Performance Comparison of an Extended Kalman Filter and an Iterated Extended Kalman Filter for Orbit Determination of Space Debris with Poor Apriori Information and Intermittent Observations

by
Jimmy Dale Hicks Jr.
A thesis submitted to the Graduate Faculty of Auburn University
in partial fulfillment of the requirements for the Degree of Master of Science
Auburn, Alabama
December 8, 2012

Keywords: orbit debris, state estimation, kalman filtering

Copyright 2012 by Jimmy Dale Hicks Jr.

Approved by
David Cicci, Chair, Professor of Aerospace Engineering
John E. Cochran Jr., Professor and Head of Aerospace Engineering
John Hung, Professor of Electrical and Computer Engineering

Abstract

The growing space debris population threatens active and future missions bound for low earth orbit. The purpose of this study is to determine if an iterated extended Kalman filter (IEKF) can be used to yield better performance than the extended Kalman filter (EKF) in the orbit determination of space debris in low earth orbit with poor apriori data and intermittent observations. A simulation using two-body and J_{2} effects was constructed using actual Space Surveillance Network sensor locations to generate experimental observational data, which contains multiple data outages. This data was then used to compare the performance of the EKF and IEKF. The filters are compared using the difference in the filter estimate and the true state and the difference in the estimated observation and true observation. An increase in estimate accuracy will allow for better predictions concerning the interaction of space debris with missions in low earth orbit.

The IEKF was chosen for this study due to the low number of observations provided and the large apriori covariance matrix. The state update step in the IEKF includes a local iteration that processes each observation until convergence of the state update is reached, which becomes the new best estimate of the state. Following the local convergence, the covariance matrix is updated using this new estimate, which prevents the covariance matrix from growing small as quickly as that of the EKF.

Acknowledgments

I would like to thank Dr. David Cicci for the opportunity to work on this research as well as his knowledge, invaluable support, and time in assisting in the development of this thesis. Our conversations have lead to a deeper understanding of orbit determination, and also the broader field of state estimation, which I greatly enjoy and have established as the foundation for my future career.

I would also like to thank the Aerospace Engineering Department for its financial assistance and Dr. John Cochran for providing a position in his lab where my interest in precise target tracking grew.

I would like to thank Dr. John Hung for the knowledge of what graduate school really meant. My conversations with him concerning his class led me to broader understanding of the types of planning and research needed to succeed.

Table of Contents

Abstract ii
Acknowledgments iii
List of Figures vii
List of Tables xii
1 Introduction 1
1.1 History 2
1.2 Previous Research 4
1.3 Problem Description 5
2 Relevant Theory 7
2.1 Reference Frames 7
2.1.1 Earth Centered Inertial Coordinate System (ECI) 7
2.1.2 Earth-Centered, Earth-Fixed Coordinate System (ECEF) 8
2.1.3 Perifocal Coordinate System 9
2.2 Two-body Equations of Motion 10
$2.3 \quad J_{2}$ Perturbation 11
2.4 Orbital Plane Orientation in Space 13
2.5 Coordinate Transformations 14
2.5.1 Obtain ECI position and velocity vectors from the Keplerian orbital elements 15
2.5.2 Calculate the classical Keplerian orbital elements from ECI position and velocity vectors 16
2.5.3 ECI to ECEF 19
3 State Estimation and Kalman Filtering 20
3.1 Linearization 20
3.2 Kalman Filter 22
3.2.1 Extended Kalman Filter 22
3.2.2 Iterated Extended Kalman Filter 24
4 Simulation 27
4.1 Baseline Initial Conditions 27
4.2 Test Cases 28
4.3 Constants 29
4.4 Dynamical Model 30
4.5 Measurement Model 30
4.6 Tracking Station Network 31
4.7 Propagator 33
4.8 Procedure 34
5 Results 35
5.1 Measure of Solution Accuracy 35
5.2 Baseline Case 35
5.3 Inclination Variation Case $\rightarrow i=75.0^{\circ}$ 43
5.4 Argument of Perigee Case $\rightarrow \omega=90^{\circ}$ 51
5.5 Additional Results 58
6 Conclusions and Future Work 59
Bibliography 61
Appendices 63
A Derivation of J_{2} Equations of motion 64
B Additional Results 69
B. 1 Variations on Inclination 69
B.1.1 Inclination $\rightarrow i=28.5^{\circ}$ 69
B. 2 Variations on Altitude 73
B.2.1 Altitudes $\rightarrow \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$ 73
B.2.2 Altitudes $\rightarrow \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$ 77
B. 3 Variations on Longitude of the Ascending Node 81
B.3.1 Longitude of the Ascending Node $\rightarrow \Omega=0^{\circ}$ 81
B.3.2 Longitude of the Ascending Node $\rightarrow \Omega=90^{\circ}$ 85
B. 4 Variations on the Argument of Perigee 89
B.4.1 Argument of Perigee $\rightarrow \omega=45^{\circ}$ 89
B. 5 Variations on the True Anomaly 93
B.5.1 True Anomaly $\rightarrow \nu=90^{\circ}$ 93
B.5.2 True Anomaly $\rightarrow \nu=270^{\circ}$ 97

List of Figures

1.1 Debris Environment Trends 5
2.1 ECI coordinate system 8
2.2 ECEF coordinate system 9
2.3 Perifocal coordinate system 9
2.4 Two-body problem in a relative coordinate system 11
2.5 Orbit in Spherical Coordinates 12
2.6 Orbital Elements 14
5.1 Baseline: Residuals vs. Number of Observations Processed 37
5.2 Baseline: Residuals for Batch \#6 38
5.3 Baseline: Residuals for Batch \#7 38
5.4 Baseline: η vs. Number of Observations Processed 39
5.5 Baseline: NMSE for Batch \#6 and Batch \#7 40
5.6 Baseline: NMSE for Batch \#6 40
5.7 Baseline: NMSE for Batch \#7 41
$5.8 i=75^{\circ}$: Residuals vs. Number of Observations Processed 45
$5.9 \quad i=75^{\circ}$: Residuals for Batch \#7 46
$5.10 i=75^{\circ}$: Residuals for Batch \#8 46
$5.11 i=75^{\circ}: \eta$ vs. Number of Observations Processed 47
$5.12 i=75^{\circ}$: NMSE for Batch \#7 and Batch \#8 48
$5.13 i=75^{\circ}$: NMSE for Batch \#7 48
$5.14 i=75^{\circ}$: NMSE for Batch \#8 49
$5.15 \omega=90^{\circ}$: Residuals vs. Number of Observations Processed 52
$5.16 \omega=90^{\circ}$: Residuals for Batch \#6 53
$5.17 \omega=90^{\circ}$: Residuals for Batch \#7 53
$5.18 \omega=90^{\circ}: \eta$ vs. Number of Observations Processed 54
$5.19 \omega=90^{\circ}$: NMSE for Batch \#6 and Batch \#7 55
$5.20 \omega=90^{\circ}$: NMSE for Batch \#6 55
$5.21 \omega=90^{\circ}$: NMSE for Batch \#67 56
B. $1 \quad i=28.5^{\circ}: \eta$ vs. Number of Observations Processed 69
B. $2 i=28.5^{\circ}$: Residuals vs. Number of Observations Processed 70
B. $3 i=28.5^{\circ}$: Residuals Before Largest Outage vs. Time 70
B. $4 i=28.5^{\circ}$: Residuals After Largest Outage vs. Time 71
B. $5 i=28.5^{\circ}$: NMSE Before Largest Outage vs. Time 71
B. $6 i=28.5^{\circ}$: NMSE After Largest Outage vs. Time 72
B. $7 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}: \eta$ vs. Number of Observations Processed 73
B. $8 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Residuals vs. Number of Observations Processed 74
B. $9 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Residuals Before Largest Outage vs. Time 74
B. $10 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Residuals After Largest Outage vs. Time 75
B. $11 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: NMSE Before Largest Outage vs. Time 75
B. $12 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: NMSE After Largest Outage vs. Time 76
B. $13 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}: \eta$ vs. Number of Observations Processed 77
B. $14 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Residuals vs. Number of Observations Processed 78
B. $15 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Residuals Before Largest Outage vs. Time 78
B. $16 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Residuals After Largest Outage vs. Time 79
B. $17 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: NMSE Before Largest Outage vs. Time 79
B. $18 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: NMSE After Largest Outage vs. Time 80
B. $19 \Omega=0^{\circ}: \eta$ vs. Number of Observations Processed 81
B. $20 \Omega=0^{\circ}$: Residuals vs. Number of Observations Processed 82
B. $21 \Omega=0^{\circ}$: Residuals Before Largest Outage vs. Time 82
B. $22 \Omega=0^{\circ}$: Residuals After Largest Outage vs. Time 83
B. $23 \Omega=0^{\circ}$: NMSE Before Largest Outage vs. Time 83
B. $24 \Omega=0^{\circ}$: NMSE After Largest Outage vs. Time 84
B. $25 \Omega=90^{\circ}: \eta$ vs. Number of Observations Processed 85
B. $26 \Omega=90^{\circ}$: Residuals vs. Number of Observations Processed 86
B. $27 \Omega=90^{\circ}$: Residuals Before Largest Outage vs. Time 86
B. $28 \Omega=90^{\circ}$: Residuals After Largest Outage vs. Time 87
B. $29 \Omega=90^{\circ}$: NMSE Before Largest Outage vs. Time 87
B. $30 \Omega=90^{\circ}$: NMSE After Largest Outage vs. Time 88
B. $31 \omega=45^{\circ}: \eta$ vs. Number of Observations Processed 89
B. $32 \omega=45^{\circ}$: Residuals vs. Number of Observations Processed 90
B. $33 \omega=45^{\circ}$: Residuals Before Largest Outage vs. Time 90
B. $34 \omega=45^{\circ}$: Residuals After Largest Outage vs. Time 91
B. $35 \omega=45^{\circ}$: NMSE Before Largest Outage vs. Time 91
B. $36 \omega=45^{\circ}$: NMSE After Largest Outage vs. Time 92
B. $37 \nu=90^{\circ}: \eta$ vs. Number of Observations Processed 93
B. $38 \nu=90^{\circ}$: Residuals vs. Number of Observations Processed 94
B. $39 \nu=90^{\circ}$: Residuals Before Largest Outage vs. Time 94
B. $40 \nu=90^{\circ}$: Residuals After Largest Outage vs. Time 95
B. $41 \nu=90^{\circ}$: NMSE Before Largest Outage vs. Time 95
B. $42 \nu=90^{\circ}$: NMSE After Largest Outage vs. Time 96
B. $43 \nu=270^{\circ}: \eta$ vs. Number of Observations Processed 97
B. $44 \nu=270^{\circ}$: Residuals vs. Number of Observations Processed 98
B. $45 \nu=270^{\circ}$: Residuals Before Largest Outage vs. Time 98
B. $46 \nu=270^{\circ}$: Residuals After Largest Outage vs. Time 99
B. $47 \nu=270^{\circ}$: NMSE Before Largest Outage vs. Time 99
B. $48 \nu=270^{\circ}$: NMSE After Largest Outage vs. Time 100

List of Tables

$2.1 J_{2}$ changes in the orbital elements 12
4.1 Baseline Initial Conditions 27
4.2 Variations from Baseline Case 29
4.3 Constants 29
4.4 Tracking Station Coordinates (Geodetic C.S.) 32
4.5 Tracking Station Configuration Information 33
5.1 Baseline: Outage Details 36
5.2 Baseline: Orbit Parameters 36
5.3 Baseline: Output Before/After Largest Outage 42
5.4 Baseline: All Observations (325 observations - $12915 s$) 43
$5.5 i=75.0^{\circ}$: Outage Details 43
$5.6 i=75.0^{\circ}$: Orbit Parameters 44
$5.7 \quad i=75.0^{\circ}$: Intermediate Output 50
$5.8 \quad i=75.0^{\circ}$: Output for All Observations (326-13645s) Processed 50
$5.9 \omega=90^{\circ}$: Outage Details 51
$5.10 \omega=90^{\circ}$: Orbit Parameters 51
$5.11 \omega=90^{\circ}$: Intermediate Output 57
$5.12 \omega=90^{\circ}$: Output for All Observations (318-16460s) Processed 57
5.13 Additional Results Details 58
B. $1 i=28.5^{\circ}$: Intermediate Output 72
B. $2 i=28.5^{\circ}$: Output for All Observations (307-7830 s) Processed 73
B. $3 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Intermediate Output 76
B. $4 \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Output for All Observations (387-20195 s) Processed 77
B. $5 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Intermediate Output 80
B. $6 \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Output for All Observations (352-6125 s) Processed 81
B. $7 \Omega=0^{\circ}$: Intermediate Output 84
B. $8 \Omega=0^{\circ}$: Output for All Observations (311-29325s) Processed 85
B. $9 \Omega=90^{\circ}$: Intermediate Output 88
B. $10 \Omega=90^{\circ}$: Output for All Observations (323-12915 s) Processed 89
B. $11 \omega=45^{\circ}$: Intermediate Output 92
B. $12 \omega=45^{\circ}$: Output for All Observations (301-13425s) Processed 93
B. $13 \nu=90^{\circ}$: Intermediate Output 96
B. $14 \nu=90^{\circ}$: Output for All Observations (301-16150 s) Processed 97
B. $15 \nu=270^{\circ}$: Intermediate Output 100
B. $16 \nu=270^{\circ}$: Output for All Observations (326-41630s) Processed 101

Chapter 1

Introduction

The term space debris refers to any human created object in space that is not part of an active mission. This broad scope includes propulsive stages, expired satellites, bolts, pieces of experimental hardware, fuel tanks that could contain unspent fuel, fragments from previous space debris collisions, and even a spare astronaut glove, which are a few examples of space debris cluttering low earth orbit (LEO) and geosynchronous orbit (GEO) paths [1]. Since the launch of Sputnik 1 in 1957 by the Soviet Union, many nations have engaged in multiple space launches, some of which have created space debris.

While most modern satellites contain a GPS receiver to provide constant and accurate measurements, radar sites and optical telescopes provide the only tracking information available for space debris. This tracking data is used to determine the orbit of each debris object as accurately as possible. Radar sites and optical telescopes provide limited coverage due to environmental and mechanical constraints that can restrict the amount of observations available for a piece of space debris depending on the position, velocity, orientation, and size of each piece of debris. With the use of this intermittent data, traditional orbit determination methods that use the Extended Kalman Filter(EKF) can produce high residuals, which can lead to divergence and failure of the filter. High residuals for a piece of debris can increase the amount of fuel needed for nearby spacecraft to perform collision avoidance maneuvers. This can also lead to poor predictions for close pass scenarios, which may result in a collision.

This research evaluates the conceptual application of an Iterated Extended Kalman Filter (IEKF) to the orbit determination of space debris in order to improve the accuracy of the orbit determination process. The results of the IEKF are compared to those of a
standard EKF. This chapter will discuss the history of space debris, previous work done concerning the space debris environment, and a more detailed problem description for this specific study.

1.1 History

The primary concern of a growing space debris population is the increased probability of collision with active missions; however, a secondary concern also exists, which involves debris colliding with other debris, thereby generating even more debris. In 1978 Kessler and Cour-Palais discussed the concern of an exponential growth of space debris due to fragments from previous collisions causing future collisions. This exponential growth phenomenon due to objects being added to the LEO environment faster than they can decay from orbit was later defined as "The Kessler Syndrome." Kessler and Cour-Palais also discuss hypervelocity impacts, which cover the average impact velocity of $10 \mathrm{~km} / \mathrm{s}$ of objects in LEO. Kessler points out that a collision at this velocity can produce "very high instantaneous pressures" on the order of 1000 GPa or $1.45 \times 10^{8} \mathrm{psi}$, which will usually result in the catastrophic destruction of both objects [2]. NASA also notes that in LEO a 1 cm diameter object with a few grams of mass contains the kinetic energy of a 250 kg mass moving $100 \mathrm{~km} / \mathrm{h}$ [3].

Seeing a need to characterize the hazards of orbital debris to spacecraft and recommend mitigation techniques to help minimize the growth of the orbit debris environment, NASA established its orbital debris program in 1979. The orbital debris program grew quickly, and even included the construction of hypervelocity gun facilities in order to develop new shielding standards and technologies for the space shuttle and space station. In addition to providing research for shielding technologies, the orbital debris program also began to establish mitigation standards. One of these important standards is the "25-year low-Earth orbit lifetime limitation." Under this standard, NASA stated that "maneuverable spacecraft that are terminating their operational phases at altitudes of less than 2,000 km above Earth shall be maneuvered to reduce their orbital lifetime, commensurate with 25-year low-Earth orbit
lifetime limitations [3]." This is very important in controlling the space debris environment as atmospheric drag will eventually decay the orbits of these expired satellites, removing them from the population [4].

The United States Strategic Command (USSTRATCOM) employs the Space Surveillance Network (SSN) to track and catalog objects approximately 10 cm in diameter and larger to aid in the orbit determination of those objects. Debris size, sensor coverage, orbit parameters, and spacecraft/debris attitude (cross-sectional area visible by sensor) each affect the amount of tracking data available for every object. Kessler mentions the complexity of determining the space debris environment due to the difficulty to track objects smaller than 10 cm in diameter [2]. Moreover, large gaps in data, can cause certain filtering methods to become unreliable and often biased, which can cause convergence to a trajectory other than the true trajectory or to divergence. NASA also suggested in 1999 that for every cataloged object of at least 10 cm diameter there are ten 1 cm and $10,0001 \mathrm{~mm}$ diameter untrackable objects. In 2011, there were approximately 22,000 cataloged objects, of which data is available publicly for about 16,000 of those objects [3].

In 2009, the collision between Iridium-33, an active communications satellite, and Cosmos-2251, a Russian satellite that ceased functioning in 1993, produced 1,275 pieces of debris that have been cataloged. Prediction software estimated a close approach between the two satellites; however, that prediction was only one of many conjunctions that were generated to warn of a pass within 5 km . Improvements in modeling, tracking, or filtering the data from measurements could reduce the uncertainty involved in forecasting close similar approaches [4].

In contrast to the accidental collision, the intentional destruction of the Chinese government's Fengyun-1C spacecraft, to test its anti-satellite weapon, produced 3,135 pieces of trackable debris. According to a NASA debris news update [5], the number of orbital debris 1 cm in diameter and larger associated with this satellite destruction is at least 150,000. The amount of debris generated by these two collisions has been said to have effectively negated
the work completed to mitigate the growth of the space debris environment for the past twenty years [3].

1.2 Previous Research

Interactions with the space debris environment have been described as being active or passive. Active methods involve techniques that directly interact with the debris, which include the use of tethered satellites, projected lasers, robotics, and other similar techniques. While these methods are expensive, complicated, and largely untested, they could be used to alter the orbit of space debris to prevent collisions of debris with other debris as well as active missions. Passive methods involve techniques that do not physically interact with the debris. These methods include improvements to filtering methods, radar technology, and mitigation techniques similar to NASA's 25-year low-Earth orbit lifetime requirement. Through these methods, the position and velocity of the debris can be estimated with less error, which can lead to fewer collisions with active missions.

In 2008, Liou and Johnson[6] stated that the space debris environment is unstable, and mitigation techniques involving limiting the lifetime of expired satellites to 25 years will not be able to stabilize the population growth. In order to control the growth of the debris environment, they suggest the removal of large debris that has high collision probability. In their sensitivity study, the authors did not explore the technical or economic details of removing high-risk large space debris. If twenty debris objects are removed per year beginning in 2020, they predict the debris environment will stabilize by approximately 2080 [6]. Kessler revisited this phenomenon in 2010, and added that guidelines created in the last ten years must be adhered to while also deploying an active method to retrieve the most likely future debris sources in an attempt to prevent future spacecraft operators from facing limited spacecraft lifetimes due to collisions [7].

In 2012, Sibert and Borgeson[8] wrote a paper focused on the number of detailed conjunction assessments that must be performed and number of collision avoidance maneuvers
required to maintain a safe separation between objects. They began by showing that the orbital debris environment has already reached a stage where The Kessler Syndrome has taken over by presenting data that shows the debris environment growing even with zero future launches. In their paper, they also show that the number of conjunctions and collision avoidance maneuvers can be significantly reduced by reducing any or all of the following: state vector position error at time of update, state vector position error growth rate, and the delay between state vector updates. The most interesting part of their paper shows that improving the previously mentioned tracking performance significantly outweighs actual debris removal due to "very few debris objects turn[ing] out to be reliable repeat offenders[8]."

1.3 Problem Description

The growing debris population, shown in Figure 1.1, provided by the NASA Debris Program Office, coupled with the unpredictable nature of debris has created a need for orbit determination methods capable of obtaining more accurate estimates from fewer observations.

Figure 1.1: Debris Environment Trends

The purpose of this study is to determine if an Iterated Extended Kalman Filter can be used to yield better performance than the Extended Kalman filter in the orbit determination of space debris with poor apriori data and intermittent observations. A simulation was constructed using actual USN sensor locations to generate experimental observational data. This data was then used to compare the performance of the EKF and IEKF.

Changes to the orbital parameters of the debris were analyzed to determine the effects on filter performance. These initial conditions included variations to the following: altitude, inclination, longitude of the ascending node, argument of perigee, and true anomaly.

It was necessary to determine the performance characteristics in order to define the comparison of the two filters. The difference between the estimated state and actual state was chosen as the first characteristic. Since the actual state is not available in a realistic application, the second characteristic to be compared was the residuals of the estimates.

Chapter 2

Relevant Theory

The first step in developing a simulation is to select the specific coordinate systems and dynamical model. Orbit determination can use multiple reference frames, and many different dynamical models. First, the coordinate systems will be introduced. Following the coodinate systems, the equations of motion, orbital elements, and coordinate transformations will be defined. A number of assumptions and limitations were taken into account and addressed during this research. Gravity was modeled as the gradient of the geopotential function using two-body and J_{2} effects only. Atmospheric drag was not modeled, which had no effect on the research as the measurements were generated using the same assumption. No other perturbation effects were involved.

2.1 Reference Frames

2.1.1 Earth Centered Inertial Coordinate System (ECI)

The origin of the ECI coordinate system, also referred to as the Geocentric equatorial coordinate system, is the center of the earth. The coordinate system is right-handed and has the following properties: the \mathbf{X} axis points towards the vernal equinox with unit vector \mathbf{I}, the \mathbf{Z} axis points in the direction of the north pole with unit vector \mathbf{K}, and the fundamental XY-plane coincides with the equatorial plane, defining the \mathbf{Y} axis with unit vector \mathbf{J}. The coordinate system is not fixed to the earth, and therefore doesn't rotate with it, but rather the earth rotates relative to it. The ECI coordinate system is represented in Figure 2.1.

Figure 2.1: ECI coordinate system

2.1.2 Earth-Centered, Earth-Fixed Coordinate System (ECEF)

The origin of the ECEF coordinate system, is the center of the spherical earth. The coordinate system is right-handed and has the following properties: the \mathbf{X}_{E} axis points towards the Greenwich meridian with unit vector \mathbf{i}, the \mathbf{Z}_{E} axis points in the direction of the north pole with unit vector \mathbf{k}, and the fundamental plane coincides with the equatorial plane, defining the \mathbf{Y}_{E} axis with unit vector \mathbf{j}. The ECEF coordinate system rotates with the earth, and therefore is not an inertial coordinate system. Tracking station coordinates are typically provided in this system. See Figure 2.2 for a ECEF coordinate system compared with the ECI system. Angle θ is known as the sidereal angle.

Figure 2.2: ECEF coordinate system

2.1.3 Perifocal Coordinate System

The fundamental plane of the perifocal coordinate system is the orbital plane. The coordinate system is right-handed and has the following properties: the \mathbf{P} axis points towards perigee, the \mathbf{Q} axis lies in the orbital plane rotated 90 degrees from \mathbf{P}, and the \mathbf{W} axis is perpendicular to the orbital plane and aligned with the angular momentum vector. The perifocal coordinate system is shown in Figure 2.3.

Figure 2.3: Perifocal coordinate system

2.2 Two-body Equations of Motion

Newton's second law of motion states that the sum of the external forces acting on a particle with mass, m, position, \mathbf{r}, and velocity, \mathbf{v}, is equal to the time rate of change of the product of the mass and velocity of the particle, which is represented in Equation 2.1.

$$
\begin{equation*}
\sum \mathbf{F}=\frac{d}{d t}(m \mathbf{v}) \tag{2.1}
\end{equation*}
$$

If the mass of the particle is constant with respect to time, Equation 2.1 becomes Equation 2.2 where $\ddot{\mathbf{r}}$ represents the acceleration.

$$
\begin{equation*}
\sum \mathbf{F}=m \ddot{\mathbf{r}} \tag{2.2}
\end{equation*}
$$

Netwon's law of universal gravitation states that any two particles exert a gravitational force on one another with magnitude,

$$
\begin{equation*}
F=G \frac{m_{1} m_{2}}{r^{2}} \tag{2.3}
\end{equation*}
$$

where m_{1} and m_{2} are the masses of the particles, G is the universal gravitational constant, and r is the magnitude of the position vector between them [9]. In the formulation of the two-body problem, the masses of those two bodies are assumed to be point masses, which satisfies the assumption of particles used in the formulation of Newton's laws.

While Newton's second law is valid in an inertial coordinate system, it can be modified to be valid in the geocentric equatorial (ECI) coordinate system shown in Figure 2.1. In this coordinate system, the acceleration of mass m_{2} relative to the Earth due to two-body effects can be shown in Equation 2.4.

$$
\begin{equation*}
\ddot{\boldsymbol{r}}=-\frac{\mu}{r^{3}} \boldsymbol{r} \tag{2.4}
\end{equation*}
$$

The gravitational parameter, μ, is defined such that

$$
\begin{equation*}
\mu=G\left(m_{1}+m_{2}\right) \tag{2.5}
\end{equation*}
$$

The motion of m_{2} relative to m_{1} in the ECI coordinate system is shown in Figure 2.4.

Figure 2.4: Two-body problem in a relative coordinate system

$2.3 \quad J_{2}$ Perturbation

It is well known that the Earth is a non-spherical, inhomogeneous body and not a point mass. To model this non-uniform mass distribution, the equations of motion canl be presented as the gradient of the gravity potential function U in Equation 2.6.

$$
\begin{equation*}
\ddot{\boldsymbol{r}}=\vec{\nabla} U \tag{2.6}
\end{equation*}
$$

The dominating member of this gravity potential function is referred to as the oblateness of the Earth, J_{2}. The oblateness of the Earth, which is a bulge of mass symmetric about the equator, is often modeled in orbit determination due to it being approximately 1000 times larger than any of the other perturbation forces in LEO. The J_{2} perturbation causes short period, long period, and secular changes in the orbital elements as presented in Table 2.1.

Table 2.1: J_{2} changes in the orbital elements

Periodic	Secular
a (semi-major axis)	Ω (Longitude of the Ascending Node)
e (eccentricity)	ω (Argument of periapsis)
i (inclination)	ν (True anomaly)

Figure 2.5: Orbit in Spherical Coordinates

In spherical coordinates, shown in Figure 2.5, the potential function of the J_{2} perturbation is given in Equation 2.7 [10], where J_{2} is the oblateness constant, r_{e} is the mean radius of the Earth, ϕ is the latitude, and λ is the longitude.

$$
\begin{equation*}
U_{J_{2}}=\frac{-\mu}{r} J_{2}\left(\frac{r_{e}}{r}\right)^{2}\left(\left(\frac{3}{2}\right) \sin (\phi)-\left(\frac{1}{2}\right)\right) \tag{2.7}
\end{equation*}
$$

The acceleration on m_{2} due to J_{2} is obtained by taking the gradient of $U_{J_{2}}$. The equations of motion of m_{2} can then be expressed by Equation 2.8 as

$$
\begin{equation*}
\ddot{\boldsymbol{r}}=-\frac{\mu}{r^{3}} \boldsymbol{r}+\vec{\nabla} U_{J_{2}} \tag{2.8}
\end{equation*}
$$

Appendix A provides the transformation of $\vec{\nabla} U_{J_{2}}$ into the ECI coordinate frame, for which the result is presented in Equation 2.9, where X_{1}, X_{2}, and X_{3} are the \mathbf{I}, \mathbf{J}, and \mathbf{K} components of the ECI position vector .

$$
\vec{\nabla} U_{J_{2}}=\ddot{\boldsymbol{r}}_{J_{2}}=\frac{\frac{3}{2} \mu J_{2} r_{e}^{2}}{r^{7}}\left[\begin{array}{l}
X_{1}\left(5 X_{3}^{2}-r^{2}\right) \tag{2.9}\\
X_{2}\left(5 X_{3}^{2}-r^{2}\right) \\
X_{3}\left(5 X_{3}^{2}-3 r^{2}\right)
\end{array}\right]
$$

The updated equations of motion will consist of the two-body effects combined with the J_{2} effects. This is presented in Equation 2.10.

$$
\mathbf{a}=-\frac{\mu}{r^{3}}\left[\begin{array}{l}
X_{1} \tag{2.10}\\
X_{2} \\
X_{3}
\end{array}\right]+\frac{\frac{3}{2} \mu J_{2} r_{e}^{2}}{r^{7}}\left[\begin{array}{c}
X_{1}\left(5 X_{3}^{2}-r^{2}\right) \\
X_{2}\left(5 X_{3}^{2}-r^{2}\right) \\
X_{3}\left(5 X_{3}^{2}-3 r^{2}\right)
\end{array}\right]
$$

2.4 Orbital Plane Orientation in Space

The use of orbital elements is a common way to describe an orbit in three-dimensional space. Instead of solely dealing with position and velocity vectors, one can use a set of the orbital elements that completely describe the orbit. For this problem, the classical Keplerian orbital elements set will be used. The classical orbital elements are as follows (also see Figure 2.6) [11]:

1. Semi-major axis (a) - specifies the size of the orbit
2. Eccentricity (e) - specifies the shape of the orbit
3. Inclination (i) - specifies the angle between the equatorial plane and orbital plane (one of two elements that specify the orientation of the orbit plane)
4. Longitude of the ascending node (Ω) - specifies the angle measured counterclockwise in the $X Y$ plane of the ECI system from the X axis to the point where the spacecraft crosses the equatorial plane from south-to-north (one of two elements that specify the orientation of the orbit plane)
5. Argument of perigee (ω) - specifies the angle measured in the orbit plane in the direction of motion, from the ascending node to perigee (specifies the orientation of the orbit in the orbit plane)
6. True anomaly (ν) - measured from periapsis to \mathbf{r} in the direction of travel (specifies where on the orbit the spacecraft is located at any instant in time)

Figure 2.6: Orbital Elements

2.5 Coordinate Transformations

Orbital data can be represented by different values in different coordinate systems. Orbit determination deals with multiple types of data from various coordinate frames, and it is important to be able to clearly transform data from one system to another. This section discusses the necessary coordinate transformations used in this research.

2.5.1 Obtain ECI position and velocity vectors from the Keplerian orbital elements

Given the set of Keplerian orbital elements $(a, e, i, \Omega, \omega, \nu)$, calculate \mathbf{r} and \mathbf{v} as follows [10]:

Step 1 - Calculate the parameter, or semi-latus rectum, p

$$
\begin{equation*}
p=a\left(1-e^{2}\right) \tag{2.11}
\end{equation*}
$$

Step 2 - Calculate r using the trajectory equation

$$
\begin{equation*}
r=\frac{p}{1+e \cdot \cos (\nu)} \tag{2.12}
\end{equation*}
$$

Step 3-Calculate the perifocal position vector

$$
\mathbf{r}_{\mathbf{p}}=\left[\begin{array}{c}
r \cdot \cos (\nu) \tag{2.13}\\
r \cdot \sin (\nu) \\
0
\end{array}\right]
$$

Step 4 - Calculate the perifocal velocity vector

$$
\mathbf{v}_{\mathbf{p}}=\left[\begin{array}{c}
-\sqrt{\frac{\mu}{p}} \cdot \sin (\nu) \tag{2.14}\\
\sqrt{\frac{\mu}{p}} \cdot(e+\cos (\nu)) \\
0
\end{array}\right]
$$

Step 5 - Calculate the transformation matrix from the perifocal to ECI

$$
[T]=\left[\begin{array}{ccc}
\cos (\Omega) \cos (\omega)-\sin (\Omega) \cos (i) \sin (\omega) & -\cos (\Omega) \sin (\omega)-\sin (\Omega) \cos (i) \cos (\omega) & \sin (\Omega) \sin (i) \\
\sin (\Omega) \cos (\omega)+\cos (\Omega) \cos (i) \sin (\omega) & -\sin (\Omega) \sin (\omega)+\cos (\Omega) \cos (i) \cos (\omega) & -\cos (\Omega) \sin (i) \\
\sin (i) \sin (\omega) & \sin (i) \cos (\omega) & \cos (i)
\end{array}\right]
$$

Step 6 - Calculate the ECI position and velocity vectors

$$
\begin{align*}
& \mathbf{r}=[T] \mathbf{r}_{\mathbf{p}} \tag{2.15}\\
& \mathbf{v}=[T] \mathbf{v}_{\mathbf{p}} \tag{2.16}
\end{align*}
$$

2.5.2 Calculate the classical Keplerian orbital elements from ECI position and velocity vectors

Step 1 - Calculate the orbital eccentricity, e

$$
\begin{gather*}
r=|\overrightarrow{\mathbf{r}}| \\
v=|\overrightarrow{\mathbf{v}}| \\
\mathbf{e}=\left(\frac{v^{2}}{\mu}-\frac{1}{r}\right) \mathbf{r}-\frac{1}{\mu}(\mathbf{r} \cdot \mathbf{v}) \mathbf{v} \\
e=|\mathbf{e}| \tag{2.17}
\end{gather*}
$$

Step 2 - Calculate the semi-major axis, a

$$
\begin{gather*}
\mathbf{h}=\mathbf{r} \times \mathbf{v} \\
h=|\mathbf{h}| \\
p=\frac{h^{2}}{\mu} \\
a=\frac{p}{1-e^{2}} \tag{2.18}
\end{gather*}
$$

Step 3 - Calculate the inclination, i

$$
\begin{gather*}
h_{K}=\mathbf{h} \cdot \mathbf{K} \\
i=\cos ^{-1}\left(\frac{h_{K}}{h}\right) \tag{2.19}
\end{gather*}
$$

Step 4 - Calculate the longitude of the ascending node, Ω, and determine the correct quadrant

$$
\begin{gathered}
\mathbf{n}=\mathbf{K} \times \mathbf{h} \\
\mathbf{n}=\left[\begin{array}{c}
n_{I} \\
n_{j} \\
0
\end{array}\right]\left[\begin{array}{lll}
\mathbf{I} & \mathbf{J} & \mathbf{K}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gather*}
n=|\mathbf{n}| \\
\Omega=\cos ^{-1}\left(\frac{n_{I}}{n}\right) \tag{2.20}
\end{gather*}
$$

$$
\begin{equation*}
\text { If } n_{J}<0 \text {, then } \Omega>180^{\circ} \rightarrow \Omega=360^{\circ}-\Omega \tag{2.21}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } n_{J}>0 \text {, then } \Omega<180^{\circ} \tag{2.22}
\end{equation*}
$$

Step 5 - Calculate the argument of periapsis, ω, and determine the correct quadrant

$$
\begin{equation*}
\omega=\cos ^{-1}\left(\frac{\mathbf{n} \cdot \mathbf{e}}{n e}\right) \tag{2.23}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } e_{K}>0 \text {, then } \omega>180^{\circ} \rightarrow \omega=360^{\circ}-\omega \tag{2.24}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } e_{K}<0 \text {, then } \omega<180^{\circ} \tag{2.25}
\end{equation*}
$$

Step 6 - Calculate the true anomaly, ν, and determine the correct quadrant

$$
\begin{equation*}
\nu=\cos ^{-1}\left(\frac{\mathbf{e} \cdot \mathbf{r}}{e r}\right) \tag{2.26}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } \mathbf{r} \cdot \mathbf{v}<0 \text {, then } \nu>180^{\circ} \rightarrow \nu=360^{\circ}-\nu \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } \mathbf{r} \cdot \mathbf{v}>0 \text {, then } \nu<180^{\circ} \tag{2.28}
\end{equation*}
$$

2.5.3 ECI to ECEF

To convert from the ECI coordinate frame to the ECEF coordinate frame, rotate through the sidereal angle, θ, about the Z axis, as shown in Figure 2.2. This transformation is produced in Equation 2.29.

$$
\boldsymbol{r}_{E C E F}=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \tag{2.29}\\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] \boldsymbol{r}_{E C I}
$$

Chapter 3

State Estimation and Kalman Filtering

The general formulation of the orbit determination problem includes the following well known relationships [12]:

$$
\begin{array}{ll}
\dot{\mathbf{X}}=F(\mathbf{X}, t), & \mathbf{X}\left(t_{k}\right) \equiv \mathbf{X}_{\mathbf{k}} \\
\mathbf{Y}_{\mathbf{k}}=G\left(\mathbf{X}_{k}, t_{k}\right)+\epsilon_{k} ; & k=1, \ldots, m \tag{3.2}
\end{array}
$$

where Equation 3.1 represents an n-dimensional system of differential equations, $\dot{\mathbf{X}}$, as a nonlinear function, F, of the states, \mathbf{X}, and time, t, and Equation 3.2 a measurement model, \mathbf{Y}_{k}, with each entry as a nonlinear function, G, of the epoch states, $\mathbf{X}\left(t_{k}\right) \equiv \mathbf{X}_{k}$, the epoch time, t_{k}, and an additive residual at the epoch time, ϵ_{i}, for a number of measurements, m.

The orbit determination is clearly a nonlinear estimation problem; however, Tapley [12] shows that if a reference trajectory which remains sufficiently close to the true trajectory can be determined, the trajectory can be linearized by using a Taylor series expansion about the reference trajectory [12], \mathbf{X}^{*}. This is an important step that will allow the application of linear theory.

3.1 Linearization

The following linearization is provided by Tapley [12]. The state deviation, $\mathbf{x}(t)$, the difference between the true trajectory, \mathbf{X} and reference trajectory, \mathbf{X}^{*}, is given in Equation 3.3. The observation residual, $\mathbf{y}(t)$, the difference between the observation and expected observation, is given in Equation 3.4.

$$
\begin{align*}
& \mathbf{x}(t)=\mathbf{X}(t)-\mathbf{X}^{*}(t) \tag{3.3}\\
& \mathbf{y}(t)=\mathbf{Y}(t)-\mathbf{Y}^{*}(t) \tag{3.4}
\end{align*}
$$

The derivative of the state deviation, $\dot{\mathbf{x}}(t)$, will be useful in the linearization process, and is given in Equation 3.5.

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\dot{\mathbf{X}}(t)-\dot{\mathbf{X}}^{*}(t) \tag{3.5}
\end{equation*}
$$

The Taylor series expansion of Equation 3.1 and Equation 3.2 are given in Equation 3.6 and Equation 3.7 respectively where []* indicates that the partial derivative is evaluated at the reference solution, and O_{F} and O_{G} are orders of magnitude of the higher order terms in the expansion that will be ignored due to their small magnitudes.

$$
\begin{equation*}
\dot{\mathbf{X}}(t)=F(\mathbf{X}, t)=F\left(\mathbf{X}^{*}, t\right)+\left[\frac{\partial F(t)}{\partial \mathbf{X}(t)}\right]^{*}\left[\mathbf{X}(t)-\mathbf{X}^{*}(t)\right]+O_{F}\left[\mathbf{X}(t)-\mathbf{X}^{*}(t)\right]^{2} \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{Y}_{\mathbf{k}}=G\left(\mathbf{X}_{k}, t_{k}\right)+\epsilon_{k}=G\left(\mathbf{X}_{k}^{*}, t_{k}\right)+\left[\frac{\partial G}{\partial \mathbf{X}}\right]_{k}^{*}\left[\mathbf{X}\left(t_{k}\right)-\mathbf{X}_{k}^{*}(t)\right]_{k}+O_{G}\left[\mathbf{X}_{k}(t)-\mathbf{X}_{k}^{*}(t)\right]^{2}+\epsilon_{k} \tag{3.7}
\end{equation*}
$$

Using the conditions $\dot{\mathbf{X}}^{*}=F\left(\mathbf{X}^{*}, t\right)$ and $\mathbf{Y}_{k}^{*}=G\left(\mathbf{X}_{k}^{*}, t_{k}\right)$, Equation 3.6 and Equation 3.7 can be written as Equation 3.10 and Equation 3.11 where the definitions of $\mathbf{A}(t)$ and \mathbf{H}_{k} are given below in Equation 3.8 and Equation 3.9 respectively.

$$
\begin{equation*}
\mathbf{A}(t)=\left[\frac{\partial F(t)}{\partial \mathbf{X}(t)}\right]^{*} \tag{3.8}
\end{equation*}
$$

$$
\begin{gather*}
\mathbf{H}_{k}=\left[\frac{\partial G}{\partial \mathbf{X}}\right]_{k}^{*} \tag{3.9}\\
\dot{\mathbf{x}}(t)=\mathbf{A}(\mathbf{t}) \mathbf{x}(t) \tag{3.10}\\
y_{k}=\mathbf{H}_{k} \mathbf{x}_{k}+\epsilon_{k} ; \quad k=1, \ldots, m \tag{3.11}
\end{gather*}
$$

3.2 Kalman Filter

The sequential estimation algorithm, often called the Kalman Filter, processes measurements individually as they are received. From Tapley [12], the Kalman filter equations are given in Equation 3.12, Equation 3.13, and Equation 3.14. These equations assume that the propagated state vector, $\hat{\mathbf{x}}_{k}^{-}$, propagated covariance matrix, \mathbf{P}_{k}^{-}, current observation, Y_{k}, and current observation covariance, $\mathbf{R}_{\mathbf{k}}$ are known.

$$
\begin{gather*}
\mathbf{K}_{k}=\mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T}\left[\mathbf{H}_{k} \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T}+\mathbf{R}_{\mathbf{k}}\right]^{-1} \tag{3.12}\\
\hat{\mathbf{x}}_{k}^{+}=\hat{\mathbf{x}}_{k}^{-}+\mathbf{K}_{k}\left[Y_{k}-\mathbf{H}_{k} \hat{\mathbf{x}}_{k}^{-}\right] \tag{3.13}\\
\mathbf{P}_{k}^{+}=\left[\mathbf{I}-\mathbf{K}_{k} \mathbf{H}_{k}\right] \mathbf{P}_{k}^{-} \tag{3.14}
\end{gather*}
$$

3.2.1 Extended Kalman Filter

Large deviations from the reference trajectory can cause filter divergence. The Kalman Filter performs an update to the reference trajectory only after all observations have been
processed, regardless of processing each measurement individually. In constrast, the Extended Kalman Filter performs an update to the reference trajectory after each measurement has been processed.

The following algorithm is provided by Tapley [12].

1. Integrate from t_{k-1} to t_{k} using the dynamical model

$$
\begin{equation*}
\hat{\mathbf{x}}_{\mathbf{k}-\mathbf{1}}^{+} \rightarrow \hat{\mathbf{x}}_{\mathbf{k}}^{-} \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{P}_{\mathbf{k}-1}^{+} \rightarrow \mathbf{P}_{\mathbf{k}}^{-} \tag{3.16}
\end{equation*}
$$

2. Compute the residual and H_{k} matrix

$$
\begin{gather*}
\mathbf{y}_{k}=\mathbf{Y}_{\mathbf{k}}-G\left(\mathbf{X}_{\mathbf{k}}^{*}, t_{k}\right) \tag{3.17}\\
\mathbf{H}_{k}=\left.\frac{\partial \mathbf{G}}{\partial \mathbf{x}}\right|_{\hat{\mathbf{x}}_{k-1}^{+}} \tag{3.18}
\end{gather*}
$$

3. Compute the Kalman gain

$$
\begin{equation*}
\mathbf{K}_{\mathbf{k}}=\mathbf{P}_{\mathbf{k}} \mathbf{H}_{\mathbf{k}}^{\mathbf{T}}\left[\mathbf{H}_{\mathbf{k}} \mathbf{P}_{\mathbf{k}} \mathbf{H}_{\mathbf{k}}^{\mathbf{T}}+\mathbf{R}_{\mathrm{k}}\right]^{-1} \tag{3.19}
\end{equation*}
$$

4. Compute the updated state and covariance

$$
\begin{equation*}
\hat{\mathbf{x}}_{k}^{+}=\hat{\mathbf{x}}_{k}^{-}+\mathbf{K}_{k}\left[Y_{k}-\mathbf{H}_{k} \hat{\mathbf{x}}_{k}^{-}\right] \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{P}_{\mathbf{k}}^{+}=\left[\mathbf{I}-\mathbf{K}_{\mathbf{k}} \mathbf{H}_{\mathbf{k}}\right] \mathbf{P}_{\mathbf{k}}^{-} \tag{3.21}
\end{equation*}
$$

5. Update the reference trajectory to the current state estimate. If additional measurements exist go to 1 , otherwise stop.

$$
\begin{equation*}
\hat{\mathbf{X}}^{*}=\hat{\mathbf{x}}_{k}^{+} \tag{3.22}
\end{equation*}
$$

3.2.2 Iterated Extended Kalman Filter

In order to help minimize linearization errors in highly nonlinear problems, higher order methods are often applied to a problem. In the linearization process used in Equation 3.6 and Equation 3.7, the measurement equation was expanded about the reference solution. With the use of the extended Kalman filter, the reference solution is updated by propagation, $\hat{\mathbf{x}}_{k-1}^{+} \rightarrow \hat{\mathbf{x}}_{k}^{-}$, and processing of a measurement, $\hat{\mathbf{x}}_{k}^{-} \rightarrow \hat{\mathbf{x}}_{k}^{+}$, which is the step including the linearization about $\hat{\mathbf{x}}_{k}^{-}$. Since $\hat{\mathbf{x}}_{k}^{+}$represents the best estimate of the state \mathbf{x}_{k} after the measurement is processed, the measurement equation could be re-linearized about this new best estimate of the state to obtain a more accurate solution through as many iterations as are desired.

The application of higher order filters carries the weight of additional computational cost. In 1974, Gelb includes the iterated extended Kalman filter in his book with emphasis on "computation time required to mechanize the filter [13]." Jazwinski shows the IEKF converges more quickly to the exact solution than the EKF; however, he notes that the EKF will converge to the exact solution given enough measurements [14]. The solutions of both filters are subject to changes in the a priori covariance matrix, measurement covariance, and availability of measurements. As the a priori covariance matrix grows, measurement covariance decreases, and number of measurements decreases, the performance IEKF is superior to the EKF [14].

This derivation of the iterated extended Kalman filter algorithm is summarized from Simon [15].

IEKF Algorithm

1. Initialize the IEKF to the EKF estimate

$$
\begin{equation*}
\hat{\mathbf{x}}_{k, 0}^{+}=\hat{\mathbf{x}}_{k}^{+} \tag{3.23}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{P}_{k, 0}^{+}=\mathbf{P}_{k}^{+} \tag{3.24}
\end{equation*}
$$

2. Expanding the measurement equation around $\hat{\mathbf{x}}_{k, i-1}^{+}$yields Equation 3.26.

$$
\begin{gather*}
\mathbf{H}_{k, i}=\left.\frac{\partial \mathbf{G}}{\partial \mathbf{x}}\right|_{\hat{\mathbf{x}}_{k, i-1}^{+}} \tag{3.25}\\
\mathbf{y}_{k, i}=\mathbf{Y}_{k}-\mathbf{G}\left(\mathbf{x}_{k, i-1}^{+}, t_{k}\right) \tag{3.26}
\end{gather*}
$$

3. Calculate the Kalman gain, $\mathbf{K}_{k, i}$ for the current iteration.

$$
\begin{equation*}
\mathbf{K}_{k, i}=\mathbf{P}_{k}^{-} \mathbf{H}_{k, i}^{T}\left[\mathbf{H}_{k, i} \mathbf{P}_{k}^{-} \mathbf{H}_{k, i}^{T}+\mathbf{R}_{\mathbf{k}}\right]^{-1} \tag{3.27}
\end{equation*}
$$

4. Calculate the covariance matrix, \mathbf{P}, and the new best estimate of the state, $\mathbf{x}_{k, i+1}^{+}$, for the current iteration.

$$
\begin{gather*}
\mathbf{P}_{k, i}^{+}=\left(\mathbf{I}-\mathbf{K}_{k, i} \mathbf{H}_{k, i}\right) \mathbf{P}_{k}^{-} \tag{3.28}\\
\hat{\mathbf{x}}_{k, i}^{+}=\hat{\mathbf{x}}_{k}^{+}+\mathbf{K}_{k, i}\left[\mathbf{y}_{k, i}-\mathbf{H}_{k, i}\left(\hat{\mathbf{x}}_{k}^{+}-\hat{\mathbf{x}}_{k, i-1}^{+}\right)\right] \tag{3.29}
\end{gather*}
$$

5. Check for convergence. If convergence criterion not met, initialize the next iteration and goto 2 , otherwise stop.

$$
\begin{gather*}
\hat{\mathbf{x}}_{k, i+1}^{+}=\hat{\mathbf{x}}_{k, i}^{+} \tag{3.30}\\
\mathbf{P}_{k, i+1}^{+}=\mathbf{P}_{k, i}^{+} \tag{3.31}
\end{gather*}
$$

Chapter 4

Simulation

A simulation was constructed to compare the performance of the EKF and IEKF in the orbit determination scenario involving poor apriori information and intermittent observation data for a piece of space debris. The simulation consisted of multiple functions and programs to construct the orbit determination problem, and will be discussed in this chapter. The initial conditions and statistical data, which vary for most test cases, will also be presented.

4.1 Baseline Initial Conditions

The initial conditions chosen for the baseline case included an eccentricity and inclination similar to the International Space Station, and are presented in Table 4.1. This orbit was an important candidate for testing due to the future traffic and amount of debris existing at that altitude.

Table 4.1: Baseline Initial Conditions

Orbital Elements	Value
Perigee Altitude (m)	375134.9875
Apogee Altitude (m)	400249.8545
Inclination Angle (degrees)	51.6164
Longitude of Ascending Node (degrees)	270.1324
Argument of Periapsis (degrees)	0.0135
True Anomaly (degrees)	0.0297

The true initial state is given in Equation 4.1. The initial standard deviations, shown in Equation 4.2, were chosen based on the results by Kelso [16] for approximately 5 days
of propagation error of a TLE dataset. From these data, the initial covariance matrix in Equation 4.3 was chosen, where σ_{r} is the covariance of the position and σ_{v} is the covariance of the velocity.

$$
\begin{align*}
& {\left[\begin{array}{l}
X \\
Y \\
Z \\
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right]=\left[\begin{array}{cc}
165109.2914 & m \\
-6748615.7425 & m \\
188744.0459 & m \\
4771.0926 & \mathrm{~m} / \mathrm{s} \\
284.9491 & \mathrm{~m} / \mathrm{s} \\
6023.9774 & \mathrm{~m} / \mathrm{s}
\end{array}\right]} \tag{4.1}\\
& \sigma_{r}=2500 m \\
& \sigma_{v}=10 \mathrm{~m} / \mathrm{s} \tag{4.2}\\
& P_{0}=\left[\begin{array}{cccccc}
\sigma_{r_{x}}^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_{r_{y}}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{r_{z}}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_{v_{x}}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma_{v_{y}}^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma_{v_{z}}^{2}
\end{array}\right]=\left[\begin{array}{cccccc}
2500^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 2500^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 2500^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 10^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 10^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 10^{2}
\end{array}\right] \tag{4.3}
\end{align*}
$$

4.2 Test Cases

In order to properly compare the performance of the EKF and IEKF, multiple sets of initial conditions and observational data were evaluated. The altitude, inclination, longitude
of the ascending node, argument of periapsis, and true anomaly were altered individually for each case.

A summary of non-baseline cases can be found in Table 4.2, which are listed by how each case differs from the baseline case.

Table 4.2: Variations from Baseline Case

Case Number	Variation of	Value of Varied Terms
2	Altitude	$r_{a}=500 \mathrm{~km}$ and $r_{p}=700 \mathrm{~km}$
3	Altitude	$r_{a}=800 \mathrm{~km}$ and $r_{p}=1000 \mathrm{~km}$
4	Inclination	$i=28.5^{\circ}$
5	Inclination	$i=75^{\circ}$
6	Longitude of the Ascending Node	$\Omega=45^{\circ}$
7	Longitude of the Ascending Node	$\Omega=90^{\circ}$
8	Argument of Periapsis	$\omega=45^{\circ}$
9	Argument of Periapsis	$\omega=90^{\circ}$
10	True Anomaly	$\nu=90^{\circ}$
11	True Anomaly	$\nu=270^{\circ}$

4.3 Constants

Many constants are used when performing orbit determination. For completeness, Table 4.3 lists the values of each constant used in this simulation.

Table 4.3: Constants

$$
\begin{gathered}
\mu=3.9860044150 * 10^{14} \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{2}} \\
\hline J_{2}=0.1082635666 * 10^{-2} \\
\omega_{e}=7.2921156001 * 10^{-5} \frac{\mathrm{rad}}{\mathrm{~s}} \\
r_{e}=6378.13630 \mathrm{~km}
\end{gathered}
$$

4.4 Dynamical Model

The dynamical model represents the equations of motion of the object, and is used to propagate the state, Equation 4.4, forward through time. The dynamical model in this simulation used Equation 2.10 to form the derivatives of the states, which are given in Equation 4.5. This equation includes accelerations due to two-body motion and the J_{2} oblateness perturbation effects.

$$
\begin{gather*}
\mathbf{X}=\left[\begin{array}{c}
r_{x} \\
r_{y} \\
r_{z} \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4} \\
X_{5} \\
X_{6}
\end{array}\right] \tag{4.4}\\
\dot{\mathbf{X}}=\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z} \\
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]=\left[\begin{array}{c}
X_{5} \\
X_{6} \\
\frac{-\mu X_{1} r^{4}+\frac{3}{2} \mu J_{2} r_{e}^{2} X_{1}\left(5 X_{3}^{2}-r^{2}\right)}{r^{7}} \\
\frac{-\mu X_{2} r^{4}+\frac{3}{2} \mu J_{2} r_{e}^{2} X_{2}\left(5 X_{3}^{2}-r^{2}\right)}{r^{7}} \\
\frac{-\mu X_{3} r^{4}+\frac{3}{2} \mu J_{2} r_{e}^{2} X_{3}\left(5 X_{3}^{2}-3 r^{2}\right)}{r^{7}}
\end{array}\right] \tag{4.5}
\end{gather*}
$$

4.5 Measurement Model

The measurement consists of the equations for each measurement type. For this simulation, range-only measurements, Y_{R}, were used, and are represented in Equation 4.6, where X_{S}, Y_{S}, and Z_{S} are the ECEF coordinates of the tracking station and X_{E}, Y_{E}, and Z_{E} are the ECEF coordinates of the object. Equation 4.7 is used to transform the ECEF coordinates into the ECI coordinates of the model, which are also the first three entries in the ECI
state vector. Substituting this result into Equation 4.6 yields Equation 4.8, the measurement model in ECI coordinates.

$$
\begin{gather*}
Y_{R}=\left[\left(X_{E}-X_{S}\right)^{2}+\left(Y_{E}-Y_{S}\right)^{2}+\left(Z_{E}-Z_{S}\right)^{2}\right]^{\frac{1}{2}} \tag{4.6}\\
{\left[\begin{array}{c}
X_{E} \\
Y_{E} \\
Z_{E}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]} \tag{4.7}\\
Y_{R}=\left[\left(X_{1} \cos (\theta)+X_{2} \sin (\theta)-X_{S}\right)^{2}+\left(-X_{1} \sin (\theta)+X_{2} \cos (\theta)-Y_{S}\right)^{2}+\left(X_{3}-Z_{S}\right)^{2}\right]^{\frac{1}{2}} \tag{4.8}
\end{gather*}
$$

4.6 Tracking Station Network

The tracking stations used to generate experimental data in the simulation were taken from Vallado [17]. The sites used represent actual tracking stations that are a part of the US Space Surveillance Network, and are represented in Table 4.4. This network consists of mainly northern and western hemisphere stations, which lead to large gaps in the measurement data.

To simplify the tracking network, the data in Table 4.5 was implemented. A maximum range of $5,000 \mathrm{~km}$ was chosen to ensure range would not prevent the data generator from producing measurements as the maximum range generated is on the order of $1,000 \mathrm{~km}$. To mitigate errors associated with sensing near the horizon, the minimum elevation angle required to take a measurement was established at 20 degrees, which Vallado suggests for optical sensors [17]. The sensors were assumed to have no mechanical, geographical, or political constraints that could limit the azimuth. The range noise and bias were assumed to be 5 m and 0 m respectively.

Table 4.4: Tracking Station Coordinates (Geodetic C.S.)

Site	Latitude(degrees)	Longitude(degrees)	Altitude(meters)
Flyingdales, UK	54.37	-0.67	338.9
Ascension, Atlantic	-7.91	-14.40	56.1
Clear, AK	64.29	-149.19	213.3
Antigua, West Indies	17.14	-61.79	0.5
Cape Cod, MA	41.75	-70.54	80.3
Beale, CA	39.14	-121.35	115.7
Shemya, AK	52.74	-174.09	89.8
Thule, Greenland	76.57	-68.30	424.7
Cavalier, ND	48.72	-97.90	347.3
Kaena Point, HI	21.57	-158.27	300.2
Kwajalein Atoll, Pacific Ocean	9.39	167.48	62.7
Diego-Garcia, Indian Ocean	-7.41	72.45	-61.2
Moron (MOSS), Spain	37.10	-5.37	287.0
Eglin, FL	30.57	-86.21	34.7
Socorro, NM	33.82	-106.66	1510.2
Globus II, Norway	70.37	31.13	1.2

Table 4.5: Tracking Station Configuration Information

Maximum Range	5000 km
Minimum Elevation	20°
Maximum Elevation	90°
Minimum Azimuth	0°
Maximum Azimuth	360°
Range Noise	5 m
Range Bias	0 m

The simulated measurements were generated with an assumed maximum range and minimum elevation angle from the tracking station to maintain a sense of realism, as well as to add measurement outages.

The measurement rate was limited to the integration rate of 15 seconds.
The measurements were assumed to originate from tracking stations with zero bias, and $5 m$ noise in range.

To simulate a debris object for which tracking data is available, the initial estimate of the state of the debris being tracked was obtained from a simulated two-line element (TLE) data set on the order of two to five days old. This method generated a large apriori covariance matrix with which to begin the estimation process.

4.7 Propagator

The propagation method chosen for this study was a fourth order Runge-Kutta. The Runge-Kutta offers increased accuracy over the basic Euler method by calculating additional interior points along the path from beginning of the step, t_{0}, to the end of the step, $t_{0}+\Delta t$. The fourth order Runge-Kutta is widely documented, and can be found below in Equation 4.9 through Equation 4.13 [10].

$$
\begin{gather*}
k_{1}=\mathbf{f}\left(\mathbf{X}\left(t_{0}\right), t_{0}\right) \tag{4.9}\\
k_{2}=\mathbf{f}\left(\mathbf{X}\left(t_{0}\right)+\frac{\Delta t}{2} k_{1}, t_{0}+\frac{\Delta t}{2}\right) \tag{4.10}\\
k_{3}=\mathbf{f}\left(\mathbf{X}\left(t_{0}\right)+\frac{\Delta t}{2} k_{2}, t_{0}+\frac{\Delta t}{2}\right) \tag{4.11}\\
k_{4}=\mathbf{f}\left(\mathbf{X}\left(t_{0}\right)+\Delta t k_{3}, t_{0}+\frac{\Delta t}{2}\right) \tag{4.12}\\
\mathbf{X}\left(t_{o}+\Delta t\right)=\frac{\Delta t}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \tag{4.13}
\end{gather*}
$$

4.8 Procedure

For each case, a set of initial conditions was defined. Those initial conditions were used with the dynamics model, measurement model, ground station data, propagator, and data generator to generate a set of data for that specific case. The generated data was then used with the dynamics model, measurement mode, propagator, EKF algorithm, IEKF algorithm, and a post processing script to generate MATLAB plots and data of the performance of each filter. This data will be presented in the next chapter.

Chapter 5

Results

5.1 Measure of Solution Accuracy

The vectors α and β represent the difference in the best estimate of the state given by EKF, $\hat{\mathbf{x}}_{E K F}$, and IEKF, $\hat{\mathbf{x}}_{\text {IEKF }}$, respectively and the true solution, $\mathbf{x}_{\text {True }}$.

$$
\begin{aligned}
& \alpha=\left|\hat{\mathbf{x}}_{E K F}-\mathbf{x}_{\text {True }}\right| \\
& \beta=\left|\hat{\mathbf{x}}_{\text {IEKF }}-\mathbf{x}_{\text {True }}\right|
\end{aligned}
$$

The normalised mean squared error (NMSE), given by Equation 5.1, will be used to define a performance parameter, η, which is given in Equation 5.2. By definition, if $\eta>0$ the IEKF solution is more accurate; however, if $\eta<0$ the EKF solution is more accurate.

$$
\begin{gather*}
\Delta_{n}=\left[\sum_{i=1}^{n} \frac{\left(\hat{\mathbf{x}}_{i}-\mathbf{x}_{i}\right)^{2}}{\hat{\mathbf{x}}_{i}}\right]^{\frac{1}{2}} \tag{5.1}\\
\eta=\frac{\Delta_{n, E K F}}{\Delta_{n, \text { IEKF }}}-1 \tag{5.2}
\end{gather*}
$$

5.2 Baseline Case

The baseline case consisted of 325 observations spanning 8 batches and 12,915 seconds, of which details can be found in Table 5.1. The largest outage occurs between batch 6 and batch 7, and lasts for 4490 seconds, which is approximately 80% of an orbit. The orbital
parameters for this case can be found in Table 5.2, and represent an orbit similar to that of the ISS.

Table 5.1: Baseline: Outage Details

	Batch Number								
	1	2	3	4	5	6	7	8	
First Measurement No.	1	46	92	115	161	211	259	292	
Last Measurement No.	45	91	114	160	210	258	291	325	
Start Time (s)	320	1195	1580	5590	6960	7290	12015	12750	
End Time (s)	540	1420	1690	5815	7205	7525	12175	12915	
Outage Before Batch (s)	320	655	160	3900	1145	85	4490	575	

Table 5.2: Baseline: Orbit Parameters

Orbital Elements	Value
Perigee Altitude (m)	375134.9875
Apogee Altitude (m)	400249.8545
Inclination Angle (degrees)	51.6164
Longitude of Ascending Node (degrees)	270.1324
Argument of Periapsis (degrees)	0.0135
True Anomaly (degrees)	0.0297

The residuals, the difference between the observation and the expected observation, for the full set of data are shown in Figure 5.1. The residuals for both the EKF and IEKF remain small for the entire simulation; however, the residuals for the IEKF remain closer to zero than those of the EKF. This can be attributed to the re-linearization of the observation model that is carried out multiple times for each observation in the IEKF. This trend will remain present in the analysis of each case.

To allow closer inspection, Figure 5.2 and Figure 5.3 show the residuals for batch 6 and batch 7 respectively. Batch 6 consisted of 47 measurements spanning 235 seconds, while batch 7 consisted of 32 measurements spanning 160 seconds. Due to the very small residual prior to the outage, the residual does not grow significantly in either filter between the final

Figure 5.1: Baseline: Residuals vs. Number of Observations Processed
measurement in batch 6 to the first measurement in batch 7 . The IEKF residuals for batch 7, Figure 5.3 , remain clearly smaller than those for the EKF.

Figure 5.2: Baseline: Residuals for Batch \#6

Figure 5.3: Baseline: Residuals for Batch \#7

The performance parameter, η, shown in Figure 5.4, remains above the reference zero line for the entire simulation. This serves as a quick reference that the IEKF produced more accurate estimates of the true state than the EKF.

The NMSE values for batch 6 and 7 are shown together in Figure 5.5. The NMSE values for batch 6 and batch 7 individually are shown in Figure 5.6 and Figure 5.7 respectively. It should be noted that the y-axis scale of these two figures are equal, which allows a direct comparison. The NMSE of the EKF grows approximately 60% during the outage, while the NMSE of the IEKF grows approximately 30%. This growth from an outage is expected; however, the IEKF recovers to a lower value faster than the EKF.

Figure 5.4: Baseline: η vs. Number of Observations Processed

Figure 5.5: Baseline: NMSE for Batch \#6 and Batch \#7

Figure 5.6: Baseline: NMSE for Batch \#6

Figure 5.7: Baseline: NMSE for Batch \#7

The performance of the filters was evaluated specifically for batch 6 and batch 7. Table 5.3 contains data concerning the state, residual, and NMSE for both filters. For batch 6, the α and β performance values, which represent the difference in the estimated state and true state, remained small for both filters prior to the outage. The residuals of both filters were also small; however, the residual of the IEKF was approximately an order of magnitude smaller than that of the EKF.

Following the outage, and processing of batch 7, both residuals have increased. The NMSE of the IEKF also remained smaller than that of the EKF. This is due again to the IEKF processing an observation more than once, which leads to an artifically larger set of observations for the IEKF.

Table 5.3: Baseline: Output Before/After Largest Outage

State	End of Batch \#6		End of Batch \#7	
	$\alpha(\mathrm{EKF})$	β (IEKF)	α (EKF)	β (IEKF)
$\mathrm{X}(\mathrm{m})$	0.7734	0.7548	5.0188	0.9288
$\mathrm{Y}(\mathrm{m})$	0.5084	0.1123	6.4405	0.5038
$\mathrm{Z}(\mathrm{m})$	2.7568	1.1256	3.8424	0.1541
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0115	0.0005	0.0065	0.0007
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.0006	0.0001	0.0034	0.0003
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.0061	0.0023	0.0043	0.0006
$\mathrm{yk}(\mathrm{m})$	0.7927	0.0794	7.4162	1.0580
NMSE	$4.0298 \mathrm{E}-006$	$7.1876 \mathrm{E}-007$	$7.0072 \mathrm{E}-006$	$8.2265 \mathrm{E}-007$

After batch 8 has been processed, all data has been consumed. The performance values can be found in Table 5.4. Given additional observations, the accuracy of the EKF improved, which can be seen by the reduction in size of the residual and NMSE values when compared to Table 5.3.

Table 5.4: Baseline: All Observations (325 observations - 12915 s)

State	$\alpha($ EKF $)$	$\beta($ IEKF $)$
$\mathrm{X}(\mathrm{m})$	2.1986	0.1477
$\mathrm{Y}(\mathrm{m})$	4.9208	0.4030
$\mathrm{Z}(\mathrm{m})$	5.7930	0.5380
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0112	0.0007
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.0028	0.0005
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.0018	0.0012
$\mathrm{yk}(\mathrm{m})$	3.2716	1.0989
NMSE	$4.8866 \mathrm{E}-006$	$5.3018 \mathrm{E}-007$

While the α and β values for the EKF continue to remain small, the values for the position components are at least an order of magnitude larger than those of the IEKF. Combining this result with the smaller residual and smaller NMSE value, the IEKF produced a more accurate estimate of the state for the baseline case.

5.3 Inclination Variation Case $\rightarrow i=75.0^{\circ}$

The $i=75.0^{\circ}$ case consisted of 326 observations spanning 9 batches and 13,410 seconds, of which details can be found in Table 5.5. The largest outage occurs between batch 7 and batch 8, and lasts for 5895 seconds, which is approximately 105% of an orbit. This outage and the initial outage, the time before the beginning of batch 1, are approximately 30% larger than those specific outages for the baseline case. These outage increases are due to the finite number of ground stations modeled. The orbital parameters for this case can be found in Table 5.6. This case differs from the baseline case only by the inclination angle.

Table 5.5: $i=75.0^{\circ}$: Outage Details

	Batch Number								
	1	2	3	4	5	6	7	8	9
	1	22	71	117	153	183	202	232	279
First Measurement No.	Mast Measurement No.	21	70	116	152	182	201	231	278
326									
Start Time (s)	730	905	1330	2755	6330	6630	6970	13010	13410
End Time (s)	830	1145	1555	2930	6475	6720	7115	13240	13645
Outage Before Batch (s)	730	75	185	1200	3400	155	250	5895	170

Table 5.6: $i=75.0^{\circ}$: Orbit Parameters

Orbital Elements	Value
Perigee Altitude (m)	375134.9875
Apogee Altitude (m)	400249.8545
Inclination Angle (degrees)	75.121
Longitude of Ascending Node (degrees)	270.1324
Argument of Periapsis (degrees)	0.0135
True Anomaly (degrees)	0.0297

The residuals for the full set of data are shown in Figure 5.8. The IEKF residuals remain small, compared to the EKF residuals, for all observations; however, the EKF residuals grow to near 200 m for some observations. The 30% increase in the initial outage coupled with the size of the first batch, 20 observations compared to 45 observations for the baseline case, leads the EKF to a less accurate estimate early in the simulation. For each batch of data, the residual of the EKF begins to shrink; however, this process is interrupted by multiple outages.

Figure 5.8: $i=75^{\circ}$: Residuals vs. Number of Observations Processed

Figure 5.9 and Figure 5.10 show the residuals for batch 7 and batch 8 respectively. Batch 7 consisted of 29 measurements spanning 145 seconds, while batch 8 consisted of 46 measurements spanning 230 seconds. For batch 7, not enough observations existed to allow the EKF to attain an estimate as accurate as the IEKF. The residuals for the IEKF remained small for the entire batch. For batch 8, the EKF processed enough observations to appear to converge to an accurate estimate very close to that of the IEKF, which remained close to zero for the entire batch.

Figure 5.9: $i=75^{\circ}$: Residuals for Batch \#7

Figure 5.10: $i=75^{\circ}$: Residuals for Batch \#8

The performance parameter, η, shown in Figure 5.11, remains above the reference zero line for the entire simulation. This serves as a quick reference that the IEKF produced more accurate estimates of the true state than the EKF, which is the same result as the baseline case.

The NMSE values for batch 7 and 8 are shown together in Figure 5.12. The NMSE of the EKF begins and ends greater than the NMSE of the IEKF for both batches. The NMSE values for batch 7 and batch 8 individually are shown in Figure 5.13 and Figure 5.14 respectively. For batch 7, the NMSE steadily decreases as observations are processed. Similar to the residual, this trend would have continued given additional observations. For batch 8, the NMSE of the EKF remains much higher, although relatively constant, than the NMSE of the IEKF. This shows that the IEKF estimate of the state remains much closer to the true state than the EKF estimate.

Figure 5.11: $i=75^{\circ}: \eta$ vs. Number of Observations Processed

Figure 5.12: $i=75^{\circ}$: NMSE for Batch \#7 and Batch \#8

Figure 5.13: $i=75^{\circ}$: NMSE for Batch $\# 7$

Figure 5.14: $i=75^{\circ}$: NMSE for Batch \#8

The performance of the filters was evaluated specifically for batch 7 and batch 8 .
Table 5.7 contains data concerning the state, residual, and NMSE for both filters. For batch 7α and β performance values remained approximately two orders of magnitude smaller for the IEKF than those of the EKF. This can be attributed to the high residual for the EKF at the end of batch 7 . For batch 8 the residual for the EKF approaches a small number as seen in Figure 5.10. However, this low residual does not correspond with a low NMSE value. This is a representation of apparent divergence, which is convergence to the wrong value.

Table 5.7: $i=75.0^{\circ}$: Intermediate Output

State	End of Batch \#7		End of Batch \#8	
	$\alpha(\mathrm{EKF})$	$\beta($ IEKF $)$	$\alpha($ EKF)	$\beta($ IEKF)
$\mathrm{X}(\mathrm{m})$	32.0360	0.3094	317.7501	7.2187
$\mathrm{Y}(\mathrm{m})$	175.8334	2.6102	109.3774	2.8083
$\mathrm{Z}(\mathrm{m})$	207.6050	1.5862	48.3734	1.2793
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.4586	0.0116	0.3879	0.0098
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.2080	0.0023	0.3018	0.0040
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.0540	0.0021	0.3622	0.0063
$\mathrm{yk}(\mathrm{m})$	110.7678	0.8292	1.7156	1.1389
NMSE	$9.0870 \mathrm{E}-004$	$2.2975 \mathrm{E}-005$	$3.9836 \mathrm{E}-004$	$9.3518 \mathrm{E}-006$

After batch 9 has been processed, all data has been consumed. The performance values can be found in Table 5.8. Similar to the results shown in Table 5.7, the IEKF produced a more accurate estimate of the true state, as shown by the β values being at least one order of magnitude smaller than the α values. The NMSE of the IEKF was approximately two orders of magnitude smaller than that of the EKF after processing all observations.

Table 5.8: $i=75.0^{\circ}$: Output for All Observations (326-13645s) Processed

State	α (EKF)	β (IEKF)
$\mathrm{X}(\mathrm{m})$	399.6702	9.7243
$\mathrm{Y}(\mathrm{m})$	234.1288	4.8175
$\mathrm{Z}(\mathrm{m})$	92.1286	2.1426
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.1945	0.0055
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.4273	0.0073
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.3399	0.0064
$\mathrm{yk}(\mathrm{m})$	25.9034	0.8774
NMSE	$1.2476 \mathrm{E}-003$	$2.9886 \mathrm{E}-005$

5.4 Argument of Perigee Case $\rightarrow \omega=90^{\circ}$

The $\omega=90^{\circ}$ case consisted of 318 observations spanning 8 batches and 16,460 seconds, of which details can be found in Table 5.9. While the largest outage is smaller than the largest outage of the previous case $\left(i=75.0^{\circ}\right)$, the initial outage is 4625 seconds. The poor apriori covariance matrix is propagated for 85% of an orbit before the first observation is processed. The orbital parameters for this case can be found in Table 5.10. This case differs from the baseline case only by the argument of periapsis.

Table 5.9: $\omega=90^{\circ}$: Outage Details

	Batch Number								
	1	2	3	4	5	6	7	8	
	1	49	97	133	161	208	222	270	
First Measurement No.	Mast Measurement No.	48	96	132	160	207	221	269	
318									
Start Time (s)	4625	4895	5660	7060	10235	10770	15915	16220	
End Time (s)	4860	5130	5835	7195	10465	10835	16150	16460	
Outage Before Batch (s)	4625	35	530	1225	3040	305	5080	70	

Table 5.10: $\omega=90^{\circ}$: Orbit Parameters

Orbital Elements	Value
Perigee Altitude (m)	375134.9875
Apogee Altitude (m)	400249.8545
Inclination Angle (degrees)	51.6164
Longitude of Ascending Node (degrees)	270.1324
Argument of Periapsis (degrees)	90.1943
True Anomaly (degrees)	0.0297

The residuals for the full set of data are shown in Figure 5.15. The IEKF residual remains small for all observations; however, the EKF residual becomes large very quickly. The combination of very accurate measurements (5 m measurement noise) and the large covariance matrix following the starting outage cause the EKF to diverge quickly. The accurate measurements cause the covariance matrix to approach zero before enough measurements are processed to allow for the filter to converge. The small covariance matrix forces the Kalman gain calculation to also be small. If the Kalman gain is small, the state update
will also be small, regardless of the size of the residual. Figure 5.16 and Figure 5.17 provide a closer look at the residuals for batch 6 and batch 7 respectively. Figure 5.16 shows the residual of the EKF growing as more measurements are processed, which shows convergence to an incorrect solution. In Figure 5.17 the EKF residuals become smaller with additional observations; however, the scale of the graph shows that the EKF residuals remain large.

Figure 5.15: $\omega=90^{\circ}$: Residuals vs. Number of Observations Processed

Figure 5.16: $\omega=90^{\circ}$: Residuals for Batch \#6

Figure 5.17: $\omega=90^{\circ}$: Residuals for Batch \#7

The performance parameter, η, shown in Figure 5.18, remains above the reference zero line for the entire simulation. Due to the scale on the graph, it is difficult to see this for approximately the first 150 observations.

The NMSE values for batch 6 and 7 are shown together in Figure 5.19. The NMSE of the EKF begins and ends greater than the NMSE of the IEKF for both batches. The NMSE values for batch 6 and batch 7 individually are shown in Figure 5.20 and Figure 5.21 respectively. For both batches, the IEKF NMSE value remains near zero, while the EKF NMSE is many orders of magnitude larger. Figure 5.21 shows the EKF NMSE becoming smaller similar to the residual from Figure 5.17. These large EKF NMSE values are a result of the innacuracy of the EKF estimate.

Figure 5.18: $\omega=90^{\circ}: \eta$ vs. Number of Observations Processed

Figure 5.19: $\omega=90^{\circ}$: NMSE for Batch $\# 6$ and Batch \#7

Figure 5.20: $\omega=90^{\circ}$: NMSE for Batch \#6

Figure 5.21: $\omega=90^{\circ}$: NMSE for Batch \#67

Table 5.11: $\omega=90^{\circ}$: Intermediate Output

State	End of Batch \#6		End of Batch \#7) - After	
	$\alpha(\mathrm{EKF})$	β (IEKF)	$\alpha($ EKF $)$	β (IEKF)
$\mathrm{X}(\mathrm{m})$	407280.0317	4.9537	2340837.9835	8.0329
$\mathrm{Y}(\mathrm{m})$	267709.9240	9.2157	566814.6803	0.7537
$\mathrm{Z}(\mathrm{m})$	184296.0433	5.4234	3025870.0294	0.8134
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	147.8404	0.0028	4731.1437	0.0081
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	793.0966	0.0001	11469.8375	0.0044
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	361.9798	0.0093	3859.5161	0.0169
$\mathrm{yk}(\mathrm{m})$	183061.6412	7.8710	2134791.3973	3.3742
NMSE	$3.3191 \mathrm{E}-001$	$8.2508 \mathrm{E}-006$	$3.0272 \mathrm{E}+000$	$6.9350 \mathrm{E}-006$

Similar to the previous cases, the filter performance was compared for the batch before and the batch following the largest outage. This information can be found in Table 5.11. The EKF estimate has diverged from the true solution as clearly noted by the α values and residual; however, the performance of the IEKF did not suffer due to the initial outage or any outages throughout the simulation. This was due to the formulation of the IEKF algorithm. The covariance matrix is not updated until the iterated solution for each observation has converged, which is found in Equation 3.28.

Table 5.12: $\omega=90^{\circ}$: Output for All Observations (318-16460 s) Processed

State	$\alpha($ EKF $)$	β (IEKF)
$\mathrm{X}(\mathrm{m})$	3197640.7249	5.3589
$\mathrm{Y}(\mathrm{m})$	2571119.2984	1.2943
$\mathrm{Z}(\mathrm{m})$	3567720.2319	5.9253
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	7062.2632	0.0104
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	8570.047	0.0042
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	4803.1641	0.0147
$\mathrm{yk}(\mathrm{m})$	3662603.4439	0.3185
NMSE	$9.3240 \mathrm{E}+000$	$1.8473 \mathrm{E}-005$

Following the processing of all additional measurements, the final performance values can be found in Table 5.12. The IEKF continues to produce an accurate estimate of the true state, from which it differs by a maximum of approximately 6 m in any position component. The EKF estimate has diverged completely, which can be stated from the difference from the true state as well as the residual value.

5.5 Additional Results

Results for additional cases can be found Appendix B. The results of each case belong to one of three categories, which are defined from the previously discussed cases. Cases behaving similar to the baseline case include results where both filters provided accurate and similar results. Apparent divergence in the EKF, similar to the $i=75.0^{\circ}$ case, defines the second category of results. EKF divergence defines the third category, and was evident in the $\omega=90^{\circ}$ case. The categories of the additional test cases can be found in Table 5.13.

Table 5.13: Additional Results Details

Test Case	Performance
$i=28.5^{\circ}$	Similar performance
$\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$	EKF divergence
$\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$	Similar performance
$\Omega=0^{\circ}$	EKF divergence
$\Omega=90^{\circ}$	Similar performance
$\omega=45^{\circ}$	Apparent divergence
$\nu=90^{\circ}$	Similar performance
$\nu=270^{\circ}$	Apparent divergence

Chapter 6

Conclusions and Future Work

A simulation was built to compare the performance of an Extended Kalman Filter and an Iterated Extended Kalman Filter for a piece of debris with poor apriori data, intermittent, and innacurate observations. The altitude, inclination, longitude of the ascending node, argument of periapsis, true anomaly, and measurement covariance were varied to generate fifteen cases of initial conditions for gaining the performance data for the two filtering methods. With a constant ground network to generate observations, the longitude of the ascending node, argument of periapsis, and true anomaly generated observation data sets with varying measurement outage times, which tested the ability of the filters to recover following an outage.

In many situations, the covariance matrix for the EKF became very small due to the low observation covariance and lack of process noise. This lead to smugness, or filter divergence due to the covariance matrix becoming small, in the EKF, an issue that was not anticipated during the problem formulation. The IEKF overcame this issue due to the process of calculating the covariance matrix from processing each measurement multiple times.

The performance of the IEKF generally allowed for a more accurate estimation of the state of the object with fewer measurements. However, this increase in accuracy occurred with an increase in computing cost. On average, the IEKF uses triple the processing needed by the EKF to produce an accuracy increase of at least an order of magnitude in the NMSE.

The changes to the observation residual of the measurement without a change to the given observation residual produced unexpected results. Since the IEKF processes a measurement multiple times, it was expected that an increase in the measurement noise to increase the error in the estimate of the state produced by the IEKF. However, the IEKF
continued to produce a more accurate estimate of the state than the EKF in this situation due to the ability to continue processing a measurement until local convergence.

To enhance this study in the future, many changes could be made to the simulation. Including process noise and aerodynamic drag in the dynamical model, adding intermittent measurements based on the attitude of the debris, and incorporating a detailed analysis of the computing power required are a few changes that could be incorporated to extend this study. The addition of process noise would test the ability of the IEKF to filter unknown accelerations. Aerodynamic drag calculations would allow LEO conditions to be better tested. Intermittent measurements based on the attitude of the debris would allow for the modeling of debris that might not produce a radar echo due to an orientation, which is an issue with lower power radar stations or small debris. A detailed analysis of the increase in computing power would allow for the formation of a ratio of increased power needed to the increase in accuracy to be defined. This definition would allow for an in depth study of all higher order filters for orbit determination to be compared more easily.

Bibliography

[1] Orbital Debris: A Technical Assessment, National Academy, 1995.
[2] Kessler, D. J. and Cour-Palais, B. G., "Collision Frequency of Artificial Satellites: The Creation of a Debris Belt," Orbital Debris Quarterly News, Vol. 83, 1978.
[3] Portree, D. S. and Joseph P. Loftus, J., "Orbital Debris: A Chronology," NASA paper nasa/tp-1999-208856, 1999.
[4] Limiting Future Collision Risk to Spacecraft: An Assessment of NASA's Meteoroid and Orbital Debris Programs, National Academies, 2011.
[5] Liou, J.-C. and Shoots, D., "Fengyun-1C Debris: One Year Later," Orbital Debris Quarterly News, Vol. 12, No. 1, 2008.
[6] Liou, J.-C. and Johnson, N. L., "A Sensitivity Study of the Effectiveness of Active Debris Removal in LEO," Acta Astronautica, Vol. 64, 2009, pp. 236 - 243.
[7] Kessler, D. J., Johnson, N. L., Liou, J.-C., and Matney, M., "The Kessler Syndrome: Implications to Future Space Operations," AAS paper 10-016, 2010.
[8] Sibert, D., Borgeson, D., Peterson, G., Jenkin, A., and Sorge, M., "Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment," USAF space command report, 2010.
[9] Thomson, W. T., Introduction to Space Dynamics, Wiley, 1961.
[10] Montenbruck, O. and Gill, E., Satellite Orbits: Models, Methods and Applications, Springer, 2005.
[11] Chobotov, V. A., Orbital Mechanics, American Institute of Aeronautics and Astronautics, Inc., 2002.
[12] Tapley, B. D., Shutz, B. E., and Born, G. H., Statistical Orbit Determination, Elsevier Academic Press, 2004.
[13] Gelb, A., Applied Optimal Estimation, M.I.T. Press, 1974.
[14] Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic Press, 1970.
[15] Simon, D., Optimal State Estimation: Kalman, H [infinity] and Nonlinear Approaches, Wiley, 2006.
[16] Kelso, T., "Validation of SGP4 and IS-GPS-200D Against GPS Precision Ephemerides," AAS paper 07-127, 2007.
[17] Vallado, D. A. and McClain, W. D., Fundamentals of Astrodynamics and Applications, Springer, 2007.

Appendices

Appendix A

Derivation of J_{2} Equations of motion

In chapter 2 , the acceleration due to the J_{2} perturbation was discussed. The full derivation of the J_{2} acceleration in ECI components will be presented here, which will begin with Equation 2.7 and Equation 2.8, and end with Equation 2.9, which are also presented below as Equation A.1, Equation A.2, and Equation A. 3 respectively for completion.

$$
\begin{gather*}
U_{J_{2}}=\frac{-\mu}{r} J_{2}\left(\frac{r_{e}}{r}\right)^{2}\left(\left(\frac{3}{2}\right) \sin (\phi)-\left(\frac{1}{2}\right)\right) \tag{A.1}\\
\ddot{\boldsymbol{r}}=\nabla U_{J_{2}} \tag{A.2}\\
\ddot{\boldsymbol{r}}_{J_{2}}=\frac{\frac{3}{2} \mu J_{2} r_{e}^{2}}{r^{7}}\left[\begin{array}{c}
X_{1}\left(5 X_{3}^{2}-r^{2}\right) \\
X_{2}\left(5 X_{3}^{2}-r^{2}\right) \\
X_{3}\left(5 X_{3}^{2}-3 r^{2}\right)
\end{array}\right] \tag{A.3}
\end{gather*}
$$

Expanding the gradient operator in Equation A. 2 yields Equation A.4, which will be evaluated individually by component.

$$
\begin{equation*}
\nabla U_{J_{2}}=\frac{\partial U_{J_{2}}}{\partial X_{1}} \hat{\mathbf{I}}+\frac{\partial U_{J_{2}}}{\partial X_{2}} \hat{\mathbf{J}}+\frac{\partial U_{J_{2}}}{\partial X_{3}} \hat{\mathbf{K}} \tag{A.4}
\end{equation*}
$$

The definition of \mathbf{r} in the ECI coordinate system and the norm of \mathbf{r}, Equation A. 5 and Equation A. 6 respectfully, will be used to transform a portion of Equation A. 1 from spherical
coordinate frame to the ECI coordinate frame. A substitution for $\sin (\phi)$ will complete the transformation, and is found from Figure 2.5. This is presented in Equation A.7.

$$
\begin{gather*}
\mathbf{r}=\left[\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right]\left[\begin{array}{l}
\mathbf{I} \\
\mathbf{J} \\
\mathbf{K}
\end{array}\right] \tag{A.5}\\
r=\left[X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right]^{\frac{1}{2}} \tag{A.6}\\
\sin (\phi)=\frac{X_{3}}{r} \tag{A.7}
\end{gather*}
$$

Substitute Equation A. 7 into Equation A. 1 and distribute.

$$
\begin{equation*}
U_{J_{2}}=\frac{-\frac{3}{2} \mu J_{2} r_{e}^{2} X_{3}^{2}}{r^{5}}+\frac{\frac{1}{2} \mu J_{2} r_{e}^{2}}{r^{3}} \tag{A.8}
\end{equation*}
$$

Substitute Equation A. 6 into Equation A. 8 and invert the denominators. This now gives $U_{J_{2}}$ only in terms of constants and the components of the ECI position vector.

$$
\begin{equation*}
U_{J_{2}}=-\frac{3}{2} \mu J_{2} r_{e}^{2} X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}}+\frac{1}{2} \mu J_{2} r_{e}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{3}{2}} \tag{A.9}
\end{equation*}
$$

Combine the constants μJ_{2} and r_{e}^{2} to form a new constant C and substitute into Equation A.9.

$$
\begin{gather*}
C=\mu J_{2} r_{e}^{2} \tag{A.10}\\
U_{J_{2}}=-\frac{3}{2} C X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}}+\frac{1}{2} C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{3}{2}} \tag{A.11}
\end{gather*}
$$

Î Component

$$
\begin{equation*}
\left(\nabla U_{J_{2}}\right)_{i}=\frac{\partial}{\partial X_{1}}\left[-\frac{3}{2} C X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}}+\frac{1}{2} C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{3}{2}}\right] \tag{A.12}
\end{equation*}
$$

Perform the chain rule on each portion of the sum.

$$
\begin{equation*}
\left(\nabla U_{J_{2}}\right)_{i}=\left(-\frac{15}{4}\right)\left(2 X_{1}\right) C X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{7}{2}}+\left(-\frac{3}{4}\right)\left(2 X_{1}\right) C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}} \tag{A.13}
\end{equation*}
$$

Simplify, obtain a common denominator, factor the numerator and substitute for C.

$$
\begin{gather*}
\left(\nabla U_{J_{2}}\right)_{i}=\left(\frac{15}{2}\right) \frac{C X_{3}^{2} X_{1}}{r^{7}}+\left(-\frac{3}{2}\right) \frac{C X_{1}}{r^{5}} \tag{A.14}\\
\left(\nabla U_{J_{2}}\right)_{i}=\left(\frac{15}{2}\right) \frac{C X_{3}^{2} X_{1}}{r^{7}}+\left(-\frac{3}{2}\right) \frac{C X_{1} r^{2}}{r^{7}} \tag{A.15}\\
\left(\nabla U_{J_{2}}\right)_{i}=\frac{\frac{3}{2} \mu J_{2} r_{e}^{2} X_{1}\left(5 X_{3}^{2}-r^{2}\right)}{r^{7}} \tag{A.16}
\end{gather*}
$$

\hat{J} Component

$$
\begin{equation*}
\left(\nabla U_{J_{2}}\right)_{j}=\frac{\partial}{\partial X_{2}}\left[-\frac{3}{2} C X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}}+\frac{1}{2} C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{3}{2}}\right] \tag{A.17}
\end{equation*}
$$

Perform the chain rule on each portion of the sum.

$$
\begin{equation*}
\left(\nabla U_{J_{2}}\right)_{j}=\left(\frac{15}{4}\right)\left(2 X_{2}\right) C X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{7}{2}}+\left(-\frac{3}{4}\right)\left(2 X_{2}\right) C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}} \tag{A.18}
\end{equation*}
$$

Simplify, obtain a common denominator, factor the numerator and substitute for C.

$$
\begin{gather*}
\left(\nabla U_{J_{2}}\right)_{j}=\left(\frac{15}{2}\right) \frac{C X_{3}^{2} X_{2}}{r^{7}}+\left(-\frac{3}{2}\right) \frac{C X_{2}}{r^{5}} \tag{A.19}\\
\left(\nabla U_{J_{2}}\right)_{j}=\left(\frac{15}{2}\right) \frac{C X_{3}^{2} X_{2}}{r^{7}}+\left(-\frac{3}{2}\right) \frac{C X_{2} r^{2}}{r^{7}} \tag{A.20}\\
\left(\nabla U_{J_{2}}\right)_{j}=\frac{\frac{3}{2} \mu J_{2} r_{e}^{2} X_{2}\left(5 X_{3}^{2}-r^{2}\right)}{r^{7}} \tag{A.21}
\end{gather*}
$$

\hat{K} Component

$$
\begin{equation*}
\left(\nabla U_{J_{2}}\right)_{k}=\frac{\partial}{\partial X_{3}}\left[-\frac{3}{2} C X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}}+\frac{1}{2} C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{3}{2}}\right] \tag{A.22}
\end{equation*}
$$

Perform the chain rule on each portion of the sum (broken into the three terms for clarity).

$$
\begin{align*}
& \left(\nabla U_{J_{2}}\right)_{k}=\left(-\frac{3}{2}\right)\left(2 X_{3}\right) C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}} \tag{A.23}\\
& \quad+\left(\frac{15}{4}\right)\left(2 X_{3}\right) C X_{3}^{2}\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{7}{2}} \tag{A.24}
\end{align*}
$$

$$
\begin{equation*}
+\left(-\frac{3}{4}\right)\left(2 X_{3}\right) C\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{-\frac{5}{2}} \tag{A.25}
\end{equation*}
$$

Sum Equations A. 23 - A. 25 and simplify, obtain a common denominator, factor the numerator and substitute for C .

$$
\begin{gather*}
\left(\nabla U_{J_{2}}\right)_{k}=\left(\frac{15}{2}\right) \frac{C X_{3}^{2} X_{3}}{r^{7}}-\left(\frac{9}{2}\right) \frac{C X_{3}}{r^{5}} \tag{A.26}\\
\left(\nabla U_{J_{2}}\right)_{k}=\left(\frac{15}{2}\right) \frac{C X_{3}^{2} X_{3}}{r^{7}}-\left(\frac{9}{2}\right) \frac{C X_{3} r^{2}}{r^{7}} \tag{А.27}\\
\left(\nabla U_{J_{2}}\right)_{k}=\frac{\frac{3}{2} \mu J_{2} r_{e}^{2} X_{3}\left(5 X_{3}^{2}-3 r^{2}\right)}{r^{7}} \tag{A.28}
\end{gather*}
$$

Result

Combining Equation A.16, Equation A.21, and Equation A. 28 yields the equations of motion for the J_{2} perturbation in the ECI coordinate frame.

$$
\mathbf{a}_{J_{2}}=\frac{\frac{3}{2} \mu J_{2} r_{e}^{2}}{r^{7}}\left[\begin{array}{c}
X_{1}\left(5 X_{3}^{2}-r^{2}\right) \tag{A.29}\\
X_{2}\left(5 X_{3}^{2}-r^{2}\right) \\
X_{3}\left(5 X_{3}^{2}-3 r^{2}\right)
\end{array}\right]
$$

Appendix B

Additional Results

B. 1 Variations on Inclination

B.1.1 Inclination $\rightarrow i=28.5^{\circ}$

Figure B.1: $i=28.5^{\circ}: \eta$ vs. Number of Observations Processed

Figure B.2: $i=28.5^{\circ}$: Residuals vs. Number of Observations Processed

Figure B.3: $i=28.5^{\circ}$: Residuals Before Largest Outage vs. Time

Figure B.4: $i=28.5^{\circ}$: Residuals After Largest Outage vs. Time

Figure B.5: $i=28.5^{\circ}$: NMSE Before Largest Outage vs. Time

Figure B.6: $i=28.5^{\circ}$: NMSE After Largest Outage vs. Time

Table B.1: $i=28.5^{\circ}$: Intermediate Output

State	101 observations (1900 s) - Before		143 observations (5790 s) - After	
	696.7952	$\beta 47.1226$	169.4131	78.3011
$\mathrm{Y}(\mathrm{m})$	50.5685	15.1300	476.5338	217.3360
$\mathrm{Z}(\mathrm{m})$	94.0815	71.4660	461.5652	215.0349
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	1.9554	1.2306	0.5576	0.2643
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.2796	0.1241	0.0613	0.0128
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	1.1402	0.8525	0.0168	0.0021
$\mathrm{yk}(\mathrm{m})$	82.3730	44.7652	55.6191	23.8096
NMSE	$7.4027 \mathrm{E}-004$	$5.1267 \mathrm{E}-004$	$4.4888 \mathrm{E}-004$	$2.0883 \mathrm{E}-004$

Table B.2: $i=28.5^{\circ}$: Output for All Observations (307-7830s) Processed

State	α (EKF)	β (IEKF)
$\mathrm{X}(\mathrm{m})$	3.1548	2.4580
$\mathrm{Y}(\mathrm{m})$	21.5692	10.5556
$\mathrm{Z}(\mathrm{m})$	87.5892	45.5551
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0584	0.0299
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.0095	0.0046
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.2404	0.1244
$\mathrm{yk}(\mathrm{m})$	17.1910	7.7568
NMSE	$9.5393 \mathrm{E}-005$	$4.9467 \mathrm{E}-005$

B. 2 Variations on Altitude

B.2.1 Altitudes $\rightarrow \frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$

Figure B.7: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}: \eta$ vs. Number of Observations Processed

Figure B.8: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Residuals vs. Number of Observations Processed

Figure B.9: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Residuals Before Largest Outage vs. Time

Figure B.10: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Residuals After Largest Outage vs. Time

Figure B.11: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: NMSE Before Largest Outage vs. Time

Figure B.12: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: NMSE After Largest Outage vs. Time

Table B.3: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Intermediate Output

State	103 observations $(3180 s)$ - Before		193 observations (13735 s) - After	
	30803.5776	843.7531	10827.2371	68.2194
$\mathrm{Y}(\mathrm{m})$	21335.0050	2114.0440	19576.7362	58.0021
$\mathrm{Z}(\mathrm{m})$	22438.5898	898.8687	3489.0570	328.0003
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	34.8935	0.1445	110.3779	0.0079
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	12.7174	3.5697	84.6951	0.1300
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	17.0665	2.3051	101.5724	0.1981
$\mathrm{yk}(\mathrm{m})$	126.8850	4.5325	22496.07682	0.0034
NMSE	$6.0557 \mathrm{E}-002$	$3.9742 \mathrm{E}-003$	$2.4168 \mathrm{E}-001$	$4.4422 \mathrm{E}-004$

Table B.4: $\frac{r_{p}}{r_{a}}=800 \mathrm{~km} / 1000 \mathrm{~km}$: Output for All Observations (387-20195 s) Processed

State	$\alpha($ EKF $)$	β (IEKF)
$\mathrm{X}(\mathrm{m})$	669004.4833	483.2484
$\mathrm{Y}(\mathrm{m})$	580538.8523	86.5897
$\mathrm{Z}(\mathrm{m})$	701111.6741	1743.8944
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	73.9316	0.9436
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	991.5891	1.1375
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	1289.7717	1.4730
$\mathrm{yk}(\mathrm{m})$	82558.1852	102.4162
NMSE	$1.7505 \mathrm{E}+000$	$1.9810 \mathrm{E}-003$

B.2.2 Altitudes $\rightarrow \frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$

Figure B.13: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}: \eta$ vs. Number of Observations Processed

Figure B.14: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Residuals vs. Number of Observations Processed

Figure B.15: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Residuals Before Largest Outage vs. Time

Figure B.16: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Residuals After Largest Outage vs. Time

Figure B.17: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: NMSE Before Largest Outage vs. Time

Figure B.18: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: NMSE After Largest Outage vs. Time

Table B.5: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Intermediate Output

State	230 observations (1845 s) - Before		293 observations (3090 s) - After	
	3.9550	β (IEKF)	$\alpha($ EKF $)$	β (IEKF)
$\mathrm{Y}(\mathrm{m})$	1.8746	0.5127	2.9155	1.3144
$\mathrm{Z}(\mathrm{m})$	0.3748	0.3505	5.2372	2.1131
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0039	0.0030	1.2955	0.4534
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.0027	0.0004	0.0001	0.0001
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.0010	0.0005	0.0019	0.0069
$\mathrm{yk}(\mathrm{m})$	4.1478	4.2310	1.7809	1.6388
NMSE	$2.2612 \mathrm{E}-006$	$1.5855 \mathrm{E}-006$	$4.9449 \mathrm{E}-006$	$1.9766 \mathrm{E}-006$

Table B.6: $\frac{r_{p}}{r_{a}}=500 \mathrm{~km} / 700 \mathrm{~km}$: Output for All Observations (352-6125 s) Processed

State	α (EKF)	β (IEKF)
$\mathrm{X}(\mathrm{m})$	1.2736	0.9745
$\mathrm{Y}(\mathrm{m})$	0.5712	0.0809
$\mathrm{Z}(\mathrm{m})$	0.0420	0.1487
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0003	0.0007
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.0008	0.0004
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.0001	0.0001
$\mathrm{yk}(\mathrm{m})$	1.3117	1.3566
NMSE	$8.1530 \mathrm{E}-007$	$6.2982 \mathrm{E}-007$

B. 3 Variations on Longitude of the Ascending Node

B.3.1 Longitude of the Ascending Node $\rightarrow \Omega=0^{\circ}$

Figure B.19: $\Omega=0^{\circ}: \eta$ vs. Number of Observations Processed

Figure B.20: $\Omega=0^{\circ}$: Residuals vs. Number of Observations Processed

Figure B.21: $\Omega=0^{\circ}$: Residuals Before Largest Outage vs. Time

Figure B.22: $\Omega=0^{\circ}$: Residuals After Largest Outage vs. Time

Figure B.23: $\Omega=0^{\circ}$: NMSE Before Largest Outage vs. Time

Figure B.24: $\Omega=0^{\circ}$: NMSE After Largest Outage vs. Time

Table B.7: $\Omega=0^{\circ}$: Intermediate Output

State	33 observations $(2695 s)$ - Before		79 observations (16970 s) - After	
	17077.7443	93.4052	123554.1400	47.8484
$\mathrm{Y}(\mathrm{m})$	65766.6982	1981.8738	37632.0560	70.8962
$\mathrm{Z}(\mathrm{m})$	8785.4193	426.7605	54013.8444	90.1187
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	69.1645	2.5717	5830.9754	0.0089
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	402.4925	15.1743	1819.2047	0.1625
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	266.2634	11.8059	7545.5126	0.1870
$\mathrm{yk}(\mathrm{m})$	276.0592	4.9075	72437.4711	2.3038
NMSE	$4.0674 \mathrm{E}-001$	$1.3350 \mathrm{E}-002$	$2.2345 \mathrm{E}+000$	$7.4732 \mathrm{E}-005$

Table B.8: $\Omega=0^{\circ}$: Output for All Observations (311-29325s) Processed

State	$\alpha($ EKF $)$	β (IEKF)
$\mathrm{X}(\mathrm{m})$	4816071.3633	84.0402
$\mathrm{Y}(\mathrm{m})$	2461167.8588	933.7677
$\mathrm{Z}(\mathrm{m})$	3802048.3414	1271.3336
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	1871.2821	0.4234
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	3623.3970	1.4689
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	5647.5764	2.1060
$\mathrm{yk}(\mathrm{m})$	5243457.7008	507.2702
NMSE	$4.0350 \mathrm{E}+000$	$1.3556 \mathrm{E}-003$

B.3.2 Longitude of the Ascending Node $\rightarrow \Omega=90^{\circ}$

Longitude of the Ascending Node 90 degrees

Figure B.25: $\Omega=90^{\circ}: \eta$ vs. Number of Observations Processed

Figure B.26: $\Omega=90^{\circ}$: Residuals vs. Number of Observations Processed

Figure B. $27: \Omega=90^{\circ}$: Residuals Before Largest Outage vs. Time

Figure B.28: $\Omega=90^{\circ}$: Residuals After Largest Outage vs. Time

Figure B.29: $\Omega=90^{\circ}$: NMSE Before Largest Outage vs. Time

Figure B.30: $\Omega=90^{\circ}$: NMSE After Largest Outage vs. Time

Table B.9: $\Omega=90^{\circ}$: Intermediate Output

State	256 observations $(7525 s)$ - Before		289 observations (12175 s) - After	
	17.1138	β (IEKF)	$\alpha(\mathrm{EKF})$	β (IEKF)
$\mathrm{Y}(\mathrm{m})$	9.8902	2.2958	48.9182	3.0406
$\mathrm{Z}(\mathrm{m})$	47.6340	1.9304	216.8610	0.9163
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0438	0.0100	9.0753	2.7026
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.0226	0.0001	0.1633	0.0056
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.0124	0.0075	0.0819	0.0006
$\mathrm{yk}(\mathrm{m})$	6.6001	1.7129	0.2202	0.0044
NMSE	$2.0006 \mathrm{E}-005$	$3.8020 \mathrm{E}-006$	$2.2582 \mathrm{E}-004$	$5.2616 \mathrm{E}-006$

Table B.10: $\Omega=90^{\circ}$: Output for All Observations (323-12915s) Processed

State	α (EKF)	β (IEKF)
$\mathrm{X}(\mathrm{m})$	68.8861	1.4080
$\mathrm{Y}(\mathrm{m})$	141.9399	0.7742
$\mathrm{Z}(\mathrm{m})$	131.4218	0.9827
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.1679	0.0061
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.1082	0.0001
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.1686	0.0052
$\mathrm{yk}(\mathrm{m})$	114.3858	0.5844
NMSE	$1.0019 \mathrm{E}-004$	$2.9362 \mathrm{E}-006$

B. 4 Variations on the Argument of Perigee

B.4.1 Argument of Perigee $\rightarrow \omega=45^{\circ}$

Figure B.31: $\omega=45^{\circ}: \eta$ vs. Number of Observations Processed

Figure B.32: $\omega=45^{\circ}$: Residuals vs. Number of Observations Processed

Figure B.33: $\omega=45^{\circ}$: Residuals Before Largest Outage vs. Time

Figure B.34: $\omega=45^{\circ}$: Residuals After Largest Outage vs. Time

Figure B.35: $\omega=45^{\circ}$: NMSE Before Largest Outage vs. Time

Figure B.36: $\omega=45^{\circ}$: NMSE After Largest Outage vs. Time

Table B.11: $\omega=45^{\circ}$: Intermediate Output

State	19 observations (395 s) - Before		53 observations (5270 s) - After	
	2724.5758	2579.9428	2986.3228	685.4223
$\mathrm{Y}(\mathrm{m})$	3020.5290	2587.4315	8828.9447	1967.9265
$\mathrm{Z}(\mathrm{m})$	1015.5812	1550.4209	7485.3752	1595.5966
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	34.0881	31.3766	8.9811	0.9847
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	3.0843	2.3657	4.0107	1.1805
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	13.0670	13.8903	5.7072	3.7943
$\mathrm{yk}(\mathrm{m})$	10.3421	5.3753	272.9182	72.8696
NMSE	$2.4088 \mathrm{E}-002$	$2.2472 \mathrm{E}-002$	$4.4730 \mathrm{E}-003$	$1.1370 \mathrm{E}-003$

Table B.12: $\omega=45^{\circ}$: Output for All Observations (301-13425s) Processed

State	α (EKF)	β (IEKF)
$\mathrm{X}(\mathrm{m})$	2098.7609	214.1174
$\mathrm{Y}(\mathrm{m})$	1943.8066	85.5751
$\mathrm{Z}(\mathrm{m})$	1073.0904	120.8817
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	3.6188	0.2484
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	3.2936	0.1270
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	1.7417	0.1291
$\mathrm{yk}(\mathrm{m})$	129.9064	16.1376
NMSE	$2.3449 \mathrm{E}-003$	$1.9357 \mathrm{E}-004$

B. 5 Variations on the True Anomaly

B.5.1 True Anomaly $\rightarrow \nu=90^{\circ}$

True Anomaly 90 degrees

Figure B. $37: \nu=90^{\circ}: \eta$ vs. Number of Observations Processed

Figure B.38: $\nu=90^{\circ}$: Residuals vs. Number of Observations Processed

Figure B.39: $\nu=90^{\circ}$: Residuals Before Largest Outage vs. Time

Figure B.40: $\nu=90^{\circ}$: Residuals After Largest Outage vs. Time

Figure B.41: $\nu=90^{\circ}$: NMSE Before Largest Outage vs. Time

Figure B.42: $\nu=90^{\circ}:$ NMSE After Largest Outage vs. Time

Table B.13: $\nu=90^{\circ}$: Intermediate Output

State	22 observations (110 s) - Before		70 observations (4860 s) - After	
	1681.0471	583.7434	69.6992	77.4679
$\mathrm{Y}(\mathrm{m})$	400.9202	16.4311	86.4232	63.8825
$\mathrm{Z}(\mathrm{m})$	4112.8134	2594.4797	150.5687	120.9722
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	7.1026	0.4560	0.0970	0.1351
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	1.3260	1.1095	0.3631	0.0991
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	12.1601	7.6690	1.2757	0.3698
$\mathrm{yk}(\mathrm{m})$	0.8732	0.6893	31.4049	9.8177
NMSE	$1.7805 \mathrm{E}-002$	$9.1377 \mathrm{E}-003$	$3.1994 \mathrm{E}-004$	$1.0862 \mathrm{E}-004$

Table B.14: $\nu=90^{\circ}$: Output for All Observations (301-16150 s) Processed

State	$\alpha($ EKF $)$	β (IEKF)
$\mathrm{X}(\mathrm{m})$	23.1059	7.0732
$\mathrm{Y}(\mathrm{m})$	32.1170	6.0575
$\mathrm{Z}(\mathrm{m})$	53.9966	26.2700
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0166	0.0002
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.0214	0.0048
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.0642	0.0337
$\mathrm{yk}(\mathrm{m})$	4.7738	10.1642
NMSE	$2.7934 \mathrm{E}-005$	$1.2870 \mathrm{E}-005$

B.5.2 True Anomaly $\rightarrow \nu=270^{\circ}$

True Anomaly 270 degrees

Figure B.43: $\nu=270^{\circ}: \eta$ vs. Number of Observations Processed

Figure B.44: $\nu=270^{\circ}$: Residuals vs. Number of Observations Processed

Figure B. $45: \nu=270^{\circ}$: Residuals Before Largest Outage vs. Time

Figure B.46: $\nu=270^{\circ}$: Residuals After Largest Outage vs. Time

Figure B.47: $\nu=270^{\circ}$: NMSE Before Largest Outage vs. Time

Figure B.48: $\nu=270^{\circ}$: NMSE After Largest Outage vs. Time

Table B.15: $\nu=270^{\circ}$: Intermediate Output

State	43 observations $(2,820 s)$ - Before		61 observations $(2,910 s)$ - After	
	14039.59483	2908.0591	2122.2537	65.95151
$\mathrm{Y}(\mathrm{m})$	10357.9379	206.7330	60.4991	29.0566
$\mathrm{Z}(\mathrm{m})$	746.5737	6057.0141	6353.7477	210.5541
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	9.5159	5.9085	7.2863	0.2481
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	1.3419	0.5698	0.6326	0.2020
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	5.3723	0.7508	0.8307	0.1025
$\mathrm{yk}(\mathrm{m})$	110.1015	0.0421	11.4919	1.5893
NMSE	$3.4027 \mathrm{E}-002$	$1.6058 \mathrm{E}-002$	$8.7018 \mathrm{E}-003$	$3.1182 \mathrm{E}-004$

Table B.16: $\nu=270^{\circ}$: Output for All Observations (326-41630s) Processed

State	α (EKF)	β (IEKF)
$\mathrm{X}(\mathrm{m})$	8.8143	0.8248
$\mathrm{Y}(\mathrm{m})$	15.5944	8.2807
$\mathrm{Z}(\mathrm{m})$	92.1830	45.0967
$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	0.0201	0.0364
$\mathrm{Vy}(\mathrm{m} / \mathrm{s})$	0.4172	0.2035
$\mathrm{Vz}(\mathrm{m} / \mathrm{s})$	0.4210	0.1500
$\mathrm{yk}(\mathrm{m})$	13.8092	4.3864
NMSE	$2.1635 \mathrm{E}-004$	$8.2804 \mathrm{E}-005$

