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Abstract

A set of S edge-disjoint hamilton cycles in a graph G is said to be maximal if the

hamilton cycles in S form a subgraph of G such that G− E(S) has no hamilton cycle. The

set of integers m for which a graph G contains a maximal set of m edge-disjoint hamilton

cycles has previously been determined whenever G is a complete graph, a complete bipartite

graph, and in many cases when G is a complete multipartite graph. In this dissertation,

some of the remaining open cases regarding complete multipartite graphs will be resolved.
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Chapter 1

Introduction

1.1 Definitions

The complete multipartite graph, Kp
n is the graph with np vertices that have been par-

titioned into p parts of size n such that an edge exists between vertices u and v if and only

if u and v are in different parts. A hamilton cycle in a graph G is a spanning cycle of G. If

S is a set of hamilton cycles, then let G(S) be the graph induced by the edges in cycles of

S. We denote the edges in this graph by E(G(S)) or E(S). The set S is maximal in G if

G− E(S) has no hamilton cycle.

1.2 History

Considerable research has come before this dissertation to find maximal sets of hamilton

cycles in certain graphs. Hoffman, Rodger, and Rosa [7] found that there exists a maximal set

S of m edge-disjoint hamilton cycles in Kn if and only if m ∈
{⌊

n+3
4

⌋
,
⌊
n+3
4

⌋
+1, ...,

⌊
n−1
2

⌋}
.

It was later shown by Bryant, El-Zanati, and Rodger [1] that there exists a maximal set S of

m edge-disjoint hamilton cycles in Kn,n if and only if n
4
< m ≤ n

2
. Daven, MacDougall and

Rodger [3] extended the results to complete multipartite graphs, showing that there exists

a maximal set of m hamilton cycles in Kp
n if and only if

(a)
⌈
n(p−1)

4

⌉
≤ m ≤

⌊
n(p−1)

2

⌋
and

(b) m > n(p−1)
4

if

1. n is odd and p ≡ 1 (mod 4), or

2. p = 2, or

1



3. n = 1,

except possibly for the undecided case when n ≥ 3 is odd, p is odd and m ≤ (n+1)(p−1)−2
4

.

Jarrell and Rodger [8] solved these open cases when n ≥ 5, and removed all but the

smallest possible exceptional values when n = 3, showing that a maximal set of hamilton

cycles of size m exists when n = 3 and
⌈
n(p−1)

4

⌉
+ 1 ≤ m ≤

⌊
(n+1)(p−1)−2

4

⌋
, with strict

inequality for the lower bound of m when p ≡ 1 (mod 4). Together, these results mean that

for each odd value of p, exactly one value of m remains in doubt (namely
⌈
n(p−1)

4

⌉
+ 1 for

p ≡ 1 (mod 4) and
⌈
n(p−1)

4

⌉
for p ≡ 3 (mod 4)) and even that is only in doubt in the case

when n = 3. Naturally, each remaining case becomes more and more difficult. Indeed, for

some time it was unclear whether the remaining values would be orders of maximal sets of

hamilton cycles. To summarize, these existing results in the literature can be combined to

produce the following theorem:

Theorem 1.1 There exists a maximal set of m hamilton cycles in Kp
n if and only if

1.
⌈
n(p−1)

4

⌉
≤ m ≤

⌊
n(p−1)

2

⌋
and

2. m > n(p−1)
4

if

(a) n is odd and p ≡ 1 (mod 4)), or

(b) p = 2, or

(c) n = 1,

except possibly when n = 3, and m =
⌈
n(p−1)

4

⌉
+ 1 and p ≡ 1 (mod 4) or m =

⌈
n(p−1)

4

⌉
and

p ≡ 3 (mod 4).

For this dissertation, the goal is to clear up most of these last remaining cases, namely

those multipartite graphs where n = 3 and p is odd. We do so by splitting this into two

cases, one in which n = 3 and p ≡ 1 (mod 4), and the other in which n = 3 and p ≡ 3

2



(mod 4). The former case is completely resolved in Chapter 2, while the latter is resolved in

Chapter 3 when p ≡ 7 (mod 8) with two possible exceptions.

The work of this dissertation culminates in the following state of knowledge:

Theorem 1.2 There exists a maximal set of m hamilton cycles in Kp
n if and only if

1.
⌈
n(p−1)

4

⌉
≤ m ≤

⌊
n(p−1)

2

⌋
and

2. m > n(p−1)
4

if

(a) n is odd and p ≡ 1 (mod 4)), or

(b) p = 2, or

(c) n = 1,

except possibly when n = 3, m =
⌈
n(p−1)

4

⌉
and either p ≡ 3 (mod 8), p ≥ 19 or p ∈ {15, 23}.

1.3 The Technique of Amalgamations

The approach used to prove the theorems of this dissertation is that of amalgamations.

An amalgamation of a graph G is a graph H formed by a homomorphism f : V (G)→ V (H).

So for each v ∈ V (H), the vertices of f−1(v) can be thought of as being amalgamated into

the single vertex v in H; for each v ∈ V (H), η(v) = |f−1(v)| is known as the amalgamation

number of v. G is said to be a disentanglement of H.

In most of our proofs, an amalgamated graph is constructed in which each color class

is connected and each vertex v is incident with 2η(v) edges of each color, thus looking like

what would be obtained by amalgamating a graph in which each color class is a hamilton

cycle. For our purposes, the two following results will be essential. The first result describes

properties of a graph formed by amalgamating Kn. The second will be used to show that

the amalgamated graph we construct can be disentangled (“pulled apart”, if you will) to

form a subgraph of Kp
3 that has a hamilton decomposition.

3



Lemma 1.1 [10] Let G ∼= Kn be an l-edge-colored graph, and let f : V (G) → V (H) be an

amalgamating function with amalgamation numbers given by the function η : V (H) → N.

Then H satisfies the following conditions for any vertices w, v ∈ V (H):

1. d(w) = η(w)(n− 1),

2. m(w, v) = η(w)η(v) if w 6= v

3. w is incident with
(
η(w)
2

)
loops, and

4. dH(i)(w) =
∑

u∈f−1(w) dG(i)(u) for 1 ≤ i ≤ l,

where m(w, v) is the number of edges between vertex w and vertex v,

Once our graph satisfies the conditions of Lemma 1.1, the following theorem allows us

to disentangle the graph in such a way that we preserve connectivity and evenly divide the

edge ends among the η(u) disentangled vertices in each color class.

Theorem 1.3 [10] Let H be an l-edge-colored graph satisfying conditions (1)-(3) of Lemma

1.1 for the function η : V (H) → N . Then there exists a disentanglement G of H that

satisfies

1. G ∼= Kn,

2. for any z ∈ V (H), |dG(i)(v)− dG(i)(u)| ≤ 1 for 1 ≤ i ≤ l and all u, v ∈ f−1(z),

3. if
dH(i)(z)

η(z)
is an even integer for all z ∈ V (H), then ω(G(i)) = ω(H(i)).

where ω(G) denotes the number of components for the graph G.

Another important result that is invaluable in the main proof is the following theorem

proved by Hilton [6]. A k-edge-coloring of G is said to be evenly equitable if |di(v)−dj(v)| ≤ 2

for 1 ≤ i < j ≤ k and di(v) is even for 1 ≤ i ≤ k, where di(v) is the degree of v in the

subgraph induced by the edges colored i.

4



Theorem 1.4 [6] For each k ≥ 1, each finite Eulerian graph has an evenly equitable edge-

coloring with k colors.

The use of the previous lemma and theorems and the technique of amalgamations have

allowed for much more efficient and streamlined proofs in these types of edge coloring prob-

lems.
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Chapter 2

The p ≡ 1 (mod 4) Case

2.1 Introduction

Our aim in this chapter is to solve half of the remaining open cases in Theorem 1.1;

specifically the case when n = 3, m =
⌈
n(p−1)

4

⌉
+ 1 and p ≡ 1 (mod 4).

In the following, edge-colorings are used to represent the hamilton cycles, so let G(i)

denote the subgraph of G induced by the edges colored i.

2.2 p ≡ 1 (mod 4)

Theorem 2.1 For the complete multipartite graph Kp
n, let p = 4x+1 for some integer x ≥ 2

and let n = 3. Then there exists a maximal set of m =
⌈
3(p−1)

4

⌉
+ 1 = 3x + 1 edge disjoint

hamilton cycles in Kp
n.

Proof We define the hamilton cycles on the vertex set Zp × Z3 in which the parts are

Pi = {i} × Z3 for each i ∈ Zp. As we look at this problem, it is helpful to think of the parts

of the graph arranged in p vertical columns with three vertices in each column; so each part

has a top, a middle, and a bottom vertex as shown in Figure 2.1. Our goal is to choose the

edges for our set S of hamilton cycles wisely so that we ensure that our set is maximal. In

each case S is shown to be maximal because Kp
n − E(S) = G(S) has a cut vertex. We do

this by splitting V (G) into 3 sections. We denote by G1 the subgraph induced by vertices

in the first 2x parts (part 0 to part 2x− 1) together with the top vertex of the center part,

which we call u. The subgraph induced by vertices in the last 2x parts (part 2x+ 1 to part

4x) together with the bottom vertex of the center part, which we will call w, is denoted by

6



G2. Finally, the middle vertex of the center part will be called v. The vertex v will serve as

a cut vertex in G(S).

v1

v

v2

G1

G2

Figure 2.1: View of K4x+1
3

The edges we choose to make our set of hamilton cycles fall into the following three

types and are pictured in Figure 2.2:

Type 1: All edges in Kp
3 that join vertices in G1 to vertices in G2 occur in E(S).

Type 2: Precisely 2m edges joining vertices in V (G1

⋃
G2) to v occur in E(S). (Approximately

half of these edges are incident with vertices in G1, while the others are incident with

vertices in G2.)

Type 3: Certain edges between two vertices in G1 or two vertices in G2 are finally chosen to

make G(S) 2m-regular.

v1

v2

G1

G2

v

Figure 2.2: Type 2 and 3 Edges

7



As we select Type 2 edges, we note that v is not yet adjacent to any other vertices. Thus

to produce m = 3x+ 1 hamilton cycles, we need the degree of v to be 2(3x+ 1) = 6x+ 2. If

m is even, then 3x + 1 of the edges are chosen to join vertex v to vertices in G1, while the

other 3x+ 1 are chosen to join vertex v and vertices in G2. If m is odd, then 3x of the edges

join vertex v and vertices in G1, while the other 3x+ 2 join vertex v and vertices in G2. For

the Type 3 edges, we carefully pick edges between two vertices in G1 or two vertices in G2

so that we build each vertex to degree 6x + 2. It turns out that the edges of Types 2 and

3 need not be precisely chosen if we use amalgamations to produce G. Instead we define H

and let Theorem 1.3 produce G.

The method used to construct the hamilton cycles is that of amalgamations. This

technique has been used successfully in this setting (see [8] for example). The amalgamation

used here is the graph homomorphism f : V (G)→ V (H) = (Zp\{2x})
⋃

({2x}×Z3) defined

as follows. For each i ∈ Zp\{2x} and for each j ∈ Z3, let f((i, j)) = i, and for each j ∈ Z3 let

f(2x, j) = (2x, j) = u, v, or w if j = 0, 1, or 2 respectively. So, except for the part containing

v, f amalgamates the vertices in each part into a single vertex in H with amalgamation

number 3. The vertices in the part containing v are not amalgamated by f , so each vertex

z has amalgamation number η(z) = 1. So we will require that dH(i) = 6m = 6(3x + 1) for

each i ∈ Zp \ {2x} and dH(i) = 2m = 2(3x+ 1) for each i ∈ {u, v, w}.

The subgraph B of H induced by the edges joining vertices in Z2x to vertices in Z4x+1 \

Z2x+1 is isomorphic to 9K2x,2x. Let ε = 1 or 0 if m is odd or even respectively. Join v to

vertices in Zx+1−ε and Z2x \ Zx+1−ε with 2 and 1 edges respectively, and join v to vertices

in Z3x+1+ε \ Z2x+1 and Z4x+1 \ Z3x+1+ε with 2 and 1 edges respectively; these produce Type

2 edges in G. Pair the vertices in Z2x \ Zx+1−ε and pair the vertices in Z4x+1 \ Z3x+1+ε, and

join each such pair with an edge; these produce the Type 3 edges in G. (Notice that each

set has an even size by definition of ε.)

Color the edges of H as follows. Since there exists a hamilton decomposition of K2x,2x,

the edges of B can be partitioned into 9x sets, each of which induces a hamilton cycle of H.

8



Let B0, ..., B3x be 3x+ 1 of these 9x sets, and color the edges in Bi with i for each i ∈ Zm.

Let H1 = H −⋃i∈Z3x+1
Bi. Then dH1(i) = 4m and dH1(i, j) = 2m.

We now give the subgraph H1 of H an evenly equitable edge coloring with the 3x + 1

colors in Z3x+1. Such a coloring exists by Theorem 1.4. Thus in H1 each color appears 4

times at each vertex z with η(z) = 3 and twice at each vertex z where η(z) = 1. So in H each

color now appears 6 times at each vertex where η = 3 and once where η = 1. We are now

assured that our color classes are connected and that each color appears on the appropriate

number of edges, namely 2η(z), at each vertex z.

The aim now is to disentangle our graph so that we can pick out our maximal set of

hamilton cycles. To be able to apply Lemma 1.1 we still must add more edges to H to form

H+ so that H+ satisfies properties (1-4) of Lemma 1.1 (i.e. so that it is an amalgamation of

K3p). So add edges to H so that between each pair of vertices x and y there are: exactly nine

edges if |{x, y} ∩ {u, v, w}| = 0; exactly three edges if |{x, y} ∩ {u, v, w}| = 1; and exactly

one edge if |{x, y} ∩ {u, v, w}| = 2. Finally, add three loops to each vertex not in {u, v, w}.

All these additional edges and loops are colored 0. It is straightforward to check that H+

satisfies properties (1-4) of Lemma 1.1, so we can now apply Theorem 1.3 to H+ to produce

G+, and edge-colored copy of K3p. Removing all edges in G+ corresponding to loops in

H+ produces Kp
n, and then removing all remaining edges colored 0 produces G. Each color

class in G is 2-regular by property (2) of Theorem 1.3, and is connected by property (3),

so is a hamilton cycle. Removing the edges in these hamilton cycles from Kp
n in particular

means that all Type 1 edges are removed, so produces a graph in which v is a cut vertex

(it is actually the graph induced by the edges (not loops) colored 0 in G+). So the required

maximal set of hamilton cycles has been produced.

So this chapter culminates in the following state of knowledge:

Theorem 2.2 There exists a maximal set of m hamilton cycles in Kp
n if and only if

9



1.
⌈
n(p−1)

4

⌉
≤ m ≤

⌊
n(p−1)

2

⌋
and

2. m > n(p−1)
4

if

(a) n is odd and p ≡ 1 (mod 4)), or

(b) p = 2, or

(c) n = 1,

except possibly when n = 3, p ≡ 3 (mod 4), and m =
⌈
n(p−1)

4

⌉
.
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Chapter 3

The p ≡ 3 (mod 4) Case

3.1 Introduction

In this chapter, we will resolve some of the cases in which n = 3 and p ≡ 3 (mod 4).

We begin in Section 3.2 by solving the two smallest cases individually, namely when p = 7

and when p = 11. Section 3.3 uses the solution for p = 7 outlined in Section 3.2 to provide

two approaches when p ≡ 7 (mod 8). One approach is based on a conjecture that, while

unproven in general, does provide a solution for the specific case of K39
3 . The other approach

uses theorems of Heinrich, Lindner, Rodger, and Burling (see [5] and [2]) that provide a

solution when n = 3, p = 7 + 8α, and α ≥ 3.

3.2 Small Cases p = 7 and p = 11

Theorem 3.1 There exists a maximal set of m = 5 edge disjoint hamilton cycles in K7
3 .

Proof We begin with the complete multipartite graph K7
3 , which we’ll refer to as G through-

out the proof. We view this complete multipartite graph as seven columns (parts named 0 to

6) and three rows (named 0, 1, and 2). Each vertex is then denoted as an ordered pair (i, j)

where i ∈ {0, 1, 2, 3, 4, 5, 6} (the part) and j ∈ {0, 1, 2} (the row). We divide the vertices of

the graph into three sections as follows:

L0 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0), (5, 0)},

R0 = {(1, 2), (2, 2), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2), (6, 0), (6, 1), (6, 2)}, and

v = (3, 1).

11



L0 R0v

1 2 3 4 5 60

0

1

2

Figure 3.1: Setup of three sections with edge cut depicted

The proof is driven by carefully choosing edges to include in the set of hamilton cycles,

S, so that v is a cut vertex in G− E(S). These edges in our hamilton cycles fall into three

categories: all edges between vertices in section L0 and vertices in section R0; certain edges

between v and vertices in section L0; and certain edges between v and vertices in section R0

(see Figure 3.2). Our plan is to make our edge set 10-regular considering only these types of

edges; it will be shown that there exists a hamilton decomposition of the subgraph induced

by these edges. The sections L0 and R0 are named to reflect the fact that the edges in S

join vertices on the left of the line in Figure 3.2 to vertices on the right, and the subscript 0

is added in anticipation of the generalization presented in 3.3.

L0 R0
v

Figure 3.2: Special edges in E(S)

Next, we use the technique of amalgamations described in Chapter 1. Our amalgamation

function f : V (G[E(S)])→ V (H) is defined as follows:

12



f(i, j) =



(0, 0) if i = 0,

(i, 0) if 1 ≤ i ≤ 2, j ≤ 1,

(i, 0) if 3 ≤ i ≤ 5, j = 0,

(i, 1) if 1 ≤ i ≤ 3, j = 2,

(i, 1) if 4 ≤ i ≤ 5, j ≥ 1,

(6, 1) if i = 6,

and since it plays a special role, we define f(3, 1) = v. So, V (H) now looks like Figure 3.3.

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

v

Figure 3.3: The Amalgamated H of G; the size of the vertex u represents the value of f(u).

The critical part in the proof is to color the edges in H so that for 1 ≤ i ≤ 5 (i) for all

u ∈ V (H), dH(i)(u) = 2f(u) and (ii) each color class H(i) is connected. These conditions

will allow us to disentangle H so that each color class is a hamilton cycle by properties 2

and 3 respectively of Theorem 1.3.

Our coloring is as follows:

First, each of the five paths below are colored in a different color, namely colors 1-5.

P1 = [(3, 0), (6, 1), (2, 0), (5, 1), (1, 0), (4, 1), (0, 0), (3, 1)]

P2 = [(2, 0), (1, 1), (0, 0), (3, 1), (1, 0), (2, 1), (3, 0), (5, 1), (4, 0), (6, 1), (5, 0), (4, 1)]

P3 = [(1, 0), (4, 1), (3, 0), (6, 1), (5, 0), (1, 1), (4, 0), (2, 1), (0, 0), (3, 1), (2, 0), (5, 1)]

P4 = [(1, 0), (4, 1), (5, 0), (2, 1), (0, 0), (1, 1), (3, 0), (6, 1), (4, 0), (3, 1), (2, 0), (5, 1)]

P5 = [(2, 0), (1, 1), (0, 0), (2, 1), (1, 0), (3, 1), (5, 0), (6, 1), (4, 0), (5, 1), (3, 0), (4, 1)]

Each of these paths is then joined to a path created from the edges in Figure 3.2, namely
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Q1 = [(3, 1), (1, 1), (2, 1), v, (4, 0), (5, 0), (3, 0)]

Q2 = [(4, 1), v, (2, 0)]

Q3 = [(5, 1), v, (1, 0)]

Q4 = [(5, 1), v, (1, 0)]

Q5 = [(4, 1), v, (2, 0)]

This creates the following cycles Ci = Pi ∪Qi:

C1 = ((3, 0), (6, 1), (2, 0), (5, 1), (1, 0), (4, 1), (0, 0), (3, 1), (1, 1), (2, 1), v, (4, 0), (5, 0))

C2 = ((2, 0), (1, 1), (0, 0), (3, 1), (1, 0), (2, 1), (3, 0), (5, 1), (4, 0), (6, 1), (5, 0), (4, 1), v)

C3 = ((1, 0), (4, 1), (3, 0), (6, 1), (5, 0), (1, 1), (4, 0), (2, 1), (0, 0), (3, 1), (2, 0), (5, 1), v)

C4 = ((1, 0), (4, 1), (5, 0), (2, 1), (0, 0), (1, 1), (3, 0), (6, 1), (4, 0), (3, 1), (2, 0), (5, 1), v)

C5 = ((2, 0), (1, 1), (0, 0), (2, 1), (1, 0), (3, 1), (5, 0), (6, 1), (4, 0), (5, 1), (3, 0), (4, 1), v)

Illustrations of these paths are given in Figure 3.4.
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(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(1, 1)(2, 1)(3, 1)(4, 1)(5, 1) (6, 1)

Figure 3.4: Ci = Pi ∪Qi
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We have now colored most of the edges in E(S). Left to color are the edges between

{(1, 0), (2, 0), (3, 0)} ∈ L0 and {(4, 1), (5, 1), (6, 1)} ∈ R0 that were not used in the cycles

denoted by Ci above. Each vertex has degree ten, so we will give these edges an evenly

equitable edge coloring with five colors, namely 1-5. Now each of our five colors appears at

each vertex u a total 2f(u) more times and each color class is connected.

The next goal is to disentangle the graph H. To be able to apply Lemma 1.1, we need

to use the same technique as in the p ≡ 1 (mod 4) case which required adding edges to our

graph H so that it is the amalgamation of the complete graph K3p. All of these additional

edges and loops are colored 0. We call this new graph H+ and note that it now satisfies the

conditions of Lemma 1.1. Thus we apply Theorem 1.3 to H+ to produce G+, which is an

edge-colored copy of K3p. We now remove all edges in G+ colored 0. Using Theorem 1.3, we

see that each color class is 2-regular by (i) and connected by (ii), which implies that each

color class is a hamilton cycle. We now consider G − E(S). Note that all edges between

vertices in L0 and R0 were in E(S), so we have that G− E(S) has cut vertex v. So our set

of hamilton cycles is maximal.

Theorem 3.2 There exists a maximal set of m = 8 edge disjoint hamilton cycles in K11
3 .

Proof We begin with the complete multipartite graphK11
3 , which we’ll refer to asG through-

out the proof. This construction will be very similar to that of K7
3 from Section 3.1. We

view this complete multipartite graph as eleven columns (parts named 0 to 10) and three

rows (named 0, 1, and 2). Each vertex is then denoted as an ordered pair (i, j) where

i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (the part) and j ∈ {0, 1, 2} (the row). We divide the vertices

of the graph into three sections as follows:

L0 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1), (5, 0), (6, 0),

(7, 0), (8, 0), (9, 0)},
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R0 = {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 0), (6, 1), (7, 0), (7, 1), (8, 0), (8, 1), (9, 0), (9, 1),

(10, 0), (10, 1), (10, 2)}, and

v = (5, 1).

L0

1 2 3 4 5 60

0

1

2

7 8 9 10

R0v

Figure 3.5: Setup of three sections with edge cut depicted

The proof is driven by carefully choosing edges to include in the set of hamilton cycles,

S, so that v is a cut vertex in G− E(S). These edges in our hamilton cycles fall into three

categories: all edges between vertices in section L0 and vertices in section R0; certain edges

between v and vertices in section L0; and certain edges between v and vertices in section R0

(see Figure 3.6). Our plan is to make our edge set 16-regular considering only these types of

edges; it will be shown that there exists a hamilton decomposition of the subgraph induced

by these edges. The sections L0 and R0 are named to reflect the fact that the edges in S

join vertices on the left of the line in Figure 3.5 to vertices on the right, and the subscript 0

is added in anticipation of a general solution similar to when p ≡ 7 (mod 8).

L0 R0v

Figure 3.6: Special edges in E(S)

Next, we use the technique of amalgamations described in Chapter 1. Our amalgamation

function f : V (G[E(S)])→ V (H) is defined as follows:

17



f(i, j) =



(0, 0) if i = 0,

(i, 0) if 1 ≤ i ≤ 4, j ≤ 1,

(i, 0) if 5 ≤ i ≤ 9, j = 0,

(i, 1) if 1 ≤ i ≤ 5, j = 2,

(i, 1) if 6 ≤ i ≤ 9, j ≥ 1,

(10, 1) if i = 10,

and since it plays a special role, we define f(5, 1) = v. So, V (H) now looks like Figure 3.7.

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

v

Figure 3.7: The Amalgamated H of G; the size of the vertex u represents the value of f(u).

The critical part in the proof is to color the edges in H so that for 1 ≤ i ≤ 8 (i) for all

u ∈ V (H), dH(i)(u) = 2f(u) and (ii) each color class H(i) is connected. These conditions

will allow us to disentangle H so that each color class is a hamilton cycle by properties 2

and 3 respectively of Theorem 1.3.

Our coloring is as follows:

First, each of the eight paths below are colored in a different color, namely colors 1-8.

P1 = [(1, 0), (4, 1), (5, 0), (3, 1), (6, 0), (2, 1), (0, 0), (1, 1), (2, 0), (5, 1), (3, 0), (6, 1), (4, 0),

(7, 1), (8, 0), (10, 1), (9, 0), (8, 1), (7, 0), (9, 1)]

P2 = [(2, 0), (4, 1), (0, 0), (3, 1), (1, 0), (5, 1), (4, 0), (1, 1), (3, 0), (2, 1), (5, 0), (9, 1), (6, 0),

(10, 1), (7, 0), (6, 1), (8, 0), (7, 1), (9, 0), (8, 1)]

P3 = [(3, 0), (1, 1), (4, 0), (2, 1), (0, 0), (3, 1), (1, 0), (4, 1), (2, 0), (6, 1), (5, 0), (8, 1), (7, 0),

(9, 1), (8, 0), (5, 1), (9, 0), (10, 1), (6, 0), (7, 1)]

P4 = [(4, 0), (3, 1), (2, 0), (5, 1), (0, 0), (1, 1), (5, 0), (7, 1), (6, 0), (8, 1), (3, 0), (9, 1), (1, 0),
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(2, 1), (7, 0), (10, 1), (8, 0), (4, 1), (9, 0), (6, 1)]

P5 = [(4, 0), (5, 1), (3, 0), (4, 1), (0, 0), (2, 1), (8, 0), (3, 1), (9, 0), (1, 1), (7, 0), (10, 1), (5, 0),

(9, 1), (6, 0), (8, 1), (2, 0), (7, 1), (1, 0), (6, 1)]

P6 = [(3, 0), (8, 1), (5, 0), (10, 1), (6, 0), (1, 1), (8, 0), (6, 1), (9, 0), (2, 1), (1, 0), (5, 1), (0, 0),

(4, 1), (7, 0), (3, 1), (2, 0), (9, 1), (4, 0), (7, 1)]

P7 = [(1, 0), (8, 1), (2, 0), (1, 1), (0, 0), (3, 1), (4, 0), (2, 1), (3, 0), (4, 1), (6, 0), (5, 1), (7, 0),

(6, 1), (5, 0), (7, 1), (9, 0), (10, 1), (8, 0), (9, 1)]

P8 = [(5, 0), (10, 1), (4, 0), (9, 1), (3, 0), (8, 1), (2, 0), (7, 1), (1, 0), (6, 1), (0, 0), (5, 1)]

Each of these paths is then joined to a path created from the edges in Figure 3.6, namely

Q1 = [(9, 1), v, (1, 0)]

Q2 = [(8, 1), v, (2, 0)]

Q3 = [(7, 1), v, (3, 0)]

Q4 = [(6, 1), v, (4, 0)]

Q5 = [(6, 1), v, (4, 0)]

Q6 = [(7, 1), v, (3, 0)]

Q7 = [(9, 1), v, (1, 0)]

Q8 = [(5, 1), (4, 1), (3, 1), (2, 1), (1, 1), v, (9, 0), (8, 0), (7, 0), (6, 0), (5, 0)]

This creates the following cycles Ci = Pi ∪Qi:

C1 = ((1, 0), (4, 1), (5, 0), (3, 1), (6, 0), (2, 1), (0, 0), (1, 1), (2, 0), (5, 1), (3, 0), (6, 1), (4, 0),

(7, 1), (8, 0), (10, 1), (9, 0), (8, 1), (7, 0), (9, 1), v)

C2 = ((2, 0), (4, 1), (0, 0), (3, 1), (1, 0), (5, 1), (4, 0), (1, 1), (3, 0), (2, 1), (5, 0), (9, 1), (6, 0),

(10, 1), (7, 0), (6, 1), (8, 0), (7, 1), (9, 0), (8, 1), v)

C3 = ((3, 0), (1, 1), (4, 0), (2, 1), (0, 0), (3, 1), (1, 0), (4, 1), (2, 0), (6, 1), (5, 0), (8, 1), (7, 0),

(9, 1), (8, 0), (5, 1), (9, 0), (10, 1), (6, 0), (7, 1), v)

C4 = ((4, 0), (3, 1), (2, 0), (5, 1), (0, 0), (1, 1), (5, 0), (7, 1), (6, 0), (8, 1), (3, 0), (9, 1), (1, 0),
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(2, 1), (7, 0), (10, 1), (8, 0), (4, 1), (9, 0), (6, 1), v)

C5 = ((4, 0), (5, 1), (3, 0), (4, 1), (0, 0), (2, 1), (8, 0), (3, 1), (9, 0), (1, 1), (7, 0), (10, 1), (5, 0),

(9, 1), (6, 0), (8, 1), (2, 0), (7, 1), (1, 0), (6, 1), v)

C6 = ((3, 0), (8, 1), (5, 0), (10, 1), (6, 0), (1, 1), (8, 0), (6, 1), (9, 0), (2, 1), (1, 0), (5, 1), (0, 0),

(4, 1), (7, 0), (3, 1), (2, 0), (9, 1), (4, 0), (7, 1), v)

C7 = ((1, 0), (8, 1), (2, 0), (1, 1), (0, 0), (3, 1), (4, 0), (2, 1), (3, 0), (4, 1), (6, 0), (5, 1), (7, 0),

(6, 1), (5, 0), (7, 1), (9, 0), (10, 1), (8, 0), (9, 1), v)

C8 = ((5, 0), (10, 1), (4, 0), (9, 1), (3, 0), (8, 1), (2, 0), (7, 1), (1, 0), (6, 1), (0, 0), (5, 1), (4, 1),

(3, 1), (2, 1), (1, 1), v, (9, 0), (8, 0), (7, 0), (6, 0))

Illustrations of these paths are given in Figures 3.8 and 3.9.
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L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

Figure 3.8: Ci = Pi ∪Qi; cycles 1-4

We have now colored most of the edges in E(S). Left to color are the edges between

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)} ∈ L0 and {(6, 1), (7, 1), (8, 1), (9, 1), (10, 1)} ∈ R0 that were

not used in the cycles denoted by Ci above. Each vertex has degree sixteen, so we will give

these edges an evenly equitable edge coloring with eight colors, namely 1-8. Now each of

our eight colors appears at each vertex u a total 2f(u) more times and each color class is

connected.

The next goal is to disentangle the graph H. To be able to apply Lemma 1.1, we need

to use the same technique as in the p ≡ 1 (mod 4) case which required adding edges to our

graph H so that it is the amalgamation of the complete graph K3p. All of these additional

edges and loops are colored 0. We call this new graph H+ and note that it now satisfies the

conditions of Lemma 1.1. Thus we apply Theorem 1.3 to H+ to produce G+, which is an
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L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

L0

R0

(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)

(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)

Figure 3.9: Ci = Pi ∪Qi; cycles 5-8

edge-colored copy of K3p. We now remove all edges in G+ colored 0. Using Theorem 1.3, we

see that each color class is 2-regular by (i) and connected by (ii), which implies that each

color class is a hamilton cycle. We now consider G − E(S). Note that all edges between

vertices in L0 and R0 were in E(S), so we have that G− E(S) has cut vertex v. So our set

of hamilton cycles is maximal.

3.3 p ≡ 7 (mod 8), p ≥ 31

As mentioned in the introduction to this chapter, we present two approaches to the

general case when n = 3 and p ≡ 7 (mod 8). We begin by stating the following unproven

conjecture.
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Conjecture 3.1 Let z ≥ 5. There exist 1-factorizations F = {Fi | i ∈ Zz} and G = {Gi |

i ∈ Zz} of Kz,z with vertex set Zz × Z2 such that for all i ∈ Zz,

1. {(0, 0), (i, 1)} and {(0, 1), (i, 0)} are in Fi if i 6= 0, and {(i, 0), (i, 1)} is in F0,

2. {(i, 0), (i, 1)} is in Gi, and

3. Fi ∪Gi is connected if i ≥ 1.

Conditions (1-3) of Conjecture 3.1 cannot be satisfied if z ≤ 4.

Lemma 3.1 Conjecture 3.1 holds for z = 5.

Proof Let F be

F0 = {{(0, 0), (0, 1)}, {(1, 0), (1, 1)}, {(2, 0), (2, 1)}, {(3, 0), (3, 1)}, {(4, 0), (4, 1)}}

F1 = {{(0, 0), (1, 1)}, {(1, 0), (0, 1)}, {(2, 0), (3, 1)}, {(3, 0), (4, 1)}, {(4, 0), (3, 1)}}

F2 = {{(0, 0), (2, 1)}, {(1, 0), (4, 1)}, {(2, 0), (0, 1)}, {(3, 0), (1, 1)}, {(4, 0), (3, 1)}}

F3 = {{(0, 0), (3, 1)}, {(1, 0), (2, 1)}, {(2, 0), (4, 1)}, {(3, 0), (0, 1)}, {(4, 0), (1, 1)}}

F4 = {{(0, 0), (4, 1)}, {(1, 0), (3, 1)}, {(2, 0), (1, 1)}, {(3, 0), (2, 1)}, {(4, 0), (0, 1)}}

Let G be

G0 = {{(0, 0), (0, 1)}, {(1, 0), (2, 1)}, {(2, 0), (1, 1)}, {(3, 0), (4, 1)}, {(4, 0), (3, 1)}}

G1 = {{(0, 0), (3, 1)}, {(1, 0), (1, 1)}, {(2, 0), (4, 1)}, {(3, 0), (2, 1)}, {(4, 0), (0, 1)}}

G2 = {{(0, 0), (4, 1)}, {(1, 0), (3, 1)}, {(2, 0), (2, 1)}, {(3, 0), (0, 1)}, {(4, 0), (1, 1)}}
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G3 = {{(0, 0), (1, 1)}, {(1, 0), (4, 1)}, {(2, 0), (0, 1)}, {(3, 0), (3, 1)}, {(4, 0), (2, 1)}}

G4 = {{(0, 0), (2, 1)}, {(1, 0), (0, 1)}, {(2, 0), (3, 1)}, {(3, 0), (1, 1)}, {(4, 0), (4, 1)}}

Then we have hamilton cycles induced by the following sets of edges:

F1 ∪G1 = {{(0, 0), (1, 1)}, {(1, 0), (1, 1)}, {(1, 0), (0, 1)}, {(4, 0), (0, 1)}, {(4, 0), (2, 1)},

{(3, 0), (2, 1)}, {(3, 0), (4, 1)}, {(2, 0), (4, 1)}, {(2, 0), (3, 1)}, {(0, 0), (3, 1)}}

F2 ∪G2 = {{(0, 0), (2, 1)}, {(2, 0), (2, 1)}, {(2, 0), (0, 1)}, {(3, 0), (0, 1)}, {(3, 0), (1, 1)},

{(4, 0), (1, 1)}, {(4, 0), (3, 1)}, {(1, 0), (3, 1)}, {(1, 0), (4, 1)}, {(0, 0), (4, 1)}}

F3 ∪G3 = {{(0, 0), (3, 1)}, {(3, 0), (3, 1)}, {(3, 0), (0, 1)}, {(2, 0), (0, 1)}, {(2, 0), (4, 1)},

{(1, 0), (4, 1)}, {(1, 0), (2, 1)}, {(4, 0), (2, 1)}, {(4, 0), (1, 1)}, {(0, 0), (1, 1)}}

F4 ∪G4 = {{(0, 0), (4, 1)}, {(4, 0), (4, 1)}, {(4, 0), (0, 1)}, {(1, 0), (0, 1)}, {(1, 0), (3, 1)},

{(2, 0), (3, 1)}, {(2, 0), (1, 1)}, {(3, 0), (1, 1)}, {(3, 0), (2, 1)}, {(0, 0), (2, 1)}}

F , G, and Fi ∪ Gi, 1 ≤ i ≤ 4 are pictured in Figures 3.10, 3.11, and 3.12. The bold

edges represent those required by Conditions (1-2) in Conjecture 3.1.

In proving Theorem 3.4, we can use Conjecture 3.1, but could also make use of the

following result.

Let 2Kn denote the multigraph on n vertices in which each pair of vertices is joined by

exactly two edges. An i-factor of a graph G is a spanning subgraph of G that is regular of
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Figure 3.10: F = {Fi | i ∈ Z5}

degree i. An m-cycle decomposition of a graph G is a collection of edge-disjoint m-cycles

which partition the edge set E(G). An m-cycle decomposition C(m) is resolvable if the

m-cycles in C(m) can be partitioned into 2-factors of G. A subgraph X of a graph G is an

almost parallel class if for some vertex v, X is a 2-factor of G− v. In this case v is called the

deficiency of the almost parallel class and is denoted by d(X). An m-cycle decomposition

C(m) is almost resolvable if C(m) can be partitioned into almost parallel classes.

From results of Heinrich, Lindner, Rodger, and Burling, we have the following theorem.

Theorem 3.3 [2, 5] For all m ≥ 3, there exists an almost resolvable m-cycle system of 2Kn

if and only if n ≡ 1 (mod m).

Theorem 3.4 Let α ≥ 3, let n = 3, and let p = 7 + 8α. There exists a maximal set of

m =
⌈
3(p−1)

4

⌉
= 3x+ 2 edge disjoint hamilton cycles in Kp

n.

25



(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

G2

G3 G4

G0

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

G1

Figure 3.11: G = {Gi | i ∈ Z5}

Proof The case when p = 7 is settled in Theorem 3.1, so we now use our construction for K7
3

to produce a maximal set S of hamilton cycles when p = 7 + 8α. Recall that in producing a

maximal set of hamilton cycles for K7
3 , we viewed our complete multipartite graph as having

seven columns of three vertices each. We then split this graph into two sections denoted L0

and R0 and a single vertex v. As we generalize this case, we start with the aforementioned

seven parts and add more in groups of eight. We will visualize this with four parts on each

side of the original seven parts. The eight new parts are viewed as eight columns (parts

named 0 to 7) and three rows (named 0, 1, and 2). We follow the same naming convention

as before, except we include a third coordinate. The original vertices in K7
3 are now named

(i, j, 0) instead of (i, j) as before. Each new vertex is then denoted as an ordered triple

(i, j, x) where i ∈ {0, 1, 2, 3, 4, 5, 6, 7} (the part), j ∈ {0, 1, 2} (the row) and x ∈ Zα+1 \ {0}.

These vertices are then grouped into two new sections Lx and Rx, x ∈ Zα+1 as follows
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Figure 3.12: Fi ∪Gi, 1 ≤ i ≤ 4

Lx = {(0, 0, x), (0, 1, x), (0, 2, x), (0, 3, x), (1, 0, x), (1, 1, x), (1, 2, x), (1, 3, x),

(2, 0, x), (2, 1, x), (2, 2, x), (2, 3, x)}, and

Rx = {(0, 4, x), (0, 5, x), (0, 6, x), (0, 6, x), (1, 4, x), (1, 5, x), (1, 6, x), (1, 7, x),

(2, 4, x), (2, 5, x), (2, 6, x), (2, 7, x)}

So, our vertex set is {Z7×Z3}
⋃{Z8×Z3×Zα+1 \ {0}}. Thus, for each x ∈ Zα+1 \ {0},

Lx = {Z4×Z3×{x}}\{(2, 2, x), (3, 2, x)}⋃{(4, 0, x), (5, 0, x)} and Rx = {Z4×Z3×{x}}\Lx.

Therefore, V (Kp
n) = L

⋃
R
⋃{v}, where v = (3, 1, 0), L =

⋃
x∈Zα Lx, and R =

⋃
x∈Zα Rx.

This can be viewed in Figure 3.13.

As before, our aim is to produce a set of colored edges E(S) in G = Kp
n that form

m = 3p−1
4

= 6x+ 5 hamilton cycles such that in the complement, G−E(S), v is a cut vertex

ensuring that our set is indeed maximal. The edges chosen are as follows:

Type 1: All edges that join a vertex in L to a vertex in R.
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v

L0L1Lα L1 Lα

R0 R1 RαR1Rα

Figure 3.13: Set up of K7+8α
3

Type 2: All special edges from the p = 7 case. (These were denoted as Type 2 and Type 3

edges previously.)

Type 3: Specific edges incident with v, along with edges among vertices of Lx and edges among

vertices of Rx, namely {{v, (i, j, x)} | i ∈ {2, 3}, j ∈ {0, 1}, 1 ≤ x ≤ α}∪ {{v, (i, j, x)} |

i ∈ {4, 5}, j ∈ {1, 2}, 1 ≤ x ≤ α} ∪ {{v, (i, j, x)} | i ∈ {2, 3}, j = 2, 1 ≤ x ≤ α} ∪

{{v, (i, j, x)} | i ∈ {4, 5}, j = 0, 1 ≤ x ≤ α}∪{{(2, 2, x), (3, 2, x)}, {(4, 0, x), (5, 0, x)}} |

1 ≤ x ≤ α}. (These are shown in Figure 3.14.)

v

L0L1 L1

R0 R1R1

Figure 3.14: Type 3 Edges

It remains to show that these edges induce a graph which has a hamilton decomposition.

To do so, the technique of amalgamations will be used to aid in the proof. The amalgamation

function f : V (G[E(S)]) → V (H) is defined as follows and is pictured in Figure 3.15. For

all vertices in L0∪R0∪ v, f(i, j, 0) = f(i, j), where f(i, j) is defined in the proof of Theorem

3.1. If x ∈ {1, ..., α}, then

28



f(i, j, x) =



(i, 0, x) if i ∈ {0, 1},

(i, 0, x) if i ∈ {2, 3} and j ∈ 0, 1,

(i, 0, x) if i ∈ {4, 5} and j = 0,

(i, 2, x) if i ∈ {2, 3} and j = 2,

(i, 2, x) if i ∈ {4, 5} and j ∈ {1, 2},

(i, 2, x) if i ∈ {6, 7}.

L0

R0 R1

L1

v

L1

R1

Figure 3.15: The Amalgamated Graph H; the size of the vertex indicated its amalgamation
number

It is helpful now to shift our view of this amalgamated graph to where the Li’s and Ri’s

each form a column. Our special vertex v is then pictured above these columns in the center

(see Figure 3.16). Vertices in the same row have the same amalgamation number.

Now, we must color our edge set so that conditions (1-4) of Lemma 1.1 are satisfied

in order that Theorem 1.3 can be applied. This is done by coloring the graph in small

pieces and then connecting them afterward. These small pieces consist of the trails, denoted

T1(x), T2(x), ..., T6(x), and hamilton cycles on the vertices of Li and Rj, denoted H(i, j, c).

Recall from Chapter 1 that trails are denoted using brackets and cycles are denoted using

parentheses. These pieces are defined as follows:

• Hamilton cycles on the vertices in L0 and R0: Use the same construction of five

hamilton cycles in the proof of Theorem 3.1. We now rename these H(0, 0, c), c ∈ Z5

and picture them in Figure 3.17.

• Eulerian Trails on the vertices in L0, Rx, Lx and R0, 1 ≤ x ≤ α: The edges

of these trails are defined below. Each trail is defined so that (1) it spans the vertices
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(7, 2, α)
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Figure 3.16: Column View of Amalgamated Graph

{v}∪L0∪R0∪Lx∪Rx (where x ∈ Zα\{0}), and (2) each vertex has degree 2 except for

(0, 0, x), (1, 0, x), (6, 2, x), and (7, 2, x), which each have degree 4. We begin defining

our trails with a subtrail T ′i (x).

For each x ∈ {1, ..., α}, let

T ′0(x) = [(2, 2, x), (0, 0, 0), (6, 2, x), (2, 0, 0), (6, 2, x), (5, 0, 0), (7, 2, x),

(3, 0, 0), (5, 2, x), (1, 0, 0), (4, 2, x), (4, 0, 0), (7, 2, x)]

T ′1(x) = [(2, 2, x), (0, 0, 0), (6, 2, x), (2, 0, 0), (7, 2, x), (3, 0, 0), (3, 2, x)

(5, 0, 0), (4, 2, x), (1, 0, 0), (5, 2, x), (4, 0, 0), (7, 2, x)]

T ′2(x) = [(4, 2, x), (3, 0, 0), (6, 2, x), (2, 0, 0), (2, 2, x), (0, 0, 0), (7, 2, x),

(4, 0, 0), (3, 2, x), (1, 0, 0), (5, 2, x), (5, 0, 0), (7, 2, x)]
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Figure 3.17: Hamilton Cycles H(0, 0, c), 1 ≤ c ≤ 5

T ′3(x) = [(4, 2, x), (5, 0, 0), (2, 2, x), (2, 0, 0), (7, 2, x), (0, 0, 0), (3, 2, x),

(1, 0, 0), (5, 2, x), (4, 0, 0), (6, 2, x), (3, 0, 0), (6, 2, x)]

T ′4(x) = [(5, 2, x), (3, 0, 0), (4, 2, x), (1, 0, 0), (2, 2, x), (4, 0, 0), (6, 2, x),

(5, 0, 0), (7, 2, x), (2, 0, 0), (3, 2, x), (0, 0, 0), (6, 2, x)]

T ′5(x) = [(5, 2, x), (5, 0, 0), (6, 2, x), (4, 0, 0), (4, 2, x), (1, 0, 0), (2, 2, x),

(3, 0, 0), (7, 2, x), (2, 0, 0), (3, 2, x), (0, 0, 0), (7, 2, x)]

Now, for each trail T ′(x), let g(T ′(x)) be the trail formed by replacing each vertex

u ∈ V (T ′(x)) with the vertex g(u), where g is defined by:

g(i, 0, x) =


(7− i, 2, x) if i ∈ Z8 and x ∈ Zα \ {0},

(6− i, 2, x) if i ∈ Z7 and x = 0,

and g2 is the identity map on V.

Define the required trails as follows:
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T0(x) = T ′0(x) ∪ g(T ′0(x)) ∪ [(5, 0, x), (4, 0, x), v, (3, 2, x), (2, 2, x)] ∪ [(0, 0, x), (7, 2, x)]

T1(x) = T ′1(x)∪g(T ′1(x))∪[(5, 0, x), v, (2, 2, x)]∪[(1, 0, x), (6, 2, x), (1, 0, x)]∪[(0, 0, x), (7, 2, x)]

T2(x) = T ′2(x) ∪ g(T ′2(x)) ∪ [(3, 0, x), v, (4, 2, x)] ∪ [(0, 0, x), (6, 2, x), (1, 0, x), (7, 2, x)]

T3(x) = T ′3(x) ∪ g(T ′3(x)) ∪ [(3, 0, x), v, (4, 2, x)] ∪ [(1, 0, x), (7, 2, x), (0, 0, x), (6, 2, x)]

T4(x) = T ′4(x) ∪ g(T ′4(x)) ∪ [(2, 0, x), v, (5, 2, x)] ∪ [(1, 0, x), (7, 2, x), (0, 0, x), (6, 2, x)]

T5(x) = T ′5(x) ∪ g(T ′5(x)) ∪ [(2, 0, x), v, (5, 2, x)] ∪ [(0, 0, x), (6, 2, x), (1, 0, x), (7, 2, x)]

• Hamilton cycles on the vertices in Lx and Ry, for 1 ≤ x, y ≤ α: These cycles

are defined below and pictured in Figure 3.19.

H(i, j, 0) = ((0, 0, x), (2, 2, y), (5, 0, x), (7, 2, y), (4, 0, x), (6, 2, y), (3, 0, x),

(5, 2, y), (2, 0, x), (4, 2, y), (1, 0, x), (3, 2, y))

H(i, j, 1) = ((0, 0, x), (3, 2, y), (1, 0, x), (2, 2, y), (2, 0, x), (7, 2, y), (3, 0, x),

(6, 2, y), (5, 0, x), (5, 2, y), (4, 0, x), (4, 2, y))

H(i, j, 2) = ((0, 0, x), (2, 2, y), (4, 0, x), (3, 2, y), (3, 0, x), (7, 2, y), (2, 0, x),

(6, 2, y), (5, 0, x), (4, 2, y), (1, 0, x), (5, 2, y))

H(i, j, 3) = ((0, 0, x), (4, 2, y), (5, 0, x), (3, 2, y), (2, 0, x), (6, 2, y), (4, 0, x),

(7, 2, y), (3, 0, x), (2, 2, y), (1, 0, x), (5, 2, y))

H(i, j, 4) = ((0, 0, x), (2, 2, y), (1, 0, x), (4, 2, y), (4, 0, x), (7, 2, y), (5, 0, x),

(5, 2, y), (3, 0, x), (6, 2, y), (2, 0, x), (3, 2, y))

H(i, j, 5) = ((0, 0, x), (4, 2, y), (1, 0, x), (3, 2, y), (3, 0, x), (2, 2, y), (2, 0, x),

(7, 2, y), (5, 0, x), (6, 2, y), (4, 0, x), (5, 2, y))

• Hamilton cycles on the vertices in Lx and Rx for 1 ≤ x ≤ α: These cycles are

defined below and shown in Figure 3.20.
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Figure 3.18: Coloring Tc(x) with 6x+ c
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Figure 3.19: Coloring H(i, j, c) with 6x+ c
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H(i, i, 1) = ((0, 0, x), (5, 2, x), (1, 0, x), (3, 2, x), (2, 0, x), (7, 2, x), (4, 0, x),

(6, 2, x), (5, 0, x), (4, 2, x), (3, 0, x), (2, 2, x))

H(i, i, 2) = ((0, 0, x), (3, 2, x), (4, 0, x), (5, 2, x), (3, 0, x), (6, 2, x), (2, 0, x),

(7, 2, x), (5, 0, x), (4, 2, x), (1, 0, x), (2, 2, x))

H(i, i, 3) = ((0, 0, x), (4, 2, x), (2, 0, x), (5, 2, x), (1, 0, x), (2, 2, x), (4, 0, x),

(6, 2, x), (3, 0, x), (7, 2, x), (5, 0, x), (3, 2, x))

H(i, i, 4) = ((0, 0, x), (4, 2, x), (3, 0, x), (5, 2, x), (4, 0, x), (7, 2, x), (5, 0, x),

(6, 2, x), (2, 0, x), (3, 2, x), (1, 0, x), (2, 2, x))

H(i, i, 5) = ((0, 0, x), (4, 2, x), (2, 0, x), (7, 2, x), (4, 0, x), (6, 2, x), (5, 0, x),

(2, 2, x), (3, 0, x), (5, 2, x), (1, 0, x), (3, 2, x))

Let F and G be 1-factorizations of Kα+1,α+1 satisfying Conditions (1-3) of Conjecture

3.1. Associate the 1-factor Fx (for 1 ≤ x ≤ α) with the colors 6x, 6x + 1, 6x + 2, 6x + 3,

6x+ 4, and 6x+ 5 as follows. (Note that F0 will be associated with only the colors 1, 2, 3, 4,

and 5. These five colors correspond the the construction of K7
3 , where there is no color 0.)

For each edge {(a, 0), (b, 1)}, a, b 6= 0, in Fx, x > 0, the hamilton cycles H(a, b, c), for each

c ∈ Z6 are colored 6x + c. For each of the edges {(a, 0), (0, 1)} and {(0, 0), (b, 1)} in Fx, we

use the trails T0(x), T1(x), ..., T5(x) given in Figure 3.18, coloring Tc with 6x+ c. For F0 we

have that all edges are of the form {(a, 0), (a, 1)}. For a 6= 0, we color the cycles of Figure

3.20, denoted by H(i, i, c), with colors 1, 2, 3, 4, and 5. Edge {(0, 0), (0, 1)} corresponds to

the 5 hamilton cycles constructed for K7
3 that are colored as in the proof of Theorem 3.1.

At this point, we note that almost every vertex is incident with exactly 2 edges of

each color. The only exceptions are all the vertices (i, j, x) with amalgamation number 3

and x ≥ 1, namely (0, 0, x), (1, 0, x), (7, 2, x), and (6, 2, x), for all x ∈ {1, 2, ..., α}; these

exceptional vertices are incident with 4 edges of colors 6x, 6x + 1, 6x + 2, 6x + 3, 6x + 4,

and 6x+ 5 and with 2 edges of all other colors.
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Figure 3.20: Coloring H(i, i, c) with 6x+ c
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It is also important to note that the cycles and trails used to color the edges so far

purposely did not use many edges between vertices with amalgamation number 3. Namely,

there are no edges between vertices in {(0, 0, x), (1, 0, x)} and vertices in {(7, 2, y), (6, 2, y)}

for 1 ≤ x, y ≤ α, x 6= y. For 1 ≤ x ≤ α, there are precisely 4 (of the 9) edges joining

vertices in {(0, 0, x), (1, 0, x)} to vertices in {(7, 2, x), (6, 2, x)} colored so far. For 1 ≤ x ≤ α,

there are exactly 3 edges used between (0, 0, 0) and (7, 2, x), (0, 0, 0) and (6, 2, x), (6, 2, 0)

and (0, 0, x), and (6, 2, 0) and (1, 0, x). There are no edges used between the vertex (1, 0, 0)

(which has amalgamation number two) and vertices in {(7, 2, x), (6, 2, x)} for 1 ≤ x ≤ α

and, symmetrically, no edges used between (5, 2, 0) (which also has amalgamation number

two) and vertices in {(0, 0, x), (1, 0, x)} for 1 ≤ x ≤ α. We have done this to allow room

to connect our color classes. Most importantly, there are at least six edges left between

vertices mentioned above, with the exception that there are only five left between vertices

in {(0, 0, x), (1, 0, x)} and vertices in {(7, 2, x), (6, 2, x)} for 1 ≤ x ≤ α. Tables 3.1, 3.2, 3.3,

and 3.4 summarize this information. Each cell gives the number of edges used between the

vertices given in the heading of the row and column. Each cell is further divided into a 2× 3

table, with cell (1, 1) corresponding to the hamilton cycle or eulerian trail colored 6x, cell

(1, 2) corresponding to the hamilton cycle or eulerian trail colored 6x+ 1, etc.

We now connect our color classes. To do so, we either use Conditions (2-3) of Conjecture

3.1 or we use results from [5] and [2], so we present each in turn.

Using Conjecture 3.1 to connect the color classes

By Condition (2) of Conjecture 3.1, the rainbow one factor appears as the “horizontal”

edges. For 1 ≤ x ≤ α and for each edge {(a, 0), (b, 1)} ∈ Gx with a 6= b (so by Condition 2

of Conjecture 3.1, a 6= x), color six copies of the 4-cycle ((0, 0, i), (7, 2, j), (1, 0, i), (6, 2, j)),

the cth copy being colored with 6x + c where c ∈ Z6. Note that this boosts the degree

of the vertices involved to four in each color class. (We leave out edges where a = b both

because vertices in Li and Ri are already connected in those color classes by the construction

of Tc(x), and because the vertices (0, 0, x), (1, 0, x), (7, 2, x), and (6, 2, x) for 1 ≤ x ≤ α are
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(7,2,y) (6,2,y) (5,2,y) (4,2,y) (3,2,y) (2,2,y)
η = 3 η = 3 η = 2 η = 2 η = 1 η = 1

(0,0,x) 1 1 1 1 1 1
η = 3 1 1 1 1 1 1
(1,0,x) 1 1 1 1 1 1
η = 3 1 1 1 1 1 1
(2,0,x) 1 1 1 1 1 1
η = 2 1 1 1 1 1 1
(3,0,x) 1 1 1 1 1 1
η = 2 1 1 1 1 1 1
(4,0,x) 1 1 1 1 1 1
η = 1 1 1 1 1 1 1
(5,0,x) 1 1 1 1 1 1
η = 1 1 1 1 1 1 1

Table 3.1: Number of Edges used in H(i, j, c) with 0 ≤ c ≤ 5, broken down by color class

(7,2,x) (6,2,x) (5,2,x) (4,2,x) (3,2,x) (2,2,x)
η = 3 η = 3 η = 2 η = 2 η = 1 η = 1

(0,0,x) 1 1 1 1 1 1
η = 3 1 1 1 1
(1,0,x) 1 1 1 1 1 1
η = 3 1 1 1 1
(2,0,x) 1 1 1 1 1 1
η = 2 1 1 1 1
(3,0,x) 1 1 1 1 1 1
η = 2 1 1 1 1
(4,0,x) 1 1 1 1 1 1
η = 1 1 1 1 1
(5,0,x) 1 1 1 1 1 1
η = 1 1 1 1 1

Table 3.2: Number of Edges used in H(i, i, c) with 1 ≤ c ≤ 5, broken down by color class
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(7,2,x) (6,2,x) (5,2,x) (4,2,x) (3,2,x) (2,2,x)
η = 3 η = 3 η = 2 η = 2 η = 1 η = 1

(0,0,0) 1 1 1 1 1 1
η = 3 1 1 1 1 1 1
(1,0,0) 1 1 1 1 1 1
η = 2 1 1 1 1 1 1
(2,0,0) 1 2 1 1 1
η = 2 1 1 1 1 1 1
(3,0,0) 1 1 1 1 1 1
η = 1 1 2 1 1 1
(4,0,0) 1 1 1 1 1 1
η = 1 1 1 1 1 1 1
(5,0,0) 1 1 1 1 1 1
η = 1 1 1 1 1 1 1

Table 3.3: Number of Edges used in Tc(x) with 0 ≤ c ≤ 5, broken down by color class

(6,2,0) (5,2,0) (4,2,0) (3,2,0) (2,2,0) (1,2,0)
η = 3 η = 2 η = 2 η = 1 η = 1 η = 1

(0,0,0) 1 1 1 1 1 1
η = 3 1 1 1 1
(1,0,0) 1 1 1 1 1
η = 2 1 1 1
(2,0,0) 1 1 1 1 1
η = 2 1 1 1
(3,0,0) 1 1 1 1 1
η = 1 1 1 1 1
(4,0,0) 1 1 1 1
η = 1 1 1 1 1
(5,0,0) 1 1 1 1
η = 1 1 1 1 1

Table 3.4: Number of Edges used in H(0, 0, c) with 1 ≤ c ≤ 5, broken down by color class
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are already boosted to degree four in each color class.) By Condition (3) of Conjecture 3.1,

Fi ∪Gi forms a hamilton cycle for each i ∈ Zα \ {0}, so all color classes except for colors 1,

2, 3, 4, and 5 are now connected.

We connect color classes 1,2,3,4, and 5 using the following cycles.

First suppose that α is even. Color three copies of each of the four cycles (eε,j,1, eε,j,2, ..., eε,j,α)

for ε, j ∈ Z2, the dth copy of each cycle being colored with d for 1 ≤ d ≤ 3, where

eε,j,i =



(ε, 0, i) if i is odd and j = 0,

(7− ε, 2, i) if i is even and j = 0,

(7− ε, 2, i) if i is odd and j = 1,

(ε, 0, i) if i is even and j = 1.

Color two copies of each of the four cycles (eε,j,1, eε,j,2, ..., eε,j,α) for ε, j ∈ Z2, the dth copy of

each cycle being colored with d+ 3 for 1 ≤ d ≤ 2, where

eε,j,i =



(ε, 0, i) if i is odd and j = 0,

(6 + ε, 2, i) if i is even and j = 0,

(6 + ε, 2, i) if i is odd and j = 1,

(ε, 0, i) if i is even and j = 1.

Next suppose that α is odd. Color three copies of each of the two cycles (eε,1, eε,2, ..., eε,2α)

for ε ∈ Z2, the dth copy of each cycle being colored with d for 1 ≤ d ≤ 3, where

eε,j,i =

 (ε, 0, i′) if i is odd and j = 0,

(7− ε, 2, i′) if i is even and j = 0,

where i′ is defined by:

i′ =

 i if i ≤ α,

i− α if i > α.
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Color two copies of each of the four cycles (eε,1, eε,2, ..., eε,α) for ε ∈ Z2, the dth copy of each

cycle being colored with d+ 3 for 1 ≤ d ≤ 2, where

eε,i =

 (ε, 0, i′) if i is odd and j = 0,

(6 + ε, 2, i′) if i is even and j = 0,

where i′ is defined by:

i′ =

 i if i ≤ α,

i− α if i > α.

Using Theorem 3.3 to connect the color classes

For our purposes, we need an almost resolvable α-cycle decomposition X = (X0, ..., Xα)

of 2Kα+1 on the vertex set Zα+1; by Theorem 3.3, this decomposition exists for α ≥ 3. We

connect our color classes using these α + 1 α-cycles.

First suppose that α is even. For any X = (x1, ..., xα) ∈ X , define four cycles E(ε, j,X =

(x1, ..., xα), straight) = (eε,j,1, eε,j,2, ..., eε,j,α) for ε, j ∈ Z2, where for 1 ≤ i ≤ α

eε,j,i =



(ε, 0, xi) if i is odd and j = 0,

(7− ε, 2, xi) if i is even and j = 0,

(7− ε, 2, xi) if i is odd and j = 1,

(ε, 0, xi) if i is even and j = 1.

For any X = (x1, ..., xα) ∈ X define four cycles E(ε, j,X = (x1, ..., xα), crossed) =

(eε,j,1, eε,j,2, ..., eε,j,α) for ε, j ∈ Z2, where for 1 ≤ i ≤ α

eε,j,i =



(ε, 0, xi) if i is odd and j = 0,

(6 + ε, 2, xi) if i is even and j = 0,

(6 + ε, 2, xi) if i is odd and j = 1,

(ε, 0, xi) if i is even and j = 1.
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Define C(X, straight) = E(0, 0, X, straight) ∪ E(1, 0, X, straight) ∪ E(0, 1, X, straight)

∪ E(1, 1, X, straight) and C(X, crossed) = E(0, 0, X, crossed) ∪ E(1, 0, X, crossed) ∪

E(0, 1, X, crossed)∪E(1, 1, X, crossed). Note that C(X, straight) and C(X, crossed) are each

2-factors on the vertex set {(0, 0, x), (1, 0, x), (7, 2, x), (6, 2, x) | x ∈ V (X)} \{(0, 0, d(X)),

(1, 0, d(X)), (7, 2, d(X)), (6, 2, d(X))}. For each X ∈ X , if d(X) 6= 0 then color three copies

of C(X, straight), the dth copy being colored with 6d(X) + d for 0 ≤ d ≤ 2. If d(X) = 0,

then just color two copies of C(X, straight), one with color 1 and one with color 2. For each

X ∈ X , color three copies of C(X, crossed), the dth copy being colored with 6d(X) + d for

3 ≤ d ≤ 5.

Next suppose that α is odd. For any X = (x1, ..., xα) ∈ X define two cycles E(ε,X =

(x1, ..., xα), straight) = (eε,1, eε,2, ..., eε,2α) for ε ∈ Z2, where for 1 ≤ i ≤ 2α

eε,j,i =

 (ε, 0, xi′) if i is odd,

(7− ε, 2, xi′) if i is even,

where i′ is defined by:

i′ =

 i if i ≤ α,

i− α if i > α.

For anyX = (x1, ..., xα) ∈ X define two cycles E(ε,X = (x1, ..., xα), crossed) = (eε,1, eε,2, ..., eε,α)

for ε ∈ Z2, where for 1 ≤ i ≤ 2α

eε,i =

 (ε, 0, xi′) if i is odd,

(6 + ε, 2, xi′) if i is even,

where i′ is defined by:

i′ =

 i if i ≤ α,

i− α if i > α.

Define C(X, straight) = E(0, X, straight) ∪ E(1, X, straight) and C(X, crossed) =

E(0, X, crossed) ∪ E(1, X, crossed). Note that C(X, straight) and C(X, crossed) are each
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2-factors on the vertex set {(0, 0, x), (1, 0, x), (7, 2, x), (6, 2, x) | x ∈ V (X)} \{(0, 0, d(X)),

(1, 0, d(X)), (7, 2, d(X)), (6, 2, d(X))}. For each X ∈ X , if d(X) 6= 0 then color three copies

of C(X, straight), the dth copy being colored with 6d(X) + d for 0 ≤ d ≤ 2. If d(X) = 0,

then just color two copies of C(X, straight), one with color 1 and one with color 2. For each

X ∈ X , color three copies of C(X, crossed), the dth copy being colored with 6d(X) + d for

3 ≤ d ≤ 5.

Continuing for both Conjecture 3.1 and Using Theorem 3.3

Color classes 1, 2, 3, 4, and 5 now consist of two components, with the vertices (i, j, 0)

inducing one of the two components. Each of the color classes 6, ..., 6α + 5 is connected

because for each X ∈ X : (i) X spans all vertices except d(X) ∈ Zα+1, and (ii) by (1) of the

definition of F and Tc(d(X)) for 0 ≤ c ≤ 5, the vertices (i′, j′, d(X)) are joined to vertices

in (i, j, 0) by edges colored 6d(X) + c.

For each vertex u ∈ V (H), if u 6∈ T = {(0, 0, 0), (1, 0, 0), (6, 2, 0), (5, 2, 0)} then u =

(i, j, x) is incident with the same number of edges of each color as of each other color (namely

4 if (i, j) ∈ {(0, 0), (1, 0), (6, 2), (7, 2)} and 2 otherwise). If u ∈ T then it has degree 4 in

each color class except for colors 1,2,3,4, and 5. in which it has degree two. In order for the

use of the evenly equitable edge-coloring in the next paragraph to work, it is critical that the

degrees of these vertices in each of the five color classes be raised to 4, except possibly for

one pair of vertices in one color class. Since vertices (1, 0, 0) and (5, 2, 0) have amalgamation

number two, there are only four edges between them in H, so we cannot simply use five

C4’s as we did when connecting our color classes. (In fact, we have already used one of the

edges between (1, 0, 0) and (5, 2, 0) in H(0, 0, 1), so we cannot even place four 4-cycles there.)

To boost the degree of these vertices in the first five color classes, take three copies of the

4-cycle ((0, 0, 0), (6, 2, 0), (1, 0, 0), (5, 2, 0)) and color them using colors 1,2, and 3. Take the

2-cycles ((0, 0, 0), (5, 2, 0)) and ((1, 0, 0), (6, 2, 0)) and color them using color 4. Finally, take

the 2-cycle ((0, 0, 0), (6, 2, 0)) and color it with color 5. So, the vertices (0, 0, 0) and (6, 2, 0)

are now incident with four edges of each color c, 1 ≤ c ≤ 6α + 5. Vertices (1, 0, 0) and
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(5, 2, 0), however, are each incident with four of every color, except only two edges of color

5.

Define G to be the subgraph induced by uncolored edges of S. Note that this is precisely

the edges in S not used in the trails or cycles described previously. The degree of each vertex

in E(S) is divisible by 2(6α+5), except for vertices (1, 0, 0) and (5, 2, 0) which have degree 2

(mod 2(6α + 5)). Apply an evenly equitable edge-coloring with the colors 1, 2, ..., 6α + 5 to

the edges in G. This edge-coloring has the property that at each vertex each color appears

on the same number of edges as each other color, except that one color appears twice more

than each other color at the vertex (1, 0, 0) and (5, 2, 0) since G is bipartite, necessarily the

color appearing twice more at those vertices is the same, so name this color 5. It is also

important to note that this edge coloring connects the color classes 1, 2, 3, 4, and 5, which

were previously in two components. Let G0 be the subgraph induced by the vertices of

L0 ∪ R0 in G. Note that the vertex (0, 0, 0) has degree ten in G0, so the evenly equitable

edge coloring will produce at most 5 colors on edges to vertices in L0 ∪ R0. So, at least

6α + 5 − 5 = 6α colors must be on edges joining (0, 0, 0) to vertices not in L0 ∪ R0. Since

a ≥ 4, 6α > 5. Name five of these 6α colors 1, 2, 3, 4, and 5. The component previously

induced by the vertices of L0 ∪ R0 is now connected with the second component spanning

the rest of the graph.

Now, we must disentangle the graph. We will use the same method as with the other

cases. To be able to apply Lemma 1.1, we need to add edges to our graph H so that it is

the amalgamation of the complete graph K3p. All of these additional edges and loops are

colored 0. We call this new graph H+ and note that it now satisfies the conditions of Lemma

1.1. Thus we apply Theorem 1.3 to H+ to produce G+, which is an edge-colored copy of

K3p. We now remove all edges in G+ colored 0; the resulting graph is Kp
3 . Using Theorem

1.3, we see that each color class is 2-regular by (i) and connected by (ii), which implies that

each color class is a hamilton cycle. We now consider G−E(S). Note that all edges between
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vertices in L0 and R0 were in E(S), so we have that G− E(S) has cut vertex v. So our set

of hamilton cycles is maximal.

So this chapter culminates in the following state of knowledge:

Theorem 3.5 There exists a maximal set of m hamilton cycles in Kp
n if and only if

1.
⌈
n(p−1)

4

⌉
≤ m ≤

⌊
n(p−1)

2

⌋
and

2. m > n(p−1)
4

if

(a) n is odd and p ≡ 1 (mod 4)), or

(b) p = 2, or

(c) n = 1,

except possibly when n = 3, m =
⌈
n(p−1)

4

⌉
and either p ≡ 3 (mod 8), p ≥ 19 or p ∈ {15, 23}.
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