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Abstract

Winning strategies for the Game of Nim on Graphs are discussed. Graphs considered

are distinguished from those previously studied in that they may have loops. Winning

strategies are found for graphs that have loops and whose links form paths, cycles, trees,

or monocyclic graphs. Furthermore, strategies are developed to approach games played on

graphs that contain an induced tree with loops.
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Chapter 1

Introduction

Before introducing our main topic, the game of Nim on G where G is a multi-graph, we

may wish to provide the reader with some basic terminology we will be using to describe the

problem and provide some history of the problem in general.

1.1 Background

We assume that the reader is familiar with most basic terminology concerning graphs.

However, it is worth noting that for a graph, G, we may let context differentiate between

the vertex set and edge set of the graph, writing, for example, v ∈ G should it be clear that

v is a vertex. However, in situations for which there may be some ambiguity, we will denote

the vertex set as V (G) and edge set as E(G). We denote the degree of a vertex, v, as d(v)

and find reason, on occasion, to distinguish between links of E(G), those edges ending in

two distinct vertices, and loops, those incident to a single vertex.

Nim is a two player game in which players alternate turns removing objects, often called

“stones” from distinct heaps. On a players turn, the player chooses a heap and removes at

least one, but as many as all, objects from that heap. Under conventional play, the last player

able to remove an object is the winner; that is, a player without the ability to play loses.

There are European references to nim from as early as the beginning of the 16th century. It

is suspected that the game is much older, but its origins are unknown. The name, nim, and

a complete strategy for the game were developed by Charles Bouton in 1901.

Nim found a place of particular importance in game theory when Sprague and Grundy

independently, in 1935 and 1939, respectively, developed a theory showing the equivalence

of an entire class of two player games to nim heaps. Should the sum of games be played
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in the normal convention, moves and strategy would correspond to a game of nim played

on their equivolent heaps. The size of the corresponding heap is called the Grundy number,

or nimber, of the game. Games equivolent to heaps are those that are sequential, have 2

players, are impartial games of perfect information, and have no infinite lines of play.

A game is impartial if, at a given position, the available moves depend solely on the

position and are not determined by the player whose move it is. In such a game, the only

difference between two players is that one player goes first. We herein denote the first player

P1 and the second player P2.

A game is one of perfect information if, at every position of the game, all players know all

of the possible moves or combinations of moves that would be known at the end of the game.

For example, chess is a game of perfect information; each player knows all combinations of

possible moves. Poker is not a game of perfect information.

Given a position in a game, options of that position are positions of the game to which

the player may move.

A game of the type considered by Sprague and Grundy falls into one of two outcome

classes. Either it is a won game for the first player to move under optimal play (called a

p-position) or it is a loss for player one regardless of strategy under optimal play (called a

0-position. Here the p- and 0- distinctions are derived from the Grundy number of the game

as heaps with a positive or zero size respectfully (the first being a P1 win by removing all

the objects, the second a P1 loss having no options).

The key component to strategy in nim is the representation of the size of each heap

as a binary number and summing the digits mod2, neglecting to“carry” from one digit to

another. This sum of two numbers, x and y, in such a way is called the nim-sum of x and

y, and is denoted x⊕ y.

A game of nim with k nim heaps of sizes n1, n2, . . . , nk respectively is a 0-position if

n1 ⊕ n2 ⊕ . . .⊕ nk is 0 and a p-position otherwise. If ni = 0 for every i, n1 ⊕ n2 ⊕ . . .⊕ nk
is 0. If n1 ⊕ n2 ⊕ . . . ⊕ nk is 0 then any option (the reduction of any ni ) will have a
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positive nim-sum. And if n1 ⊕ n2 ⊕ . . . ⊕ nk is positive then there is an option for which

n1 ⊕ n2 ⊕ . . . ⊕ nk is 0. Namely, if the jth digit of n1 ⊕ n2 ⊕ . . . ⊕ nk is the left-most 1,

then there is at least one pile whose size, nα, has a 1 in the jth digit, and that heap may be

reduced to nα ⊕ (n1 ⊕ n2 ⊕ . . .⊕ nk).

For example, consider the game of nim with heaps of size 3, 7, and 6. 3 ⊕ 7 ⊕ 6 is digit

addition mod two: 011 ⊕ 111 ⊕ 110 = 010. Each heap has a 1 in the 2nd digit of its binary

representation, so reducing 3 to 011 ⊕ 010 = 001 = 1 giving heaps of size 1, 7, and 6 whose

nim-sum is 0. Other winning options include reducing the heap of size 7 to 5 or the heap of

size 6 to 4.

1.2 History of Nim on Graphs

A variation of the game of nim played on a graph, G, was first introduced by Fukuyama

in [3] and extended in [4]. Fukuyama therein determines winning strategies for paths and

odd cycles, as well as Grundy numbers for paths, cycles, trees, and certain bipartite graphs.

It is important to note that while the Grundy number of a game informs strategy (should

the Grundy number of every option of a position be known, perfect play dictates a move to

a 0-position), analyzing every option of a position may be overly cumbersome. We are then

interested in developing methods by which to recognize whether a position is p- or 0- and to

develop an associated strategy that is perhaps less cumbersome.

Erickson in 2009 developed a strategy for even cycles, [2]. In the same paper, she is able

to develop a winning strategy for games played on the complete graph where all heaps are

of size 1.

While Fukuyama mentions an equivalence between games on graphs with multiple edges

and simple graphs, neither he, nor Erickson, consider strategy or the Grundy number for

games played on graphs with loops. Ongoing research seemingly focuses exclusively on simple

graphs. We here consider graphs with loops.
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1.3 Outline

In Chapter 2, we will begin with a rigorous definition of Nim on Graphs, and discuss

how the classic game of nim may be thought of as a special case of Nim on Graphs. We

will here, imporantly, show that all games on multigraphs are equivalent to games with no

multiple edges or multiple loops. Winning strategies for simple cases of Nim on G, paths

and cycles, will be given. Since later constructions may depend on strategy or classification

of these cases, an easy reference figure caps the chapter.

In Chapter 3, games of Nim on Trees are discussed. We find that the structure of trees

allows for a recursive reduction of Nim on G to games of Nim on smaller graphs, and we

conclude with several theorems extending strategies for nim on trees, allowing for analysis

of games played on graphs with induced subgraphs of trees. These latter theorems are put

to use with the analysis of games played on mono-cyclic graphs in Chapter 4.

Chapter 5 sees a brisk discussion of areas for future research.
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Chapter 2

The Game of Nim on Graphs

2.1 Introduction to the Game of Nim

Here we will define the game of nim on a graph, G, simplify the case in general by showing

that only a certain class of graph need be considered, and examine winning strategies on

paths or cycles with loops in order to get a sense of how loops in particular impact the game.

Let G be a multi-graph with loops, edge set E and vertex set V . Positions of the game

of Nim on G are ordered pairs, (v, ω) with v ∈ V , ω : E → Z+, the set of non-negative

integers. The value ω(e) is called the weight of e. A position (v′, ω′) is an option of (v, ω)

if there is an e ∈ E incident with both v and v′, ω(e) > ω′(e) ≥ 0, and ω′(f) = ω(f) for all

f ∈ E, f 6= e. A player in a position without options is the loser (normal play convention).

An example of game played on a multigraph is demonstrated in Figure 2.1. The vertex

in each position is denoted using a ∆. In the example, P2 has lost since his final position

has no options; ω(e) = 0 for every edge, e, incident with ∆.

We classify each position in a game of Nim on G as being either a 0-position or a

p-position as follows:

• A position is a 0-position if it has no options.

• A position is a p-position if and only if it has at least one option that is a 0-position.

• A position is a 0-position if all of its options are p-positions.

Since from any position, a game must eventually terminate, this does in fact give a

classification.

We note that the traditional game of Nim on k piles, each with pi objects, 1 ≤ i ≤ k, is

equivalent to two different formulations of Nim on G:
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Figure 2.1: An example of Nim on G played on a multi-graph
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Figure 2.2: Games of Nim on G equivalent to traditional nim games

1. G is the graph with two vertices, one of which is v, and k links, e1, e2, . . . , ek. The

position is (v, ω) where ω(ei) = pi, 1 ≤ i ≤ k

2. G is the graph with a single vertex, v, and k loops, l1, l2, . . . , lk. The position is (v, ω)

where ω(li) = pi, 1 ≤ i ≤ k.

The Grundy numbers for such positions are ω(l1)⊕ω(l2)⊕. . .⊕ω(lk) = Γ (or, respectively,

the nimsum of the ω(ei)), and for each position, there is an option for which ω′(l1)⊕ω′(l2)⊕

. . .⊕ ω′(lk) = n for each non-negative integer n < Γ.

Since we know winning strategies for such positions, and the graphs associated (multiple

links and loops) are the basic building blocks of larger graphs, it is natural to attempt to use

this relationship to simplify these multiple piles (for us, edges) down to a single pile (edge).

Theorem 2.1. Let G be a graph, and (v, ω) be a position in a game of Nim on G. G may

have multiple loops or multiple links. Then there exists a graph, H, on the vertex set of G in

which each vertex is incident with at most one loop, each pair of vertices are incident with

at most one shared link, and a position in a game of Nim on H, (v, ω̄), such that a winning

strategy in Nim on H corresponds to a winning strategy in Nim on G.

Proof. Construct H as follows: if v ∈ V is incident with loops l1, l2, . . . , lm in G, then there

is a single loop, l, incident with v in H with ω̄(l) = ω(l1)⊕ ω(l2)⊕ . . .⊕ ω(lm). Similarly if

links e1, e2, . . . , en are each incident with v and v′ in G, then there is a single edge, e, in H

incident with v and v′ with ω̄(e) = e1 ⊕ e2 ⊕ . . .⊕ en.
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Suppose (v, ω̄) is a p-position in Nim on H with option (v′, ω̄′), a 0-position, and let e be

the link incident with both v and v′ in H, corresponding to e1, e2, . . . , en in G, where ω̄′(e) <

ω̄(e). Then there is an option of (v, ω) in Nim on G with ω′(e1)⊕ω′(e2)⊕. . .⊕ω′(en) = ω̄′(e).

Similarly, for l, a loop incident with v in H corresponding with the collection of loops incident

with v in G, there is an option of (v, ω) in Nim on G with ω′(l1)⊕ω′(l2)⊕ . . .⊕ω′(lm) = ω̄′(l).

Should (v′, ω̄′) be a position with no options, ω̄′(f) = 0 for every edge, f , in H incident with

v′ (respectively v should the option reduce the weight of a loop). However, it may be the case

that for the corresponding option in Nim on G, (v′, ω′), ω(fi) > 0 for some i, 1 ≤ i ≤ d(v′).

In such a position, suppose (v′′, ω′′) is an option of (v′, ω′), and ω′′(f1) < ω′(f1). Then,

for (v′′, ω̄′′), the corresponding position in Nim on H, ω̄(f) > 0 and f is the only edge

incident with v′ with non-zero weight. It is clear that in Nim on H removing all of the

weight from f is a winning move. A corresponding option exists in Nim on G, and will exist

for any future like-options which must be finite since each reduces the finite weight on the

edges of G incident with v′. A winning strategy for Nim on H can thusly be translated into

a winning strategy for Nim on G, and we may in the future only consider G in which each

vertex is incident with at most one loop and each pair of vertices are incident with at most

one shared link.

Consider the game of Nim on G for the graph, vertex, and weight function as demon-

strated in figure 2.1. We may reduce each of the occasions of a multiple edge with a single

edge and each occasion of multiple loops with a single loop by adjusting the weight function

appropriately. We may discern a strategy for such a position and in doing so appropriate a

strategy for our initial game with the small addition of reducing the nim sum of weights back

to 0 should P2 play accross such an edge (as they do in our example). The game on a simple

graph with at most one loop incident with each vertex and its parallel are demonstrated here

in Figure 2.3.
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Figure 2.3: Gameplay given by an equivalent graph without multiple edges or loops
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2.2 Paths With Loops

In order to get an idea of some simple strategies that arise in Nim on Graphs, it is

helpful to examine the simple case of a path with loops at some of the vertices. We’ll

consider Nim on G, where G is a graph with vertex set {vi|1 ≤ i ≤ n}, and edge set

{ej|1 ≤ j ≤ n − 1} ∪ {lk|1 ≤ k ≤ n} were ei is incident with vi and vi+1 and li is a loop

incident with vi. We can assume that there is a loop at each vertex in the general case since

if ω(li) = 0, play progresses as if no such loop exists. We will assume, however, that for a

starting position, ω(ei) > 0 for all i, 1 ≤ i ≤ n− 1

Let us first consider the position (v1, ω), and let ω(li) > 0 for 1 ≤ i ≤ m. If P1 chooses

option (v1, ω
′), where ω′(l1) = 0, P2 may choose an option (v2, ω

′′). Should ω′′(e1) > 0, P1

may simply move the position back to v1, reduce the weight on e1 to 0, and P2 has lost.

ω′′(e1) = 0 arrives at a position equivalent to (v2, ω|G\v1) in Nim on G\v1. This position was

also an option of (v1, ω). If a p-position, P1 can implement the above strategy to reach it. If

a 0-position, P1 can choose this option from the starting position, thus (v1, ω) is a p-position

with strategy determined by the path induced by {vi|2 ≤ i ≤ n}.

If ω(li) = 0 for 1 ≤ i ≤ m, all options of (v1, ω
′) for which ω′(e1) > 0 are p-positions

(as outlined above) and need not be considered. So we may assume that ω′(e1) = 0. The

resultant position is a game of Nim on a path. If m = 1, then (v2, ω
′) is a p-position

equivalent to the above case, and (v1, ω) is a 0-position. The question of whether (v1, ω) is a

p-position or a 0-position resides entirely on the parity of m. Since perfect play removes all

weight with each option taken, (v1, ω) is a p-position for even m and a 0-position for odd m.

But what of strategies for games of Nim on G where G is a path with loops but the

starting position is not (v1, ω), but rather (vi, ω) for some i, 1 < i < n? If ω(li) = 0, (vi, ω)

has options (vi−1, ωi−1) and (vi+1, ωi+1) where ωi−1(ei−1) = 0 and ωi+1(ei) = 0. Each of

these positions is easily analyzed as either a p-position or a 0-position as above. The options

effectively delete links incident wtih vi and place P2 in a position on a path with loops on

i−1 vertices or n− i vertices respectively with the position on a terminal vertex of the path.
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Should either of the options be 0-positions, P1 has a clear choice. Should both (vi−1, ωi−1)

and (vi+1, ωi+1) be p-positions, (v, ω) is a 0-position. P1 has no 0-position options, (v′, ω′)

for which ω′(ei) > 0 (similarly for ω′(ei−1) > 0), since P2 would then have the option of

reducing the weight on ei to zero, moving the position back to vi, a position, which as

previously analyzed, would be a 0-position.

If ω(li) > 0, then (vi, ω) is a p-position. As before, if either of (vi−1, ωi−1) or (vi+1, ωi+1)

are 0-positions it is clear. If both are p-positions, (vi, ω
′) where ω′(li) = 0 is an option of

(vi, ω) and a 0-position by the above argument.

The important points that we might draw from this case are:

1. (v1, ω) is a p-position in Nim on G if ω(l1) > 0. The existence of weight on a

loop at the starting position gives P1 a great deal of power. P1 may stall by reducing the

weight on l1 to 0 and force P2 to move to v2 or may reduce the weight on e1 to 0 placing

P2 on v2 depending on whether v2, ω|G\{v1} in Nim on G\{v1} is a p-position or a 0-position

respectively.

2. The winning strategy for a game of Nim on G, where G is a path with loops, depends

only on the existence of weight on an edge, not on the amount of weight on an edge. If

ω(e) = 1 for every e ∈ G, p-positions and 0-positions are preserved for initial positions based

on their vertex.

3. Our most natural approach is to analyze each of the options of (v, ω). However,

this can be cumbersome. There may be a great many options, but we might pay particular

attention to those that reduce the weight of an edge to 0. These correspond to nim on the

subgraphs of G missing an edge incident with v.

2.3 Cycles with Loops

Since we now have an easy way to categorize games of nim on paths with loops as

p-positions or 0-positions and developed strategy for these cases, it is natural to look at the

case of cycles with loops since options for these games will include options equivalent to
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Figure 2.4: Nim on C4 in which strategy depends on ω

games on paths with loops. We’ll here consider G to be a cycle on n vertices with vertex set

{v0, v1, v2, . . . , vn−1} and edge set {e0, e1, e2, . . . , en−1}∪ {l0, l1, l2, . . . , ln−1} where ei is a link

incident with vi and vi+1 mod n, and lj is a loop incident with vj. Without loss of generality,

we will assume the starting position is (v0, ω).

It is instructive here to note that while the amount of weight on the edges of a graph

had no import on strategy in the case of paths with loops, the weight may well be important

to the classification of positions of Nim on G if G is a cycle. Consider the case when n = 4,

ω(e0) = 2, ω(ei) = 1 for i 6= 0, and ω(lj) = 0 for all j.

(v1, ω
′) where ω′(e0) = 0 is an option of (v0, ω), but is a p-position as it is equivalent

to a loopless path of length three with a position at a terminal vertex. However, should

ω′(e0) = 1, P2’s only options will be such 0-position paths. Thus (v0, ω) is a p-position, but

P1’s winning strategy involves reducing the weight of an edge to a non-zero value.
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Strategy for cases for which ω(li) = 0 for all i are discussed in detail in [3] (odd cycles)

and [2] (even cycles). These cases are here considered as special cases of cycles with loops,

and we have arrived at the associated strategies independently.

We first consider cycles for which ω(l0) = 0 but ω(li) > 0 for some i 6= 0. If we can

easily classify these positions, we can use those that are 0-positions to help classify positions

for which ω(l0) > 0 with these 0-positions are options. For the sake of simplicity ”vertices

counter-clockwise (CCW) of v0” will refer to the vertices vn−1, vn−2, . . . , v1, v0, in that order,

while the ”vertices clockwise (CW) of v0 will refer to v1, v2, . . . , vn−1, v0, in that order.

Let ω(lk+1) > 0 and ω(li) = 0 for 0 ≤ i < k. Similarly, let ω(ln−m−1) > 0 and ω(lj) = 0

for j( modn) ≥ n−m. If either of k or m are odd then (v1, ω
′
cw) (or respectively (vn−1, ω′ccw))

where ω′cw(e0) = 0 (resp. ω′ccw(en−1) = 0) is an option of (v0, ω) and is a 0-position, being

equivalent to a path with loops that is a 0-position. If both k and m are even, the same

options are p-positions. However, options in which ω′cw(e0) > 0 or ω′ccw(en−1) > 0 are also

p-positions since (v0, ω
′′) where ω′′(e0) = 0 or ω′′(en−1) = 0 would be 0-position options.

Even k and m must then imply a 0-position.

If ω(l0) > 0, even k and m would imply a p-position with option (v0, ω
′) where ω′(l0) = 0,

a 0-position. If either of k or m are odd and ω(l0) > 0 and ω(li) > 0 for some i, 1 ≤ i ≤ n−1,

then, as before, (v1, ω
′
cw) (respectively (vn−1, ω′ccw)) where ω′cw(e0) = 0 (resp. ω′ccw(en−1) = 0)

is an option of (v0, ω) and is a 0-position, being equivalent to a path with loops that is a

0-position. The loop at v0 does not change the parity of the number of loops for which

ω(li) = 0 preceding a loop with positive weight on the path that is an option of the initial

position.

We are left then with cases for which ω(li) = 0 for all i > 0. If n is odd and ω(l0) = 0

options for which ω(e0) or ω(en−1) are zero are 0-positions since they are equivalent to paths

for which the initial position is on a terminal vertex and the path begins with an odd number

of loops for which the weight is zero. Nim on Odd Cycles for which ω(li) = 0 and ω(ei) > 0
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for all i are P1 wins. Likewise if n is even and ω(l0) > 0, options for which ω(e0) or ω(en−1)

are 0-positions and (v0, ω) is a p-position.

For odd n, if ω(l0) > 0, similar options (where one of ω′(e0) or ω′(en−1) are 0) are

p-positions equivalent to paths. Options for which ω′(e0) > 0 or ω′(en−1) > 0 are p-positions

for cycles as outlined above. Reducing the weight on l0 to zero is also an option, but a

p-position. Thus, if ω(l0) = 1, the only options of (v0, ω) are p-positions, and (v0, ω) is a

0-position. Should ω(l0) > 1, reducing the weight on l0 to one is a 0-position option available

to P1. In this case, the weight on the loop, l0 is of consequence, but only in so much that it

is either one or greater than one.

We now consider the case for which n is even and ω(li) = 0 for all i. For any position,

(v, ω) in which ω(ei) > 0 for all i, all options for which ω′(ei) = 0 for some i are equivalent

to a game of nim on a path with loops with initial position at a terminal vertex and with

an odd number of vertices sequential from the initial position without loops and are thus

p-positions. For P1, any hope of finding a 0-position option resides in reducing the weight of

an edge incident with v0. Since edges for which ω(ei) = 1 may only be reduced to a weight

of zero, effectively ”breaking” the cycle and placing the subsequent player in a p-position,

we may be particularly interested in positions at vertices incident with edges with weight

one, and those positions with options that include such vertices.

We may then classify any positions, (v0, ω), for which ω(e0) > 1 and ω(en−1) > 1 and for

which ω(e1) or ω(en−2) is one, as p-positions, since, (v1, ω
′), where ω′(e0) = 1), or respectively

vn−1, ω′) where ω′(en−1) = 1, are options and 0-positions.

Suppose ω(ei) = 1 for some i, 0 ≤ i ≤ n − 1. Let m be the smallest value of i for

which ω(ei) = 1 and M be the largest. Assuming optimal play, we know that any position,

(vi, ω), where i = m − 1 or i = M + 2 are p-positions. We need not consider positions or

options (vi, ω) for which m− 1 ≤ i ≤M + 2 since we are assuming best play. We may then

disregard weight on any of the edges in {ei|m+ 1 ≤ i ≤M − 1}. The game is then reduced

to play on a path, but one in which, under optimal play, weight is not reduced to zero, edges
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for which ω(e) = 1 will not be crossed should another option be available. If either of m

or n−M are odd, P1 has a winning strategy by chosing option (v1, ω
′) where ω′(e0) = 1 or

respectively (vn−1, ω′) where ω′(en−1) = 1. P2 is then forced to break the cylce, a p-position

for P1, or to reduce the weight on e1 (respectively en−2). If ω′′(e1) > 1 then (v1, ω
′′′) where

ω′′′(e1) = 1 is an option and a 0-position. If ω′′′(e1) = 1, P1 may reduce the weight on e2

to one, and play will continue in a like manner until P2 is in the 0-position, (vm, ω̄), where

ω̄(em−1) = ω̄(em) = 1.

2.4 A Summary of Strategies So Far

We find that it may be helpful to have a visual reference for winning positions and

strategies for the games so far discussed. Many are easily analyzed at first glance, and thus,

a diagram representing p-positions and their related 0-options, here discussed, may be of

use.

In the associated diagrams, the deletion of an edge in a move is associated with the

removal of all weight on that edge. In the case of cycles, we restrict ourselves to defined

option of changing the weight of an edge to zero. As before, the vertex of the initial position

is denoted with a ∆.
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dashed loops may have positive or zero weight
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Figure 2.5: Strategies for games of Nim on paths with loops
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Figure 2.6: Strategies for Games of Nim on cycles with loops
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Chapter 3

Trees with Loops

3.1 Does Weight Matter?

As we saw in Chapter 2, the existence of a cycle in a graph has the potential to complicate

the Game of Nim played on that graph, introducing situations in which the weight assigned

to an edge alters whether a position is a p-position or 0-position. Since trees have no cycles,

we may suspect that their structure might make for a simpler analysis. Fukuyama addresses

Nim on Trees in [4] and finds the Grundy numbers completely for such games. We’ll here

consider trees that have loops at some vertices. The case for which the weight on these loops

is 0, that is the case for which Fukuyama previously found winning strategies, is of course

included as a specific instance of Nim on such graphs.

Theorem 3.1. For games of Nim on G with initial position (∆, ω) in which G is a tree with

loops, the classification of (∆, ω) as a p-position or 0-position, is independent of whether

ω(e) = 1 or ω(e) > 0 for any e ∈ G.

Proof. Without loss of generality, we assume that ω(e) ≥ 1 for any e ∈ G. Consider the

components of G\{∆}, {Ti|1 ≤ i ≤ n}, and the vertices adjacent to ∆, {vi|1 ≤ i ≤ n},

where vi ∈ Ti and ∆ and vi are adjacent by edge ei. In Nim on Ti, each of (vi, ω|Ti) are

p-positions or 0-positions. If any such games are 0-positions, say (vk, ω|Tk), then (vk, ω
′)

where ω′(ek) = 0 is a 0-position and option of (∆, ω). (∆, ω) is then a p-position.

If there is no loop incident with ∆ and each of (vi, ω|Ti) are p-positions, any option,

(vi, ω
′), of (∆, ω) for which ω′(ei) = 0 is a p-position and is not a perfect play option for P1.

If P1 choses an option, (vk, ω
′) where ω′(ek) > 0, P2 has the option (∆, ω′′) where ω′′(ek) = 0.

If P1 continues to avoid options that reduce the weight on an edge incident with ∆ to zero,
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this strategy may be repeated until P1 is in the position (∆, ω̄) where ω̄(ei) = 0 for all i

which is a 0-position as it has no options. Thus, if there is not a loop incident with ∆, (∆, ω)

is a 0-position. If there is a loop incident with ∆, then reducing the weight on the loop to

zero places P2 in a 0-position and (∆, ω) is a p-position.

The strategy for the initial move in Nim on a Tree does not depend on the weight of the

edges, only the existence of weight. The same argument holds for any future positions in the

game, and thus winning strategy and the classification as a p- or 0-position is independent

of whether ω(e) = 1 or ω(e) > 0 for any e ∈ G.

3.2 Winning Strategies

So, we know that additional weight on any edge with positive weight will not change

whether a position is won or lost, and we know that any position, (∆, ω) for which there is

a loop at ∆, is a p-position. We are not, however, directed to a winning strategy by this

information since analysis of the games played on each of the Ti isn’t provided beyond a

recursion of the above argument which seems prohibitively time consuming.

We have noted that if P2 is in a 0-position and removes weight from an edge without

removing all of the weight, the P1 may remove the remaining weight from the edge and place

P2 back into a 0-position. By assuming such a strategy, if (∆, ω) is the initial position, for

any P1 position, (vk, ω̄), we may assume that ω̄(ei) = 0 for every ei, 1 ≤ i ≤ k, in the path

∆e1v1e2 . . . vk−1ekvk. If ω̄(ek) > 0, then the previous strategy offers the 0-position (vk−1, ω̄′)

where ω̄′(ek−1) = 0. This fact allows us to develop a recursive algorithm by which we may

reduce the game of Nim on G where G is a tree with loops to that of a game of Nim on a

star.

Such an algorithm is advantageous since the classification of a game played on a star

where the initial vertex is the center is easily deduced:

• If there is a loop incident with ∆, (∆, ω) is a p-position.
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• If there is a leaf that is not incident with a loop (or for which the weight of the loop

is 0), (∆, ω) is a p-position.

• If there is no loop incident with ∆, and each leaf is incident with a loop with positive

weight, (∆, ω) is a 0-position.

The winning strategy for p-positions in such games is also easily identified. If there is

no loop with positive weight incident with some vi, remove the weight on that edge; if there

is a loop with positive weight on every vertex of G, remove the weight on the loop incident

with ∆).

Theorem 3.2. Let G be a tree with loops, where G is not a star, and let the initial position

of a game of Nim on G be at ∆ ∈ V (G). Then there is a graph, G−, where:

1) V (G−) ⊂ V (G)

2) V (G) \ V (G−) is comprised of leaves of G

3) E(G−) \ {li|1 ≤ i ≤ n} ⊂ E(G) where {li|1 ≤ i ≤ n} is a (potentially empty) set of

loops incident with a subset of leaves in G−

4) If (∆, ω−) is a p-position in Nim on G−, then (∆, ω) is a p-position in Nim on G

where ω−(e) = ω(e) for every e ∈ E(G−)
⋂
E(G) and ω−(li) > 0 for all i, 1 ≤ i ≤ n.

Proof. Since G is a tree, and G is not a star, there exists at least one vertex v ∈ G, v 6= ∆,

such that the neighbor set of v, {vi|1 ≤ i ≤ k}, consists of at least k − 1 leaves. That is, at

most one of the k neighbors of v is incident with more than one link. If play were to progress

with perfect play following the earlier outlined strategy countering options for which a player

does not remove all weight from an edge, we may assume that shoud a position (v, ω̄) be

reached, ω̄(ei) = 0 for every edge, ei, in the path from ∆ to v.

Any position in Nim on G at v will be equivalent to a game of Nim on a star with center

v and leaves, the leaves of v in G. Thus, the position may be labeled p- or 0- according to

the clear strategy outlined above. Should (v, ω̄) be a p-position, we can delete the leaves of

G and assign a loop at v with positive weight without changing the classification of (∆, ω)

as a p-position or 0-position. Likewise, if (v, ω̄) is a 0-position, the leaves may be deleted
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and for any loop, l, incident with v, ω̄ may be redefined so that ω̄(l) = 0, ensuring that the

one possible option at v under the employed strategy is a 0-position. By replacing the star

graph with a graph that is also a p-position (respectively 0-position) we do not change the

classification of the initial position as the classification of any options at subsequent vertices

have not changed.

The algorithm outlined here may be used recursively to reduce a game of Nim on a Tree

to the game of Nim on a Star centered at ∆ at which point (∆, ω) may be easily classified

as a p-position or a 0-position as outlined above in the strategy on stars.

Since every option of a game of nim on a tree with loops is also played on a tree with

loops, we can use the property that positions at a vertex for which a loop is incident are

p-positions together with the inconsequence of weight to better the algorithm by which G

is truncated. If v 6= ∆ is a vertex incident with a loop for which the weight is positive,

every vertex u for which v is in the path from ∆ to u may be deleted without changing the

classification of (∆, ω).

However, the advantage of the previous algorithm is that each step of the recursion also

outlines optimal strategy for P1 at each step, provided that (∆, ω) is a p-position or for P2

should it be a 0-position. Strategy is easily determined by considering the star pruned at

each iteration. An example of the pruning algorithm as well as the associated strategy for

P1 is demonstrated in Figure 3.1.

3.3 Extensions to Graphs with Trees as Induced Subgraphs

A similar argument may be made for games of nim on graphs with a ”tree-like” structure.

Given that a graph, G satisfies certain properties that allow us to incorporate such an

argument, and knowing strategies for games of Nim played on specific subgraphs of G, we

would be able to either classify positions in Nim on G as p- or 0-, or alternatively, we would

be able to consider a game of nim played on a graph similar to G but with fewer edges.
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Figure 3.1: Pruning leaves of a tree with loops and associated strategy
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Theorem 3.3. Consider a game of nim on a graph, G, with position (∆, ω), for which the

vertices of a graph, G, may be organized into sets, the induced graphs of which are labeled

Gi, 1 ≤ i ≤ n, and T where:

1) T is a tree with loops

2) V (Gi)
⋂
V (T ) = {vi}, for every i, where vi is a leaf in T

3) If a link of G is incident with vertices u and v, u ∈ Gi, and v ∈ Gj, then i 6= j

Then (∆, ωG), a position in a game of Nim on G with ∆ ∈ T , is a p-position (respectfully

0-postion) if (∆, ωT+) is a p-position (respectfully 0-position) in a game of Nim on T+ for a

graph T+ where:

• E(T ) ⊂ E(T+)

• E(T+) \ E(T ) = {li} , a set of loops incident with the vertices, vi

• ωG(e) = ωT+(e) for every e ∈ T , and ωT+(li) ∈ {0, 1} for every i

Proof. Since G \ {∆} is a graph of components equal to the number of links in G incident

with ∆, each component represents an option of (∆, ωG) at a neighbor of v, each is a p-

position or a 0-position, and the argument presented in Theorem 3.1 applies to the position

in a similary way: if (∆, ωG) is a p-position, P1 has a wining strategy that does not depend

on the weight of the edges incident with ∆, and likewise for P2 if (∆, ωG) is a 0-position.

The argument applies for all positions on vertices in T \{vi}, and so as gameplay progresses,

we may assume that for a future position, (v, ω̄), ω̄(e) = 0 for all links,e, in the path from

∆ to v, where v ∈ T . A position (vi, ω̄) would then only have options on a game equivalent

to Nim on Gi.

Just as in Theorem 3.2 we can trade such star subgraphs for positions sharing a p- or 0-

classification, we here construct T+ by deleting the vertices of Gi, for each i. If there is no

loop incident with vi and (vi, ω|Gi
) is a p-position in Nim on Gi, then add a loop, li incident

with vi, to Gi. Define ωT+ such that ωT+(li) = 1 for every i and ωT+(e) = ω(e) for every

e ∈ T ⋂
T+.
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We note the amount of weight placed on li is inconsequential since the underlying graph

is a tree with loops and that the addition of the loop can not affect play for positions at

vertices elsewhere in T+ since we implement an optimal strategy as outlined above which

prevents play from returning to a vertex of T , a tree, and since the vertex sets of the various

Gi are mutually exclusive.

We can see then that if a graph G has a tree with loops as an induced subgraph, nice

properties that were of aid in our analysis of trees with loops can be extended to Nim on

G. It is worth noting, however, that in order to determine the strategy for play from initial

position (∆, ω), strategy on the subgraphs, Gi, must be known, and that while there may

be tree structures which allow us to categorize (∆, ω) as p- or 0- , in general a classification

of (vi, ω|Gi
) as p- or 0- in Nim on Gi may need to be known in order to arrive at such a

classification of (∆, ω).

However, provided that such strategies are known, the recursive algorithm outlined in

Theorem 3.2 may be utilized to provide strategy for P1 at each step in order to win the game

provided (∆, ω) is a p-position (or P2 should it be a 0-position).

The game of Nim on G in such a case would not be solved completely since Theorem 3.3

requires that ∆ be a vertex in T , the tree portion of G. We might suspect that the induced

tree with loops would still be a helpful structure. Indeed, we can ”prune” edges from T as

in Theorem 3.2, but knowing strategies for the induced subgraph inluding ∆ in such a case

would not necessarily be helpful as we will see.

Theorem 3.4. Let Γ be a graph with vertices ∆ and v, (v may equal ∆), for which the

vertices of Γ may be organized into two sets with induced subgraphs T and G with:

1) T a tree with loops

2) V (T )
⋂
V (G) = {v}

3) v is a leaf in T

Then there is a graph, G+, G ⊂ G+, for which a game of Nim on Γ with initial position,

(∆, ω), ∆ ∈ G, is equivalent to a game Nim on G+ with position (∆, ωG+) where:
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• G+ is G with the addition of dT (v) pendant edges incident with v which may have

loops incident with the neighbors of v. These loops are not necessarily elements of E(Γ).

• ω(e) = ωG+(e) for every e ∈ E(G), and ωG+(l) = 1 for every loop, l ∈ E(G+) \ E(G)

Proof. We construct G+ be pruning the leaves of T according to the algorithm outlined in

Theorem 3.2 treating v as the vertex for the inital position in a game of Nim on T . We must

then show that if (∆, ω) is a p-position (respectively 0-position) in Nim on Γ then (∆, ωG+)

shares the classification in Nim on G+, when G+ is so defined.

If vt ∈ T , all trails from ∆ to vt include v, thus, a position (vt, ω
∗) can only be reached

after a position at v. We will first then examine positions at v, since if the classification of

such positions are retained then so is the classification of (∆, ω).

Let {ti|1 ≤ i ≤ dT (v)} denote the vertices incident with the pendant edges in G+

adjacent to v and suppose that (v, ωv) is a p-position in Nim on Γ. If there is a ti which is

not incident with a loop in G+, then (ti, ω
′
v) where ω′v(vti) = 0 is clearly a 0-position option

in Nim on G+, but is also a 0-option in Nim on Γ as defined in the algorithm from 3.2. If

there is a loop at each ti in G+ then no option for which ω′v(vti) = 0 is a 0-position in Nim

on G+ or in the corresponding Nim on Γ. The winning option in Nim on Γ at v can be

mirrored in Nimo n G+ and the must be a winning option that is not at some ti since P2

could move back to v, and since it was obstensibly from a 0-position P1 would again be at a

p-position at v. This argument hold for any future positions at v and thus (v, ωv) must also

be a p-position in Nim on G+.

If (v, ωv) is a 0-position in Nim on Γ then each of the ti will be incident with a loop.

All gameplay in Nim on Γ mirrored in Nim on G+ that progress on the vertices of G will

not change the classification. Options for which ω′v(vti) = 0 are clearly p-positions, and if

ω′v(vti) > 0, P2 can reduce the weight of the edge vti to zero for each i and the strategy on

the vertices of G may be followed.
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As we see in the next chapter, these generalizations of the strategy for trees allow us to

approach nim on graphs which are composed of subgraphs with which we have experience -

namely, trees and cycles.
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Chapter 4

Mono-cyclic Graphs

While Theorems 3.3 and 3.4 allow us to reduce the classification of a position in Nim on

G to classifying games on relatively simplified graphs, in both cases, we are limited in that

we must know strategies or outcomes for either certain induced subgraphs of G, or strategies

for induced subgraphs plus a collection of pendant edges.

We would like to apply these theorems to classes of graph for which such strategies are

known or can be deduced, which leads us to consider mono-cyclic graphs. For our purposes,

it is helpful to picture such graphs as cycles with trees extending from some selection of

vertices on the cycle. As before, loops are allowed in the edge set.

4.1 Strategy for Mono-cyclic Graphs

It is sufficient to consider positions, (∆, ω), for which ∆ is on the cycle in G. If such

positions may be classified as p-positions or 0-positions and a strategy for such games is

known, then we may apply Theorem 3.3 in order to classify and determine strategy for

positions in which ∆ is not on the cycle.

Let G be a mono-cyclic graph, and consider position (∆, ω) in a game of Nim on G,

where ∆ is on the cycle in G. We may apply Theorem 3.4 to equate G to a graph in which

the trees extending from the vertices in the cycle of G are limited to pendant edges that

may have loops. Thus we assume that G is a cycle with a collection of pendant edges and

loops. We will let {vi|1 ≤ i ≤ n− 1} denote the non-∆ vertices of the cycle in G, labeled in

order from ∆. Furthermore, we will often herein use the convention of referring to the edge

incident with the vertices u and v as simply, uv.
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Case 1 : ∆ is adjacent to a pendant vertex, u, which itself is not incident with a loop.

(u, ω′) where ω′(∆u) = 0 is a 0-position and an option of (∆, ω). Thus (∆, ω) is a

p-position with winning strategy reducing the weignt on edge ∆u to zero and, if necessary,

letting play progress on the tree associated with the pendant edge.

Case 2 : There exist at least two vertices in {vi|1 ≤ i ≤ n− 1} adjacent to pendant vertices

without loops.

Let vα and vβ, α < β, be the vertices adjacent to loopless pendant vertices, uα and uβ

respectively, for which no vi is adjacent to a loopless pendant vertex when i < α or i > β.

Positions (vα, ωα) and (vβ, ωβ) are p-positions since each has a zero option, reducing the

weight of the edge vαuα (respectively vβuβ) to 0. Positions (vi, ωi) where α < i < β are only

reachable after positions at either vα or vβ. If we employ the strategy of reducing the weight

of vαuα or vβuβ, and assume optimal play, then such positions will not be reached and will

affect neither the strategy nor classification of (∆, ω).

Deleting the vertices {vi|α+ 1 ≤ i ≤ β− 1} results in a game played on a tree for which

classification and strategy may be deduced using Theorem 3.2.

Case 3 : There is exactly one vertex in {vi|1 ≤ i ≤ n − 1} adjacent to a pendant vertex

without loops.

Let vα be the vertex adjacent to a loopless pendant vertex, uα. There is not a winning

strategy that reduces the weight of a pendant edge that is not vαuα since options reducing

the weight of such edges to zero are clearly p-positions (equivalent to a vertex with a loop),

and if the weight of such edges is positive the alternate player may move back onto the cycle

removing the remainder of the weight. Also, as before, the position (vα, ωα) is a p-position,

and we will suppose a strategy for which the option (uα, ω
′
α), where ω′α(vαuα) = 0 is chosen.
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All ideal play is then played on the cycle itself. If either of the paths T1 = ∆v1v2 . . . vαuα

or T2 = ∆vn−1vn−2 . . . vαuα with their incident loops are paths for which (∆, ω|Tj) is a p-

position in Nim on Tj, then (∆, ω) is a p-position and the strategy for the p- game, say T1

(without loss of generality), can be employed. It is clear if in T1 the winning strategy is to

reduce the weight of ∆v1 to zero, since positions at vertices {vk}k = α + 1n−1 need not be

considered by our supposition that the option (uα, ω
′
α), where ω′α(vαuα) = 0 is chosen when

possible.

If the winning strategy indicates the reduction of the weight on the loop at ∆ to zero,

the position is exactly that for which (∆, ω|Tj) is a 0-position in both of Nim on Tj. Showing

that such a position indicates that (∆, ω) is a 0-position in Nim on G then completes the

case.

If (∆, ω|Tj) is a 0-position in both of Nim on Tj, ∆ is not incident with a loop, and,

without loss of generality, we may assume that all options of (∆, ω) reduce the weight of ∆v1.

If ω′(∆v1) > 0, the resulting position has a path Tk, similarly defined as above, which is a

p-position. Specifically, the path will consist of an odd number of loopless vertices starting

at v1 before the path terminates or a looped vertex is reached. However, if ω′(∆v1) = 0, the

vertices {vk|α+ 1 ≤ k ≤ n− 1} may be deleted as argued above and the path with loops on

which play would progress would be a p-position. All options of (∆, ω) are thus p-positions,

and (∆, ω) must be a 0-position. Strategy for P2 in such a game, assuming again P1 chooses

an option at v1, is to choose an option at v2 removing all weight from edge v1v2.

Case 4 : There are no vertices in the cyclic subgraph of G adjacent with a pendant verex

with a loop.

As discussed in Case 3, no winning strategy will necessitate play that reduces the weight

of a pendant edge whose pendant vertex is incident with a loop. Play in this case, therefore,

may be thought of as entirely restricted to the subgraph induced by {∆}⋃{vi|1 ≤ i ≤ n−1}.

The position is p- or 0- according to the classification outlined in Chapter 2’s discussion of

29



nim on cycles with loops. Strategy is likewise defined. When this strategy culminates, there

may be options on a pendant edge with a loop. However, such a position is a 0-position and

strategy mirrors play for other pendant edges considered in this case.
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Chapter 5

Possibilities for Future Research

Perhaps the most glaring open question left at the conclusion of this work is, ”For games

of Nim on G where G is a graph discussed herein, determine the Grundy number for an initial

position, (∆, ω)?” One may recall that Grundy numbers for paths and cycles without loops

are found completely in [4].

The use of these Grundy numbers is interesting in a couple of different ways. In terms

of strategy, if the Grundy numbers for all of the options of (∆, ω) could be found, P1 would

know that any option for which the Grundy number was zero would be perfect play. Induced

subgraphs of trees are themselves trees, so a finding Grundy numbers for games on trees with

loops would allow for such an analysis at any position in the game.

More broadly, the ability to find the Grundy number for a position and its options

would provide a strategy for the sum of these games. If all games considered were Nim on

Graphs, we could imagine a graph with k components, each component with a game piece

placed at a vertex. On a players turn (s)he would choose a component and make a play with

the corresponding game piece in a game of nim on that component. This game would be

equivalent to a game of nim with k heaps, with each heap corresponding to a component,

the Grundy number for which would give the number of objects in the heap.

The introduction of other game pieces in Nim on G may lead us to consider games on a

connected graph, G in which each player is given a distinct game piece, or in which a player

were allowed to choose from a selection of game pieces and then make a move on his/her

turn. One easily sees that such a variation of Nim on G complicates analysis of the game

greatly.

31



As for other graphs to consider for analysis, I have begun consideration of games played

on a theta graph with loops. The theta graph seems a natural problem to approach since

its induced subgraphs are trees or mono-cyclic graphs. Since strategies for games played on

these graphs are known, Theorems 3.3 and 3.4 are of some use. However, the ability for

gamplay to proceed onto cyclic subgraphs at multiple vertices, as well as the fact that such

graphs have three induced cycles (on which weight assigned by ω may affect strategy and

classification), necessitate a more careful analysis.

It would be interesting to find criteria for G that would indicate whether the amount of

positive weight on an edge would be significant.

Erickson has approached the complete graph, developed a winning strategy in general

when ω(e) = 1 for every e ∈ Kn, and for small values of n shown that the amount of positive

weight placed on any edge does not change the classification of (∆, ω) as a p-position. Her

proposed strategy for the ”ω(e) = 1 ∀e ∈ Kn” case is easily extended to a case where

loops are added at every vertex. To my knowledge, however, no work has yet been done

on the complete graph where every vertex is also incident with a loop for n ≥ 4 and ω is

unrestricted.
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