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Abstract

In this thesis, we prove one-sided bounds on the coarsening rates for two models of

non-conserved curvature driven dynamics by following a strategy developed by Kohn and

Otto in [20].

In the first part, we analyze the Allen-Cahn equation in one and two dimensions, with

different choices of length scales. The analysis follows the framework of Kohn and Yan in

[24]. In the one-dimensional domain, by choosing an H−1-type length scale, our analysis

supports the assertion that the coarsening occurs at the rate t1/3. In the two-dimensional

domain, we consider two types of length scales. First, we obtain the coarsening rate of t1/3

using an H−1-type length scale, and then, using another L2-type length scale yields that the

energy decays no faster than the rate t−1/6. In all the cases, among the main ingredients, the

interpolation inequality requires the most delicate analysis, and the dissipation inequalities

are based on basic calculations using Hölder’s inequality. An ODE argument is adapted to

combine these two components in each case. The well-posedness of the Allen-Cahn equation

obtained using fixed point method is presented in the appendix.

For the Swift-Hohenberg equation, we again consider an L2-type length scale in a two-

dimensional domain. The coarsening rate of t1/3 rate is established using an interpolation

inequality which extends Kohn and Otto’s method. This rate is consistent with numerical

results as an upper bound on coarsening rates.
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Chapter 1

Introduction

In various physical processes, domains that form in multi-stable systems slowly change

in time, with the overall pattern becoming coarser. From the physical perspective, our

particular point is to model the kinetic behavior for the systems whose spatial structure

develops a pattern of domains or clusters that coarsen as time increases. The growth of

single-crystal grains in polycrystalline materials, phase separation in alloys, and anti-phase

boundary motion in antiferromagnetic materials are some important examples, [32]. For

example, as in [5], it is a system in equilibrium, which is quenched from the symmetric

(high temperature) phase into the symmetry breaking (low temperature) phase through

some phase transition. Once the system sets into the ordered phase, it locally selects one,

among all the possible, equilibrium configurations. Different states are chosen at different

locations and topological defects in the form of domain walls are created. In the course of

time, the patches of ordered regions tend to grow while the density of topological defects

diminishes.

It is widely observed that for some coarsening processes described by different equations,

some typical length scale that characterizes the distance between the topological defects

increases and the length scale behaves as a temporal power law. And the questions will

be whether we can find the universal rates for the coarsening. It is difficult to expect all

solutions coarsen at the same rate, because in the infinite-time limit the system should

typically approach a stable equilibrium and stop coarsening. However, Kohn and Otto’s

method in [20] provides a effective way to find an upper bound on the coarsening rates. Here

in this dissertation, we mainly study the coarsening described by the Allen-Cahn equation
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and the Swift-Hohenberg equation. So first we introduce these two equations before we go

into the details.

1.1 Allen-Cahn Equation

We know that for the scalar ODE

∂tu = −f(u),

with f : R→ R and f ∈ C1, every solution t→ u(t) is monotonic and every bounded solution

converges as t→∞. For the coarsening processes, one of the simplest mathematical models

of this behavior arises as a modification of the model

∂tu(x, t) = −f(u(x, t)), in [0, 1]× [0,∞),

which is a spatial variation of the above scalar ODE. For any bounded solution, u∞(x) =

limt→∞ u(x, t) exists for every x, with f(u∞(x)) = 0 for all x. If f has multiple stable zeros,

the limiting state u∞ is typically non-constant, and the domains will form as time proceeds,

corresponding to different limiting values of u∞(x).

The Allen-Cahn equation was originally studied by Allen and Cahn in [1]. Our focus is

on the parabolic Allen-Cahn equation on domain Ω× [0,∞)

∂u

∂t
−∆u− 2u(1− u2) = 0, in Ω× [0,∞)

u(x, t) = 0, on ∂Ω× [0,∞)

u(x, 0) = u0, in Ω

(1.1)

where Ω is an interval I in R or a square Q in R2. This PDE corresponds to the gradient

flow of the energy

E(u) =
1

2
−
∫
Q

|∇u|2 + (1− u2)2dx,

2



where −
∫

denotes the spatial average.

We focus on the homogeneous Dirichlet boundary conditions. In the literature, this

equation is also considered together with either periodic or homogeneous Neumann boundary

conditions. Moreover, for unbounded domains, heteroclinic conditions at infinity are usually

imposed. The latter condition ensures that there is at least one transition between phases

and it guarantees that the energy has a lower bound. We note that, for the epitaxial growth

model, the requirement of periodic boundary condition also ensures a lower bound on the

energy. For our model, we could have chosen the Dirichlet boundary conditions u(0, t) = −1

and u(l, t) = 1 to mimic the heteroclinic condition at infinity, but we note the homogeneous

Dirichlet boundary condition yields the same effect of creating interfaces at the boundaries

of the bounded domains and it extends naturally to dimension two or higher.

We scale the system and prove a corresponding result in the unit interval I1 = [0, 1].

With the length of I denoted by
1

ε
= l, we define

uε(x, t) = u

(
x

ε
,
t

ε2

)
.

Then uε solves the equation

∂tuε − ∂2
xuε −

2

ε2
uε(1− u2

ε) = 0, in I1 × [0,∞)

uε(0, t) = uε(1, t) = 0, t > 0

(1.2)

Let W (u) =
1

2
(1 − u2)2, so that W ′(u) = −2u(1 − u2). We observe that W (u) is a double

well energy density with equal minima at u = ±1. As ε → 0 the solutions uε will converge

almost everywhere to 1 or −1, [38], [37], [35]. For every t and same initial condition for each

ε > 0, the interval I1 will be partitioned as I1 = I1
1 ∪ I−1

1 ∪ Irest
1 , where

Iδ1 = {x ∈ I1|uε(x, t)→ δ as ε→ 0},
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and Irest
1 has measure 0. The interface between these two sets corresponds to the grain

boundaries.

The only stable states of this system are patternless constant solutions u = ±1, [9].

The asymptotic behavior of solutions of (1.2) as t→∞ has been well studied. As stated in

[32], for any solution u(x, t), we expect that u∞(x) = limt→∞ u(x, t) exists and satisfies the

equation of equilibrium:

ε2∂2
xuε −W ′(uε) = 0.

Hence, u∞ is a stationary solution and for large t, typical solutions will be approximately

piece-wise constant in space. In a variety of physical processes, domains that form in multi-

stable systems change in time slowly. Similarly the solution to (1.2) changes extremely slowly

after reaching a pattern of transition layers developed in a relatively short time. The solution

will either grow up to 1 or bring down to −1, decreasing the part of the energy corresponding

to the double-well potential.

1.2 Swift-Hohenberg Equation

The equation considered in this section is proposed as a prototypical example of pattern

forming systems [10]. It was first derived by Swift and Hohenberg in [36] as a model for

pattern-formation equation for a fluid which is thermally convecting. These authors used

weakly nonlinear analysis of the Boussinesq equations describing Bénard convection with

random thermal fluctuations, as a simple model for the Rayleigh-Bénard instability of roll

waves. When spatially periodic patterns emerge in isotropic pattern-formation systems,

random initial conditions will lead to patches of patterns with different orientation that

are separated by sharp interfaces. The slow dynamics of those interfaces often govern the

long-time behavior of systems far from equilibrium.
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Here we consider the Swift-Hohenberg equation in the two-dimensional space

ut = −(1 +∇2)2u+ µu− u3, in Q× [0, T ]

u =
∂u

∂v
= 0, on ∂Q× [0, T ]

u(x, 0) = u0, in Q,

(1.3)

where Q ∈ R2. The Swift-Hohenberg equation describes the nonlinear interaction of plane

waves. Most of the pattern forming systems described by the Swift-Hohenberg equation

exhibit stationary stripe or roll patters, see for example [19].

We consider u as representing a grayscale image of the temperature at each point, that

is, each coordinate has a temperature measurement u associated with that point. Hence, as

in Figure 1.1, the image of u represents a set of convection rolls.

Figure 1.1: Evolution of patterns in time, taken from [21].

We notice that the Swift-Hohenberg equation relates the temporal evolution of the

pattern to the spatial structure of the pattern. µ plays the role of a temperature knob,

measuring how far the temperature is above the minimum temperature difference required

for convection. Therefore, for µ < 0, the heating at the bottom of the fluid is too small to

cause convection, while for µ > 0, convection occurs. The term involving the gradient acts

to smooth out sharp edges in the pattern.
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In Figure 1.1, (a)-(d) are the images obtained from experiments involving the free surface

of granular layers at t = 2, 10, 200, 1000, where the bright parts correspond to the crests of

the free surface and the dark parts corresponds to the troughs of the free surface. As time

progressed, they locally align in parallel and create an increasingly ordered pattern and after

a long time, a fully ordered striped pattern finally appears. Subfigures (e)-(h) are images

obtained from the simulation of the two-dimensional Swift-Hohenberg equation in time for

µ = 0.2. We can see that the coarsening dynamics of the striped pattern shows very similar

spatiotemporal morphology in both the experiment and numerical calculation.

During the formation of stripes [18], the width of the structure will decay in two stages.

When t is small, the linear term in equation (1.3) dominates the system because of the small

amplitude of the order parameter u. At this stage, the width decays rapidly. However, in

the late-time region, nonlinear term effects emerge and the width decays slowly. Moreover,

when the correlation function of the local orientation order parameter is computed in the

late-time region in real space, the characteristic length grows algebraically as L(t) ∼ tz,

while the density E(t) of topological defects decays algebraically as E(t) ∼ t−z, as in [21],

[7], etc.

1.3 Previous Results

The quantitative estimation of the coarsening rates was pioneered by Kohn and Otto

in [20]. Their method, originally developed for the Cahn-Hilliard equations, involves the

introduction of an auxiliary length scale and establishing and exploiting relations between

this length scale and the energy. This method has subsequently been carried out for, among

many models, an epitaxial growth model by Kohn and Yan in [24], for a discrete, ill-posed

diffusion equation by Esedoḡlu and Slepc̆ev in [13], for a demixing model by Brenier, Otto

and Seis in [4], for a phase field model with arbitrarily complicated patterns of phases by

Dai and Pego in [12]. We outline the method first as it was implemented originally for the

Cahn-Hilliard equation in [20] and then for the epitaxial growth models in [24, 13, 4, 12].
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Here we list some previous work with upper bounds on coarsening rates of different

models and the outlines of their work. They all follow the method developed by Kohn and

Otto in [20], but with specific tools and techniques. All these models have conservation law

structures, while the equations that we study have non-conserved curvature driven dynamics.

1.3.1 Cahn-Hillard Equations

For Cahn-Hilliard equations,

∂m

∂t
+∇ · J = 0,

with the associated energy

E = −
∫

1

2

(
|∇m|2 + (1−m2)γ

)
dx,

where, in the constant mobility case, γ = 2 and

J := −∇∂E
∂m

and, in the degenerate mobility case, γ = 1 and

J := −(1−m2)∇∂E
∂m

.

Here, −
∫

denotes the spatial average, and m ∈ (−1, 1) with c =
1

2
(1+m) ∈ (0, 1) standing for

the relative concentration of the first species. The focus in [20] is on the case of a “critical

mixture”, i.e,

−
∫
mdx = 0.
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A physical scale L appropriate for this model is defined as

L := −
∫
|∇−1m|dx := sup

{
−
∫
mζdx|ζ is periodic with sup |∇ζ| ≤ 1

}
.

The mathematical interpretation of L is that it is the (W 1,∞)∗ norm of m. The typical length

scale is expected to behave as L(t) ∼ t1/3 in the constant-mobility Cahn-Hilliard equation

and it should behave as L(t) ∼ t1/4 in the degenerate-mobility case The basic procedure is:

1. In the regime E � 1, establish an interpolation inequality EL & 1. We use the

notation & and� throughout the paper as follows: α & β means α ≥ Cβ for some constant

C > 0, and α � β means
α

β
is sufficiently large. Thus, this assertion says there exists a

constant C > 0 such that EL ≥ C in the regime where E ≤ 1

C
. This is the one-sided version

of EL ∼ 1, since E is the interfacial area density which scales as “1/ length scale L”.

2. Find a dissipation inequality between Ė and L̇ for each of the constant and degenerate

mobility cases.

3. Obtain an upper bound on the coarsening rate by an ODE argument based on the

previous two results. The lower bound on energy corresponds to the upper bound on the

length scale. To this end, we consider L as an absolutely continuous function of E and

rewrite in the dissipation inequality L̇ =
dL

dE
Ė. Then an appropriate change of variables

yields the desired lower bound on the rate of energy decay.

1.3.2 Phase-Field Model

In 2004, Dai and Pego extended the method of Kohn and Otto and established an

upper bound on the coarsening rate for a phase-field model in [12]. The model is given by

two equations in a non-dimensional form:

εut +
l

2
φt = K∆ut,

αεφt = ε∆φ− 1

ε
g(φ) + 2u,

(1.4)
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where g(φ) = G′(φ) = φ(φ2 − 1), and l,K, α are non-dimensional parameters that represent

latent heat, thermal diffusivity and a relaxation time, respectively, and ε measures the

thickness of the transition layers between two phases {φ ≈ +1} the solid phase and {φ ≈ −1}

the liquid phase, where ε is small and ε < αK. This model describes the solid-liquid phase

transition of a pure material in terms of the temperature u and an order parameter φ. The

special domain is a large cubic cell Q = [0, a]n ⊂ Rn with periodic boundary conditions.

The associated energy is given by

E(t) = −
∫
Q

(
ε

2
|∇φ|2 +

1

ε
G(φ) +

2ε

l
u2

)
,

and the length scale is defined as the H−1− norm of εu+
l

2
φ, i.e.,

L(t) =

(
−
∫
Q

|∇v|2
)1/2

,

where v is a periodic function that satisfies

∆v = εu+
l

2
φ.

Following the method of Kohn and Otto, there are three key steps. The first is to find

a dissipation relation |L̇|2 ≤ KL

4
(−Ė), and this can be done by direct calculations. The

second key step is to obtain the interpolation inequality. This is done by defining periodic

functions ω and ψ that satisfy

∆ω = u− ū, ∆ψ = φ− φ̄,

where ū = −
∫
u and φ̄ = −

∫
φ, hence, ∇v = ε∇ω +

l

2
∇ψ. It is shown that,

E(t)L(t) ≥ l

2
L1(t)E1(t)− Ca

√
lε

2
E(t)3/2,

9



where

L1(t) =

(
−
∫
Q

|∇ψ|2
)1/2

and

E1(t) = −
∫
Q

(
ε

2
|∇φ|2 +

1

ε
G(φ)

)
.

Subsequently, Kohn and Otto’s technique can be applied to prove E1(t)L1(t) ≥ C. The ob-

servation that Ė(t) ≤ 0, together with the assumption that ε0M and ε0a
2M3 are sufficiently

small yields E(t)L(t) & 1 whenever 0 < ε < ε0 and E(0) < M . The third step is the original

ODE argument. The dissipation inequality and the interpolation inequality together with

the ODE lemma lead directly to the main result, a time-averaged version of the estimate

E(t) & t−1/3.

1.3.3 Epitaxial Growth Model

This method found another application in the epitaxial growth model considered by

Kohn and Yan in [24] in a two dimensional domain with periodic boundary conditions,

with the square domain Q ⊂ R2 as the period cell. The PDE that describes this model is

fourth-order and it takes the form

ut + ∆2u+∇ · (2(1− |∇u|2)∇u) = 0

with the associated energy per unit area Q ⊂ R2

E =
1

2
−
∫
Q

|∆u|2 + (1− |∇u|2)2.

The length scale is taken to be the L2−norm of u:

L =

(
−
∫
Q

u2

) 1
2

.
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Here u represents the deviation of the height of the film surface from its mean 0, hence L is

the standard deviation. Numerical simulations and heuristic arguments show that L grows as

t1/3 and E decays like t−1/3. The results in [24] are a weak version of the statement that the

system coarsens at the rate of t−1/3. The constant in this inequality is independent of domain

size. The particular interest is the case when Q is large with side length
1

ε
, where ε > 0.

The most technically delicate point in this paper is the pointwise interpolation inequality.

For the continuous function v(x) = εu
(x
ε

)
with period 1 in each independent variable, the

assertion is, with Q1 denoting the unit square,

(
−
∫
Q1

ε|∆v|2 + ε−1(1−∇v|2)2

)(
−
∫
Q1

v2

) 1
2

≥ C,

for some constant C.

1.3.4 Discrete, Ill-posed Diffusion Equations

For the coarsening phenomena in discrete, ill-posed diffusion equations, upper bounds on

the coarsening rate can also be found using a similar framework. Discrete, ill-posed diffusion

equations arise in the methods of granular flow, image processing, population dynamics, and

many other applications. The specific equation studied by Esedoḡlu and Slepc̆ev in [13] is

as follows

vt = ∆R(v) = R′(v)∆v +R′′(v)|∇v|2,

where R(ξ) : R → R with R′(ξ) < 0 for all |ξ| large enough. The unknown function v is

defined on the unit-space lattice L = {1, 2, . . . , N}d, where d is the dimension. The l2 scalar

product takes the form

v · w =
∑
q∈L

vqwq.

Denote by L = {v : L → R} all real-valued lattice configurations, and by P = {v : L →

[0,∞)} only the nonnegative configurations.
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On the set Z = {v ∈ L : v̄ = 0}, where v̄ is the average value of v defined as

v̄ =
∑
q∈L

vq =
1

|L|
∑
q∈L

vq,

the discrete H−1 norm is introduced in the following way: given s ∈ Z there exists a unique,

up to a constant, solution p of the discrete Poisson equation

−∆p = s.

Define the H−1 inner product by

〈s1, s2〉 =
∑
q∈L

(∇+p1)q · (∇+p2)q,

where ∇+ is the forward finite difference, ∇+v = (∂+
1 v, . . . , ∂

+
d v) for (∂+

i v)q = vq+ei − vq.

Integration by parts gives 〈s1, s2〉 = s1 ·p2 = p1 ·s2. Then for s ∈ Z, the H−1 norm is defined

by

||s|| = sup
ξ 6=const

s · ξ√∑
q∈L |∇+ξq|2

. (1.5)

We next outline the proof of the interpolation and dissipation inequalities following [13].

The energy is defined as

E(v) :=
∑
q∈L

f(vq),

for v ∈ P and f ′ = R, and the associated length scale is defined as

L =
1√
|L|
||v − v̄||,

Then, by (1.5),

L = sup
ξ 6=const

∑
q∈L(vq − v̄)ξq√∑

q∈L|∇+ξq|2
.

12



The dissipation inequality (L̇)2 ≤ − ˙̄E can be easily obtained as follows:

dL2

dt
= 2LL̇ =

2

|L|
〈v̇, v − v̄〉,

so that

L̇ =
〈v̇, v − v̄〉
|L| · L

=

√
|L|〈v̇, v − v̄〉
|L|||v − v̄||

,

combining the Cauchy-Schwarz inequality

〈v̇, v − v̄〉2 ≤ ||v̇||2||v − v̄||2,

with

〈v̇, v̇〉 = −〈−∆R(v), v̇〉 = −R(v) · v̇ = −f ′(v) · v̇ = −∇E(v) · v̇,

we have

L̇2 ≤ 1

|L|
〈v̇, v̇〉 = − 1

|L|
∇E(v) · v̇ = − ˙̄E,

where we used the chain rule in the last equality.

To prove the interpolation inequality, for ρ > 0 and α ∈ [0, 1), define

Fα(z) =

 0 if 0 ≤ z ≤ ρ

zα if z > ρ

The assumptions f ≥ µFα for some µ > 0 and v̄ > ρ are made to to avoid zero energy

density. Suppose the associated energy E =
E(v)

|L|
satisfies

E <
µ(v̄ − ρ)2−α

72v̄2(1−α)
,
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Then by choosing an appropriate ξ, it can be proved that, when d = 1,

EL1−α ≥ 1

24
µ(v̄ − ρ)

3(1−α)
2

+1v̄−
3(1−α)

2 ,

and, when d ≥ 2,

EL2(1−α) ≥ 1

24
µd−(1−α)(v̄ − ρ)3−2αv̄−(1−α).

Hence, in general, the interpolation inequality can be written as ELβ ≥ θ for some explicitly

defined β > 0 and θ > 0.

1.4 Outline of This Thesis

Our analysis follows the work of Kohn and Yan, and the work of Kohn and Otto.

Specifically, we prove that the energy averaged in time decays no faster than a power law.

The energy that corresponds to the Allen-Cahn equation is

E = −
∫

1

2
(|∇u|2 + (1− u2)2)dx. (1.6)

This energy plays an important role in physics and has been well studied in [3]. In addition to

the energy, we introduce an auxiliary length scale. Our main result is that the energy in the

parabolic Allen-Cahn equation decays no faster than t−1/3 or t−1/6 with constant coefficients

depending on the size of the domain in various ways.

The energy that corresponds to Swift-Hohenberg equation is

E(t) = −
∫
Q

1

2
|(1 +∇2)u|2 +

1

4
u2 − 1

2
µu2 +

1

4
µ2dx.

Our main result is that the energy in the Swift-Hohenberg equation decays no faster than

t−1/3.
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We expect that the energy E(t) is concentrated mostly on the interfaces and has the

same dimension as the H−1-type physical length scale L(t) so that E(t) ∼ 1/L(t). The

interpolation inequality is a one-sided version of this relation and it takes the form of EL ≥ C

for some positive constant C. And for the L2-type length scale, we establish a similar version

of this relation E2(t) ∼ 1/L(t). The interfacial area decreases, that is, Ė ≤ 0, because

the motion is surface-energy-driven. However, we need a more accurate energy-dissipating

structure of the dynamics. This refined structure is obtained in the form of the dissipation

inequality. Finally, the interpolation and the dissipation inequalities are employed in the

proof of an ODE lemma from which an upper bound on the time-averaged coarsening rate

follows.

Here is the basic strategy :

1. We assemble the well-posedness of the Allen-Cahn and Swift-Hohenberg equations

from various sources in the appendix. Specifically, for the Allen-Cahn equation, preliminaries

include establishing various bounds for solution u, which can be done by standard parabolic

estimates using the maximum principle.

2. The most important part is to obtain the dissipation inequality as well as the inter-

polation inequality. The dissipation inequality can be obtained by an elementary method.

We use two different strategies to prove the interpolation inequality according to different

length scales:

(a) First, obtain a uniform lower bound of the energy and then refine this lower bound

to relate it to the length scale, as in section 2.3 and section 3.1.2;

(b) An alternative way to relate E to L is to separate the L2 norm of u into two parts:

one for E and the other for L, since we have

1−−
∫
u2dx = −

∫
(1− u2)dx ≤ (−

∫
(1− u2)2dx)1/2 . E1/2,
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for the Allen-Cahn equation, and

µ−−
∫
u2dx = −

∫
(µ− u2)dx ≤ (−

∫
(µ− u2)2dx)1/2 . E1/2,

for the Swift-Hohenberg equation. The right-hand-sides of both inequalities decay to zero

as E � 1. This technique is implemented in section 3.2.3 and section 4.1.

3. Various versions of the ODE lemma from Kohn and Otto’s paper are given. Two

distinct versions appear in section 2.5 and section 3.2.4.
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Chapter 2

Allen-Cahn Equation in One-Dimensional Space

In this chapter, we look at the upper bound on the coarsening rates for the Allen-Cahn

equation in the one-dimensional space.

2.1 Introduction to the Main Result

We consider the solutions of the parabolic Allen-Cahn equation in the domain I× [0,∞)

∂tu− ∂2
xu− 2u(1− u2) = 0, in I × [0,∞)

u(0, t) = u(l, t) = 0, t > 0

u(x, 0) = u0(x), in I

(2.1)

where I = [0, l] ⊂ R and u0 is bounded. Because we focus on the upper bounds on the

coarsening rates of Allen-Cahn equation, we will give the well-posedness results in Appendix

A.

First, let us look at the process of domain wall formation that occurs for this system

and how coarsening by domain wall motion and annihilation can be described. We expect

that starting with a bounded initial condition, u rapidly approaches 1 where u > 0, and

−1 where u < 0 at the initial stage of coarsening. Domain walls or transition layers form

between these domains at positions corresponding roughly to zeros in the initial data. Fusco

and Hale [17] developed a rigorous geometric theory of domain wall dynamics. Their idea

for a geometric description of these slow dynamics is to describe solutions containing N

domain walls in terms of an N−dimensional manifold of “metastable” states in X. Using a

restricted gradient flow approach, given N domain walls initially located at given positions
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h1 < h2 < · · · < hN in (0, 1), the positions will evolve in time according to equations

well-approximated by exponentially small nearest neighbor interactions:

∂thj = 12ε
(
e−

hj+1−hj
ε − e−

hj−hj−1
ε

)
,

where h0 = −h1 and hN+1 − 1 = 1− hN are obtained by reflection through boundaries.

Equation (1.2) corresponds to the gradient flow of the energy

E(u) =
1

2
−
∫
I

|∂xu|2 + (1− u2)2dx, (2.2)

where −
∫

denotes averaging over the interval.

To construct the length scale, we let

v(x) =

∫ x

0

u(z)dz,

and define

L =

(
−
∫
I

v2(x)dx

) 1
2

=

(
1

|I|

∫
I

u(z)dz

) 1
2

, (2.3)

where |I| stands for the length of interval I. In our proof we will employ that uε ∈ H1
0 (I1)

for each fixed time, according to the well-posedness in Appendix A.

We now present our main results. We state a special case as Theorem 2.1 and then the

general case as Theorem 2.2.

Theorem 2.1. Suppose the initial energy is E0 and the initial length scale is L0. Then we

have

−
∫ T

0

E2dt & −
∫ T

0

(t−
1
3 )2dt for T � L3

0 � 1� E0.

Here, we use −
∫

to denote averaging over the time interval [0, T ]. This theorem states

that E & t−1/3 in a L2 time-averaged sense and it also holds for some time average of the

other norms of E, as well as E replaced by EθL−(1−θ).
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Theorem 2.2. Suppose the initial energy is E0 and the initial length scale is L0. For any

0 ≤ θ ≤ 1, suppose r satisfies r < 3, θr > 1 and (1− θ)r < 2. Then we have

−
∫ T

0

EθrL−(1−θ)rdt & −
∫ T

0

(t−
1
3 )rdt for T � L3

0 � 1� E0.

Both of the two inequalities above in Theorem 2.1 and Theorem 2.2, respectively, depend

on the size of the domain I, and the specific dependence will be given in the ODE Lemma

2.13 later.

Notice that when θ = 1, it permits 1 < r < 3, and the minimum possible θ permitted

is
1

3
. The conclusion of the theorem is strongest when θ and r are smallest, i.e., for values

close to the curve θr = 1. Indeed, if the estimate holds for a given r0 < 3 then it holds for

all r between r0 and 3 by an application of Jensen’s inequality, and if the estimate holds for

a given θ0 < 1, then it holds for all θ > θ0 by an application of the interpolation inequality,

[20].

Theorems 2.1 and 2.2 are valid in the two-dimensional domain with the energy and

length scale defined in (3.2) and (3.3). The two-dimensional analogs of these two results will

be proved in chapter 3.

2.2 Preliminary Results

In this section, we show the boundedness of solutions of the elliptic and parabolic Allen-

Cahn equations, which will be used in the following proof for interpolation and dissipation

inequalities.

2.2.1 Boundedness of Solutions of Allen-Cahn Equations

In this section, first we prove that the solution of the parabolic Allen-Cahn equation

(A.1) is uniformly bounded in domain Q, where we suppose the domain is Q = [0, l]n and

Q1 = [0, 1]n with n = 1 or 2. We prove this by pointwise parabolic estimates. We will use
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the boundedness to prove dissipation inequality for a L2 length scale for the two-dimensional

space case.

The technique for the proof of the following lemma appears in [3] in the context of the

Ginzburg-Landau equation.

Lemma 2.3. Let u be a solution of (A.1) with a bounded initial condition, then for t ≥ ε2

and x ∈ Q1 = [0, 1],

|u(x, t)| ≤
√

2.

Proof. By the dilation scaling as above, the space domain is Q = [0, 1/ε]n. Set σ(x, t) :=

|u(x, t)|2 − 1 and multiply equation (A.1) by u, to get

dσ

dt
−∆σ + 2|∇u|2 + 4σ(σ + 1) = 0. (2.4)

Now consider the ODE

y′(t) + 4y(t)(y(t) + 1) = 0 (2.5)

which is the space independent version of (2.4). We verify directly that

y0(t) =
e−4t

1− e−4t

is a solution for equation (2.5) for t > 0. Let σ̃(x, t) = y0(t), then

dσ̃

dt
−∆σ̃ + 4σ̃(σ̃ + 1) = 0. (2.6)

Subtracting (2.4) from (2.6) gives us

d

dt
(σ̃ − σ)−∆(σ̃ − σ) + 4(σ̃ − σ)(σ̃ + σ + 1) = 2|∇u|2 ≥ 0. (2.7)
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Since 1 + σ + σ̃ = |u|2 + σ̃ ≥ 0, then, by the maximum principle in [14]

σ̃(x, t)− σ(x, t) ≥ 0 for all t ≥ 0 and x ∈ Q.

Therefore,

σ(x, t) ≤ y0(t), for all t > 0 and x ∈ Q,

so that

|u(x, t)|2 = σ(x, t) + 1 ≤ 2, for all t ≥ 1

4
and x ∈ Q.

Remark 2.4. We can also notice that

|∇uε(x, t)| ≤
C

ε
, |duε

dt
(x, t)| ≤ C

ε2
.

Indeed, |u(x, t)| ≤
√

2 for t ≥ 1
4
, we have

|u(1− u2)| ≤
√

2 for t ≥ 1

4
.

Let p > 2 be fixed. It follows from the standard regularity theory for the linear heat equation

that for each compact set F ⊂ Q× [1
4
,∞) we have

||du
dt
||Lp(F) ≤ C(F) and ||∆u||Lp(F) ≤ C(F)

In particular, by Sobolev embedding and the L∞ bound for u we have

||u||C0,α(I×[ 1
2
,∞)) ≤ C,

21



where α =
1

2
(1− 1

p
). Moreover,

||u(1− u2)||C0,α(I×[ 1
2
,∞)) ≤ C.

By the C0,α regularity theory, we have

||u||C0,α(I×[1,∞)) ≤ C.

Hence,

|∇uε(x, t)| ≤
C

ε
, |duε

dt
(x, t)| ≤ C

ε2
for t ≥ ε2 and x ∈ Q.

2.2.2 Boundedness of Solutions of Elliptic Allen-Cahn Equations

In this section we will establish uniform bound on the solution to the elliptic Allen-Cahn

equation and its derivative. This will be used to prove that, in the one-dimensional case, the

energy is uniformly bounded from below. The boundedness of energy will be used to prove

the interpolation inequality.

We consider the solution of equation

−∆uε −
2

ε2
uε(1− u2

ε) = 0, in Q

uε = 0, on ∂Q,

(2.8)

and define

Eε(uε) =

∫
Q

ε|∇uε|2 +
1

ε
(1− u2

ε)
2.

If uε ∈ H1
0 (Q) is a minimizer of Eε(u), then uε is a solution to (2.8). Indeed,

i(τ) = Eε(u+ τv) =

∫
Q

ε(∇u+ τ∇v)2 +
1

ε
(1− (u+ τv)2)2.
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Then

i′(τ) =

∫
Q

2ε(∇u+ τ∇v)∇v − 4

ε
(1− (u+ τv)2)(u+ τv)v.

Integration by parts and evaluation at τ = 0 yields

i′(0) = −2ε

∫
Q

(∆u+
2

ε2
u(1− u2))v = −2ε(∆u+

2

ε2
u(1− u2), v)L2 ,

so that the critical points of the energy satisfy equation (2.8).

The next lemma shows us that the solution of the equation (2.8) and the gradient of

the solution are bounded from above.

Lemma 2.5. Let uε be a solution of (2.8). Then |uε| ≤ 1 and |∇uε| ≤
C

ε
on Q.

Proof. First, we observe that equation (2.8) has the weak form

∫
Q

∇uε · ∇v −
2

ε2
(1− |uε|2)uεvdx = 0, (2.9)

for all v ∈ H1
0 (Q). Note that the boundary conditions are incorporated into (2.9).

Now, denote Q+ = {|uε| > 1} and let v = (sgnuε)(|uε| − 1)+, where x+ = max(x, 0).

Then v ∈ H1
0 (Q), i.e., v is a test function for (2.9). We first compute

∇v = (sgnuε)∇|uε|

in Q+. Substituting v into (2.9), we have

∫
Q+

|∇uε|2 +
2

ε2
(|uε|2 − 1)|uε|(|uε| − 1)dx = 0,

that is, ∫
Q+

|∇uε|2 +
2

ε2
(|uε| − 1)2|uε|(|uε|+ 1)dx = 0, (2.10)
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since the integrand of (2.10) is non-negative, we must have measQ+ = 0, and therefore,

|uε| ≤ 1 almost everywhere in Q.

Second, let

vε = uε − w,

where vε is the solution of the equation

−∆vε =
1

ε2
uε(1− |uε|2) on Q

vε = 0 on ∂Q,

and w is the solution to the equation

−∆w = 0 on Q

w = 0 on ∂Q.

Then, it follows from the elliptic estimates as appearing in [2] and the fact that |uε| ≤ 1that

||∇vε||L∞ ≤
C

ε
||vε||L∞ ≤

C

ε
(||uε||L∞ + ||w||L∞) ≤ C

ε
.

2.3 The Interpolation Inequality

In this section, we prove that

EL & 1 when E � 1, (2.11)

where E and L are defined in (2.2) and (2.3), and the constants implicit in (2.11) are

independent of the size of I.
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With the scaling as in the previous section

uε(x, t) = u

(
x

ε
,
t

ε2

)
,

uε solves the equation

∂tuε − ∂2
xuε −

2

ε2
uε(1− u2

ε) = 0, in I1 × [0,∞)

uε(0, t) = uε(1, t) = 0, t > 0.

(2.12)

Let

vε(x) =

∫ x

0

uε(z)dz = εv
(x
ε

)
. (2.13)

Then E and L may be rewritten as,

E =
1

2
−
∫
I1

ε2|∂xuε|2 + (1− u2
ε)

2dx,

and

L =
1

ε

(
−
∫
I1

v2
εdx

) 1
2

,

respectively. Correspondingly, and (2.11) becomes

(
−
∫
I1

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2dx

)(
−
∫
I1

v2
εdx

) 1
2

& 1

when

−
∫
I1

ε2|∂xuε|2 + (1− u2
ε)

2dx� 1.

The last statement is a consequence of the following theorem.
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Theorem 2.6 (Interpolation). There is a constant c∗ > 0 with the property that for any

function uε ∈ H1
0 (I1) and any ε > 0,

(
−
∫
I1

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2

)(
−
∫
I1

v2
ε

) 1
2

+−
∫
I1

ε2|∂xuε|2 + (1− u2
ε)

2 ≥ c∗.

In the next few lemmas, we establish various lower bounds on the energy Eε that lay

the groundwork for proving Theorem 2.6. In the first lemma, we show that Eε is uniformly

bounded below.

Lemma 2.7. Define

Eε(uε) =

∫
I1

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2,

where I1 is the unit interval in R. There exist constants a0 > 0 and ε0 > 0 such that for any

ε ≤ ε0 and any uε ∈ H1
0 (I1), we have

Eε(uε) ≥ a0.

Proof. We first prove this lemma for solutions. We claim specifically that, when u0
ε is a

solution to equation (2.8), there exist µ > 0 and ε0 > 0 such that if

1

ε

∫
I1

(1− |u0
ε|2)2 ≤ µ, with ε < ε0, (2.14)

then

|u0
ε(x)| ≥ 1

2
∀x ∈ I1.

This is a contradiction with the regularity and the homogeneous Dirichlet boundary condi-

tions.

Next, we prove this claim. By Lemma 2.5, we have

|∂xu0
ε| ≤

C

ε
,
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where C does not depend on ε. Therefore,

|u0
ε(x)− u0

ε(y)| ≤ C

ε
|x− y|, ∀x, y ∈ I1.

Assume, by contradiction, that |u0
ε(x0)| < 1

2
for some x0 ∈ I1. Then,

|u0
ε(x)− u0

ε(x0)| ≤ C

ε
|x− x0|,

and

|u0
ε(x)| ≤ 1

2
+
C

ε
ρ in I1 ∩ Jρ(x0),

where Jρ is an interval of length 2ρ with ρ ≤ 1.

We choose ρ in such a way that
C

ε
ρ =

1

4
, i.e., ρ =

ε

4C
, so that

1− |u0
ε(x)| ≥ 1

4
in Q1 ∩ Jρ(x0),

and, consequently,

(|u0
ε(x)|2 − 1)2 ≥ 1

16
I1 ∩ Jρ(x0).

Also,

meas(I1 ∩ Jh) ≥ h ∀x ∈ I1 and ∀h ≤ 1.

Hence, ∫
I1

(1− |uε|2)2 ≥
∫
I1∩Jρ(x0)

(1− |u0
ε|2)2 ≥ ε

64C
.

Therefore,

1

ε

∫
I1

(1− |u0
ε|2)2 ≥ 1

64C
.

Let µ <
1

64C
and ε0 = 4C so that we arrive at a contradiction with (2.14). Hence, there

exists a0 > 0 such that Eε(u
0
ε) ≥ a0. In particular, this lower bound is valid for the minimizers

of the energy Eε.
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Finally, suppose uε is any function. Let u0
ε be a minimizer of Eε and, therefore, also a

solution of (2.8). Then

Eε(uε) ≥ Eε(u
0
ε) ≥ a0.

The next lemma is based on a result from Modica [29]. It guarantees compactness in

L2 of a sequence uεj with uniformly bounded energy by taking advantage of the polynomial

structure of the nonlinear part of the energy W (u) = (1− u2)2.

Lemma 2.8. Suppose {εj} is a sequence such that εj → 0 and {uεj} is a sequence for

which Eεj(uεj) is uniformly bounded. Then there exists a subsequence of {εj}, without loss

of generality also denoted by {εj}, such that {uεj} converges to a function u0 in L2(I1) as

j →∞.

Proof. Recall that I1 = [0, 1] and fix ε > 0.

Define

φ(t) =

∫ t

0

|1− s2|ds and wε(x) = φ(uε(x)).

Since there exist t0 > 1, c1 > 0 and c2 > 0 such that

c1t
4 ≤ (1− t2)2 ≤ c2t

4, for t ≥ t0,

we see that

φ(t) ≤
∫ t0

0

|1− s2|ds+

∫ t

t0

√
c2s

2ds ≤
∫ t0

0

|1− s2|ds+

√
c2

3
t3.

Then, for some c3 > 0 and c4 > 0, we have

φ(t) ≤ c3 + c4(1− t2)2, for t ≥ t0.
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Therefore,

∫
I1

wεdx =

∫
I1

φ(uε)dx ≤ c3 + c4

∫
I1

(1− u2
ε)

2dx ≤ c3 + c4εEε(uε),

and we conclude that {wε} is bounded in L1(I1). On the other hand,

∂xwε(x) = φ′(uε(x))∂xuε,

and ∫
I1

|∂xwε|dx =

∫
I1

|1− u2
ε||∂xuε|dx

≤ 1

2

∫
I1

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2dx

=
1

2
Eε(uε)

≤ c5,

for some c5 > 0, so the compactness yields that there is a sequence {εh} of positive numbers

converging to 0 such that {wε} converges in L1(I1) to a function w0.

Now, let ψ be the inverse function of φ and define u0(x) = ψ(w0(x)). We have φ′(t) =

|1−t2| ≥ √c1t
2
0 for every t ≥ t0. Hence ψ is Lipschitz continuous on [φ(t0),∞) and uniformly

continuous on the entire real line. It follows that uεj = ψ ◦wεj converges in measure on I to

u0 as j →∞. Since

∫
I1

u4
εj
dx ≤ t40 +

1

c1

∫
I1

|1− u2
εj

(x)|2dx ≤ t40 +
εj
c1

Eεj(uεj),

that is, {uε} is bounded in L4(I1), hence, {uε} converges to u0 in L2(I1).

In the next lemma, we refine the result in Lemma 2.7 and claim that the bound may be

taken to be any constant c with c ≤ 1

2
as long as the length scale is sufficiently small.
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Lemma 2.9. Let Eε(uε) be as in Lemma 2.7 and vε be defined as in equation (2.13). For

any c ≤ 1
2
, there exists γ > 0 such that for all ε ≤ 1, if

∫
I1
v2
ε ≤ γ, then Eε(uε) ≥ c.

Proof. We prove this lemma by contradiction. Suppose, for some c ≤ 1
2
, there exist sequences

{vεj} and {εj} such that ∫
I1

v2
εj
≤ 1

j
but Eεj(vεj) < c. (2.15)

If lim infj εj = 0, by the compactness result in Lemma 2.8, we know that {uεj} is

relatively compact in L2(I1). If lim infj εj > 0, we choose a subsequence, without loss of

generality, also denoted as {εj}, such that inf εj > 0, so that {
∫
I1
|∂xuεj |2} is bounded,

hence, {uεj} is pre-compact in L2(I1). In both cases, for a further subsequence, uεj → u∞

in L2(I1) for some u∞ in L2(I1).

On the other hand, (2.15) implies limj→∞ vεj = v∞ = 0, therefore ∂xv∞ = u∞ = 0. But

by compactness of {uεj} and Fatou’s lemma,

1 =

∫
I1

(1− u2
∞)2 ≤ lim inf

j

∫
I1

(1− u2
εj

)2 ≤ lim inf
j
cεj ≤

1

2
.

This contradiction shows that the lemma is true.

In the proof of the conclusion of Theorem 2.6, namely,

(energy density ) · ( length scale ) & 1,

we note that the most difficult case is when ε → 0. Before proving Theorem 2.6, we need

to establish the following proposition first. It states that when the length scale is bounded

above by some constant depending on the length of the interval, the energy has a lower

bound.

This will be used to prove Theorem 2.6 by contradiction by employing the following

technique. Mainly, we assume the length scale is small, and we divide the domain into a

mesh of subintervals. On most of the subintervals, the length scale in relatively small. At
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the same time, by Lemma 2.9, the energy is large on those subintervals where the length

scale is small. The proposition below gives a rigorous basis for this argument.

Proposition 2.10. For any c0 ≤ 1
2
, there exists a constant c1 > 0 with the following property.

Consider any interval I ⊂ R with length l and any uε ∈ H1
0 (I) satisfying

∫
I

v2
εdx ≤ c1l

3,

where vε is defined as in (2.13).

Then we have

Case A :

∫
I

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2 ≥ c0 if l ≥ ε, (2.16)

Case B :

∫
I

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2 ≥ c0l

ε
if l ≤ ε, (2.17)

Proof. For Case A, we define ul(x) = uε(lx). Then, with

vl(x) =

∫ x

0

ul(z)dz =

∫ x

0

uε(lz)dz =
1

l
vε(lx),

(2.16) is equivalent to proving that for any c0 ≤
1

2
, there exists c1 such that if

ε

l
≤ 1,

∫
I1

v2
l ≤ c1,

then ∫
I1

(ε
l

)
|∂xul|2 +

(
l

ε

)
(1− u2

l )
2 ≥ c0.

Since
ε

l
≤ 1, this is exactly the result of Lemma 2.9.
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We prove case B by contradiction. Suppose for some c0 ≤
1

2
, there exist sequences

εk, Ik, lk, uεk satisfying 

εk
lk
≥ 1,

1
l3k

∫
Ik
v2
εk
→ 0,∫

Ik
ε2
k|∂xuεk |2 + (1− u2

εk
)2 < c0lk.

(2.18)

Using the same scaling as in case A, uk(x) = uεk(lkx) and vk(x) =
1

lk
vεk(lx), (2.18) becomes

∫
I1

v2
k → 0,

∫
I1

(
εk
lk

)2

|∂xuk|2 + (1− u2
k)

2 < c0.

Since
εk
lk
≥ 1, we can use the same argument as in the proof of Lemma 2.9 to arrive at a

contradiction.

Now we can prove the main theorem based on the previous results.

Proof of Theorem 2.6. : We prove this theorem by contradiction. Assume that there exist

sequences εk, uεk such that

(
−
∫
I1

εk|∂xuεk |2 +
1

εk
(1− u2

εk
)2

)(
−
∫
I1

v2
εk

) 1
2

+−
∫
I1

ε2
k|∂xuεk |2 + (1− u2

εk
)2 → 0.

(2.19)

Case 1: Suppose lim infk εk > 0, then in the second term of (2.19), we have

−
∫
I1

|∂xuεk |2 → 0 and −
∫
I1

u2
εk
→ 1. (2.20)

But, by the Poincaré inequality,

−
∫
I1

u2
εk
≤ C−

∫
I1

|∂xuεk |2 → 0.
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This is a contradiction with (2.20).

Case 2: Suppose lim infk εk = 0 but
∫
I1
v2
εk

is bounded away from 0. Without loss of

generality, suppose εk → 0. The convergence of the first term in (2.19) to 0 gives us

−
∫
I1

εk|∂xuεk |2 +
1

εk
(1− u2

εk
)2 → 0,

is in a contradiction with Lemma 2.7.

Case 3: Suppose lim εk = 0 and lim
∫
I1
v2
εk

= 0. We use Proposition 2.10 to obtain

a contradiction. Fix c0 and drop the subscript k to simplify the notation, and we write

uε = uεk , vε = vεk . Define

δ =

(
−
∫
I1

v2
ε

) 1
2

.

For any integer N > 1, we partition the unit interval I1 into N subintervals of length ω =
1

N
.

The value of N will be determined later. If

∫
Iω

v2
ε ≤ c1ω

3,

by applying Proposition 2.10 to Iω, we have

∫
Iω

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2 ≥ c0 if ω ≥ ε,

or ∫
Iω

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2 ≥ c0ω

ε
if ω ≤ ε.

The choice of N depends on the relation between ε and δ.

Alternative 1: Suppose ε� δ. Then we choose N such that ω ≈
√
δε, that is, ε� ω �

δ. For any N line segment Iω of length ω, we say Iω ∈ A if
∫
Iω
v2
ε ≥ c1ω

3 and let |A| be the
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number of line segments in A. Since

|A|c1ω
3 ≤

∑
Iω∈A

∫
Iω

v2
ε ≤

∫
I1

v2
ε = δ2,

we have

|A| ≤ δ2

c1ω3
� 1

ω
= N.

Therefore, the relation ∫
Iω

v2
ε ≤ c1ω

3

holds on most intervals. Since ε� ω, for Iω /∈ A, i.e., when

∫
Iω

v2
ε ≤ c1ω

3,

Proposition 2.10 gives ∫
Iω

ε2|∂xuε|2 + (1− u2
ε)

2 ≥ c0ω.

Summing over all of these line segments, we have

∫
I1

ε2|∂xuε|2 + (1− u2
ε)

2 ≥
∑
Iω /∈A

∫
Iω

ε|∂xuε|2 + (1− u2
ε)

2 ≥ c0

∑
Iω /∈A

ω & 1

This is a contradiction with (2.19).

Alternative 2: Suppose δ & ε. In this case, we choose N and ω =
1

N
such that ω = Mδ,

where M is a constant to be chosen later. We notice that ω & δ & ε. Again, considering N

line segments Iω, and we say Iω ∈ A if
∫
Iω
v2
ε ≥ c1ω

3. Since

|A|c1ω
3 ≤

∑
Iω∈A

∫
Iω

v2
ε ≤

∫
I1

v2
ε = δ2,

then we have

|A| ≤ δ2

c1ω3
=

1

c1M2

1

ω
=

N

c1M2
,

34



Now, we choose M such that M2c1 > 2. This choice guarantees that |A| < 1

2

1

ω
=
N

2
, so at

least half of the line segments Iω are not in A.

Recalling that we have ω & ε, Proposition 2.10 yields

∫
Iω

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2 ≥ c0,

for each Iω /∈ A. Summing over all of these line segments gives us

∫
I1

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2 ≥

∑
Iω /∈A

∫
Iω

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2 ≥ c0

2ω
&

1

ω

Therefore, (
−
∫
I1

ε|∂xuε|2 +
1

ε
(1− u2

ε)
2

)(
−
∫
I1

v2
ε

) 1
2

&
δ

ω
& 1.

This contradiction with (2.19) completes the proof of the theorem.

2.4 The Dissipation Inequality

The dissipation inequality proved in this section provides the second ingredient for the

ODE lemma in Section 2.5. It relates the rates of change with respect to the time of the

energy and of the length scale. There are two critical points in the dissipation inequality.

First, we notice that Ė ≤ 0, that is, the energy is decreasing because the motion of the

interfaces or transition layers is surface energy driven. Second, a refinement of this inequality

involves L̇ which is controlled by Ė because coarsening requires motion which dissipates

energy.

Lemma 2.11 (Dissipation). Suppose u is a solution of (2.1) and again let E and L be

defined as in (2.2) and (2.3), respectively. Then

(L̇)2 ≤ −|I|2Ė.
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Proof. We first derive an expression for the time derivative of the energy:

Ė =
1

2
−
∫
I

2∂xu · ∂t∂xu+ 2(1− u2)(−2u · ∂tu)dx

= −−
∫
I

∂2
xu · ∂tu− 2u(1− u2)∂tudx

= −
∫
I

−(∂2
xu+ 2u(1− u2))∂tudx

= −−
∫
I

(∂tu)2dx.

Next, we turn to the time derivative of the length scale. Considering its square

L2 = −
∫
I

v2dx,

we obtain

2LL̇ =
dL2

dt
= ∂t−

∫
I

v2dx = 2−
∫
I

v ∂tv dx ≤ 2

(
−
∫
I

v2dx

) 1
2
(
−
∫
I

(∂tv)2dx

) 1
2

. (2.21)

On the other hand,

∂tv(x) =

∫ x

0

∂tu(z)dz,

so that,

−
∫
I

(∂tv)2dx =
1

|I|

∫
I

(∫ x

0

∂tu(z)dz

)2

dx. (2.22)

By Hölder’s inequality

∫ x

0

∂tu(z)dz ≤ x
1
2

(∫ x

0

(∂tu(z))2dz

) 1
2

≤ |I|
1
2

(∫ x

0

(∂tu(z))2dz

) 1
2

,

and (2.22) becomes

−
∫
I

(∂tv)2dx =

∫
I

∫ x

0

(∂tu(z))2dzdx ≤ |I|2−
∫
I

(∂tu(x))2dx
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Hence, (2.21) gives us

2LL̇ ≤ 2|I|L
(
−
∫
I

(∂tu)2dx

) 1
2

= 2|I|L(−Ė)
1
2 ,

i.e.,

(L̇)2 ≤ |I|2(−Ė).

2.5 Upper Bound on The Coarsening Rate

The next lemma is an ODE argument of Kohn and Otto [20]. Our proof carefully traces

the dependence of the coarsening rate on the size of the domain, and makes precise change

of the variables required for the specific dissipation inequality listed in the hypothesis of the

lemma.

Before proceeding with the ODE lemma, we first prove that L is absolutely continuous

when viewed as a function of E. This fact will be invoked in the proof of the ODE Lemma

2.13.

Proposition 2.12. Suppose E and L are continuously differentiable on [0, T ] and

(L̇)2 ≤ Ė, on [0, T ]. (2.23)

Then

L ◦ E−1 : E([0, T ])→ R

is absolutely continuous, i.e.,
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for any ε > 0, there exists δ > 0 such that, if 0 ≤ s1 < t1 < · · · < sn < tn ≤ T satisfy

n∑
k=1

|E(tk)− E(sk)| < δ, then

n∑
k=1

|L(tk)− L(sk)| < ε.

(2.24)

Proof. Claim: there exists h0 > 0 such that for any t ∈ [0, T ] and any h ∈ [0, h0] with

t+ h ∈ [0, T ],

(L(t+ h)− L(t))2 ≤ 4(E(t+ h)− E(t))h.

Proof of claim: Assume that there exist {tk} ⊂ [0, T ] and hk → 0 with tk + hk ∈ [0, T ] such

that

(L(tk + hk)− L(tk))
2 > 4(E(tk + hk)− E(tk))hk,

or, equivalently, (
L(t+ h)− L(t)

hk

)2

>
4(E(t+ h)− E(t))

hk
,

without loss of generality, tk → t ∈ [0, T ]. Taking the limit and using the continuity of Ė

and L̇, we get

(L̇(t))2 > 2Ė(t),

a contradiction with (2.23).

To prove (2.24), let ε > 0 and take δ =
ε2

4T
. Suppose 0 < s1 < t1 < · · · < sn < tn ≤ T

satisfy
n∑
k=1

|E(tk)− E(sk)| < δ.
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For each k such that tk−sk > h0, let sk,j = sk+jh0, j = 0, 1, . . . , nk−1, where nk = dtk − sk
h0

e

so that sk = sk,0 < sk,1 < · · · < sk,nk−1 < sk,nk = tk. Then, by claim

n∑
k=1

|L(tk)− L(sk)| ≤
n∑
k=1

nk∑
j=1

|L(sk,j)− L(sk,j−1)|

≤ 2
n∑
k=1

nk∑
j=1

((E(sk,j)− E(sk,j−1))(sk,j − sk,j−1))1/2

≤ 2

(
n∑
k=1

nk∑
j=1

E(sk,j)− E(sk,j−1)

)1/2( n∑
k=1

nk∑
j=1

sk,j − sk,j−1

)1/2

= 2(
n∑
k=1

E(tk)− E(sk))
1/2(

n∑
k=1

(tk − sk))1/2

≤ 2
√
Tδ

= ε.

Next, we prove the ODE lemma.

Lemma 2.13 (ODE). For any 0 ≤ θ ≤ 1 and |I| & 1, suppose r satisfies: r < 3, θr > 1

and (1− θ)r < 2. Then EL & 1 and (L̇)2 ≤ |I|2(−Ė) imply

−
∫ T

0

EθrL−(1−θ)rdt & KT−
r
3 for T � L3

0 � 1� E0, (2.25)

where K =

(
1

|I|

) 2r
3

.

Proof. E is a monotone function of time due to the differential inequality (L̇)2 ≤ |I|2(−Ė).

Indeed, since Ė ≤ − L̇2

|I|2
< 0, E is decreasing. Moreover, by Proposition 2.12, L is an

absolutely continuous function of E, and we can write the dissipation inequality as

(
dL

de

)2

(Ė)2 ≤ |I|2|Ė|. (2.26)
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Here, the lower case e is used as an independent variable corresponding to the energy in

order to distinguish it from E = E(t).

From (2.26), we have (
dL

de

)2

|Ė| ≤ |I|2. (2.27)

When Ė = 0, (2.27) is still true trivially. Multiplying (2.27) by any function f(E(t)) and

integrating in time on the interval [0, T ] gives

∫ T

0

f(E(t))dt ≥ 1

|I|2

∫ E(0)

E(T )

f(e)

(
dL

de

)2

de.

Taking f = eθrL−(1−θ)r and writing E0 = E(0), ET = E(T ), we then have

∫ T

0

Eθr(t)L−(1−θ)r(t)dt ≥ 1

|I|2

∫ E0

ET

eθrL(e)−(1−θ)r
(
dL

de

)2

de (2.28)

for all T > 0.

Now we estimate the right hand side of (2.28). Consider the change of variables

ê =
1

1− θr
e1−θr and L̂ =

1

1− (1−θ)r
2

L1− (1−θ)r
2 .

The hypotheses

θr > 1, (1− θ)r < 2

imply

θ >
1

3
(2.29)

which will be used later. Since

(
dL

de

)2

de =

(
dL̂

dê

)2(
dL

dL̂

)2(
dê

de

)
dê
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and

dê

de
= e−θr,

dL̂

dL
= L−

(1−θ)r
2 ,

the integral in the right hand side of (2.28) can be written as:

∫ E0

ET

(
de

dê

)(
dL̂

dL

)2(
dL

de

)2

de =

∫ Ê0

ÊT

(
dL̂

dê

)2

dê.

The last integral is bounded below by the minimum over all functions L̂(ê) with the boundary

conditions

L̂(Ê0) =
1

1− (1−θ)r
2

(L(0))1− (1−θ)r
2 , L̂(ÊT ) =

1

1− (1−θ)r
2

(L(T ))1− (1−θ)r
2 .

To simplify the notations we denote these end conditions by L̂0 and L̂T , respectively. By

the Dirichlet principle, the extremal L̂ is linear in ê, so we have

∫ T

0

EθrL−(1−θ)rdt ≥ 1

|I|2
(L̂T − L̂0)2

Ê0 − ÊT
. (2.30)

When T is chosen so that

L(T ) ≥ 2L(0),

the right side of (2.30) can be controlled since

L̂T − L̂0 & L̂T and Ê0 − ÊT ≤ −ÊT .

Therefore, ∫ T

0

EθrL−(1−θ)rdt &
1

|I|2
L̂2
T

−ÊT
=

1

|I|2
L

2−(1−θ)r
T Eθr−1

T .

Rewriting the right hand side as

L
2−(1−θ)r
T Eθr−1

T = [Eθ
TL
−(1−θ)
T ]r−3[ETLT ]3θ−1,
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we conclude, using EL & 1 and (2.29), that

∫ T

0

EθrL−(1−θ)rdt &
1

|I|2
[Eθ

TL
−(1−θ)
T ]r−3 (2.31)

provided that L(T ) ≥ 2L(0). Introducing

h(T ) :=

∫ T

0

EθrL−(1−θ)rdt,

we can write (2.31) as h &
1

|I|2
(h′)

r−3
r , so we have:

h
r

3−r (T )h′(T ) &

(
1

|I|

) 2r
3−r

, (2.32)

provided L(T ) ≥ 2L(0). Here we used r < 3.

The previous method does not work when L(T ) < 2L(0), but, for such T , we have

E(T ) & L(T )−1 & L−1
0 ,

which implies

Eθ(T )L−(1−θ)(T ) = (E(T )L(T ))θL−1(T ) & L−1
0 .

Thus

h′(T ) & L−r0 if L(T ) < 2L0. (2.33)

Combining (2.32) and (2.33), using r < 3, we have:

d

dt
(h+ L3−r

0 )
3

3−r ∼ (h(t) + L3−r
0 )

r
3−rh′(t) &

(
1

|I|

) 2r
3−r
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for all t > 0. Indeed, when L(T ) ≥ 2L(0), by (2.32),

d

dt
(h+ L3−r

0 )
3

3−r ∼ (h(t) + L3−r
0 )

r
3−rh′(t) & h(t)

r
3−rh′(T ) &

(
1

|I|

) 2r
3−r

and, when L(T ) < 2L(0), by (2.33),

d

dt
(h+ L3−r

0 )
3

3−r ∼ (h(t) + L3−r
0 )

r
3−rh′(t) & Lr0h

′(t) & 1 &

(
1

|I|

) 2r
3−r

for |I| & 1.

Integration in time gives

h(T ) + L3−r
0 &

(
1

|I|

) 2r
3

T
3−r
3

for all T > 0.

Restricting attention to T
3−r
3 � L3−r

0 , this becomes

∫ T

0

EθrL−(1−θ)rdt = h(T ) &

(
1

|I|

) 2r
3

T
3−r
3 for T � L3

0

which is precisely (2.25) as we need.
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Chapter 3

Allen-Cahn Equation in Two-Dimensional Space

In this chapter, we consider the solutions of the parabolic Allen-Cahn equation on the

domain Q× [0,∞)

∂u

∂t
−∆u− 2u(1− u2) = 0, in Q× [0,∞)

u(x, t) = 0, on ∂Q× [0,∞)

u(x, 0) = u0(x), in Q

(3.1)

where Q is a square in R2 and here we suppose u0 is uniformly bounded.

This PDE corresponds to the gradient flow of the energy

E(u) =
1

2
−
∫
Q

|∇u|2 + (1− u2)2dx. (3.2)

3.1 Energy Decays No Faster than t−1/3

Here again we want to obtain a rigorous and time-averaged upper bound on coarsening

rates for the Allen-Cahn equation in two-dimensional space. In this section, we establish an

upper bound on the coarsening rate t1/3. The volume-averaged free energy E is a decreasing

function of time and it scales as the reciprocal to the length scale L which is dual to E.

Our result indicates the one-sided L ∼ t1/3 coarsening rate, that is, in a time-averaged

sense, it is impossible for solutions to coarsen at a rate faster than the expected power

law. The interfacial area decreases, that is, Ė ≤ 0, however, we need a more accurate

energy-dissipating structure of the dynamics. This refined structure is obtained in the form

of a dissipation inequality. Finally, the interpolation and the dissipation inequalities are
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combined in the proof of an ODE Lemma 3.7 which is similar to Lemma 2.13 in Section 2.5,

from which an upper bound on the time-averaged coarsening rate follows.

3.1.1 Introduction to the Main Result

We generalize the length scale introduced in the one-dimensional case and define

L =
||u||H−1(Q)

|Q|1/2
. (3.3)

We define H−1 norm as in [31] or [11], namely for each u ∈ H1
0 (Q), there exits unique

solution p of the Poisson equation

−∆p = u, in Q

p = 0, on ∂Q

such that p ∈ H1
0 (Q). We define the H−1-inner product of u1 and u2 as the L2-inner product

of the gradients of the corresponding solutions of the Poisson equations:

〈u1, u2〉H−1 = 〈∇p1,∇p2〉L2 ,

so that

||u||H−1(Q) = ||∇p||L2(Q).

The main results have the statements that are the same as those in the one-dimensional

case and we obtain the same upper bound on the coarsening rate. As above, a special case

is stated the same as Theorem 2.1 and the general case is stated the same as Theorem

2.2, but with the energy and length scale defined by (3.2) and (3.3), respectively, also with

the two-dimensional domain and different dependence on the size of the domains. And the

dependence on the size of the domain Q will be provided in Lemma 3.7.
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3.1.2 The Interpolation Inequality

In this section, we prove that

EL & 1 when E � 1, (3.4)

where E and L are defined in (3.2) and (3.3), The constants implicit in (3.4) are independent

of the size of Q.

We scale the system and prove the corresponding result for the unit square Q1. With

the side length of Q denoted by
1

ε
, we define

pε(x, t) = ε2p

(
x

ε
,
t

ε2

)
,

then for uε(x) = −∆pε(x) and u(x) = −∆p(x), we have

uε(x, t) = u

(
x

ε
,
t

ε2

)
.

Hence, uε solves the equation

∂uε
∂t
−∆uε −

2

ε2
uε(1− u2

ε) = 0, in Q1 × [0,∞)

uε(x, t) = 0, on ∂Q1 × [0,∞)

(3.5)

The quantities E and L may be rewritten as,

E =
1

2
−
∫
Q1

ε2|∇uε|2 + (1− u2
ε)

2dx,
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and

L =
1

|Q|1/2
||u||H−1(Q)

=
1

|Q|1/2

(∫
Q

|∇p(x)|dx
) 1

2

=
1

|Q|1/2

(∫
Q1

1

ε4
|∇pε(x)|2dx

) 1
2

=
1

ε
||uε||H−1(Q1)

respectively, and (3.4) becomes

(
−
∫
Q1

ε|∇uε|2 +
1

ε
(1− u2

ε)
2dx

)
||uε||H−1(Q1) & 1

when

−
∫
Q1

ε2|∇uε|2 + (1− u2
ε)

2dx� 1

The last statement is a consequence of the following theorem.

Theorem 3.1 (Interpolation). There is a constant c∗ > 0 with the following property: For

any uε ∈ H1
0 (Q1) and any ε > 0,

(
−
∫
Q1

ε|∇uε|2 +
1

ε
(1− u2

ε)
2dx

)
||uε||H−1(Q1) +−

∫
Q1

ε2|∇uε|2 + (1− u2
ε)

2dx ≥ c∗.

As in Section 2.3, we start by establishing a uniform lower bound on energy Eε. The

proof is the same as that of Lemma 2.7, therefore we state the following lemma without

proof.

Lemma 3.2. Define

Eε(uε) =

∫
Q1

ε|∇uε|2 +
1

ε
(1− u2

ε)
2
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where Q1 is the unit square in R2. There exit constants a0 > 0 and ε0 > 0 such that for any

ε ≤ ε0 and any uε ∈ H1
0 (Q1), we have

Eε(uε) ≥ a0.

The next lemma claiming compactness in L2(Q) of the set of admissible functions with

uniformly bounded energy is the same as Lemma 2.8 of one-dimensional case as well, and

we omit its proof.

Lemma 3.3. Suppose Eε(uε) is uniformly bounded and {εj} is a sequence such that εj → 0,

then there exist a subsequence {εj} of positive numbers such that {uεj} converges to a function

u0 in L2(Q) as j →∞.

The following lemma and proposition share the techniques of their proofs with Lemma

2.9 and Proposition 2.10, respectively, but the use of a different length scale warrants separate

proofs.

Lemma 3.4. Let Eε(uε) be as in Lemma 3.2. For any c ≤ 1
2
, there exists γ > 0 such that

for all ε ≤ 1, if ||uε||H−1(Q1) ≤ γ, then Eε(uε) ≥ c.

Proof. We prove this lemma by contradiction. Suppose, for some c ≤ 1
2
, there exist sequences

{uεj} and {εj} such that

||uεj ||H−1(Q1) ≤
1

j
but Eεj(uεj) < c. (3.6)

If lim infj εj = 0, by the compactness theorem in Lemma 3.3, we know that {uεj}

is relatively compact in L2. If lim infj εj > 0, we choose a subsequence, without loss of

generality, also denoted as {εj}, such that inf εj > 0, so that {
∫
Q1
|∇uεj |2} is bounded,

hence, {uεj} is pre-compact in L2. In both cases, for a further subsequence, uεj → u0 in L2

for some u0 in L2.
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On the other hand, (3.6) implies limj→∞ uεj = u0 = 0, since ||∇pεj ||L2 → 0 as j → ∞,

i.e., limj→∞∇pεj = ∇p0 = 0, and u0 = −∆p0 = 0. But by compactness of {uεj} and Fatou’s

lemma,

1 =

∫
Q1

(1− u2
0)2 ≤ lim inf

j

∫
Q1

(1− u2
εj

)2 ≤ cεj ≤
1

2
.

This contradiction shows that the lemma is true.

Proposition 3.5. For any c0 ≤ 1
2
, there exists a constant c1 > 0 with the following property.

Consider any square Q ⊂ R2 with side length l and any uε ∈ H1
0 (Q) satisfying

||uε||H−1(Q) ≤ c1|Q|.

Then we have

Case A :

∫
Q

ε|∇uε|2 +
1

ε
(1− u2

ε)
2 ≥ c0|Q|1/2 if |Q|1/2 ≥ ε, (3.7)

Case B :

∫
Q

ε|∇uε|2 +
1

ε
(1− u2

ε)
2 ≥ c0|Q|

ε
if |Q|1/2 ≤ ε, (3.8)

Proof. For Case A, we define u(x) = uε(lx), or, equivalently, uε(x) = u
(x
l

)
, and suppose

without loss of generality that Q is centered at the origin. Then (3.7) is equivalent to proving

that for any c0 ≤
1

2
, there exists c1 such that if

ε

|Q|1/2
≤ 1, ||u||H−1(Q1) ≤ c1,

then, ∫
Q1

(
ε

|Q|1/2

)
|∇u|2 +

(
|Q|1/2

ε

)
(1− u2)2 ≥ c0.

Since
ε

|Q|1/2
≤ 1, this is exactly the result of Lemma 3.4.
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We prove Case B by contradiction. Suppose for some c0 ≤ 1
2
, there exists sequences

εk, Qk, lk, uεk satisfying



εk
|Qk|1/2

≥ 1,

1

|Qk|
||uεk ||H−1(Qk) → 0,∫

Qk
ε2
k|∇uεk |2 + (1− u2

εk
)2 < c0|Qk|.

(3.9)

Using the same scaling as above, uk(x) = uεk(lkx), (3.9) becomes

||uk||H−1(Q1) → 0,

∫
Q1

(
εk
|Qk|1/2

)2

|∇uk|2 + (1− u2
k)

2 < c0.

Since
εk
|Qk|1/2

≥ 1, then we can use the same argument as in the proof of Lemma 3.4 to arrive

at a contradiction.

We have all the necessary tools to prove the main result for the two-dimensional case.

Proof of Theorem 3.1. We prove this theorem by contradiction. We suppose there exists a

sequence uεk , εk such that

(
−
∫
Q1

εk|∇uεk |2 +
1

εk
(1− u2

εk
)2

)
||uεk ||H−1(Q1)

+−
∫
Q1

ε2
k|∇uεk |2 + (1− u2

εk
)2 → 0.

(3.10)

Case 1: Suppose lim infk εk > 0, then, in the second term of (3.10), we have

−
∫
Q1

|∇uεk |2 → 0 and −
∫
Q1

u2
εk
→ 1. (3.11)

By the Poincaré inequality

−
∫
Q1

u2
εk
≤ C−

∫
Q1

|∇uεk |2 → 0.
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This is a contradiction with (3.11).

Case 2: Suppose lim infk εk = 0 but ||uεk ||H−1(Q1) is bounded away from 0. Without loss

of generality, suppose εk → 0. The convergence of the first term in (3.10) to 0 gives us

−
∫
Q1

ε2
k|∇uεk |2 + (1− u2

εk
)2 → 0,

in a contradiction with Lemma 3.2.

Case 3: Suppose lim infk εk = 0 and lim infk ||uεk ||H−1(Q1) = 0. We use Proposition 3.5

to obtain a contradiction. Fix c0 and, dropping the subscript k to simplify the notation, we

write uεk = uε. Define

δ = ||uε||H−1(Q1).

For any integer N > 1, we partition the unit square Q1 into N2 squares of side length ω =
1

N
.

The value of N will be determined later. If

||uε||H−1(Qω) ≤ c1ω
2,

by applying Proposition 3.5 to Qω, we have

∫
Qω

ε|∇uε|2 +
1

ε
(1− u2

ε)
2 ≥ c0|Qω|1/2 if |Qω|1/2 = ω ≥ ε

or ∫
Qω

ε|∇uε|2 +
1

ε
(1− u2

ε)
2 ≥ c0|Qω|

ε
if |Qω|1/2 = ω ≤ ε

The choice of N depends on the relation between ε and δ.

Alternative 1: Suppose ε � δ. Then we choose N such that ω ≈
√
εδ and therefore

ε� ω � δ. For the N2 squares Qω, we say Qω ∈ A if ||uε||H−1(Qω) ≥ c1|Qω| = c1ω
2 and let
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|A| be the number of squares in A. Since δ � ω =
1

N
< 1 and

|A|c2
1ω

4 ≤
∑
Qω∈A

||uε||2H−1(Qω) ≤ ||uε||2H−1(Q1) = δ2,

we have

|A| ≤ δ2

c2
1ω

4
� 1

ω2
= N.

Therefore, the inequality

||uε||H−1(Qω) ≤ c1ω
2

holds on most, in particular on at least half, of the squares. Since ε � ω, for Qω /∈ A, i.e,

when

||uε||H−1(Qω) ≤ c1ω
2,

Proposition 3.5 gives ∫
Qω

ε2|∇uε|2 + (1− u2
ε)

2 ≥ c0|Qω|

Summing over all these squares, we have

∫
Q1

ε2|∇uε|2 + (1− u2
ε)

2 ≥
∑
Qω /∈A

∫
Qω

ε|∇uε|2 + (1− u2
ε)

2 ≥ c0

∑
Qω /∈A

|Qω| & 1

This is a contradiction with (3.10).

Alternative 2: Suppose δ & ε. Then we choose N and ω = 1
N

such that ω = Mδ, where

M is a constant to be chosen later. Again, consider the N2 squares Qω, we say Qω ∈ A if

||uε||H−1(Qω) ≥ c1ω
2. Since

|A|c2
1ω

4 ≤
∑
Qω∈A

||uε||2H−1(Qω) ≤ ||uε||2H−1(Q1) = δ2,

we have

|A| ≤ δ2

c2
1ω

4
,
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and δ =
ω

M
≤ 1

M
. Then we estimate

|A| < 1

M2c2
1

1

ω2
.

Now, we choose M such that M2c2
1 ≥ 2. This guarantees that |A| < 1

2

1

ω2
=
N

2
, so at least

half of the squares Qω are not in A.

Considering that we have ω & δ & ε, by proposition 3.5, for each Qω /∈ A,

∫
Qω

ε|∇uε|2 +
1

ε
(1− u2

ε)
2 ≥ c0|Qω|1/2.

Summing over all these squares gives us

∫
Q1

ε|∇uε|2 +
1

ε
(1− u2

ε)
2 ≥

∑
Qω /∈A

∫
Qω

ε|∇uε|2 +
1

ε
(1− u2

ε)
2 ≥ c0|Qω|1/2

2ω2
&

1

ω
.

Therefore, (
−
∫
Q1

ε|∇uε|2 +
1

ε
(1− u2

ε)
2

)
||uε||H−1(Q1) &

δ

ω
& 1.

This contradiction with (3.10) completes the proof.

3.1.3 The Dissipation Inequality

Lemma 3.6 (Dissipation). Suppose u is a solution of (3.1) and again let E and L be defined

as in (3.2) and (3.3), respectively. Then

(L̇)2 . −|Q|Ė
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Proof. As in Lemma 2.11, by replacing ux by ∇u, we again have that integration by parts

yields

Ė =
1

2
−
∫

2∇u · ∇ut + 2(1− u2)(−2u · ut)dx

= −−
∫
u2
tdx,

(3.12)

where the boundary integrals are all vanishing due to the boundary conditions.

Next, we compute

2LL̇ =
dL2

dt
=

2

|Q|
〈u, u̇〉H−1 ≤ 2

|Q|
||u||H−1(Q)||u̇||H−1(Q).

Therefore,

L̇2 ≤
||u̇||2H−1(Q)

|Q|
. (3.13)

Let q be the solution to equation

−∆q = u̇, in Q

q = 0, on ∂Q.

Then

||∇q||2L2(Q) =||u̇||2H−1(Q) =

∫
Q

qu̇dx

≤||q||L2(Q)||u̇||L2(Q)

≤ε
2
||q||2L2(Q) +

2

ε
||u̇||2L2(Q).

(3.14)

By the Poincaré inequality,

||q||L2(Q) . |Q|1/2||∇q||L2(Q).

54



Thus (3.14) becomes

||∇q||2L2(Q) .
ε

2
|Q| · ||∇q||2L2(Q) +

2

ε
||u̇||2L2(Q).

Choosing ε =
1

|Q|
in the inequality above, we have

||u̇||H−1(Q) = ||∇q||L2(Q) . |Q|1/2||u̇||L2(Q). (3.15)

Combining (3.12), (3.13) and (3.15), we get

L̇2 . ||u̇||2L2(Q) = −|Q|Ė,

so that

(L̇)2 . −|Q|Ė,

where the dependence on the system size included in the right hand side.

3.1.4 Upper Bound on the Coarsening Rate

Now we can start to prove the ODE lemma by interpolation inequality and dissipation

inequality as before.

Lemma 3.7 (ODE). For any 0 ≤ θ ≤ 1 and |Q| & 1, suppose r satisfies : r < 3, θr > 1

and (1− θ)r < 2. Then EL & 1 and (L̇)2 ≤ |Q|(−Ė) imply

−
∫ T

0

EθrL(1−θ)rdt &

(
1

|Q|

) r
3

T−
r
3 for T � L3

0 � 1� E0. (3.16)

This ODE lemma is similar to Lemma 2.13 and hence we just give the statement without

a detailed proof. The only difference is the power of the domain size. In this lemma, we have

|Q| and in Lemma 2.13 we have |I|2, so we only need to adjust the corresponding power in

the statement of this lemma.
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3.2 Energy Decays No Faster than t−1/6

In this section, we will use another length scale which will improve our result in the sense

that it allows us to see that the energy is dissipated at a slower rate. By choosing the new

length scale, our interpolation inequality transforms into E2L & 1, so that L ∼ E−2, and

when the energy decays as t−1/6, the coarsening rate for length scale is t1/3. The one-sided

version of this statement that we prove here is that the energy decays no faster than t−1/6.

3.2.1 Introduction to the Main Result

The auxiliary length scale that is employed in our analysis takes the form

L = −
∫
Q

|W (u)|dx, (3.17)

where we define

W (u) =

∫ u

0

|1− s2|ds.

Here, we use −
∫

to denote averaging over the spatial domain.

Now we state the main result which follows immediately from Lemma 3.12.

Theorem 3.8. For the initial energy E0 and initial length scale L0 satisfying T � L4
0 �

1� E0, it holds that

−
∫ T

0

E3dt & −
∫ T

0

(t−
1
4 )2dt.

As in the one-dimensional case, this theorem follows from a more general and stronger

statement that appears in the next theorem.

Theorem 3.9. For any 0 ≤ θ ≤ 1, suppose r satisfies r < 4, θr >
4

3
and (1 − θ)r < 8

3
.

Then we have

−
∫ T

0

E
3
2
θrL−

3
4

(1−θ)rdt & −
∫ T

0

t−
r
4dt for T � L4

0 � 1� E0.
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3.2.2 Interpolation Inequality

For the interpolation inequality, here we only use the definition of E and L in the

interfacial regime E � 1, without considering the Allen-Cahn dynamics.

Lemma 3.10 (Interpolation). If E and L are defined as in (3.2) and (3.17), respectively,

then

E2L & k for E � 1,

where the constant number in the inequality k =
1

|Q|
.

Proof. Define

W (u) :=

∫ u

0

|1− t2|dt,

so that

∂W

∂u
= |1− u2|.

Then, by Cauchy’s inequality,

−
∫
|∇(W (u))|dx = −

∫
|∇u|∂W

∂u
dx ≤ 1

2
−
∫
|∇u|2 + (

∂W

∂u
)2dx = E.

This inequality was introduced by Modica and Mortola in [28].

We next introduce a smooth mollifier ϕ that is radially symmetric, non-negative, and

supported in the unit ball with
∫
R2 ϕ = 1. Let the subscript ε denote the convolution with

the kernel

ϕε(x) =
1

ε2
ϕ
(x
ε

)
,

that is,

uε = u ∗ ϕε.

The L2 norm of u may be split up as follows

−
∫
u2dx . −

∫
(u− uε)2dx+−

∫
u2
εdx. (3.18)
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This inequality holds for any ε > 0 and the precise value of ε will be selected later in the

proof.

The first term in (3.18) is estimated in terms of the energy:

−
∫

(u− uε)2dx ≤ sup
|h|≤ε
−
∫

(u(x)− u(x+ h))2dx

. sup
|h|≤ε
−
∫
|W (u(x))−W (u(x+ h))|dx

. ε−
∫
|∇(W (u))|dx.

(3.19)

For the second term in (3.18), we note that for any ε > 0, since

|uε(x)| =
∣∣∣∣∫ ϕε(x− y)u(y)dy

∣∣∣∣
=

1

ε2

∫
ϕ

(
x− y
ε

)
u(y)dy

≤
∫
ϕ1/2
ε (x− y)ϕ1/2

ε (x− y)|u(y)|dy

≤
(∫

ϕε(x− y)dy

)1/2(∫
ϕε(x− y)|u(y)|2dy

)1/2

=

(∫
ϕε(x− y)|u(y)|2dy

)1/2

.

Hence,

−
∫
u2
ε(x)dx ≤ −

∫ ∫
ϕε(x− y)|u(y)|2dydx

= −
∫ ∫

ϕε(x− y)|u(x)|2dxdy

=
1

ε2

∫
|u(x)|2

(
−
∫
ϕ

(
x− y
ε

)
dy

)2

dx

≤ 1

ε2

∫
|u(x)|2dx.
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Thus,

−
∫
u2
εdx ≤

|Q|
ε2
−
∫
|u|2dx

.
|Q|
ε2
−
∫
W (u)dx.

(3.20)

The last inequality holds since |u|2 . W (u) for any u without considering the Allen-Cahn

dynamics.

Combining (3.18), (3.19) and (3.20), we have

−
∫
u2dx . ε−

∫
|∇(W (u))|dx+

|Q|
ε2
−
∫
W (u)dx

≤ εE +
|Q|
ε2
L.

We now select ε =

(
|Q|L
E

)1/3

, with E � 1, to obtain

εE +
|Q|
ε2
L = |Q|1/3L1/3E2/3 + |Q|1/3L1/3E2/3 = 2|Q|1/3L1/3E2/3.

Hence

−
∫
u2 . |Q|1/3E2/3L1/3.

We also have

1−−
∫
u2dx = −

∫
(1− u2)dx ≤

(
−
∫

(1− u2)2dx

)1/2

≤ E1/2.

Therefore,

1 . |Q|1/3E2/3L1/3 + E1/2

which gives us Lemma 3.10 for E � 1.
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3.2.3 Dissipation Inequality

The next lemma concerns with the rate at which L can change in relation to E and the

rate of change of E.

Lemma 3.11 (Dissipation). Suppose u is a solution of (3.1) and again let E and L be

defined as in (3.2) and (3.17), respectively. Then

(L̇)2 . −ĖE.

Proof. As in Lemma 2.11, by replacing ux with ∇u, we again have

Ė =
1

2
−
∫

2∇u · ∇ut + 2(1− u2)(−2u · ut)dx

= −−
∫
u2
tdx.

Since

L = −
∫
W (u)dx,

d

dt
L = −

∫
ut|1− u2|dx,

so that

|L̇| ≤ −
∫
|1− u2||ut|dx

≤
(
−
∫
u2
tdx

)1/2(
−
∫

(1− u2)2dx

)1/2

≤ |Ė|1/2|E|1/2.

Hence, we have Lemma 3.11.
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3.2.4 Upper Bound on the Coarsening Rate

A variant of the following lemma appears in [20]. The version that we prove here employs

the interpolation inequality proved in Lemma 3.10.

Lemma 3.12 (ODE). For any 0 ≤ θ ≤ 1 and |Q| & 1, suppose r satisfies: r < 4, θr >
4

3

and (1− θ)r < 8

3
. Then E2L & k and (L̇)2 . E(−Ė) imply

−
∫ T

0

E
3
2
θrL−

3
4

(1−θ)rdt & k
r(3θ−1)

4 T−
r
4 for T � L4

0 � 1� E0, (3.21)

where the constant number in the inequality k =
1

|Q|
.

Proof. The energy E is a monotone function of time due to the differential inequality (L̇)2 .

E(−Ė). Indeed, since Ė . − L̇
2

E
< 0, E is decreasing. Moreover, using a technique similar to

the one used in the proof of Proposition 2.12, we can see that L is an absolutely continuous

function of E, and we can write the dissipation inequality as

(
dL

de

)2

(Ė)2 . E|Ė|. (3.22)

Here, the lower case e is used for the energy as an independent variable to distinguish it

from E = E(t). From (3.22), we have

1

E

(
dL

de

)2

|Ė| . 1. (3.23)

When Ė = 0, (3.23) is still true trivially. Multiplying (3.23) by any function f(E(t)) and

integrating in time on the interval [0, T ] gives

∫ T

0

f(E(t))dt &
∫ E(0)

E(T )

f(e)

e

(
dL

de

)2

de.
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Taking f = e
3
2
θrL−

3
4

(1−θ)r and writing E0 = E(0), ET = E(T ), we then have

∫ T

0

E
3
2
θr(t)L−

3
4

(1−θ)r(t)dt &
∫ E0

ET

e
3
2
θr−1L−

3
4

(1−θ)r
(
dL

de

)2

de (3.24)

for all T > 0.

Now we estimate the right hand side of (3.24). Consider the change of variables

ê =
1

2− 3
2
θr
e2− 3

2
θr and L̂ =

1

1− 3(1−θ)r
8

L1− 3(1−θ)r
8 .

The hypotheses

θr >
4

3
, (1− θ)r < 8

3

imply

θ >
1

3
(3.25)

which will be used later. Since

(
dL

de

)2

de =

(
dL̂

dê

)2(
dL

dL̂

)2(
dê

de

)
dê

and

dê

de
= e1− 3

2
θr,

dL̂

dL
= L−

3(1−θ)r
8 ,

we can write the right hand side of (3.24) as:

∫ E0

ET

(
de

dê

)(
dL̂

dL

)2(
dL

de

)2

de =

∫ Ê0

ÊT

(
dL̂

dê

)2

dê

which is bounded below by the minimum over all functions L̂(ê) with boundary conditions

L̂(Ê0) =
1

1− 3(1−θ)r
8

(L(0))1− 3(1−θ)r
8 , L̂(ÊT ) =

1

1− 3(1−θ)r
8

(L(T ))1− 3(1−θ)r
8 .

62



To simplify the notations we denote these boundary conditions by L̂0 and L̂T , respectively.

The extremal L̂ is a linear function of ê, so we have:

∫ T

0

E
3
2
θrL−

3
4

(1−θ)rdt &
(L̂T − L̂0)2

Ê0 − ÊT
. (3.26)

When T is such that

L(T ) ≥ 2L(0),

the right side of (3.26) can be controlled since

L̂T − L̂0 & L̂T and Ê0 − ÊT ≤ −ÊT ,

so ∫ T

0

E
3
2
θrL−

3
4

(1−θ)rdt &
L̂2
T

−ÊT
= L

2− 3
4

(1−θ)r
T E

3
2
θr−2

T .

Rewriting the right hand side as

L
2− 3

4
(1−θ)r

T E
3
2
θr−2

T = [E
3
2
θ

T L
− 3

4
(1−θ)

T ]r−4[E2
TLT ]3θ−1,

we conclude, using E2L & k and (3.25), that

∫ T

0

E
3
2
θrL−

3
4

(1−θ)rdt & [E
3
2
θ

T L
− 3

4
(1−θ)

T ]r−4k3θ−1 (3.27)

provided L(T ) ≥ 2L(0). Introducing

h(T ) :=

∫ T

0

E
3
2
θrL−

3
4

(1−θ)rdt,

we can write (3.27) as

h & (h′)
r−4
r k3θ−1,
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so we have:

h
r

4−r (T )h′(T ) & k
r(3θ−1)

4−r (3.28)

provided L(T ) ≥ 2L(0). Here we used r < 4.

The previous method does not work when L(T ) < 2L(0), but, for such T , we have

E2(T ) & L(T )−1 & L−1
0 ,

which implies

E
3
2
θ(T )L−

3
4

(1−θ)(T ) = (E2(T )L(T ))
3
4
θL−

3
4 (T ) & k

3
4
θL
− 3

4
0 .

Thus

h′(T ) & k
3
4
θrL
− 3

4
r

0 if L(T ) < 2L0. (3.29)

Combining (3.28) and (3.29), using r < 4, we have:

d

dt
(h+ L

3(4−r)
4

0 )
4

4−r ∼ (h(t) + L
3(4−r)

4
0 )

r
4−rh′(t) & k

r(4θ−2)
4−r

for all t > 0. Indeed, for L(T ) ≥ 2L(0), using (3.28), we have

d

dt
(h+ L

3(4−r)
4

0 )
4

4−r ∼ (h(t) + L
3(4−r)

4
0 )

r
4−rh′(t) & h

r
4−r (T )h′(T ) & k

r(3θ−1)
4−r ,

and for L(T ) < 2L(0), by (3.29),

d

dt
(h+ L

3(4−r)
4

0 )
4

4−r ∼ (h(t) + L
3(4−r)

4
0 )

r
4−rh′(t) & L

3r
4

0 h′(T ) & k
3θr
4 .

By assumptions, θr >
4

3
and |Q| & 1, we have

k
r(3θ−1)

4−r < k
3θr
4 .
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Integration in time gives

h(T ) + L
3(4−r)

4
0 & k

r(3θ−1)
4 T

4−r
4

for all T > 0.

Restricting attention to T
4−r
4 � L4−r

0 , this becomes

∫ T

0

EθrL(1−θ)rdt = h(T ) & k
r(3θ−1)

4 T
4−r
4 for T � L4

0

which is precisely (3.21) as we need.

As stated above, we establish the upper bounds on coarsening rates. Therefore obtaining

the slower rates of the decay of the energy corresponds to an improvement. This improvement

needs to be considered in conjunction with the dependence on the size of the domain in the

coefficient appearing with the power of t in each case. For the length scale L = ||u||H−1(Q),

it is |Q|−r/3 and, for the length scale L = −
∫
W (u)dx, it is |Q|−r(3θ−1)/4.
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Chapter 4

Swift-Hohenberg Equation

We study the coarsening of two-dimensional oblique stripe patterns of the Swift-Hohenberg

equation. We expect the models to exhibit isotropic coarsening with a single characteristic

length scale with the growth in time governed by a power law. Coarsening in the Swift-

Hohenberg equation has been studied numerically, in [7]. Several numerical methods have

been used to describe the pattern dynamics of the Swift-Hohenberg equation. Cross and

Newell [8] proposed that higher order gradient terms in the phase equation would control

the dynamics and suggested a growth rate t1/3 in [8]. Then Cross and Hohenberg [6] sug-

gested t1/4 as an alternative. Elder, Viñals and Grant obtained numerical results in [15]

showing the length scale increasing with time as t1/4 when the equation has a noise term

(corresponding to a finite temperature thermodynamic system), and they observed a slower

growth rate consistent with t1/5 without the noise term.

In this section, we establish a one-sided version of this result, that is, an upper bound

on the coarsening rate of the Swift-Hohenberg equation, and prove the system will coarsen

no faster than a power law. As in the previous sections, we apply Kohn and Otto’s method

in [20] to a properly chosen length scale and energy. Again, to focus on the coarsening rates,

we provide the well-posedness of Swift-Hohenberg equation in Appendix B.

We consider the Swift-Hohenberg equation

ut = −(1 +∇2)2u+ µu− u3, (4.1)
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with a variational formulation in terms of the energy functional

E(t) = −
∫
Q

(
1

2
|(1 +∇2)u|2 +

1

4
u4 − 1

2
µu2 +

1

4
µ2

)
dx. (4.2)

Here the potential function Fµ is given by

Fµ(u) =
1− µ

2
u2 +

1

4
u4 +

1

4
µ2,

since by (4.2),

E(t) =−
∫
Q

(
1

2
|(1 +∇2)u|2 +

1

4
(u2 − µ)2

)
dx

=−
∫
Q

(
1

2
|∇2u|2 − |∇u|2 +

1

4
(u2 − µ)2 +

1

2
u2

)
dx.

(4.3)

Note that Fµ is normalized so that Fµ(0) =
1

4
µ2. The constant µ is viewed as an eigenvalue

parameter. and if µ > 0, the potential function is a double well potential with the minima

located at u = ±√µ .

We also notice that the Swift-Hohenberg equation defines a gradient flow so that

ut = −∂E
∂u

.

As long as the minima of (4.2) are isolated, u(x, t)→ U(x) as t→∞. Using this variational

formulation, it would be possible to predict that stationary solutions are stable by showing

that they are minima of (4.2).

We define a correlation length scale by

L(t) =

(
−
∫
Q

u2dx

)1/2

. (4.4)
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We will use the idea of Kohn and Otto’s method in [20] to obtain interpolation inequality

EL & 1 and dissipation inequality L̇2 . −Ė, and then, by the ODE lemma, to find an upper

bound on the coarsening rate. Now we state the main result which follows immediately from

Lemma 4.5.

Theorem 4.1. For initial energy E0 and initial length scale L0 satisfying T � L3
0 � 1� E0,

it holds that

−
∫ T

0

E2dt & −
∫ T

0

(t−
1
3 )2dt.

A more general and stronger statement appears in the next theorem.

Theorem 4.2. For any 0 ≤ θ ≤ 1, suppose r satisfies r < 3, θr > 1 and (1− θ)r < 2. Then

we have

−
∫ T

0

EθrL(1−θ)rdt & −
∫ T

0

t−
r
3dt for T � L3

0 � 1� E0.

4.1 Interpolation Inequality

Lemma 4.3 (Interpolation). For E and L defined in (4.2) and (4.4) respectively, provided

there exists c0 > 0 such that µ > c0, then

EL & 1 when E � 1,

where the constant number implied in the inequality depends on the system size |Q|.

Proof. The proof is similar to that of Lemma 1 in [20], however, we need a somewhat different

treatment since we have different energy and length scale. For completeness and also for the

purpose of tracking the constants, we here reproduce the details.

Writing µ = (µ − u2) + u2, we first focus on the first term in the right hand side and

estimate by the first equation in (4.3)

−
∫

(µ− u2)dx ≤
(
−
∫

(µ− u2)2dx

)1/2

≤ 2E1/2. (4.5)
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Next, we need to estimate −
∫
u2dx in terms of L and E.

We define

W (u) =

∫ u

0

|µ− t2|dt,

so that

∂W

∂u
= |µ− u2|.

By Young’s inequality

−
∫
|∇(W (u))|dx = −

∫
|∇u|∂W

∂u
≤ −
∫

ε

2
|∇u|2 +

1

2ε

∣∣∣∣∂W∂u
∣∣∣∣2 dx, (4.6)

for any ε > 0. By the Poincaré inequality and using the boundary condition, we have

−
∫
|∇u|2dx = −

∫
∆u · udx

≤ 1

2δ
−
∫
|∆u|2dx+

δ

2
−
∫
u2dx

≤ 1

2δ
−
∫
|∆u|2dx+

δC|Q|
2
−
∫
∇u2dx,

choosing δ =
1

C|Q|
,

−
∫
|∇u|2dx ≤ C|Q|−

∫
|∆u|2dx. (4.7)

Furthermore,

−
∫
|∇u|2dx =

2C|Q|
1− 2C|Q|

(
−
∫

1

2

1

C|Q|
|∇u|2dx−−

∫
|∇u|2dx

)
≤ 2C|Q|

1− 2C|Q|

(
−
∫

1

2
|∆u|2dx−−

∫
|∇u|2dx

)
= C∗−

∫
1

2
|∆u|2 − |∇u|2dx,

where C∗ =
2C|Q|

1− 2C|Q|
is close to 1 when |Q| is large.
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Then (4.6) becomes

−
∫
|∇(W (u))|dx ≤ −

∫
εC∗

2

(
1

2
|∆u|2 − |∇u|2

)
+

1

2ε
(u2 − µ)2dx,

by choosing ε =
2√
C∗

, we have

−
∫
|∇(W (u))|dx ≤

√
C∗−
∫

1

2
|∆u|2 − |∇u|2 +

1

4
(u2 − µ)2dx

≤
√
C∗−
∫

1

2
|∆u|2 − |∇u|2 +

1

4
(u2 − µ)2 +

1

2
u2dx

=
√
C∗E.

We will use a smooth mollifier η which is radically symmetric, non-negative and sup-

ported in the unit ball with
∫
R2 η = 1. Let the subscript δ denote the convolution with the

kernel

ηδ(·) =
1

δ2
η
( ·
δ

)
.

The parameter δ will be determined later. Now we split the L2−norm −
∫
u2dx into two

parts:

−
∫
u2dx ≤ 2−

∫
(u− uδ)2dx+ 2−

∫
u2
δdx. (4.8)

Note that

|u1 − u2|2 ≤ 8|W (u1)−W (u2)|

for all u1 and u2, therefore we obtain the following estimate

−
∫

(u− uδ)2dx ≤ sup
|h|≤δ
−
∫

(u(x)− u(x+ h))2dx

≤ 8 sup
|h|≤δ
−
∫
|W (u(x))−W (u(x+ h))|dx

≤ 8δ−
∫
|∇(W (u))|dx

≤ 8
√

2C∗δE.
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For the second term of (4.8), we separately deal with |uδ| being either small or large:

−
∫
u2
δ = −

∫
u2
δ −min{u2

δ , µ
2}dx+−

∫
min{u2

δ , µ
2}dx. (4.9)

Since F (u) = u2 −min{u2, µ2} is a convex function in u, by a version of Jensen’s inequality

and the fact that
∫
η(x)dx = 1, we have

F (uδ(x)) = F

(∫
η(y)u(x− δy)dy

)
≤
∫
η(y)F (u(x− δy))dy.

The first term of (4.9) becomes

−
∫
u2
δ −min{u2

δ , µ
2} ≤ −

∫ ∫
η(y)F (u(x− δy))dydx

=

∫
η(y)−

∫
[u2(x− δy)−min{u2(x− δy), µ2}]dxdy

= −
∫
u2(x)−min{u2(x), µ2}dx

≤ 1

4
(µ− u2)2dx

≤ E.

For the second term of (4.9), we have

−
∫

min{u2
δ , µ

2}dx ≤ µ−
∫
|uδ|dx.

By duality,

−
∫
|uδ|dx = sup{−

∫
uδ(x)ξ(x)dx : ξ is Q−periodic and |ξ(x)| ≤ 1 a.e.}.

Consider ξ that is Q−periodic with |ξ(x)| ≤ 1 a.e., and write

ξδ(x) =

∫
1

δ2
η

(
x− y
δ

)
ξ(y)dy.
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Hence,

∇ξδ(x) =
1

δ

∫
1

δ2
∇η
(
x− y
δ

)
ξ(y)dy =

1

δ

∫
∇η(y)ξ(x− δy)dy,

and thus

sup |∇ξδ| ≤ κ
1

δ
sup |ξ| ≤ κ

δ
,

where κ =
∫
|∇η|dx. Therefore,

−
∫
∇uδ(x)ξ(x)dx = −

∫
∇u(x)ξδ(x)dx

= −
∫
−u(x)∇ξδ(x)dx

≤
(
−
∫
u2dx

)1/2(
−
∫
|∇ξδ|2

)1/2

≤ κ

δ
L.

Therefore, taking the superemum over all ξ, we get

−
∫
|uδ|dx ≤ C|Q|1/2−

∫
|∇uδ|dx ≤ C|Q|1/2κ

δ
L.

Combining all the above estimates, we have

−
∫
u2dx ≤ 16

√
2C∗δE + 2E + 2µC|Q|1/2κ

δ
L.

Taking δ =

(
C|Q|1/2µκL

8
√

2C∗E

)1/2

to minimize the right hand side over δ, we get

−
∫
u2dx ≤ C̃(EL)1/2 + 2E,

where C̃ = 8(2C|Q|1/2µκ
√

2C∗)1/2. Combining with estimate (4.5), we obtain

µ ≤ C̃(EL)1/2 + 2E + 2E1/2,
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which yields Lemma 4.3 for E � 1.

4.2 Dissipation Inequality and Upper Bounds on the Coarsening Rates

Next lemma relates the rate at which L can change when energy is dissipated to the

rate of change of the energy. We find a dissipation relation that bounds the growth rate in

terms of a suitable measure of length scale.

Lemma 4.4 (Dissipation). Suppose u is a solution of (1.3) and again let E and L be defined

as in (4.2) and (4.4), respectively. Then

(L̇)2 ≤ −Ė.

Proof. From (4.3), we have

Ė = −
∫
∇2u · ∇2ut − 2∇u · ∇ut + (u2 − µ+ 1)(u · ut)dx

= −
∫
∇4u · ut + 2∇2u · ut + u(u2 − µ+ 1)utdx

= −
∫ (
∇4u+ 2∇2u+ u(u2 − µ+ 1)

)
utdx

= −−
∫
u2
tdx.

Since

L2 = −
∫
|u|2dx,

then

2LL̇ = 2−
∫
uutdx

≤ 2

(
−
∫
|u|2dx

)1/2(
−
∫
|ut|2dx

)1/2

= 2L(−Ė)1/2
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so that

|L̇|2 ≤ −Ė

Hence, we have Lemma 4.5. Since the proof of this lemma will be very similar with the

proof of Lemma 2.13, we omit the details.

Lemma 4.5 (ODE). For any 0 ≤ θ ≤ 1, suppose r satisfies: r < 3, θr > 1 and (1−θ)r < 2.

Then EL & 1 and (L̇)2 ≤ (−Ė) imply

−
∫ T

0

EθrL(1−θ)rdt & T−
r
3 for T � L3

0 � 1� E0, (4.10)

where the constant number implied in the above inequality depends on the system size |Q|.

This lemma has a proof similar to that of Lemma 2.13 but with different dependence

on the size of the domain. We apply this lemma with the interpolation inequality depending

on the size of the domain instead of the dissipation inequality. By calculations similar to

Lemma 2.13, we have K = C̃
2θr(3−θ)

3 , where C̃ = 8(2C|Q|1/2µκ
√

2C∗)1/2 in Lemma 4.3.
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Chapter 5

Discussion

Our accomplishment is the time-averaged lower bounds for energy E which corresponds

to the time-averaged upper bounds on the coarsening rates for the Allen-Cahn equation and

the Swift-Hohenberg equations. The lower bounds on the coarsening rates would depend on

the geometry of the domain and cannot be established using the technique that we employed.

It will be nice to find pointwise-in-time bounds for both the energy E and the length scale

L, but it will require some new ideas.

We can see that the equations to which Kohn and Otto’s method has been applied pre-

viously, including the Cahn-Hilliard equations, epitaxial growth model, phase-field model,

discrete ill-posed diffusion equations, and many other models we did not list in this disserta-

tion, all have conservation law structures in the equations. On the other hand, both of the

equations that we have studied, namely, the Allen-Cahn equation and the Swift-Hohenberg

equation, are non-conserving. In general, the equations with a conservation law structure

can be written as

du

dt
= −∇ · J.

This structure provides certain advantages. For example, when proving the dissipation

inequality for the Cahn-Hilliard equation, this property can be used for integration by parts

to have

∫ t2

t1

−
∫
du

dt
ζdxdt =

∫ t2

t1

−
∫
J ·∇ζdxdt ≤

∫ t2

t1

−
∫
|J |dxdt, where ζ is periodic and sup |∇ζ| ≤ 1.
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This seems to be an important step in the proof. The same technique is also used in the

proof of the dissipation inequality for discrete, ill-posed diffusion equations,

〈du
dt
, s〉H−1 = −〈−∆R(u), s〉H−1 = −R(u) · s = −∇E(u) · s.

On the other hand, if the equation has a conservation law structure, then the mean value ū =

0 can be naturally maintained. This property is used in the proofs of interpolation inequality

for both epitaxial growth model and phase-field model. However, since the equations that

we are looking at have no natural conservation law structure, we have to find some other

methods to approach the results that we need. In the proof of the interpolation inequality

of the Allen-Cahn equation, we followed the frameworks of Kohn and Yan’s method, but the

details have been proved by different methods. For example, to obtain the lower bound on

the energy density, we used the idea that the solution to an elliptic the Allen-Cahn equation

will give the minimum value of energy density which has a lower bound by regularity. We

also adjust the interpolation inequality to be E2L & 1 for the two-dimensional Allen-Cahn

equation with a length scale

L = −
∫
W (u)dx,

with

W (u) =

∫ u

0

|1− s2|ds.

This different interpolation inequality, combined with the dissipation inequality, improves

the coarsening rates and the upper bound for the energy decay. But we will be very interested

in looking for some universal and geometry-independent upper bounds on coarsening rates

for non-conserving equations. This may require some new techniques.

In this thesis, only two equations which are non-conserving were selected to study the

upper bounds on coarsening rates, but there are many energy-driven dynamic systems that

describe coarsening models in material science. For example, a natural extension would be
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to look at a more general equation modeling epitaxial thin film growth in [22],

ut + ∆2u−∇ · (f(∇u)) = g, in Ω× (0, T )

∂u

∂n
=
∂∆u

∂n
= 0, on ∂Ω× (0, T )

u(x, 0) = u0, in Q

where n denotes the outward pointing unit normal to the boundary ∂Ω of the domain Ω.

While the energy associated with this equation appears in the introduction, a different

choice of length scale alternative to the L2-norm of u employed in [24] may have the potential

to yield more precise upper bounds on the coarsening rate. For example, the Hessian may

be a candidate for such a choice of length scale. While the general framework of Kohn and

Otto [20] may be followed, the implementation would require different techniques from what

we have used.
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Appendix A

Well-posedness of Allen-Cahn Equation

Here we prove the existence and uniqueness of the weak and strong solutions of the

Allen-Cahn equation in a bounded domain Ω ∈ Rn, where n = 1, 2. The proofs appear

in [34] and cover the case of a more general non-linear term. For the completeness of the

presentation, we adapt the theorems from [34] to apply specifically to our models.

We consider the parabolic Allen-Cahn equation on domain Q× [0,∞)

∂u

∂t
−∆u− 2u(1− u2) = 0, in Q× [0,∞)

u(x, t) = 0, on ∂Q× [0,∞)

u(x, 0) = u0(x), in Q

(A.1)

where Q is the square in R2 with side length l.

Define W (u) =
1

2
(1− u2)2, and let

w(u) = −W ′(u) = 2u(1− u2).

Notice that w(s) is a C1 function which satisfies the bounds

−1− 2|s|4 ≤ w(s)s ≤ 1− |s|4, (A.2)

and

w′(s) ≤ 2, (A.3)

both for all s ∈ R. Indeed, −1− 2s4 ≤ w(s)s = 2s2 − 2s4 ≤ 1− s4 and w′(s) = 2− 6s2 ≤ 2.
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We proceed to define the sense in which equation (A.1) holds. We say u ∈ L2(0, T ;H1
0 (Q))

with
du

dt
∈ L4/3(0, T ;H−1(Q)) is a weak solution of (A.1) if for any v ∈ L4(0, T ;H1

0 (Q)), we

have

〈du
dt
, v〉+ a(u, v) = 〈w(u), v〉 (A.4)

for almost every t ∈ [0, T ], where the bilinear form of a(·, ·) is defined as

a(u, v) = 〈∆u, v〉 =
m∑
j=1

(Dju,Djv),

where (·, ·) stands for the inner product in L2(Q) and we use 〈v∗, u〉 to denote the pairing

between an element v∗ ∈ H−1(Q) and an element u ∈ H1
0 (Q), that is, there is an element

v ∈ H1
0 (Q) such that

〈v∗, u〉 = (v, u)H1
0 (Q).

A.1 Preliminary Results

In what follows, we write L2 for L2(Q), H1
0 for H1

0 (Q), H−1 for H−1(Q), etc. To prove

the existence of solutions, the technique is essentially to construct a sequence that is weakly

convergent and show that the limit is a solution. We will need some strong convergence of

un and a weak version of the dominated convergence theorem [34].

Before proving the compactness theorem, we will need the following lemma, which is a

special case of Ehrling’s lemma.

Lemma A.1. For each ε > 0 there exists a constant cε such that

||u||L2 ≤ ε||u||H1
0

+ cε||u||H−1 , for all u ∈ H1
0 .
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Proof. We prove this by contradiction, so suppose there exists ε > 0 such that for each

n ∈ Z+ there is a un with

||un||L2 ≥ ε||un||H1
0

+ n||un||H−1 .

Let vn =
un

||un||H1
0

, then

||vn||L2 ≥ ε+ n||vn||H−1 . (A.5)

Since H1
0 ⊂⊂ L2 and vn is bounded in H1

0 with norm 1, vn is also bounded in L2. By (A.5),

it follows that ||vn||H−1 → 0 as n → ∞. However, H1
0 ⊂⊂ L2 and vn → v in L2 imply that

v = 0 which contradicts (A.5).

We can now prove the compactness theorem.

Theorem A.2. Suppose un is a sequence that is uniformly bounded in L2(0, T ;H1
0 ), and

dun
dt

is uniformly bounded in L4/3(0, T ;H−1). Then there is a subsequence that converges

strongly in L2(0, T ;L2).

Proof. Since H1
0 is reflexive, so is L2(0, T ;H1

0 ). Since un is bounded in L2(0, T ;H1
0 ), using

Alaoglu compactness theorem, there is a subsequence un such that

un ⇀ u in L2(0, T ;H1
0 ).

Next, we show that

vn = un − u→ 0 in L2(0, T ;L2).

To this end, we first establish that vn → 0 in L2(0, T ;H−1) which is sufficient to guarantee

that vn → 0 in L2(0, T ;L2).

Indeed, Lemma A.1 shows that for each ε > 0 there exists a cε such that

||vn||2L2(0,T ;L2) ≤ ε||vn||2L2(0,T ;H1
0 ) + cε||vn||2L2(0,T ;H−1),
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and since vn is bounded in L2(0, T ;H1
0 ),

||vn||2L2(0,T ;L2) ≤ εC + cε||vn||2L2(0,T ;H−1).

If vn → 0 in L2(0, T ;H−1), then

lim sup
n→∞

||vn||2L2(0,T ;L2) ≤ εC

for any ε > 0. Hence

lim
n→∞

||vn||2L2(0,T ;L2) = 0.

To prove that vn → 0 in L2(0, T ;H−1), we observe that for vn ∈ H1(0, T ;H−1), we have

vn ∈ C([0, T ];H−1) by Theorem 5.9.2 in [14], and

max
0≤t≤T

||vn||H−1 ≤ C||vn||H1(0,T ;H−1)

≤ C(||vn||L2(0,T ;H1
0 ) + ||dvn

dt
||L2(0,T ;H−1)) ≤M.

(A.6)

Denoting v̇ =
d

dt
v, we integrate equation

vn(t) = vn(w)−
∫ w

t

v̇n(τ)dτ,

with respect to w from t to t+ s to get

vn(t) =
1

s

(∫ t+s

t

vn(w)dw −
∫ t+s

t

∫ w

t

v̇n(τ)dτdw

)
= An +Bn,

where

An =
1

s

∫ t+s

t

vn(w)dw, Bn = −
∫ t+s

t

∫ w

t

v̇n(τ)dτdw.
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Now take ξ > 0 and estimate

||Bn||H−1 ≤
∫ t+s

s

||dvn
dt
||H−1dw

≤ s1/4

(∫ t+s

t

||dvn
dt
||4/3H−1dw

)3/4

≤ s1/4||dvn
dt
||L4/3(0,T ;H−1).

We choose s such that

||Bn||H−1 ≤ ξ

2
. (A.7)

For this value of s, notice that

∫ t+s

t

vn(w)dw ⇀ 0 in H1
0 . (A.8)

Indeed, if χ is the indicator function of [t, t + s] and φ ∈ H−1, then χφ is an element of

L2(0, T ;H−1) and

∫ T

0

〈vn(t), χφ〉dt =

∫ t+s

t

〈vn(t), φ〉dt = 〈
∫ t+s

t

vn(t)dt, φ〉.

Since vn ⇀ 0 in L2(0, T ;H1
0 ), then (A.8) follows. Hence An ⇀ 0 in H1

0 , then An → 0 in H−1.

Therefore, for n large enough we have

||An||H−1 ≤ ξ

2

which together with (A.7) gives

||vn||H−1 ≤ ξ.

Since vn(t) → 0 in H−1 and vn(t) is bounded in H−1 for almost every t ∈ [0, T ] by (A.6).

Lebesgue’s dominated convergence theorem gives vn → 0 in L2(0, T ;H−1) and thus completes

the proof.

82



Next we will prove a weak version of the dominated convergence theorem stating that

if a sequence {uj} is bounded in Lp and converges pointwise, then uj ⇀ g in Lp. Although

this lemma will be used to prove the existence of solutions to the Allen-Cahn equation with

the case p =
4

3
, we prove a more general version for any p > 1.

Lemma A.3. Let Ω be a bounded open set in Rm and let uj be a sequence of functions in

Lp(Ω) with

||uj||Lp(Ω) ≤ C for all j ∈ Z+.

If u ∈ Lp(Ω) and uj → u almost everywhere then uj ⇀ u in Lp(Ω).

Proof. Let

En = {x|x ∈ Ω, |uj(x)− u(x)| ≤ 1 for all j ≥ n}.

These sets En increase with n and the measure of En increases to the measure of Ω as n→∞

since uj → u almost everywhere.

Let Φn be the set of functions in Lq(Ω), where q is the Hölder conjugate of p, with

support in En. Let Φ =
⋃∞
n=1 Φn. We can see that Φ is dense in En. For φ ∈ Lq(Ω), take

φn = χ[En]φ, where χ[E] is the characteristic function of E. Then, since φn → φ almost

everywhere and |φn(x)| ≤ |φ(x)|, Lebesgue’s dominated convergence theorem gives φn → φ

in Lq(Ω).

If we take φ ∈ Φ, then φ ∈ Φn0 for some n0 and, for j ≥ n0, we have

|φ(x)(uj(x)− u(x))| ≤ |φ(x)|.

Lebesgue’s dominated convergence theorem yields

∫
Ω

φ(uj − u)dx→ 0 as j →∞.
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By the density of Φ in Lq(Ω), for v ∈ Lq(Ω), given δ > 0, choose φ ∈ Φ such that

||v − φ||Lq(Ω) <
δ

4C

and N such that ∫
Ω

φ(uj − u)dx <
δ

2
for all j ≥ N.

Then ∫
Ω

(uj − u)(v − φ+ φ)dx < 2C(
δ

4C
) +

δ

2
= δ,

which shows that uj ⇀ u in Lp(Ω).

A.2 Existence and Uniqueness of Weak Solution

We will obtain a solution by using the basis {wj} of eigenfunctions of the Laplacian to

approximate the equation by systems of ODEs. We prove the existence and uniqueness of

the approximations of (A.1) using the corresponding results for ODEs. Then the Alaoglu

compactness theorem will guarantee the existence of a weak limit. Finally, the limit is shown

to satisfy (A.1).

Theorem A.4. Equation (A.1) has a unique weak solution given by (A.4): for any T > 0

given u(0) = u0 ∈ L2(Q) there exists a solution u with

u ∈ L2(0, T ;H1
0 (Q)) ∩ L4(Q× (0, T )), u ∈ C0([0, T ];L2(Q)),

and u0 7→ u(t) is continuous on L2(Q). Equation (A.1) holds as an equality in the space

L4/3(0, T ;H−1(Q)).

Proof. Let the functions wk = wk(x), k = 1, 2, · · · be eigenfunctions of −∆ . It is known

that {wk}∞k=1 are smooth and form an orthogonal basis of H1
0 (Q). For a fixed n > 0, define
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Pn as the orthogonal projection in L2 onto the span of {wk}nk=1:

Pnu =
n∑
j=1

(u,wj)wj.

We will look for the n−dimensional approximation

un(t) =
n∑
j=1

unj(t)wj,

of the solution u, with the coefficients unj(t) (0 ≤ t ≤ T, 1 ≤ j ≤ n) that satisfy

unj(0) = (un(0), wj) = (u0, wj)

and

(
dun
dt

, wj) + (−∆un, wj) = (w(un), wj), j = 1, . . . , n

that is,

dunj
dt
−∆unj = (w(un), wj).

We could also write this in a vector form as

dun
dt
−∆un = Pnw(un), un(0) = Pnu0. (A.9)

Since the nonlinearity in (A.9) is locally Lipschitz, then the finite-dimensional system has a

unique solution on some finite time interval.

Multiplying (A.9) by un and integrating over Q, we get

1

2

d

dt
||un||2L2(Q) + (−∆un, un) = (Pnw(un), un). (A.10)

Since

(−∆un, un) = ||∇un||2L2(Q),
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and ||un||2H1
0 (Q)

is equivalent to ||∇un||2L2(Q), we have

(Pnw(un), un) = (w(un), Pnun) = (w(un), un) ≤
∫
Q

1− |un|4dx,

then (A.10) becomes

1

2

d

dt
||un||2L2(Q) + ||un||2H1

0 (Q) +

∫
Q

|un|4dx ≤ |Q|.

Integrating both sides in time from 0 to T gives

1

2
||un(T )||2L2(Q) + ||un||2L2(0,T ;H1

0 (Q)) + ||un||4L4(Q×(0,T )) ≤
1

2
||u0||2L2(Q) + T |Q|.

With the time interval being finite, the domain being bounded, and u0 ∈ L2(Q), we see that

un is uniformly bounded in L∞(0, T ;L2(Q));

un is uniformly bounded in L2(0, T ;H1
0 (Q));

un is uniformly bounded in L4(Q× (0, T )).

(A.11)

Since |w(s)| ≤ β(1 + |s|3),

||w(un)||4/3
L4/3(Q×(0,T ))

=

∫ T

0

(∫
Q

|w(un)|4/3dx
)
dt

≤β4/3

∫ T

0

(∫
Q

(1 + |un|3)4/3

)
dt

≤
∫ T

0

C

(∫
Q

|un|4 + 1dx

)
dt.

We have w(un) is uniformly bounded in L4/3(Q× (0, T )).

Next, note also that, by the Sobolev embedding theorem,

H1(Q) ⊂ L4(Q),
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that is, v ∈ H1
0 (Q) implies that v ∈ L4(Q). Then, it follows that, if u ∈ L4/3(Q), the dual of

L4(Q), then u ∈ H−1(Q), the dual of H1
0 (Q), so that

L4/3(Q) ⊂ H−1(Q).

Therefore, L2(0, T ;H−1(Q)) and L4/3(0, T ;L4/3(Q)) are continuously embedded in the space

L4/3(0, T ;H−1(Q)). It follows by (A.9) that we have

dun
dt

is uniformly bounded in L4/3(0, T ;H−1(Q)). (A.12)

By Banach-Alaoglu weak-∗ compactness theorem, we can extract a convergent subse-

quence {un} converging weakly in the following spaces

un ⇀ u in L2(0, T ;H1
0 (Q));

un ⇀ u in L4(Q× (0, T ));

w(un) ⇀ χ in L4/3(Q× (0, T )),

(A.13)

for some χ ∈ L4/3(Q× (0, T )).

Furthermore, since un is uniformly bounded in L2(0, T ;H1
0 (Q)) by (A.11), and

dun
dt

is

uniformly bounded in L4/3(0, T ;H−1(Q)) by (A.12), and the following chain of embeddings

holds H1
0 (Q) ⊂⊂ L2(Q) ⊂ H−1(Q) with H1

0 (Q) being reflexive, by Theorem A.2, we can

extract a further subsequence such that

un → u in L2(0, T ;L2(Q)).
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Actually, we need Pnw(un) ⇀ χ in L4/3(Q× (0, T )). Therefore we write

∫
Q×(0,T )

(Pnw(un)− χ)ϕdxdt

=

∫
Q×(0,T )

(w(un)− χ)ϕdxdt−
∫
Q×(0,T )

Qnw(un)ϕdxdt,

for all ϕ ∈ L4(Q× (0, T )), where Qn = I − Pn. The first terms tends to zero by (A.13). For

the second term, let

ϕ =
n∑
j=1

αj(t)ϕj

with αj ∈ L4(0, T ) and ϕj ∈ C∞c (Q). Such functions ϕ are dense in L4(Q× (0, T )) and the

following identity holds for them

∫
Q×(0,T )

Qnw(un)

(
n∑
j=1

αj(t)ϕj

)
dxdt =

∫
Q×(0,T )

w(un)

(
n∑
j=1

αj(t)Qnϕj

)
dxdt.

Since Pnu → u in L4(Q) for u ∈ L4(Q), we have Qnu → 0 in L4(Q), that is, Qnϕj → 0

in L4(Q) for each j. Hence we have the convergence Pnw(un) ⇀ χ in L4/3(Q × (0, T )) as

required.

It follows that every term in (A.9) converges in the weak-∗ topology of the dual space

of V = L2(0, T ;H1
0 (Q))∩L4(Q× (0, T )) which is V ∗ = L2(0, T ;H−1(Q)) +L4/3(Q× (0, T )).

Then

du

dt
−∆u = χ

holds in L2(0, T ;H−1(Q)) + L4/3(Q× (0, T )) ⊂ L4/3(0, T ;H−1).

It remains to show that χ = w(u). Since un → u in L2(Q×(0, T )), there is a subsequence

unj such that unj(x, t)→ u(x, t) for a.e. (x, t) ∈ Q× (0, T ). It follows, using the continuity

of w, that w(unj(x, t))→ w(u(x, t)) for a.e (x, t) ∈ Q× (0, T ). With the uniform bound on

w(unj) ∈ L4/3(Q × (0, T )), we deduce that w(unj) ⇀ w(u) in L4/3(Q × (0, T )) by Lemma

A.3. By the uniqueness of the limit, w(u) = χ.
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To prove the continuity of u(t) from [0, T ] into L2(Q), notice that u ∈ L2(0, T ;H1
0 (Q))∩

L4(Q× (0, T )) and that

du

dt
= ∆u+ w(u) ∈ L2(0, T ;H−1(Q)) + L4/3(Q× (0, T )).

By extending u outside [0, T ] by zero and setting um = (u) 1
m

, a mollified version of u with

respect to variable t, we can approximate u by a sequence um ∈ C1([0, T ];H1
0 (Q)) which

converges to u in the sense that

um → u in L2(0, T ;H1(Q));

dum
dt
→ du

dt
in L2(0, T ;H−1(Q)).

Then for any t0,

||um(t)||2L2(Q) = ||um(t0)||2L2(Q) + 2

∫ t

t0

〈 d
ds
um(s), um(s)〉ds.

Choosing t0 such that

||um(t0)||2L2(Q) =
1

T

∫ T

0

||um(t)||2L2(Q)dt,

we estimate

|〈 d
dt
um(s), um(s)〉| ≤ ||dum(s)

dt
||H−1(Q)||um(s)||H1

0 (Q),

to obtain,

||um(t)||2L2(Q) ≤
1

T

∫ T

0

||um(t)||2L2(Q)dt+ 2

∫ T

0

||dum
dt
||H−1(Q)||um||H1

0 (Q)dt.

Hence,

sup
t∈[0,T ]

||um(t)||2L2(Q) ≤ C(||um||L2(0,T ;H1
0 (Q)) + ||dum

dt
||L2(0,T ;H−1(Q))),

where the constant C depends on T .
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Since um is a Cauchy sequence in L2(0, T ;H1
0 (Q)) and

dum
dt

is a Cauchy sequence in

the space L2(0, T ;H−1(Q)), it follows that um is a Cauchy sequence in C0([0, T ];L2(Q)) and

therefore u ∈ C0([0, T ];L2(Q)).

Next we need to show that u(0) = u0. Choose some ϕ ∈ C1([0, T ];H1
0 (Q)∩L4(Q)) with

ϕ(T ) = 0. We note that, in particular, ϕ ∈ L2(0, T ;H1
0 (Q))∩L4(Q× (0, T )). Integrating by

parts the following equation in the variable t, we have

∫ T

0

−〈u, ϕ′〉+ (−∆u, ϕ)ds =

∫ T

0

〈w(u(s)), ϕ〉ds+ (u(0), ϕ(0)).

Performing the same step in the Galerkin approximation yields

∫ T

0

−〈un, ϕ′〉+ (−∆un, ϕ)ds =

∫ T

0

〈Pnw(un(s)), ϕ〉ds+ (un(0), ϕ(0)).

Since un(0) = Pnu0 → u0, we take limits to have

∫ T

0

−〈u, ϕ′〉+ (−∆u, ϕ)ds =

∫ T

0

〈w(u(s)), ϕ〉ds+ (u0, ϕ(0)).

Hence, u(0) = u0.

To prove uniqueness and continuous dependence, let u0 and v0 be in L2(Q) and consider

h(t) = u(t)− v(t). Then,

dh

dt
−∆h = w(u)− w(v), h(0) = u0 − v0,

and multiplying by h and integrating over Q gives

1

2

d

dt
||h||2L2(Q) + ||h||2H1

0 (Q) = (w(u)− w(v), h).
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Note that we have w′(s) ≤ 2 , for all s ∈ R, so

(w(u)− w(v), h) =

∫
Q

(w(u(x))− w(v(x)))(u(x)− v(x))dx

=

∫
Q

(∫ u(x)

v(x)

w′(s)ds

)
(u(x)− v(x))dx

≤
∫
Q

2|u(x)− v(x)|2dx

=2||h||2L2(Q).

We therefore obtain

1

2

d

dt
||h||2L2(Q) ≤ 2||h||2L2(Q),

and by Gronwall’s inequality

||u(t)− v(t)||L2(Q) ≤ e2t||u0 − v0||L2(Q).

Hence we have uniqueness if u0 = v0 and continuous dependence on initial conditions other-

wise.

A.3 Existence and Uniqueness of Strong Solutions

Now, we will show how increasing the regularity of u0 results in more regular solutions.

In particular, if u0 ∈ H1
0 ∩ Lp, then u(t) is in this space for all t ≥ 0, and the solutions are

continuous into H1
0 . We call such solutions strong solutions. The uniqueness follows from

the previous theorem, since a strong solution is automatically a weak solution.

Theorem A.5. If u0 ∈ H1
0 (Q) ∩ L4(Q), then there exists a unique strong solution

u(t) ∈ C0([0, T ];H1
0 (Q)) ∩ L∞(0, T ;L4(Q)) ∩ L2(0, T ;D(A)),

where A = −∆ and D(A) is the domain of A.
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Proof. We take the inner product of ordinary differential system

dun
dt

+ Aun = Pnw(un), un(0) = Pnu0, (A.14)

with Aun to obtain

1

2

d

dt
||∇un||2L2(Q) + ||Aun||2L2(Q) = −

∫
Q

Pnw(un)∆undx

= −
∫
Q

w(un)∆undx

=

∫
Q

w′(un)|∇un|2dx,

using the boundary condition un = 0 on ∂Q for integration by parts and the fact that

w(0) = 0.

Therefore, we have

1

2

d

dt
||∇un||2L2(Q) + ||Aun||2L2(Q) ≤ 2||∇un||2L2(Q).

Integrating both sides from 0 to T gives

1

2
||∇un(T )||2L2(Q) +

∫ T

0

||Aun(s)||2L2(Q)ds ≤
∫ T

0

||∇un||2L2(Q)dt+
1

2
||∇un(0)||2L2(Q),

and so un is uniformly bounded in L2(0, T ;D(A)) and L∞(0, T ;H1
0 (Q)), and we already

know from the previous proof that un ∈ L2(0, T ;H1
0 (Q)).

We now multiply (A.14) by
dun
dt

and integrate over Q. Simplifying the last term in the

resulting identity as follows

(Pnw,
dun
dt

) = (w,Pn
dun
dt

) = (w,
dun
dt

),
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yields ∥∥∥∥dundt
∥∥∥∥2

L2(Q)

+
1

2

d

dt
||∇un||2L2(Q) =

d

dt

∫
Q

W(un)dx,

where W(s) =
∫ s

0
w(t)dt. Integrating the above equation from 0 to t gives us

∫ t

0

∥∥∥∥dundt
∥∥∥∥2

L2(Q)

ds+
1

2
||∇un(t)||2L2(Q) −

∫
Q

W(un(t))dx

≤ 1

2
||∇u0||2L2(Q) +

∫
Q

W(un(0))dx,

and using

−1− 3

4
|s|4 ≤ W(s) ≤ 1− 1

4
|s|4,

we have

∫ t

0

∥∥∥∥dundt
∥∥∥∥2

L2(Q)

ds+
1

2
||∇un||2L2(Q) +

1

4

∫
Q

|un(t)|4dx

≤ 2|Q|+ 1

2
||∇u0||2L2(Q) +

3

4

∫
Q

|u0|4dx.

Hence,
dun
dt

is uniformly bounded in L2(0, T ;L2(Q)) and un is uniformly bounded in the

space L∞(0, T ;L4(Q)).

Therefore we can extract the appropriate subsequence such that

u ∈ L∞(0, T ;L4(Q)), u ∈ L2(0, T ;D(A)),
du

dt
∈ L2(0, T ;L2(Q)),

which implies that u ∈ C0([0, T ], H1
0 (Q)).
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Appendix B

Well-posedness of Swift-Hohenberg Equation

In this chapter, we will show the existence of strong solutions to equation (1.3). And we

also show that all the solutions are bounded for uniformly bounded initial conditions. Our

results are revised from [26] and [27], therefore, we omit the detailed proofs for the theorems.

B.1 Preliminary Results

First, we establish some notations that will be used in the following results.

1. Weighted norms. Define the norm

||u||p,ρ =

(∫
Q

|u(x)|pρ(x)dx

)1/p

, (B.1)

where ρ : R2 → (0,∞) is a suitable weight with |∇ρ(x)| ≤ ρ0ρ(x) for some ρ0 < ∞

and ρ1 =
∫
R2 ρ(x) <∞.

2. Uniformly local spaces Lplu(Q). Define the norm

||u||p,lu = sup{||u||p,Tyρ : y ∈ R2},

where Tyρ = ρ(x−y) is the translated weight and the translations are continuous with

respect to the norm above. By the definition above,

||u||p,Tyρ =

(∫
Q

ρ(x− y)|u(x)|pdx
)1/p

.
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3. Space L̃plu(Q) and associated Sobolev spaces W̃ s,p
lu (Q). Define

L̃plu(Q) = {u ∈ Lploc(Q) : ||u||p,lu <∞}

W̃ s,p
lu (Q) = {u ∈ L̃plu(Q) : Dqu ∈ L̃plu(Q) ∀q ∈ Nd

0 with q1 + · · ·+ qd ≤ s}

for integers s.

4. Uniformly local Sobolev spaces

W s,p
lu (Q) = closure of C∞bdd(Q) in W̃ s,p

lu (Q),

where C∞bdd(Q) is the set of all C∞ functions which have all derivatives bounded in Q.

This construction ensures the density of W s+1,p
lu (Q) in W s,p

lu (Q) for bounded domain.

5. Weighted Hilbert space. Define

W 2,2
ρ (Q) = {u ∈ L2

ρ(Q) : ∇u,∇2u ∈ L2
ρ(Q)},

where

L2
ρ(Q) = {u ∈ L2

loc(Q) : ||u||ρ ≤ ∞}.

We start with an elementary result about the lower bound on the Hk norms.

Lemma B.1. For any weight ρ with |∇ρ(x)| ≤ ρ0ρ and λ > 0, we have

||∇ku||22,ρ ≥ 2λ||∇k−1u||22,ρ − λ(ρ2
0 + λ)||∇k−2u||22,ρ,

for any k ≥ 2.
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B.2 Existence of Strong Solutions

Here we intend to use the theorem proved by Levermore and Oliver in [25] for the

existence of solutions to the Swift-Hohenberg equation.

Theorem B.2. Let X, Y and Z be Banach spaces with Y ⊂ Z ⊂ X and let T (t) = eAt|t≥0

be a semigroup on X with

||T (t)u||Y ≤ ct−α||u||X , for all u ∈ X,

||T (t)u||Y ≤ ct−β||u||Z , for all u ∈ Z,
(B.2)

for t ∈ (0, 1].

Moreover, let N : Y → Z be locally Lipschitz with

||N(u1)−N(u2)||Z ≤ c(||u1||2σY + ||u2||2σY )||u1 − u2||Y , for all u1, u2 ∈ Y, (B.3)

for some σ > 0, and without loss of generality we assume N(0) = 0.

Assume the exponents α, β, σ satisfy

0 ≤ β < 1,

0 ≤ (2σ + 1)α < 1,

β + 2σα < 1,

(B.4)

then for every M > 0 there exists a time T (M) > 0 such that for every initial condition

u0 ∈ X with ||u0||X ≤M there exists a unique solution u ∈ C([0, T ], X) ∩ C([0, T ], Y ) to

u(t) = T (t)u0 +

∫ t

0

T (t− τ)N(u(τ))dτ. (B.5)

In addition, the mapping from u0 to u is locally Lipschitz continuous from X to C([0, T ], X).
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Notice that (B.5) is a fixed point equation in Y norm. First, by contraction map-

ping theorem, we can prove that there exists a unique solution u ∈ E([0, T ]) to the fixed

point problem (B.5). Then by the continuous embedding Z ⊂ X and the continuity of the

semigroup T (t), we can show that u ∈ C([0, T ], X).

In order to use this theorem to the Swift-Hohenberg equation, we need to construct an

analytic semigroup T (t) = eAt|t≥0 for the linear part of the equation. Here, we define

Au = −(1 +∇2)2u = −∇4u− 2∇2u− u. (B.6)

Theorem B.3. Define the operator A : D(A) ⊂ Lplu(Q) → Lplu(Q) by (B.6) for p ∈ [2,∞)

with D(A) = W 4,p
lu ∩ { boundary conditions }.

Then for all admissible domains Q the resolvent (A − λI)−1 : Lplu(Q) → D(A) exists

and satisfies the estimate

||(A− λI)−1u||p,lu ≤
C

λ−R
||u||p,lu, for all u ∈ Lplu(Q),

where R depends only on ρ0 as defined in equation (B.1) and C depends only on p.

To prove this theorem, consider the boundary value problem

∇4u+ 2∇2u+ γu = f,

for some γ which will be determined later, with the associated weak form

B[u, v] =

∫
Q

ρfvdx, for all v ∈ C∞0 (Q),

where

B[u, v] =

∫
Q

ρ∇2u∇2v + 2∇2u∇v∇ρ+ v∇2u∇2ρ+ 2ρv∇2u+ ργuvdx.
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For any f ∈ L2
lu(Q) we can use Lax-Milgram theorem in the weighted Hilbert space W 2,2

ρ (Q)

and this yields a unique solution u ∈ W 2,2
ρ (Q). Finally, Hille-Yosida theorem with operator

A0u = −∇4u− 2∇2u, that is, f = (γI − A0)u, will complete the proof of this theorem.

Next we can apply Theorem B.2 and Theorem B.3 to prove the existence of the solutions

to the Swift-Hohenberg equation. Theorem B.3 shows that A = −∇4 − 2∇2 − 1 is the

infinitesimal generator of an analytic semigroup T (t) = eAt|t≥0.

Theorem B.4. For each admissible domain Q ⊂ R2 and boundary conditions, and all initial

conditions u0 ∈ Lplu(Q) there is a unique strong solution u(t) = T (t)u0.

Furthermore, for fixed weight ρ(x) = e−|x|, there is a constant C such that for all

admissible domains Q ⊂ R2 and all initial conditions u0 ∈ Lplu(Q) we have

lim sup
t→∞
||u(t)||1,4,lu ≤ C.

We can construct an absorbing set in W 3,d
lu (Q) by the above conclusion. Let B0 = {u ∈

W 3,p
lu (Q) : ||u||3,d,lu ≤ 2C}, then

Babs(Q) = ∪t>0T (t)(B0) ⊂ W 3,d
lu (Q)

is a bounded, invariant set, since the union can also be taken over a finite time interval. The

above estimates imply that every bounded set in Lplu(Q) with p > d is absorbed in finite

time into Babs. Moreover, we define

Cabs = sup{||u||1,4,lu : there exists Q admissible : u ∈ Babs(Q)},

C∞ = sup{||u||∞ : there exists Q admissible : u ∈ Babs(Q)}

to have universal constants to estimate the norms in Babs.
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