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Abstract

Cloud Computing is a computing paradigm that involves delivering hosted services over

the Internet, based on a ‘pay-per-use’ approach. This new style of computing, promises to

revolutionize the IT industry by making computing available over the Internet, in a fashion

similar to other utilities like water, electricity, gas and telephony.

Growing adoption of Cloud Computing, by both the IT industry and the general public,

is driving the service providers into creating new data centers. Data centers are facilities

that typically host tens of thousands of servers. These servers communicate with each other

over high speed network interconnects. With growing application deployments, data centers

utilize a multi-tiered model where several servers work together to service a single client

request. As a result, the overall application performance in a data center, largely depends

on the efficiency of its underlying communication fabric.

There are essentially two high level choices for building communication fabric for data

centers. The first option leverages specialized hardware and communication protocols like

Infiniband, FibreChannel or Myrinet; the second leverages off-the-shelf commodity products

like Ethernet based switches and routers. Cost and compatibility reasons persuade many

data centers to consider the second option for their baseline communication fabric.

Until a few years ago, Ethernet speeds inside data centers averaged around 100 Mbps.

However, evolution of IEEE 802.3 standards led to the development of 1 Gbps and 10 Gbps

Ethernet networks. The sudden jump in Ethernet speeds from 100 Mbps to 1 Gbps and

10 Gbps requires proportional scaling for TCP/IP processing, so that the network intensive

applications can ultimately benefit from the increased network bandwidth. Although IP is

expected to scale well with Ethernet, there are some legitimate questions about TCP.
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TCP is a mature technology that has survived the test of time. However, the unique

workloads, speed and scale of modern data centers violate some of the basic assumptions

that TCP was originally based upon. As a result, when TCP is utilized in high-bandwidth,

low-latency data center environments, we discover new shortcomings in the protocol. One

such shortcoming is referred to as the ‘Incast’ problem.

TCP Incast is a catastrophic collapse in TCP’s throughput that occurs in high band-

width, low latency network environments when multiple senders communicating with a single

receiver, collectively send enough data to surpass the buffering abilities of the receiver’s Eth-

ernet switch. The problem arises from a subtle interaction between limited Ethernet switch

buffer sizes, TCP’s loss recovery mechanisms and the many-to-one synchronized traffic pat-

terns. Unfortunately, such traffic patterns occur frequently in many data center applications

and services. Hence, a feasible solution that addresses the Incast problem is urgently needed.

Our objective in this dissertation, is to address TCP’s Incast problem by providing

transport layer solutions that are both practical and backward compatible. We approach

this goal in two steps. First, we derive an analytical model of TCP Incast. Such a model is

essential to understand the reasons behind TCP’s throughput collapse. The analytical model

provides a closed form equation, which can be used to compute throughput at the client for

various synchronized workloads. We verify the accuracy of our model against measurements

taken from ns-2 simulations. Next, we discuss some solutions that were designed to address

TCP Incast at the transport layer. Specifically, we develop transport layer solutions that

improve TCP’s performance under Incast traffic, by either proactively detecting network

congestion through probabilistic retransmission or by dynamically resizing TCP’s segments

in order to avoid incurring timeout penalty. We evaluate the merits of the aforementioned

solutions using ns-2 simulations. Results show that each of our suggested techniques out-

performs standard TCP under various experimental conditions.
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Chapter 1

Introduction

Speaking at the MIT Centennial in 1961, Dr. John McCarthy [1], a leading scientist who

pioneered the concept of timesharing [2], said: “If computers of the kind I have advocated

become the computers of the future, then computing may someday be organized as a public

utility just as the telephone system is a public utility... The computer utility could become

the basis of a new and important industry.” Fifty years on, the Information Technology (IT)

industry is finally on the brink of realizing Dr. McCarthy’s vision for computing utilities.

With significant advances in information and communications technology over the last

five decades, computing is now on the verge of becoming the fifth utility behind water,

electricity, gas and telephony. This computing utility, unlike all other four existing utilities,

will provide the basic level of computing service that is considered essential to meet the

everyday needs of the general community [3]. To herald this new era of utility computing, a

number of computing models have been proposed, of which the latest one is known as Cloud

Computing.

Cloud Computing is a computing paradigm that involves delivering hosted services

over the Internet, based on a ‘pay-per-use’ approach. It derives its name from the ‘cloud’

symbol that is often used to represent the Internet in networking diagrams and, promises to

revolutionize the IT industry by making computing available over the Internet, in a fashion

very similar to other utilities [4]. However, Cloud Computing is still an evolving paradigm

and as yet, there is no single, widely accepted definition for it. Garnter in [5], defines Cloud

Computing as a style of computing where a scalable and elastic IT-related capabilities are

provided as a service to external customers using Internet technologies. Forrester in [6],

suggests that Cloud Computing refers to a pool of abstracted, highly scalable and managed
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infrastructure capable of hosting end customer applications and billed by consumption. NIST

(National Institute of Standards and Technology) in [7], defines Cloud Computing as a

model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction.

Among the numerous definitions for Cloud Computing, the NIST definition is meant to

serve as a means for broad comparisons of Cloud services and deployment strategies. The

NIST definition is also intended to provide a baseline for discussions ranging from ‘What is

Cloud Computing?’ to ‘How to best use Cloud Computing?’ [7]. Hence, we adopt NIST’s

definition of Cloud Computing for the remainder of this document.

1.1 NIST’s Model of Cloud Computing

In accordance to the definition from NIST, Cloud Computing actually covers more than

just computing technology. As shown in a three-dimensional diagram in Figure 1.1 from [8],

the model of Cloud Computing is actually composed of five essential characteristics, three

service models and four deployment models.

In the subsections below, we outline the key characteristics of Cloud Computing along

with a brief overview on the service models and the deployment approaches that are associ-

ated with it.

1.1.1 Cloud Characteristics

According to NIST in [7], the essential characteristics of Cloud environment include:

• On-demand self service that enables consumers to unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically without

requiring human interaction with any service provider.
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Figure 1.1: NIST’s model of Cloud Computing

• Broad network access which ensures that all Cloud functionalities and the resources

are available over the network and can be accessed through standard mechanisms like

thin or thick client platforms (e.g., mobile phones, tablets, laptops and workstations).

• Resource pooling which allows the computing resources provisioned by the provider to

be pooled, in order to serve numerous consumers using a multi-tenant model, where dif-

ferent physical and virtual resources are dynamically assigned and reassigned according

to the demands of the consumer.

• Rapid elasticity and scaling that not only allows the functionalities and resources to

scale rapidly outward and inward in accordance to the demands of the consumer, but

also allows those capabilities to be elastically provisioned and released.

• Measured service that facilitates automatic control and optimization of resource allo-

cations in addition to providing the capability to monitor, control and report resource

usage, for both the providers as well as the consumers.
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1.1.2 Cloud Service Models

In NIST’s model of Cloud Computing, providers offer their services according to three

fundamental models, namely, Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS) [7]. Among the three service models, IaaS offers the most

basic form of Cloud Computing. The three service models can be represented as a pyramid,

as depicted in Figure 1.2, where SaaS is at the top and IaaS is at the bottom. Abstraction

among the service models increases as we move towards the top of the pyramid in Figure

1.2, while the element of control among the service models increases as we move towards the

bottom of the pyramid.

Figure 1.2: Pyramid of service models in Cloud Computing

• Software as a Service – SaaS refers to software applications that are deployed as a

hosted services on the Cloud infrastructure. Consumers typically access these applica-

tions from client devices that either use a thin client interface, such as a web browser

(e.g., web-based email), or use Application Programming Interfaces (API) defined by

the hosted software. Under the SaaS service model, the consumers do not manage or
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control the underlying Cloud platform and Cloud infrastructure. Their only control is

usually limited to user specific application configuration settings. Examples of SaaS

include: Gmail, Google Docs, Salesforce.com and Microsoft Office 365.

• Platform as a Service – PaaS refers to the service where, the providers deliver a com-

puting platform using which consumers can build and deploy their own applications

on the Cloud. The computing platform delivered typically includes operating systems,

programming languages, libraries, services and tools supported by the provider. Under

the PaaS service model, consumers do not manage or control the underlying Cloud

infrastructure. However, they are typically able to control the deployed applications

and configuration settings for the application-hosting environment. Examples of PaaS

include: Google App Engine, Microsoft Azure and Amazon Elastic Beanstalk.

• Infrastructure as a Service – IaaS delivers compute services, typically in the form of

a set of virtual machines with associated storage, processing capability, other relevant

resources like network connectivity [4]. Under this model, consumers are given the ca-

pability to provision computing resources that are made available by service providers.

Consumers also have the capacity to deploy and run arbitrary software including oper-

ating systems and other applications on the provisioned resources. However, consumers

do not manage or control the underlying Cloud infrastructure. Their control is limited

to operating systems, storage and applications that are deployed by them. Some exam-

ples of IaaS include: Amazon CloudFormation, Rackspace Cloud and Google Compute

Engine.

1.1.3 Cloud Deployment Models

Cloud deployment approaches represent the way providers deploy Cloud service models

in order to make Cloud functionalities available to their consumers. Organizations choose
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Cloud deployment models based on their specific business, operational and technical re-

quirements [4]. As depicted in Figure 1.1, NIST categorizes Clouds deployments as Public,

Private, Community or Hybrid [7].

• Public Clouds – Under Public deployment model, the Cloud functionalities and re-

sources are made available for open use to the general public. Customers access and

use hosted Cloud services that are either free or offered on pay-per-use basis. Gener-

ally, public Cloud service providers like Amazon AWS, Microsoft and Google own and

operate the infrastructure and offer access to users only via Internet.

• Private Clouds – Under Private deployment model, the Cloud infrastructure is provi-

sioned for exclusive use by a single organization. In this environment, the organization,

a third party or some combination of them is in charge of setting up and maintaining

the Cloud resources. Accomplishing this requires a significant level of understanding of

the organization’s business environment and existing resources. However, when done

right, there is an added advantage in terms of better control of security, more effective

regulatory compliance and improved quality of services.

• Community Clouds – Under Community deployment model, the Cloud infrastructure

is shared exclusively between organizations from a specific group or community and

have common computing concerns. The Cloud infrastructure may be owned, managed

and operated by one or more of the organizations in the community, a third party, or

some combination of them, and it may exist on or off premises.

• Hybrid Clouds – Under Hybrid deployment model, the Cloud infrastructure consists

of two or more distinct Clouds (Public, Private or Community). These composite

Clouds remain unique entities, but under the Hybrid model, they are bound together by

standardized or proprietary technologies that enable data and application portability.

By utilizing this model, organizations are able to obtain degrees of fault tolerance for

their mission-critical processes.
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1.2 Benefits of Cloud Computing

Cloud Computing promises numerous benefits, inherent in the characteristics listed in

Subsection 1.1.1. According to [4, 9, 10], some of the key benefits offered by Cloud Computing

include:

• Lower cost – Cloud Computing dramatically lowers the cost of entry for smaller firms

trying to benefit from compute-intensive business analytics that were hitherto avail-

able only to the largest of corporations. Cloud Computing also represents a huge

opportunity to many third-world countries that have so far been left behind in the IT

revolution.

• Optimization of capital investment – Cloud Computing allows companies to optimize

their capital investments by reducing the costs of hardware and software purchases.

Organizations that have peak requirements can now rent additional hardware on the

Cloud instead of having to purchase new equipment. Similarly, instead of purchasing

separate software packages for each computer in the organization, Cloud Computing

allows IT administrators to host the required software on Cloud, which allows for lower

installing and maintenance costs.

• Rapid scaling – Cloud Computing makes it easier for enterprises to scale their services

according to the demands of the customer. Since the computing resources are managed

through software, services can be deployed very quickly as and when new requirements

arise.

• Self service – Cloud Computing allows users to obtain, configure and deploy Cloud

services without requiring human interaction with any of the service providers. Users

typically use a service portal provided by the Cloud platform to configure various

resources and services.
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• Anywhere, anytime access – Cloud Computing enables true device and location inde-

pendence for its users. Users are no longer bound to a single computer, network or

geographic location. Users can access Cloud services using a web browser regardless of

their location or what device they are using.

• Multi-tenancy – Cloud Computing typically allows single instances of software appli-

cations to serve multiple customers, allowing the service providers to leverage on the

economies of scale while also reducing maintenance costs.

• Easier collaboration – Cloud Computing allows multiple users to easily collaborate, as

witnessed by Cloud services like Google Docs and Microsoft Office 365, which enable

users across different geographical locations to collaborate on documents, spreadhseets

and presentations.

• Utility service – Cloud Computing follows a utility pricing model, which allows users

to pay for only those computing resources that they actually use, rather than paying

for a dedicated computing resource which may not be fully used except at certain peak

times.

• Disaster recovery – Cloud Computing through virtualization [11, 12], delivers faster

recovery times and multi-site availability at a fraction of the cost of conventional sys-

tems, making it attractive for enterprises to deploy comprehensive disaster recovery

plans for their entire IT infrastructure.

1.3 Cloud Computing and Data Centers

In a survey conducted by Cloud.com in the second quarter of 2011, about 61% of the

organizations surveyed were either in early stages of planning or had already acquired an

approved strategy for implementing Cloud Computing. Furthermore, about 20% of the

surveyed participants already had Cloud implementations in their organizations [13]. While
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the number of organizations leaning towards Cloud related technologies continues to grow,

the general public has already embraced Cloud Computing in form of services like Office 365

[14], Facebook [15], Flikr [16], Yahoo Applications [17], Amazon EC2 [18], Youtube [19] and

Gmail [20].

Growing adoption of Cloud Computing, by both the IT industry and the general public,

is driving service providers into creating new data centers. Data centers are facilities that host

hundreds of thousands of servers which concurrently support a myriad of distinct services

and applications [21]. Such facilities, not only let service providers leverage the economies

of scale for bulk deployments, but also allow them to dynamically relocate resources among

services as workloads change or equipments fail [22, 23].

A data center is generally organized in rows of ‘racks’ where each rack contains modular

assets such as servers or storage ‘bricks’ [24]. These racks are interconnected through Top-of-

Rack (TOR) switch, which in turn connects to an Aggregation switch as depicted in Figure

1.3 from [25].

The Aggregation switch connects to other Aggregation switches and through these

switches to other servers or storage bricks in the data center. A Core switch connects to

the various Aggregation switches and provides connectivity to the outside world, typically

through Layer 3 i.e., Network Layer [26]. It can be argued that most of intra-data center

traffic traverses only the Top-of-Rack and the Aggregation switches [25]. As a result, the

overall performance of services and applications hosted by the data center, largely depends

on the efficiency of its underlying communication fabric.

There are essentially two high level choices for building communication fabric for data

centers. The first option leverages specialized hardware and communication protocols like

Infiniband [27], FibreChannel [28] or Myrinet [29]; the second leverages off-the-shelf com-

modity products like Ethernet [30] based switches and routers [31]. While the first option

is capable of scaling up to thousands of nodes, it is generally more expensive (about $500 -

$2000 per port [32]) and not natively compatible with TCP/IP applications. On the other
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Figure 1.3: Data Center Switch Network Architecture
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hand, the second option is cheap (less than $30 per port [32]), supports a familiar manage-

ment infrastructure and requires no modification to applications, operating system or system

hardware, but scales poorly with increasing number of nodes. Cost and compatibility reasons

persuade many data centers to consider the second option for their baseline communication

fabric [33].

Until a few years ago, Ethernet speeds inside data centers averaged around 100 Mbps.

However, evolution of IEEE 802.3 standards led to the development of 1 Gbps and 10 Gbps

Ethernet networks. Today, 1 Gbps Ethernet networks are being widely deployed, and 10

Gbps will be commonly deployed as it becomes affordable. The sudden jump in Ethernet

speeds from 100 Mbps to 1 Gbps and 10 Gbps requires proportional scaling for TCP/IP

processing, so that the network intensive applications can ultimately benefit from the in-

creased network bandwidth [34]. Although Internet Protocol (IP) [35] is expected to scale

well with the evolving Ethernet, there are some legitimate questions about Transmission

Control Protocol (TCP) [36] as noted in [37].

1.3.1 TCP in Data Centers

TCP is a mature technology that has survived the test of time. As a standard it has been

successfully adapted to several new environments like, long fat networks [38, 39, 40, 41, 42,

43, 44], Asynchronous Transfer Mode (ATM) [45] networks [46, 47], as well as wireless and

cellular networks [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. However, the unique workloads,

speed and scale of modern data centers violate some of the basic assumptions that TCP

was originally based upon. For example, in contemporary operating systems such as Linux,

the default value of TCP’s retransmission timer is set to 200ms — a reasonable value for

traditional wide area networks where round trip times (RTT) are typically clocked in milli

seconds, but two to three orders of magnitude greater than the average round trip time inside

data centers [59]. As a result, when TCP is utilized in high-bandwidth, low-latency data
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center environments, we discover new shortcomings in the protocol. One such shortcoming

is referred to as the ‘Incast’ problem [60].

TCP Incast

TCP Incast is a catastrophic collapse in TCP’s throughput that occurs in high band-

width, low latency network environments when multiple senders communicating with a single

receiver, collectively send enough data to surpass the buffering abilities of the receiver’s Eth-

ernet switch. The problem arises from a subtle interaction between limited Ethernet switch

buffer sizes, TCP’s loss recovery mechanisms and traffic patterns that are characteristic of

data center applications. Small Ethernet buffers get exhausted by a concurrent flood of traf-

fic from many servers, which results in packet loss and one or more TCP timeouts. These

timeouts impose a delay of hundreds of milliseconds on a network whose round trip time

is measured in tens and hundreds of microseconds [61]. As a result of this, the perceived

goodput, which can be defined as the data throughput observed at the receiver’s applica-

tion, is orders of magnitude lower than the receiver’s link capacity. For example, consider

a cluster-based storage system discussed in [62]. In a cluster-based storage system, data is

typically stored across many storage servers to improve both reliability and performance.

Typically, their networks have high bandwidth (1 – 10 Gbps) and low latency (round trip

times of 10 – 100 µs) with clients separated from the storage servers by one or more switches.

In this environment, data blocks are striped over a number of servers, such that each

server stores a fragment of a data block denoted as a Server Request Unit (SRU) as depicted

in Figure 1.4 from [62]. A client requesting a data block sends request packets to all the

storage servers that contain the SRUs for that particular block; the client requests the next

block only after it has received all the SRUs for the current block. Such requests are referred

to as synchronized reads in [62].

However, when performing synchronized reads across an increasing number of servers,

a client may observe a TCP throughput drop of one or two orders of magnitude below its
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Figure 1.4: Synchronized reads in cluster storage system

link capacity. Figure 1.5 from [62] illustrates TCP’s catastrophic performance drop in a

cluster-based storage network environment when using HP ProCurve 2848 as the intermedi-

ate switch.

Simulation traces reveal that TCP’s retransmission timeouts are the primary cause be-

hind Incast. When goodput degrades, most servers still send their SRUs quickly, but one or

more servers experience timeouts from packet loss causing transmission delays. The servers

that finish their transfers receive requests for new SRUs only after the client has completely

received its previously requested data block, resulting in underutilized links within the net-

work [63].

Unfortunately, such synchronized read patterns occur frequently in many data center

applications and services. For example, in cluster storage when storage nodes respond to

requests for data [64, 65, 66, 67], in web search when many workers respond near simul-

taneously to search queries [68, 69, 70, 71], and in batch processing jobs like MapReduce
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Figure 1.5: TCP goodput collapse for synchronized reads

in which intermediate key-value pairs from many ‘mappers’ are transferred to appropriate

‘reducers’ during the ‘shuffle’ stage [72, 73]. Hence, a feasible solution that addresses the

Incast problem is urgently needed.

To the best of our knowledge the problem of Incast has so far never been addressed

convincingly. Except for a few attempts in recent literature ([61, 62, 74, 75]), Incast has

largely remained unexplored. Most of the current systems attempt to avoid TCP throughput

collapse by limiting the number of servers involved in any block transfer, by increasing the

size of the data blocks, by relying on enhancements to underlying Ethernet technology, or

by drastically reducing the value of TCP’s minimum retransmission timeout using system

extensions to support microsecond clock granularity. These solutions, however, are typically

specific to one configuration (e.g. a number of servers, data block sizes, Ethernet support,

availability of microsecond timers, etc.), and thus are not robust to changes in the data

center environment.
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Our goal in this dissertation therefore, is to provide practical, backward compatible,

transport layer solutions to TCP’s Incast problem when operating in high bandwidth, low

latency data center network environment.

1.4 Structure of Dissertation

This dissertation is organized as follows: In Chapter 2, we provide an overview of the

Transmission Control Protocol, including a brief description of some of its features like

reliable delivery, flow control and congestion control. In Chapter 3, we derive a simple

analytical model for TCP Incast, followed by its empirical validation. In Chapter 4, we

describe techniques to address TCP Incast and evaluate the solutions using simulations.

Finally we present our conclusions and directions for future work in Chapter 5.
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Chapter 2

The Transmission Control Protocol

For over three decades, Transmission Control Protocol (TCP) [36] has been the de-

facto transport protocol for a countless number of networked applications. According to

prior studies, TCP accounts for almost 90% of the byte count in the Internet [76, 77].

TCP’s robustness in a wide variety of networking environments is one of the primary reasons

for its large scale deployment. The protocol’s ability to provide adequate performance to

diverse applications has only been possible through continuous study, improvements and

modifications, making TCP one of the most active areas of research [78]. In this chapter we

provide an overview of the TCP, with a brief description of some of its features like reliable

delivery and congestion control, that are important from an Incast point of view.

2.1 Overview

The Internet is a huge network or networks, each implementing the Internet Protocol

(IP). IP is the principal communications protocol for transmitting information packets across

network boundaries where sources and destinations are hosts identified by fixed length ad-

dresses [35]. The design of IP however, assumes that the underlying network infrastructure is

inherently unreliable. As a result, IP only provides best effort delivery, meaning, the service

it provides is not entirely trustworthy.

User applications however, need reliable, in-order delivery with flow control between

two communicating endpoints. One possible approach to follow would be to allow each

application to implement its own error detection and recovery mechanism. However, given

that the mechanism is needed by many applications, advantages of having a common protocol

that provides these functionalities, is immediately apparent. Not only would the availability
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of such a protocol ease the design and implementation of user programs, it would also allow

for efficient multiplexing of datagrams from host to the applications [78]. The TCP was

specifically designed to provide such a service.

TCP described in [36] is a connection-oriented, end-to-end reliable protocol designed

to fit into the layered hierarchy just above the Internet Protocol. The TCP provides for

reliable inter-process communication between pairs of processes in host computers attached

to distinct but interconnected computer communication networks. TCP makes very few

assumptions about the reliability of the communication protocols in the layers below itself.

TCP only assumes that it can obtain a simple, potentially unreliable datagram service from

the layers below. This implies that the the protocol can conceivably operate over a wide

spectrum of communication systems ranging from hard-wired connections to packet-switched

or circuit-switched networks.

Using TCP, applications on networked hosts can create virtual circuits (or connections)

to each other, over which they can exchange streams of data. Every byte on a TCP connection

has its own 32-bit sequence number. TCP guarantees reliable, in-order delivery of these bytes

from the sender to the receiver. TCP also has the ability to distinguish data for multiple

connections by concurrent applications.

The sending and receiving TCP endpoints exchange data in the form of segments. A

segment consists of a fixed 20-byte header (plus an optional part) followed by zero or more

data bytes [79]. Figure 2.1 shows the layout of a TCP segment. Table 2.1 lists the purpose

of each field in a TCP segment.

The size of the segments exchanged between two endpoints is controlled by the TCP.

TCP even decides whether to accumulate data from several writes into one segment or to

split data from a single write over multiple segments. Two limits restrict the size of the TCP

segment over a connection. First, each segment including the TCP header must fit into the

65,535 byte IP payload. Second, each network has a Maximum Transfer Unit (MTU), and

each TCP segment must fit in the MTU [79].
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Figure 2.1: Layout of a TCP Segment

Table 2.1: TCP Segment Fields

Field Name Length In Bits Function

Source Port 16 Identifies the local end point at the source

Destination Port 16 Identifies the local end point at the desti-

nation

Sequence Number 32 Sequence number of the segment’s first

data byte in the overall connection byte

stream

Acknowledgment

Number

32 Sequence number of the next byte expected

by the receiver

Header Length 4 Indicates the segment header length in

words

URG flag 1 Control flag indicates that the Urgent

Pointer field is significant

ACK flag 1 Control flag indicates that the Acknowl-

edgment Number field is significant
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Field Name Length In Bits Function

PSH flag 1 Control flag requests the receiver to deliver

the data to application on arrival

RST flag 1 Control flag used to reset connection

SYN flag 1 Control flag used in establishing connec-

tions

FIN flag 1 Control flag to request normal termination

of TCP connection in the direction of the

segment

Window 16 Used for flow control. Indicates the num-

ber of bytes that may be sent starting at

the byte acknowledged

Checksum 16 Provides bit error detection for the TCP

segment

Urgent Pointer 16 Indicates the position of the first octet of

non expedited data in the segment

Options 32∗ Zero or more words designed to provide

extra facilities not covered by the regular

header

A segment that is too large to fit into the MTU of a network is broken down into multiple

fragments by an intermediate router. All resulting fragments get their own IP header and

are assembled back into the original segment at the destination.

TCP relies on sliding window protocol to transfer data between two endpoints. When

a sender transmits a segment, it also starts a timer. When the segment arrives at the

destination, the receiving TCP entity sends back a segment bearing an acknowledgment
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number equal to the next sequence number it expects to receive. If the sender’s timer goes

off before the acknowledgment is received, the sender transmits the segment again [79].

Though the operations of TCP sound simple, there are a number of complex situations

that the protocol needs to handle. For example, transmitted segments may arrive out of

order at the destination. Segments can also get delayed in the network in which case the

sender times out and retransmits them. If the retransmitted segments take a different path

to the destination, the receiver can end up with multiple copies of the same bytes in the

steam. Additionally, if the segment is fragmented, part of the fragmented segments may

never arrive at the destination. And last but not the least, a segment may occasionally hit

a congested link along its path to the destination.

TCP must be prepared to deal with these situations in an efficient way. A considerable

amount of effort has gone into making TCP robust for all network situations. Some of these

techniques used by many TCP implementations will be discussed in the sections below.

2.2 Reliable Data Delivery

In this section, we describe various mechanisms of TCP that are involved in ensur-

ing in-order transfer of stream bytes between source and destination endpoints, as well as,

multiplexing of network traffic to different application processes.

Transmission in TCP is made reliable via the use of sequence numbers and acknowledg-

ments. Conceptually, each byte of data is assigned a sequence number. The sequence number

of the first byte of data in a segment is also the segment sequence number and is transmitted

along with the segment in the segment header. Segments also carry an acknowledgment

number which is the sequence number of the next expected data byte of transmissions in

reverse direction. When TCP transmits a segment containing data, it puts a copy on a

retransmission queue and starts a timer; when the acknowledgment for that data is received,

the segment is deleted from the retransmission queue. If the acknowledgment is not received

before the timer runs out, the segment is retransmitted [36].
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In addition to sequence numbers and acknowledgments, TCP’s solution for delivering

data reliably over an unreliable internet communication system involves the following three

mechanisms:

• Establishing connection state at communicating endpoints

• Handling data duplication and reordering

• Handling data loss

The first step in ensuring reliable in-order data delivery between two hosts is the setup

of connection state at each endpoints [80] as discussed in the subsection below.

2.2.1 Connection Establishment and Multiplexing

In order to provide reliable data delivery, TCP needs to initialize and maintain certain

status information for each data stream. The combination of this information along with

sockets, sequence numbers and window sizes, forms a TCP connection or a virtual circuit.

When two processes wish to communicate, their TCP stacks must first establish a

connection (initialize the status information on each side). When their communication is

complete, the connection is terminated in order to free the resources for other uses [36].

Since connections must be established between processes over the unreliable internet

communication system, TCP uses a handshake mechanism with clock-based sequence num-

bers. The procedure to establish a TCP connection involves exchanging three segments

between communicating endpoints, utilizing the synchronize (SYN) control flag in the seg-

ment header. This exchange has been termed a three-way hand shake [36] and is depicted

in Figure 2.2. Unlike other connection establishing protocols, three-way handshake does not

require communicating endpoints to begin transmissions with same sequence numbers. Fur-

thermore, three-way handshake can be used to establish a TCP connection even in absence

of a global clock. The mechanism can also prevent old connection initializations and data
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Figure 2.2: TCP Three-way handshake and initial data exchange

22



packets from causing any confusion. Additionally, the endpoints can exchange parameter

and option information such as MSS, during connection establishment [80].

The process which initiates the three-way handshake does so by issuing an active open

request. Processes can also issue passive opens and wait for matching active opens from

other processes and be informed by the TCP when connections have been established. Two

processes which issue active opens to each other at the same time will be correctly connected.

This flexibility is critical for the support of distributed computing in which components act

asynchronously with respect to each other [36].

TCP provides 16-bit port identifiers to distinguish separate data streams that the pro-

tocol might handle. Since port identifiers are selected independently by TCP at each com-

municating endpoint, many endpoints in the network can pick the same identifier for a port.

To provide for unique addresses for all communicating processes, TCP concatenates the IP

address identifying the end point with the port identifier that identifies the process, to create

a socket which is unique throughout all networks connected together. A connection is fully

specified by the pair of sockets at the ends.

At each endpoint, the TCP examines the port identifiers in the received segment and

places the segment in the receive buffer of the process associated with that port [80]. A range

of port identifiers is reserved for well-known user applications such as HTTP [81], FTP [82],

SMTP [83], NNTP [84] and SSH [85, 86, 87, 88, 89, 90].

2.2.2 Re-ordering and Duplicate Elimination

In this subsection we describe TCP’s mechanisms which allow data to be re-ordered at

the receiver and duplicate data to be eliminated.

Packet reordering refers to the network behavior where the relative order of some seg-

ments in the same connection is altered when these segments are transported over the net-

work. In other words the receiving order of a stream of segments differs from the sending

order.
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TCP has the ability to recover from data that is damaged, lost, duplicated or delivered

out of order by the internet communication system. It achieves this by assigning a sequence

number to each transmitted byte and requiring a positive acknowledgment from the receiv-

ing endpoint [36]. The receiving endpoint can detect transmission errors by computing a

checksum on the received segment and comparing it to the checksum value in the received

segment’s header. If the checksum test fails, TCP discards the segment. Otherwise, it checks

to see if the received sequence number falls within the acceptable range of sequence numbers

defined by the receive window, rwnd. In TCP, the receive window indicates the allowed

number of bytes that the sender may transmit before receiving further permission from the

receiver.

A data byte whose sequence number does not fall within the sequence number range

defined by the receive window is discarded by the TCP. Bytes whose sequence numbers

fall within the sequence number range specified by rwnd but are not equal to rwnd ’s start

sequence number are buffered by the TCP. This allows TCP to properly re-order any out

of order data. On the other hand, bytes which are received in-order, advance the range

boundaries defined by rwnd.

Duplicate data in TCP may result from segment duplication by faulty devices, from the

finiteness of the sequence space (wrap around), from the presence of segments in the network

sent by earlier incarnations of the connection or from retransmissions from the source [80].

In order to limit the possibility of duplicate segments from previous instances of the

same connection being erroneously accepted, TCP starts the numbering of data bytes with

a “random” value when initiating the connection.

2.2.3 Retransmission of Lost Data

In this subsection we describe TCP’s strategy for loss recovery. The strategy employed

by TCP mainly relies on positive acknowledgments and timer based retransmissions.
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The receipt of each transmitted byte has to be acknowledged by the receiving endpoint.

TCP acknowledgments carry the sequence number of the next byte that the destination ex-

pects to receive. This strategy is referred to as “positive acknowledgment” strategy [80]. The

acknowledgment mechanism employed by TCP is “cumulative” meaning, an acknowledgment

of sequence X indicates that all bytes up to but not including X have been received by the

destination. This mechanism allows for straight forward duplicate detection in presence of

retransmission [36].

If a received segment’s sequence number does not match rwnd ś current start sequence

number, it elicits an acknowledgment for the start sequence number of rwnd. Such ACKs,

called duplicate ACKs, stimulate the sender to retransmit the segment that appears to be

missing [80].

It is important to note that an acknowledgment received by the sending endpoint does

not guarantee that the data has been delivered to the end user, but only that the TCP at

the receiving endpoint has taken the responsibility to do so.

Retransmission Queue

When TCP transmits a segment containing data, it puts a copy of the segment on

a retransmission queue and starts a timer that is initialized to a dynamically computed

retransmission timeout (RTO) value; when the acknowledgment for that data is received,

the segment is deleted from the retransmission queue. If the acknowledgment is not received

before the timer runs out, the segment is retransmitted [36]. Note that segments carrying

no data are not transmitted reliably, except for segments carrying the SYN or FIN flag.

In addition, a “fast” retransmission of the segment at the head of the retransmission

queue can be triggered by the reception of at least three duplicate ACKs before the expiry

of the retransmission timer [80]. In both cases the retransmission is followed by congestion

control measures that are discussed in section 2.4
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Note that some implementations of TCP, organize the data in retransmit queue in seg-

ments, as they were originally transmitted, while others do not keep the segment boundaries.

In the first case, when the retransmission timer expires, the segment at the head of the queue

is retransmitted. In the second case, a new segment can be created from the data at the

head of the retransmission queue. The data in the newly created segment can span over

multiple previous segments. This results in more efficient use of the network by decreasing

the segment header overhead.

2.3 Flow Control

Flow control is a technique whose primary purpose is to properly match the transmission

rate of the sending end point to that of the receiving end point [91]. TCP uses sliding window

mechanism to provide flow control, whereby the receiving end point returns a “window” in

each ACK, indicating a range of acceptable sequence numbers beyond the last segment that

was successfully received. The window, called receive window or rwnd, indicates the allowed

number of bytes that the sender may transmit before receiving further permission. Since

TCP’s rwnd field is limited to 16 bits in length, it provides for a maximum window size of

65,535 bytes.

Figure 2.3 illustrates the concept of the sliding window. In this simple example, the

sliding window spans over four bytes of the data stream. The sequence numbers within the

sender’s window represent the bytes sent but as yet not acknowledged. All sequence numbers

to the left of the sliding window are bytes that were transmitted and also acknowledged;

sequence numbers to the right of the sliding window are bytes that are yet to be transmitted.

Moving from left to right, the window “slides” as bytes in the window get acknowledged and

new bytes get transmitted.

A receiver can adjust the window size each time it sends the acknowledgments to the

sender. The maximum transmission rate is ultimately bound by the receiver’s ability to

accept and process data. If the receiver is incapable of accepting any new data, it can
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Figure 2.3: Sliding window mechanism

announce a “zero receive window” in an ACK, which forces the sender TCP to stall its data

transmission.

A sender which receives a zero window advertisement for rwnd, regularly probes the

receiver for window updates. This is because the underlying IP protocol only provides a

best effort service, due to which, an ACK carrying a window update from the receiver can

sometimes fail to reach the sender. TCP at the sending endpoint sends the first probe after

a retransmit timeout period and sends the subsequent ones at exponentially increasing time

periods [92].

TCP at the sending end point also deals with the case where the receiver advertises a

window that is smaller than the amount of data already in the network (which corresponded

to a previously advertised window value). This case, labeled “shrinking window”, causes the

sender to wait for the receive window, rwnd, to open up beyond the previously sent limit

before sending any new data [93].
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2.4 Congestion Control

Congestion control in TCP concerns with controlling the entry of segments into the

network in order to avoid overwhelming the processing or link capabilities of the intermediate

nodes. This section describes TCP’s four intertwined algorithms that are implemented as

part of the protocol’s congestion control strategy: slow start, congestion avoidance, fast

retransmit, and fast recovery. The following subsections discuss these algorithms in detail.

2.4.1 Slow Start and Congestion Avoidance

All TCP senders use slow start and congestion avoidance algorithms to control the

amount of outstanding data being injected into the network. To implement these algorithms,

TCP makes use of two variables, namely, congestion window (cwnd) and receiver’s advertised

window (rwnd). The congestion window is the sender-side limit on the amount of data the

sender can transmit into the network before receiving an acknowledgment, while the receiver’s

window is a receiver side limit on the amount of outstanding data. The minimum of cwnd

and rwnd governs TCP’s data transmission.

Another variable, the slow start threshold (sstrhesh), is used by the TCP to deter-

mine the algorithm to employ – slow start or congestion avoidance – in controlling data

transmission.

Starting data transmission with unknown network conditions requires TCP to slowly

probe the network to determine the available capacity, in order to avoid congesting the

network with large burst of data. TCP’s slow start algorithm is used for this purpose. It is

either used at the very beginning of data transfer or after repairing loss detected by TCP’s

retransmission timer. In both these situations, TCP is unaware of the current state of the

network causing it to probe the system for available capacity.

Initially, TCP sets ssthresh to an arbitrarily high value, but reduces it in response

to congestion. Setting ssthresh to a high value initially ensures that network conditions,

rather than some arbitrary host limit, dictates the sending rate. The slow start algorithm
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is used when cwnd ≤ ssthresh, while the congestion avoidance algorithm is used when

cwnd > ssthresh.

During slow start, TCP increments its cwnd by at most one maximum segment size

(MSS) for each ACK received. Slow start ends when cwnd exceeds ssthresh or when conges-

tion is observed.

Slow start is actually not very slow when the network is not congested and network

response time is good. For example, the first successful transmission and acknowledgment of

a TCP segment increases cwnd to two segments. After successful transmission and acknowl-

edgment of these two segments, the cwnd is doubled to four segments. Then eight segments,

then sixteen segments and so on, up to the maximum window size (rwnd) advertised by the

receiver or until congestion is observed in the network.

During congestion avoidance, cwnd is incremented by roughly one MSS per round-

trip time. Congestion avoidance continues until congestion is detected. Another common

formula that is used by various implementations of TCP in updating cwnd during congestion

avoidance phase is given in equation 2.1.

cwnd = cwnd+
(MSS ×MSS)

cwnd
(2.1)

This adjustment is executed on every incoming ACK that acknowledges new data during

the congestion avoidance phase.

When a TCP sender detects segment loss through the retransmission timer and the

given segment has not yet been retransmitted, TCP sets the value of its ssthresh according

to equation 2.2. Furthermore, upon a timeout, TCP sets the value of its cwnd to one MSS.

Therefore, after retransmitting the dropped segment, TCP sender uses slow start algorithm

to increase the size of its congestion window (cwnd) from one MSS to the new value of

ssthresh, at which point congestion avoidance again takes over [94].
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ssthresh = max

(

segments in flight

2
, 2×MSS

)

(2.2)

2.4.2 Fast Retransmit and Fast Recovery

When the destination receives an out-of-order segment, TCP at the receiving endpoint

immediately sends back a duplicate ACK to the sender. Duplicate ACK informs the sender

that the destination received a segment that was out-of-order. The acknowledgment number

in the duplicate ACK also informs the sender about the byte sequence number that the

destination expects. From the sender’s perspective, duplicate ACKs can be caused by a

number of network problems. First, they can be caused by dropped segments. In this

case, all segments after the dropped segment will trigger duplicate ACKs until the loss is

repaired. Second, duplicate ACKs can be caused by the re-ordering of data segments by the

network. Finally, duplicate ACKs can be caused by replication of ACK or data segments by

the network.

TCP’s fast retransmit algorithm uses the arrival of three consecutive duplicate ACKs

as an indication that the segment has been lost. After receiving three duplicate ACKs,

the sender retransmits the missing segment, without waiting for the retransmission timer to

expire.

After TCP’s fast retransmit algorithm sends the missing segment, the protocol’s fast re-

covery algorithm governs the transmission of new data until the sender receives non-duplicate

ACK from the destination. The reason that TCP does not perform slow start at this stage

is that in addition to indicating a segment loss, duplicate ACKs also inform the sender that

the segments are most likely leaving the network.

TCP implements the fast retransmit and the fast recovery algorithms in the following

manner:
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• On the first and the second duplicate ACKs received by the sender, TCP sends a

segment of previously unsent data provided, the receiver’s rwnd allows for it. TCP

also does not change its cwnd to reflect the transmission of these two segments.

• When the third duplicate ACK is received at the sender, TCP sets ssthresh to a value

given in equation 2.2.

• When the third duplicate ACK is received, following the reset of ssthresh, TCP sets its

cwnd to (ssthresh+ 3×MSS) ensuring that the cwnd is artificially inflated by the

number of segments that have left the network.

• For each additional duplicate ACK that the sender receives, TCP increments its cwnd

by one MSS.

• When finally the sender receives an ACK that acknowledges previously unacknowledged

data, TCP sets cwnd to ssthresh. This sequence is also known as “deflating” of the

congestion window (cwnd).

A summary of TCP’s congestion control mechanisms is depicted in Figure 2.4. An

illustration of how TCP’s congestion window evolves due to the protocol’s aforementioned

congestion control algorithms, is shown in Figure 2.5.

In Figure 2.5, TCP begins by setting its slow start threshold, ssthresh, to an arbitrarily

high value. It then starts its data transfer using the slow start algorithm to determine the

available capacity in the network. During this phase, TCP’s congestion window cwnd, grows

exponentially. In the example above, slow start phase ends when TCP experiences a timeout.

Following the timeout, TCP sets its ssthresh, to half the number of segments that were in

flight before the timeout. The protocol also sets the size of its cwnd to one. Since cwnd is now

less than ssthresh, TCP resumes its data transfer with slow start. Like before, cwnd grows

exponentially as long as cwnd ≤ ssthresh. When cwnd > ssthresh, TCP’s slow start phase

ends. TCP then continues with its data transfer using the congestion avoidance algorithm.
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Figure 2.4: Summary of TCP’s congestion control mechanisms
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Figure 2.5: Evolution of TCP’s congestion window

During this phase, cwnd grows linearly until TCP receives 3 duplicate ACKs. On receiving

3 duplicate ACKs, TCP ends its congestion avoidance phase and invokes fast retransmit

and fast recovery algorithms. This congestion avoidance-fast retransmit-fast recovery cycle

continues until TCP experiences another timeout. Following a timeout, TCP resumes its

data transfer with slow start algorithm as before. The resulting evolution pattern for TCP’s

congestion window cwnd, is often referred to as “TCP’s sawtooth behavior”.

2.5 Summary

In this chapter, we presented details on mechanisms that are responsible for TCP’s

reliable data transfer, flow control and congestion control. Our goal in this chapter is to not

only provide the necessary background for the following chapters, but to also help readers

working with TCP to gain a better understanding of the protocol.
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We note that TCP is a highly dynamic protocol, especially when the details of its imple-

mentations are considered. Many developers independently add non-standard modifications

and enhancements to standard implementations of TCP. Moreover, due to the complexity of

the protocol and some ambiguity in its specification, many developers allow themselves the

freedom to deviate from the standard behavior to provide simplicity or inter-operability with

other implementations of TCP. Therefore the information contained in this chapter may not

apply to every implementation of TCP.
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Chapter 3

Modeling Incast and its Empirical Validation

Transmission Control Protocol is the workhorse for several application layer protocols

like HTTP [81], FTP [82], SMTP [83], NNTP [84] and SSH [85, 86, 87, 88, 89, 90]. As a

result, a significant amount of today’s Internet traffic is carried by the TCP [76]. Studies

have shown that traffic from TCP and UDP [95] make for more than 96% of the packets

in the Internet. TCP alone accounts for almost 82% of packets and about 91% of the byte

count in the Web [77].

TCP also accounts for the bulk of traffic in data centers. TCP is at the core of several

data center applications like distributed filesystems [96, 97], cluster computing [98, 99],

parallel databases [100] as well as disaster recovery [101, 102]. However, recent works have

shown that under certain many-to-one traffic patterns, data center networks experience

Incast: a drastic collapse in throughput due to TCP timeouts triggered by severe losses

at Ethernet [30] switches [61, 74, 103].

In typical Incast communication pattern, a receiver issues synchronized data requests

to multiple senders. The senders, upon receiving the request, concurrently transmit a

large amount of data to the receiver. The data from all senders traverse a bottleneck

link in a many-to-one fashion. As the number of concurrent senders increases, the per-

ceived application-level throughput at the receiver collapses. The receiver application sees

throughput that is orders of magnitude lower than the link capacity [59]. TCP throughput

collapse was first observed in early parallel network storage projects such as NASD [104].

It was later documented as part of a larger paper by Nagle et al in [60]. Today, the same

Incast communication pattern can be found in many popular data center applications such

as cluster based storage systems [60, 64, 105], data analytics [106, 107, 108], Big Data [109],

35



MapReduce [72] as well as Hadoop [73]. Hence a thorough solution that addresses the Incast

pathology is urgently needed.

To substantially solve TCP Incast at low cost, we first need to understand the reasons

behind its throughput collapse. Traditionally, simulation and implementation/measurement

have been tools of choice for examining the performance of various aspects of TCP. In

this chapter we develop a simple analytic characterization of the steady state throughput

of multiple TCP flows, as a function of loss rate and round trip time under many-to-one

Incast communication pattern. Although many earlier works have already modeled TCP

[110, 111, 112, 113, 114, 115], our modeling is different in two aspects:

1. The application in our model exhibits Incast communication pattern whereas existing

models usually assume that the application layer has infinite amount of data to send.

2. Our model describes the overall throughput of the bottleneck link which contains mul-

tiple flows, while existing TCP models usually focus on the throughput of a single

flow.

In our TCP Incast model, we summarize that the throughput collapse in many-to-one

communication pattern is mainly caused by two kinds of timeouts.

• Anterior Block Transfer Timeout (ABTT): Anterior Block Transfer Timeouts happen

when a large number of senders get involved in a many-to-one synchronized data trans-

fer. During the transfer of a block, some senders finish transmitting their blocks early

due to TCP’s unfairness at small timescales. Such completed flows wait for other

senders to finish transmitting their blocks, without consuming any of the available

bandwidth. Meanwhile the remaining flows finish transmitting their blocks using ad-

ditional bandwidth vacated by the completed flows. This results in larger transmission

window for some flows by the end of the block transfer. At the beginning of the next

block transfer, all senders inject their whole windows into the network overwhelming

the small buffers at the intermediate Ethernet switch. This results in a lot of dropped
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packets and if any flow loses all the packets in its window, then it will enter a timeout

period.

• Intermediate Block Transfer Timeout (IBTT): Unlike Anterior Block Transfer Time-

outs, Intermediate Block Transfer Timeouts are not limited to the start of a block

transfer. IBTTs are caused when a participating sender fails to receive enough dupli-

cate ACKs to trigger Fast Recovery following the loss of transmitted packets during

a block transfer. The sender waits for a period of time defined by TCP’s timeout

before retransmitting its unacknowledged packets. Following a timeout, the conges-

tion window is reduced to one, and only one packet is resent in the first round after

the timeout. However, because of the synchronized nature of the Incast traffic, the

receiver cannot issue its next request until all the senders have finished transmitting

their current blocks.

Investigating the causes behind the aforementioned category of timeouts is beneficial in

developing an effective solution that will avoid the ill effects of TCP Incast.

3.1 Modeling Incast

More than a decade after its publication in [110], the steady state throughput equation of

TCP by Padhye et al. remains the most widely used method for calculating the throughput

that a TCP sender achieves under certain environmental conditions. While there now is a

wealth of other models available (e.g. [111, 112, 113, 114, 115]), many of which are better

in some aspect, none of them seem to strike the same balance between precision and ease of

use that makes equation from [110] the useful tool that it is.

In an effort to enable practical calculation of the throughput in Incast communication

pattern, we extend the equation from [110] to multiple synchronized TCP flows across a

single bottleneck link. We do this by following the basic approach in [110], but considering
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a number of synchronized flows using an identical path at the same time instead of a single

flow.

3.1.1 Model Using Loss Measure of Cumulative Flow

In order to derive an equation for the throughput in Incast communication pattern, we

extend the model presented in [110]. We assume that the reader is familiar with this work

and therefore will only repeat the preliminary assumptions where needed and shortly repeat

necessary definitions.

Consider n parallel TCP flows f1,. . .,fn sharing the same bottleneck link inside a data

center network. Like in [110], we too model the congestion avoidance phase of these n flows

in terms of “rounds”, assuming furthermore that the flows are synchronized in rounds (i.e.

in a round, all flows send packets in their current congestion window before the next round

starts for all of them). For each flow f , the round starts with the back-to-back transmission

of Wf packets, where Wf is the size of the flow’s current congestion window. Once all

packets falling within the congestion window of all n flows have been sent in this back-to-

back manner, no other packets are sent until each flow f , receives an ACK for one of its Wf

packets already sent. The first ACK reception by all senders marks the end of the current

round and the beginning of the next round. In this model, the duration of a round is equal to

the round trip time and is assumed to be independent of the window size. Note that another

assumption here is that the time needed to send all the packets in a window is smaller than

the round trip time.

At the beginning of the next round, a group of W ′

f new packets will be sent by each flow

f , where W ′

f is the new size of the flow’s TCP congestion window. Assume that the receiver

acknowledges every packet received with an ACK. Many TCP receiver implementations can

be configured to send one ACK for every packet received. If Wf packets are sent by a flow f ,

in the first round and all are received and acknowledged correctly, then the flow will receive

Wf acknowledgments. Since each acknowledgment increases the flow’s congestion window
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size by
(

1
Wf

)

, the congestion window size for the flow f , at the beginning of the next round

is W ′

f = Wf + 1. That is, during congestion avoidance and in the absence of loss, the

congestion window size of each flow increases linearly in time, with the slope of one packet

per round trip time.

Loss of packets in TCP can be detected in one of two ways, either by the reception of

three “duplicate ACKs” by the sender or via timeouts. We denote the former event as a

“TD” for triple-duplicate ACK loss indication and “TO” for timeout loss indication. When

the loss indicating event is a TD, the composite flow f reduces its congestion window Wf ,

by a factor of two. On the other hand if the loss indication is of type TO, the composite

flow f waits for a period of time denoted by T0 and then reduces the size of its congestion

window Wf to one before retransmitting its unacknowledged segments.

As in [110], we too assume that a packet is lost in a round independently of any packets

lost in other rounds. On the other hand we assume that packet losses are correlated among

the back-to-back transmissions within a round, i.e., if a packet is lost, all remaining packets

transmitted until the end of that round, irrespective of which flow they belong to, are also

lost. This bursty loss behavior which has been shown to arise from the drop-tail queuing

discipline in [116, 117], perfectly matches the queue management policy of the Ethernet

switches used in data center networks.

Cumulative Flow

Now, consider F to be the cumulative flow of n parallel, synchronized TCP flows

f1,. . .,fn, sharing the same bottleneck link in a data center network. Let W be the cumula-

tive window size of all n composite flows. Because the composite flows are all synchronized,

W is essentially the sum of all n congestion windows. As with the single sender, each round

starts with the back-to-back transmission of a total of W packets belonging to n flows. If all

W packets are sent, received and acknowledged correctly, then the participating n flows will

together receive W acknowledgments. Since each acknowledgment increases the individual
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flow f ’s congestion window size by
(

1
Wf

)

, the cumulative congestion window size at the

beginning of the next round is W ′ =
∑n

i=1(Wfi + 1), which implies, W ′ = W + n, as there

are n parallel flows involved. This means that, when all n composite flows are in congestion

avoidance phase and none of them experience a loss, the cumulative window size of all n

flows increases linearly in time, with the slope of n packets per round trip time.

Note that we have assumed the packets lost in the same round to be correlated (i.e., if

a packet is lost, all remaining packets transmitted until the end of that round, irrespective

of which flow they belong to, are also lost). Hence, more than one among n composite flows

could potentially experience a loss event in the same round. But TCP flows that experience

a loss, reduce their congestion window only once per round trip time. Since the flows are all

synchronized in terms of rounds, the resulting cumulative window W, is also modified only

once per round trip time. Hence, in the event of correlated losses, recognizing a packet loss

in a composite flow f, serves as a loss event indicator for the cumulative flow F. We define

TD-period (TDP) for the cumulative flow F, as the period between two consecutive loss

event indicators. For the ith TD-period, TDPi, we define Ai be the duration of the period.

A sample path of the evolution of the cumulative window W is shown in Figure 3.1.

Between two TD loss indications, the composite flows are all in congestion avoidance and the

cumulative window increases by n packets per round, as discussed above. Immediately after

a loss indication occurs, any composite flow f experiencing a loss, reduces its congestion

window size Wf by a factor of two. This implies that a loss experiencing cumulative flow F ,

will also reduce its cumulative window W, by
(

Wf

2

)

packets.

In the following subsections, we model the cumulative flow’s behavior in the presence

of packet losses. We develop a stochastic model of the cumulative flow corresponding to its

operating regimes: when loss indications are exclusively TD and when loss indications are

both TD and TO. During the process, we ignore certain aspects of TCP’s behavior (e.g.

slow start) but believe that we have still managed to captured the essential elements of the
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Figure 3.1: Evolution of W over time when loss indications are TDs
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protocol, as indicated by the generally good fits between model predictions and simulations,

as discussed in Section 3.2.

Triple Duplicate Loss Indications

In this subsection we assume that loss indications are exclusively of type “triple-duplicate”

ACK (TD), and that the composite flow f ’s window size is not limited by the receiver’s ad-

vertised flow control window.

For any given time t ≥ 0, we define Nt as the total number of packets transmitted by

the cumulative flow F, in the interval [0, t ]. Let Bt =
(

Nt

t

)

be the cumulative throughput

of all n composite flows in that interval. We can then define the long term steady-state

throughput of all n flows as,

B = lim
t→∞

Bt

= lim
t→∞

(

Nt

t

) (3.1)

Note that Bt is the number of packets sent per unit of time regardless of their eventual

fate (i.e., whether they are received or not). Thus Bt represents the throughput of the

cumulative flow F, at the shared link.

For our new extended equation, we define pc as the probability of a loss event of the

cumulative flow F. It is only counted as a loss event when one or more composite flows f ,

experiences a loss in a round.

As discussed in the previous subsection, in a loss event of the cumulative flow F, more

than one composite flow f , could experience packet loss. In order to estimate the number

of composite flows that experience packet loss for each cumulative loss event, we will also

use information about real loss probability in our extended equation. With pr, we denote

the probability that a packet (belonging to any composite flow) is lost, given that either it

is the flow’s first packet in its round or the flow’s preceding packet in its round is not lost.
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In this subsection, we are interested in establishing a relationship B(n, pc, pr) between

the throughput of the cumulative flow F and n the number of parallel synchronized flows

involved, pc the loss probability of the cumulative flow as well as pr the loss probability in

any composite flow f.

For a period TDPi, let Yi be the number of packets sent in that period and Ai be the

duration of that period. From [110], it can be shown that,

B =
E[Y ]

E[A]
(3.2)

where E[Y] and E[A] are the expected values of Y and A respectively. Hence, to derive

B, the longterm steady-state throughput of the cumulative flow, we must next derive the

expressions for the mean of Y and mean of A. To achieve this, we need to take a closer look

at how the evolution of window size Wf of each composite flow, the time between two loss

events of a flow Af and the duration of a TD-period of each individual flow f , influence the

development of the cumulative window size W.

As in [110], we define rij to be the duration (round trip time) of the j -th round of TDPi

and Xi to be the number of rounds in TDPi. Then, the duration of TDPi can be computed

as Ai =
∑Xi

j=1 rij . We consider the round trip times rij to be random variables, that are

assumed to be independent of the size of the cumulative window W, and thus independent

of the round number, j. It follows that

E[A] = E[X]E[r] (3.3)

Henceforth, we denote by RTT = E[r], the average value of round trip time.

Since we are now dealing with the cumulative flow, in a single loss event in F, more

than one composite flow can experience loss. Let ji be the number of flows, belonging to the

cumulative flow, that experience loss at the end of the i -th TD-period. Assuming that loss
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is identically distributed over all flows, the probability that a composite flow experiences a

loss in the i -th TD-period is
(

ji
n

)

.

The probability that the time between two loss events of a composite flow Af , is k TD-

periods (k = 1, 2,. . .) is equal to the probability that the flow did not lose a packet in k - 1

consecutive TD-periods and in the k -th period it loses a packet:

P[loss in the k-th TDP] =
ji

n

k−1
∏

l=1

(

1−
j(i−l)

n

)

(3.4)

If j is the mean number of composite flows experiencing a loss in a round, we have:

P[Af = kE[A]] =
j

n

(

1−
j

n

)k−1

(3.5)

The mean value of Af , the time between two loss events for a composite flow, is:

E[Af ] =
∞
∑

k=1

(

j

n

(

1−
j

n

)k−1

kE[A]

)

=

(

nE[A]

j

)

(3.6)

From 3.3 and 3.6 we can express the average number of rounds between two loss events

of a flow as:

E[Xf ] =
nE[X]

j
(3.7)

For deriving Y, we will examine the evolution of the cumulative window W, as shown

in Figure 3.2. In each round, the composite window W, is incremented by n. αi denotes the

sequence number of the first packet lost in TDPi (for simplicity, we assume the sequence

numbers to begin at 1 for every TD-period). After receiving a triple duplicate acknowledg-

ment for one of the composite flows, the cumulative flow recognizes that a packet has been
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Figure 3.2: Packets sent during a TD period
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lost (receiving the ACK for packet γi). We consider that a TD period ends when the cumu-

lative flow recognizes a loss event. This usually happens in the round following the actual

loss; we call this round the “loss round”. The total number of packets sent in Xi rounds in

TDPi is Yi = γi, hence

E[Y] = E[γ] (3.8)

The probability that γi = k is equal to the probability that k - 1 packets are not loss

indications and the ACK for the k -th packet triggers the fast retransmission in one of the

the composite flows for the cumulative flow F :

P [γi = k] = (1− pc)
k−1

pc, k = 1, 2, . . . (3.9)

And the mean value of γ is:

E[γ] =
∞
∑

k=1

(1− pc)
k−1

pck

=

(

1

pc

)

(3.10)

For the i -th TD-period let flows xe, e = 1,. . .,ji (subset of n composite flows) be the ji

flows experiencing loss at the end of the period. The same xe flows do not experience loss

in every TD-period. Instead, the TD-periods in which these xe flows experience loss are a

subset ({is}, s = 1, 2,. . .) of TD-periods of the cumulative flow F. For example, in Figure

3.2, only flow f2 experiences loss in TDPi. Its next loss could perhaps happen in the period

TDPi+2.

If Wfxeis
are the congestion windows of the flows xe at the end of the (is)-th period, and

Xfxeis
is the number of rounds from the end of TDPis−1

till the end of TDPis , during these

Xfxeis
rounds, the congestion window of flows xe increase by Xfxeis

packets. Hence, we have:
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Wfxeis
=

Wfxeis−1

2
+Xfxeis

(3.11)

Assuming that Xfxeis
and Wfxeis

are mutually independent sequences of independent

and identically distributed (i.i.d.) random variables, from [115] we have:

E[Wf ] = 2E[Xf ] (3.12)

Assuming that at the end of each TD-period the window sizes of the j flows experiencing

loss are E[Wf ], and the window sizes of the j flows experiencing loss in the previous loss

events are
(

E[Wf ]

2
+ E[X]

)

,
(

E[Wf ]

2
+ 2E[X]

)

,
(

E[Wf ]

2
+ 3E[X]

)

and so on, the mean window

size of the cumulative flow is:

E[W] = jE[Wf ] +

n
j
−1
∑

k=1

j

(

E[Wf ]

2
+ kE[X]

)

(3.13)

From 3.7, 3.12 and 3.13, we have:

E[W] =
nE[X]

2
+

3n2E[X]

2j
(3.14)

The number of packets sent in a TD-period by the cumulative flow F, is the number of

packets sent between its two loss events. For the i -th TD-period this includes packets sent in

the last round of the (i - 1)th TD-period, starting from the γ(i−1)th packet till the end of the

window (βi−1 packets) and the packets sent in the next Xi rounds till the γith packet. If flows

xe, e = 1,. . .,ji experience loss in the (i - 1)th TD-period andWfxei−1

are their respective con-

gestion window sizes at the end of the (i - 1)th TD-period, the window size of the cumulative

flow at the beginning of the i -th TD-period is Wi =

(

Wi−1 −
∑ji−1

e=1

Wfxei−1

2
+ (n− ji−1)

)

(ji flows reduce their congestion windows by factor of two and the remaining (n - ji−1) flows
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increase their window size by one segment). Additionally, the window size W of the cumu-

lative flow F is increased by n every round of the i -th TD-period. So the number of packets

sent in a TD-period can be expressed as:

Yi = βi−1 +

Xi−1
∑

k=0

(

Wi−1 −

ji−1
∑

e=1

Wfxei−1

2
+ (n− ji−1) + nk

)

− βi (3.15)

where βi is the number of packets sent in the loss round after the loss event is recognized.

Assuming that loss events in the cumulative flow are uniformly distributed over the size of

the cumulative window W in a loss round, we have:

E[β] =
E[W ]

2
(3.16)

From 3.15 and 3.16, we can show that:

E[Y] =

(

E[W ]−
jE[Wf ]

2
+ (n− j)

)

E[X] +
nE[X]2

2
−

nE[X]

2
(3.17)

and including 3.7, 3.8, 3.10 and 3.12:

1

pc
=

3n2E[X]2

2j
+

nE[X]

2
− jE[X] (3.18)

Solving the equation in 3.18 for E[X], we get

E[X] =
2j2pc − npcj +

√

n2pc2j2 − 4npc2j3 + 4j4pc2 + 24n2pcj

6n2pc
(3.19)

Including 3.14, we have:

E[W] =
2j2pc − npcj +

√

n2pc2j2 − 4npc2j3 + 4j4pc2 + 24n2pcj

4pcj

+
2j2pc − npcj +

√

n2pc2j2 − 4npc2j3 + 4j4pc2 + 24n2pcj

12npc

(3.20)
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From 3.2, 3.3, 3.10 and 3.19 we can express B, the longterm steady state throughput of

all n synchronized flows as:

B =
1

RTT
×

6n2

2j2pc − npcj +
√

n2pc2j2 − 4npc2j3 + 4j4pc2 + 24n2pcj
(3.21)

Equation 3.21 gives us an expression to compute the throughput of Incast traffic when

all the composite flows are in congestion avoidance phase and receive only loss indicating

events that are of type TD. In this equation, we can approximate j, the mean number of

flows experiencing a loss in a round, with the expression
(

pr
pc

)

. Since j must be no more

than n, we have j = min
(

n, pr
pc

)

.

Timeout Loss Indications

In this subsection we model the throughput of cumulative flow for loss indications that

are of type “time out” (TO). As already mentioned, TCP’s throughput collapse in many-to-

one synchronized communication is mainly caused by two kinds of timeouts, namely, Inter-

mediate Block Transfer Timeouts (IBTT) and Anterior Block Transfer Timeouts (ABTT).

Figure 3.3 shows the scenario where IBTT happens in ns-2 [118, 119] simulations. The

simulation consists of four senders that transmit synchronized data block to the same re-

ceiver. As with the standard Incast communication pattern, the client makes a request for

the next block only when the previous block has been completely received. The advertised

window size of the receiver is set to 1000 packets, which is large enough to have no impact

on the congestion window evolution at the sender. Figure 3.3 plots the window evolution

of three of the four senders involved. The dotted vertical lines running across all three

evolutionary graphs indicate the completion of a block transfer. We can see that at time

t ≈ 13.559886s, the client successfully receives block number 21. Following the complete

reception of the block, the client makes a request for the transfer of the next block and all

senders start transmitting their share for block 22. During transfer of this block, sender 1 at

time t = 13.563974s, experiences a TO. Since the loss indicator is a timeout, sender 1 waits
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Figure 3.3: Scenario for Intermediate Block Transfer Timeouts
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for a period of time T0, defined by TCP’s retransmission timer before retransmitting its lost

packets. And although the other servers involved in the block transfer complete transmitting

their share of the block well before the recovery of sender 1, the client does not make a re-

quest for a new block till sender 1 also follows suit. Hence, the shared link is completely idle

between 13.568913s ∼ 13.764448s, which results in throughput collapse. By observing the

congestion window evolution of sender 1, we find that although the packets in its congestion

window at t ≈ 13.559886s, were all successfully transmitted, the server received less than 3

duplicate ACKs resulting in a TO.

Figure 3.4 illustrates the situation where ABTTs occur. In this ns-2 simulation setup,

ten senders transmit synchronized data block to the same receiver. As with the simulations

for IBTT, the advertised window size of the receiver is set to 1000 packets, which is again

large enough to have no impact on the congestion window evolution at the sender. Figure

3.4 plots the window evolution of three of the ten senders involved. Like before, the dotted

vertical lines running across all three evolutionary graphs indicate the completion of a block

transfer. Here, we notice that sender 10 experiences a TO very early (t ≈ 1.855538s) in the

transfer of block 9 to the receiver. By the time sender 10 resumes with its transmission (at

t ≈ 2.054982s), all the remaining servers involved, have finished transmitting their share of

the data and are waiting for sender 10 to catch up. Like with IBTT, the shared link remains

completely idle during this interval (1.875551s ∼ 2.054982s), which drastically reduces the

overall throughput of the Incast traffic. However once sender 10 resumes its transmission,

it does not have to compete with any other sender for a portion of the shared bandwidth.

This results in a large congestion window for sender 10 at the end of the transfer of block

9. At the beginning of the next block transfer, all senders start off by injecting their whole

windows into the network. The small buffers at the intermediate Ethernet switch are easily

overwhelmed by large windows of senders like 10 and as a result, a lot of packets get dropped.

Unfortunately, few senders like sender 9, lose all the packets in their congestion window

resulting in an early TO for block 10. And like sender 10 during transfer of block 9, sender
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9 too ends up with a large congestion window during the transfer of block 10. The cycle

repeats for block 11 too, with sender 8 experiencing an early TO.

Through investigating numerous simulations, we find that IBTT dominates TCP through-

put when n is small, while ABTT dominates Incast when n is large.

Consider the evolution of the cumulative window W, in the presence of loss indications

that include type “TO”, as shown in Figure 3.5. Timeouts occur when any composite flow

f loses packets (or ACKs) and receives less than three duplicate ACKs in response. The

loss experiencing flow then waits for a period of time denoted by T0 before retransmitting

its non-acknowledged packets. Following a timeout, the congestion window of the flow Wf

is reduced to one, and only one packet is thus resent in the first round after the timeout.

In case the composite flow suffers another timeout before successfully retransmitting the

packets lost during the first timeout, the period of timeout doubles to 2T0; this doubling is

repeated for each unsuccessful retransmission until 64T0 is reached, after which the timeout

period remains constant at 64T0 [110].

The evolution of the cumulative window W depicted in Figure 3.5 is an approximation

of the real Incast traffic pattern observed during timeouts. Because we have assumed all n

flows to be synchronized in terms of rounds, when one composite flow experiences a timeout,

the remaining flows refrain from transmitting data as well. However, in the real world when

one composite flow experiences a loss, the other (n - 1) flows continue to transmit their

remaining share of data (e.g. Figure 3.3 and Figure 3.4).

Slow Start is another aspect of TCP that we have conveniently chosen to ignore in our

handling of TO type loss indicators. Following a timeout, TCP uses a mechanism called

“Slow Start” to increase its congestion window. Slow Start operates by observing that the

rate at which new packets should be injected into the network is the rate at which the

acknowledgments are returned by the other end. Unlike the Congestion Avoidance phase

where the congestion window is increased by one segment per round trip time, the Slow Start

increases the congestion window by one segment for every ACK received. This provides for
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Figure 3.4: Scenario for Anterior Block Transfer Timeouts
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Figure 3.5: Evolution of W over time when loss indications are TD and TO
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an exponential growth of the congestion window after it was reduced to one following a

timeout. The Slow Start phase is usually much shorter than the Congestion Avoidance

phase and for the sake of simplicity, we choose to ignore this phase in our model of Incast.

Despite these aforementioned approximations, we believe that we have still managed to

capture the essential aspects of the Incast phenomenon, as indicated by the generally good

fit between our model and the simulations as discussed in Section 3.2.

Let ZTO
i denote the duration of a sequence of timeouts and ZTD

i denote the time interval

between two consecutive timeout sequences. We define Si to be

Si = ZTD
i + ZTO

i (3.22)

Let Mi be the number of packets sent during Si. Then {(Si,Mi)}i is an i.i.d. sequence

of random variables [110] from which we have,

B =
E[M ]

E[S]
(3.23)

Let vi be the number of TD periods in interval ZTD
i . For the jth TD period of interval

ZTD
i , we define Yij to be the number of packets sent in the period, Aij to be the duration

of the period, Xij to be the number of rounds in the period, and Wij to be the cumulative

window size of n parallel synchronized TCP flows at the end of the period. From these

definitions we have,

Mi =

vi
∑

j=1

Yij (3.24)

and,

Si =

vi
∑

j=1

Aij + ZTO
i (3.25)

Thus,
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E[M] = E

[

vi
∑

j=1

Yij

]

(3.26)

and,

E[S] = E

[

vi
∑

j=1

Aij

]

+ E
[

ZTO
i

]

(3.27)

If we assume {vi}i to be an i.i.d. sequence of random variables, independent of Yij and

Aij [110], then we have

E





(

vi
∑

j=1

Yij

)

i



 = E[v]E[Y] (3.28)

and,

E





(

vi
∑

j=1

Aij

)

i



 = E[v]E[A] (3.29)

To derive E[v] observe that, during ZTD
i the time between two consecutive timeout

sequences, there are vi TDPs, where each of the first (vi - 1) end in a TD, and the last TDP

ends in a TO. It follows that in ZTD
i there is one TO out of vi loss indications. Therefore if

we denote by Q the probability that a loss indication ending a TDP is a TO, we have Q =
(

1
E[v]

)

. Consequently,

B =
E[Y ]

E[A] +Q× E[ZTO]
(3.30)

Since Aij and Yij do not depend on timeouts, their means are those derived in 3.3 and

3.10. To compute throughput of n parallel synchronized TCP connections using 3.30 we

must still determine Q and E[ZTO].

We begin by deriving an expression for Q. Let j be the mean number of composite flows

experiencing packet loss at the end of a TDP as discussed in the previous subsection. For
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Figure 3.6: Packet and ACK transmissions preceding a loss indication
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simplicity, we assume that at most, only one “TO” type loss indication occurs at the end of

a TDP. That is, of the j composite flows that lose packets at the end of a TDP, no more

than one flow experiences a timeout event. Since a timeout is either of type IBTT or of type

ABTT, the probability of a TO type loss indication ending a TDP can be expressed as,

Q = min (1, Qibtt +Qabtt) (3.31)

where Qibtt and Qabtt are probabilities of ending a TDP with a single timeout indication

of type IBTT and ABTT respectively.

Next, we focus on deriving an expression for Qibtt — the probability of a composite flow

experiencing an IBTT at the end of a TDP. Consider the round where a composite flow f,

loses its packets; we will refer to this round as the “penultimate” round (see Figure 3.6).

Let Wf be the size of the flow’s congestion window. Thus packets u1,. . .,uWf
are sent in the

penultimate round. Packets u1,. . .,uk are acknowledged and packet uk+1 is the first one to

be lost. Since we have assumed packet losses within a round to be correlated, if a packet

is lost all packets that follow it till the end of the round are also lost. Thus, all packets

following uk+1 in the penultimate round are also lost. However, since packets u1,. . .,uk are

ACKed, another k packets, s1,. . .,sk are sent in the next round, which we will refer to as

the “loss” round. This round of packets may have another loss, say packet sm+1. Again,

our assumptions on packet loss correlation mandates that packets sm+2,. . .,sk are also lost

in the last round. The m packets successfully sent in the last round are responded to by

ACKs for packet uk, which are counted as duplicate ACKs. If the number of such ACKs is

higher than three, then a TD indication occurs, otherwise an IBTT occurs. In both cases,

the current period between losses, TDP, ends. We denote by A (w, k) the probability that

the first k packets are ACKed in a round of w packets, given there is a sequence of one or

more losses in the round. Then,
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A(w, k) =
(1− pr)

kpr

1− (1− pr)w
(3.32)

Also, we define C (g,m) to be the probability that m packets are ACKed in sequence in

the loss round (where g packets were sent) and the rest of the packets in the round, if any

are lost. Then,

C(g, m) =















(1− pr)
mpr, m < g

(1− pr)
n, m = g

(3.33)

Then, ˆQibtt (w), the probability that a loss in a congestion window of size w is an IBTT,

is given by,

ˆQibtt (w) =















1, if w ≤ 3

∑2
k=0A(w, k) +

∑w

k=3

(

A(w, k)×
∑2

m=0 C(k,m)
)

, otherwise

(3.34)

since an IBTT occurs if the number of packets successfully transmitted in the penulti-

mate round, k, is less than three or if the number of packets successfully transmitted in the

loss round, m is less than three. Also, due to the assumption that packets following sk+1

are lost independently of packets following uk+1 (since they occur in different rounds), the

probability that there is a loss at uk+1 in the penultimate round followed by a loss at sm+1

in the loss round equals A (w, k)× C (k,m).

Therefore, Qibtt, the probability that composite flow’s loss indication is an IBTT, can

be expressed as

Qibtt =
∞
∑

w=1

ˆQibtt (w)P [Wf = w] = E
[

ˆQibtt

]

(3.35)

We can approximate this to,
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Qibtt ≈ ˆQibtt (E [Wf ]) (3.36)

where E [Wf ] is the mean congestion window size of a composite flow, derived from the

equation 3.12.

To begin deriving an expression for Qabtt we must first consider the number of packets

transmitted in a TDP in relation to the size of the block being transferred. Let L be the size

of the block that all n senders are trying to transmit to the destination. If E [Y ] is the mean

number of packets sent during a TD-period (equation 3.10), the average number of TDPs

needed to transfer a block of size L, can be expressed as,

ρ =
L

E [Y ]
(3.37)

If δ is the mean number of ABTTs occurring at the start of a block transfer, the series

δi and ρi can be assumed to be mutually independent sequence of i.i.d. random variables

from which, the probability of a TDP ending due to a TO indication of type ABTT can be

expressed as

Qabtt =
E [δ]

E [ρ]
(3.38)

We can substitute the results of equations 3.36 and 3.38 in 3.31 to get an expression for

Q — the probability that a loss indication ending a TDP is a TO. Next, we consider the

derivation of E
[

ZTO
]

, the average duration of a timeout sequence. Since we have assumed

that there can be at most one timeout at the end of a TDP, we can approximate E
[

ZTO
]

with T0.

By substituting the obtained expressions for Q and E
[

ZTO
]

into equation 3.30, we now

obtain the following expression for B
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B =

(

E[Y ]

RTT × E[X] +Q× E[ZTO]

)

where, (3.39)

E [Y ] =

(

1

pc

)

E [X] =

(

2j2pc − npcj +
√

n2pc2j2 − 4npc2j3 + 4j4pc2 + 24n2pcj

6n2pc

)

j ≈ min

(

n,
pr

pc

)

Q = min(1, Qibtt +Qabtt)

Qibtt ≈ ˆQibtt (E [Wf ])

E [Wf ] =

(

2n

j
×

2j2pc − npcj +
√

n2pc2j2 − 4npc2j3 + 4j4pc2 + 24n2pcj

6n2pc

)

ˆQibtt (w) =















1, if w ≤ 3

∑2
k=0A(w, k) +

∑w

k=3

(

A(w, k)×
∑2

m=0 C(k,m)
)

, otherwise

A (w, k) =
(1− pr)

kpr

1− (1− pr)w

C (k,m) =















(1− pr)
mpr, m < k

(1− pr)
n, m = k

Qabtt =
E [δ]

E [ρ]

E
[

ZTO
]

= T0

In Section 3.2, we verify whether the equation 3.39 successfully models the behavior of

Incast or not. Henceforth we will refer to the model expressed in equation 3.39 as the “Full

Model”.
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3.2 Validation and Analysis

In this section, we validate the performance of our Incast model using the ns-2 simulator.

With simulations we demonstrate that the throughput expression derived in the previous

section works relatively well for broad range of conditions.

Figure 3.7: Setup for n parallel, synchronized TCP flows sharing a bottleneck

For our ns-2 simulations, we used the topology depicted in Figure 3.7 which is commonly

used to study a set of parallel, synchronized flows sharing the same bottleneck link. We vary

various parameters like, number of flows, block size as well as buffer length to validate our

model under different environmental conditions.

Our ns-2 simulation configuration depicted in Figure 3.7 consists of a cluster based

storage system where storage client and storage servers are all connected to the same switch.

In this environment, data blocks are striped over multiple servers, such that each server

stores a fragment of the data block denoted as the Server Request Unit (SRU) in Figure 3.7.

A client requesting a data block sends request packets to all storage servers that contain
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SRUs for that particular block; the client requests the next block only after it has received

all the data for the current requested block. That is, if the client requests a data block from

n servers, it sends request for the next block only after receiving (n× SRU) bytes of data

in total.

Table 3.1: Simulation parameters with default settings

Parameter Default

Number of servers —

SRU size (L) 256 KB

Link capacity (C) 1 Gbps

Link delay (D) 50 µs

Switch buffer size (B) 32 KB

Segment size (S) 1 KB

TCP implementation NewReno

Receive window size 1000 segments

Duplicate ACK threshold 3

Slow start enabled

RTOmin 200 ms

Next, we measure the throughput of n parallel, synchronized TCP flows at the shared

bottleneck link after varying the number of storage servers involved in data transfer. To more

accurately model the real-world scheduling variance, we also add a random scheduling delay

of up to 20 µs between every consecutive data request from the client. Table 3.1 lists various

other parameters that were used in our experiments. Notice that we have enabled “Slow

start” in our experiments even after choosing to ignore it for our model. As we demonstrate

later in this section, the impact of “Slow start” on Incast is negligible; our model produces

a good fit with the simulations despite ignoring “Slow start”. Each trial in the experiment

runs for 40 seconds of simulated time, providing enough data transfer to accurately calculate

the throughput of the Incast traffic.
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Simultaneously, we also gather traces generated by ns-2 for all the traffic simulated in

our experiment. Later, we analyze these traces with a set of analysis programs developed by

us. These programs compute the values of pc by dividing the total number of loss indications

in the cumulative flow by the total number of packets sent by all flows, pr by dividing the total

number of loss indications in a composite flow by the total number of packets sent by the flow

and δ the mean number of ABTTs occurring at the start of a block transfer. Additionally, the

programs also measure the round trip time and the average duration of a “single” timeout.

These values are then averaged over several runs and our model’s throughput computed

using equation 3.39.

Figure 3.8: Comparing Full Model with Incast simulation results

Figure 3.8 compares the throughput of ns-2 Incast simulations to the throughput ob-

tained by our model using equation 3.39. From the graph, it can be seen that our model
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characterizes the general tendency of TCP Incast relatively well, although it underestimates

the throughput at the bottleneck link when the number of senders is large.

Figure 3.9: Comparing TD Only model with Incast simulation results

Figure 3.9 on the other hand compares the throughput of ns-2 Incast simulations to

the throughput obtained by our model using equation 3.21. It is important to note that

the expression in equation 3.21 computes the throughput of the Incast traffic when all the

composite flows are in congestion avoidance phase and receive only TD type loss indicating

events. That is, equation 3.21 computes the throughput of the Incast traffic without taking

timeouts into account.

Comparing figures 3.8 and 3.9 it is clear that, timeouts — both ABTT and IBTT — are

essentially the main causes for TCP’s throughput collapse under Incast workloads. To better

understand the impact of IBTT and ABTT on Incast traffic, we compute the throughput

achieved in our model by considering just one type of timeout at a time. Figures 3.10 and
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3.11 plot the throughput resulting from our Full Model when only IBTT and ABTT, are

considered respectively.

Figure 3.10: Impact of IBTT on proposed model

From Figure 3.10 it is clear that IBTTs have a greater impact on throughput when the

number of senders is small. When the number of senders is between three and eight, our

model overestimates the impact of IBTTs when compared to throughput resulting from ns-2

simulations. Also, when the number of senders is greater than eight, we observe that the

model’s throughput no longer matches that of the ns-2 simulations. This is mainly because

the expression for Qibtt in equation 3.36 does not take into account the timeouts happening

at the beginning of a block transfer. Furthermore, since Qibtt in equation 3.36 only relies

on the probabilities pc and pr, even small deviations in their measured values, can result in

large fluctuations in the model’s throughput.
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On the other hand, from Figure 3.11, it is clear that ABTTs dominate timeouts when

the number of senders is large. From the graph, we observe that the ABTTs have little or

no impact on the model’s throughput when the number of senders is less than ten. As the

number of senders increase, some of them finish transmitting their SRUs early allowing the

remaining senders to transmit their SRUs using the additional bandwidth vacated by the

finished peers. This results in large transmission windows for some of the senders at the

end of the block transfer. At the beginning of the next block transfer, all senders begin

by injecting their entire congestion windows into the network. With some senders injecting

larger number of segments, this packet burst at the beginning of a block transfer overwhelms

the bottleneck link’s port buffers resulting in packet drops and ABTTs.

Figure 3.11: Impact of ABTT on proposed model

It is interesting to observe that ABTTs are the result of the start-stop nature of the

synchronized block transfers. The senders stop transmission after completing their SRU
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transfer and start transmitting again only after receiving a new transfer request. This new

transfer request results in a packet burst which floods the buffers at the bottleneck link

resulting in packet loss and ABTTs. If the senders each had SRUs of infinite size like in

[110], there would be no start-stop pattern to Incast’s traffic and hence, no ABTTs. This

would have resulted in the senders experiencing only IBTTs in which case, the expression for

Qibtt in equation 3.36 would have been sufficient for estimating the probability of a timeout

at the end of a TDP.

Going back to Figure 3.8, we can now analyze the performance of our model in two

parts: the first part, where the number of senders is large and ABTTs have a bigger impact

and the second part, where the number of senders is small and IBTTs are dominant. In the

first part, it is clear that our model underestimates the throughput of multiple TCP flows

at the bottleneck link. This is because our model overestimates the time spent in recovering

from an ABTT. If we were to revisit the expression for Qabtt in equation 3.38, we find that

δ is defined as the mean number of timeouts occurring at the beginning of a block transfer.

While our model simply counts the average number of flows experiencing timeouts at the

beginning of a block transfer, from the traces generated by ns-2, we find that most of these

timeouts occur simultaneously. With simultaneous timeouts, the participating flows wait for

a single T0 period before recovering, although the trigger event gets counted multiple times.

Since we do not take simultaneous timeouts into account while deriving an expression for

Qabtt, the estimated duration between two successive TDs in our model is slightly longer than

that of ns-2. This in turn decreases the number of packets estimated per unit time, which

is why our model underestimates Incast throughput when the number of senders involved is

large.

In the second part of our performance analysis of the Full Model, we find that the model

predicts a huge drop in Incast throughput when the number of senders is approximately three.

The throughput obtained via ns-2 simulations on the other hand, appears to have a step

around the four senders mark, followed by a significant drop in performance when the number
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of senders is around seven. In order to better understand this discrepancy in the results, we

analyzed the traces generated by ns-2 simulations in great detail. From these traces we found

that whenever the number of senders is less than or equal to three, IBTTs are caused by only

one reason – whole window losses. That is, when the sender experiences a timeout with n ≤

3, it loses all the packets in its congestion window, without receiving a single ACK in return.

This type of loss happens when two or more individual flows simultaneously attempt to fill

the bottleneck link buffer, resulting in at least one flow losing all its packets. On the other

hand when the number of senders is greater than three, IBTTs in ns-2 simulations happen

only because of one reason – lack of enough duplicate ACKs. This type of loss happens when

a sender loses packets in both “loss” as well as “last” rounds due to severe congestion at the

bottleneck link, as discussed earlier in Section 3.1 while deriving an expression for C(g, m)

in equation 3.33.

Taking into account the exclusive nature of IBTT type of timeouts in ns-2 simulations,

we can now compute the following new expression for ˆQibtt(w).

ˆQibtt (w) =































1, if w ≤ 3

A (w, 0) , if n ≤ n∗

∑w

k=3

(

A(w, k)×
∑2

m=0 C(k,m)
)

, otherwise

(3.40)

where n∗ is the number of senders after which IBTTs are entirely caused by insufficient

duplicate ACKs.

By substituting the equation 3.40 in equations 3.35 and 3.36, we end up with a new

expression for B, the throughput of the Incast traffic across the bottleneck link. We refer to

the model resulting from equation 3.40 as the “Split Model” as opposed to the “Full Model”

derived in equation 3.39.

Figure 3.12 compares the throughput of ns-2 Incast simulations to the throughput ob-

tained by the Split Model described above. From the graph it can be seen that the Split
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Model is much better at characterizing the overall tendency of TCP Incast. When the num-

ber of senders n is less than or equal to three, Split Model only considers whole window

losses for IBTTs. Beyond that, as the number of senders increase, Split Model only consid-

ers insufficient duplicate ACKs for IBTTs. When combined with timeouts of type ABTT

resulting from packet burst at the start of a block transfer, the Split Model appears to model

the Incast traffic much better than our earlier Full Model.

Figure 3.12: Comparing Split Model with Incast simulation results

From the four simulation curves in Figures 3.13-3.16, we can summarize the following

features:

• Larger switch buffer improves the throughput at the bottleneck link with different

number of senders n. This can be explained by our proposed model. Larger buffer size

implies fewer dropped packets i.e., smaller values for probabilities pc and pr. Hence,

the expected number of packets Y in a TDP increases.
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Figure 3.13: Performance of Full Model, Split Model and ns-2 with 16 KB switch buffer

Figure 3.14: Performance of Full Model, Split Model and ns-2 with 32 KB switch buffer
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Figure 3.15: Performance of Full Model, Split Model and ns-2 with 64 KB switch buffer

Figure 3.16: Performance of Full Model, Split Model and ns-2 with 128 KB switch buffer
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Figure 3.17: Performance of Full Model, Split Model and ns-2 with 64 KB SRU

Figure 3.18: Performance of Full Model, Split Model and ns-2 with 128 KB SRU

73



Figure 3.19: Performance of Full Model, Split Model and ns-2 with 256 KB SRU

Figure 3.20: Performance of Full Model, Split Model and ns-2 with 512 KB SRU
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• Larger switch buffer shifts throughput collapse to the right. That is, for larger switch

buffers, several parallel, synchronized senders can transmit data without experiencing

Incast. This is because larger switch buffers can cache more packets and thereby

reduce the probability of packet loss. And since losses lead to Anterior Block Transfer

Timeouts as senders increase, large buffers delay the onset of performance loss by

reducing the number of ABBTs.

Figures 3.17-3.20 plot the performance of our proposed model and simulation results

with different sizes of SRU. From these graphs, we can summarize the following features:

• We can see that the throughput increases when the SRUs grow larger. But large SRU

size has little impact on the onset of throughput collapse. According to our model,

SRU size is irrelevant to the maximum cumulative window size.

• With larger SRU size, the time wasted by a TO period to the time spent by unlucky

flows transmitting packets becomes smaller. As a result, the throughput across the

bottleneck link increases after Incast.

3.2.1 Comparing with Single Flow Model

Due to the simplicity of our model, it is tempting to believe that a similar result

could also be obtained by simply multiplying the original equation from [110] with the

number of flows n. In Figure 3.21, we compare the simulations results from ns-2 with

n× (equationfrom[110]). Here, in order to obtain the curve for the expression n× (equation

from[110]), we have substituted the packet loss probability p in [110] with average pr from

Section 3.1, the probability that a packet (belonging to any flow) is lost.

As expected the expression n × (equationfrom[110]), works reasonably well for small

values of n. That is because for smaller values of n, the resulting TCP timeouts are largely

dominated by IBTTs. On the other hand, when n is reasonably large, ABTTs happen more

frequently. Unfortunately, the equation in [110] does not take ABTTs into account. Hence,
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as n becomes large, the predicted throughput of the expression n × (equationfrom[110])

is orders of magnitude larger than the one obtained through simulations. This discrepancy

in performance only reinforces our decision to develop a new analytical model to examine

various aspects of Incast.

Figure 3.21: Comparing n * (equation from Padhye et al.) with Incast simulation results

3.3 Summary

In this chapter, we built analytical models to understand the essential causes behind

TCP Incast, which is a crucial issue in data center networks. Existing investigations on TCP

Incast try to find a good solution to the problem despite incurring high costs. For example,

some of the prevalent Incast solutions include, substituting TCP with UDP, reducing RTOmin

value, increasing switch buffer size, limiting the number of senders in Incast transfers, etc...
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To solve TCP Incast substantially, the fundamental reasons behind it should be first ex-

plored. Unfortunately, almost all existing studies of TCP model the protocol considering

a single flow, with an application that has an infinite amount of data to transmit. Fur-

thermore, there are practically no prior TCP models that study the protocol’s performance

under synchronized traffic workloads in high speed, low latency, data center networking en-

vironments. Our models fill this void by extending the single flow model in [110] to multiple

synchronized flows, where each flow contributes a finite amount of data.

In our work, we find that two types of timeouts, ABTT and IBTT, are together respon-

sible for TCP’s throughput collapse in many-to-one synchronized traffic workloads. IBTT,

which is caused by one of the last three packets in a round being dropped, has a greater

impact on throughput when the number of senders is small. ABTT, which is caused by the

start-stop nature of Incast traffic at the beginning of a block transfer, dominates timeouts

when the number of senders is large. We validate the performance of our proposed models

by comparing them with simulation data. Although our models characterize the overall ef-

fect of Incast pretty well, we find them to be a little conservative in their estimation of the

cumulative throughput. This is because, our models overestimate the frequency of ABTTs,

resulting in longer delays and lower throughput when compared to simulation data.

From our experiments we were also able to demonstrate that larger switch buffers can not

only improve the throughput of the Incast traffic but can even delay the onset of throughput

collapse. Similarly, we show that larger SRUs can also improve the throughput of Incast

traffic. However, we find that the size of the SRU has little impact on the onset of throughput

collapse.

Finally, all the insights gained in building and validating our proposed models, will help

us develop more effective solutions that address the problem of TCP Incast, preferably at

lower costs.
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Chapter 4

Addressing TCP Incast

As discussed in Chapter 1 and Chapter 3, clients performing synchronized reads across

an increasing number of servers in high bandwidth, low latency data center environments,

observe TCP’s throughput drop one or two orders of magnitude below their link capacity.

Labeled Incast, this pathological behavior of TCP is endured by a growing number of data

center applications and services. Hence, a feasible solution that addresses the Incast problem

is urgently needed.

In this chapter, we provide a broad overview of existing Incast solutions followed by

detailed description of our proposed techniques that are designed to address the Incast

problem at the Transport Layer [26].1

4.1 Existing Solutions

Since timeouts are the primary reason behind TCP Incast, in this section, we shall briefly

discuss existing solutions that either avoid timeouts or reduce their penalty. While all the

solutions discussed here are moderately effective in masking Incast, only two techniques

discussed in Subsections 4.1.3 and 4.1.4, manage to accomplish this at the transport layer.

4.1.1 Larger Switch Buffers

This Incast solution, discussed in [61], tries to mitigate the root cause of timeouts –

packet losses – by increasing the buffer space allocated per port on the Ethernet switches.

To evaluate this solution, we vary the size of the switch port buffers in a cluster based storage

1All simulations discussed in this chapter use the same topology as depicted in Figure 3.7 of Chapter 3.

Furthermore, unless noted explicitly, the simulations use the same parameters and values as listed in Table

3.1 of Chapter 3.
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system where the network links have a delay of 100µs and TCP’s receive window size is 20

segments. The results of this experiment are depicted in Figure 4.1. Figure 4.1 clearly shows

that doubling the size of the switch’s output port buffer, doubles the number of servers that

can supported before the onset of Incast.

Figure 4.1: Effect of the size of switch buffers on TCP Incast

Consequently, given the number of servers, Incast can be avoided with a large enough

buffer space. Unfortunately, switches with larger buffers tend to cost more, forcing system

designers to choose between over-provisioning and hardware budgets. This suggests that a

more cost-effective solution is needed to address TCP Incast.

4.1.2 Increasing SRU Size

This is another Incast countermeasure discussed in [61]. It aims to mask TCP’s through-

put collapse by utilizing the spare link capacity of the stalled flow in transferring larger SRUs
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belonging to other flows. To evaluate this solution, we vary the size of the SRUs in the clus-

ter based storage system discussed in Subsection 4.1.1, while limiting the size of the switch

port buffer to 32 KB. The results of this experiment are depicted in Figure 4.2. Figure 4.2

illustrates that increasing the size of the SRUs, improves the overall throughput at the client.

For example, with 7 servers, the throughput for 1 MB SRU is orders of magnitude greater

than the throughput of SRU of size 256 KB.

Figure 4.2: Effect of the size of the SRUs on TCP Incast

As discussed in Chapter 3, TCP performs well in settings without synchronized reads,

which can be modeled by infinite sized SRUs. With large SRUs, the servers take longer to

complete transmitting their share of data. This allows the active servers to utilize the spare

link capacity made available by the stalled flows during timeouts. In doing so, the servers

effectively reduce the idle link time experienced by the client, which in turn improves its

overall throughput.
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Unfortunately, SRU of size 1 MB is quite impractical; most applications ask for data

in small chunks, corresponding to a size range of 1 - 256 KB. This is because, larger the

size of the SRU, greater is the prefetching that the storage system has to commit to. With

prefetching, the storage system needs to allocate pinned space in the client kernel memory,

increasing the memory pressure at the client [74]. This increased pressure at the client, often

leads to kernel failures. Hence it is really not advisable to use larger SRUs on cluster based

storage systems.

4.1.3 Reducing Timeout Penalty

This technique, proposed in [74], aims to address TCP Incast by reducing the time spent

in waiting for a timeout to end.

The amount of time a flow waits before retransmitting a lost packet without the dupli-

cate ACK assisted Fast Retransmit mechanism, is determined by TCP’s RTO value. Esti-

mating TCP’s RTO value involves achieving timely response to packet losses and also avoid-

ing the occurrence of premature timeouts. Premature timeouts have the following negative

effects:

• They lead to spurious retransmissions which can potentially cause and prolong network

congestion.

• They cause TCP to enter the Slow Start recovery after reducing its Slow Start Thresh-

old (ssthresh) value by half, even when no packets were lost. In doing this, the protocol

underestimates its link capacity resulting in lower throughput for its users.

TCP therefore, has a conservative minimum RTO (RTOmin) value to guard itself against the

ill effects of spurious retransmissions [120, 121].

Popular implementations of TCP use a RTOmin value of 200 ms [122]. Although this

value is appropriate in wide area networks, it is orders of magnitude greater than the round

trip times in data center networks. This large RTOmin value, imposes a huge penalty on
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TCP’s throughput as the transfer times for segments within a data center, are significantly

smaller than the value of RTOmin.

In [74], the authors suggest reducing the value of RTOmin from 200 ms to 200 µs, in

order to lessen the penalty of TCP timeouts on synchronized reads. To evaluate this solution,

we decrease the value of TCP’s RTOmin in the cluster based storage system discussed in

Subsection 4.1.1, while limiting the size of the switch port buffer to 32 KB. The results of

this experiment are depicted in Figure 4.3. From Figure 4.3, it is clear that reducing TCP’s

RTOmin value, improves the overall throughput at the client even after taking into account,

the drop in peak performance when the number of servers is greater than 40.

Figure 4.3: Effect of the RTOmin value on TCP Incast

In general, for any given SRU size, reducing RTOmin value improves the overall through-

put at the client. Unfortunately, setting RTOmin to 200 µs poses the following challenges:
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• According to RTO computing algorithms in [120, 121], reducing RTOmin to 200 µs

requires a TCP clock granularity of 100 µs. TCP implementations on most operating

systems including the likes of BSD and Linux, are currently unable to provide this

fine grained timer. For example, BSD implementation of TCP, expects the operating

system to provide two coarse-grained “heartbeat” software interrupts every 200 ms

and 500 ms, which are used to handle internal per-connection timers [123]. Similarly,

TCP implementation on Linux, expects a clock granularity of 10 ms from the operating

system. Some operating systems can support fine grained timers by either employing

specialized external hardware or utilizing high resolution software timers [124]. How-

ever, neither of these options are feasible in the context of data centers. External

hardware scales poorly inside a data center while software timers which require kernel

changes, are not supported by all operating systems.

• Even if sufficiently fine grained TCP timers were supported, reducing RTOmin value can

be harmful, especially in situations where the servers communicate with clients outside

the data center. In [125], the authors note that low values for RTOmin increases the

occurrence of premature timeouts as RTOmin can be used for trading “timely response

with premature timeouts”. Other studies of RTO estimation in similar high-bandwidth,

low-latency ATM networks also show that very low RTOmin values result in spurious

retransmissions [47] because variations in round-trip-times inside wide-area networks

clash with the standard RTO estimator’s short RTT memory.

In summary, the solution proposed in [74] should be viewed with caution as it increases

the risk of premature timeouts.

4.1.4 Relying on Explicit Congestion Notification

Data Center TCP (DCTCP), is a protocol proposed in [75]. It aims to achieve high

burst tolerance, low latency and high throughput during synchronized data transfers, by

requiring Ethernet switches to support Explicit Congestion Notifications (ECN).
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DCTCP relies on a simple marking scheme at switches that sets the Congestion Ex-

perienced (CE) codepoint of packets as soon as the buffer occupancy exceeds a fixed small

threshold. DCTCP uses these ECNs to provide multi-bit feedback to its end hosts. The

DCTCP source reacts to such notifications by reducing the window by a factor that depends

on the fraction of marked packets: larger the fraction, bigger is the decrease factor.

Unfortunately, not all switches support ECN. Without the underlying ECN support,

DCTCP faces the same issues and hurdles as standard TCP. Additionally, ECNs are known

to be effective in simple configurations only. With more than one switch, ECNs have an

adverse effect on data flows [61]. Furthermore, authors in [75], make no claims about he

suitability of DCTCP for wide area networks as they assume internal data center traffic to

be separate from that of the external world.

4.2 Probabilistic Retransmission

In TCP world, timeouts are indicators of severe network congestion. Although the

penalty for detecting congestion through timeouts is quite large in TCP, they are unavoidable

in certain scenarios like, full window losses and retransmission losses. In this section, we

shall examine a technique that reduces the time taken in detecting network congestion when

TCP’s loss recovery mechanism cannot be triggered by duplicate ACKs. Specifically, we

shall explore the notion of proactively detecting network congestion through probabilistic

retransmissions, while using TCP’s retransmission timer as a fallback option.

4.2.1 Retransmit Thread

As discussed in Section 4.1.3, TCP has a conservative minimum RTO (RTOmin), whose

value is orders of magnitude greater than the round trip times at data centers. To overcome

the penalty imposed by a conservative RTOmin on timeouts in synchronized workloads, we

propose a congestion recovery technique that relies on probabilistic retransmissions, kernel

threads and duplicate ACKs.
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Most modern operating systems support threads in their kernel space. A kernel thread is

the “lightest” unit of kernel scheduling. Our solution to the Incast problem utilizes one such

kernel thread to probabilistically retransmit the highest unacknowledged segment in sender’s

transmission window. That is, every time the thread is scheduled for execution, it retransmits

with probability p, the highest unacknowledged segment in sender’s transmission window.

Before retransmitting the segment, the thread also “marks” it as being ‘probabilistically

retransmitted’. Algorithm 1 captures necessary details regarding the Retransmit Thread.

Algorithm 1 Retransmit Thread at Sender

if length(Transmit Window) ≥ 1 then

if uniform(0, 1) ≤ p then

mark Highest UnACKed Segment

retransmit marked Segment

end if

end if

yield processor

To “mark” the segment as being ‘probabilistically retransmitted’, the Retransmit Thread

uses one of the six reserved bits in the segment’s header. Figure 2.1 in Chapter 2, shows the

layout of a TCP segment with the reserved bits located next to the Header Length field.

Because of its probabilistic nature, the retransmitted segment can arrive at the Ethernet

switch (i) before any congestion, (ii) during a congestion or (iii) after a congestion. Case

(i) would result in the destination receiving multiple copies of the same segment — the

original segment transmitted by TCP, followed by the “marked” segment transmitted by our

Retransmission Thread. In this situation, the client ignores the “mark” on the retransmitted

segment and responds back with a normal cumulative ACK. In case (ii), the retransmitted

segment is dropped by the switch since it arrives at a time when the switch’s port buffers are

full. Since the “marked” segment never reaches the destination, neither the sender nor the

receiver are required to take any action. Under case (iii), if the sender’s original segment was

dropped at the switch due to congestion, the receiver would be seeing the sequence number

on the retransmitted segment for the first time. Since the first copy of the segment is itself
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“marked”, the receiver responds back with a normal cumulative ACK followed by 3 duplicate

ACKs. By doing this, not only does the receiver acknowledge the occurrence of a congestion

at the intermediate switch, but it also helps the sender trigger Fast Retransmit for quicker

loss recovery. Algorithm 2 lists the steps involved in handling retransmitted segments at the

receiver.

Algorithm 2 Handling Retransmitted Segments at Receiver

...normal handling of segment...
send ACK

if isduplicate(ReceivedSegment) ≡ false then

if ismarked(ReceivedSegment) ≡ true then

for i = 1 to 3 do

send ACK

end for

end if

end if

When the sender receives 3 duplicate ACKs in a row, it automatically performs loss

recovery using Fast Retransmit mechanism, without waiting for retransmission timer to

expire. Algorithm 3 gives details on handling duplicate ACKs at the sender.

Algorithm 3 Handling ACKs at Sender

...normal handling of ACK...
if dupackcount ≡ 3 then

suspend retransmission thread
invoke Fast Retransmit

end if

Receiving a “marked” segment with an unseen sequence number indicates that (i) there

was congestion in the network which accounted for the original copy of the segment, and (ii)

the congestion is now cleared, for the “marked” segment would never have made it through

otherwise. With congestion in the network now resolved, the receiver would like the sender

to start its loss recovery early, without having to wait for a retransmission timer to expire.

It initiates this by sending 3 duplicate ACKs back to the sender which forces the sender to

immediately perform an smooth reduction of its flow via Fast Recovery, instead of performing

an abrupt reduction through Slow Start following a timeout.
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It is also possible that our Retransmission Thread never retransmits the highest unac-

knowledged segment. In such a case, the sender detects and responds to congestion only

when its retransmission timer expires.

4.2.2 Performance Analysis

In order to measure the effectiveness of the suggested technique, we implement Algo-

rithms 1, 2 and 3 in ns-2. To keep the simulations realistic, we model the thread context

switch time by including a small delay of 20 µs between each execution of the Retrans-

mission Thread. We also fix the RTOmin value to 200 ms. The rest of the experimental

setup is the same as the one described in Section 4.1.3. Figure 4.4 shows that increasing the

value of p (probability of retransmission), improves the throughput at the client by orders

of magnitude, when the number of senders is greater than 8.

Figure 4.4: Effect of Retransmission Probability, p, on TCP Incast
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From Figure 4.4, it is clear that using Retransmission Threads can significantly improve

TCP’s performance under synchronized workloads. However, the value of its retransmission

probability, p, should be chosen with some consideration. If p is set too low, the proposed

technique provides no significant benefits over default TCP. On the other hand, if p is set

too high, it causes unnecessary retransmissions, contributing further to the congestion at the

switch. Figure 4.5 shows the drop ratio i.e., the number of packets dropped at the switch

versus the number of packets received by it, for varying values of p. The graph also includes

plots for default TCP with RTO 200 ms as well as modified TCP with RTO 200 µs, for

reference. For optimal p, the probabilistic retransmission technique would yield high TCP

throughput with a low drop ratio. From Figures 4.4 and 4.5, it is clear that for our simulation

environment, the best value of p is 0.001.

Figure 4.5: Effect of Retransmission Probability, p, on Drop Ratio
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Figure 4.6 compares the performance of probabilistic retransmission (p = 0.001) with

default TCP (RTO 200 ms) and modified TCP (RTO 200 µs). From Figure 4.6, it is

evident that the probabilistic retransmission outperforms default TCP under all experimental

conditions. The technique also performs better than the modified TCP, when the number

of senders in the experiment is greater than ten. On the other hand, when the number

of senders in the experiment is between five and ten, modified TCP yields slightly better

throughput than our proposed solution. This is because, very few senders experience severe

losses when the sender count in the experiment is less than ten. In addition to that, the

value of the retransmission probability, p, is only 0.001. Therefore, it is quite likely that

the loss experiencing senders make several attempts before succeeding at their probabilistic

retransmissions. This in turn leaves the switch-client link underutilized for some period

which results in a small dip in the solution’s performance when compared to modified TCP.

Figure 4.6: Comparing Probabilistic Retransmission with Default and Modified TCP
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However, when the number of loss experiencing senders is large, it is more likely that

at least one of them will quickly succeed in its probabilistic retransmission. With every

such success, the switch-client link is kept occupied for that much longer, resulting in a

performance that is significantly better than that of the modified TCP.

One must also keep in mind that the results discussed above are true only for the chosen

value for p, in this case 0.001. In Figure 4.4, we saw that higher values of p need fewer senders

to achieve throughput saturation. Hence, if the synchronized workload inside a data center

involves only a few senders, probabilistic retransmission can still outperform modified TCP,

if p is set to a higher value.

4.2.3 Summary

Based on our experiments and analysis, it is clear that probabilistic retransmission offers

a feasible solution to TCP’s Incast problem. In addition to being backwards compatible with

existing flavors of TCP, the technique is also able to outperform existing Incast solutions,

without incurring any of their drawbacks.

However, probabilistic retransmission relies heavily on the availability of kernel threads.

Also, its performance is governed by the value assigned to p, the retransmission probability.

Ideally, the value of p should be auto computed and auto tuned, but we take the easier

option for now, and make it a user configurable variable. As part of our future work, we

plan to implement this technique on a Linux based cluster and measure its performance in

the real world.

4.3 Dynamic Segment Resizing

As detailed in Chapter 2, when TCP receives an out-of-order segment, it immediately

responds back with a duplicate ACK. From the sender’s perspective, receiving a duplicate

ACK indicates potential loss or reordering of transmitted segments. TCP’s Fast Retransmit

algorithm uses the arrival of three consecutive duplicate ACKs as an indication that segments
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have been lost. The algorithm then initiates loss recovery at the sender, without waiting

for the retransmission timer to expire. However, when the destination receives fewer than

four segments due to severe network congestion, it has no chance of sending three duplicate

ACKs, meaning, retransmission timeouts are the only means of loss recovery for a source

that has lost all its segments due to network congestion.

Timeouts are known to have a negative impact on TCP’s performance since, the time

needed for the protocol to recover losses through retransmission timer is much longer than

the time needed to recover via Fast Retransmit algorithm. As discussed in Chapters 1 and 3,

timeouts are also known to cause the Incast problem that TCP endures during synchronized

data transfers. In our proposed scheme, we aim to address TCP Incast by making loss

recovery through Fast Retransmit possible in operating regions where currently, timeouts

are the only option available.

Dynamic Segment Resizing is based on the idea of increasing the upstream flow of

ACKs by sending downstream, a large number of segments whose size is smaller than the

maximum segment size supported by the connection. When a large number of segments are

received at the destination, it triggers a large number of ACKs in the backward channel.

And, larger the number of ACKs on the backward channel, larger is the probability of the

source recovering lost segments without the aid of a retransmission timer. In other words,

our proposed procedure gives the transmitter a chance to obtain more information about

the current state of the network between itself and the receiver.

To illustrate our approach by means of an example, we vary the size of TCP’s segments

in the cluster file system experiment discussed in Section 4.1.3. In this experiment, we

also limit the port buffer length on the intermediate switch to 32 KB, set the size of the

SRU to 256 KB, cap the receive window size to 32 KB and fix the value of the minimum

retransmission timeout, RTOmin, to 200 ms.

Figures 4.7, 4.8, 4.9 and 4.10, depict the effects of smaller TCP segments on the proto-

col’s retransmission timeouts when the number of senders in the experiment is 5, 10, 20 and
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Figure 4.7: Timeout frequency for different segment sizes when sender count is 5

Figure 4.8: Timeout frequency for different segment sizes when sender count is 10
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Figure 4.9: Timeout frequency for different segment sizes when sender count is 20

Figure 4.10: Timeout frequency for different segment sizes when sender count is 50
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50 respectively. From these figures, it is clear that smaller sized segments reduce the num-

ber of timeouts that TCP experiences during a synchronized transfer. Additionally, smaller

sized segments move the peak of the timeout histogram to the right, meaning, with smaller

segments, TCP will have to lose a greater number of packets to experience a timeout. The

graphs also suggest that with small enough segments, TCP can completely avoid timeouts

during synchronized data transfers.

Apart from the aforementioned advantages, reducing the size of the segments also gives

TCP a finer control over the amount of unacknowledged data that can remain outstanding in

the network. However, transmitting smaller sized segments decreases TCP’s line efficiency,

which is defined as the ratio of the data size to the size of the (header + data) in a segment.

In order to improve TCP’s line efficiency when operating with smaller sized segments, we

employ a header compression technique that is described in [126]. This data compression

mechanism, reduces the normal 40 byte TCP/IP packet headers down to 3-4 bytes in average

case. It does this by saving the state of TCP connections at both ends of a link, and only

sending the differences in the header fields that change. With this header compression

technique in place, even a small data segment of size 36 bytes, will be able to achieve a line

efficiency of 90% for TCP.

In Figures 4.7, 4.8, 4.9 and 4.10, we notice that different cluster configurations have

different limits on segment sizes that allow synchronized transfers to take place without

incurring any timeout penalty. In order to maximize TCP’s line efficiency during synchro-

nized transfers involving smaller segments, it is desirable to have segment sizes that operate

closer to these limits. Dynamic Segment Resizing is able to achieve this by relying on a

congestion window threshold value called cwnddsr. The solution mandates TCP to begin its

synchronized transfer with a predefined segment size of MSSdsr bytes. As TCP starts trans-

mitting user data, its congestion window begins to grow. When TCP’s congestion window,

cwnd, grows beyond the congestion window threshold, cwnddsr, our solution resizes TCP’s

segments to (cwnd×MSSdsr)
(

cwnddsr
2

) bytes. TCP’s congestion window, cwnd, is also resized to
(

cwnddsr
2

)
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segments. Following this resize procedure, TCP resumes transmitting user data albeit with

slightly bigger segments. As before, the segments are resized if TCP’s cwnd again grows

beyond cwnddsr. This resize-transmit-resize cycle continues as long as TCP’s segments re-

main smaller than the maximum segment size of the connection and its congestion window,

cwnd, continues to grow beyond the threshold, cwnddsr. The cycle is eventually broken when

the size of the resized segments equal the MSS of the connection or when the flow encoun-

ters duplicate ACKs which prevent the congestion window from growing beyond cwnddsr.

Algorithm 4 captures the necessary details regarding the resize procedure.

Algorithm 4 Resize Procedure for Dynamic Segment Resizing

...normal handling of cwnd growth...
if (MSSdsr < MSS) and (cwnd ≥ cwnddsr) then

MSStemp =
(cwnd×MSSdsr)

(

cwnddsr
2

)

if MSStemp > MSS then

MSStemp = MSS

end if

cwnd = (MSSdsr×cwnd)
MSStemp

MSSdsr = MSStemp

end if

Dynamic Segment Resize is a proposed Incast solution that requires some minor changes

to the sender’s TCP stack. These changes are easy to incorporate and only require a few

modifications to existing TCP code. The header compression procedure on the other hand,

needs to be implemented at both the communicating endpoints.

4.3.1 Performance Analysis

In order to measure the effectiveness of the suggested technique, we implement Algo-

rithm 4 in ns-2. We then measure the performance of Dynamic Segment Resizing technique

in the cluster file system example discussed in Section 4.1.3. For this experiment, we limit

the port buffer length on the intermediate switch to 32 KB, set the size of the SRU to 256

KB, fix the value of the minimum retransmission timeout, RTOmin to 200 ms and cap the

receive window size at 1000 segments. We also set Algorithm 4 specific variables, MSSdsr
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and cwnddsr, to be 50 bytes and 50 segments respectively. The rest of the experimental setup

is the same as the one described in Section 4.1.3.

Figure 4.11, compares the performance of Dynamic Segment Resizing with default TCP.

From Figure 4.11, it is evident that Dynamic Segment Resizing incurs a small penalty in

performance when the number of senders in the experiment is less than three. This is

because, the proposed technique takes some time to converge on the connection’s maximum

segment size as the most appropriate size to perform synchronized data transfers without

incurring any timeout penalty. Default TCP on the other hand, starts with maximum sized

segments and therefore, is able to achieve better line rate than Dynamic Segment Resizing.

However, when the number of senders in the cluster file system is greater than three, our

proposed solution easily outperforms default TCP.

Figure 4.11: Comparing Dynamic Segment Resize with Default TCP
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4.3.2 Summary

From the simulation results discussed in Section 4.3.1, it is clear that Dynamic Segment

Resizing offers a practical, transport-layer solution to the Incast problem. The technique

only requires some minor modifications on the sender side TCP and is backwards compatible

with many existing flavors of the protocol.

Unlike the probabilistic retransmission technique discussed in Section 4.2, Dynamic Seg-

ment Resizing does not depend on the availability of external resources like kernel threads.

However, like p in probabilistic retransmission, the performance of Dynamic Segment Resiz-

ing is also dependent on the initial values of MSSdsr and cwnddsr. Ideally, the start values

of MSSdsr and cwnddsr are auto computed, but we for now, make these variables user con-

figurable. As part of our future work, we plan to implement Dynamic Segment Resizing on

Linux cluster and measure its performance in the real world.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarize the research discussed in this dissertation and follow it

up with the directions for future work.

5.1 Summary of Research

In this dissertation, we studied TCP’s performance under many-to-one synchronized

traffic, when operating in high speed, low latency data center networks. In particular, we

discussed the problem of TCP Incast, which causes the protocol’s throughput to drop to

almost a tenth of its link’s available capacity. We derived an analytical model to investi-

gate Incast and attributed TCP’s throughput collapse to its timeouts. We also proposed

some transport layer techniques to overcome Incast and evaluated their merits using ns-2

simulations.

In Chapter 1, we discussed Cloud Computing and its different components. We out-

lined how growing adoption of Cloud Computing is prompting service providers to spawn

more data centers. We also discussed the cost and compatibility reasons that persuade

service providers to employ Ethernet as the baseline communication fabric for their data

centers. We then introduced the problem of TCP Incast that results from utilizing TCP

in an environment where many of its assumptions are violated. In particular, we saw how

TCP’s throughput collapses catastrophically under many-to-one synchronized traffic, when

operating in Ethernet-based, high speed, low latency data center networks.

In Chapter 2, we presented details on mechanisms that are responsible for TCP’s reliable

data transfer, flow control and congestion control. Our work in this chapter, provided the

98



necessary background for Chapters 3 and 4, where we have considered the problem of TCP

Incast in greater detail.

In Chapter 3, we presented a simple model for TCP Incast. The model captures the

essence of many-to-one synchronized workloads and expresses throughput as a function of

packet loss probability. In particular, it takes into account the behavior of multiple TCP

flows in presence of loss induced duplicate acknowledgments and retransmission timeouts.

The model yields a simple, closed form formula for calculating throughput of many-to-one

synchronized traffic and attributes TCP’s throughput collapse to two types of timeouts,

ABTT and IBTT. We validated the model through extensive simulations done using ns-2

simulator. We found that our model provides a very good match to the observed Incast

behavior. The formula resulting from our model, can be used for many purposes such as fast

evaluation of Incast behavior and design of Incast free transport protocols.

In Chapter 4, we discussed few existing Incast solutions and their drawbacks. We then

proposed two feasible solutions that addressed TCP Incast at the transport layer. Specifi-

cally, we developed solutions that improved TCP’s performance under synchronized work-

loads by either proactively detecting network congestion through probabilistic retransmission

or by dynamically resizing TCP’s segments in order to avoid incurring timeout penalty. We

also implemented these solutions in TCP and tested them extensively using ns-2 simulator.

We found that our proposed solutions are both able to avoid timeouts and overcome the ill

effects of throughput collapse during synchronized data transfers in high speed, low latency,

data center environments.

5.2 Future Work

There are several lines of research arising from the work presented in this dissertation.

Some research lines that should be pursued in the future include:
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• Accounting window limitation in Incast model - The model presented in Chapter 3,

does not consider the impact of window limitation per composite flow. At the begin-

ning of TCP flow establishment, the receiver advertises a maximum buffer size which

determines the maximum congestion window size Wfmax
. As a consequence, during

a period without loss indications, the window size can grow up to Wfmax
, but will

not grow beyond this value. Our Incast model must be tweaked to account for this

scenario.

• Accounting flavor specific features - TCP New-Reno and TCP SACK are the most

dominant flavors of TCP that are currently deployed in data center networks. In order

to accurately model these protocols, we need to modify our Incast model presented in

Chapter 3 to accommodate flavor specific features.

• Developing techniques for loss rate estimation - For empirical validation of our Incast

model in Chapter 3, we estimated the loss rate probability based on the traces generated

by our ns-2 simulator. Since traces are not always available, we need to understand

and evaluate various techniques that help us in loss rate estimation.

• Apply Markovian analysis - The Incast model presented in Chapter 3, is very simple

and less accurate. Markovian analysis on the other hand, is known to be detailed and

precise. To better analyze the Incast phenomenon, we need to model Incast using

Markovian models.

• Timeout type based solution - Neither the existing techniques nor our proposed solutions

differentiate between the type of timeouts causing the Incast. It should be possible to

design a solution that takes the type of timeouts, ABTT or IBTT, into consideration.
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• Auto computing variable values - We currently use statically selected values for our

solution specific variables like p, MSSdsr and cwnddsr. More work is needed to inves-

tigate means of automatically updating these variables in order to guarantee better

Incast performance.

• Implement in real world - Since, almost all the results presented in this dissertation

are based on ns-2 simulations, we need to check if our proposed solutions work well in

the real world. Towards this end we need to implement the techniques of probabilistic

retransmissions as well as Dynamic Segment Resizing on a Linux based cluster and

measure their performance in the real world.
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