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Abstract

The growing space debris population threatens active and future missions bound for low

earth orbit. The purpose of this study is to determine if an iterated extended Kalman filter

(IEKF) can be used to yield better performance than the extended Kalman filter (EKF) in the

orbit determination of space debris in low earth orbit with poor apriori data and intermittent

observations. A simulation using two-body and J2 effects was constructed using actual Space

Surveillance Network sensor locations to generate experimental observational data, which

contains multiple data outages. This data was then used to compare the performance of the

EKF and IEKF. The filters are compared using the difference in the filter estimate and the

true state and the difference in the estimated observation and true observation. An increase

in estimate accuracy will allow for better predictions concerning the interaction of space

debris with missions in low earth orbit.

The IEKF was chosen for this study due to the low number of observations provided

and the large apriori covariance matrix. The state update step in the IEKF includes a local

iteration that processes each observation until convergence of the state update is reached,

which becomes the new best estimate of the state. Following the local convergence, the

covariance matrix is updated using this new estimate, which prevents the covariance matrix

from growing small as quickly as that of the EKF.
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Chapter 1

Introduction

The term space debris refers to any human created object in space that is not part

of an active mission. This broad scope includes propulsive stages, expired satellites, bolts,

pieces of experimental hardware, fuel tanks that could contain unspent fuel, fragments from

previous space debris collisions, and even a spare astronaut glove, which are a few examples

of space debris cluttering low earth orbit (LEO) and geosynchronous orbit (GEO) paths [1].

Since the launch of Sputnik 1 in 1957 by the Soviet Union, many nations have engaged in

multiple space launches, some of which have created space debris.

While most modern satellites contain a GPS receiver to provide constant and accurate

measurements, radar sites and optical telescopes provide the only tracking information avail-

able for space debris. This tracking data is used to determine the orbit of each debris object

as accurately as possible. Radar sites and optical telescopes provide limited coverage due

to environmental and mechanical constraints that can restrict the amount of observations

available for a piece of space debris depending on the position, velocity, orientation, and

size of each piece of debris. With the use of this intermittent data, traditional orbit deter-

mination methods that use the Extended Kalman Filter(EKF) can produce high residuals,

which can lead to divergence and failure of the filter. High residuals for a piece of debris

can increase the amount of fuel needed for nearby spacecraft to perform collision avoidance

maneuvers. This can also lead to poor predictions for close pass scenarios, which may result

in a collision.

This research evaluates the conceptual application of an Iterated Extended Kalman

Filter (IEKF) to the orbit determination of space debris in order to improve the accuracy

of the orbit determination process. The results of the IEKF are compared to those of a

1



standard EKF. This chapter will discuss the history of space debris, previous work done

concerning the space debris environment, and a more detailed problem description for this

specific study.

1.1 History

The primary concern of a growing space debris population is the increased probability

of collision with active missions; however, a secondary concern also exists, which involves

debris colliding with other debris, thereby generating even more debris. In 1978 Kessler and

Cour-Palais discussed the concern of an exponential growth of space debris due to fragments

from previous collisions causing future collisions. This exponential growth phenomenon due

to objects being added to the LEO environment faster than they can decay from orbit was

later defined as “The Kessler Syndrome.” Kessler and Cour-Palais also discuss hypervelocity

impacts, which cover the average impact velocity of 10 km/s of objects in LEO. Kessler

points out that a collision at this velocity can produce “very high instantaneous pressures”

on the order of 1000 GPa or 1.45 x 108 psi, which will usually result in the catastrophic

destruction of both objects [2]. NASA also notes that in LEO a 1 cm diameter object with

a few grams of mass contains the kinetic energy of a 250 kg mass moving 100 km/h [3].

Seeing a need to characterize the hazards of orbital debris to spacecraft and recommend

mitigation techniques to help minimize the growth of the orbit debris environment, NASA

established its orbital debris program in 1979. The orbital debris program grew quickly,

and even included the construction of hypervelocity gun facilities in order to develop new

shielding standards and technologies for the space shuttle and space station. In addition to

providing research for shielding technologies, the orbital debris program also began to estab-

lish mitigation standards. One of these important standards is the “25-year low-Earth orbit

lifetime limitation.” Under this standard, NASA stated that “maneuverable spacecraft that

are terminating their operational phases at altitudes of less than 2,000 km above Earth shall

be maneuvered to reduce their orbital lifetime, commensurate with 25-year low-Earth orbit

2



lifetime limitations [3].” This is very important in controlling the space debris environment

as atmospheric drag will eventually decay the orbits of these expired satellites, removing

them from the population [4].

The United States Strategic Command (USSTRATCOM) employs the Space Surveil-

lance Network (SSN) to track and catalog objects approximately 10 cm in diameter and

larger to aid in the orbit determination of those objects. Debris size, sensor coverage, orbit

parameters, and spacecraft/debris attitude (cross-sectional area visible by sensor) each affect

the amount of tracking data available for every object. Kessler mentions the complexity of

determining the space debris environment due to the difficulty to track objects smaller than

10 cm in diameter [2]. Moreover, large gaps in data, can cause certain filtering methods to

become unreliable and often biased, which can cause convergence to a trajectory other than

the true trajectory or to divergence. NASA also suggested in 1999 that for every cataloged

object of at least 10 cm diameter there are ten 1 cm and 10,000 1 mm diameter untrack-

able objects. In 2011, there were approximately 22,000 cataloged objects, of which data is

available publicly for about 16,000 of those objects [3].

In 2009, the collision between Iridium-33, an active communications satellite, and

Cosmos-2251, a Russian satellite that ceased functioning in 1993, produced 1,275 pieces

of debris that have been cataloged. Prediction software estimated a close approach between

the two satellites; however, that prediction was only one of many conjunctions that were

generated to warn of a pass within 5 km. Improvements in modeling, tracking, or filter-

ing the data from measurements could reduce the uncertainty involved in forecasting close

similar approaches [4].

In contrast to the accidental collision, the intentional destruction of the Chinese gov-

ernment’s Fengyun-1C spacecraft, to test its anti-satellite weapon, produced 3,135 pieces of

trackable debris. According to a NASA debris news update [5], the number of orbital debris

1 cm in diameter and larger associated with this satellite destruction is at least 150,000. The

amount of debris generated by these two collisions has been said to have effectively negated
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the work completed to mitigate the growth of the space debris environment for the past

twenty years [3].

1.2 Previous Research

Interactions with the space debris environment have been described as being active or

passive. Active methods involve techniques that directly interact with the debris, which

include the use of tethered satellites, projected lasers, robotics, and other similar techniques.

While these methods are expensive, complicated, and largely untested, they could be used

to alter the orbit of space debris to prevent collisions of debris with other debris as well

as active missions. Passive methods involve techniques that do not physically interact with

the debris. These methods include improvements to filtering methods, radar technology,

and mitigation techniques similar to NASA’s 25-year low-Earth orbit lifetime requirement.

Through these methods, the position and velocity of the debris can be estimated with less

error, which can lead to fewer collisions with active missions.

In 2008, Liou and Johnson[6] stated that the space debris environment is unstable, and

mitigation techniques involving limiting the lifetime of expired satellites to 25 years will not

be able to stabilize the population growth. In order to control the growth of the debris

environment, they suggest the removal of large debris that has high collision probability.

In their sensitivity study, the authors did not explore the technical or economic details

of removing high-risk large space debris. If twenty debris objects are removed per year

beginning in 2020, they predict the debris environment will stabilize by approximately 2080

[6]. Kessler revisited this phenomenon in 2010, and added that guidelines created in the last

ten years must be adhered to while also deploying an active method to retrieve the most

likely future debris sources in an attempt to prevent future spacecraft operators from facing

limited spacecraft lifetimes due to collisions [7].

In 2012, Sibert and Borgeson[8] wrote a paper focused on the number of detailed con-

junction assessments that must be performed and number of collision avoidance maneuvers

4



required to maintain a safe separation between objects. They began by showing that the

orbital debris environment has already reached a stage where The Kessler Syndrome has

taken over by presenting data that shows the debris environment growing even with zero fu-

ture launches. In their paper, they also show that the number of conjunctions and collision

avoidance maneuvers can be significantly reduced by reducing any or all of the following:

state vector position error at time of update, state vector position error growth rate, and the

delay between state vector updates. The most interesting part of their paper shows that im-

proving the previously mentioned tracking performance significantly outweighs actual debris

removal due to “very few debris objects turn[ing] out to be reliable repeat offenders[8].”

1.3 Problem Description

The growing debris population, shown in Figure 1.1, provided by the NASA Debris

Program Office, coupled with the unpredictable nature of debris has created a need for orbit

determination methods capable of obtaining more accurate estimates from fewer observa-

tions.

Figure 1.1: Debris Environment Trends
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The purpose of this study is to determine if an Iterated Extended Kalman Filter can be

used to yield better performance than the Extended Kalman filter in the orbit determination

of space debris with poor apriori data and intermittent observations. A simulation was

constructed using actual USN sensor locations to generate experimental observational data.

This data was then used to compare the performance of the EKF and IEKF.

Changes to the orbital parameters of the debris were analyzed to determine the effects

on filter performance. These initial conditions included variations to the following: altitude,

inclination, longitude of the ascending node, argument of perigee, and true anomaly.

It was necessary to determine the performance characteristics in order to define the

comparison of the two filters. The difference between the estimated state and actual state

was chosen as the first characteristic. Since the actual state is not available in a realistic

application, the second characteristic to be compared was the residuals of the estimates.
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Chapter 2

Relevant Theory

The first step in developing a simulation is to select the specific coordinate systems and

dynamical model. Orbit determination can use multiple reference frames, and many different

dynamical models. First, the coordinate systems will be introduced. Following the coodinate

systems, the equations of motion, orbital elements, and coordinate transformations will be

defined. A number of assumptions and limitations were taken into account and addressed

during this research. Gravity was modeled as the gradient of the geopotential function using

two-body and J2 effects only. Atmospheric drag was not modeled, which had no effect on

the research as the measurements were generated using the same assumption. No other

perturbation effects were involved.

2.1 Reference Frames

2.1.1 Earth Centered Inertial Coordinate System (ECI)

The origin of the ECI coordinate system, also referred to as the Geocentric equatorial

coordinate system, is the center of the earth. The coordinate system is right-handed and has

the following properties: the X axis points towards the vernal equinox with unit vector I,

the Z axis points in the direction of the north pole with unit vector K, and the fundamental

XY-plane coincides with the equatorial plane, defining the Y axis with unit vector J. The

coordinate system is not fixed to the earth, and therefore doesn’t rotate with it, but rather

the earth rotates relative to it. The ECI coordinate system is represented in Figure 2.1.
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X

Y

Z
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Vernal Equinox

center of 
Earth

I J

K

Figure 2.1: ECI coordinate system

2.1.2 Earth-Centered, Earth-Fixed Coordinate System (ECEF)

The origin of the ECEF coordinate system, is the center of the spherical earth. The

coordinate system is right-handed and has the following properties: the XE axis points

towards the Greenwich meridian with unit vector i, the ZE axis points in the direction of

the north pole with unit vector k, and the fundamental plane coincides with the equatorial

plane, defining the YE axis with unit vector j. The ECEF coordinate system rotates with the

earth, and therefore is not an inertial coordinate system. Tracking station coordinates are

typically provided in this system. See Figure 2.2 for a ECEF coordinate system compared

with the ECI system. Angle θ is known as the sidereal angle.
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Figure 2.2: ECEF coordinate system

2.1.3 Perifocal Coordinate System

The fundamental plane of the perifocal coordinate system is the orbital plane. The

coordinate system is right-handed and has the following properties: the P axis points towards

perigee, the Q axis lies in the orbital plane rotated 90 degrees from P, and the W axis is

perpendicular to the orbital plane and aligned with the angular momentum vector. The

perifocal coordinate system is shown in Figure 2.3.

V

Q

P

V

center of 
Earth

r

rp
perigee

object

Orbital plane

Figure 2.3: Perifocal coordinate system
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2.2 Two-body Equations of Motion

Newton’s second law of motion states that the sum of the external forces acting on a

particle with mass, m, position, r, and velocity, v, is equal to the time rate of change of the

product of the mass and velocity of the particle, which is represented in Equation 2.1.

∑
F =

d

dt
(mv) (2.1)

If the mass of the particle is constant with respect to time, Equation 2.1 becomes Equation 2.2

where r̈ represents the acceleration.

∑
F = mr̈ (2.2)

Netwon’s law of universal gravitation states that any two particles exert a gravitational

force on one another with magnitude,

F = G
m1m2

r2
(2.3)

where m1 and m2 are the masses of the particles, G is the universal gravitational constant,

and r is the magnitude of the position vector between them [9]. In the formulation of the

two-body problem, the masses of those two bodies are assumed to be point masses, which

satisfies the assumption of particles used in the formulation of Newton’s laws.

While Newton’s second law is valid in an inertial coordinate system, it can be modified

to be valid in the geocentric equatorial (ECI) coordinate system shown in Figure 2.1. In this

coordinate system, the acceleration of mass m2 relative to the Earth due to two-body effects

can be shown in Equation 2.4.

r̈ = − µ
r3
r (2.4)

The gravitational parameter, µ, is defined such that
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µ = G(m1 +m2) (2.5)

The motion of m2 relative to m1 in the ECI coordinate system is shown in Figure 2.4.

X

Y

Z

O

r

m1

m2

Figure 2.4: Two-body problem in a relative coordinate system

2.3 J2 Perturbation

It is well known that the Earth is a non-spherical, inhomogeneous body and not a

point mass. To model this non-uniform mass distribution, the equations of motion canl be

presented as the gradient of the gravity potential function U in Equation 2.6.

r̈ = ~∇U (2.6)

The dominating member of this gravity potential function is referred to as the oblateness

of the Earth, J2. The oblateness of the Earth, which is a bulge of mass symmetric about the

equator, is often modeled in orbit determination due to it being approximately 1000 times

larger than any of the other perturbation forces in LEO. The J2 perturbation causes short

period, long period, and secular changes in the orbital elements as presented in Table 2.1.
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Table 2.1: J2 changes in the orbital elements

Periodic Secular
a (semi-major axis) Ω (Longitude of the Ascending Node)

e (eccentricity) ω (Argument of periapsis)
i (inclination) ν (True anomaly)

XE

YE

ZE

λ

φ

m2

r

Figure 2.5: Orbit in Spherical Coordinates

In spherical coordinates, shown in Figure 2.5, the potential function of the J2 perturba-

tion is given in Equation 2.7 [10], where J2 is the oblateness constant, re is the mean radius

of the Earth, φ is the latitude, and λ is the longitude.

UJ2 =
−µ
r
J2

(re
r

)2((3

2

)
sin(φ)−

(
1

2

))
(2.7)

The acceleration on m2 due to J2 is obtained by taking the gradient of UJ2 . The

equations of motion of m2 can then be expressed by Equation 2.8 as

r̈ = − µ
r3
r + ~∇UJ2 (2.8)

Appendix A provides the transformation of ~∇UJ2 into the ECI coordinate frame, for

which the result is presented in Equation 2.9, where X1, X2, and X3 are the I, J, and K

components of the ECI position vector .
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~∇UJ2 = r̈J2 =
3
2
µJ2r

2
e

r7


X1 (5X2

3 − r2)

X2 (5X2
3 − r2)

X3 (5X2
3 − 3r2)

 (2.9)

The updated equations of motion will consist of the two-body effects combined with the

J2 effects. This is presented in Equation 2.10.

a = − µ
r3


X1

X2

X3

+
3
2
µJ2r

2
e

r7


X1 (5X2

3 − r2)

X2 (5X2
3 − r2)

X3 (5X2
3 − 3r2)

 (2.10)

2.4 Orbital Plane Orientation in Space

The use of orbital elements is a common way to describe an orbit in three-dimensional

space. Instead of solely dealing with position and velocity vectors, one can use a set of

the orbital elements that completely describe the orbit. For this problem, the classical

Keplerian orbital elements set will be used. The classical orbital elements are as follows

(also see Figure 2.6) [11]:

1. Semi-major axis (a) - specifies the size of the orbit

2. Eccentricity (e) - specifies the shape of the orbit

3. Inclination (i) - specifies the angle between the equatorial plane and orbital plane (one

of two elements that specify the orientation of the orbit plane)

4. Longitude of the ascending node (Ω) - specifies the angle measured counterclockwise

in the XY plane of the ECI system from the X axis to the point where the spacecraft

crosses the equatorial plane from south-to-north (one of two elements that specify the

orientation of the orbit plane)
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5. Argument of perigee (ω) - specifies the angle measured in the orbit plane in the direction

of motion, from the ascending node to perigee (specifies the orientation of the orbit in

the orbit plane)

6. True anomaly (ν) - measured from periapsis to r in the direction of travel (specifies

where on the orbit the spacecraft is located at any instant in time)

Ω

X

Y

Z

ω

Line of 
Nodes

V perigee

rp

i

r

V object

DN

AN

Figure 2.6: Orbital Elements

2.5 Coordinate Transformations

Orbital data can be represented by different values in different coordinate systems. Orbit

determination deals with multiple types of data from various coordinate frames, and it is

important to be able to clearly transform data from one system to another. This section

discusses the necessary coordinate transformations used in this research.
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2.5.1 Obtain ECI position and velocity vectors from the Keplerian orbital ele-

ments

Given the set of Keplerian orbital elements (a, e, i, Ω, ω, ν), calculate r and v as follows

[10]:

Step 1 - Calculate the parameter, or semi-latus rectum, p

p = a(1− e2) (2.11)

Step 2 - Calculate r using the trajectory equation

r =
p

1 + e · cos(ν)
(2.12)

Step 3 - Calculate the perifocal position vector

rp =


r · cos(ν)

r · sin(ν)

0

 (2.13)

Step 4 - Calculate the perifocal velocity vector

vp =


−
√

µ
p
· sin(ν)√

µ
p
· (e+ cos(ν))

0

 (2.14)
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Step 5 - Calculate the transformation matrix from the perifocal to ECI

[T ] =


cos(Ω)cos(ω)− sin(Ω)cos(i)sin(ω) −cos(Ω)sin(ω)− sin(Ω)cos(i)cos(ω) sin(Ω)sin(i)

sin(Ω)cos(ω) + cos(Ω)cos(i)sin(ω) −sin(Ω)sin(ω) + cos(Ω)cos(i)cos(ω) −cos(Ω)sin(i)

sin(i)sin(ω) sin(i)cos(ω) cos(i)



Step 6 - Calculate the ECI position and velocity vectors

r = [T ]rp (2.15)

v = [T ]vp (2.16)

2.5.2 Calculate the classical Keplerian orbital elements from ECI position and

velocity vectors

Step 1 - Calculate the orbital eccentricity, e

r = |~r|

v = |~v|

e =

(
v2

µ
− 1

r

)
r− 1

µ
(r · v)v

e = |e| (2.17)
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Step 2 - Calculate the semi-major axis, a

h = r× v

h = |h|

p =
h2

µ

a =
p

1− e2
(2.18)

Step 3 - Calculate the inclination, i

hK = h ·K

i = cos−1

(
hK
h

)
(2.19)

Step 4 - Calculate the longitude of the ascending node, Ω, and determine the correct quadrant

n = K× h

n =


nI

nj

0


[
I J K

]
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n = |n|

Ω = cos−1
(nI
n

)
(2.20)

If nJ < 0, then Ω > 180◦ → Ω = 360◦ − Ω (2.21)

If nJ > 0, then Ω < 180◦ (2.22)

Step 5 - Calculate the argument of periapsis, ω, and determine the correct quadrant

ω = cos−1
(n · e
n e

)
(2.23)

If eK > 0, then ω > 180◦ → ω = 360◦ − ω (2.24)

If eK < 0, then ω < 180◦ (2.25)

Step 6 - Calculate the true anomaly, ν, and determine the correct quadrant

ν = cos−1
(e · r
e r

)
(2.26)

If r · v < 0, then ν > 180◦ → ν = 360◦ − ν (2.27)
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If r · v > 0, then ν < 180◦ (2.28)

2.5.3 ECI to ECEF

To convert from the ECI coordinate frame to the ECEF coordinate frame, rotate through

the sidereal angle, θ, about the Z axis, as shown in Figure 2.2. This transformation is

produced in Equation 2.29.

rECEF =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 rECI (2.29)
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Chapter 3

State Estimation and Kalman Filtering

The general formulation of the orbit determination problem includes the following well

known relationships [12]:

Ẋ = F (X, t), X (tk) ≡ Xk (3.1)

Yk = G(Xk, tk) + εk; k = 1, ...,m (3.2)

where Equation 3.1 represents an n-dimensional system of differential equations, Ẋ, as a

nonlinear function, F , of the states, X, and time, t, and Equation 3.2 a measurement model,

Yk, with each entry as a nonlinear function, G, of the epoch states, X(tk) ≡ Xk, the epoch

time, tk, and an additive residual at the epoch time, εi, for a number of measurements, m.

The orbit determination is clearly a nonlinear estimation problem; however, Tapley [12]

shows that if a reference trajectory which remains sufficiently close to the true trajectory

can be determined, the trajectory can be linearized by using a Taylor series expansion about

the reference trajectory [12], X∗. This is an important step that will allow the application

of linear theory.

3.1 Linearization

The following linearization is provided by Tapley [12]. The state deviation, x(t), the dif-

ference between the true trajectory, X and reference trajectory, X∗, is given in Equation 3.3.

The observation residual, y(t), the difference between the observation and expected obser-

vation, is given in Equation 3.4.
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x(t) = X(t)−X∗(t) (3.3)

y(t) = Y(t)−Y∗(t) (3.4)

The derivative of the state deviation, ẋ(t), will be useful in the linearization process, and is

given in Equation 3.5.

ẋ(t) = Ẋ(t)− Ẋ∗(t) (3.5)

The Taylor series expansion of Equation 3.1 and Equation 3.2 are given in Equation 3.6 and

Equation 3.7 respectively where [ ]∗ indicates that the partial derivative is evaluated at the

reference solution, and OF and OG are orders of magnitude of the higher order terms in the

expansion that will be ignored due to their small magnitudes.

Ẋ(t) = F (X, t) = F (X∗, t) +

[
∂F (t)

∂X(t)

]∗
[X(t)−X∗(t)] +OF [X(t)−X∗(t)]2 (3.6)

Yk = G(Xk, tk) + εk = G(X∗
k, tk) +

[
∂G

∂X

]∗
k

[X(tk)−X∗
k(t)]k +OG[Xk(t)−X∗

k(t)]
2 + εk (3.7)

Using the conditions Ẋ∗ = F (X∗, t) and Y∗
k = G(X∗

k, tk), Equation 3.6 and Equation 3.7

can be written as Equation 3.10 and Equation 3.11 where the definitions of A(t) and Hk are

given below in Equation 3.8 and Equation 3.9 respectively.

A(t) =

[
∂F (t)

∂X(t)

]∗
(3.8)
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Hk =

[
∂G

∂X

]∗
k

(3.9)

ẋ(t) = A(t)x(t) (3.10)

yk = Hkxk + εk; k = 1, ...,m (3.11)

3.2 Kalman Filter

The sequential estimation algorithm, often called the Kalman Filter, processes measure-

ments individually as they are received. From Tapley [12], the Kalman filter equations are

given in Equation 3.12, Equation 3.13, and Equation 3.14. These equations assume that

the propagated state vector, x̂−
k , propagated covariance matrix, P−

k , current observation, Yk,

and current observation covariance, Rk are known.

Kk = P−
kH

T
k

[
HkP

−
kH

T
k + Rk

]−1
(3.12)

x̂+
k = x̂−

k + Kk

[
Yk −Hkx̂

−
k

]
(3.13)

P+
k = [I−KkHk]P

−
k (3.14)

3.2.1 Extended Kalman Filter

Large deviations from the reference trajectory can cause filter divergence. The Kalman

Filter performs an update to the reference trajectory only after all observations have been
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processed, regardless of processing each measurement individually. In constrast, the Ex-

tended Kalman Filter performs an update to the reference trajectory after each measurement

has been processed.

The following algorithm is provided by Tapley [12].

1. Integrate from tk−1 to tk using the dynamical model

x̂+
k−1 → x̂−

k (3.15)

P+
k−1 → P−

k (3.16)

2. Compute the residual and Hk matrix

yk = Yk −G(X∗
k, tk) (3.17)

Hk =
∂G

∂x

∣∣∣∣
x̂+
k−1

(3.18)

3. Compute the Kalman gain

Kk = PkH
T
k

[
HkPkH

T
k + Rk

]−1
(3.19)

4. Compute the updated state and covariance

x̂+
k = x̂−

k + Kk

[
Yk −Hkx̂

−
k

]
(3.20)

P+
k = [I−KkHk]P−

k (3.21)
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5. Update the reference trajectory to the current state estimate. If additional measure-

ments exist go to 1, otherwise stop.

X̂∗ = x̂+
k (3.22)

3.2.2 Iterated Extended Kalman Filter

In order to help minimize linearization errors in highly nonlinear problems, higher order

methods are often applied to a problem. In the linearization process used in Equation 3.6 and

Equation 3.7, the measurement equation was expanded about the reference solution. With

the use of the extended Kalman filter, the reference solution is updated by propagation,

x̂+
k−1 → x̂−

k , and processing of a measurement, x̂−
k → x̂+

k , which is the step including the

linearization about x̂−
k . Since x̂+

k represents the best estimate of the state xk after the

measurement is processed, the measurement equation could be re-linearized about this new

best estimate of the state to obtain a more accurate solution through as many iterations as

are desired.

The application of higher order filters carries the weight of additional computational

cost. In 1974, Gelb includes the iterated extended Kalman filter in his book with empha-

sis on “computation time required to mechanize the filter [13].” Jazwinski shows the IEKF

converges more quickly to the exact solution than the EKF; however,he notes that the EKF

will converge to the exact solution given enough measurements [14]. The solutions of both

filters are subject to changes in the a priori covariance matrix, measurement covariance, and

availability of measurements. As the a priori covariance matrix grows, measurement covari-

ance decreases, and number of measurements decreases, the performance IEKF is superior

to the EKF [14].

This derivation of the iterated extended Kalman filter algorithm is summarized from

Simon [15].

IEKF Algorithm
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1. Initialize the IEKF to the EKF estimate

x̂+
k,0 = x̂+

k (3.23)

P+
k,0 = P+

k (3.24)

2. Expanding the measurement equation around x̂+
k,i−1 yields Equation 3.26.

Hk,i =
∂G

∂x

∣∣∣∣
x̂+
k,i−1

(3.25)

yk,i = Yk −G(x+
k,i−1, tk) (3.26)

3. Calculate the Kalman gain, Kk,i for the current iteration.

Kk,i = P−
kH

T
k,i[Hk,iP

−
kH

T
k,i + Rk]−1 (3.27)

4. Calculate the covariance matrix, P, and the new best estimate of the state, x+
k,i+1, for

the current iteration.

P+
k,i = (I−Kk,iHk,i)P

−
k (3.28)

x̂+
k,i = x̂+

k + Kk,i[yk,i −Hk,i(x̂
+
k − x̂+

k,i−1)] (3.29)

5. Check for convergence. If convergence criterion not met, initialize the next iteration

and goto 2, otherwise stop.
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x̂+
k,i+1 = x̂+

k,i (3.30)

P+
k,i+1 = P+

k,i (3.31)
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Chapter 4

Simulation

A simulation was constructed to compare the performance of the EKF and IEKF in the

orbit determination scenario involving poor apriori information and intermittent observation

data for a piece of space debris. The simulation consisted of multiple functions and programs

to construct the orbit determination problem, and will be discussed in this chapter. The

initial conditions and statistical data, which vary for most test cases, will also be presented.

4.1 Baseline Initial Conditions

The initial conditions chosen for the baseline case included an eccentricity and inclina-

tion similar to the International Space Station, and are presented in Table 4.1. This orbit

was an important candidate for testing due to the future traffic and amount of debris existing

at that altitude.

Table 4.1: Baseline Initial Conditions

Orbital Elements Value

Perigee Altitude (m) 375134.9875

Apogee Altitude (m) 400249.8545

Inclination Angle (degrees) 51.6164

Longitude of Ascending Node (degrees) 270.1324

Argument of Periapsis (degrees) 0.0135

True Anomaly (degrees) 0.0297

The true initial state is given in Equation 4.1. The initial standard deviations, shown

in Equation 4.2, were chosen based on the results by Kelso [16] for approximately 5 days
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of propagation error of a TLE dataset. From these data, the initial covariance matrix in

Equation 4.3 was chosen, where σr is the covariance of the position and σv is the covariance

of the velocity.



X

Y

Z

Vx

Vy

Vz


=



165109.2914 m

−6748615.7425 m

188744.0459 m

4771.0926 m/s

284.9491 m/s

6023.9774 m/s


(4.1)

σr = 2500m

σv = 10m/s (4.2)

P0 =



σ2
rx 0 0 0 0 0

0 σ2
ry 0 0 0 0

0 0 σ2
rz 0 0 0

0 0 0 σ2
vx 0 0

0 0 0 0 σ2
vy 0

0 0 0 0 0 σ2
vz


=



25002 0 0 0 0 0

0 25002 0 0 0 0

0 0 25002 0 0 0

0 0 0 102 0 0

0 0 0 0 102 0

0 0 0 0 0 102


(4.3)

4.2 Test Cases

In order to properly compare the performance of the EKF and IEKF, multiple sets of

initial conditions and observational data were evaluated. The altitude, inclination, longitude
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of the ascending node, argument of periapsis, and true anomaly were altered individually for

each case.

A summary of non-baseline cases can be found in Table 4.2, which are listed by how

each case differs from the baseline case.

Table 4.2: Variations from Baseline Case

Case Number Variation of Value of Varied Terms

2 Altitude ra = 500km and rp = 700km

3 Altitude ra = 800km and rp = 1000km

4 Inclination i = 28.5◦

5 Inclination i = 75◦

6 Longitude of the Ascending Node Ω = 45◦

7 Longitude of the Ascending Node Ω = 90◦

8 Argument of Periapsis ω = 45◦

9 Argument of Periapsis ω = 90◦

10 True Anomaly ν = 90◦

11 True Anomaly ν = 270◦

4.3 Constants

Many constants are used when performing orbit determination. For completeness, Ta-

ble 4.3 lists the values of each constant used in this simulation.

Table 4.3: Constants

µ = 3.9860044150 ∗ 1014 m3

s2

J2 = 0.1082635666 ∗ 10−2

ωe = 7.2921156001 ∗ 10−5 rad
s

re = 6378.13630 km
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4.4 Dynamical Model

The dynamical model represents the equations of motion of the object, and is used

to propagate the state, Equation 4.4, forward through time. The dynamical model in this

simulation used Equation 2.10 to form the derivatives of the states, which are given in

Equation 4.5. This equation includes accelerations due to two-body motion and the J2

oblateness perturbation effects.

X =



rx

ry

rz

vx

vy

vz


=



X1

X2

X3

X4

X5

X6


(4.4)

Ẋ =



vx

vy

vz

ax

ay

az


=



X4

X5

X6

−µX1r4+
3
2
µJ2r2eX1(5X2

3−r2)
r7

−µX2r4+
3
2
µJ2r2eX2(5X2

3−r2)
r7

−µX3r4+
3
2
µJ2r2eX3(5X2

3−3r2)
r7


(4.5)

4.5 Measurement Model

The measurement consists of the equations for each measurement type. For this simu-

lation, range-only measurements, YR, were used, and are represented in Equation 4.6, where

XS, YS, and ZS are the ECEF coordinates of the tracking station and XE, YE, and ZE are

the ECEF coordinates of the object. Equation 4.7 is used to transform the ECEF coordi-

nates into the ECI coordinates of the model, which are also the first three entries in the ECI
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state vector. Substituting this result into Equation 4.6 yields Equation 4.8, the measurement

model in ECI coordinates.

YR =
[
(XE −XS)2 + (YE − YS)2 + (ZE − ZS)2

] 1
2 (4.6)


XE

YE

ZE

 =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1



X1

X2

X3

 (4.7)

YR =
[
(X1cos(θ) +X2sin(θ)−XS)2 + (−X1sin(θ) +X2cos(θ)− YS)2 + (X3 − ZS)2

] 1
2

(4.8)

4.6 Tracking Station Network

The tracking stations used to generate experimental data in the simulation were taken

from Vallado [17]. The sites used represent actual tracking stations that are a part of the

US Space Surveillance Network, and are represented in Table 4.4. This network consists of

mainly northern and western hemisphere stations, which lead to large gaps in the measure-

ment data.

To simplify the tracking network, the data in Table 4.5 was implemented. A maximum

range of 5,000 km was chosen to ensure range would not prevent the data generator from

producing measurements as the maximum range generated is on the order of 1,000 km.

To mitigate errors associated with sensing near the horizon, the minimum elevation angle

required to take a measurement was established at 20 degrees, which Vallado suggests for

optical sensors [17]. The sensors were assumed to have no mechanical, geographical, or

political constraints that could limit the azimuth. The range noise and bias were assumed

to be 5 m and 0 m respectively.
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Table 4.4: Tracking Station Coordinates (Geodetic C.S.)

Site Latitude(degrees) Longitude(degrees) Altitude(meters)

Flyingdales, UK 54.37 -0.67 338.9

Ascension, Atlantic -7.91 -14.40 56.1

Clear, AK 64.29 -149.19 213.3

Antigua, West Indies 17.14 -61.79 0.5

Cape Cod, MA 41.75 -70.54 80.3

Beale, CA 39.14 -121.35 115.7

Shemya, AK 52.74 -174.09 89.8

Thule, Greenland 76.57 -68.30 424.7

Cavalier, ND 48.72 -97.90 347.3

Kaena Point, HI 21.57 -158.27 300.2

Kwajalein Atoll, Pacific Ocean 9.39 167.48 62.7

Diego-Garcia, Indian Ocean -7.41 72.45 -61.2

Moron (MOSS), Spain 37.10 -5.37 287.0

Eglin, FL 30.57 -86.21 34.7

Socorro, NM 33.82 -106.66 1510.2

Globus II, Norway 70.37 31.13 1.2
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Table 4.5: Tracking Station Configuration Information

Maximum Range 5000 km

Minimum Elevation 20◦

Maximum Elevation 90◦

Minimum Azimuth 0 ◦

Maximum Azimuth 360◦

Range Noise 5 m

Range Bias 0 m

The simulated measurements were generated with an assumed maximum range and

minimum elevation angle from the tracking station to maintain a sense of realism, as well as

to add measurement outages.

The measurement rate was limited to the integration rate of 15 seconds.

The measurements were assumed to originate from tracking stations with zero bias, and

5 m noise in range.

To simulate a debris object for which tracking data is available, the initial estimate

of the state of the debris being tracked was obtained from a simulated two-line element

(TLE) data set on the order of two to five days old. This method generated a large apriori

covariance matrix with which to begin the estimation process.

4.7 Propagator

The propagation method chosen for this study was a fourth order Runge-Kutta. The

Runge-Kutta offers increased accuracy over the basic Euler method by calculating additional

interior points along the path from beginning of the step, t0, to the end of the step, t0 + ∆t.

The fourth order Runge-Kutta is widely documented, and can be found below in Equation 4.9

through Equation 4.13 [10].
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k1 = f (X(t0), t0) (4.9)

k2 = f

(
X(t0) +

∆t

2
k1, t0 +

∆t

2

)
(4.10)

k3 = f

(
X(t0) +

∆t

2
k2, t0 +

∆t

2

)
(4.11)

k4 = f

(
X(t0) + ∆t k3, t0 +

∆t

2

)
(4.12)

X(to + ∆t) =
∆t

6
(k1 + 2k2 + 2k3 + k4) (4.13)

4.8 Procedure

For each case, a set of initial conditions was defined. Those initial conditions were used

with the dynamics model, measurement model, ground station data, propagator, and data

generator to generate a set of data for that specific case. The generated data was then used

with the dynamics model, measurement mode, propagator, EKF algorithm, IEKF algorithm,

and a post processing script to generate MATLAB plots and data of the performance of each

filter. This data will be presented in the next chapter.
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Chapter 5

Results

5.1 Measure of Solution Accuracy

The vectors α and β represent the difference in the best estimate of the state given by

EKF, x̂EKF , and IEKF, x̂IEKF , respectively and the true solution, xTrue.

α = |x̂EKF − xTrue|

β = |x̂IEKF − xTrue|

The normalised mean squared error (NMSE), given by Equation 5.1, will be used to

define a performance parameter, η, which is given in Equation 5.2. By definition, if η > 0

the IEKF solution is more accurate; however, if η < 0 the EKF solution is more accurate.

∆n =

[
n∑
i=1

(x̂i − xi)
2

x̂i

] 1
2

(5.1)

η =
∆n,EKF

∆n,IEKF

− 1 (5.2)

5.2 Baseline Case

The baseline case consisted of 325 observations spanning 8 batches and 12,915 seconds,

of which details can be found in Table 5.1. The largest outage occurs between batch 6 and

batch 7, and lasts for 4490 seconds, which is approximately 80% of an orbit. The orbital
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parameters for this case can be found in Table 5.2, and represent an orbit similar to that of

the ISS.

Table 5.1: Baseline: Outage Details

Batch Number
1 2 3 4 5 6 7 8

First Measurement No. 1 46 92 115 161 211 259 292
Last Measurement No. 45 91 114 160 210 258 291 325

Start Time (s) 320 1195 1580 5590 6960 7290 12015 12750
End Time (s) 540 1420 1690 5815 7205 7525 12175 12915

Outage Before Batch (s) 320 655 160 3900 1145 85 4490 575

Table 5.2: Baseline: Orbit Parameters

Orbital Elements Value

Perigee Altitude (m) 375134.9875

Apogee Altitude (m) 400249.8545

Inclination Angle (degrees) 51.6164

Longitude of Ascending Node (degrees) 270.1324

Argument of Periapsis (degrees) 0.0135

True Anomaly (degrees) 0.0297

The residuals, the difference between the observation and the expected observation, for

the full set of data are shown in Figure 5.1. The residuals for both the EKF and IEKF

remain small for the entire simulation; however, the residuals for the IEKF remain closer to

zero than those of the EKF. This can be attributed to the re-linearization of the observation

model that is carried out multiple times for each observation in the IEKF. This trend will

remain present in the analysis of each case.

To allow closer inspection, Figure 5.2 and Figure 5.3 show the residuals for batch 6 and

batch 7 respectively. Batch 6 consisted of 47 measurements spanning 235 seconds, while

batch 7 consisted of 32 measurements spanning 160 seconds. Due to the very small residual

prior to the outage, the residual does not grow significantly in either filter between the final
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Figure 5.1: Baseline: Residuals vs. Number of Observations Processed

measurement in batch 6 to the first measurement in batch 7. The IEKF residuals for batch

7, Figure 5.3, remain clearly smaller than those for the EKF.
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Figure 5.2: Baseline: Residuals for Batch #6
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Figure 5.3: Baseline: Residuals for Batch #7
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The performance parameter, η, shown in Figure 5.4, remains above the reference zero

line for the entire simulation. This serves as a quick reference that the IEKF produced more

accurate estimates of the true state than the EKF.

The NMSE values for batch 6 and 7 are shown together in Figure 5.5. The NMSE values

for batch 6 and batch 7 individually are shown in Figure 5.6 and Figure 5.7 respectively. It

should be noted that the y-axis scale of these two figures are equal, which allows a direct

comparison. The NMSE of the EKF grows approximately 60% during the outage, while the

NMSE of the IEKF grows approximately 30%. This growth from an outage is expected;

however, the IEKF recovers to a lower value faster than the EKF.
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Figure 5.4: Baseline: η vs. Number of Observations Processed
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Figure 5.5: Baseline: NMSE for Batch #6 and Batch #7
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Figure 5.6: Baseline: NMSE for Batch #6
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Figure 5.7: Baseline: NMSE for Batch #7
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The performance of the filters was evaluated specifically for batch 6 and batch 7. Ta-

ble 5.3 contains data concerning the state, residual, and NMSE for both filters. For batch 6,

the α and β performance values, which represent the difference in the estimated state and

true state, remained small for both filters prior to the outage. The residuals of both filters

were also small; however, the residual of the IEKF was approximately an order of magnitude

smaller than that of the EKF.

Following the outage, and processing of batch 7, both residuals have increased. The

NMSE of the IEKF also remained smaller than that of the EKF. This is due again to the

IEKF processing an observation more than once, which leads to an artifically larger set of

observations for the IEKF.

Table 5.3: Baseline: Output Before/After Largest Outage

End of Batch #6 End of Batch #7
State α (EKF) β (IEKF) α (EKF) β (IEKF)
X(m) 0.7734 0.7548 5.0188 0.9288
Y(m) 0.5084 0.1123 6.4405 0.5038
Z(m) 2.7568 1.1256 3.8424 0.1541

Vx(m/s) 0.0115 0.0005 0.0065 0.0007
Vy(m/s) 0.0006 0.0001 0.0034 0.0003
Vz(m/s) 0.0061 0.0023 0.0043 0.0006
yk(m) 0.7927 0.0794 7.4162 1.0580
NMSE 4.0298E-006 7.1876E-007 7.0072E-006 8.2265E-007

After batch 8 has been processed, all data has been consumed. The performance values

can be found in Table 5.4. Given additional observations, the accuracy of the EKF improved,

which can be seen by the reduction in size of the residual and NMSE values when compared

to Table 5.3.
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Table 5.4: Baseline: All Observations (325 observations - 12915 s)

State α (EKF) β (IEKF)
X(m) 2.1986 0.1477
Y(m) 4.9208 0.4030
Z(m) 5.7930 0.5380

Vx(m/s) 0.0112 0.0007
Vy(m/s) 0.0028 0.0005
Vz(m/s) 0.0018 0.0012
yk(m) 3.2716 1.0989
NMSE 4.8866E-006 5.3018E-007

While the α and β values for the EKF continue to remain small, the values for the

position components are at least an order of magnitude larger than those of the IEKF.

Combining this result with the smaller residual and smaller NMSE value, the IEKF produced

a more accurate estimate of the state for the baseline case.

5.3 Inclination Variation Case → i = 75.0◦

The i = 75.0◦ case consisted of 326 observations spanning 9 batches and 13,410 seconds,

of which details can be found in Table 5.5. The largest outage occurs between batch 7 and

batch 8, and lasts for 5895 seconds, which is approximately 105% of an orbit. This outage

and the initial outage, the time before the beginning of batch 1, are approximately 30%

larger than those specific outages for the baseline case. These outage increases are due to

the finite number of ground stations modeled. The orbital parameters for this case can be

found in Table 5.6. This case differs from the baseline case only by the inclination angle.

Table 5.5: i = 75.0◦: Outage Details

Batch Number
1 2 3 4 5 6 7 8 9

First Measurement No. 1 22 71 117 153 183 202 232 279
Last Measurement No. 21 70 116 152 182 201 231 278 326

Start Time (s) 730 905 1330 2755 6330 6630 6970 13010 13410
End Time (s) 830 1145 1555 2930 6475 6720 7115 13240 13645

Outage Before Batch (s) 730 75 185 1200 3400 155 250 5895 170
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Table 5.6: i = 75.0◦: Orbit Parameters

Orbital Elements Value

Perigee Altitude (m) 375134.9875

Apogee Altitude (m) 400249.8545

Inclination Angle (degrees) 75.121

Longitude of Ascending Node (degrees) 270.1324

Argument of Periapsis (degrees) 0.0135

True Anomaly (degrees) 0.0297

The residuals for the full set of data are shown in Figure 5.8. The IEKF residuals remain

small, compared to the EKF residuals, for all observations; however, the EKF residuals grow

to near 200 m for some observations. The 30% increase in the initial outage coupled with

the size of the first batch, 20 observations compared to 45 observations for the baseline case,

leads the EKF to a less accurate estimate early in the simulation. For each batch of data,

the residual of the EKF begins to shrink; however, this process is interrupted by multiple

outages.
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Figure 5.8: i = 75◦ : Residuals vs. Number of Observations Processed

Figure 5.9 and Figure 5.10 show the residuals for batch 7 and batch 8 respectively.

Batch 7 consisted of 29 measurements spanning 145 seconds, while batch 8 consisted of 46

measurements spanning 230 seconds. For batch 7, not enough observations existed to allow

the EKF to attain an estimate as accurate as the IEKF. The residuals for the IEKF remained

small for the entire batch. For batch 8, the EKF processed enough observations to appear

to converge to an accurate estimate very close to that of the IEKF, which remained close to

zero for the entire batch.
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Figure 5.9: i = 75◦ : Residuals for Batch #7
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Figure 5.10: i = 75◦ : Residuals for Batch #8
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The performance parameter, η, shown in Figure 5.11, remains above the reference zero

line for the entire simulation. This serves as a quick reference that the IEKF produced more

accurate estimates of the true state than the EKF, which is the same result as the baseline

case.

The NMSE values for batch 7 and 8 are shown together in Figure 5.12. The NMSE

of the EKF begins and ends greater than the NMSE of the IEKF for both batches. The

NMSE values for batch 7 and batch 8 individually are shown in Figure 5.13 and Figure 5.14

respectively. For batch 7, the NMSE steadily decreases as observations are processed. Similar

to the residual, this trend would have continued given additional observations. For batch 8,

the NMSE of the EKF remains much higher, although relatively constant, than the NMSE

of the IEKF. This shows that the IEKF estimate of the state remains much closer to the

true state than the EKF estimate.

0 100 200 300 400
−20

0

20

40

60

80

100

Time (s)

η

 

 

η
Ref line

Figure 5.11: i = 75◦ : η vs. Number of Observations Processed
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Figure 5.12: i = 75◦ : NMSE for Batch #7 and Batch #8
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Figure 5.13: i = 75◦ : NMSE for Batch #7
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Figure 5.14: i = 75◦ : NMSE for Batch #8
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The performance of the filters was evaluated specifically for batch 7 and batch 8.

Table 5.7 contains data concerning the state, residual, and NMSE for both filters. For batch

7 α and β performance values remained approximately two orders of magnitude smaller for

the IEKF than those of the EKF. This can be attributed to the high residual for the EKF

at the end of batch 7. For batch 8 the residual for the EKF approaches a small number as

seen in Figure 5.10. However, this low residual does not correspond with a low NMSE value.

This is a representation of apparent divergence, which is convergence to the wrong value.

Table 5.7: i = 75.0◦: Intermediate Output

End of Batch #7 End of Batch #8
State α (EKF) β (IEKF) α (EKF) β (IEKF)
X(m) 32.0360 0.3094 317.7501 7.2187
Y(m) 175.8334 2.6102 109.3774 2.8083
Z(m) 207.6050 1.5862 48.3734 1.2793

Vx(m/s) 0.4586 0.0116 0.3879 0.0098
Vy(m/s) 0.2080 0.0023 0.3018 0.0040
Vz(m/s) 0.0540 0.0021 0.3622 0.0063
yk(m) 110.7678 0.8292 1.7156 1.1389
NMSE 9.0870E-004 2.2975E-005 3.9836E-004 9.3518E-006

After batch 9 has been processed, all data has been consumed. The performance values

can be found in Table 5.8. Similar to the results shown in Table 5.7, the IEKF produced a

more accurate estimate of the true state, as shown by the β values being at least one order

of magnitude smaller than the α values. The NMSE of the IEKF was approximately two

orders of magnitude smaller than that of the EKF after processing all observations.

Table 5.8: i = 75.0◦: Output for All Observations (326 - 13645 s) Processed

State α (EKF) β (IEKF)
X(m) 399.6702 9.7243
Y(m) 234.1288 4.8175
Z(m) 92.1286 2.1426

Vx(m/s) 0.1945 0.0055
Vy(m/s) 0.4273 0.0073
Vz(m/s) 0.3399 0.0064
yk(m) 25.9034 0.8774
NMSE 1.2476E-003 2.9886E-005
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5.4 Argument of Perigee Case → ω = 90◦

The ω = 90◦ case consisted of 318 observations spanning 8 batches and 16,460 seconds,

of which details can be found in Table 5.9. While the largest outage is smaller than the

largest outage of the previous case (i = 75.0◦), the initial outage is 4625 seconds. The poor

apriori covariance matrix is propagated for 85% of an orbit before the first observation is

processed. The orbital parameters for this case can be found in Table 5.10. This case differs

from the baseline case only by the argument of periapsis.

Table 5.9: ω = 90◦: Outage Details

Batch Number
1 2 3 4 5 6 7 8

First Measurement No. 1 49 97 133 161 208 222 270
Last Measurement No. 48 96 132 160 207 221 269 318

Start Time (s) 4625 4895 5660 7060 10235 10770 15915 16220
End Time (s) 4860 5130 5835 7195 10465 10835 16150 16460

Outage Before Batch (s) 4625 35 530 1225 3040 305 5080 70

Table 5.10: ω = 90◦: Orbit Parameters

Orbital Elements Value
Perigee Altitude (m) 375134.9875
Apogee Altitude (m) 400249.8545

Inclination Angle (degrees) 51.6164
Longitude of Ascending Node (degrees) 270.1324

Argument of Periapsis (degrees) 90.1943
True Anomaly (degrees) 0.0297

The residuals for the full set of data are shown in Figure 5.15. The IEKF residual re-

mains small for all observations; however, the EKF residual becomes large very quickly. The

combination of very accurate measurements (5 m measurement noise) and the large covari-

ance matrix following the starting outage cause the EKF to diverge quickly. The accurate

measurements cause the covariance matrix to approach zero before enough measurements

are processed to allow for the filter to converge. The small covariance matrix forces the

Kalman gain calculation to also be small. If the Kalman gain is small, the state update
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will also be small, regardless of the size of the residual. Figure 5.16 and Figure 5.17 provide

a closer look at the residuals for batch 6 and batch 7 respectively. Figure 5.16 shows the

residual of the EKF growing as more measurements are processed, which shows convergence

to an incorrect solution. In Figure 5.17 the EKF residuals become smaller with additional

observations; however, the scale of the graph shows that the EKF residuals remain large.
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Figure 5.15: ω = 90◦ : Residuals vs. Number of Observations Processed
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Figure 5.16: ω = 90◦ : Residuals for Batch #6
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Figure 5.17: ω = 90◦ : Residuals for Batch #7
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The performance parameter, η, shown in Figure 5.18, remains above the reference zero

line for the entire simulation. Due to the scale on the graph, it is difficult to see this for

approximately the first 150 observations.

The NMSE values for batch 6 and 7 are shown together in Figure 5.19. The NMSE

of the EKF begins and ends greater than the NMSE of the IEKF for both batches. The

NMSE values for batch 6 and batch 7 individually are shown in Figure 5.20 and Figure 5.21

respectively. For both batches, the IEKF NMSE value remains near zero, while the EKF

NMSE is many orders of magnitude larger. Figure 5.21 shows the EKF NMSE becoming

smaller similar to the residual from Figure 5.17. These large EKF NMSE values are a result

of the innacuracy of the EKF estimate.
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Figure 5.18: ω = 90◦ : η vs. Number of Observations Processed
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Figure 5.19: ω = 90◦ : NMSE for Batch #6 and Batch #7
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Figure 5.20: ω = 90◦ : NMSE for Batch #6
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Figure 5.21: ω = 90◦ : NMSE for Batch #67
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Table 5.11: ω = 90◦: Intermediate Output

End of Batch #6 End of Batch #7) - After
State α (EKF) β (IEKF) α (EKF) β (IEKF)
X(m) 407280.0317 4.9537 2340837.9835 8.0329
Y(m) 267709.9240 9.2157 566814.6803 0.7537
Z(m) 184296.0433 5.4234 3025870.0294 0.8134

Vx(m/s) 147.8404 0.0028 4731.1437 0.0081
Vy(m/s) 793.0966 0.0001 11469.8375 0.0044
Vz(m/s) 361.9798 0.0093 3859.5161 0.0169
yk(m) 183061.6412 7.8710 2134791.3973 3.3742
NMSE 3.3191E-001 8.2508E-006 3.0272E+000 6.9350E-006

Similar to the previous cases, the filter performance was compared for the batch before

and the batch following the largest outage. This information can be found in Table 5.11.

The EKF estimate has diverged from the true solution as clearly noted by the α values and

residual; however, the performance of the IEKF did not suffer due to the initial outage or any

outages throughout the simulation. This was due to the formulation of the IEKF algorithm.

The covariance matrix is not updated until the iterated solution for each observation has

converged, which is found in Equation 3.28.

Table 5.12: ω = 90◦: Output for All Observations (318 - 16460 s) Processed

State α (EKF) β (IEKF)
X(m) 3197640.7249 5.3589
Y(m) 2571119.2984 1.2943
Z(m) 3567720.2319 5.9253

Vx(m/s) 7062.2632 0.0104
Vy(m/s) 8570.047 0.0042
Vz(m/s) 4803.1641 0.0147
yk(m) 3662603.4439 0.3185
NMSE 9.3240E+000 1.8473E-005

Following the processing of all additional measurements, the final performance values

can be found in Table 5.12. The IEKF continues to produce an accurate estimate of the true

state, from which it differs by a maximum of approximately 6 m in any position component.

The EKF estimate has diverged completely, which can be stated from the difference from

the true state as well as the residual value.

57



5.5 Additional Results

Results for additional cases can be found Appendix B. The results of each case belong

to one of three categories, which are defined from the previously discussed cases. Cases

behaving similar to the baseline case include results where both filters provided accurate

and similar results. Apparent divergence in the EKF, similar to the i = 75.0◦ case, defines

the second category of results. EKF divergence defines the third category, and was evident

in the ω = 90◦ case. The categories of the additional test cases can be found in Table 5.13.

Table 5.13: Additional Results Details

Test Case Performance
i = 28.5◦ Similar performance

rp
ra

= 800km/1000km EKF divergence
rp
ra

= 500km/700km Similar performance

Ω = 0◦ EKF divergence
Ω = 90◦ Similar performance
ω = 45◦ Apparent divergence
ν = 90◦ Similar performance
ν = 270◦ Apparent divergence
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Chapter 6

Conclusions and Future Work

A simulation was built to compare the performance of an Extended Kalman Filter and

an Iterated Extended Kalman Filter for a piece of debris with poor apriori data, inter-

mittent, and innacurate observations. The altitude, inclination, longitude of the ascending

node, argument of periapsis, true anomaly, and measurement covariance were varied to gen-

erate fifteen cases of initial conditions for gaining the performance data for the two filtering

methods. With a constant ground network to generate observations, the longitude of the

ascending node, argument of periapsis, and true anomaly generated observation data sets

with varying measurement outage times, which tested the ability of the filters to recover

following an outage.

In many situations, the covariance matrix for the EKF became very small due to the low

observation covariance and lack of process noise. This lead to smugness, or filter divergence

due to the covariance matrix becoming small, in the EKF, an issue that was not antici-

pated during the problem formulation. The IEKF overcame this issue due to the process of

calculating the covariance matrix from processing each measurement multiple times.

The performance of the IEKF generally allowed for a more accurate estimation of the

state of the object with fewer measurements. However, this increase in accuracy occurred

with an increase in computing cost. On average, the IEKF uses triple the processing needed

by the EKF to produce an accuracy increase of at least an order of magnitude in the NMSE.

The changes to the observation residual of the measurement without a change to the

given observation residual produced unexpected results. Since the IEKF processes a mea-

surement multiple times, it was expected that an increase in the measurement noise to

increase the error in the estimate of the state produced by the IEKF. However, the IEKF
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continued to produce a more accurate estimate of the state than the EKF in this situation

due to the ability to continue processing a measurement until local convergence.

To enhance this study in the future, many changes could be made to the simulation.

Including process noise and aerodynamic drag in the dynamical model, adding intermittent

measurements based on the attitude of the debris, and incorporating a detailed analysis of

the computing power required are a few changes that could be incorporated to extend this

study. The addition of process noise would test the ability of the IEKF to filter unknown

accelerations. Aerodynamic drag calculations would allow LEO conditions to be better

tested. Intermittent measurements based on the attitude of the debris would allow for the

modeling of debris that might not produce a radar echo due to an orientation, which is an

issue with lower power radar stations or small debris. A detailed analysis of the increase in

computing power would allow for the formation of a ratio of increased power needed to the

increase in accuracy to be defined. This definition would allow for an in depth study of all

higher order filters for orbit determination to be compared more easily.
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Appendix A

Derivation of J2 Equations of motion

In chapter 2, the acceleration due to the J2 perturbation was discussed. The full deriva-

tion of the J2 acceleration in ECI components will be presented here, which will begin with

Equation 2.7 and Equation 2.8, and end with Equation 2.9, which are also presented below

as Equation A.1, Equation A.2, and Equation A.3 respectively for completion.

UJ2 =
−µ
r
J2

(re
r

)2((3

2

)
sin(φ)−

(
1

2

))
(A.1)

r̈ = ∇UJ2 (A.2)

r̈J2 =
3
2
µJ2r

2
e

r7


X1 (5X2

3 − r2)

X2 (5X2
3 − r2)

X3 (5X2
3 − 3r2)

 (A.3)

Expanding the gradient operator in Equation A.2 yields Equation A.4, which will be

evaluated individually by component.

∇UJ2 =
∂UJ2
∂X1

Î +
∂UJ2
∂X2

Ĵ +
∂UJ2
∂X3

K̂ (A.4)

The definition of r in the ECI coordinate system and the norm of r, Equation A.5 and

Equation A.6 respectfully, will be used to transform a portion of Equation A.1 from spherical
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coordinate frame to the ECI coordinate frame. A substitution for sin(φ) will complete the

transformation, and is found from Figure 2.5. This is presented in Equation A.7.

r = [X1 X2 X3]


I

J

K

 (A.5)

r =
[
X2

1 +X2
2 +X2

3

] 1
2 (A.6)

sin(φ) =
X3

r
(A.7)

Substitute Equation A.7 into Equation A.1 and distribute.

UJ2 =
−3

2
µJ2r

2
eX

2
3

r5
+

1
2
µJ2r

2
e

r3
(A.8)

Substitute Equation A.6 into Equation A.8 and invert the denominators. This now gives

UJ2 only in terms of constants and the components of the ECI position vector.

UJ2 = −3

2
µJ2r

2
eX

2
3

(
X2

1 +X2
2 +X2

3

)− 5
2 +

1

2
µJ2r

2
e

(
X2

1 +X2
2 +X2

3

)− 3
2 (A.9)

Combine the constants µ J2 and r2e to form a new constant C and substitute into

Equation A.9.

C = µJ2r
2
e (A.10)

UJ2 = −3

2
CX2

3

(
X2

1 +X2
2 +X2

3

)− 5
2 +

1

2
C
(
X2

1 +X2
2 +X2

3

)− 3
2 (A.11)
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Î Component

(∇UJ2)i =
∂

∂X1

[
−3

2
CX2

3

(
X2

1 +X2
2 +X2

3

)− 5
2 +

1

2
C
(
X2

1 +X2
2 +X2

3

)− 3
2

]
(A.12)

Perform the chain rule on each portion of the sum.

(∇UJ2)i =

(
−15

4

)
(2X1)CX

2
3

(
X2

1 +X2
2 +X2

3

)− 7
2 +

(
−3

4

)
(2X1)C

(
X2

1 +X2
2 +X2

3

)− 5
2

(A.13)

Simplify, obtain a common denominator, factor the numerator and substitute for C.

(∇UJ2)i =

(
15

2

)
CX2

3X1

r7
+

(
−3

2

)
CX1

r5
(A.14)

(∇UJ2)i =

(
15

2

)
CX2

3X1

r7
+

(
−3

2

)
CX1r

2

r7
(A.15)

(∇UJ2)i =
3
2
µJ2r

2
eX1 (5X2

3 − r2)
r7

(A.16)

Ĵ Component

(∇UJ2)j =
∂

∂X2

[
−3

2
CX2

3

(
X2

1 +X2
2 +X2

3

)− 5
2 +

1

2
C
(
X2

1 +X2
2 +X2

3

)− 3
2

]
(A.17)

Perform the chain rule on each portion of the sum.
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(∇UJ2)j =

(
15

4

)
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(A.18)

Simplify, obtain a common denominator, factor the numerator and substitute for C.
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(
15

2

)
CX2

3X2

r7
+

(
−3

2

)
CX2r

2

r7
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(A.21)

K̂ Component

(∇UJ2)k =
∂
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2 +X2
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(A.22)

Perform the chain rule on each portion of the sum (broken into the three terms for

clarity).
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+

(
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)
(2X3)C

(
X2

1 +X2
2 +X2

3

)− 5
2 (A.25)

Sum Equations A.23 - A.25 and simplify, obtain a common denominator, factor the

numerator and substitute for C.
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3
2
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2
eX3 (5X2

3 − 3r2)

r7
(A.28)

Result

Combining Equation A.16, Equation A.21, and Equation A.28 yields the equations of

motion for the J2 perturbation in the ECI coordinate frame.

aJ2 =
3
2
µJ2r

2
e

r7


X1 (5X2

3 − r2)

X2 (5X2
3 − r2)

X3 (5X2
3 − 3r2)

 (A.29)
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Appendix B

Additional Results

B.1 Variations on Inclination

B.1.1 Inclination → i = 28.5◦
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Figure B.1: i = 28.5◦ : η vs. Number of Observations Processed
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Figure B.2: i = 28.5◦ : Residuals vs. Number of Observations Processed
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Figure B.3: i = 28.5◦ : Residuals Before Largest Outage vs. Time
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Figure B.4: i = 28.5◦ : Residuals After Largest Outage vs. Time
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Figure B.5: i = 28.5◦ : NMSE Before Largest Outage vs. Time
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Figure B.6: i = 28.5◦ : NMSE After Largest Outage vs. Time

Table B.1: i = 28.5◦: Intermediate Output

101 observations (1900 s) - Before 143 observations (5790 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 696.7952 447.1226 169.4131 78.3011

Y(m) 50.5685 15.1300 476.5338 217.3360

Z(m) 94.0815 71.4660 461.5652 215.0349

Vx(m/s) 1.9554 1.2306 0.5576 0.2643

Vy(m/s) 0.2796 0.1241 0.0613 0.0128

Vz(m/s) 1.1402 0.8525 0.0168 0.0021

yk(m) 82.3730 44.7652 55.6191 23.8096

NMSE 7.4027E-004 5.1267E-004 4.4888E-004 2.0883E-004
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Table B.2: i = 28.5◦: Output for All Observations (307 - 7830 s) Processed

State α (EKF) β (IEKF)

X(m) 3.1548 2.4580

Y(m) 21.5692 10.5556

Z(m) 87.5892 45.5551

Vx(m/s) 0.0584 0.0299

Vy(m/s) 0.0095 0.0046

Vz(m/s) 0.2404 0.1244

yk(m) 17.1910 7.7568

NMSE 9.5393E-005 4.9467E-005

B.2 Variations on Altitude

B.2.1 Altitudes → rp
ra

= 800km/1000km
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Figure B.7: rp
ra

= 800km/1000km : η vs. Number of Observations Processed
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Figure B.8: rp
ra

= 800km/1000km : Residuals vs. Number of Observations Processed
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Figure B.9: rp
ra

= 800km/1000km : Residuals Before Largest Outage vs. Time
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Figure B.10: rp
ra

= 800km/1000km : Residuals After Largest Outage vs. Time
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Figure B.11: rp
ra

= 800km/1000km : NMSE Before Largest Outage vs. Time
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Figure B.12: rp
ra

= 800km/1000km : NMSE After Largest Outage vs. Time

Table B.3: rp
ra

= 800km/1000km: Intermediate Output

103 observations (3180 s) - Before 193 observations (13735 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 30803.5776 843.7531 10827.2371 68.2194

Y(m) 21335.0050 2114.0440 19576.7362 58.0021

Z(m) 22438.5898 898.8687 3489.0570 328.0003

Vx(m/s) 34.8935 0.1445 110.3779 0.0079

Vy(m/s) 12.7174 3.5697 84.6951 0.1300

Vz(m/s) 17.0665 2.3051 101.5724 0.1981

yk(m) 126.8850 4.5325 22496.07682 0.0034

NMSE 6.0557E-002 3.9742E-003 2.4168E-001 4.4422E-004
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Table B.4: rp
ra

= 800km/1000km: Output for All Observations (387 - 20195 s) Processed

State α (EKF) β (IEKF)

X(m) 669004.4833 483.2484

Y(m) 580538.8523 86.5897

Z(m) 701111.6741 1743.8944

Vx(m/s) 73.9316 0.9436

Vy(m/s) 991.5891 1.1375

Vz(m/s) 1289.7717 1.4730

yk(m) 82558.1852 102.4162

NMSE 1.7505E+000 1.9810E-003

B.2.2 Altitudes → rp
ra

= 500km/700km
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Figure B.13: rp
ra

= 500km/700km : η vs. Number of Observations Processed
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Figure B.14: rp
ra

= 500km/700km : Residuals vs. Number of Observations Processed
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Figure B.15: rp
ra

= 500km/700km : Residuals Before Largest Outage vs. Time
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Figure B.16: rp
ra

= 500km/700km : Residuals After Largest Outage vs. Time
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Figure B.17: rp
ra

= 500km/700km : NMSE Before Largest Outage vs. Time
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Figure B.18: rp
ra

= 500km/700km : NMSE After Largest Outage vs. Time

Table B.5: rp
ra

= 500km/700km: Intermediate Output

230 observations (1845 s) - Before 293 observations (3090 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 3.9550 2.5127 2.9155 1.3144

Y(m) 1.8746 0.9790 5.2372 2.1131

Z(m) 0.3748 0.3505 1.2955 0.4534

Vx(m/s) 0.0039 0.0030 0.0001 0.0001

Vy(m/s) 0.0027 0.0004 0.0069 0.0025

Vz(m/s) 0.0010 0.0005 0.0019 0.0010

yk(m) 4.1478 4.2310 1.7809 1.6388

NMSE 2.2612E-006 1.5855E-006 4.9449E-006 1.9766E-006
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Table B.6: rp
ra

= 500km/700km: Output for All Observations (352 - 6125 s) Processed

State α (EKF) β (IEKF)

X(m) 1.2736 0.9745

Y(m) 0.5712 0.0809

Z(m) 0.0420 0.1487

Vx(m/s) 0.0003 0.0007

Vy(m/s) 0.0008 0.0004

Vz(m/s) 0.0001 0.0001

yk(m) 1.3117 1.3566

NMSE 8.1530E-007 6.2982E-007

B.3 Variations on Longitude of the Ascending Node

B.3.1 Longitude of the Ascending Node → Ω = 0◦
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Figure B.19: Ω = 0◦ : η vs. Number of Observations Processed
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Figure B.20: Ω = 0◦ : Residuals vs. Number of Observations Processed
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Figure B.21: Ω = 0◦ : Residuals Before Largest Outage vs. Time
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Figure B.22: Ω = 0◦ : Residuals After Largest Outage vs. Time
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Figure B.23: Ω = 0◦ : NMSE Before Largest Outage vs. Time
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Figure B.24: Ω = 0◦ : NMSE After Largest Outage vs. Time

Table B.7: Ω = 0◦: Intermediate Output

33 observations (2695 s) - Before 79 observations (16970 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 17077.7443 93.4052 123554.1400 47.8484

Y(m) 65766.6982 1981.8738 37632.0560 70.8962

Z(m) 8785.4193 426.7605 54013.8444 90.1187

Vx(m/s) 69.1645 2.5717 5830.9754 0.0089

Vy(m/s) 402.4925 15.1743 1819.2047 0.1625

Vz(m/s) 266.2634 11.8059 7545.5126 0.1870

yk(m) 276.0592 4.9075 72437.4711 2.3038

NMSE 4.0674E-001 1.3350E-002 2.2345E+000 7.4732E-005
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Table B.8: Ω = 0◦: Output for All Observations (311 - 29325 s) Processed

State α (EKF) β (IEKF)

X(m) 4816071.3633 84.0402

Y(m) 2461167.8588 933.7677

Z(m) 3802048.3414 1271.3336

Vx(m/s) 1871.2821 0.4234

Vy(m/s) 3623.3970 1.4689

Vz(m/s) 5647.5764 2.1060

yk(m) 5243457.7008 507.2702

NMSE 4.0350E+000 1.3556E-003

B.3.2 Longitude of the Ascending Node → Ω = 90◦

Longitude of the Ascending Node 90 degrees
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Figure B.25: Ω = 90◦ : η vs. Number of Observations Processed
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Figure B.26: Ω = 90◦ : Residuals vs. Number of Observations Processed
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Figure B.27: Ω = 90◦ : Residuals Before Largest Outage vs. Time
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Figure B.28: Ω = 90◦ : Residuals After Largest Outage vs. Time
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Figure B.29: Ω = 90◦ : NMSE Before Largest Outage vs. Time
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Figure B.30: Ω = 90◦ : NMSE After Largest Outage vs. Time

Table B.9: Ω = 90◦: Intermediate Output

256 observations (7525 s) - Before 289 observations (12175 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 17.1138 2.2958 48.9182 3.0406

Y(m) 9.8902 0.4304 216.8610 0.9163

Z(m) 47.6340 1.9219 9.0753 2.7026

Vx(m/s) 0.0438 0.0100 0.1633 0.0056

Vy(m/s) 0.0226 0.0001 0.0819 0.0006

Vz(m/s) 0.0124 0.0075 0.2202 0.0044

yk(m) 6.6001 1.7129 145.7722 3.2522

NMSE 2.0006E-005 3.8020E-006 2.2582E-004 5.2616E-006
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Table B.10: Ω = 90◦: Output for All Observations (323 - 12915 s) Processed

State α (EKF) β (IEKF)

X(m) 68.8861 1.4080

Y(m) 141.9399 0.7742

Z(m) 131.4218 0.9827

Vx(m/s) 0.1679 0.0061

Vy(m/s) 0.1082 0.0001

Vz(m/s) 0.1686 0.0052

yk(m) 114.3858 0.5844

NMSE 1.0019E-004 2.9362E-006

B.4 Variations on the Argument of Perigee

B.4.1 Argument of Perigee → ω = 45◦
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Figure B.31: ω = 45◦ : η vs. Number of Observations Processed
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Figure B.32: ω = 45◦ : Residuals vs. Number of Observations Processed
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Figure B.33: ω = 45◦ : Residuals Before Largest Outage vs. Time
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Figure B.34: ω = 45◦ : Residuals After Largest Outage vs. Time
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Figure B.35: ω = 45◦ : NMSE Before Largest Outage vs. Time
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Figure B.36: ω = 45◦ : NMSE After Largest Outage vs. Time

Table B.11: ω = 45◦: Intermediate Output

19 observations (395 s) - Before 53 observations (5270 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 2724.5758 2579.9428 2986.3228 685.4223

Y(m) 3020.5290 2587.4315 8828.9447 1967.9265

Z(m) 1015.5812 1550.4209 7485.3752 1595.5966

Vx(m/s) 34.0881 31.3766 8.9811 0.9847

Vy(m/s) 3.0843 2.3657 4.0107 1.1805

Vz(m/s) 13.0670 13.8903 5.7072 3.7943

yk(m) 10.3421 5.3753 272.9182 72.8696

NMSE 2.4088E-002 2.2472E-002 4.4730E-003 1.1370E-003
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Table B.12: ω = 45◦: Output for All Observations (301 - 13425 s) Processed

State α (EKF) β (IEKF)

X(m) 2098.7609 214.1174

Y(m) 1943.8066 85.5751

Z(m) 1073.0904 120.8817

Vx(m/s) 3.6188 0.2484

Vy(m/s) 3.2936 0.1270

Vz(m/s) 1.7417 0.1291

yk(m) 129.9064 16.1376

NMSE 2.3449E-003 1.9357E-004

B.5 Variations on the True Anomaly

B.5.1 True Anomaly → ν = 90◦

True Anomaly 90 degrees
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Figure B.37: ν = 90◦ : η vs. Number of Observations Processed
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Figure B.38: ν = 90◦ : Residuals vs. Number of Observations Processed
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Figure B.39: ν = 90◦ : Residuals Before Largest Outage vs. Time
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Figure B.40: ν = 90◦ : Residuals After Largest Outage vs. Time
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Figure B.41: ν = 90◦ : NMSE Before Largest Outage vs. Time
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Figure B.42: ν = 90◦ : NMSE After Largest Outage vs. Time

Table B.13: ν = 90◦: Intermediate Output

22 observations (110 s) - Before 70 observations (4860 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 1681.0471 583.7434 69.6992 77.4679

Y(m) 400.9202 16.4311 86.4232 63.8825

Z(m) 4112.8134 2594.4797 150.5687 120.9722

Vx(m/s) 7.1026 0.4560 0.0970 0.1351

Vy(m/s) 1.3260 1.1095 0.3631 0.0991

Vz(m/s) 12.1601 7.6690 1.2757 0.3698

yk(m) 0.8732 0.6893 31.4049 9.8177

NMSE 1.7805E-002 9.1377E-003 3.1994E-004 1.0862E-004
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Table B.14: ν = 90◦: Output for All Observations (301 - 16150 s) Processed

State α (EKF) β (IEKF)

X(m) 23.1059 7.0732

Y(m) 32.1170 6.0575

Z(m) 53.9966 26.2700

Vx(m/s) 0.0166 0.0002

Vy(m/s) 0.0214 0.0048

Vz(m/s) 0.0642 0.0337

yk(m) 4.7738 10.1642

NMSE 2.7934E-005 1.2870E-005

B.5.2 True Anomaly → ν = 270◦

True Anomaly 270 degrees
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Figure B.43: ν = 270◦ : η vs. Number of Observations Processed
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Figure B.44: ν = 270◦ : Residuals vs. Number of Observations Processed
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Figure B.45: ν = 270◦ : Residuals Before Largest Outage vs. Time
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Figure B.46: ν = 270◦ : Residuals After Largest Outage vs. Time
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Figure B.47: ν = 270◦ : NMSE Before Largest Outage vs. Time
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Figure B.48: ν = 270◦ : NMSE After Largest Outage vs. Time

Table B.15: ν = 270◦: Intermediate Output

43 observations (2,820 s) - Before 61 observations (2,910 s) - After

State α (EKF) β (IEKF) α (EKF) β (IEKF)

X(m) 14039.59483 2908.0591 2122.2537 65.95151

Y(m) 10357.9379 206.7330 60.4991 29.0566

Z(m) 746.5737 6057.0141 6353.7477 210.5541

Vx(m/s) 9.5159 5.9085 7.2863 0.2481

Vy(m/s) 1.3419 0.5698 0.6326 0.2020

Vz(m/s) 5.3723 0.7508 0.8307 0.1025

yk(m) 110.1015 0.0421 11.4919 1.5893

NMSE 3.4027E-002 1.6058E-002 8.7018E-003 3.1182E-004
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Table B.16: ν = 270◦: Output for All Observations (326 - 41630 s) Processed

State α (EKF) β (IEKF)

X(m) 8.8143 0.8248

Y(m) 15.5944 8.2807

Z(m) 92.1830 45.0967

Vx(m/s) 0.0201 0.0364

Vy(m/s) 0.4172 0.2035

Vz(m/s) 0.4210 0.1500

yk(m) 13.8092 4.3864

NMSE 2.1635E-004 8.2804E-005
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