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Abstract

Since the discovery of carbon nanotubes (CNTs), they have been attracted much at-
tention with abundant potential applications based on their outstanding properties. CNTs
are well-known for their superior mechanical strength and low weight, excellent heat con-
ductance, and varying electronic properties depending on their helicity and diameter. In
particular, the recent research studies have reported that CNTs have excellent electrical
field emission properties, with high emission currents at low electric field strength due to the
high aspect ratio (small diameter and relatively long length). As a result, CNTs are consid-
ered as one of the promising materials as cold-cathode field emission sources, especially for
application requiring high-current densities and lightweight packaging.

In this research work, the selective and non-selective multi-wall CNTs (MWCNTSs) are
grown by using chemical vapor deposition (CVD) technique. Then, their field emission
properties are examined in a high pressure vacuum chamber of around 10~7 to 10~% Torr.
MWCNTs are grown onto various underlying layers such as SiO,,Ti ;and W-coated silicon
substrates. Thermal CVD furnace containing gas mixtures of acetylene and argon is used to
grow CNTs. The growth conditions such as catalyst types and thickness, gas flow rate and
deposition temperature are discussed. Effects of different catalysts with various underlayers
on the field emission properties of CNTs are studied and results are presented. The mea-
surement results indicate that CN'Ts have significant field emission capabilities to be used

as cold cathode materials.
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Chapter 1
INTRODUCTION

Since the first amazing discovery of carbon nanotubes (CNTs) by Japanese physicist
lijima in 1991 using arc discharge method [1], they have attracted considerable interest
because of their extraordinary properties. CNTs are known for their superior mechanical
strength, low weight, good heat conductance, and varying electronic properties depending
on their helicity and diameter. In particular, the recent research studies [2-4] have reported
that CN'Ts have excellent electrical field emission properties, with high emission currents at
low electric field strength. The turn-on voltage of CNTs can be as low as 1-3 V/um and
emission current can be as high as 0.1mA from a single nanotube [5]. As a result, CNT are
considered as one of the promising materials as cold-cathode field emission sources, especially
for application requiring high-current densities and lightweight packaging.

CNTs are essentially tubes with the diameter of nanometer and made of carbon. One
could think of it as a graphene sheet rolled upinto tubes. The structure of a graphene sheet
is shown in Figure 1.1 [6], which is a planar sheet of carbon atoms that are densely packed in
a honeycomb crystal lattice. CNTs are distinguished by their numbers of concentric layers
(“wall”), with spacing ~ 0.34nm, and their chirality (wrapping angle). They are typically
categorized as single-wall CNTs (SWCNTSs), double-wall CNTs (DWCNTSs), and multi-wall
CNTs (MWCNTSs) with respect to the numbers of graphitic layer, as shown in Figure 1.2 [7].
The typical diameter of SWCNTs are 0.4 to 5nm, and MWCNTs can be up to 100nm. The
number of sidewalls of CNT's can can be precisouly controlled by the preparation of catalyst
that serves as the CN'T growth sites that is deposited onto the substrate prior to the growth.

There are two general growth mechanisms that have been proposed [8]. When the

catalyst particles remain anchored to the substrate, this is known as “base-growth” model



Figure 1.1: Schematic of an individual layer of honeycomb-like carbon called graphene,
rolling into CNT [6]

(Figure 1.3 [8]). On the other hand, the growth follows a “tip-growth” model when the
metal catalyst particles lift off from the substrate and remain at the top of the CNTs during
growth. In both cases, carbon is added at the catalyst site for CNT's to grow.

Currently, there are several synthesis techniques proposed for growing CNTs. These
can be divided into methods where CN'Ts grow from transition metal catalyst particles, and
method where CNTs grow without catalyst particles. They include carbon arc discharge [9],
laser ablation [10], and chemical vapor deposition [11].

Numbers of potential applications of CNTs have been widely proposed. Among these,
CNTs have been reported to be a promosing materials for cold-cathode applications [12].
Because of their high aspect ratio, electrons can be emitted easily from the tips of CNTs in a
vacuum ambient under a relatively low applied electric field. Also, the high current density

of CNTs is the other important property making them attractive [13].



Single-wall Multi-wall Double-wall

Figure 1.2: Atomic structures of carbon nanotubes [7]

The purpose of this study is to investigating the growth condition of CNTs on differ-
ent underlaying layers and catalyst types and characterize their field emission properties.
From the experimental results, It is found that underlaying layers play an criticle role for
CNTs growth. SiO,, Titanium and Tungsten are used. Each of them has substantially
different performances as a substrate for CNTs growth. In addition to investigation of un-
derlayers, the transitation metals, Iron and Cobalt, are utilized as catalysts for depositing
CNTs. Randomly-oriented and vertically-aligned CNTs can be grown by controlling the ex-
perimental parameters such as catalyst type, catalyst thickness, and deposition temperature.
Moreover, different sizes of patterned CNTs are also successfully grown by utilizing basic

photolithography steps.



Figure 1.3: Base and tip growth of CNTs rooted in a nanoporous (e.g. zeolite) substrate [8]



Chapter 2
LITERATURE REVIEW

2.1 Material properties of carbon nanotubes

2.1.1 Structure of carbon nanotubes

Carbon, the group IV element, is very active in producing many molecular compounds
and crystalling solids. A carbon atom has six electrons which occupy 152, 252, and 2p? atomic
orbital and can hybridize in sp, sp? or sp® forms. It has been used for centries, but yet it
has been stimulated in the nanotechnology field by the discovery of these unique nanometer
sizes of sp? carbon-bonded materials such as fullerene, carbon nanotube and graphite, as

shown in Figure 2.1 [14].

Figure 2.1: sp? hybridization of carbon and its derived materials. (a) The three sp? hy-
bridized orbital are in-plane, with 2p orbital orthogonal to the plane, m and 7 denotes the
bonding and anti bonding orbital. (b) Graphene as the source of three different materials,
fullerence (left), carbon nanotube (center) and bulk graphite (right) [14]



Carbon nanotube (CNT), a new form of pure carbon, can be thought as a hexagonal
graphene sheet rolled up to form a cylinder that is capped by pentagonal carbon rign.
Depending on the manner in which the graphene sheet is rolled up, the arrangement of
carbon atoms along the cylinder circumference can be “arm-chair”, “zig-zag”, or several

different intermediate chiral structure (Figure 2.2) [15].

ZIGZAG

3 CHIRAL

- ).,"-... e
Yee Pl ¥
- :y"'\._; ;b‘v - P =
¥ _ 4> R T
TS S aP Bt
A gy .0 22,05
R o S AT S S DD
St > ‘L.h ™ o B, ey
¥ P Y et

ol » ‘u‘ »> \,“'“ Y

- - iy b S
w3l ARMCHAIR N

- -

SN
LA
7y

Figure 2.2: Chiral structure of carbon nanotube [15]

CNTs are distinguished by their numbers of concentric layers called the ”walls”, with
spacing of sub-nm, and their chirality. There are several types of CNTs: Single-Wall CNTs
(SWCNTs), Double-Wall CNTs (DWCNTSs), and Multi-Wall CNTs (MWCNTSs) with respect
to the number of graphitic layers (Figure 1.2). Unlike graphene, CNTs exhibit different phys-
ical properties depending upon their structure. The crystal structure of a nanotube depends
upon the axis along which the cylinder is formed from the graphene sheet. Figure 2.3 [16]

shows the vectors on graphene plane that are important in understanding the formation of
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a nanotube . Here, we will follow the established notations, which can be found in litera-
ture [17]. The electrical character of a nanotube is specified by two numbers that determine
the chirality of the nanotube. The vector OB perpendicular to the nanotube axis is called
chiral vector (Th> The vector OA, which is parallel to the axis is termed as the translational
vector T, this is the unit vector of 1-D nanotube. The chiral vector is C_>’h = nCL_1> + mC?g and
the chiral numbers n and m are integers (the chirality convention requires 0 < |m| <n). The
length of the unit vectors is @ and the angle they enclose is 60°. As a result, the diameter of

the nanotube can be expressed as:

d—C_>h av/m? + mn + n?

™ ™

and the chiral angle from the figure with the expression:

B C’ha_l> B 2n+m
Crllal|  2VnP+m?+nm

Due to the hexagonal symmetry of the lattice, the chiral angle can only take on values
between 0 and 30°. The electron wavevector along the circumference of the CNT is quantized
while the graphene sheet is rolled. It is shown that this condition leads to a metallic nanotube,

zero band gap, when the difference n-m is a multiple of 3 [17].



Figure 2.3: A two-dimensional honeycomb lattice of graphene sheet. The vectors OA and OB
define the chiral vector ;. Unitary vector a; and ay are to determine the rolling direction
expressed by vector C},. There are several ways to roll it up As a result, different types of
tubules can be formed [16].



2.1.2 Electrical properties

CNTs can be either metallic or semiconducting depending on the configuration and
molecular structure [18]. For example, SWCNT is metallic if the structure is armchair. On
the other hand, zigzag tube as well as chiral-type tube (m,n) with 2m+n=3N (N: positive
integer), is a narrow-gap semiconductive [19]. In contrast, the band structures of MWCNTs
are more sophisticated because of the interlayer coupling. However, theoretical discussion
by Saito et al. emphasized that the interlayer has little effect on the electronic properties of
individual tubes [20]. As a result, two coaxial armchair nanotubes yield a DWCNT. Coaxial
metallic-semiconducting and semiconducting-metallic tube will retain their respective char-
acters when interlayer interaction is introduced [19].

Several techniques have been utilized in determining the properties of CNTs, such as
raman spectroscopy [21], electron energy loss spectroscopy (EELS) [22], electron spin reso-
nance (ESR) [23], scanning tunneling microscopy (STM) [24], four-point probe, and atomic
force microscopy (AFM).

Many groups worked on characterizing the conductivity of CNTs. Ebbesen et al [25]
measured the resistivities of MWCNTSs using four-point probe technique and determined the
resistivties of nanotubes ranged between 8mf)-m and 0.051 pf2-m. The results show that
the electrical resistivity of CNTs can vary greatly according to their porposed structure.
The resistivity of SWCNTs have also been measured by means of four-probe arrangement
by Smalley et al. [26], and ranged from 0.34$-m to 1.0uQ-m. The range of resistivities for
SWCNTs is smaller than MWCNTSs because it is not very conductive between the multi-

layers of MWCNTs.

2.1.3 Mechanical properties

CNT are among the strongest materials in nature, especially in the axial direction.
Because of their high strength-to-weight (STW) ratio, CNTs have been concluded as one of

the stiffest materials. Also, traditional carbon nanofibers have the the STW ratio of 40 times



greater than steel, however, CNTs have STW ratio at least 2 orders of magnitude greater
than steel [19]. According to Lourie et. al [27], SWCNTs have Young’s modulus of 2.8 - 3.6
TPa, and MWCNTs for 1.7 - 2.4 TPa. In addition, direct tensile loading tests of SWCNTs
and MWCNTs have been reported by Yu et al [28] . The Yong’s modulus can be obtained
ranging from 320 to 1470 GPa for SWCNTs and from 270 to 950 GPa for MWCNTs [17].
Theoretical studies have suggested that SWCNTs have Young’s modulus as high as 1 - 5
TPa [29]. For MWCNTS, the strength would be affected by the sliding of individual graphene
cylinders with respect to each other. Treacy et al. [30] were the first to report fitting Young’s
modulus of MWCNTs to experimental data. For a total of 11 MWCNTSs’” Young’s modulus
values were reported as ranging from 0.4 to 4.15 TPa with a mean of 1.8 TPa. A similar
experimental research on SWCNTSs was reported by Krishnan et al [31], who presented an

average Young’s modulus of 1.3 TPa from measured amplitudes of 27 SWNTs.

2.1.4 Other properties

In addition to the electrical and mechanical properties, there are other outstanding
properteis that make CNT's attractive such as optical properties, high thermal conductivity
,and high resistance to chemical attacks. As a result, CNTs can be applied on a variety of
technological applications. For example, the researchers shows that the low-density vertcially
aligned CNTs arrays can be engineered to have an extremely low index of refraction and
combined with the nanoscale surface roughness of the arrays , can produce a near-perfect
optical absoprtion materials [32]. Moreover, CNTs have been demonstrated that can be the
fabricated as the darkest materials. [33]. As a result, CNTs will be the excellent candidate

as the next-generation solar cell materials.
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2.2 Synthesis techniques of carbon nanotubes

Currently, CNTs can be synthesized by using a variety of techniques such as arc-
discharge, laser ablation, chemical vapor depsotion, plasma-enhanced CVD, and so on. In

this section, the methods to produce MWCNTs and SWCNTSs are summarized.

2.2.1 Arc discharge and laser ablation

Arc discharge and laser ablation methods for growing CNTs have been widely pursued
in the past years. Both synthesis techniques are based on condensing carbon atoms from
evaporation of solid carbon sources onto substrate. Temperatures in both methods are close
to the melting temperature of graphite, 3000 — 4000 °C.

In arc-discharge method, carbon atoms are evaporated by plasma of helium gas ignited
by high currents passed through opposing carbon anode and cathode. The arc-discharge
technique has been developed into an excellent method for producing both high quality
MWCNTs and SWCNTs. In 1992, the DC-arc technique was first done by Ebbesen et
al. [34] and become a common scientific method for synthesizing MWCNTs. MWCNTs have
lengths of on the order of ten microns and diameter in the range of 5 - 30nm. A schemtaic
diagram of DC arc-discharge method used for synthesizing CNTs is shown in Figure 2.5 [16].
The arc is generated between two pure graphite electrodes. The positive electrode must be
replaced with a new one before doing any new deposition because it is consumed in the arc.
Helium is a typical gas used as filling up the chamber because it has low ionization potential.
It flows though the chamber from the inlet a at a desired pressure of around 500 torr. Since
plasma is necessary in this methode, the type and pressure of the gas surrounding the arc
becomes critical. The typical applied DC voltage is 20 V. The positive electrode is brought
closer to negative one until arcing occurs. A plasma with a temperature up to 3700°C is
formed. Consequently, the variation of temperature might cause the large size distribution

of CNTs. The deposit forms on the negative electrode where there is a current flowing. It

11



has been shown that lower the current flow, the better the yields of CNTs are. With this

process, a following purification procedure is needed to extract CNT samples [35].

Figure 2.4: Schematic diagram of the arc apparatus where the nanotubes are formed from
the plasma between the two carbon rods [16]
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The growth of high-quality SWCNTs at the 1 - 10g scale was achieved by Smalley using a
laser ablation method. The schematic diagram is shown in Figure 2.6 [36]. The method took
advantage of intense laser pulses to ablate a carbon target which contains 0.5 atomic percent
of nickel and cobalt. The target was palced in a tube-furnace heated to 1200 °C. During the
processing of laser ablation, a flow of inert gas was passed through the chamber to carry the
grown nanotubes downstream to be collected on a cold finger. The synthesized SWCNTs
are mostly in the form of ropes consisting of tens of individual nanotubes close-packed into
hexagonal crystals via Vander Waals interactions. In growth SWCNTSs by means of arc-
discharge and laser ablation, typical by-products including fullerenes, graphitic polyhedrons
with enclosed metal particles, and amorphous carbon in the form of particles or overcoating

on the sidewalls of nanotubes have been seen [17].

QO
furnace at \:I 200 °C cooled

collector

.
]
-

argon gas

\
/ graphile target
Nd-YAES laser

Figure 2.5: Schematic diagram of a laser ablation set-up [36]
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2.2.2 Chemical vapor deposition

Among these synthetic techniques, chemical vapor deposition (CVD) method is espe-
cially attractive because it can be easily scaled up. The synthesis of CNTs by CVD method
requires the presence of a gaseous phase activated carbon. It is common to use gaseous carbon
sources including methane, acetylene, and carbon monoxide. But also alcohols and carbon
clusters derived from solid carbon forms can be used. The activation of the molecules or of
the nanostructured fragments is achieved using a variety of methods which can be roughly

categorized as: [37]

1) Plasma CVD
2) Thermal CVD

CN'Ts synthesis by CVD is a two-step process consisting of a preliminary catalyst prepa-
ration step followed by actual synthesis of the nanotubes. In general, CVD technique tends
to produce nanotubes with fewer carbonaceous impurities with respect to the other synthetic
techniques and the residual particles of the metal catalyst are frequently found at an extrem-
ity of the nanotube, making their elimination by post-synthesis chemical processes easier.
The choice of metal cayalyst, usually a first-row transition metal such as Ni, Fe, or Co can
drive the process toward the preferential growth of single rather than multiwall nanotubes
and to control the formation of individual or bundled nanotubes. The dimensions of the
catalyst are very important: large particles can produce MWCNTs, but if the particle size
of the metal or metallic alloy is too large, carbon filaments or fibers can be produced instead
of nanotubes [37].

In plasma enhanced CVD technique, the plasmas is used to decompose and activate
the reactants in the gas phase. Plasma is often generated by hot-filament or by electrical
discharges at different frequencies (DC, RF, MW). Plasma-enhanced CVD (PECVD) is a

method that can be easily scaled-up. In PECVD, the catalyst is supported by the substrate
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and can be prepared by wet chemistry or by a sputtering process. In the first case, a
solution containing a metal compound is deposited by casting onto the substrate surface. In
the second case, a layer of metal is deposited on the substrate by sputtering. Both processes
are followed by either chemical etching or thermal annealing to induce catalyst clustering
and particle formation on the substrate. The reactive carbon species in the gas phase then
diffuse towards the substrate, which is generally heated between 650 to 1500 °C temperature.
The pressure in the deposition reactors is typically low (< 100 Torr).

In a hot filament reactor, the reactants are activated by a heated filament that induces
the formation of radicals and active species: the reaction product condense on a substrate
forming a deposit. The fundamental components of a typical hot filament CVD (HFCVD)
system for the growth of nanotubes are: 1) A vcauum chamber that the pressure of the
reaction gases is maintained at values between 10 and 300 Torr. 2) A heated filament located
at a distance of a few mm from the substrate on which the material must be deposited. 3)
An additional system for heating the substrate up to 800 — 1500 °C.

The thermal CVD method involves the decomposition of a gaseous or volatile compound
of carbon, catalyzed by metallic nanoparticles, which also serve as nucleation sites for the
initiation of nanotube growth. Abundant carbon gas mixed with argon or nitrogen gases are
used, but sometimes the starting material can be a liquid that is consequently vaporized.
The catalyst can be either in solid form, supported on a previously coated substrate, or
mixed with the feed gas, and flowed into the reactor. The deposition reactors are typically
maintained under atmospheric pressure, even if some intereting processes can be carried out
under high-pressure condition. It has the advantage of being remarkably cheap and offer the
posibility of being easily scaled-up. One disadvantage is the presence of deposits of a large
amount of residual metallic catalyst. The general scheme of a thermal CVD apparatus for

carbon nanotubes synthesis is shown in Figure 2.8 [38].
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Figure 2.6: Schematic diagram for thermal CVD reactor [38]

In thermal CVD, the catalyst has a strong effect on the growth rate and on the final
nanotube yield [39]. Therefore, various techniques have been developed for the preparation of
catalyst. It is often used in bulk quantities, and to the choice of a suitable catalyst support.
For example, the use of metallic alloys to catalyze for the nanotube growth often results
in an enhancement of the yields. Nanoparticles of bimetallic alloys, as for exmple Fe and
Co, give 10 - 100 times higher yield of SWNTs than pure Fe [40]. The effect of deposition
temperature and of the metal particle concentration on the deposit morphology has also
been investigated [41]. When growing CNTs by thermal CVD on a catalyst supported by a
substrate, the CNT diameters are often found to be dependent on the film thickness or on
the particle size. For instance, a research group reported [42] that using substrates coated
by a metal film with a thickness of 13 and 27nm, the diameter distribution resulted in the

ranges of 30 - 40 nm and 100 - 200 nm respectively.
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2.3 Growth mechanisms of CNTs

Growth mechanism is always an interesting topic that has been debatable right from
its discovery. Several research groups have reported a variety of possibilities which are often
contradicting. As a result, there is no well established CNT growth mechanism. However,
there are two widely accepted mechanism can be categorized as tip-growth model and base-
growth model. Hydrocarbon vapor when comes in contact with the hot metal nanoparticels,
first decomposes into carbon and hydrogen species; hydrogen flies away and carbon gets
dissolved into the metal. After reaching the carbon-solubility limit in the metal at that
temperatutre, as-dissolved carbon precipitates out and crystallizes in the form of a cylindrical
network having no dangling bonds [43]. When the catalyst-substrate interaction is weak,
hydrocarbon decomposes on the top surface of the metal; carbon diffuses down through the
metal; and CN'T precipitates out across the metal bottom, pushing the whole metal particle
off the substrate. This is described in picture 2.9 (a) As long as the metal’s top is open
for fresh hydrocarbon decomposition, CNT continues to grow longer and longer. Once the
metal is fully covered with excess carbon, its catalytic activity ceases and the CNT growth
is stopped. This is known as tip-growth model (Figure 2.9(a) [43]).

On the other hand, when the catalyst-substrate interaction is strong, initial hydrocarbon
decomposition and carbon diffusion take place similar to that in the tip-growth case, but
the CNT precipitation fails to push the metal particle up; so the precipitation is compelled
to emerge out from the metal’s apex. First, carbon crystallizes out as a hemispherical dome
which then extends up in the form of seamless graphitic cylinder. Subsequent hydrocarbon
deposition takes place on the lower peripheral surface of the metal, and as-dissolved carbon
diffuses upward. CNT grows up with the catalyst particle rooted on its base; hence, this is
known as base-growth model (Figure 2.9(b) [43]). CNT synthesis involves many parameters
such as hydrocarbon, catalyst, temperature, pressure, gas flow rate, deposition time and

reactor geometry.
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Figure 2.7: (a) tip-growth model (b) base-growth model [43]
2.4 Field emission of electrons from CNTs

Local electric field is the field that surface experiences and proportional to the applied
field, when applied field is enhaced due to “sharp” surface irregulation. Field emission is a
process that the electrons are emitted from a cold solid surface under the action of a strong
electric field. It involves the extraction of electrons from a solid by tunneling through the
surface potential barrier. The potential barrier is square when no electric field is applied as
shown in Figure 2.8 [44]. Its shape becomes triangular when a negative potential is applied to
the solid, with a slope that depends on the amplitude of the local electic field, F, just above
the surface. Field emission from CNTs follows the same physics. For a single nanotube with

sharp tip, the local electic field cannot be simply calculated by dividing the applied voltage
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by the gap distance between the tip of the nanotube and the anode electrode. The local field
will be higher by a factor 3, which amplifies the field and is determined by the geometrical
shape of the emitter. Therefore, the electric field is written as: F' = SE = V/dy, where
E is the applied field. The field emission characteristic of SWCNT have been studied [45].
Most single SWCNT emitters with a closed tip as well as opened are capable of emitting
over an incredibly large current. Field emission from individual MWCNTs has studied by
Satio et al [46]. Also, they have used closed and opened tubes as the sources in a field
emission microscopy. The motivation behind these studied is to explore the possibility of
using individual nanotube field emitters in cathod ray tubes or electron guns for electron

microscopy.
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Figure 2.8: Typical set-up for field emission: a potential difference is applied between a
nanotube and a counter electrode [44]
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The emission current increases linearly with applied field for a field smaller than a critical
field which is designated as the turn-on field, Ey, and then the current increases exponentially
with the applied field for a field stronger than turn-on field. The J-E characteristics of the
CNTs were analyzed using Fowler-Nordheim (F-N) model [47]:

Aa3?/d? (1.44 X 1073)  0.95B¢*?d
1.1¢ P12 B
, where A is 1.54x107% eV V=2 and B is 6.83 x107 eV =32V ¢m~! derived from quantum

—b
J=a E? exp<E>, where a=

statistics, ¢ is the work function of CNTs, « is the emission effetive area, and 3 is the
field enhancement factor, which is directly related to the geometry and surface properties of
the CNT samples. The applied electric field is defined as E=V/d, where V is the applied
voltage and d is the distance between the electrodes. The localized electric field experienced
by one CNT is expected to be SV /d. The parameters in the F-N equation can be deduced
by fitting the In(I1/V?) vs. 1/V curve, the F-N plot. Fowler-Nordheim model shows that the
dependence of the emitted current on the local electric field E and the work function ¢, is

exponential like.

2.5 Potential applications of CNTs

Many potential applications have been reported for CNTs including their use as rein-
forcement in composite materials, as transparent and flexible electrodes [48], AFM/STM
tips (Figure 2.9 [49]), and electron-field emitters [50]. The SWCNT films can exhibit con-
ductivity /transmittance values comparable to those of low-temperature ITO. Transparent
conducting SWCNT coatings on flexible substrates such as polyethylene terephthalate (PET)
outperform ITO/PET electrodes in terms of chemical and mechanical stability and exhbit
a wider electrochemical window. Moreover, the application of SWCNTs as field-emission
electron sources for use in flat-panel displays [17], gas-discharge tubes [17] and microwave
generators [51] has been widely explored. The advantages of these devices over those made
from metals such as tungsten and molybdenum are the following: relatively easy manufac-

turing/fabrication process, less deterioration in high vacuum (10~®Torr), and high current
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densities of 10° A/cm?. Other desirable properties that make CNTs promising materials
as field emitters are their nanosize diameter, structural integrity, high electrical conductiv-
ity, and high chemical stability. Studies on a field-effect transistor (Figure 2.10 [52]) made
from a semiconducting SWCNT showed it to have the ability to be switched from a con-
ducting to an insulating state. Logic switches, the basic components of computers, can be
constructed by coupling such CNT transistors. Recently, the application of random CNT
Networks (CNTNs) as semiconducting materials for thin-film transistors (TFT) [53] has at-
tracted interest due to their superior performance compared to that of organic TFTs and
potentially low-cost fabrication. Uniformity of CNTN properties is achieved by statistical
averaging over the large number of individual tubes that make up the network. Various
devices and components based on CNTNs have been successfully demonstrated, including

diodes, logic circuit elements, solar cells, displays, and sensors [53].
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Figure 2.9: TEM image of an individual SWNT tip produced by controlling carefully the
catalyst density. The scale bar equals 10 nm [49]
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Figure 2.10: Schematic process for the fabrication of a CNTFET with a suspended graphene
gate without any Si3N4 protective layer: The CNTFET can be gated either by the suspended
graphene gate or by the Si substrate acting as a back gate [52].
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Chapter 3
Carbon Nanotubes: FABRICATION AND CHARACTERIZATION

In this study, CNTs are synthesized using thermal chemical vapor deposition technique
(CVD). The CVD method has advantages of simple equipment setup and excellent unifor-
mity of thin-film deposition over large area. Silicon wafers are used as the substrate for CNT's
growth and several underlayers and catalyst materials deposited on the silicon wafers using
DC/RF magnetron supttering system. Once the synthesis process is completed, CNTs are
examined used scanning electron microscopy (SEM) and their electrical properties are char-
acterized by field emission measurements in vacuum. Synthezied parameters are optimized

by using sputtering and growth conditions.

3.0.1 Growth process

Two metal catalysts were used. Fe as the catalyst, the growth of CNTs is carried at
a temperaute of 700 °C, however, Co as the catlyst, the temperature was risen from 700 to
850°C. All the experiments were running at the pressure of 70 Torr and the growth time are
all 20 min. Figure 3.1 shows the schematic diagram for the thermal CVD reactor used for the
growth of CNTs. A resistive heater is used to heat the quartz substrate inside the furnace. A
thermocouple is connected to the substrate holder to measure the temperature. Flowmeters
connected between the chamber and the gas cylinders are used to measure the gas flow into
the CVD chamber. The pressure in the chamber is controlled by a throttle valve, which is
connected between mechanical pump and the pressure gauge. The gas mixture of acetylene
and argon with 20 and 75sccm respectively were used as the feed gas in the chamber. For
growing the vertically-aligned MWCNTs (VA-MWCNTSs), after the deposition of the iron

catlayst, it was received the other graphite deposition. After two steps deposition processes,
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the sample was oxidized in air at 300 °C for 8 hours. Thermal CVD of CNTs was performed
in a vacuum furnace filled with a gas mixture of acetylene and argon at a pressure of 70
torr. Before the gas mixture was fed into the furnace, the substrate was heated to 700 °C in
vacuum and the temperature was remained constant during the 20 min growth of MWNTs.

VA-MWNTSs grew on the substrate iwht a uniform length approximately 20 pum (Figure 4.8).
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Figure 3.1: Schematic diagram for thermal CVD reactor [54]
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3.0.2 Selective grown CNTs synthesis processes

The fabrication process for synthesizing selectively grown CNTs sample is carried out
in detail as shown in Figure 3.3. First, the plain n-type (100) silicon wafers are cleaned
by the standard RCA (Radio Corporation of Americ) cleaning procedure. They are dipped
into a Buffered Oxide Etching (BOE) solution in order to remove native oxide and chemical
impurities, followed by deionized water (DI water) rinse for a couples of minutes. A dehy-
dration bake step for 20min is performed before priming and spin-coating a wafer with resist.
Following the dehydration bake, the silicon wafer is primed with a pre-resist coating of a
material designed to improve adhesion in this case. Hexamethyldisilazane (HMDS) enhances
the adhesion between the Si wafer and the photoresist (PR), and bahaves as surface-linking
adhesion promoter. 10min of HMDS priming allows good adhesion. Following cleaning,
dehydration baking, and priming, the silicon substrate is coated with photoresist (PR) at
a speed of 3000 rpm for 30 sec, and soft-baked on the hotplate at 105°C for 1min. After
a wafer has been coated with resist, it is subjected to a temperature step, called soft-bake
(or pre-bake), and it is ready to be exposed to some form of radiation in order to create a
latent image in the resist. After exposure, then, the patterned substrate is subject to another
temperature step, called hot-bake, putting on the hotplate at 120°C for 1min. After this
baking process, the substrates are then sputtered with iron forming a 7nm thick Fe (purity
99.99%) catalysis film in a sputtering vacuum chamber. The sputtering system is a 2-inch
DC magnetron sputtering system with a power 100W through shadow masks, containing
different patterned openings with the sizes of 25 m to 0.5 cm at pitch distances of 25 m to
0.5 cm. When the catalyst are deposited onto the substrate, it is dipped into the aceton for

couple minutes to remove PR, then the patterned film are successfully obtained.
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Figure 3.2: Schematic diagram of CNTs fabrication processing (a) silicon wafer cleaned and
prepared, (b) mask is aligned to remove parts of the photoresist for patterned deposition of
the iron catalyst. (c) the spattering process is conducted. (d) photoresist is removed from
the wafer exposing only the sections with catalyst Fe. The sample is now ready to be moved
to the CVD chamber for CNT growth process. (e) the CNTs are selectively grown on the
substrate.
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3.1 Electron field emission measurements and experimental setup

Once the growth process of the CNTs is completed, field emission properties are mea-
sured in vacuum. These CNTs samples, one at a time, are loaded into a high vacuum
chamber. The chamber is pumped by a turbomolecular pump to a vacuum level of 3x 1076
Torr. The measurements are performance at room temperature. The distance between the
CNTs sample (the cathode) and the anode is maintained constant by a glass spacer with a
thickness of 140um. A rod made by tungsten with a diameter of 0.4 cm was used as the
anode. A dc variable high-voltage supply is used to bias the electrodes. The voltage is con-
tinuously increased with intervals between the cathode and the anode. The emission current
was recorded by a Keithley picoammeter which was connected to a computer through GPIB
card. The applied voltage and the field emission current are recorded and then analyzed.
A schematic diagram of an experimental setup used for theses measurements is shown in
Figure. 3.3 [6].

For the field emission study, once the voltage and current data are collected, the elec-
tric field and the current density data are calculated from the raw data with the following

equations:
1
EF=———andj=—
173

where R is the resistance of the current limiting resistor with a value of 3 M(2, d is the gap
distance, which is the thickness of the glass spacer, and S is the emission area which is the
exposed area of the collector rod to the CNTs. In these equations d = 140 pym and S =
0.0316 ¢cm? are used. For each applied voltage, five current data with 1 second intervals are

recorded and then averaged to form one data point, to assure the test accuracy.

30



Electrode connection |

Derpiea — 122

CNT sample

Pico Ammeter

‘ High vol ‘
i t
Vacuum chamber o age power supply

—

Figure 3.3: Schematic diagram for the field emission measurement setup [6]

31



Chapter 4
RESULTS AND DISCUSSION

Two different morphologies of CNTs, randomly oriented and vertically aligned, were
successfully deposited on silicon substrate with different catalysts and underlying layers by
thermal chemical vapor deposition. The catalysts are Iron (Fe) and Cobalt (Co) and under-
lying layers are SiOq, Titanium (Ti) and Tungsten (W). The field emission characteristics
of the CNTs specimens are examined in a high pressure vacuum chamber. The effect of

catalysts and underlying layers on the field emission characteristics of CNTs are studied.

Table 4.1: Various Structural Properties of Catalyst-Underlying-Layer Combinations

Substrate Underlayer Catalyst
F\
N/A ©
Co
Fi
Silicon dioxide (SiO3) ¢
Co
ili F\
Silion Titanium (Ti) ©
Co
Fi
Tungstun (W) c
Co

Selectively growth CNTs w/o underlayer Fe

4.1 Influence of catalyst layer thickness

It is known that CNTs grown by low temperature CVD procedures requires a transition
metal catalyst [43], and numerous studies have reported the use of Ni, Fe, Co. [55-57]. In
this study, the CNTs are grown on silicon p-type (100) substrates. A thin catalyst film (Fe,

Co) is deposited on substrates by DC magnetron sputtering. Table 4.2 and 4.3 show that

32



the relationship between sputtering time and metal catalysts (Fe, Co) thickness, separately.
From the experimental results, for both Fe and Co catalysts, CNTs can by synthesized well
onto the plain silicon substrates by depositing the thickness around 7nm-12nm. However,
once the catalyst films are thicker than 15nm, CNTs are not found at any substrate, instead

of graphite. The catalyst thinkess was measured by profilometer.

Table 4.2: Iron catalyst vs. sputtering time

Sputtering time | 1min ‘ 3min ‘ omin | 8min 10min 15min

Iron thickness t < Tnm ~Tnm | =~ 10nm | = 1bnm

Table 4.3: Cobalt catalyst vs. sputtering time

Sputtering time | 15sec | 30sec | 4bsec 1lmin >1min
Cobalt thickness t < 7Tnm ~ 15nm | =~ 25nm | >25nm

4.2 Influence of underlying layer

CNTs are grown ever different underlying layers of SiOs, Ti and W. We investigated
the Fe and Co catalysts and various underlayers in their respective effectivenss. For using Fe
catalyst, the results indicates that nanotubes are grown well on plain Si and SiOy underlayer
at a certain growth condition. On the other hand, using the Ti or W as underlayer, the
high-quality nanotubes cannot be form. For Co catalyst, nanotubes can be only grown
on SiO, underlayers. The Ti, W and plain silicon are not found nanotubes formation. For
plain silicon, the reason could be the formation of silicide, CoSi, during the high temperature
processing [58] . As a result, a barrier layer such as SiO, is useful to prevent silicide formation

when using Co as catalyst.

4.3 Influence of the deposition temperature

In this study, nanotubes were synthesized at two different deposition temperatures while

keeping all other parameters constant. For Fe catalyst, our experimental results indicate
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when temperature is below 700°C, it may not be sufficient for nucleating nanotubes. The
temperature may be too low to decompose CsH,, hindering growth. Furthermore, the low
temperature also limits the graphitization, which increases the condensation of a-C [59]. The
nanotubes grown at 700 °C are uniform and dense in size. Nevertheless, when the deposition
temperature is increased to about 900 °C, the nanotubes are not grown. For Co catalyst,
it is found that the nanotubes cannot be grown at 700°C. However, while increasing the
deposition temperature to 850 °C, the nanotubes are successfully grown. According to C.H.
Lin et al. [60], it is believed that the effect of the substrate temperature is to minimize the

thermal energy to activate catalysts to precipitate carbon atoms to form nanotubes.

4.4 Fowler-Nordheim curves

In section 2.4, the field emission properteis of CNTs has been introduced. During the
field emission process, when the injected electrons pass through the surface of the CNTs and
are emitted into the vacuum towards the anode from the CNTs, the local electric field is
enhanced due to the sharp needle like emitting structures of the CN'T's compared to the flat
structures. According to Fowler-Nordheim (F-N) theory [61], the dependence of the emission
current, I(A) on the work function ¢(eV) of the emitting surface and the local electric field
just above the emitter surface, F=SE=(V/d (V/um), is exponential, and described by the

F-N equation written as:

[_k;152E2seX kg
e P\TTs

where s is the emitter area (cm?) and 3 is the enhancement factor, determined by the
geometric shape of the emitter. The constants k; = 1.54x107%(A-eV/V?) and ky = 6.83x 107
(eV~3/2-V /cm) are given in the literature [62]. In general, the plot of In(1/E?) vs 1/E yields
a straight line and the slope of the line is proportional to the field enhancement factor, 5 of

the emitters and the intercept gives the emitter area.
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4.5 Scanning electron microscope image

In this section, the scanning electron microscope (SEM) images of CNTs samples with
different growth conditions and underlying layers are presented. The following SEM images
show that the samples with 1 and 5 of iron sputtering time on SiOs and 15, 30sec and
Imin of cobalt sputtering time on SiOy. The sample with 5 min iron and 8 min graphite
sputtering time can yield very good-quality MWNTs on both plain silicon and SiO, as
shown in Figure 4.3. Figure 4.5 and 4.6 were used cobalt as catlayst to deposit CNTs. Using
cobalt to synthesize CNTs, they are obviously shorter than using Fe as catalyst under the
same growth time. Figure 4.7 shows that when catalyst thickness is too thick, then carbon
cluster will be formed instead of CNTs. The cross-sectional SEM image of vertically-aligned
and randomly-oriented MWCNTs is shown as Figure 4.8 and Figure 4.9, separately. Figure.
4.10 is the patterned CNTs of SEM image.

4.5.1 SEM images of CNTs with different catalysts sputtering time and under-

layers
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Figure 4.1: 1min Fe sputtering time on SiOs underlayer

Auburn

Figure 4.2: 5min Fe sputtering time on SiOy underlayer
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Figure 4.3: 5min Fe with Carbon 8 min sputtering time on SiOy underlayer
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Figure 4.4: 5min Fe sputtering time on SiOy underlayer
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Figure 4.5: 15 sec Cobalt sputtering time on SiOy underlayer
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Figure 4.6: 30 sec Cobalt sputtering time on SiOy underlayer
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Figure 4.7: Cobalt sputtering time above 1min on SiOy underlayer
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Figure 4.8: SEM image of vertically-aligned multi-wall carbon nanotubes (VA-MWCNTSs).
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Figure 4.9: Cross-sectional SEM image of randomly-oriented MWCNTs.
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Figure 4.10: SEM image of patterned CNTs array (a) 25um circle array with 25um spacing,
(b) 25um diameter circle array with 50pum spacing, (¢) 50um x 50pum square array with
25pm spacing, (d) a close-up image of a single CNT bundle (from a circle array sample)
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Chapter 5
SUMMARY AND FUTURE DIRECTIONS

Since the discovery of carbon nanotubes (CNTs), many studies have been carried out on
their synthesis. With their outstanding electrical, structure, and physical properties, CNTs
are envisioned to impact furture electronic applications such as nanoelectronics, sensors,
electrodes, and nanophotonics. These applications generally require controlled growth on
patterned substrates. Therefore, there has been a strong focus on using thermal chemical
vapor deposition (CVD) technique to realized CNT structures for these applications. Field
emission is one of the most advanced and broadly studied applications of CNTs. They
can emit electrons easily due to their high aspect ratios, compared to other cold-cathode
materials.

In this work, CNT's have been selective and non-selective grown on a variety of catalyst-
coated underlaying layers (plain silicon, SiOq, Ti, W) substrate at two different temperatures
(700°C, 800 °C) by using thermal chemical vapor technique. We investigated their field emis-
sion characteristics. From the experiemtal results, it clearly indicates that metal catlayst
thickness is a critical parameter for the growth of CNTs. In addition, the deposition tem-
perature and underlayers also play the important roles. Field emission results from carbon
nanotube showed clearly the Fowler-Nordheim behavior. Vertically-aligned CNTs can be
successfully synthesized at a certain growth condition. There are many still obstacle remain-
ing. The growth conditions of CNTs have not been fully determined such as gas flow rate
(acetylene, argon), deposition temperature, pressure, catalyst thickness, underlying layer,
etc. The field emisision and underlayers mechanism for CNTs growth need to be deeply

investigated.
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