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Abstract 

 

 

In recent years, rapid developments in technology facilitated the collection of vast 

amount of data from different industrial processes. The data has been utilized in many 

different areas, such as data-driven soft sensor development and process monitoring, to 

control and optimize the process. The performance of these data-driven schemes can be 

greatly improved by selecting only the vital variables that strongly affect the primary var-

iables, rather than all the available process variables. Consequently, variable selection has 

been one of the most important practical concerns in data-driven approaches. By identify-

ing the irrelevant and redundant variables, variable selection can improve the prediction 

performance, reduce the computational load and model complexity, obtain better insight 

into the nature of the process, and lower the cost of measurements [1], [2]. 

A comprehensive evaluation of different variable selection methods for soft sen-

sor development will be presented in this work. Among all the variable selection meth-

ods, seven algorithms are investigated. They are stepwise regression, PLS-BETA, PLS-

VIP, UVE-PLS, PLS-SA, CARS-PLS and GA as discussed below. Stepwise regression 

methods are often used for variable selection in linear regression [3]. The procedure is 

carried out in such a way that individual predictor/secondary variable is sequentially in-

troduced into the model to observe its relation to the primary variables. Partial Least 

Squares (PLS) regression is a model parameter based algorithm. Both the regression co-

efficients estimated by PLS (PLS-BETA) and variable importance in projection (PLS-
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VIP) are discussed [4]. Another model parameter based method, called Uninformative 

Variable Elimination by PLS (UVE-PLS), is also related to regression coefficients. How-

ever, instead of looking at the regression coefficients only, the reliability of the coeffi-

cients is explored [5]. Variable selection algorithms based on sensitivity analysis, PLS-

SA, are also studied. In these approaches, the importance of variables is defined by their 

sensitivity, which is defined as the change in primary variables by varying the secondary 

variable in its allowable range [6]. Furthermore, properties of genetic algorithms (GA), 

which have been recently proposed for variable selection applications [7], are also inves-

tigated.  

The algorithms of these variable selection methods and their characteristics will 

be presented. In addition, the strength and limitations when applied for soft sensor devel-

opment are studied. The soft sensor prediction performance of models developed by these 

variable selection methods are compared using PLS. 

A simple simulation case is used to investigate the properties of the selected vari-

able selection methods. The dataset is generated to mimic the typical characteristics of 

process data, such as the magnitude of correlations between variables and the magnitude 

of signal to noise ratio, etc. [4]. In addition, the algorithms are applied to an industrial 

soft sensor case study. In both cases, independent test sets are used to provide fair com-

parison and analysis of different algorithms. The final performances are compared to 

demonstrate the advantages and disadvantages of the different methods in order to pro-

vide useful insights to practitioners in the field. 
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Chapter 1. Introduction 

In recent years, rapid developments in technology facilitated the collection of vast 

amount of data from different industrial processes. The data has been utilized in many 

different areas, such as data-driven soft sensor development and process monitoring, to 

control and optimize the process. The performance of these data-driven schemes can be 

greatly improved by selecting only the vital variables that strongly affect the primary var-

iables, rather than all the available process variables. Consequently, variable selection has 

been one of the most important practical concerns in data-driven approaches. By identify-

ing the irrelevant and redundant variables, variable selection can improve the prediction 

performance, reduce the computational load and model complexity, obtain better insight 

into the nature of the process, and lower the cost of measurements [1], [2]. 

A comprehensive evaluation of different variable selection methods for soft sen-

sor development will be presented in this work. Among all the variable selection meth-

ods, seven algorithms are investigated. They are stepwise regression, PLS-BETA, PLS-

VIP, UVE-PLS, PLS-SA, CARS-PLS and GA-PLS as discussed below. Stepwise regres-

sion methods are often used for variable selection in linear regression [3]. The procedure 

is carried out in such a way that individual predictor/secondary variable is sequentially 

introduced into the model to observe its relation to the primary variables. Partial Least 

Squares (PLS) regression is a model parameter based algorithm. Both the regression co-

efficients estimated by PLS (PLS-BETA) and variable importance in projection (PLS-

VIP) are discussed [4]. Another model parameter based method, called Uninformative 
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Variable Elimination by PLS (UVE-PLS), is also related to regression coefficients. How-

ever, instead of looking at the regression coefficients only, the reliability of the coeffi-

cients is explored [5]. Variable selection algorithms based on sensitivity analysis, PLS-

SA, are also studied. In these approaches, the importance of variables is defined by their 

sensitivity, which is defined as the change in primary variables by varying the secondary 

variable in its allowable range [6]. Furthermore, properties of genetic algorithms (GA), 

which have been recently proposed for variable selection applications [7], are also inves-

tigated.  

Stepwise regression has been applied to the selection of predictors for both classi-

fication and multivariate calibrations [8], especially in near-infrared (NIR) spectral. Gau-

chi and Chagnon proposed a stepwise variable selection method based on maximum    

and applied to manufacturing processes in oil, chemical and food industries [9]. 

Broadhurst et al. applied genetic algorithm to pyrolysis mass spectrometric data 

and showed that GA is able to determine the optimal subset of variables to provide better 

or equal prediction performance [10]. Arcos et al. successfully applied GA to a wave-

length selection for PLS calibration of mixtures of indomethacin and acemethacin, in 

spite of the fact that the two compounds have almost identical spectra [11]. A modified 

genetic algorithm-based wavelength selection method has been proposed by Hiromasa 

Kaneko and Kimito Funatsu to select process variables and dynamic simultaneously [12]. 

This method is named as genetic algorithm-based process variables and dynamics selec-

tion method, GAVDS. The result of GAVDS, based on its application to a dynamic pro-

cess of distillation column in Mitsubishi Chemical Corporation, shows its robustness to 

the presence of nonlinearity and multicollinearity in process data. GA has also been well 
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recognized in molecular modeling. Jones et al. have shown three application of GA in 

chemical structure handling and molecular recognition [13]. 

A modified uninformative variable elimination method based on the principle of 

Monte Carlo (MC) was applied in quantitative analysis of NIR spectra by Cai et al. [14]. 

UVE-MC is proven to be capable of selecting important wavelength and making the pre-

diction more robust and accurate in quantitative analysis. Some researchers also suggest-

ed to combine UVE with wavelet transform to further simplify the model and to reduce 

computation time [14], [15]. In the work of Koshoubu et al., they have extended UVE to 

eliminate uninformative samples (USE) that do not contribute much in the calibration 

model [16], [17]. They proposed an algorithm where the uninformative wave-

lengths/variables are eliminated first by UVE-PLS, and then the uninformative samples, 

which are determined by their standard deviation of prediction error calculated from 

leave-one-out cross validation, are eliminated from the calibration.  Another new method 

which combined UVE with successive projection algorithm (SPA) has been proposed by 

[18]. UVE is implemented to remove uninformative variables before application of SPA 

to improve the efficiency of variable selection by SPA. 

Sensitivity analysis has become more popular in selection of optimal variable 

subsets in recent years. Zamprogna et al. has introduced a novel methodology based on 

principal component analysis (PCA) to select the most suitable soft sensor inputs [19]. 

Instead of using the secondary variables directly, the instantaneous sensitivity of each 

secondary variable to the primary variables are estimated and utilized as the regressor 

inputs. Li and Shao have proposed a novel method using sensitivity analysis to select the 
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optimal secondary variables to be used as inputs to kernel ridge regression (KRR) to im-

plement online soft sensing of distillation column compositions [20]. 

Competitive adaptive reweighted sampling (CARS) method has been proposed by 

Li et al. [21]. CARS is model independent. In other words, CARS can be combined with 

any regression or classification models. In [22], [23], CARS has been applied in combi-

nation with partial least squares linear discriminant analysis (PLSLDA) to effectively 

classify two classes of samples in colorectal cancer data. 

Variable importance in the projection (VIP) and regression coefficients (BETA) 

have been broadly adapted as a criterion in partial least squares modeling paradigm for 

variable selection. Both PLS-VIP and PLS-BETA are model based variable selection 

methods. Mehmood et al. presented an algorithm that balances the parsimony and predic-

tive ability of model using variables selection based on PLS-VIP [24]. It is shown that the 

proposed method increases the understandability and consistency of the model and re-

duces the classification error. Lindgren et al. also implemented PLS-VIP on a benchmark 

data for variable selection, Selwood dataset [25]. In their study, PLS-VIP is combined 

with permutation test to extensively investigate the technique. A bootstrap-PLS-VIP has 

been implemented as a wavelength interval selection method in spectral imaging applica-

tions by Gosselin et al. [26]. Their result demonstrates its ability to identify relevant spec-

tral intervals and its simplicity and relatively low computational cost. PLS-VIP and PLS-

BETA have also been seen in food science. Andersen and Bro applied PLS-VIP and PLS-

BETA to NIR spectral of beer sample and obtained useful insight of the process [27]. A 

variable selection algorithm based on the standardized regression coefficients are pro-
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posed in [28]. The developed models are optimized by the leave-one-out    values and 

validated by an external testing set.  

The algorithms of these variable selection methods and their characteristics will 

be presented. In addition, the strength and limitations when applied for soft sensor devel-

opment are studied. The soft sensor prediction performance of models developed by these 

variable selection methods are compared using PLS. 

A simple simulation case is used to investigate the properties of the selected vari-

able selection methods. The dataset is generated to mimic the typical characteristics of 

process data, such as the magnitude of correlations between variables and the magnitude 

of signal to noise ratio, etc. [4]. In addition, the algorithms are applied to an industrial 

soft sensor case study. In both cases, independent test sets are used to provide fair com-

parison and analysis of different algorithms. The final performances are compared to 

demonstrate the advantages and disadvantages of the different methods in order to pro-

vide useful insights to practitioners in the field. 

This work is structured as follows. In Chapter 2, a brief review of the multivariate 

statistical techniques is presented, which will be required for further discussion on varia-

bles selection methods. Chapter 3 provides detail descriptions of algorithms of different 

variable selection methods covered in this work: Stepwise Regression (SR), Genetic Al-

gorithm with Partial Least Squares (GA-PLS), Uninformative Variables Elimination by 

Partial Least Squares (UVE-PLS), Partial Least Squares with Sensitivity Analysis (PLS-

SA), Competitive Adaptive Reweighted Sampling with Partial Least Squares (CARS-

PLS), Partial Least Squares with Variable Importance in Projection (PLS-VIP), and Par-

tial Least Squares with regression coefficients (PLS-BETA). In Chapter 4, application of 
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all seven variable selection methods on simulated case study and industrial case study 

will be investigated. The simulation case is generated to mimic the typical characteristics 

of industrial data by considering four factors: proportion of relevant predictors, magni-

tude of correlation between predictors, structure of regression coefficients, and magnitude 

of signal to noise ratio. A detailed description of data generation will be provided. The 

industrial case study is focused on the process data of polyester resin production plant. A 

brief specification of the plant will be included, followed by discussion of characteristics 

of batch process. The results and comparison of variable selections on both simulated and 

industrial case studies will be investigated. Chapter 5 will conclude this work with major 

discussion and contributions. Furthermore, suggestions on future works will be provided. 
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Chapter 2. Soft Sensor Development 

Soft sensors have been developed and implemented decades ago, where predictive 

models have been built based on large amount of data being measured stored in process 

industries [29], [30]. Soft sensors can be classified into two categories: model-driven and 

data-driven. The model-driven soft sensors are based on the first principle models that 

describe the physical and chemical characteristics of the process. Data-driven soft sensors 

are based on the data measured and collected within the plants[29–32]. The most popular 

soft sensor techniques include principal component analysis (PCA) [33] and partial least 

squares (PLS) [34], artificial neural networks [35], neuro-fuzzy systems [36] and support 

vector machines [37]. In our work, only the linear models are considered. 

2.1 Multiple Linear Regression  

The goal of multiple linear regression (MLR) is to establish a linear relationship 

between the secondary variables and primary variables in the form of Equation (2.1), 

where    is the secondary variable,   is the primary variable,    is the sensitivity, and   is 

the residuals. 

   ∑      

 

   

 (2.1) 

 The above linear relationship can also be written in matrix form as: 

        (2.2) 
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2.2 Principal Component Analysis 

Principal component analysis (PCA) is linear technique that transforms the origi-

nal data matrix   into a smaller set of uncorrelated variables   that would capture most of 

the information in the original space. This linear transformation can be expressed as in 

Equation (2.7), where   is the score matrix and   is the loading matrix. 

         (2.3) 

2.3 Principal Component Regression (PCR) 

Principal component regression (PCR) is a combination of PCA and MLR. MLR 

can be written in the form of score matrix, which has better properties than the original 

data matrix.  

        (2.4) 

2.4 Partial Least Squares Regression 

Partial least squares (PLS) regression has established itself as a valuable alterna-

tive for analyzing secondary variables that are highly correlated, with high measurement 

noise, and of high dimensionality. PLS model is built based on the properties of NIPALS 

algorithms by letting the score matrix represent the data matrix [38]. In PLS, the decom-

position of matrix   and   are done in such a way that the covariance is maximized. The 

algorithm of PLS were developed by Wold et al. [39]. The decomposition of data matrix 

  is done by Equation (2.3). And the decomposition of   can also be done in a similar 

way by Equation (2.7), where   and   is the score and loading matrices of  , respective-

ly, and   is the residual. 

         (2.5) 
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The objective of PLS is to describe maximum amount of variation in   and get a 

useful relation between   and   simultaneously. This can be done by introducing a linear 

model between the score matrices of   and Y.  

      (2.6) 

Consequently, matrix   can be estimated as in Equation (2.7),   is to be mini-

mized. The detail algorithm of PLS can be found in [38–40]. 

  ̂         (2.7) 
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Chapter 3. Variable Selection Theory and Algorithm 

Due to prompt development of technology, thousands of process measurements 

are collected by process computers every day. Researchers have been utilizing these data 

to build soft sensor, which is also known as data-driven soft sensor. By correlating the 

secondary variables with the primary variables, soft sensors can provide information on 

those immeasurable, but important variables. Furthermore, soft sensors can provide pre-

diction on infrequently measured variable so that control actions can be taken to prevent 

process failure. It has been proved by many studies that the performance of soft sensor 

can be tremendously improved if only the few vital variables are included in soft sensor 

development. Consequently, variable selection has been one of the most important practi-

cal concerns in data-driven approaches. By identifying the relevant variables, variable 

selection can improve the prediction performance of soft sensor, reduce the computation 

load and model complexity, provide better insight into the nature of the process, and low-

er the measurement cost [2], [27].  

Seven variable selection methods are explored in this work. They are selected 

based on their popularity, implementation practicability, complexity, and artificial based 

criterion. They can be categorized into four groups: iterative methods (stepwise regres-

sion and genetic algorithm combined with PLS), methods based on artificial standard 

(uninformative variable elimination method combined with PLS and PLS based on sensi-

tivity analysis), enforced variable elimination methods (competitive adaptive reweighted 
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sampling method with PLS), and methods based on predictive properties (PLS based on 

variable importance in projection and PLS based on regression coefficients). 

Stepwise regression has been applied to the selection of predictors for both classi-

fication and multivariate calibrations [8], especially in near-infrared (NIR) spectral. Gau-

chi and Chagnon proposed a stepwise variable selection method based on maximum    

and applied to manufacturing processes in oil, chemical and food industries [9]. 

Broadhurst et al. applied genetic algorithm to pyrolysis mass spectrometric data 

and showed that GA is able to determine the optimal subset of variables to provide better 

or equal prediction performance [10]. Arcos et al. successfully applied GA to a wave-

length selection for PLS calibration of mixtures of indomethacin and acemethacin, in 

spite of the fact that the two compounds have almost identical spectra [11]. A modified 

genetic algorithm-based wavelength selection method has been proposed by Hiromasa 

Kaneko and Kimito Funatsu to select process variables and dynamic simultaneously [12]. 

This method is named as genetic algorithm-based process variables and dynamics selec-

tion method, GAVDS. The result of GAVDS, based on its application to a dynamic pro-

cess of distillation column in Mitsubishi Chemical Corporation, shows its robustness to 

the presence of nonlinearity and multicollinearity in process data. GA has also been well 

recognized in molecular modeling. Jones et al. have shown three application of GA in 

chemical structure handling and molecular recognition [13]. 

A modified uninformative variable elimination method based on the principle of 

Monte Carlo (MC) was applied in quantitative analysis of NIR spectra by Cai et al. [14]. 

UVE-MC is proven to be capable of selecting important wavelength and making the pre-

diction more robust and accurate in quantitative analysis. Some researchers also suggest-
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ed to combine UVE with wavelet transform to further simplify the model and to reduce 

computation time [14], [15]. In the work of Koshoubu et al., they have extended UVE to 

eliminate uninformative samples (USE) that do not contribute much in the calibration 

model [16], [17]. They proposed an algorithm where the uninformative wave-

lengths/variables are eliminated first by UVE-PLS, and then the uninformative samples, 

which are determined by their standard deviation of prediction error calculated from 

leave-one-out cross validation, are eliminated from the calibration.  Another new method 

which combined UVE with successive projection algorithm (SPA) has been proposed by 

[18]. UVE is implemented to remove uninformative variables before application of SPA 

to improve the efficiency of variable selection by SPA. 

Sensitivity analysis has become more popular in selection of optimal variable 

subsets in recent years. Zamprogna et al. has introduced a novel methodology based on 

principal component analysis (PCA) to select the most suitable soft sensor inputs [19]. 

Instead of using the secondary variables directly, the instantaneous sensitivity of each 

secondary variable to the primary variables are estimated and utilized as the regressor 

inputs. Li and Shao have proposed a novel method using sensitivity analysis to select the 

optimal secondary variables to be used as inputs to kernel ridge regression (KRR) to im-

plement online soft sensing of distillation column compositions [20]. 

Competitive adaptive reweighted sampling (CARS) method has been proposed by 

Li et al. [21]. CARS is model independent. In other words, CARS can be combined with 

any regression or classification models. In [22], [23], CARS has been applied in combi-

nation with partial least squares linear discriminant analysis (PLSLDA) to effectively 

classify two classes of samples in colorectal cancer data. 
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Variable importance in the projection (VIP) and regression coefficients (BETA) 

have been broadly adapted as a criterion in partial least squares modeling paradigm for 

variable selection. Both PLS-VIP and PLS-BETA are model based variable selection 

methods. Mehmood et al. presented an algorithm that balances the parsimony and predic-

tive ability of model using variables selection based on PLS-VIP [24]. It is shown that the 

proposed method increases the understandability and consistency of the model and re-

duces the classification error. Lindgren et al. also implemented PLS-VIP on a benchmark 

data for variable selection, Selwood dataset [25]. In their study, PLS-VIP is combined 

with permutation test to extensively investigate the technique. A bootstrap-PLS-VIP has 

been implemented as a wavelength interval selection method in spectral imaging applica-

tions by Gosselin et al. [26]. Their result demonstrates its ability to identify relevant spec-

tral intervals and its simplicity and relatively low computational cost. PLS-VIP and PLS-

BETA have also been seen in food science. Andersen and Bro applied PLS-VIP and PLS-

BETA to NIR spectral of beer sample and obtained useful insight of the process [27]. A 

variable selection algorithm based on the standardized regression coefficients are pro-

posed in [28]. The developed models are optimized by the leave-one-out    values and 

validated by an external testing set. 

3.1 Stepwise Regression 

Stepwise regression has been widely used for variable selection in linear regres-

sion [3]. Stepwise regression is a combination of forward selection and backward elimi-

nation methods [9]. Both are well known methods for variable selection in multiple re-

gressions. The forward selection and backward elimination methods are done by intro-

duction or elimination of the variables one-by-one according to the specific thresholds. In 
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stepwise regression, a sequence of regression models is constructed iteratively by adding 

or removing variables. The variables are selected according to their statistical signifi-

cance in a regression [8]. Partial F-test or t-test is used for determination of its signifi-

cance.  

The standard stepwise regression procedure is illustrated in Figure 3.1and summa-

rized as follows: 

1. Define thresholds of probability of incorrectly rejecting the true null hy-

pothesis, which is also known as Type I error. The threshold for adding a 

variable to a model is 0.05,         , and the threshold for removing a 

variable from the model is 0.1,         . 

2. Assume the total number of variables is  , and    {          } 

is a subset of variables included in linear regression model. The unselected 

variables are examined by calculating their partial F-statistic using equa-

tions (3.1) and (3.2), where     is the residual sum of squares due to re-

gression, and     is the mean square error. The variable with maximum 

F-statistic among all the unselected ones is added to the model, provided 

that       .  

    
   (  |          )

   (             )
 (3.1) 

    (  |       )     (          )     (       ) (3.2) 

3. Once a new subset of variables is determined, the same procedure is car-

ried out to check if any of these variables inside the model should be re-
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moved. The variable with the smallest F-statistic is removed, provided that 

       . Otherwise, the variable is retained in the model. 

4. Repeat Step 2 and Step 3 until no other variables can be added into or re-

moved from the model. 

Build MLR 

model on a 

subset of 

variables

Calculate 

the F-

statistics of 

each 

variable

Add the variable 

with largest F-

value into the 

model

Remove the 

variable with 

smallest F-value 

from the model

Evaluate the 

prediction 

performance

If the 

performance 

improves

End

YES

NO

 

Figure 3.1 Stepwise Regression Algorithm 

3.2 Genetic Algorithm 

Genetic algorithm has been used widely in solving complex problems of optimi-

zation and search problems [41]. More recently, GA has been used to find the optimum 

subset of regressor variables for a given modeling method based on the results of cost 

function evaluations for all candidate genetic chromosomes [42].  

The original algorithm can be found in [43–45]. Generally speaking, there are five 

steps in GA: coding of variables, initiation of population, evaluation of the responses, re-

productions, and mutations [46]. The last three steps are implemented iteratively until a 

termination criterion is reached. In our work, GA combined with PLS regression model is 

studied. These following terms must be defined: 

1. Initiation of population. Percentage of variables included in the initial 

population (30% -50%).  
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2. Population size. This value is dependent on the total number of variables. 

There is a tradeoff between the initial coverage of the original space and 

computation load.  

3. Maximum number of generations (50-500). This could be used as one of 

the termination criterion. 

4. Percentage of the population retained after each generation (50% -80%). 

This number defines the top percentage of populations to be kept in each 

generation. In other words, only the remaining populations will go through 

reproduction. 

5. Breeding crossover rule (single or double crossover). It is analogous to re-

production. It is a genetic operator used to vary programming of chromo-

somes from one generation to the next. 

6. Mutation rate (0.001-0.01). Chance of alternation of genes after crossover. 

An initial population is generated by randomly choosing 30% of the total varia-

bles. This is repeated multiple times depending on the population size. A PLS model is 

built for each population/chromosomes. Populations are then sorted in descending order 

by its cross validation metrics. Only the top percentages of the populations are remained 

unchanged, and the rest will undergo crossover/reproduction. A new generation of chro-

mosomes is then produced. This is done iteratively until a termination criterion is 

reached.  This termination criterion can be based on the maximum number of generations 

or prediction improvement deficiency. The algorithm is also shown in Figure 3.2. 
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Figure 3.2 Genetic Algorithm with PLS 

3.3 Uninformative Variable Elimination 

A method for eliminating uninformative variables by comparing with artificial 

variables was proposed by V. Center, et al. [5]. Models are built using both experimental 

and artificial variables. The analysis is based on the regression coefficients from the 

model. 

In our work, uninformative variable elimination by Partial Least Squares (UVE-

PLS) will be studied. The procedure is illustrated in Figure 3.3 and summarized as fol-

lows: 

1. For a given set of experimental variables,       , generate an artificial 

random variable matrix with very small magnitude and same dimension as 

the experimental variables. This results in a matrix with dimension of   by 

  ,        . 

2. Build PLS model for    based on leave-one-out procedure. This will 

yield a regression coefficient matrix,        .  

3. Calculate the reliability index of each variable   using Equation (3.3), 

where    and  (  ) are the mean and standard deviation of variable   ob-

tained from leave-one-out procedure. 
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 (3.4) 

  (  )  (
∑ (      )

  
   

   
)

   

 (3.5) 

4. Determine the maximum absolute reliability index of the artificial varia-

bles,    (   (      )). The experimental variables with absolute reliabil-

ity index less than    (   (      ))  are eliminated, i.e.,    (  )  

   (   (      )). 

5. A new PLS model is built using only the remaining variables. 

Add an 
artificial 
variable 
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dimension  
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Sampling, 
and build PLS 

model for 
each subset
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If cj<max(carti)
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Rebuild PLS 
model on the 

retained 
variables

End

NO

YES

 

Figure 3.3 Procedure of Uninformative Variable Elimination with PLS  

3.4 Partial Least Squares with Sensitivity Analysis 

A novel variable selection algorithm proposed in [6] that combines Partial Least 

Squares with sensitivity analysis [47], PLS-SA, is investigated. The sensitivity of each 

variable is often expressed in terms of its regression coefficient in linear regression mod-

els. In PLS models, the coefficients calculated are a mixture of the original variables. 

Hence, an alternative measure of sensitivity of individual variable is proposed. In 
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Rueda’s work, the sensitivity of each variable is defined as the absolute maximum change 

in the PLS prediction (maximum minus the minimum values), when the value of    is 

varied in its allowable range and all other variable are kept constant at their mean/median 

value [6]. This measurement is referred as 
  ̂

   
.  

In PLS-SA, the value of 
  ̂

   
 is only computed over the training set; the remaining 

samples are used to measure the predictive power of the model. The relevance of each 

variable is determined by comparing its sensitivity to that of a random variable, RV. The 

effect of RV to the response variable should be insignificant since it is random. In sensi-

tivity analysis, a RV is added to the original dataset, and then its sensitivity, 
  ̂

   
, is com-

puted.  

To balance the comparison fairness and computational load, the extended data is 

divided into several subsets. PLS models are built for each subset. The sensitivity values 

along with their averages and standard deviations are also computed. A variable    is 

found significant if inequality (3.6) is satisfied. The process is carried out in an iterative 

manner. In every iteration, the variables with sensitivity values below the sensitivity of 

random variable are eliminated. The predictive power of the new set of variables is de-

termined. The variables are eliminated permanently only if the predictive power is im-

proved. The process stops when no more variables can be dropped from the model. The 

stepwise algorithm of PLS-SA is illustrated in Figure 3.4.  

 
  ̂

   

̅̅ ̅̅
        ̂

   

 
  ̂

   

̅̅ ̅̅ ̅̅
        ̂

   

 (3.6) 
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Figure 3.4 PLS-SA Algorithm 

3.5 Competitive Adaptive Reweighted Sampling with Partial Least Squares 

Hongdong Li et al. have proposed a novel strategy based on the principle ‘surviv-

al of the fittest’, named competitive adaptive reweighted sampling (CARS) [21], [22]. 

This method utilizes the absolute values of the regression coefficients to evaluate varia-

bles’ importance. In an iterative manner,   subsets of variables are selected by CARS 

from   Monte Carlo (MC) sampling runs. At the end, cross validation is employed to 

evaluate each subset. The general procedure can be described as follows and shown in 

Figure 3.7: 

1. In each MC sampling run, a PLS model is built using 80-90% of the ran-

domly selected samples. The regression coefficients are normalized using 

Equation (3.7), where   is the total number of variables. 

     
  

∑   
 
   

 (3.7) 

2. In CARS, an exponentially decreasing function (EDF) is introduced as in 

Equation (3.8). EDF is utilized to eliminate variables with relatively small 
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absolute regression coefficients by force. The ratio of variables to be re-

tained in the     sampling run is calculated by Equation (3.8) to (3.10), 

where 

          (3.8) 

 
  (

 

 
)

 
   

 

 

(3.9) 

 
  

  (   )

   
 

(3.10) 

3. Adaptive reweighted sampling (ARS) is followed by EDF-based reduction 

to further eliminate variables in a competitive way. In other words, varia-

bles with larger regression coefficients will be selected with higher fre-

quency. 

 

Figure 3.5 Graphical illustration of the exponentially decreasing function 

Stage 1 

Fast Selection 

Stage 2 

Refined Selec-

tion 
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The EDF process in Step 2 is roughly divided into two stages. In the first stage, 

the variables are eliminated rapidly, so it is called fast selection. In the second stage, the 

variables are eliminated in a much slower fashion, thus it is called refined selection. An 

example of EDF is shown in Figure 3.5. Hence, EDF becomes a very efficient algorithm 

for removing the variables with little information.  

The ARS in Step 3 mimics ‘survival of fittest’ principle. The idea of ARS is illus-

trated in Figure 3.6. Three scenarios are considered, equal weight, little weight differ-

ence, and large weight difference. 

 Weights of Variables  Sampled Variable  

 1 2 3 4 5   

Case 1: 0.20 0.20 0.20 0.20 0.20  2 1 3 4 5 

Case 2: 0.30 0.30 0.20 0.10 0.10  1 1 2 3 2 

Case 3: 0.40 0.05 0.40 0.10 0.05  1 3 3 3 1 

 

Figure 3.6 Illustration of adaptive reweighted sampling technique using five variables in 

three cases as an example. The variables with larger weights will be selected with higher 

frequency. 
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End

  

Figure 3.7 General Procedure of CAR-PLS 

3.6 Partial Least Squares with Variable Important in Projection 

Variable importance in the projection (VIP) score estimates the importance of 

each variable in the projection used in a PLS model. It was first published in [48]. The 

VIP score for the     variable can be calculated using Equation (3.11), where   (    )  

  
   

   .    is the     column vector of score matrix  .    is the     element of regression 
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coefficient vector  .    is the     column vector of weighting matrix  . It gives the 

weighted variability of       variable in the retained dimensions. VIP score calculates the 

contribution of each variable according to variance explained by each PLS component 

[26]. The expression     ‖  ‖ represents the importance of     variable in the     PLS 

component. The   (    ) is the variance of   explained by the     PLS component. And 

the summation of   (    ), denominator term, is the total variance explained by the PLS 

model with   components. 

      √ ∑ (  (    ) (
   

‖  ‖
)
 

)  ∑   (    )

 

   

 

   

 (3.11) 

A variable selection method based on VIP scores estimated by PLS regression 

model is known as PLS-VIP. In general, ‘greater than one rule’ is used as criterion for 

variable selection. In other words, only variables with VIP values greater than one are 

considered significant. However, it has been suggested by Il-Gyo Chong et al. that the 

proper cutoff value for VIP can be utilized to increase the performance of PLS-VIP [4]. 

This value is defined by the following equation: 

 
  

  

{   (       
  {             }

 ( ))     (       
  {             }

 ( ))}

 
 

(3.12) 

where   varies from 0.01 to 3 with increments of 0.01. And  , the geometric mean of 

sensitivity and specificity, is a function of   defined by Equation (3.13). Sensitivity is 

defined as proportion of selected relevant predictors among relevant predictors. Specifici-

ty is the proportion of unselected irrelevant predictors among irrelevant predictors. They 

are both calculated from the confusion matrix shown in Table 3.1. The every   value 
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chosen, the elements in the confusion matrix will change. Therefore, the sensitivity, spec-

ificity, and   will change as well. The value of   ranges between 0 and 1, where 1 indi-

cates all the predictors are classified correctly. For every run/replication, the   values that 

maximize   are identified. The optimal cutoff value for VIP,   , is obtained by taking the 

average of the identified  ’s using Equation (3.12). 

   (                       )    (3.13) 

               (   ) (3.14) 

               (   ) (3.15) 

 

Table 3.1 Confusion Matrix and Descriptions of Its Entries 

  Predicted classes 

  Irrelevant predictor 

(IR) 

Relevant predictor  

(R) 

True classes Irrelevant predictor 

(IR) 

a: the number of ir-

relevant predictors 

classified correctly 

 

b: the number of ir-

relevant predictors 

classified incorrectly 

Relevant predictor  

(R) 

c: the number of rel-

evant predictors 

classified incorrectly 

d: the number of rel-

evant predictors 

classified correctly 

   

Overall PLS-VIP procedure can be described as follows and presented in Figure 

3.8: 

1. Build PLS model using all the variables. Apply cross validation to deter-

mine the optimal number of PC’s.  

2. Calculate VIP score for each variable using Equation (3.11).  

3. Select variables with VIP scores greater than the cutoff value. 
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4. Calculate   and the proper cutoff value using Equations (3.13) and (3.12). 

Repeat Step 3 with the new cutoff value found. (Note: This step is only as-

sessable for simulated case study.) 

5. Rebuild PLS model with only the retained variables. 

6. Evaluate the model performance using different indexes. 

Build 

PLS 

Model

Calculate VIP 

scores using PLS 

model parameters

If VIPj 

>cutoff

Rebuild PLS 

model on the 

retained 

variables

Keep the variable

Remove the variable

YES

NO

End

 

Figure 3.8 Procedure of PLS-VIP 

3.7 Partial Least Squares with Regression Coefficients 

Partial least squares with regression coefficients is a variable selection method 

that is very similar to PLS-VIP. It is also known as PLS-BETA. The only difference is 

PLS-BETA utilizes the regression coefficients estimated by PLS regression instead of 

VIP scores. The significant variables are selected according to the magnitude of the abso-

lute values of the regression coefficients. The procedure of PLS-BETA is illustrated in 

Figure 3.9. 
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Figure 3.9 Procedure of PLS-BETA 
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Chapter 4. Variable Selection Method with Its Application to Simulated 

and Industrial Dataset 

4.1 Introduction  

The characteristics of these seven variable selection methods will be illustrated 

using a simulated case study and an industrial case study. The results presented here are 

based on the rules of thumb of each method to choose the model parameters, for the pur-

pose of just comparing the base line of the methods studied. Further tuning of the pa-

rameters can be done to optimize the performance of each model.  

The simulation case is generated to mimic the typical characteristics of industrial 

data by considering four factors: proportion of relevant predictors, magnitude of correla-

tion between predictors, structure of regression coefficients, and magnitude of signal to 

noise ratio. A detailed description of data generation will be provided. The industrial case 

study is focused on the process data of polyester resin production plant. A brief specifica-

tion of the plant will be included, followed by discussion of characteristics of batch pro-

cess and their necessary preprocessing steps. The results and comparison of variable se-

lections on both simulated and industrial case studies will be investigated. Two aspects 

are studied: correctly identify all the variables and prediction performance. The former 

one is only applicable in simulated case study, where the ground truth of the data is 

known. It is evaluated by the geometric mean of sensitivity and specificity discussed in 

Chapter 3. In this aspect, we also look at the consistency of the models produced by each 

variable selection method. In other words, the robustness of each method to data selection 

is explored. For both case studies, the data are permuted 100 times to generate different 
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combinations of training and validation sets. Frequency plots of selection of each variable 

are generated to assess the consistency of the models. The second aspect is also one of 

the most important factors in soft sensor development, since the optimal goal is to im-

prove the prediction performance of soft sensor schemes. Two performance metrics are 

considered to evaluate the prediction performance: root mean square error (RMSE) and 

mean absolute percentage error (MAPE).  

      √
∑ (    ̂ )  
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4.2 Simulated Case Study 

Four factors are considered in data generation to mimic the characteristic of in-

dustrial data. They are proportion of the number of relevant predictors, the magnitude of 

correlations between predictors, the structure of regression coefficients, and the magni-

tude of signal to noise ratio. The dataset is generated following a linear model as in(4.3), 

    ∑        

 

   

 (4.3) 

where    is normal distributed random error with zero mean and specified standard devia-

tion (described below). The data matrix   of 500 sample points is generated considering 

the four factors. 

 For convenience, the number of relevant predictors is set to be 10. The total num-

ber of predictors,  , in data matrix can be varied, which would yield different 
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proportion of relevant predictors. The total number of predictors,  , in data matrix 

are varied in three levels, 20, 40 and 100.  

            
  

 
 

(4.4) 

 Data matrix   is generated from multivariate normal distribution with zero mean 

vector and variance-covariance matrix of  . The elements of matrix   are func-

tion of the magnitude of correlations between predictors,  . The magnitude of 

correlations between predictors,  , is also varied in three levels, 0.5, 0.7 and 0.9.  

      |   | (          ) 
(4.5) 

Two types of equal and unequal coefficients are compared. Each type has two 

levels according to their locations of relevant predictors: in the middle of the range and at 

the extremes. All the irrelevant predictors have zero coefficients in both types. For the 

case with 10 relevant predictors, the regression coefficients are generated as follows: 

 Equal coefficients in the middle of range 
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(4.6) 

 Equal coefficients at the extreme  

      (                     ) 
(4.7) 

 Unequal coefficients in the middle of range 
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 Unequal coefficients at the extreme 
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 The magnitude of signal to noise ratio is introduced by manipulating the standard 

deviation of error terms in  , where   is the reciprocal of signal to noise ratio. The 

magnitude of reciprocal of signal to noise ratio,  , is varied in three levels as well, 

0.33, 0.74 and 1.22.  

    √   (  ) 
(4.10) 

 

4.2.1 Results 

All seven variable selection methods are implemented with the simulated case 

study. The four parameters are varied one at a time while holding the others constant. The 

sensitivity results of these fours parameters considered are summarized in Table 4.1 to 

Table 4.4. The individual result is compared with model before and after variable selec-

tion. PLS-BETA performs the best in the sensitivity of proportion of relevant predictors. 

It outperforms other variables selection methods in all three levels of total number of pre-

dictors. The improvement in MAPE of the validation set runs from 1% to 9%. PLS-VIP 

performs the best when the correlation is at its highest level. However, the improvement 

is not significant. PLS-BETA yields best performance for correlation at the lower two 

levels, by 2-3% in MAPE. UVE-PLS gives best performance in the case with unequal 

regression coefficients with improvement of 3% in MAPE. Surprisingly, CARS-PLS 

shows performance improvement of 7% in terms of MAPE when the signal to noise ratio 

is at its lowest. 
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To visualize the result, they are also demonstrated in Figure 4.1 to Figure 4.20. 

The performances are evaluated using the geometric mean of sensitivity and specificity 

( ), root mean square error (RMSE), and mean absolute percentage error (MAPE). The 

values plotted in Figure 4.5 to Figure 4.20 are the improvement compared to the full 

models. The ones with values higher than zero indicate improvement of reduced models 

compared to the full model; and the ones with values lower than zero imply performance 

deterioration of the reduced models. 

From Figure 4.1 to Figure 4.4, one can see that all the variables selection methods 

yields relatively high   values except PLS-SA and CARSPLS. The sensitivities of pre-

diction performance of each variable selection method to different data generation pa-

rameters are illustrated in Figure 4.5 to Figure 4.20. The results are presented in percent-

age improved in the average performance metrics. The percentage improvement is calcu-

lated by comparing the reduced models to their corresponding full model of each case. 

The results of calibration models shown in Figure 4.5 and Figure 4.12 indicate no im-

provement from the models produced by the variable selection methods compared with 

the full models. Especially for PLS-SA, the performance deteriorates by 75% in RMSE 

and 77% in MAPE. From the prediction performance of validation models shown in Fig-

ure 4.13 to Figure 4.20, the prediction performance of the reduced models are improved 

compared with the full models, with exception of PLS-SA. Performance of PLS-BETA 

worsens significantly when the regression coefficients are unequal. PLS-BETA only se-

lects the variables with larger regression coefficients. In other words, even if the variable 

is relevant to the primary variable, it is not selected by PLS-BETA since its coefficient is 

relatively small. 
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Table 4.1 Comparison of Sensitivity of Different Variable Selection Methods to Propor-

tion of Relevant Predictors 

    Training Validation 

Model   No. Sel G RMSE MAPE RMSE MAPE 

Full 

20 20 -- 1.5357 3.0418 1.5724 3.1222 

40 40 -- 1.4802 3.0229 1.6177 3.3173 

100 100 -- 1.3914 2.8289 1.7140 3.4910 

SR 

20 10+/-1 0.9767 1.5463 3.0641 1.5613 3.1014 

40 11+/-1 0.9784 1.5131 3.0884 1.5828 3.2434 

100 14+/-2 0.9765 1.4920 3.0349 1.6052 3.2716 

GA 

20 12+/-1 0.8721 1.5858 3.1446 1.6110 3.2032 

40 16+/-2 0.8746 1.5510 3.1687 1.6417 3.3622 

100 26+/-5 0.9008 1.4840 3.0181 1.6446 3.3517 

UVE 

20 12+/-1 0.9989 1.5465 3.0639 1.5612 3.1021 

40 12+/-1 0.9856 1.5199 3.1008 1.5758 3.2303 

100 12+/-1 0.9947 1.5234 3.0991 1.5723 3.2036 

SA 

20 14+/-2 0.4580 2.1686 4.3078 2.2198 4.4048 

40 23+/-3 0.4720 2.5455 5.2190 2.6748 5.4793 

100 55+/-6 0.4991 2.4337 4.9977 2.7491 5.6427 

CARS 

20 18+/-4 0.1722 1.5381 3.0471 1.5700 3.1177 

40 20+/-13 0.7057 1.5065 3.0738 1.5900 3.2584 

100 17+/-17 0.9384 1.5024 3.0560 1.5933 3.2448 

VIP 

20 10+/-0 0.9918 1.5807 3.1335 1.5930 3.1667 

40 11+/-1 0.9874 1.5230 3.1075 1.5721 3.2219 

100 13+/-1 0.9849 1.5247 3.1023 1.5710 3.2007 

BETA 

20 10+/0 1 1.5504 3.0732 1.5571 3.0936 

40 10+/-0 1 1.5241 3.1097 1.5712 3.2204 

100 10+/-0 1 1.5287 3.1097 1.5659 3.1893 
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Table 4.2 Comparison of Sensitivity of Different Variable Selection Methods to Magni-

tude of Correlation between Predictors 

    Training Validation 

Model   No. Sel G RMSE MAPE RMSE MAPE 

Full 

0.5 40 -- 1.4802 3.0229 1.6177 3.3173 

0.7 40 -- 1.7618 3.0547 1.8912 3.2944 

0.9 40 -- 2.1383 3.1542 2.2216 3.2872 

SR 

0.5 11+/-1 0.9784 1.5131 3.0884 1.5828 3.2434 

0.7 11+/-1 0.9836 1.7854 3.0947 1.8581 3.2348 

0.9 10+/-1 0.9526 2.1409 3.1561 2.2252 3.2908 

GA 

0.5 16+/-2 0.8746 1.5510 3.1687 1.6417 3.3622 

0.7 15+/-3 0.8873 1.7979 3.1205 1.8937 3.2956 

0.9 15+/-3 0.8344 2.1432 3.1594 2.2484 3.3246 

UVE 

0.5 12+/-1 0.9856 1.5199 3.1008 1.5758 3.2303 

0.7 14+/-2 0.9636 1.7882 3.0994 1.8568 3.2331 

0.9 28+/-3 0.8452 2.1383 3.1511 2.2220 3.2879 

SA 

0.5 23+/-3 0.4720 2.5455 5.2190 2.6748 5.4793 

0.7 28+/-3 0.4566 2.2565 3.9257 2.3950 4.1815 

0.9 36+/-3 0.2399 2.1798 3.2195 2.2625 3.3511 

CARS 

0.5 20+/-13 0.7057 1.5065 3.0738 1.5900 3.2584 

0.7 20+/-13 0.6731 1.7800 3.0856 1.8697 3.2553 

0.9 18+/-12 0.7439 2.1441 3.1603 2.2220 3.2850 

VIP 

0.5 11+/-1 0.9874 1.5230 3.1075 1.5721 3.2219 

0.7 13+/-1 0.9536 1.7913 3.1040 1.8532 3.2277 

0.9 16+/-1 0.9000 2.1412 3.1543 2.2087 3.2693 

BETA 

0.5 10+/-0 1 1.5241 3.1097 1.5712 3.2204 

0.7 10+/-0 0.9995 1.7959 3.1132 1.8492 3.2198 

0.9 10+/-0 0.9851 2.1552 3.1772 2.2162 3.2759 
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Table 4.3 Comparison of Sensitivity of Different Variable Selection Methods to Regres-

sion Coefficient Structure 

    Training Validation 

Model   No. Sel G RMSE MAPE RMSE MAPE 

Full 

EM 40 -- 1.6078 2.9768 1.7471 3.2427 

EE 40 -- 1.4802 3.0229 1.6177 3.3173 

UM 40 -- 21.80 3.0353 23.54 3.2896 

UE 40 -- 18.50 3.0014 20.19 3.2909 

SR 

EM 11+/-1 0.9779 1.6442 3.0432 1.7093 3.1696 

EE 11+/-1 0.9784 1.5131 3.0884 1.5828 3.2434 

UM 9+/-1 0.8830 22.34 3.1090 23.11 3.2238 

UE 9+/-1 0.8861 18.93 3.0704 19.84 3.2307 

GA 

EM 16+/-3 0.8865 1.6558 3.0641 1.7377 3.2224 

EE 16+/-2 0.8746 1.5510 3.1687 1.6417 3.3622 

UM 14+/-3 0.8065 22.52 3.1327 23.54 3.2850 

UE 14+/-3 0.8091 19.20 3.1129 20.28 3.3039 

UVE 

EM 12+/-1 0.9928 1.6502 3.0546 1.7021 3.1576 

EE 12+/-1 0.9856 1.5199 3.1008 1.5758 3.2303 

UM 9+/-2 0.9281 22.46 3.1262 22.95 3.2012 

UE 9+/-1 0.8944 19.06 3.0897 19.70 3.2098 

SA 

EM 24+/-3 0.4866 2.5117 4.6580 2.6385 4.8940 

EE 23+/-3 0.4720 2.5455 5.2190 2.6748 5.4793 

UM 22+/-3 0.4950 36.44 5.1019 38.03 5.3456 

UE 22+/-3 0.4797 35.04 5.7135 36.74 6.0067 

CARS 

EM 19+/-12 0.7196 1.6373 3.0301 1.7154 3.1844 

EE 20+/-13 0.7057 1.5065 3.0738 1.5900 3.2584 

UM 16+/-11 0.6912 22.40 3.1169 23.23 3.2568 

UE 17+/-12 0.6584 19.00 3.0799 20.03 3.2644 

VIP 

EM 10+/-1 0.9948 1.6557 3.0650 1.6963 3.1466 

EE 11+/-1 0.9874 1.5230 3.1075 1.5721 3.2219 

UM 7+/-1 0.8618 22.74 3.1654 23.06 3.2189 

UE 8+/-1 0.9095 19.13 3.1034 19.71 3.2112 

BETA 

EM 10+/-0 1 1.6563 3.0658 1.6957 3.1458 

EE 10+/-0 1 1.5241 3.1097 1.5712 3.2204 

UM 5+/-1 0.6977 25.09 3.4904 25.67 3.5808 

UE 5+/-1 0.6932 22.23 3.6071 22.85 3.7205 
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Table 4.4 Comparison of Sensitivity of Different Variable Selection Methods to Magni-

tude of Signal to Noise Ratio 

    Training Validation 

Model   No. Sel G RMSE MAPE RMSE MAPE 

Full 

0.33 40 -- 1.6078 2.9768 1.7471 3.2427 

0.74 40 -- 3.6020 5.6126 3.9212 6.1351 

1.22 40 -- 5.9373 7.3677 6.4675 8.0715 

SR 

0.33 11+/-1 0.9779 1.6442 3.0432 1.7093 3.1696 

0.74 11+/-1 0.9757 3.6872 5.7435 3.8349 5.9951 

1.22 9+/-2 0.8775 6.1020 7.5759 6.3888 7.9648 

GA 

0.33 16+/-3 0.8865 1.6558 3.0641 1.7377 3.2224 

0.74 16+/-2 0.8781 3.6853 5.7405 3.8758 6.0561 

1.22 15+/-3 0.8435 6.0636 7.5197 6.3973 7.9827 

UVE 

0.33 12+/-1 0.9928 1.6502 3.0546 1.7021 3.1576 

0.74 11+/-1 0.9928 3.6988 5.7612 3.8195 5.9728 

1.22 11+/-2 0.9928 6.1032 7.5697 6.3022 7.8635 

SA 

0.33 24+/-3 0.4866 2.5117 4.6580 2.6385 4.8940 

0.74 22+/-3 0.4837 3.6020 5.6126 3.9212 6.1351 

1.22 21+/-3 0.4939 5.9373 7.3677 6.4675 8.0715 

CARS 

0.33 19+/-12 0.7196 1.6373 3.0301 1.7154 3.1844 

0.74 24+/-13 0.5429 3.6630 5.7062 3.9015 6.1003 

1.22 20+/-13 0.5948 6.0540 7.5116 6.4418 7.5116 

VIP 

0.33 10+/-1 0.9948 1.6557 3.0650 1.6963 3.1466 

0.74 10+/-1 0.9936 3.7122 5.7838 3.8046 5.9502 

1.22 10+/-1 0.9902 6.1185 7.5934 6.2758 7.8297 

BETA 

0.33 10+/-0 1 1.6563 3.0658 1.6957 3.1458 

0.74 9+/-1 0.9596 3.7381 5.8259 3.8548 6.0291 

1.22 8+/-1 0.8462 6.1565 7.6452 6.4054 7.9873 
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Figure 4.1 Sensitivity of Proportion of Relevant Predictors in Terms of Average G 

 

Figure 4.2 Sensitivity of Magnitude of Correlation between Predictors in Terms of 

Average G 
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Figure 4.3 Sensitivity of Regression Coefficient Structure in Terms of Average G 

 

Figure 4.4 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average G 



38 

 

 

Figure 4.5 Sensitivity of Proportion of Relevant Predictors in Terms of Average RMSE in 

Training Set 

 

Figure 4.6 Sensitivity of Magnitude of Correlation between Predictors in Terms of Aver-

age RMSE in Training Set 
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Figure 4.7 Sensitivity of Regression Coefficient Structure in Terms of Average RMSE in 

Training Set 

 

Figure 4.8 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average RMSE 

In Training Set 
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Figure 4.9 Sensitivity of Proportion of Relevant Predictors in Terms of Average MAPE 

in Training Set 

 

Figure 4.10 Sensitivity of Magnitude of Correlation between Predictors in Terms of Av-

erage MAPE in Training Set 
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Figure 4.11 Sensitivity of Regression Coefficient Structure in Terms of Average RMSE 

in Training Set 

 

Figure 4.12 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average 

MAPE in Training Set 
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Figure 4.13 Sensitivity of Proportion of Relevant Predictors in Terms of Average RMSE 

in Validation Set 

 

Figure 4.14 Sensitivity of Magnitude of Correlation between Predictors in Terms of Av-

erage RMSE in Validation Set 
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Figure 4.15 Sensitivity of Regression Coefficient Structure in Terms of Average RMSE 

in Validation Set 

 

Figure 4.16 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average 

RMSE in Validation Set 
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Figure 4.17 Sensitivity of Proportion of Relevant Predictors in Terms of Average MAPE 

in Validation Set 

 

Figure 4.18 Sensitivity of Magnitude of Correlation between Predictors in Terms of Av-

erage MAPE in Validation Set 
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Figure 4.19 Sensitivity of Regression Coefficient Structure in Terms of Average MAPE 

in Validation Set 

 

Figure 4.20 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average 

MAPE in Validation Set 
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Figure 4.21 Frequency of Variables Selected by SR 
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Figure 4.22 Frequency of Variables Selected by SR 
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Figure 4.23 Frequency of Variables Selected by SR 
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Figure 4.24 Frequency of Variables Selected by SR 
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Figure 4.25 Frequency of Variables Selected by GA-PLS 
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Figure 4.26 Frequency of Variables Selected by GA-PLS 
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Figure 4.27 Frequency of Variables Selected by GA-PLS 
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Figure 4.28 Frequency of Variables Selected by GA-PLS 
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Figure 4.29 Frequency of Variables Selected by UVE-PLS 
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Figure 4.30 Frequency of Variables Selected by UVE-PLS 
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Figure 4.31 Frequency of Variables Selected by UVE-PLS 
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Figure 4.32 Frequency of Variables Selected by UVE-PLS 
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Figure 4.33 Frequency of Variables Selected by PLS-SA 
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Figure 4.34 Frequency of Variables Selected by PLS-SA 
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Figure 4.35 Frequency of Variables Selected by PLS-SA 
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Figure 4.36 Frequency of Variables Selected by PLS-SA 
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Figure 4.37 Frequency of Variables Selected by CARS-PLS 
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Figure 4.38 Frequency of Variables Selected by CARS-PLS 
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Figure 4.39 Frequency of Variables Selected by CARS-PLS 
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Figure 4.40 Frequency of Variables Selected by CARS-PLS 
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Figure 4.41 Frequency of Variables Selected by PLS-VIP 
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Figure 4.42 Frequency of Variables Selected by PLS-VIP 

𝜌      

𝜌    7 

𝜌    9 



68 

 

 

 

 

 

Figure 4.43 Frequency of Variables Selected by PLS-VIP 
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Figure 4.44 Frequency of Variables Selected by PLS-VIP 
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Figure 4.45 Frequency of Variables Selected by PLS-BETA 
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Figure 4.46 Frequency of Variables Selected by PLS-BETA 
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Figure 4.47 Frequency of Variables Selected by PLS-BETA 
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Figure 4.48 Frequency of Variables Selected by PLS-BETA 
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Another aspect of investigation is to examine the model’s consistency, i.e., if a 

variable is selected once, will this variable be selected in next run? In order to check 

models’ consistency, frequency of variable selection plots are generated and illustrated in 

Figure 4.21 to Figure 4.48. As shown in Figure 4.21 to Figure 4.24, SR is able to correct-

ly identify most of the relevant predictors with 100% frequency. However, it also selects 

the irrelevant predictors at times. When the correlation between predictors increases, and 

signal to noise ratio decreases; SR no longer selects relevant predictors with 100% fre-

quency. None of the relevant predictors are selected by GA-PLS with 100% frequency as 

shown in Figure 4.25 to Figure 4.28. Its performance worsens when the correlation be-

tween predictors and reciprocal of signal to noise ratio increase. Based on Figure 4.29 to 

Figure 4.32, UVE-PLS performs fairly well in the cases with unequal regression coeffi-

cients and low signal to noise ratio. However, UVE-PLS select some irrelevant predictors 

non-randomly when the correlation between predictors is at its higher level. From Figure 

4.33 to Figure 4.36, one can see that PLS-SA selects both relevant and irrelevant predic-

tors with same frequency in all cases. From Figure 4.37, CARS-PLS selects almost all the 

variables when the proportion of relevant predictors is high. Also, CARS-PLS selects ir-

relevant predictor with around 30-40% frequency in all other cases, which can be seen in 

Figure 4.37 to Figure 4.40. PLS-VIP and PLS-BETA are the ones with the most ‘clean’ 

frequency plots. In many cases, most of the irrelevant predictors are selected with 0% 

frequency. Only a few irrelevant predictors are selected with very low frequency in the 

case with low signal to noise ratio. 
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4.2.2 Conclusion and Discussion 

Based on the results shown in simulated case study, PLS-VIP and PLS-BETA 

yield the best results among all seven variable selection methods studied. However, the 

performance of PLS-BETA does decay significantly when the regression coefficients are 

not equal and cover a wide range. PLS-BETA only selects the ones with large regression 

coefficients and discards the ones with smaller coefficients even though they are related 

to the primary variables. The prediction performance also deteriorates accordingly. In the 

opposite, UVE-PLS performs the best in the case with unequal regression coefficients. 

Performance of SR is in the middle range among all seven variable selection methods. 

The consistency of selection is quite good for SR. However, irrelevant predictors are se-

lected by SR at lower frequency. Performance of GA-PLS is one of the ones in the mid-

dle range as well. Similar behavior is observed in GA-PLS as in SR. However, in terms 

of computational effort, SR requires less computation time. CARS-PLS is sensitive to 

proportion of relevant predictors. It selects all the irrelevant predictors with higher than 

80% when the proportion of relevant predictors is high. CARS-PLS also selects irrelevant 

predictors with around 30-40% frequency in all other cases. Among all the variable selec-

tion methods considered in this work, PLS-SA yields the worst performance in most 

training and validation set. And the computation time of PLS-SA is quite intensively 

compare to other methods.  

These conclusions are made purely based on the results obtained from this simu-

lated case study.  
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4.3 Industrial Case Study 

This industrial dataset was obtained from the request to Dr. Barolo. This process 

is the production of polyester resin used in the manufacturing of coatings via batch poly-

condensation between a diol and a long-chain dicarboxylic acid [49]. The main part of 

this plant is a 12 m
3
 stirred tank reactor, which is used for the production of different res-

ins.  Water is also formed in the poly-condensation reaction as a byproduct. A packed 

distillation column, along with an external water-cooled condenser and a scrubber, are 

installed to remove the water. In addition, a vacuum pump is equipped to maintain the 

vacuum in the reactor. 

There are several online measurement sensors supplied in the plant. Thirty-four 

variables are routinely measured online and recorded by a process computer every 30 se-

conds. The number of samples is in the range between 4500 and 7500 from batch to 

batch. These are process measurements (temperature, pressures and valve openings, etc.) 

and controller settings (which are adjusted manually by the operators). A list of these 

thirty-four variables is shown in Table 4.5. Product quality measurements, acidity number 

and viscosity, are not measured online and are not available for the entire duration of the 

batch. The product samples are taken manually by the operators. The sampling is uneven-

ly and infrequently. There are only 15 to 25 measurements available per batch. 33 batches 

are made available in 16-month period of time. The autoscaled process data of one of the 

batches is shown in Figure 4.49, and the quality variables are plotted in Figure 4.50. 

More details about this process can be found in [49], [50]. 
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Table 4.5 List of Process Variables Included in Polyester Resin Dataset 

Online Monitored Variable Column MA-PLS 

Date and time of the day 1  

Mixing rate (%) 2 X 

Mixing rate 3 X 

Mixing rate SP 4  

Vacuum line temperature (°C) 5 X 

Inlet dowtherm temperature (°C) 6 X 

Outlet dowtherm temperature (°C) 7 X 

Reactor temperature (sensor 1) (°C) 8 X 

(dummy) 9  

Column head temperature (°C) 10 X 

Valve V25 temperature (°C) 11  

Scrubber top temperature (°C) 12 X 

Inlet water temperature (°C) 13 X 

Column bottom temperature (°C) 14 X 

Scrubber bottom temperature (°C) 15 X 

Reactor temperature (sensor 2) (°C) 16 X 

Condenser inlet temperature (°C) 17 X 

Valve V14 temperature (°C) 18 X 

Valve V15 temperature (°C) 19 X 

Reactor differential pressure 20 X 

(dummy) 21  

Column top temperature PV (°C) 22 X 

Column top temperature SP (°C) 23  

V42 way-1 valve opening (%) 24 X 

Inlet dowtherm temperature PV (°C) 25 X 

Inlet dowtherm temperature SP (°C) 26  

V42 way-2 valve opening (%) 27 X 

Reactor temperature PV(°C) 28 X 

Reactor temperature SP (°C) 29  

(dummy) 30  

Valve V25 temperature PV (°C) 31  

Valve V25 temperature SP (°C) 32  

Valve V42 valve opening (%) 33 X 

Reactor vacuum PV (mbar) 34 X 

Reactor vacuum SP (mbar) 35  
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Figure 4.49 Visualization of Autoscaled Process Data from A Reference Batch in Polyes-

ter Production 

 

Figure 4.50 Product Quality Variables from A Reference Batch in Polyester Production. 

(a) is the acidity number in gNaOH/gresin; (b) is the viscosity in poise. 

(a) 

(b) 
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4.3.1 Data Preprocessing 

For a batch process, the data are stored in a three-dimension array,       , as 

shown in Figure 4.51. Each row corresponds to one of the   batches, while each column 

contains one of the   variables;   is the total number of samples taken in     batch. This 

is one of the typical characteristics of batch process, where batch duration is not fixed. 

Thus, a preprocessing step is required to synchronize the batch-to-batch durations. Three 

preprocessing methods are considered in this work: 

1. Only retain the process samples when the quality variables are available. 

All the process samples without their corresponding quality variables are 

eliminated. 

2. Instead of eliminate all those samples points, the average of them are tak-

en and utilized as soft sensor inputs. 

3. Similar to the previous one, but integral over time is taken as the soft sen-

sor inputs. 

The approach taken to unfold the three-way array is to preserve the direction of 

the variables [51]. The resulting matrix has dimension of   by  , where   ∑   
 
   . A 

previous approach proposed by Nomikos and MacGregor [52], [53] is to unfold the three-

way matrix so that the batch direction is preserved. This results in matrix with dimension 

of   by (∑     
 
   ). Since variable selection is our purpose, the approach that pre-

serves the direction of variables is adopted.  

To provide fair comparison, the batches are permuted 100 times before unfolding 

to generate different combinations of training and validation set. In every permutation, 

the first 27 batches are used for training, and the remaining is used for validation. The 
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visualization of the autoscaled process data using the first preprocessing method and the 

quality data from one of the permutation runs are shown in Figure 4.52 and Figure 4.53, 

respectively. 

 

Figure 4.51 Illustration of Unfolding Three-Dimension Array to Preserve the Direction of 

Variables 

 

Figure 4.52 Dynamic Parallel Coordinate Plot of Autoscaled Unfolded Process 

Data of A Permutation Run of Polyester Resin Dataset 
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Figure 4.53 Product Quality Variables of A Permutation Run of Polyester Produc-

tion. (a) is the acidity number in gNaOH/gresin; (b) is the viscosity in poise. 

4.3.2 Results 

Variable selection methods are applied individually to each quality variables. On-

ly the training set is utilized for variable selection. Models developed by these variable 

selection schemes are then validated using the validation set. The results of three different 

preprocessing methods are presented in Table 4.6 and Table 4.8.  

Based on the results obtained from the first preprocessing method, all the variable 

selection methods is able to identify a subset of variables that would improve the model 

prediction performance, with the exception of PLS-SA. For acidity number model, the 

one with the best prediction performance is produced by PLS-VIP. Over 100 permutation 

runs, model with average number of 13 variables are created by PLS-VIP. The prediction 

performances on the external validation set are improved by 23.2% and 27.1% in RMSE 

and MAPE, respectively. For the calibration models, the best results are actually given by 

(a) 

(b) 
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SR with an average size of 12 variables. Nevertheless, the results on the validation set are 

not as great as PLS-VIP. This indicates that the model produced by SR may tend to over-

fit the training data. For viscosity model, the best performance model is again produced 

by PLS-VIP with model size of 14 variables in average. The prediction performances on 

the external validation set are improved by 28.1% and 23.3% in RMSE and MAPE, re-

spectively. In addition, this is the only model that gives such superior performance; all 

the other methods only improve the prediction performance up to 6%.  

Results of acidity number and viscosity models from the second preprocessing 

method show that the most superior prediction performance is still given by PLS-VIP. 

The model size is increased from 13 to 16 variables for acidity number model and 14 to 

16 for viscosity model. The prediction performances of acidity number model are boosted 

by 26% and 13% in RMSE and MAPE, respectively. For viscosity model, the prediction 

performances are advanced by 36.5 % and 29.2% in RMSE and MAPE, respectively. SR 

also produces best calibration models for both acidity number and viscosity in this pre-

processing method. 

Once again, best prediction performance of acidity number model is provided by 

PLS-VIP in the third preprocessing method, by 10% in RMSE and 8% in MAPE. The 

average model size is only 9 variables. The results of the viscosity model are different 

from the previous two methods. The highest prediction performance is actually provided 

by CARS-PLS with improvement of 13% in both RMSE and MAPE. The model is rela-

tively small with 9 variables. The standard deviation of model size is almost half of the 

average value, which means CARS-PLS is sensitive to data selection. Furthermore, the 

prediction errors of the last method are almost doubled compared to the previous ones. 
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Table 4.6 Comparison of Different Variable Selection for Preprocessing Method 1 

 Model 
No. of Var-

iables 

Training Validation 

RMSE MAPE RMSE MAPE 

Acidity 

Number 

PLS 34 1.7031 24.4044 2.2175 32.9926 

Stepwise 12+/-2 1.6166 22.1661 1.8587 26.4972 

GA-PLS 13+/-2 1.6327 23.0392 1.8183 26.6951 

UVE-PLS 18+/-2 1.6795 23.5050 2.0449 29.4195 

PLS-SA 27+/-2 1.7752 25.1340 2.2777 33.8493 

CARS-PLS 8+/-2 1.7402 23.9638 1.8849 27.2733 

PLS-VIP 13+/-1 1.6653 22.5347 1.7021 24.0513 

PLS-BETA 16+/-1 1.6737 22.7862 1.9947 28.0227 

Viscosity 

PLS 34 0.6885 11.7796 1.0662 17.5609 

Stepwise 11+/-2 0.6869 12.0458 1.0068 17.0644 

GA-PLS 11+/-3 0.6936 11.6718 0.9951 16.5112 

UVE-PLS 18+/-3 0.7475 13.2438 1.0368 17.4080 

PLS-SA 29+/-2 0.7084 12.1746 1.0951 17.9966 

CARSPLS 9+-/4 0.7270 12.1278 1.0234 16.6214 

PLS-VIP 14+/-1 0.7344 13.0173 0.7661 13.4600 

PLS-BETA 16+/-2 0.6884 11.8257 1.0341 17.1061 

 

Table 4.7 Comparison of Different Variable Selection for Preprocessing Method 2 

 Model 
No. of Var-

iables 

Training Validation 

RMSE MAPE RMSE MAPE 

Acidity 

Number 

PLS 34 1.4498 22.8617 2.0488 29.1595 

Stepwise 11+/-2 1.4200 22.5903 1.6558 25.9971 

GA-PLS 11+/-2 1.4292 23.1971 1.5874 26.4053 

UVE-PLS 20+/-1 1.4604 23.4277 1.8858 29.4339 

PLS-SA 28+/-2 1.5008 23.7984 2.0197 29.8083 

CARS-PLS 9+/-3 1.4511 23.7552 1.5500 25.6226 

PLS-VIP 16+/-0 1.4605 23.8432 1.5245 25.3108 

PLS-BETA 17+/-1 1.4406 22.6302 1.7180 26.9167 

Viscosity 

PLS 34 0.7079 12.6513 1.1777 19.3988 

Stepwise 11+/-2 0.6902 12.0718 1.0320 17.5915 

GA-PLS 10+/-2 0.6965 12.2571 1.0391 17.5482 

UVE-PLS 21+/-3 0.7196 13.0370 1.1227 18.7715 

PLS-SA 28+/-2 0.7539 13.7273 1.2775 21.1849 

CARSPLS 9+-/5 0.7413 13.4055 1.0976 18.7016 

PLS-VIP 16+/-1 0.7228 13.2627 0.7476 13.7396 

PLS-BETA 15+/-2 0.6950 12.4778 1.0176 17.6031 
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Table 4.8 Comparison of Different Variable Selection for Preprocessing Method 3 

 Model 
No. of Var-

iables 

Training Validation 

RMSE MAPE RMSE MAPE 

Acidity 

Number 

PLS 34 3.0584 53.1167 3.7931 57.7093 

Stepwise 14+/-2 3.0806 53.1855 4.0081 58.4953 

GA-PLS 11+/-2 2.9637 49.3168 4.0584 56.3860 

UVE-PLS 28+/-1 3.1057 52.4875 4.5632 62.0594 

PLS-SA 32+/-1 3.0722 53.4689 3.7646 57.7600 

CARS-PLS 12+/-7 3.0216 49.0159 3.7139 53.9567 

PLS-VIP 9+/-1 3.0576 50.6028 3.4143 52.9578 

PLS-BETA 14+/-1 2.9966 51.0542 3.8230 56.2184 

Viscosity 

PLS 34 1.7437 32.7257 2.2371 43.3408 

Stepwise 10+/-2 1.6001 31.0598 2.4125 45.0485 

GA-PLS 11+/-2 1.5842 30.7862 2.3106 43.2504 

UVE-PLS 27+/-2 1.6804 31.7349 2.3896 44.1047 

PLS-SA 29+/-5 1.7580 32.9440 2.1602 41.7313 

CARSPLS 9+-/5 1.5539 30.3764 1.9422 37.7724 

PLS-VIP 14+/-1 1.7392 32.5318 1.9951 39.9705 

PLS-BETA 17+/-1 1.6217 31.0373 2.1733 41.9445 

 

Based on the results summarized in the above Tables and Figure 4.54 to Figure 

4.57, among three preprocessing methods, the third method yields the largest prediction 

error. Also, the improvement by variable selection for the third method is least signifi-

cant. The results from the first two methods are comparable. In acidity number model, the 

second preprocessing method yields the best performance, while the first preprocessing 

method performs the best in viscosity model. The sizes of models produced by the second 

preprocessing method are slightly larger the first method. However, more significant im-

provement in prediction performance is observed in the second preprocessing method. 

The computation time is also equivalent. The results are also illustrated in Figure 4.58 to 

Figure 4.65. The performance indicators shown are compared with the full model from 

each preprocessing method, with positive values implying improvement in prediction 

performance and negative values implying deteriorations in prediction performance.  
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Figure 4.54 Comparison of Acidity Number Full Models from Each Preprocessing Meth-

od in Terms of RMSE 

 

Figure 4.55 Comparison of Acidity Number Full Models from Each Preprocessing Meth-

ods in Terms of MAPE 
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Figure 4.56 Comparison of Viscosity Full Models from Each Preprocessing Methods in 

Terms on RMSE 

 

Figure 4.57 Comparison of Viscosity Full Models from Each Preprocessing Methods in 

Terms of MAPE 
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Figure 4.58 Comparison of Different Preprocessing Method of Acidity Number Model in 

Terms of RMSE in Training Set 

 

Figure 4.59 Comparison of Different Preprocessing Method of Acidity Number Model in 

Terms of MAPE in Training Set 
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Figure 4.60 Comparison of Different Preprocessing Method of Acidity Number Model in 

Terms of RMSE in Validation Set 

 

Figure 4.61 Comparison of Different Preprocessing Method of Acidity Number Model in 

Terms of MAPE in Validation Set 
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Figure 4.62 Comparison of Different Preprocessing Method of Viscosity Model in Terms 

of RMSE in Training Set 

 

Figure 4.63 Comparison of Different Preprocessing Method of Viscosity Model in Terms 

of MAPE in Training Set 
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Figure 4.64 Comparison of Different Preprocessing Method of Viscosity Model in Terms 

of RMSE in Validation Set 

 

Figure 4.65 Comparison of Different Preprocessing Method of Viscosity Model in Terms 

of MAPE in Validation Set 
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Figure 4.66 Selection Frequency of SR Acidity Number Model 
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Figure 4.67 Selection Frequency of SR in Viscosity Model 
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Figure 4.68 Selection Frequency of GA in Acidity Number Model 
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Figure 4.69 Selection Frequency of GA in Viscosity Model 



95 

 

 

 

 

Figure 4.70 Selection Frequency of UVE in Acidity Number Model 
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Figure 4.71 Selection Frequency of UVE in Viscosity Model 
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Figure 4.72 Selection Frequency of PLS-SA in Acidity Number Model 
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Figure 4.73 Selection Frequency of PLS-SA in Viscosity Model 
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Figure 4.74 Selection Frequency of CARS-PLS in Acidity Number Model 
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Figure 4.75 Selection Frequency of CARS-PLS in Viscosity Model 
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Figure 4.76 Selection Frequency of PLS-VIP in Acidity Number Model 
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Figure 4.77 Selection Frequency of PLS-VIP in Viscosity Model 
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Figure 4.78 Selection Frequency of PLS-BETA Acidity Number Model 
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Figure 4.79 Selection Frequency of PLS-BETA in Viscosity Model 



105 

 

Consistency of variable selection is also studied for the industrial case. The fre-

quency plots are presented in Figure 4.66 through Figure 4.79. Frequency of selection is 

shown in percentage. As results shown, PLS-VIP is the most consistent one among all 

seven variable selection methods. Variables are either selected with extreme high fre-

quency or not selected at all. Only a few variables are selected in the lower or middle 

range. The consistency of PLS-BETA is better in the acidity number model than that of 

the viscosity model. Compare to PLS-VIP, the model size of PLS-BETA are generally 

larger than PLS-VIP. CARS-PLS produces the smallest models. The consistency of 

CARS-PLS is unacceptable. Only a few variables are selected with high frequency, and 

many variables are selected with frequency in the lower range. This agrees with results 

found in the simulated case study that CARS-PLS is sensitive to data selection. The per-

formance of SR and GA-PLS are the ones in the middle range. UVE-PLS produces mod-

els with second largest size. It frequency of selection is relatively consistent. PLS-SA 

generates the largest models. Also, the prediction performances are actually worsened 

after variable selection by PLS-SA. This is also the only method that yields worse per-

formance than the original model.  

4.3.3 Conclusion and Discussion 

According to the analysis of results obtained from three preprocessing methods, 

the first two preprocessing methods should be adopted. The performances of the first pre-

processing methods are very competitive, while the third method is not quite comparable. 

Especially in prediction performance, the prediction errors are doubled compared to those 

of the first two preprocessing methods. The improvement after variable selection is not as 

significant as the other ones. 
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Based on results obtained from industrial case study, PLS-VIP yields the most su-

perior performance in terms of prediction and selection consistency. In the first two pre-

processing methods, PLS-VIP outperforms the other variable selection methods for both 

acidity number model and viscosity model. Even though CARS-PLS gives best model in 

the third preprocessing method, due to its inconsistency, CARS-PLS should be applied 

with care. 
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Chapter 5. Conclusions and Future Works 

5.1 Conclusions 

The goal of this project is to implement variable selection algorithms in data-

driven soft sensors to improve their predictive power. Seven variable selection methods 

are investigated: stepwise regression (SR), genetic algorithm (GA) with PLS, uninforma-

tive variable elimination (UVE) with PLS, PLS with sensitivity analysis (SA), competi-

tive adaptive reweighted sampling (CARS) with PLS, PLS with variable importance in 

projection (VIP) and regression coefficients (BETA). The characteristics of these meth-

ods are explored by using a simulated case study and an industrial case study. 

Based on the analysis results, PLS-VIP gives the most superior performance in 

both simulated and industrial case. PLS-VIP is very straight-forward, which selects the 

relevant predictors based on its importance in the PLS projection. It is shown that the 

submodels produced by PLS-VIP outperform other methods significantly, especially in 

the industrial case study. Furthermore, the models produced by PLS-VIP are very con-

sistent from one sampling run to the other, which shows its robustness to data selection. 

On the other hand, CARS-PLS is quite sensitive to data selection. The standard devia-

tions of the models produced by CARS-PLS are much larger than the other ones. The 

next in line would be PLS-BETA and SR. PLS-BETA performs very well when the con-

tributions of each relevant predictor are in the same range. However, this is not always 

the case the industrial processes. PLS-BETA tends to only select the variables with dom-

inating contribution, which may over simplify the model and cause overfit. SR also has 
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issues with overfitting. From the results shown in the industrial case study, SR always 

gives the greatest calibration models, but prediction performance on the external valida-

tion set is not quite ideal. GA-PLS yields similar results to SR. However, the computation 

time of GA-PLS is much longer than that of SR. GA-PLS also required more tedious pre-

liminary setting of GA parameters. UVE-PLS and PLS-SA generates models with rela-

tively large size. Nonetheless, UVE-PLS is able to identify a subset of variables that 

would improve the prediction performance, whereas the submodels produced by PLS-SA 

worsen the prediction performance. The strength and limitations of each method are 

summarized in Table 5.1. 

Table 5.1 Limitations and Strengths of Each Variable Selection Method 

Models Pros Cons 

SR 

 Produce high performance train-

ing model 

 Relatively consistent selection 

 Developed model tend to overfit 

the model 

GA-PLS 

 Performance can be improved by 

tuning the parameters 

 Require a lot of user input to op-

timize performance 

 Selects irrelevant predictors 

 Computation load 

UVE-PLS 

 Relatively consistent selection  

 Improvement observed in predic-

tion performance 

 Large model size 

PLS-SA 
 Selection consistency  Low prediction performance 

 Heavy computation load 

CARS-PLS 
 Use as preliminary variable re-

duction in wavelength selection 

 Selection inconsistency 

PLS-VIP 

 Selection consistency 

 High prediction performance 

 Least computation load 

 May select some irrelevant pre-

dictors around the relevant ones 

PLS-BETA 

 Selection consistency 

 High prediction performance 

 Low computation load 

 User input requires for the cutoff 

value of BETA 

 



109 

 

5.2 Future Works 

Variable reduction can be carried out prior to variable selection based on two 

rules: elimination of variables with zero-variance and elimination of highly correlated 

variables. The variable selection methods can also be improved by considering the appli-

cation of modeling power approach. Modeling power approach balances the predictive 

and descriptive abilities of model. 

Application of wavelength selection is also of interest. The next step of research is 

to implement these seven variable selection methods on a benchmark dataset, NIR spec-

tral of diesel fuel. 

The optimal goal of our study is to implement variable selection method in the 

framework of Statistics Pattern Analysis (SPA). Due to the characteristics of SPA, it is 

very likely that the number of regressors would be greater than the number of samples. 

Variable selection method could be implemented to eliminate the uninformative variables 

prior to SPA. In addition, variable selection can also be employed to select useful statis-

tics in statistics pattern generation. 
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