half unit of attack to V (K1) and a half unit of attack to its neighbor in S ′. Let
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every other vertex of V (Pn)−S ′ attack V (K1) with its whole unit of attack. To be defended

successfully, this attack requires |S| = 1+ |S ′| ≥ |V (Pn)−S ′|+1 = n−|S ′|+1. This implies

that |S ′| ≥
⌈
n
2

⌉
and thus |S| ≥ 1 +

⌈
n
2

⌉
. Next we construct an (F,I)-secure set S, such that

|S| = 1 +
⌈
n
2

⌉
. Let S be the set containing V (K1) and the first

⌈
n
2

⌉
vertices of V (Pn). Only

two vertices can be attacked: V (K1) and some s ∈ V (Pn) ∩ S. Let s defend itself, and have

all other vertices of S defend the V (K1). Since s has exactly one neighbor in V (Pn)− S, it

has sufficient defense. Likewise, V (K1) has a total defense of
⌈
n
2

⌉
, and the attack there is at

most
⌊
n
2

⌋
. This defense is successful against any attack on S.

6) The proof is similar to the proof of 5). If a set S ⊆ V does not include the V (K1), then

V (K1) can attack every vertex in the set S. In order for S to be (F,I)-secure, it can have no

other attackers. So S = V (Cn) and |S| = n. If an (F,I)-secure set S ⊆ V includes V (K1), let

S ′ = S ∩ V (Cn). If |S ′| ≥ n− 1, then |S| ≥ n, and we already can find an (F,I)-secure set of

size n. If |S ′| ≤ 1, then |S| ≤ 2 and S is not (F,I)-secure by inspection. (In fact, for n ≥ 4,

S is not secure.) So let 2 ≤ |S ′| ≤ n − 2. The graph GS is a connected bipartite graph.

Since every vertex in V (Cn) − S ′ is adjacent to V (K1), one part of the bipartition has size

|V (Cn)− S ′| = n− |S ′|. The other part of the bipartition must have at least three vertices,

because it is V (K1) ∪ S ′. By the Bipartite Graph Lemma, in order for S to be (F,I)-secure,

it is required that |S| = 1 + |S ′| ≥ n − |S ′| + 3 − 1. Isolating |S ′| yields |S ′| ≥
⌈
n+1

2

⌉
. So

|S| ≥ 1 +
⌈
n+1

2

⌉
.

An (F,I)-secure set of size 1+
⌈
n+1

2

⌉
can be found by taking V (K1) and

⌈
n+1

2

⌉
consecutive

vertices of the V (Cn). Exactly three vertices can be attacked, V (K1), and some u, v ∈ S ′;

u and v each have exactly one neighbor in V (Cn)− S ′. Let u and v defend themselves, and

have every other vertex of S defend V (K1). Then u and v clearly have sufficient defense,

while V (K1) has a total defense of
⌈
n−1

2

⌉
and at most the attack at V (K1) is

⌊
n−1

2

⌋
. So this

defense is successful against any attack on S.
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3.3.1 Complete Multipartite Graphs

Next we find the (F,I)-security number of complete multipartite graphs. We begin with

a corollary of the Bipartite Graph Lemma.

Corollary 2. Let G be a complete bipartite graph with bipartition (X, Y ). If S = X ∪ Y1,

where |Y1| =
⌊
|Y |
2

⌋
and Y1 ⊆ Y , then S is (F,I)-secure.

Proof. Let A be an attack on S. Let XA = {x |x ∈ X and A∗(x) > 0}. By applying the

Bipartite Graph Lemma to the subgraph induced by XA ∪ (Y − S), the maximum total

effective attack possible is then

|XA|+ |Y − S| − 1 = |XA|+
⌈ |Y |

2

⌉
− 1.

Construct a defense D as follows. Let every vertex in XA defend itself. This leaves
⌈
|Y |
2

⌉
− 1

effective attack remaining, but |Y1| =
⌊
|Y |
2

⌋
≥
⌈
|Y |
2

⌉
− 1. Since G is complete, the vertices

of Y1 can send their units of defense wherever they are necessary to finish constructingD.

We will employ Corollary 2 in the following proof of Theorem 1, below. By inspection

s(F,I)(K2,2) = 2.

Theorem 1. If 2 ≤ n1 ≤ n2 and n2 6= 2, then s(F,I)(Kn1,n2) = n1 +
⌊
n2

2

⌋
.

Proof. Let the bipartition of G = Kn1,n2 be (X, Y ) where |X| = n1 and |Y | = n2, and

let S ⊆ X ∪ Y be (F,I)-secure. First assume S ∩ Y = ∅. Then S ⊆ X, S ∪ Y induces a

complete bipartite graph, and there exists an attack on S by Y with a total effective attack

of |Y |+ |S| − 1. Since |Y | ≥ 2 the value of this total effective attack is strictly greater than

|S|, contradicting the assumption that S is (F,I)-secure. Thus we conclude that S ∩ Y 6= ∅.
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By a similar argument it follows that S ∩X 6= ∅. An (F,I)-secure set S ⊆ V (Kn1,n2) must

therefore contain vertices of both X and Y . So let S∩X 6= ∅, S∩Y 6= ∅, and let x = |X ∩S|

and y = |Y ∩ S|, so that x + y = |S|. Also note that x ≥ 1 and y ≥ 1. There are four

possible scenarios:

1) x = |X| and y = |Y |. In this case S is (F,I)-secure because S = V (Kn1,n2).

2) 1 ≤ x < |X| and 1 ≤ y < |Y |. (X ∩ S) ∪ (Y − S) induces a complete bipar-

tite graph, so there exists an attack from Y − S to X ∩ S with total effective attack

|Y − S| + |X ∩ S| − 1 = n2 − y + x − 1. Likewise, (Y ∩ S) ∪ (X − S) induces a com-

plete bipartite graph, so there exists an attack from X − S to Y ∩ S with total effective

attack |X − S| + |Y ∩ S| − 1 = n1 − x + y − 1. Since these two complete bipartite graphs

are disjoint, there exists an attack from V (Kn1,n2) − S to S with total effective attack

(n2−y+x−1)+(n1−x+y−1) = n1+n2−2. So |S| ≥ n1+n2−2. Taking x = |X|−1 = n1−1

and y = |Y | − 1 = n2− 1 provides an (F,I)-secure set of this size. The integer defense where

each vertex of S defends itself is successful against any attack.

3) x = |X| and 1 ≤ y < |Y |. Only vertices in X can be attacked. There is a complete bipar-

tite graph induced by X ∪ (Y − S). So there is an attack of X by Y − S with total effective

attack |X|+ |Y −S|− 1 = x+n2− y− 1 = n1 +n2− y− 1. In order for S to be (F,I)-secure,

it is necessary that |S| = x + y = n1 + y ≥ n1 + n2 − y − 1. Thus y ≥
⌈
n2−1

2

⌉
=
⌊
n2

2

⌋
. So

|S| = x + y ≥ n1 +
⌊
n2

2

⌋
. On the other hand, any set S with all the vertices of X and

⌊
n2

2

⌋
vertices of Y is (F,I)-secure, by Corollary 2.

4) 1 ≤ x < |X| and y = |Y |. Simlar to case 3), the smallest (F,I)-secure set in this case is of

size n2 +
⌊
n1

2

⌋
.
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So the s(F,I)(Kn1,n2) = min{n1 + n2, n1 + n2 − 2, n1 +
⌊
n2

2

⌋
, n2 +

⌊
n1

2

⌋
}. The minimum

is n1 +
⌊
n2

2

⌋
unless n1 = n2 = 2. So if n2 6= 2, s(F,I)(Kn1,n2) = n1 +

⌊
n2

2

⌋
.

Theorem 2. Let k ≥ 3 and 1 ≤ n1 ≤ n2 ≤ ... ≤ nk. Then s(F,I)(Kn1,n2,...,nk) =

n1 + n2 + ...+ nk−1 +
⌊
nk
2

⌋
.

Proof: Let {X1, X2, ..., Xk} be the partition of Kn1,n2,...,nk so that |Xi| = ni for 1 ≤ i ≤ k.

Let V = V (Kn1,n2,...,nk) and ∅ 6= S ⊆ V . If |{i : (V − S) ∩ Xi 6= ∅}| ≥ 2, then the graph

induced by the edges with one end in S and one end in V − S induces a connected bipartite

graph with bipartition (S, V − S). So V − S can attack S with a total effective attack of

|V − S|+ |S| − 1 ≥ 2 + |S| − 1 = |S|+ 1. So S cannot be (F,I)-secure. Thus V − S = ∅ or

|{i : (V − S) ∩Xi 6= ∅}| = 1. If V − S = ∅, then S = V . This is not a smallest (F,I)-secure

set, because any set S with |S| = |V | − 1 is (F,I)-secure.

So we must have |{i : (V −S)∩Xi 6= ∅}| = 1. Let Xα be such that (V −S)∩Xα 6= ∅ and

(V − S)∩Xj = ∅ for all j 6= α. Let x = |S ∩Xα|. Then |V − S| = |(V − S)∩Xα| = nα− x.

There are no edges between S ∩ Xα and V − S because both are contained in Xα. So the

complete bipartite graph induced by the edges with one end in V − S and one end in S has

bipartition (S −Xα, V − S). There is an attack from V − S to S −Xα with total effective

attack |V − S|+ |S −Xα| − 1 = nα − x+ |S| − x− 1. In order for S to be (F,I)-secure, it is

necessary that |S| ≥ nα−2x−1+ |S| from which it follows x ≥
⌈
nα−1

2

⌉
=
⌊
nα
2

⌋
. We can find

an (F,I)-secure set of size
∑

j 6=α nj +
⌊
nα
2

⌋
by choosing any

⌊
nα
2

⌋
vertices of Xα along with

∪j 6=αXj. This set S is (F,I)-secure by Corollary 2, because S is (F,I)-secure in the complete

bipartite graph induced by edges with one end in Xα and one end in V − Xα. The other

edges in the multipartite graph do not allow for any new attack possibilities. Therefore,

s(F,I)(Kn1,n2,...,nk) = min
1≤i≤k

{∑
j 6=i

nj +
⌊ni

2

⌋}
=

k−1∑
j=1

nj +
⌊nk

2

⌋
.
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Chapter 4

Ultra-security

In this chapter, we will look only at integer attacks and integer defenses. Recall that an

integer attack and an integer defense are equivalent to the definitions given by Brigham et al

[3] and mentioned in the Introduction. In this chapter, we will use the notation of Brigham et

al. That is, for a graph G = (V,E) and S = {s1, ..., sk} ⊆ V , an integer attack is a collection

of pairwise disjoint sets A = {A1, ..., Ak} such that Ai ⊆ N [si]−S for 1 ≤ i ≤ k. An integer

defense is a collection of pairwise disjoint sets D = {D1, ..., Dk} such that Di ⊆ N [si] ∩ S

for 1 ≤ i ≤ k; an integer defense D of S such that |Di| ≥ |Ai| for 1 ≤ i ≤ k is a successful

integer defense of A.

For a graph G = (V,E), this chapter looks at a reversal of the usual situation. This

course of inquiry was suggested by Dr. Chris Rodger. Usually we ask: For each integer

attack on S, does their exist a successful integer defense of S? Now we will ask the following

question: Is there one integer defense that will successfully defend against any integer attack?

A set S ⊆ V is ultra-secure if there exists an integer defense D of S, such that for any integer

attack A on S, D is a successful integer defense of A. Note that if S ⊆ V is ultra-secure,

then S is secure.

4.1 A Necessary and Sufficient Condition

The following Hall-type theorem is used in the proof of the Theorem after it.

Theorem HRHV ([8, 14, 9]). Suppose P1, P2, ..., Pn are sets and k1, k2, ..., kn are non-

negative integers. There exist pairwise disjoint sets D1, ..., Dn such that Di ⊆ Pi and |Di| = ki
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for 1 ≤ i ≤ n if, and only if, for each I ⊆ {1, ..., n}, |∪i∈IPi| ≥
∑

i∈I ki.

Theorem HRHV is used in [10] to give an alternative proof of the necessary and suf-

ficient condtion for security due to Brigham et al [3]. Its use in the proof of the following

Theorem is similar.

Theorem. A set S ⊆ V is ultra-secure if and only if |N [X] ∩ S| ≥∑x∈X |N [x]− S| for all

X ⊆ S.

Proof. Let S = {s1, s2, ..., sk} be ultra-secure, and X ⊆ S. Suppose that D = {D1, ..., Dk} is

a successful integer defense of every integer attack on S. Let I = { i | 1 ≤ i ≤ k and si ∈ X}.

For each i ∈ I there exists an integer attackA on S with |Ai| = |N [si]−S|. If S is ultra-secure,

then |Di| ≥ |N [si]−S| for all i ∈ I. Since Di∩Dj = ∅ for i 6= j and Di ⊆ N [si]∩S ⊆ N [X]∩S

for i ∈ I, it is necessary that |N [X]∩S| ≥∑i∈I |Di| ≥
∑

i∈I |N [si]−S| =
∑

x∈X |N [x]−S|.

To show sufficiency, let S = {s1, s2, ..., sn} ⊆ V such that for all X ⊆ S, |N [X] ∩ S| ≥∑
x∈X |N [x] − S|. Let ki = |N [si] − S| and Pi = N [si] ∩ S, 1 ≤ i ≤ n. For 1 ≤ i ≤ n, ki

represents the number of vertices that can attack si, and Pi is the set of potential defenders

of si. For I ⊆ {1, 2, ...n}, letting X = {si| i ∈ I}, we have
∑

i∈I ki =
∑

i∈I |N [si] − S| =∑
x∈X |N [x] − S| ≤ |N [X] ∩ S| = |∪i∈IPi|. By Theorem HRHV, for 1 ≤ i ≤ n, there exist

pairwise disjoint Di ⊆ Pi such that |Di| = ki. For any integer attack A = {A1, A2, ..., An}

on S, |Ai| ≤ ki for 1 ≤ i ≤ n. It follows that D = {D1, D2, ..., Dn} is a successful integer

defense of any integer attack A on S.

4.2 The Ultra-security Number

The security number s(G) of a graph G is the cardinality of a smallest secure set in

G. Some results on the security number can be found in [3, 4, 6, 12]. Given a graph G,
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the ultra-security number, denoted su(G), is the cardinality of a smallest ultra-secure set in

G. Note that for any graph G, s(G) ≤ su(G). Comments by Dr. Amin Bahmanian led to

improvements in the statements of parts 1) and 2) in the following result.

Proposition. Let G = (V,E) be a graph.

1) su(G) = 1 if and only if δ(G) ≤ 1.

2) su(G) = 2 if and only if δ(G) = 2 and there exits uv ∈ E such that d(u) = d(v) = 2.

3) su(Kn) = n− 1, if n ≥ 2.

4) su(Pn�Pm) = min{m,n, 4}.

5) su(Km,n) = min
{
m+ n− 2,m+

⌈
m(n−1)
m+1

⌉}
, 2 ≤ m ≤ n.

6)Let k ≥ 3 and 1 ≤ n1 ≤ ... ≤ nk. Let n =
∑k

i=1 ni. Then su(Kn1,...,nk) = n−
⌊

n
n−nk+1

⌋
.

Proof. 1) A single vertex of degree zero or one is ultra-secure, but any vertex with degree

greater than one is not.

2) For su(G) > 1, δ(G) ≥ 2 is required. Let S ⊆ V with |S| = 2. If S contains two

nonadjacent vertices, it is not ultra-secure. In order for a set S = {u, v} with uv ∈ E to be

ultra-secure, |N [u]−S|+ |N [v]−S| ≤ 2. Note that |N [u]−S| ≥ 1 and |N [v]−S| ≥ 1, so that

|N [u]−S| = 1 and |N [v]−S| = 1 is required. Furthermore, |N(u)∩S| = |N(v)∩S| = 1 and

thus d(u) = d(v) = 2 is necessary. If S = {u, v}, uv ∈ E, and d(u) = d(v) = 2, then the inte-

ger defense where u defends itself and v defends itself is successful against any integer attack.

3) Suppose that S ⊆ V is ultra-secure and 1 ≤ |S| ≤ n− 2. Then for x ∈ S, |N [x]− S| ≥ 2.

It is necessary that |N [S]∩S| ≥∑x∈S |N [x]−S|, but |N [S]∩S| = |S| and
∑

x∈S |N [x]−S| ≥∑
x∈S 2 = 2|S|. So S is not ultra-secure. Any S with |S| = n− 1 is ultra-secure; D is found

by letting each vertex of S defend itself.
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4) In [3] it is shown that s(Pn�Pm) = min{m,n, 3}. First suppose that min{m,n} ≤ 3.

Then we have su(Pn�Pm) ≥ s(Pn�Pm) = min{m,n, 3} = min{m,n}. The m vertices of an

end column, and the n vertices of an end row are ultra-secure, so su(Pn�Pm) ≤ min{m,n},

and thus su(Pn�Pm) = min{m,n}. Now suppose that min{m,n} ≥ 4. Then su(Pn�Pm) ≥

s(Pn�Pm) = min{m,n, 3} = 3. Let S be a set consisting of a corner and its two neighbors.

Then
∑

s∈S |N [s] − S| = 4, and |S| = 3. So three vertices of a corner do not form an

ultra-secure set. Any other set S with |S| = 3 satisfies |S| < |N [X] − S| and is not secure,

much less ultra-secure. Four vertices that induce a C4 and contain a corner vertex form an

ultra-secure set. Thus when min{m,n} ≥ 4, su(Pn�Pm) = 4. Combining the two cases we

get the desired result: su(Pn�Pm) = min{m,n, 4}.

5) Let (Y, Z) be the bipartition of V (Km,n) such that |Y | = m and |Z| = n. Let S ⊆ V (Km,n).

For S to be ultra-secure, by the Theorem, it is necessary that |S| ≥∑x∈S |N [x]−S|. Clearly

|S| = |S ∩ Y |+ |S ∩ Z|. On the other hand,

∑
x∈S

|N [x]− S| =
∑

x∈S∩Y

|N [x]− S|+
∑
x∈S∩Z

|N [x]− S|

=
∑

x∈S∩Y

|Z − S|+
∑
x∈S∩Z

|Y − S|

= |S ∩ Y ||Z − S|+ |S ∩ Z||Y − S|.

So in order to be ultra-secure, S must satisfy the inequality:

|S ∩ Y |+ |S ∩ Z| ≥ |S ∩ Y ||Z − S|+ |S ∩ Z||Y − S|. (4.1)

If S ⊆ Y , then |Z − S| = |Z| ≥ 2, because 2 ≤ m ≤ n, and the inequality (4.1) fails.

Likewise, if S ⊆ Z, the inequality (4.1) will fail. So for S to be ultra-secure, it is necessary

that S ∩ Y 6= ∅ and S ∩ Z 6= ∅. We will consider three cases.
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First assume that Y − S 6= ∅ and Z − S 6= ∅. Inequality (4.1) implies 0 ≥ (|Z − S| −

1)|S ∩Y |+ (|Y −S|− 1)|S ∩Z|. Since |S ∩Y | ≥ 1 and |S ∩Z| ≥ 1, we have |Z−S| ≤ 1 and

|Y − S| ≤ 1. So if there are attackers in both parts of the bipartition, there may be at most

one attacker from each part. Letting |S ∩ Y | = m− 1 and |S ∩Z| = n− 1, S is ultra-secure

and |S| = m+ n− 2. The integer defense is given by letting each vertex of S defend itself.

For the second case, assume Y − S = ∅ and Z − S 6= ∅. In this case, the inequality (1)

becomes |Y | + |S ∩ Z| ≥ |Y ||Z − S| which is equivalent to m + |S ∩ Z| ≥ m(n − |S ∩ Z|).

Isolating |S ∩ Z| yields

|S ∩ Z| ≥
⌈
m(n− 1)

m+ 1

⌉
.

Let S contain all m vertices of Y and
⌈
m(n−1)
m+1

⌉
vertices of Z. We will show this set satisfies

the condition of the Theorem. For any v ∈ Z ∩ S, |N [v] − S| = 0, so we can assume that

X ⊆ S ∩ Y = Y . For X ⊆ Y ,

|N [X] ∩ S| = |X|+
⌈
m(n− 1)

m+ 1

⌉
and∑

x∈X

|N [x]− S| = |X|
(
n−

⌈
m(n− 1)

m+ 1

⌉)
.

So S is secure if and only if for all X ⊆ Y ,

|X|+
⌈
m(n− 1)

m+ 1

⌉
≥ |X|

(
n−

⌈
m(n− 1)

m+ 1

⌉)
.

This inequality reduces to ⌈
m(n− 1)

m+ 1

⌉
≥ |X|(n− 1)

|X|+ 1
. (4.2)

Since m = |Y | ≥ |X| it follows that

m

m+ 1
≥ |X|
|X|+ 1

.

This shows that (2) holds and we have an ultra-secure set S with |S| = m+
⌈
m(n−1)
m+1

⌉
.
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For the final case, assume Y − S 6= ∅ and Z − S = ∅. Following a similar argument to

the second case, S must satisfy |S| ≥ n +
⌈
n(m−1)
n+1

⌉
. Since n ≥ m it follows that m−1

n+1
< 1

and thus ⌈
n

n+ 1
(m− 1)

⌉
=

⌈
(m− 1)− m− 1

n+ 1

⌉
= m− 1.

So in this case, a minimum ultra-secure set S has |S| ≥ n+m− 1.

Thus su(Km,n) = min{m+ n− 2,m+
⌈

m
m+1

(n− 1)
⌉
}. For 2 ≤ m ≤ n,

m+ n− 2 ≤ m+

⌈
m

m+ 1
(n− 1)

⌉
⇔ n− 2 ≤

⌈
(n− 1)− n− 1

m+ 1

⌉
⇔ n− 1

m+ 1
< 2

⇔ n ≤ 2m+ 2.

So we have, for 2 ≤ m ≤ n,

su(Km,n) =

 m+ n− 2 if n ≤ 2m+ 2

m+
⌈
m(n−1)
m+1

⌉
otherwise

as an alternative statement for su(Km,n). Comparing the two expressions in the reverse order

gives m+
⌈
m(n−1)
m+1

⌉
≤ m+ n− 2 if m+ 2 ≤ n. So we have m+ n− 2 = m+

⌈
m(n−1)
m+1

⌉
if and

only if m+ 2 ≤ n ≤ 2m+ 2.

6)Let X1, ..., Xk be the partition of Kn1,...,nk , so that |Xi| = ni for 1 ≤ i ≤ k. Let V =

V (Kn1,...,nk) and let ∅ 6= S ⊆ V . If |{i|Xi ∩ (V − S) 6= ∅}| ≥ 2, then it is easy to see that

|N [x]− S| ≥ 1 for all x ∈ S. Further, because k ≥ 3, it follows that |N [y]− S| ≥ 2 for some

y ∈ S. Then |S| <∑x∈S |N [x]− S| and S is not ultra-secure.

Now suppose that S is ultra-secure and |{i|Xi ∩ (V − S) 6= ∅}| = 0. Then S = V , but

this is not a minimum ultra-secure set, because any set of n−1 vertices is ultra-secure. So let
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|{i|Xi∩ (V −S) 6= ∅}| = 1. Let α ∈ {1, ..., n} such that Xα∩ (V −S) 6= ∅. Let r = |S ∩Xα|.

In order for S to be ultra-secure, we must have n − nα + r = |S| ≥ ∑x∈S |N [x] − S| =∑
x∈(S−Xα)(nα − r) = (n − nα)(nα − r). Solving for r yields r ≥

⌈
nα − n

n−nα+1

⌉
. Thus

|S| = n − nα + r ≥ n − nα +
⌈
nα − n

n−nα+1

⌉
= n −

⌊
n

n−nα+1

⌋
. We will find an ultra-secure

set with min{n−
⌊

n
n−ni+1

⌋
|1 ≤ i ≤ k} = n−

⌊
n

n−nk+1

⌋
vertices.

Let S be the set consisting of the vertices V −Xk and
⌈
nk − n

n−nk+1

⌉
of Xk. If nk ≤

⌈
n
2

⌉
,

then n−
⌊

n
n−nk+1

⌋
= n−1, and S is ultra-secure. If nk ≥

⌈
n
2

⌉
+1, then consider the complete

bipartite graph induced by the edges with one end in Xk and the other end in V −Xk. One

part of the bipartition has size n − nk, and the other part has size nk. In the proof of 5),

it was shown that a set consisting of all m vertices of the smaller part and
⌈
m(p−1)
m+1

⌉
of the

larger part forms an ultra-secure set. The set S does contain all n− nk vertices of V −Xk,

and
⌈
nk − n

n−nk+1

⌉
=
⌈

(n−nk)(nk−1)
n−nk+1

⌉
vertices of Xk. So S is ultra-secure in the complete

bipartite graph. Thus S is also ultra-secure in the complete multipartite graph, because the

additional edges offer no new attack possiblities.
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Chapter 5

Relationships Between Security, (F,I)-security, and Ultra-security

At this point, we have seen that for a graph G, s(G) ≤ s(F,I)(G) and s(G) ≤ su(G). In

this chapter, we explore further relationships between these three types of security.

5.1 Ultra-security Implies (F,I)-security

Let G = (V,E) be a finite, simple graph. Let S ⊆ V . We compare (F,I)-security to

ultra-security. An equivalent formulation of ultra-security requires each vertex of N(S)− S

to send one unit of attack along each edge it has into S. Note that in ultra-security the

attacks are integer attacks, and the defenses are integer defenses.

Lemma 1. Let G=(V,E) be a graph, and S ⊆ V . Then S ⊆ V is ultra-secure if and only

if there exists an integer defense D such that for all v ∈ S, D∗(v) ≥ |N [v]− S|.

Proof. Suppose D is an integer defense such that for all v ∈ S, D∗(v) ≥ |N [v]− S|. In any

attack A, A∗(v) ≤ |N [v]− S| and so for all v ∈ V , A∗(v) ≤ |N [v]− S| ≤ D∗(v). Thus D is

successful against A and S is ultra-secure.

If S is ultra-secure, then there exists a defense D that is a successful defense of any

attack on S. For each v ∈ S, there exists an attack such that A∗(v) = |N [v]− S|. Since D

is a successful defense of all attacks, D∗(v) ≥ |N [v]− S|.

Proposition 1. Let G = (V,E) be a graph and S ⊆ V . If S is ultra-secure, then S is

(F,I)-secure.
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Proof. Let S ⊆ V be an ultra-secure set, and A a (fractional) attack on S. Note that for

u ∈ N(S)− S and v ∈ S, A(u, v) ≤ 1. So then A∗(v) =
∑

u∈N [v]−S A(u, v) ≤∑u∈N [v]−S 1 =

|N [v] − S|. Due to Lemma 1, because S is ultra-secure, there is an integer defense D such

that for all v ∈ S, D∗(v) ≥ |N [v]− S| ≥ A∗(v), and thus S is also (F, I)-secure.

Note that this shows s(F,I)(G) ≤ su(G). In the proofs of the values of s(F,I)(Fn),

s(F,I)(Wn), and s(F,I)(Cm�Pn) in Chapter 3.3, it is easy to see that the minimum (F,I)-

secure sets constructed are also ultra-secure.

Proposition 2.

1) su(Fn) = 1 +
⌈
n
2

⌉
, n ≥ 2.

2) su(Wn) = 1 +
⌈
n+1

2

⌉
, n ≥ 3.

3) min{m, 2n, 6} ≤ su(Cm�Pn) ≤ min{m, 2n, 8}.

Now we look at one condition which will guarantee an (F,I)-secure set is also ultra-

secure. Recall that given a graph G = (V,E) and X ⊆ S ⊆ V , we define GX to be the

subgraph of G whose vertex set is X ∪ (N [X]− S) and whose edge set is the set of all edges

with one end in X and one end in N [X]− S.

Proposition 3. If S ⊆ V is (F,I)-secure and GS is a forest, then S is ultra-secure.

Proof. If GS is a forest, then for X ⊆ S, GX is a forest because E(GX) ⊆ E(GS). Since GX

is a forest |E(GX)| = |V (GX)| − c(GX) = |X| + |NG[X]− S| − c(GX). On the other hand,

recalling GX is bipartite with bipartition (X,NG[X] − S), |E(GX)| =
∑

x∈X |NG[x] − S|.

Since S is (F,I)-secure, we have, for all X ⊆ S, |NG[X]∩S| ≥ |X|+ |NG[X]−S| − c(GX) =

|E(GX)| = ∑x∈X |NG[x]− S|. So S is also ultra-secure.
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5.2 Relating Security, (F,I)-security, and Ultra-security

Let G = (V,E) be a graph. By Proposition 1, we now have s(G) ≤ s(F,I)(G) ≤ su(G).

Below are the necessary and sufficient conditions for the three kinds of security:

S is secure⇔ for all X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|;

S is (F,I)-secure⇔ for all X ⊆ S, |N [X] ∩ S| ≥ |X|+ |N [X]− S| − c(GX);

S is ultra-secure⇔ for all X ⊆ S, |N [X] ∩ S| ≥
∑
x∈X

|N [x]− S|.

Note that for any X ⊆ S, |N [X] − S| ≤ ∑x∈X |N [x] − S|. If S ⊆ V is secure and for all

X ⊆ S, |N [X]−S| = ∑x∈X |N [x]−S|, then S is also ultra-secure, and therefore (F,I)-secure.

Also note that |N [X] − S| =
∑

x∈X |N [x] − S| for all X ⊆ S if, and only if, for each pair

s1, s2 ∈ S, s1 6= s2, N(s1) ∩ N(s2) − S = ∅; that is, any two vertices of S have no common

neighbor outside of S. So potential attackers do not have any choice as to where they can

send their attack.

Proposition 4. Let G = (V,E) be a graph and S ⊆ V be secure. If for distinct s1, s2 ∈ S,

N(s1) ∩N(s2)− S = ∅, then S is (F,I)-secure and ultra-secure.

Corollary. Let G = (V,E) be a graph. If there exists a minimum secure set S ⊆ V such

that for distinct s1, s2 ∈ S, N(s1) ∩N(s2)− S = ∅, then s(G) = s(F,I)(G) = su(G).

However; there are infinitely many graphs where the condition in Proposition 4 fails

for every minimum secure set, and yet s(G) = s(F,I)(G) = su(G) still holds. The smallest

example is K3.

Because s(Kn) =
⌈
n
2

⌉
, s(F,I)(Kn) = n − 1, and su(Kn) = n − 1, we see it is possible

to have a graph G where s(G) < s(F,I)(G) = su(G). Likewise, when n ≥ 5, s(Kn,n) = n,

s(F,I)(Kn,n) = n+
⌊
n
2

⌋
, and su(Kn,n) = 2n− 2, so Kn,n is an example of a graph G such that
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s(G) < s(F,I)(G) < su(G).

Example. We will show the graph G in Figure 5.1 satisfies s(G) = s(F,I)(G) = 3 and

su(G) = 4. There is no vertex of degree one, and no subset of size two is secure, so s(G) ≥ 3.

The subset {a, b, f} is a secure set. Applying the Main Theorem of Chapter 3 shows that

{a, b, f} is also (F,I)-secure. No subset of size three is ultra-secure: there are 14 subsets of

size three that induce a connected subgraph in G, and each fails the necessary and sufficient

condition for ultra-security. The set {b, c, e, f} is ultra secure. The defense where each vertex

defends itself is a successful defense against any attack.

a

b c

d

ef

Figure 5.1: A graph G such that s(G) = s(F,I)(G) < su(G).

5.2.1 An Infinite Family of Graphs

So far, we have seen examples of graphs G such that s(G) = s(F,I)(G) = su(G) ∈ {1, 2}.

Proposition 5. For each positive integer n, there exists a graph G such that s(G) =

s(F,I)(G) = su(G) = n.

Proof. Clearly s(Pn) = s(F,I)(Pn) = su(Pn) = 1 and s(Cn) = s(F,I)(Cn) = su(Cn) = 2. For

n = 3, the graph G = (V,E) in Figure 5.2 satisfies s(G) = s(F,I)(G) = su(G) = 3. The set

32



S = {s1, s2, s3} is an ultra-secure set of order three, and no secure set of order one or two

exists.

s1 s2 s3

Figure 5.2: A graph such that s(G) = s(F,I)(G) = su(G) = 3.

For n ≥ 4, we generalize the graph in the figure. Let G = (V,E) be such that

|V | = 3n+1. Let the vertices of the graph be {s1, ..., sn}∪{v1, ..., v2n+1}. Let E = {sisi+1|1 ≤

i ≤ n − 1} ∪ {vjvk|j 6= k} ∪ {visi|1 ≤ i ≤ n − 1} ∪ {v1sn}. Then {v1, ..., v2n+1} induces a

K2n+1 and {s1, ..., sn} induces a Pn. Letting each si defend itself shows that {s1, ..., sn} is

ultra-secure with size n. So we have s(G) ≤ s(F,I)(G) ≤ su(G) ≤ n. We will now show

s(G) ≥ n, and the result follows. Let S ⊆ V be secure. If vj ∈ S for some j then |S| ≥ n+1,

because |N [vj]∩ S| ≥ |N [vj]− S| and |N [vj]| ≥ 2n+ 1. So we can find no smaller secure set

containing any vj. So if there is a smaller secure set, it has to be a subset of {s1, ..., sn}. A

minimum secure set is connected [3], meaning the subgraph induced by the minimum secure

set is connected. So let T be a subset of {s1, ...sn} such that |T | ≤ n−1, and T induces a con-

nected subgraph. Then |(N [T ]−T )∩{v1, ..., v2n+1}| = |T | and |(N [T ]−T )∩{s1, ..., sn}| ≥ 1,

so that |T | < |T |+ 1 ≤ |N [T ]− T |, and T is not secure.

Note that in the proof above, the vertices of V − {s1, ..., sn} do not have to induce a

K2n+1. If |V | > 3n + 1, so that |V − {s1, ..., sn}| > 2n + 1, it is sufficient for the vertices of

V − {s1, ..., sn} to induce any graph H with δ(H) ≥ 2n.
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Chapter 6

On the Security Number of Regular Bipartite Graphs

6.1 d-regular Bipartite Graphs with s(G) = d

It has been shown that for a graph G, s(G) ≥
⌈
δ+1

2

⌉
[6]. If G is d-regular, then

s(G) ≥
⌈
d+1

2

⌉
. The complete graph Kn, achieves this bound, as it is regular of degree n− 1

and s(Kn) =
⌈
n
2

⌉
. When n ≥ 4,

⌈
n
2

⌉
< n− 1. So if G is a d-regular graph, it is possible that

s(G) < d. If we require G to be bipartite, in addition to being regular, then the security

number cannot be less than the degree.

Proposition 1. Suppose G=(V,E) is a regular bipartite graph with degree d. Then s(G) ≥ d.

Proof. If d = 0 or d = 1, s(G) = 1. Let d ≥ 2. Then s(G) ≥ 2 and a secure set S

must contain vertices u, v such that uv ∈ E. The vertices u and v must be in different

parts of the bipartition, and thus |N [{u, v}]| = 2d. If S is secure, then by Theorem BDH

|N [{u, v}]| = 2d = |N [{u, v}]−S|+ |N [{u, v}]∩S| ≤ 2|N [{u, v}]∩S|, so |N [{u, v}]∩S| ≥ d.

Thus we have |S| ≥ |N [{u, v}] ∩ S| ≥ d.

We now characterize the structure of d-regular, bipartite graphs with s(G) = d.

Theorem 1. Suppose G = (V,E) is a regular, bipartite graph with degree d ≥ 2 and

s(G) = d. Let S be a secure set with |S| = d. Then we can label the bipartition (Y, Z) in

such a way that S = A ∪ B, A ⊆ Y , B ⊆ Z, |A| =
⌈
d
2

⌉
, and |B| =

⌊
d
2

⌋
. Furthermore,

for u, v ∈ A, B ⊆ N(u) = N(v), and for w, z ∈ B, A ⊆ N(w) = N(z). Conversely, if G

has a bipartition (Y, Z) with A ⊆ Y and B ⊆ Z satisfying the preceding conditions, then
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S = A ∪B is a secure set in G with |S| = d.

Proof. Name the bipartition (Y, Z) in such a way that |S ∩ Y | ≥ |S ∩ Z|. Let A = S ∩ Y

and B = S ∩ Z. Suppose |A| ≥
⌈
d
2

⌉
+ 1. Then |B| ≤

⌊
d
2

⌋
− 1. Let u ∈ A. Then

|N(u)−S| = d−|N(u)∩B| ≥ d− (
⌊
d
2

⌋
−1) =

⌈
d
2

⌉
+1 >

⌊
d
2

⌋
≥ |N [u]∩S|, which contradicts

S being secure. Therefore |A| ≤
⌈
d
2

⌉
. Since |A| ≥ |B| we must have |A| =

⌈
d
2

⌉
, and thus

|B| =
⌊
d
2

⌋
. Now d = |S| ≥ |N [S] − S|. For u ∈ A, |N(u) − S| ≥ d − |B| =

⌈
d
2

⌉
. Likewise,

for w ∈ B, |N(w) − S| ≥ d − |A| =
⌊
d
2

⌋
. Since (N(u) − S) ∩ (N(w) − S) = ∅, we have

|N [S]− S| ≥ |N(u)− S|+ |N(w)− S| ≥ d. So we must have |N [S]− S| = d, which means

that |N(u)−S| =
⌈
d
2

⌉
, |N(v)−S| =

⌊
d
2

⌋
, N [S]−S = (N(u)∪N(w))−S, N(u)∩S = B, and

N(w) ∩ S = A. So for any v ∈ A, v 6= u, N(v)− S ⊆ N(u)− S, and N(v) ∩ S ⊆ B. Since

N(u) = d and |N(u)− S|+ |B| = d, we must have N(v) = N(u). Similarly, for any z ∈ B,

z 6= w, we have N(z) = N(w). Now suppose that G has a bipartition (Y, Z) with A ⊆ Y

and B ⊆ Z satisfying the preceding properties. By Theorem BDH, S = A ∪ B is secure in

G if for all X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|. We examine three cases. First, if ∅ 6= X ⊆ A,

then |N [X] ∩ S| = |X|+ |B| = |X|+
⌊
d
2

⌋
≥
⌈
d
2

⌉
= |N [A]− S| ≥ |N [X]− S|. If ∅ 6= X ⊆ B,

then |N [X] ∩ S| = |X| + |A| = |X| +
⌈
d
2

⌉
>
⌊
d
2

⌋
= |N [B] − S| ≥ |N [X] − S|. Lastly, if

X ∩A 6= ∅ and X ∩B 6= ∅, then |N [X]∩ S| = |A|+ |B| = d = |N [S]− S| ≥ |N [X]− S|. So

S = A ∪B is secure and |S| = d.

Figure 6.1, below, uses the notation of Theorem 1. In the case G is 4-regular and

bipartite, Figure 6.1 shows the subgraph of G induced by the set of edges with at least one

end in the secure set S = A ∪B.

For any regular, bipartite graph the number of vertices in one part of the bipartition

must equal the number of vertices in the other part. So the total number of vertices must

be even. The d-regular, bipartite graph with the fewest vertices is Kd,d, and s(Kd,d) = d.
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A B

Figure 6.1: S = A ∪B is secure in a 4-regular, bipartite graph.

Lemma 1. There does not exist a d-regular, bipartite graph G = (V,E) such that s(G) = d

and 2d < |V | < 3d.

Proof. We proceed by contradiction. Suppose that G = (V,E) is a d-regular, bipartite

graph such that s(G) = d and 2d < |V | < 3d. We can label the bipartition (Y, Z) in such

a way that there is a secure set S = A ∪ B as in Theorem 1. Letting A′ = N(B) − A

and B′ = N(A) − B, it follows that |A ∪ A′| = |B ∪ B′| = d. Since d < |Z| there exists

v ∈ Z − (B ∪B′) such that |N(v)| = d and N(v) ⊆ Y −A. Since |Y | < 3d
2

and |A| =
⌈
d
2

⌉
, it

follows that |N(v)| ≤ |Y − A| < 3d
2
−
⌈
d
2

⌉
≤ d, contradicting |N(v)| = d.

Lemma 2. If d > 0 is even, there exists a d-regular, bipartite graph G = (V,E) such that

s(G) = d and |V | = 3d. If d is odd, there exists a d-regular, bipartite graph G = (V,E) such

that s(G) = d and |V | = 3d+ 1.

Proof. First suppose that d is even. Let V be a set such that |V | = 3d. Partition the V into

two sets, Y and Z such that |Y | = |Z| = 3d
2

. Partition vertices of Y into three sets A,A′, A′′

such that |A| = |A′| = |A′′| = d
2
. Partition the vertices of Z into three sets B,B′, B′′ such
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that |B| = |B′| = |B′′| = d
2
. Define the edge set

E = {uv|u ∈ A, v ∈ B ∪B′} ∪ {uv|u ∈ A′, v ∈ B ∪B′′} ∪ {uv|u ∈ A′′, v ∈ B′ ∪B′′}.

Letting G = (V,E) and S = A ∪B, S satisifes the conditions of Theorem 1 and is secure in

G.

Now suppose that d is odd. Let V be a set such that |V | = 3d + 1. Partition the

V into two sets, Y and Z such that |Y | = |Z| = 3d+1
2

. Partition the vertices of Y into

three sets A,A′, A′′ such that |A| = |A′′| = d+1
2

and |A′| = d−1
2

. Partition the vertices of

Z into three sets B,B′, B′′ such that |B| = d−1
2

and |B′| = |B′′| = d+1
2

. Let r = d+1
2

,

A′′ = {a1, ..., ar} and B′ = {b1, ..., br}. Let F = {aibi| 1 ≤ i ≤ r}. Define the edge set

E = ({uv|u ∈ A, v ∈ B ∪B′} ∪ {uv|u ∈ A′, v ∈ B ∪B′′} ∪ {uv|u ∈ A′′, v ∈ B′ ∪B′′})− F .

Letting G = (V,E) and S = A ∪B, S satisfies the conditions of Theorem 1 and is secure in

G.

Theorem 2. There exists a d-regular, bipartite graph G = (V,E) such that s(G) = d, if and

only if |V | = 2d, or |V | ≥ 3d and |V | is even.

Proof. Let G = (V,E) be a d-regular, bipartite graph such that s(G) = d. The discussion

preceding Lemma 1 shows that |V | must be even and that Kd,d satisfies s(G) = d and

|V | = 2d. So if G is not isomorphic to Kd,d, then, by Lemma 1, |V | ≥ 3d. We proceed by

induction, Lemma 2 providing the base when d is even or d is odd.

Let |V | ≥ 3d + 2 and |V | even. Let H = (U, F ) be a d-regular, bipartite graph with

|U | = |V | − 2 satisfying s(H) = d. As in Theorem 1, we can write the bipartition of H as

(Y, Z) and find a secure set S = A ∪ B. Construct the graph G = (V,E) as follows. Add a

vertex u to Y and a vertex v to Z. We now find a set of d independent edges in H, using

Hall’s Theorem.
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Case 1: d is even. Let Y ′ = (V (H) − S) ∩ Y and Z ′ = (V (H) − S) ∩ Z. Since

|U | = |V | − 2 ≥ 3d, we have |Y | = |Z| ≥ 3d
2

so that |Y ′| = |Z ′| = |Y | − d
2
≥ d. Also, Y ′ has

d
2

vertices of degree d
2

in H − S, and every other vertex has degree d. Let D ⊆ Y ′ such that

|D| = d. Examine the graph Γ induced by D ∪ Z ′. Let X ⊆ D. If X has a vertex of degree

d, then |X| ≤ d ≤ NΓ(X). If X does not have a vertex of degree d, then each vertex in X

has degree d
2
, and |X| ≤ d

2
≤ NΓ(X). So by Hall’s Theorem, there must be a matching in Γ

that saturates D. Let M be this set of d independent edges, which are also independent in

H − S and H.

Case 2: d is odd. Let Y ′ = (V (H) − S) ∩ Y and Z ′ = (V (H) − S) ∩ Z. Since

|U | = |V | − 2 ≥ 3d + 1, we have |Y | = |Z| ≥ 3d+1
2

, so that |Y ′| = |Y | − |Y ∩ S| ≥
3d+1

2
− d+1

2
= d and |Z ′| = |Z| − |Z ∩ S| ≥ 3d+1

2
− d−1

2
= d+ 1. In H − S, Y ′ has d−1

2
vertices

of degree d+1
2

, and every other vertex of Y ′ has degree d. Let D ⊆ Y ′ such that |D| = d.

Examine the graph Γ induced by D ∪ Z ′. Let X ⊆ D. If X has a vertex of degree d, then

|X| ≤ d ≤ NΓ(X). If X does not have a vertex of degree d, then each vertex in X has degree

d+1
2

, and |X| ≤ d−1
2
< d+1

2
≤ NΓ(X). So by Hall’s Theorem, there must be a matching in Γ

that saturates D. Let M be this set of d independent edges, which are also independent in

H − S and H.

Next we decribe how to obtain the edge set E from F . For each w1w2 ∈M , w1 ∈ Y −S

and w2 ∈ Z − S, delete w1w2 from F , and replace it by two edges: w1v and w2u. Thus the

degree of every vertex of (Y − S) ∪ (Z − S) is not changed, and the degree of u and of v

is d. Then G = (V,E) is a d-regular, bipartite graph on |V | vertices. But the neighbors of

vertices in S in G are the same as in H, so S is secure in G = (V,E).

Proposition 2. Let G = (V,E) be a d-regular, bipartite graph such that s(G) = d. If

|V | ∈ {2d, 3d, 3d+ 1} then the graph G is unique up to isomorphism.

38



Proof. Let S be a secure set in G = (V,E) of order d. By Theorem 1, we can lable the

bipartition of G (Y, Z) so that there is a secure set S = A ∪ B where A and B have the

properties listed. Let A′ = N(B) − A and B′ = N(A) − B. Note that |A′| =
⌊
d
2

⌋
and

|B′| =
⌈
d
2

⌉
.

Suppose |V | = 2d. In this case, Y = A ∪ A′, Z = B ∪ B′, |Y | = d, and |Z| = d. Since

every vertex has degree d, the graph must be isomorphic to Kd,d.

Now suppose that |V | = 3d. In this case, d must be even. Let A′′ = Y − (A ∪ A′)

and B′′ = Z − (B ∪ B′). Note that |A| = |A′| = |A′′| = |B| = |B′| = |B′′| = d
2
. Let

F = {uv |u ∈ A, v ∈ B∪B′}∪{uv |u ∈ B, v ∈ A′}. By Theorem 1, F ⊆ E. Note that every

vertex of A ∪ B is incident with d edges of F . So no vertex in A is adjacent to a vertex in

B′′, and no vertex in B is adjacent to a vertex in A′′. In order for each vertex of A′′ to have

degree d, it must be adjacent to every vertex in B′ ∪B′′. Likewise, every vertex of B′′ must

be adjacent to every vertex of A′ ∪ A′′. This forces E = {uv|u ∈ A, v ∈ B ∪ B′} ∪ {uv|u ∈

A′, v ∈ B ∪B′′} ∪ {uv|u ∈ A′′, v ∈ B′ ∪B′′}.

Lastly, suppose |V | = 3d+ 1. In this case, d must be odd. Again, let A′′ = Y − (A∪A′)

and B′′ = Z− (B∪B′). Note that |A| = |A′′| = |B′| = |B′′| = d+1
2

and |B| = |A′| = d−1
2

. Let

F1 = {uv |u ∈ A, v ∈ B ∪ B′} ∪ {uv |u ∈ B, v ∈ A′}. By Theorem 1, F1 ⊆ E. Every vertex

of A ∪ B is incident with d edges in F1. So no vertex of B′′ is adjacent to any vertex of A.

Likewise, no vertex of A′′ is adjacent to any vertex of B. In order to have degree d, every

vertex of B′′ must be adjacent to every vertex of A′ ∪ A′′. It remains to describe the edges

between vertices of A′′ and vertices of B′. Since G contains no edges between vertices of A′

and vertices of B′, and every vertex of A′′ is adjacent to every vertex of B′′, the subgraph H

of G induced by A′′∪B′ is regular of degree d−1
2

. Since H is bipartite it is therefore obtained

from K d+1
2
, d+1

2
by removing a perfect matching. Clearly the different versions of G obtained

by removing different perfect matchings in H are isomorphic.
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6.2 On the Security Number of Qn

The n-cube, denotedQn, can be defined inductively. LetQ0
∼= K1; thenQn

∼= Qn−1�K2.

Note that |V (Qn)| = 2n and |E(Qn)| = n2n−1. Also note that Qn is an n-regular bipartite

graph. By examination, s(Q0) = s(Q1) = 1, and s(Q2) = 2. If the number of vertices of a

subgraph of Qn is known, Graham’s Density Lemma gives an upper bound on the number

of edges that subgraph may contain. It is used in the proofs of the results after it.

Graham’s Density Lemma ([7, 2]). Let G be a subgraph of Qn. Then |E(G)| ≤
1
2
|V (G)| log2 |V (G)|, with equality if and only if G is isomorphic to Qm, for some m ∈

{0, 1, ..., n}.

Proposition 3. For n ≥ 1, su(Qn) = 2n−1, and the only minimum ultra-secure sets of

vertices induce subgraphs isomorphic to Qn−1.

Proof. Let S ⊆ V (Qn) be ultra-secure. Since Qn is n-regular, the sum of the degrees of the

vertices of S is n|S|. Applying the Theorem of Chapter 4.1 for ultra-security with X = S,

we have |S| ≥ ∑x∈S |N [x] − S|. In other words, the number of edges with one end in S

and one end in N [S] − S can be at most |S|. Let G be the subgraph of Qn induced by

S. Then
∑

v∈S dG(v) ≥ n|S| − |S|, and thus |E(G)| ≥ 1
2
|S|(n − 1). By Graham’s Lemma,

1
2
|S|(n− 1) ≤ 1

2
|S| log2 |S|, and so 2n−1 ≤ |S|. If |S| = 2n−1, then |E(G)| = 2n−2(n− 1) and

we have equality in Graham’s Density Lemma. Thus G is isomorphic to Qn−1. Then for

x ∈ S, |N [x]− S| = 1. Letting each vertex of S defend itself, we see that S is ultra-secure.

Therefore, su(G) = 2n−1 and any minimum ultra-secure set of Qn must induce a subgraph

isormorphic to Qn−1.

Proposition 4. For n ≥ 1, 2bn2 c ≤ s(Qn).
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Proof. Let S ⊆ V (Qn) be secure. Let G be the subgraph of Qn induced by S. Then for

each v ∈ S, 1 + dG(v) = |N [v] ∩ S| ≥ 1
2
|N [v]| = 1

2
(n + 1). Thus dG(v) ≥

⌈
n−1

2

⌉
=
⌊
n
2

⌋
. So

G must have at least 1
2
|S|
⌊
n
2

⌋
edges. Applying Graham’s Lemma, 1

2
|S|
⌊
n
2

⌋
≤ 1

2
|S| log2 |S|,

which yields 2bn2 c ≤ |S|.

Corollary. For n ≥ 1, 2bn2 c ≤ s(Qn) ≤ s(F,I)(Qn) ≤ 2n−1.

41



Bibliography

[1] B. Bollobás and N. Th. Varopoulos, Representation of systems of measurable sets, Math.
Proc. Camb. Phil. Soc. 78 (1974), 323–325.
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Appendix A

An Alternative Proof that (I,I)-security Implies (F,F)-security

The notation here is as in Chapter 2. This proof predates the more elegant proof in-

cluded in Chapter 2. It essentially follows the proof of Theorem BDH by Brigham et al [3].

Theorem. Let G = (V,E) be a graph and S ⊆ V . If S is (I,I)-secure, then S is (F,F)-

secure.

Let S ⊆ S ′ ⊆ V . Let A be an attack on S ′ such that A∗(v) = 0 for all v ∈ S ′ − S.

Let A = {s ∈ S ′|A∗(s) > D∗(s)}. Note that if s ∈ S ′ − S, then s /∈ A , because A∗(s) =

0 ≤ D∗(s). A best defense of S is a defense D such that
∑

s∈A A∗(s)−D∗(s) is minimized.

Assume in these best defenses, that every defending vertex sends out its entire unit of defense;

that is, for v ∈ S ′, and any best defense D,
∑

u∈N [v]∩S D(v, u) = 1. An attack A is defendable

if there is a defense D for which
∑

s∈A A∗(s)−D∗(s) = 0; that is, A = ∅.

If D is a best defense, another best defense D′ can be found through one of two possible

transformations. For i ∈ S ′ such that D∗(i) > A∗(i) and j ∈ S ′,

1) If D(j, i) > 0, define γ1(i, j) = min{D(j, i), D∗(i)−A∗(i)}. Reduce D(j, i) by γ1(i, j)

and increase D(j, j) by γ1(i, j).

2) If D(i, i) > 0 and D(j, i) = 0, define γ2(i) = min{D(i, i), D∗(i) − A∗(i)}. Reduce

D(i, i) by γ2(i) and increase D(i, j) by γ2(i).

(Note that for both transformations, j must satisfy D∗(j) ≥ A∗(j), or D would not be

a best defense.)

Given a best defense D, let D be the set consisting of D and every defense that can

be derived from D by repeated applications of transformations 1) and 2). Note that if

D∗(u) ≥ A∗(u) for some D ∈ D , then D∗(u) ≥ A∗(u) for all D ∈ D . Let V + ⊆ S ′ be
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V + = {v ∈ S ′|D∗(v) > A∗(v) for some D ∈ D}. Let X = S ′ − V +.

Lemma 1. Let x ∈ X, v ∈ S ′. Then D(v, x) = D′(v, x) and D(x, v) = D′(x, v), for all

defenses D′ in D .

Proof. Let ∆,∆′ ∈ D such that ∆′ is obtained from ∆ by one of the transformations. If

x ∈ X is involved in transformation 1) or 2), then it must play the role of j, because i ∈ V +,

and x /∈ V +. So after the transformation (∆′)∗(x) > ∆∗(x). Note that ∆∗(x) ≤ A∗(x)

because x /∈ V +. If ∆∗(x) = A∗(x), then after the transformation, (∆′)∗(x) > A∗(x), and

x ∈ V +, a contradiction. If ∆∗(x) < A∗(x), then after the transformation, A∗(x)−∆∗(x) >

A∗(x)− (∆′)∗(x), contradicting that ∆ is a best defense.

Lemma 2. Let ∆ ∈ D . Every s ∈ N [X] ∩ S ′ satisfies ∆(s, v) = 0 for v ∈ V + = S ′ −X.

Proof. Let s ∈ X. Suppose that ∆(s, v) > 0, for some v ∈ V +. Since v ∈ V +, there is a

∆′ ∈ D such that (∆′)∗(v) > A(v). Applying transformation 1) with i = v and j = s would

result in a new defense ∆′′ with ∆′′(s, s) > ∆′(s, s), contradicting Lemma 1.

Now let s ∈ (N [X] ∩ S ′) − X. Note that s ∈ V +. Suppose that ∆(s, y) > 0 for some

y ∈ V +. Now s must have a neighbor x ∈ X and by the first part of this proof, ∆(x, s) = 0.

We can assume ∆∗(y) > A∗(y) (y ∈ V +, so ∆∗(y) ≥ A∗(y). If ∆∗(y) = A∗(y), a series of

transformations will result in a a defense D′ such that (D′)∗(y) > A∗(y). The vertex y does

not play the role of i, because i already satisfies ∆∗(i) > A∗(i). If y = j and s = i, then

in either transformation, s still sends defense to y afterwards). Applying transformation 1)

with j = s and i = y results in a defense ∆′ such that (∆′)∗(s) > A∗(s). (We started with

∆∗(s) ≥ A∗(s).) Now apply transformation 2) with j = x and i = s. This results in a

defense ∆′′ where ∆′′(s, x) > ∆′(s, x), contradicting Lemma 1.
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Suppose that S ′ is not defendable from an attack A, where A∗(v) = 0 for all v ∈ S ′−S.

Let V + and X be as above and let X ′ = X ∩ S. If v ∈ X − X ′, then A∗(v) = 0 and

so D∗(v) = 0, because v /∈ V +. So by Lemma 2, for any s ∈ N [X] ∩ S ′, v ∈ N [s] − X ′,

D(s, v) = 0. In other words, all the defense power of N [X] ∩ S ′ is sent into X ′. We have

|N [X] ∩ S ′| =
∑
x∈X′

D∗(x) <
∑
x∈X

A∗(x) =
∑
x∈X

∑
v∈N [X]−S′

A(v, x)

=
∑

v∈N [X]−S′

∑
x∈X

A(v, x) ≤
∑

v∈N [X]−S′

1 = |N [X]− S ′|.

Thus there is an X ⊆ S ′ such that |N [X] ∩ S ′| < |N [X]− S ′|. Lemma 3, below, states

this result.

Lemma 3 Let G = (V,E) be a graph and S ⊆ S ′ ⊆ V . Let A be an attack on S ′, such that

for v ∈ S ′ − S, A∗(v) = 0. If there is no successful defense of A, then there is an X ⊆ S

such that |N [X] ∩ S ′| < |N [X]− S ′|.

Letting S = S ′ in Lemma 3, shows that if S is not (F,F)-secure, then there exists an

X ⊆ S, such that |N [X] ∩ S| < |N [X]− S|, and the Theorem follows.
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Appendix B

A Table of Security Numbers

G s(G) s(F,I)(G) su(G)

Pn 1 1 1

Cn 2 2 2

Fn 2 1 +
⌈
n
2

⌉
1 +

⌈
n
2

⌉
n ≥ 2

Wn 3 1 +
⌈
n+1

2

⌉
1 +

⌈
n+1

2

⌉
n ≥ 4

Pm�Pn min{m,n, 3} min{m,n, 4} min{m,n, 4}

Kn

⌈
n
2

⌉
n− 1 n− 1

n ≥ 2

Km,n

⌈
m+n

2

⌉
m+

⌊
n
2

⌋
min{m+ n− 2,m+

⌈
m(n−1)
m+1

⌉
}

2 ≤ m ≤ n, n 6= 2

Kn1,...,nk

⌈
n
2

⌉
n−

⌈
nk
2

⌉
n−

⌊
n

n−nk+1

⌋
k ≥ 3, n =

∑k
i=1 ni,

nk = max1≤i≤k{ni}

Table B.1: Security Numbers
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