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Abstract 

 

 

 The overarching goal of this dissertation is to develop reactive transport models and 

explore their applications to groundwater remediation problems. The primary focus of this 

dissertation is aimed at developing models that can support laboratory studies investigating 

remediation strategies, as this is an important intermediate step before the remediation methods 

can be scaled up to apply at field sites. As a part of this research effort, a comprehensive, one-

dimensional, multi-component reactive transport model, RT1D, which can be used for simulating 

biochemical and geochemical reactive transport problems, has been developed. The code can be 

run within the standard Microsoft EXCEL Visual Basic platform and it does not require any 

additional software tools. The capabilities of the tool were illustrated by solving several 

benchmark problems taken from the literature that have varying levels of reaction complexity. 

These literature-derived benchmarks were used to highlight the versatility of the code for solving 

a variety of practical reactive transport problems.   

This model was subsequently applied to a published experimental dataset that described 

bioaugmentation processes to remediate PCE-DNAPL trapped in a fracture system. A 

mathematical framework was first formulated to model the bioremediation processes in a PCE 

contaminated single fracture system augmented with Dehalococcoides Sp. (DHC).  The 

mathematical framework describes multi-species bioreactive transport processes that include

bacterial growth and detachment dynamics, biodegradation of chlorinated species, competitive 

inhibition of various reactive species, and the loss of daughter products due to back-partitioning 
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effects.  Two sets of experimental data, available in Schaefer et al. (2010b), were used to 

calibrate and test the model.  The simulation results indicate that the yield coefficient and the 

DHC maximum utilization rate coefficient were the two important process parameters.  A 

detailed sensitivity study was completed to quantify the sensitivity of the model to variations in 

these two parameter values. The proposed model provides a rational mathematical framework for 

simulating remediation systems that employ DHC bioaugmentation for restoring chlorinated 

solvent contaminated groundwater aquifers.    

While calibrating the DHC bioaugumentation model, several inefficiencies related to the 

use of trial and error methods for parameter estimation were identified. In order to improve the 

efficiency of the parameter estimation process, a parallel genetic algorithm (PGA) was 

developed to automate the parameter estimation process. The performance of the PGA was tested 

by solving four benchmark problems that have published experimental data or 

analytical/numerical solutions.  Benchmarking results indicate that the PGA estimated 

parameters are close to the true parameters. A shared memory parallel computing platform that 

utilized OpenMP FORTRAN was used to demonstrate the speedup of the code on a four 

processor desktop Pentium computer. The parallelized code showed linear speedup with 

increasing number of processors.  The PGA routines used in this study are generic and can be 

easily adapted to solve parameter estimation problems in other environmental modeling 

applications. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction to groundwater contamination 

Groundwater is an important source of water supply used by populations all around the world 

(Todd, 1980).  In the United States, groundwater accounts for approximately twenty one percent 

of the annual water supply budget and hence it is considered as an important natural resource 

(Perlman, 2011). Figure 1 shows the schematic diagram of different sources of groundwater.  

Inadvertent discharge of harmful contaminants including metals and organics into groundwater 

aquifers poses a significant threat to this resource. Groundwater systems could be contaminated 

by leachates emanating from several anthropogenic sources including landfills, mines, leaking 

underground storage tanks (LUSTs), and other industrial waste sites.  Also, the extensive use of 

various forms of chlorinated solvents for dry cleaning and metal degreasing activities has 

resulted in widespread contamination of groundwater and soil systems (Coleman et al., 2002).  In 

addition to heavy metal and chlorinated solvent issues, contamination of aquifers by petroleum 

products released from LUSTs has been reported at several field sites in different continents 

including North America, Europe, and Australia  (Lu et al., 1999; Moreau, 1987; Prommer et al., 

1998).  In the US alone, about 10 to 20% of the estimated total of 2 million underground storage 

tanks are expected to be leaking (Atlas and Cerniglia, 1995).   Therefore, contamination of 

groundwater by LUSTs and other sources poses a significant threat to groundwater quality.   
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Figure 1.1 Schematic diagram of different sources of groundwater (Canada, 2011) 

Once contaminated, groundwater aquifers require some type of remediation strategy to 

restore its water quality to safe drinking water levels.  The type of remediation system used and 

the associated costs would depend on the type of contaminant, extent of contamination and the 

local geological conditions. Typically, most contaminated field sites are first remediated using 

some form of conventional pump-and-treat systems.  However, due to solubility limitations, 

conventional pump-and-treat methods have been ineffective at several sites.  Therefore, in recent 

years, engineers have attempted to use innovative in-situ technologies such as the bioremediation 

methods to transform the contaminants into non-toxic daughter products (Beeman and 

Bleckmann, 2002; Clement et al., 2004).  Active and passive (or natural attenuation) 

bioremediation methods can be used to treat petroleum and chlorinated solvent plumes (Clement, 

2011).  Design and application of these bioremediation methods require tools that can model the 

fate and transport of the contaminants and the associated site-specific biogeochemical reactions. 
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The modeling step is particularly important when natural attenuation methods are employed for 

managing petroleum and/or chlorinated solvent plumes (Clement et al., 2000; Lu et al., 1999; 

Prommer et al., 1998; Rolle et al., 2008).  

1.2 Numerical modeling of reactive transport problems 

Reactive transport problems can be broadly classified into either geochemical equilibrium or 

kinetic problems based on the nature of the chemical processes involved in the remediation 

methods employed. Chemical kinetics describes the rate of reaction in a fast chemical reaction 

whereas geochemical equilibrium describes the speciation at equilibrium for a slow chemical 

reaction. Currently, there are several models capable of simulating multi-species multi-

dimensional reactive transport processes in groundwater for both kinetic and geochemical 

equilibrium problems. MT3DMS developed by (Zheng and Wang, 1999) is capable of simulating 

three-dimensional advective-dispersive multi-species transport processes. Multispecies 

bioreactive transport in one-dimensional soil columns has been numerically modeled by several 

researchers (Clement et al., 2004; Clement et al., 1996; Clement et al., 1997; Schaefer et al., 

2009b; Yu and Semprini, 2004; Zysset et al., 1994). Bioplume III (Rifai et al., 1998) is a two-

dimensional, finite difference model for simulating both aerobic and anaerobic biodegradation of 

hydrocarbons in groundwater in addition to advection, dispersion, sorption and ion exchange. 

RT3D (Clement et al., 1998) combines a multispecies sequential dechlorination, biodegradation 

and first-order decay processes in groundwater in three-dimensional domain. In addition to these 

models, there are several models capable of simulating geochemistry equilibrium problems. 

MINEQL (Westall, 1976) reduces the chemical equilibrium problem into a set of nonlinear 

equations that can be solved by Newton-Raphson iteration scheme. MICROQL-I (Westall, 

1979a) computes chemical equilibrium in aqueous systems without sorbed or solid phase 
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species. MICROQL-II  (Westall, 1979b) includes additional routines for solving adsorption 

equilibria in aqueous systems using constant capacitance, diffused layer, stern layer and triple 

layer adsorption models (Kumar, 2006). 

However, most of these models are three-dimensional models developed for field scale 

evaluations with added complexity for multi-dimensional parameters. This level of complexity is 

not required for simple laboratory experiments. The column experiments done in laboratories can 

be simplified as one-dimensional problems. Furthermore, there are very few models that are 

capable of solving both geochemistry and kinetic problems in the same model. Therefore, it is 

necessary to have a simple, user-friendly, accessible, comprehensive yet robust modeling tool 

that is capable of simulating a variety of chemical, biochemical and geochemical processes. 

Therefore, one of the goals of this study is to present a comprehensive one-dimensional 

modeling tool that using Visual Basic for Applications (VBA) in Excel that is capable for 

simulating a variety of bio-geochemical problems that can be used by laboratory researchers.  

1.3 Parameter estimation using parallel genetic algorithm (GA) 

The multi-component advection-dispersion reaction equation explains the fate and transport of a 

contaminant in groundwater. The reaction part of the equation involves several kinetic 

parameters that are unique to the contaminant or remediation process. However, many of these 

reaction parameters used in the study of these experiments are theoretical and could be difficult 

to estimate using experimental studies. They may require several laboratory experiments 

isolating each chemical compound to estimate these parameters (Massoudieh et al., 2008; 

Prommer et al., 1998; Schaefer et al., 2009a; Schaefer et al., 2009b; Singh et al., 2008). The 

methods currently used for estimating the reaction parameters are trial and error-based methods 
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or use software like CXTFIT (Toride et al., 1995). However, the complexity of the problem 

increases as the number of parameters to be estimated increases. 

Modern optimization techniques such as genetic algorithm (GA) can be used to estimate 

these unknown parameters. GA follows the evolutionary concept of survival of the fittest for 

mathematical optimization using genetic recombination (Holland, 1975). GA searches through a 

solution space until it converge to a global minima or maxima. GA has been used in groundwater 

hydrology and hydrogeology for the parameter estimation with successful results (Babbar and 

Minsker, 2006; Singh et al., 2005; Sinha and Minsker, 2007; Wang, 1997). However, they are 

computationally intensive during the fitness calculation and they have to be run for long periods 

of times to find the global minima. This computational expense can be a significant drawback 

when compared to other parameter estimation techniques.  

In order to make the GAs computationally efficient, parallel computing techniques can be 

utilized. The concurrency in fitness calculations makes GA an ideal candidate for parallel 

computing (Cantú-Paz, 1998). Most loops in GA can be computed independently and this makes 

it an embarrassingly parallel problem. This means that there could be little to no communication 

between the processors. Based on the architecture, the type of parallel computers can be 

categorized into either distributed memory or shared memory computers. The new computers 

available in the market are equipped with multi-core processors and a shared memory parallel 

computing language could be used to optimize existing serial algorithms. Currently there are 

several studies involving parallel genetic algorithms for parameter estimation in groundwater 

problems in both shared memory and distributed memory architectures (Babbar and Minsker, 

2006; He et al., 2007; Sinha and Minsker, 2007). However, there are no parallel implementations 

in OpenMP FORTRAN in a desktop environment. Therefore, in this effort, we explored the use 
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of a parallel genetic algorithm (PGA) for estimating the kinetic parameters in different types of 

reactive transport problems.  

1.4 Research Objectives 

The aim of this dissertation is to develop a set of comprehensive tools for laboratory researchers 

for modeling multi-component reactive transport problems and also provide a tool to estimate the 

model parameters from laboratory experiments.  

The first objective of this dissertation study is to develop a comprehensive one-

dimensional multi-component reactive transport tool that is capable of simulating both kinetic 

and geochemical equilibrium problems. The model is also able to run both kinetic and 

geochemical equilibrium problems in a batch mode as well as couple with transport problems. 

This tool is developed using Visual Basic for Application (VBA) in Microsoft Excel without any 

additional software to be installed. This model was validated using a variety of kinetic and 

geochemistry problems published in the literature. 

The second objective of this study is to apply this model to a laboratory experiment 

involving the bioaugmentation of chlorinated ethenes using Dehalococcoides Sp. in a single 

fracture system. We have developed a mathematical framework to simulate the bioaugmentation 

of PCE-DNAPL and estimated the parameters using a trial and error process for a low flow 

experimental data. These parameters were validated using the experimental data for the high 

flow experimental data.  

The third objective of this study is to develop a GA based parameter estimation tool. The 

GAs are computationally intensive search procedures. Therefore, the GA was optimized to run in 

parallel on a multicore desktop computer using the shared memory parallel computing language 
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OpenMP using a parallel genetic algorithm (PGA). This PGA was used to estimate the model 

parameters for four problems whose true parameters are already known.  

This dissertation consists of five chapters. The first chapter (the current chapter) provides 

a basic introduction to this research, lists the objectives, and provides a brief summary of each 

chapter. The second chapter focuses on the first objective, with the outcome of this effort already 

published in Computers and Geosciences (Torlapati and Clement, 2012b). The third chapter 

focuses on the second objective and the outcome of this effort has been published in 

Groundwater Monitoring and Remediation (Torlapati et al., 2012). The fourth chapter focuses 

on the third objective and the outcome of this effort were communicated to Environmental 

Modelling and Software (Torlapati and Clement, 2012a). The fifth chapter provides a brief 

summary of the key outcomes of this research and offers recommendations for future work.  
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Chapter 2 

DEVELOPMENT OF A VISUAL-BASIC BASED MULTI-COMPONENT ONE-

DIMENSIONAL REACTIVE TRANSPORT MODELING TOOL 

2.1 Review of existing reactive transport models 

Laboratory-scale experiments are also routinely used to develop a better understanding of 

various biogeochemical transport processes expected to occur under field conditions.  Both batch 

and column studies have been employed for establishing the feasibility of proposed remediation 

methods (Schaefer et al., 2009b; Schaefer et al., 2010b).  Numerical models are also routinely 

utilized at this feasibility assessment stage to interpret the laboratory data and to develop a better 

understanding of underlying treatment processes (Clement et al., 1998; Phanikumar et al., 2002; 

Torlapati et al., 2012).  The modeling exercises can greatly help the scaling and design steps that 

are required for deploying field-scale remediation technologies.  

Currently, there are several models available that are capable of simulating multi-component, 

multi-dimensional reactive transport processes.  Zheng and Wang (1999) developed MT3DMS, 

which is capable of simulating three-dimensional advective-dispersive multi-component 

transport processes.  Clement et al. (1998) developed a reactive transport code RT3D, which is 

based on MT3DMS, that can simulate bioreactive transport scenarios involving kinetic reactions.  

Prommer et al. (1998) combined MT3DMS with PHREEQC (Parkhurst and Appelo, 1999) to 

simulate both equilibrium and kinetic reactions.  UTCHEM (de Blanc et al., 1996) and 
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BIOPLUME-II (Rafai et al., 1987) are two generic reactive transport models that are capable of 

simulating bioreactive transport processes.  BIOPLUME-II uses a modified version of the USGS 

code MOC and can simulate aerobic biodegradation of petroleum plumes.  A later version, 

known as BIOPLUME-III (Rafai et al., 1998), can simulate both aerobic and anaerobic reactions 

involved in petroleum biodegradation. BIOCHLOR (Aziz, 2000) is an EXCEL-based tool which 

implements a sequential decay analytical solution described in Sun and Clement (1999), Sun et 

al. (1999), and Clement (2001) to simulate natural attenuation processes occurring at chlorinated 

solvent contaminated sites.  However, BIOCHLOR is an analytical model and is limited by the 

capabilities of the underlying solution procedure; some of these limitations are explained in 

Quezada et al. (2004), Srinivasan and Clement (2008) and Srinivasan et al. (2007).   

Most biological processes that degrade organic contaminants such as hydrocarbons and 

chlorinated solvents are kinetic-limited reactions, and they are described using a set of ordinary 

differential equations (ODEs).  Within a numerical reactive transport formulation, these ODEs 

are normally implemented as a reaction package using the operator-split strategy and are 

independently solved by an ODE solver (Clement et al., 1998).  The geochemical processes 

(which mediate the fate and transport of inorganic contaminants such as metals) on the other 

hand are mostly equilibrium-controlled reactions that require solution to a set of non-linear 

algebraic equations. These non-linear equilibrium equations can be solved by an independent 

geochemistry routine and they can also be integrated into a transport formulation using the 

operator-split strategy (Cederberg et al., 1985; Prommer et al., 1998).  There are several 

computer codes available in the literature that can be used to solve chemical speciation problems. 

WATEQ was one of the first geochemical models that uses an iteration scheme to solve the 

system of non-linear equations; the code, however, cannot explicitly handle heterogeneous 
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reactions such as precipitation and dissolution processes (Truesdell and Jones, 1974).  MINEQL 

is a commonly used model that employs the well-known tableau approach to define and solve the 

chemical equilibrium problem.  MINEQL is capable of handling reactions such as mineral 

precipitation and dissolution (Westall, 1976).  MICROQL-I is a simplified version of the 

MINEQL code which can solve chemical equilibrium without sorbed or solid phase species 

(Westall, 1979a). MICROQL-II is an updated version that includes routines for modeling 

adsorption equilibrium using constant capacitance, diffuse layer, and triple layer adsorption 

models (Westall, 1979b).  The chemical speciation code MINTEQA2 is the most comprehensive 

software (also developed based on the ideas espoused in MINEQL and MICROQL codes) for 

modeling dilute aqueous solutions (Allison et al., 1990). PHREEQC is another widely used 

geochemical code that can perform a variety of geochemical speciation calculations (Parkhurst 

and Appelo, 1999). PHAST is a three-dimensional reactive-transport model derived from 

coupling the geochemical model PHREEQC with the solute-transport model HST3D (Kipp, 

1987). The flow and transport model is restricted to constant density, constant temperature, and 

saturated ground-water flow conditions. Chemical reactions considered in HST3D include 

mineral and gas equilibrium, ion exchange, surface complexation, solid solutions, and kinetic 

reactions (Parkhurst, 2004).  

Most of the multi-dimensional, numerical transport codes discussed above require 

considerable experience and expertise to model coupled reactive transport problems.  Therefore, 

in the published literature, laboratory researchers have developed several simpler one-

dimensional reactive transport tools to model column-scale datasets.  For example, Miller and 

Benson (1983) developed a numerical model CHEMTRN to simulate the transport of solutes in 

saturated porous media. The model simulated advection, dispersion, ion exchange, and formation 
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of aqueous-phase complexes.  Engesgaard and Kipp (1992) developed a one-dimensional 

geochemical code to simulate precipitation-dissolution and oxidation-reduction reactions and 

used it to model pyrite oxidation processes at a field site in Denmark.  Zysset et al. (1994) 

presented a numerical model for describing reactive transport processes occurring within a 

biofilm.  (Clement et al., 1996) developed a one-dimensional model to simulate bioremediation 

patterns occurring near an injection well.  Clement et al. (1997) developed a one-dimensional 

code to simulate bacterial transport and denitrification processes observed in a column 

experiment.  Prommer et al. (1998) developed a one-dimensional numerical model for predicting 

biodegradation occurring at a petroleum hydrocarbons site.  Islam and Singhal (2002) presented 

a one-dimensional multi-component reactive transport model coupled with geochemical 

equilibrium reactions to simulate the interactions between the microbial redox reactions and 

inorganic geochemical reactions.  (Amos et al., 2009) developed a numerical model to study the 

enhanced dissolution of PCE-DNAPL in presence of dechlorination bacterial cultures. Clement 

et al. (2004) developed a code for modeling DNAPL-dissolution and rate-limited sorption 

occurring in a biologically reactive one-dimensional porous media system.  Schaefer et al. 

(2009b) and Torlapati et al. (2012) developed one-dimensional models which were used to 

simulate laboratory studies that  explored the effects of bioaugmentation on chlorinated solvent 

contaminants.  

Unfortunately, most of the one-dimensional tools discussed above, which are primarily 

developed for solving a specific research problem, have little or no documentation.  Moreover, 

none of these codes are user friendly tools that can be used by other laboratory researchers.  

Also, these tools support either a kinetic formulation or an equilibrium formulation; none of 

these models provide a flexible framework, such as an EXCEL interface, which would allow 
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users to fine tune the code to their specific needs.  The objective of this effort is to develop a 

comprehensive, one-dimensional reactive transport model within a user-friendly, EXCEL-based 

Visual Basic environment.  Our goal is to provide a unified EXCEL tool that can be easily 

adapted by others to model laboratory-scale experiments involving different types of biological 

(kinetic) and geochemical (equilibrium) reactions.  In this paper, we present the details of this 

tool and demonstrate its use by solving five benchmark problems.  The benchmark problems 

illustrate the characteristics of a variety of bio-geochemical problems that would be of interest to 

a broad range of environmental scientists. The problems are described in detail to provide a 

comprehensive benchmarking database which can be used for testing other reactive transport 

codes.  

2.2 Model development and numerical solution 

Reactive transport problems in porous media systems could be mediated by either kinetic or 

equilibrium processes. Kinetic models are used to describe relatively slow chemical reactions, 

whereas equilibrium reactions are used to describe fast chemical reactions. Several reaction 

transport codes are available in the literature, but they can only handle kinetic type reactions 

(e.g., RT3D) or can handle equilibrium type reactions (Cederberg et al., 1985; Parkhurst and 

Appelo, 1999). RT1D was designed to provide a unified platform for simulating transport 

problems involving both geochemical and kinetic reactions.  However, it is important to note that 

the current version can either simulate a set of pure kinetic reactions or a set of pure geochemical 

reactions, but one cannot mix both types of reactions.  

The capabilities of RT1D model, which are designated as ―simulation options,‖ are 

summarized in Figure 2.1. The model currently supports four different ―simulation options‖ 
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involving the use of two types of reaction modules: a kinetic module and an equilibrium module 

which can simulate kinetic and equilibrium reactions, respectively.  There are four types of 

simulation options available within RT1D.  The first simulation option can be used to solve batch 

kinetic problems. The second option can be used to solve one-dimensional reactive transport 

problems involving kinetic reactions.  The third option can solve batch equilibrium problems.  

The fourth option can solve one-dimensional reactive transport problems involving geochemical 

equilibrium reactions. If the kinetic module is selected, the user should also provide a problem-

dependent reaction package.  The kinetic module supports several standard reaction models that 

are already coded within a set of pre-programmed reaction packages.  In addition to these 

preprogrammed packages, RT1D also supports a user-defined reaction package via which the 

user can input any type of kinetics.  The geochemical module, on the other hand, does not require 

a problem-dependent reaction package, and instead uses a MICROQL-based chemistry package 

to solve the equilibrium problem. The information required for formulating a specific 

geochemical problem are input using the standard tableau.  

The multi-component one-dimensional reactive transport model developed in this study, 

designated as RT1D, solves a coupled set of advection-dispersion-reaction equations for a total 

of ―n‖ components. The model simulates the transport of ―m‖ mobile components that are either 

fully or partially coupled to a set of ―n-m‖ immobile components.  The reactions between these 

components could be mediated by biological/geochemical kinetic reactions, or geochemical 

equilibrium reactions.  The governing set of equations solved by the model can be written in a 

general form: 
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2

i i i i

2

i i i

C C C βV D
=- + +

t R x R x R   where i = 1, 2,3… m
 (2.1) 

j

j

S
=β

t   where j = (m+1), (m+2), (m+3),… (n) 
(2.2) 

 

 

Figure 2.1 Illustration of the simulation options available in RT1D 

where V is the velocity (m/day); D is the hydrodynamic dispersion coefficient (m
2
/day), 

Ci is the aqueous phase concentration (mg/L) of a mobile component i;  Sj is the solid phase 

concentration (mg/mg) of an immobile component j; m is the total number of mobile 
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components; n is the total number of components (note that a total of (n-m) immobile 

components are numbered sequentially after numbering all the mobile components); Ri is the 

linear retardation factor of the i
th

 mobile component [

dρK
R 1

, where ρ is the bulk density 

(mg/L); φ is the porosity; Kd is the linear sorption constant (L/mg)]; and βi and βj are the 

reactions involving mobile and immobile components, respectively. The expressions used for βi 

and βj terms would vary depending on the type of reactions involved in the system.  Note the 

immobile component equations do not have advection dispersion terms, but will have reaction 

terms that will be coupled to some of the mobile component reaction terms.  Also, the mobile-

component reaction terms themselves could be coupled to each other. 

The coupled set of reactive transport equations, represented by equations (1) and (2) are solved 

using the operator split approach (Clement et al., 1998; Torlapati and Clement, 2012b). Using 

this approach, the governing set of transport equations can be written as:   

i i

i

C CV
=-

t R x
 (2.3) 

2

i i

2

i

C CD
=

t R x
 (2.4) 

i i

i

dC β
=

dt R
 (2.5) 

j

j

dS
=β

dt
 

(2.6) 

 

In the numerical code, the advection terms in all the mobile components (equation 2.3) 

are first solved using an advection solver module.  Next, the advected concentrations ( ) are C
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used to solve for dispersion terms (equation 2.4) in the mobile component transport equations 

using a dispersion solver module.  Finally, the dispersed concentrations ( ) are used to solve a 

set of coupled reaction terms involving both mobile and immobile components, represented by 

equations (2.5) and (2.6).  For transport problems involving kinetic reactions, the reaction part of 

the transport equations (equations 2.5 & 2.6) would yield a set of coupled ODEs.  These ODEs, 

referred as the kinetic reaction package, are solved using an ODE solver.  For transport problems 

involving geochemical equilibrium reactions, the reaction terms would yield a set of coupled 

non-linear equations.  These non-linear equilibrium equations are represented using the tableau 

approach (Westall, 1976) and are solved using the geochemical equilibrium solver, MICROQL, 

developed by (Westall, 1979a, b).  

2.2.1 Transport module 

The advection module provides two explicit solver options: a total variation diminishing (TVD) 

solver and an explicit finite difference solver that uses backward difference approximation. The 

advected concentrations are then used to solve the dispersion equation, within the dispersion 

module, using the implicit finite difference method. In addition to these explicit-implicit solvers, 

there is also a fully-implicit option that solves the advection-dispersion terms together using a 

fully-implicit approach.   

2.2.1.1 Explicit advection scheme 

The advection part of the transport equation can be solved using the explicit backward difference 

approximation as shown below: 

C



17 
 

n+1 n n n

i i i i-1

i

C -C C -CV
=-

Δt R Δx
 

(2.7) 

where 
n+1

iC
 is the concentration of the component at the current time step at the current node; 

n

iC
 

is the concentration of the mobile component at the previous time step at the current node and 

n

i-1C
  is the concentration of the mobile component at the previous time step at the preceding 

node.  After further simplification, we can solve for the concentration of mobile component at 

the current node (
n+1

iC
) as shown below: 

n+1 n n n

i i i-1 i

i

Cr
C C C C

R
 (2.8) 

where 

VΔt
Cr

Δx   is known as the grid Courant number. 

2.2.1.2 Explicit TVD scheme 

Numerical dispersion is a major concern while solving the advection dominated problems. RT1D 

includes a robust total variation diminishing (TVD) scheme that minimizes numerical dispersion 

errors. Details of this scheme are given below. Using the Taylor series expansion, the standard 

Lax-Wendroff (LW) scheme for the advection term can be written as (Leveque, 2002):  

2
n+1 n n n n n n

i i i+1 i-1 i+1 i i-1

Cr Cr
C =C - (C -C )+ (C -2C +C )

2 2  

(2.9) 

The above equation can be rearranged and written in a flux-balance format as: 

n nn+1 n

i+1/2 i-1/2i i
F -FC C

=-
t Δx  

(2.10) 
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Where 

n n n n

i+1/2 i i+1 i

V
F =VC + (1-Cr)(C -C )

2  and

n n n n

i-1/2 i-1 i i-1

V
F =VC + (1-Cr)(C -C )

2  respectively. Note 

the flux terms defined above consist of a lower and higher order flux terms. The lower order flux 

term in 
n

i+1/2F
is iVpC

 and the higher order term in 
n

i+1/2F
 is 

i+1 i

V
(1-Cr)(pC -pC )

2 . 

Furthermore in TVD schemes, a flux limiter will be used to minimize the potential numerical 

oscillations induced by the higher order term as shown below:  

n n n n

i+1/2 i i+1 i

V
F =VC + (1-Cr)(C -C )*Φ

2  
(2.11) 

Different types of flux limiters are available in the literature and in this study we have used the 

Van-leer flux limiter given as (Leveque, 2002):  

θ+ θ
Φ=

1+ θ
 

(2.12) 

where 

n n

i i-1

n n

i-1 i-2

C -C
θ=

C -C
 

Farthing and Miller (2001) investigated the adaptive-stencil and finite volume schemes to 

capture sharp fronts and shocks in advective-dispersive transport. They observed that the Lax-

Wendroff scheme performed better in the presence of a flux limiter.  

2.2.1.3 Implicit finite difference method for dispersion scheme 

The dispersion part of the transport equation can be numerically discretized using a central 

difference approximation.  
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n+1 n n+1 n+1 n+1

i i i-1 i i+1
i 2

C C C 2C C
R =D

t x  

(2.13) 

Where Ci-1 is the concentration at the previous node for the current time step, Ci+1 is the 

concentration at the next node for the current time step. The above equation can be further 

simplified as follows 

n n+1 n+1 n+1

i i-1 i i+1

i i i

λ 2λ λ
C C C 1 C

R R R
 

(2.14) 

Where 
2

D t
λ=

x . Assembling equation (14) on a node-by-node basis would yield a following tri-

diagonal matrix of the form: 

n+1
01

n+1
22

n+1
33

n+1
44

n+1
55

n+1
nn

C1 0 0 0 0 0 0 C

da b c 0 0 0 0 C

d0 a b c 0 0 0 C

= d0 0 a b c 0 0 C

d0 0 0 a b c 0 C

.... .. .. .. .. .. . ..

d0 0 0 0 0 0 1 C
 

(2.15) 

where i

λ
a=

R
, i

2λ
b= 1

R
, i

λ
c=

R
and 

n

id=-C
; Co is the concentration at the boundary node. 

The above matrix can be solved using a tridiagonal matrix solver to solve for all the unknown 

concentrations at the new time level.  
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2.2.1.4 Fully implicit numerical solution for advection-dispersion 

In this option, we solve the advection and dispersion together implicitly. We use a central 

difference approximation for the advection term and the numerically discretized form for the 

advection-dispersion equation is as follows: 

n+1 n n+1 n+1 n+1 n+1 n+1

i i i+1 i-1 i-1 i i+1

2

i i

C -C C -C C -2C +CV D
=- +

Δt R 2Δx R Δx
 

(2.16) 

The above equation can be further simplified as follows: 

n n+1 n+1 n+1

i i i-1 i i i+1C (R . )=(α+1)C ( 2 R . )C (1 α)C
 

(2.17) 

where 

2Δx
=

DΔt
 and

VΔx
α=

2D . 

Expanding the equation (2.17) for all the nodes would yield a tridiagonal matrix similar 

to (2.15). For this problem, the values of a, b, c and d are given asα+1, i2-R .
, 1-α and 

n

i i-C (R .Ψ)
, respectively.  

2.2.2 Reaction module 

2.2.2.1 Kinetic type problem 

For a multi-species, the reaction part shown in equation (2.5) & (2.6) simplifies into a set of 

ordinary differential equations (ODE). These ODEs are referred to as a reaction package. The set 

of ODEs described within a kinetic reaction package can be solved using two different ODE 

solvers: a standard 4th order Runge-Kutta (RK) solver, or a more robust Runge-Kutta-Fehlberg 
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(RKF) solver (Chapra and Canale, 1998). The RK solver uses a constant reaction time step, 

whereas the RKF solver will automatically subdivide the reaction time step into sub steps to 

minimize the local error. 

2.2.2.2 Geochemistry equilibrium type problem 

The geochemical equilibrium reaction problem is formulated in the form of a tableau that 

represents the interactions between all the components and species involved in the chemical 

system.  As defined by Westall (1976), a species is a chemical entity of interest present in the 

system whereas a component is a basic building block used for forming various chemical species 

in the system. The stoichiometric relationship between the components and the species can be 

represented in the form of a matrix known as the tableau.  The chemical speciation problem, 

defined by the tableau, is solved using an EXCEL-VBA version of MICROQL code.  The details 

of the numerical solution schemes employed by MICROQL are discussed in Westall (1979b).  

Within RT1D, the transport equations that involve geochemical (or equilibrium) reactions are 

solved using an approach proposed by Cederberg et al. (1985), which is slightly different from 

the approach used for the solving the transport equations involving kinetic reactions.  As 

discussed in Cederberg et al. (1985), first the aqueous concentration of a component of interest 

will be transported using the transport module.  The aqueous concentration of a component at a 

particular node is calculated by subtracting the concentrations of all the sorbed species associated 

with that component from its total concentration.  After the transport step, the updated 

(advection-dispersed) aqueous component concentration is added back to the sorbed 

concentrations of the respective component to compute the total component concentration at that 

node. This total component concentration is then transferred to MICROQL to solve the 

geochemical speciation problem. The equilibrated species concentrations are used to update the 
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values of aqueous component concentrations for the next time transport step. Further details of 

this transport algorithm are discussed in Cederberg et al. (1985). 

2.3 Testing the model 

The explicit finite difference schemes used in the advection modules of RT1D program are 

constrained by certain stability condition criteria. To ensure that the results generated by the 

numerical models are stable and error-free, researchers have used Courant number (Vdx/(R.dt)) 

and Peclet number (Vdx/D) to determine the grid size and time step for the simulations. In the 

following sections, we have tested the stability of our numerical models for different Courant 

and Peclet numbers. For explicit schemes, the Courant number should be less than 1 to obtain 

oscillation free results. If the Courant number exceeds 1, numerical oscillations are observed 

near the advective front. In addition, to obtain good quality solution the Peclet number should be 

set below 2.   

2.3.1 Pure advection  

In this section, we tested the Explicit and TVD schemes for different Courant numbers by setting 

the value of dispersion to 0. Simulations were performed for a one-dimensional column of 50 cm 

length. The pore velocity was about 1 cm/day and the simulations were performed for duration of 

20 days. The grid size was set to 1 cm and the time step was varied to generate Courant numbers 

of 1, 0.5, 0.1 and 0.01. A constant boundary condition of 1 mg/L was supplied at the inlet for the 

complete duration of the experiment. The results of the simulations for the Explicit and TVD 

schemes are shown in Figure 2.2 and 2.3 respectively. It can be observed from these figures that 

at Courant number 1, the results from both the advection schemes produce sharp advective 

fronts. However, the numerical dispersion comes into effect as the Courant number is decreased. 
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The numerical dispersion is comparatively less in case of TVD schemes than the explicit 

schemes.  

 

Figure 2.2 RT1D results for different Courant numbers for the explicit advection scheme with 

v=1 cm/day, dx=1 and a duration of 20 days 

 

Figure 2.3 RT1D results for different Courant numbers for the TVD advection scheme with v=1 

cm/day, dx=1 and a duration of 20 days 
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2.3.2 Advection dispersion modules 

The program was tested for a high and low Peclet numbers of 0.5 and 2 respectively for varying 

Courant numbers 0.01, 0.1, 0.5 and 1. A hydrodynamic dispersion coefficient of 0.05 cm
2
/day 

was used to perform high Peclet number simulations and a hydrodynamic dispersion coefficient 

of 0.2 cm
2
/day was used to perform low Peclet number simulations. A grid size of 0.1 cm and a 

pore velocity of 1 cm/day were used to perform the simulations. The results from these 

simulations were compared against the analytical solutions presented in van Genuchten and 

Alves (1982). 

2.3.2.1 Explicit advection and implicit dispersion 

Simulations were performed with a time step of 0.1, 0.05, 0.01 and 0.001 for both high and low 

Peclet numbers to generate Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.4 and 

2.5 show the results for low and high Peclet number simulations respectively.  

 

Figure 2.4 RT1D results for low Peclet number simulations with varying Courant number using 

the explicit advection and implicit dispersion scheme (v=1cm/day, D=0.2 cm
2
/day, dx=0.1cm) 
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Figure 2.5 RT1D results for high Peclet number simulations with varying Courant number using 

the Explicit advection and Implicit dispersion scheme (v=1cm/day, D=0.05 cm
2
/day, dx=0.1cm) 

It was observed from the figures that the explicit scheme showed numerical dispersion in 

the presence of low Peclet number and this numerical dispersion decreased with increase in the 

Peclet number and the simulation results were closer to the analytical solutions.  

2.3.2.2 Fully implicit advection dispersion scheme 

Simulations were performed with a time step of 0.1, 0.05, 0.01 and 0.001 for both high and low 

Peclet numbers using the fully implicit advection dispersion scheme to generate Courant 

numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.6 and 2.7 show the results for low and high 

Peclet number simulations respectively.  
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Figure 2.6 RT1D results for low Peclet number simulations with varying Courant number using 

the fully implicit advection dispersion scheme (v=1cm/day, D=0.2 cm
2
/day, dx=0.1cm) 

It was observed from the simulations that the fully implicit scheme performed a lot better 

than the explicit scheme. However there was some numerical dispersion when the Peclet number 

was high. 

 

Figure 2.7 RT1D results for high Peclet number simulations with varying Courant number using 

the fully implicit advection dispersion scheme (v=1cm/day, D=0.05 cm
2
/day, dx=0.1cm) 
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2.3.2.3 TVD advection and implicit dispersion scheme 

Simulations were performed with a time step of 0.1, 0.05, 0.01 and 0.001 for both high and low 

Peclet numbers using the TVD advection and implicit dispersion scheme to generate Courant 

numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.8 and 2.9 show the results for low and high 

Peclet number simulations respectively. It was observed from the results that the TVD scheme 

was consistent with the analytical results for all the Courant and Peclet numbers. It is highly 

recommended that the users of the RT1D use TVD scheme for accurate results. 

 

Figure 2.8 RT1D results for low Peclet number simulations with varying Courant number using 

the TVD advection and implict dispersion scheme (v=1cm/day, D=0.2 cm
2
/day, dx=0.1cm) 
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Figure 2.9 RT1D results for high Peclet number simulations with varying Courant number using 

the TVD advection and implict scheme (v=1cm/day, D=0.05 cm
2
/day, dx=0.1cm) 

2.3.3 Advection dispersion and reaction modules 

In this section, we present the results to test the program‘s stability under varying Peclet and 

Courant numbers in the presence of a first order decay constant for a single component. The 

simulations were compared with analytical solutions. For the high Peclet number simulations, the 

data from the first component of Bauer et al. (2001) was used and for low Peclet number 

simulations, the date from the first component of Quezada et al. (2004) was used. Simulations 

were performed for different Courant numbers of 0.01, 0.1, 0.5 and 1.0. The parameters for these 

simulations are presented in Table 2.1. 
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Table 2.1: Parameters for low and high Peclet number simulations 

 Parameter High Low 

Length (cm) 40 3000 

Time (days) 50 3000 

dx (cm) 0.4 5 

Velocity (cm/day) 0.4 1 

Dispersion Coefficient (cm
2
/day) 0.08 10 

Retardation 1 5.3 

Decay constant (1/day) 0.075 7.00E-04 

 

2.3.3.1 Explicit advection and implicit dispersion 

Simulations were performed with a time step (dt) of 1, 0.5, 0.1 and 0.01 for high Peclet number 

simulations and 26.5, 13.25, 2.65 and 0.265 days for low Peclet number simulations to generate 

Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.10 and 2.11 show the results for 

low and high Peclet number simulations for the explicit advection and implicit dispersion 

respectively. It was observed from the figures that explicit scheme performed well with both 

high and low Peclet numbers. There was some numerical dispersion in the presence of high 

Peclet number. However, this is negligible.  
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Figure 2.10 RT1D results for low Peclet number simulations with varying Courant number using 

the explicit advection and implict dispersion scheme (v=1 cm/day, D=10 cm
2
/day, dx=5 cm, 

k=7.0E-4 day
-1

, T=3000 days) 

 

Figure 2.11 RT1D results for high Peclet number simulations with varying Courant number 

using the explicit advection and implict dispersion scheme (v=0.4 cm/day, D=0.08 cm
2
/day, 

dx=0.4 cm, k=7.5E-2 day
-1

, T=50 days) 
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2.3.3.2 Fully implicit advection dispersion scheme 

Simulations were performed with a time step of 1, 0.5, 0.1 and 0.01 for high Peclet number 

simulations and 26.5, 13.25, 2.65 and 0.265 days for low Peclet number simulations to generate 

Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.12 and 2.13 show the results for 

low and high Peclet number simulations respectively. It was observed from the figures that 

explicit scheme performed well with both high and low Peclet numbers. There was some 

numerical dispersion in the presence of high Peclet number. However, this is negligible. 

 

Figure 2.12 RT1D results for low Peclet number simulations with varying Courant number using 

the fully implicit advection dispersion scheme (v=1 cm/day, D=10 cm
2
/day, dx=5 cm, k=7.0E-4 

day
-1

, T=3000 days) 
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Figure 2.13 RT1D results for high Peclet number simulations with varying Courant number 

using the fully implicit advection dispersion scheme (v=0.4 cm/day, D=0.08 cm
2
/day, dx=0.4 

cm, k=7.5E-2 day
-1

, T=50 days) 

2.3.3.3 TVD advection and implicit dispersion 

Simulations were performed with a time step of 1, 0.5, 0.1 and 0.01 for high Peclet number 

simulations and 26.5, 13.25, 2.65 and 0.265 days for low Peclet number simulations to generate 

Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.14 and 2.15 show the results for 

low and high Peclet number simulations respectively.  
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Figure 2.14 RT1D results for low Peclet number simulations with varying Courant number using 

the fully implicit advection dispersion scheme (v=1 cm/day, D=10 cm
2
/day, dx=5 cm, k=7.0E-4 

day
-1

, T=3000 days) 

 

Figure 2.15 RT1D results for high Peclet number simulations with varying Courant number 

using the fully implicit advection dispersion scheme (v=0.4 cm/day, D=0.08 cm
2
/day, dx=0.4 

cm, k=7.5E-2 day
-1

, T=50 days) 
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There was some numerical dispersion for very low courant numbers in the high Peclet 

number simulations but this was negligible and the results from RT1D matched the analytical 

solutions well.  

2.4 Benchmarking RT1D  

2.4.1 First order sequential degradation 

A generalized reactive transport equation for a single component first order decay is present 

below. 

2

2

C C C
R =-V D kC

t x x  
(2.18) 

where C is concentration of the mobile component, k is the first order decay constant (T
-1

). The 

above equation simulates a tracer when the decay constant is set to zero. This reaction package 

could be written in the code form as follows: 

dydt(1)=1/R(1)*RC(1)*Conc(1) 

Where dydt(1) is the ordinary differential equation for the mobile component 1, R(1) is the 

retardation factor for component 1 and RC(1) is the user-set reaction parameter (k), Conc(1) is 

the aqueous concentration of the mobile component. In order to test this reaction package, we 

considered a test column of 40 m length with contaminant transporting through the column for 

50 days with a pore velocity of 0.4 m/day and 0.08 m
2
/day of hydrodynamic dispersion 

coefficient. We used a first order decay constant of 0.075 day
-1

 and a tracer simulation was also 

done with the decay constant set to zero and the results were compared against the analytical 

solutions presented in Quezada et al. (2004). The results from these simulations are presented in 
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Figure 2.16.  It can be observed from the figure that the simulation results from the RT1D model 

are able to match the results from the analytical solutions of both the tracer as well as the decay 

constant.  

 

Figure 2.16 RT1D simulation results for problem-1 using two different k values 

 

2.4.2 Four species coupled sequential first order degradation 

Quezada et al. (2004) presented the analytical solutions for a four species coupled sequential first 

order degradation reactions. The reaction equations simulate the transport and coupled decay of 

four mobile components. The governing equations are as follows: 

2

1 1 1
1 1 12

C C C
R =-V +D -k C

t x x  
(20) 

2

2 2 2
2 c2/c1 c2/c1 1 1 2 2 c2/c3 c2/c3 3 32

C C C
R =-V +D +F Y k C -k C +F Y k C

t x x  

(21) 
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2

3 3 3
3 c3/c1 c3/c1 1 1 c3/c2 c3/c2 2 2 3 32

C C C
R =-V +D +F Y k C +F Y k C -k C

t x x  

(22) 

2

4 4 4
4 c4/c2 c4/c2 2 2 c4/c3 c4/c3 3 3 4 42

C C C
R =-V +D +F Y k C +F Y k C -k C

t x x  

(23) 

where Ri is the retardation factor; V the seepage velocity (LT
-1

), D is the hydrodynamic 

dispersion coefficient (LT
-2

), Y is the yield coefficient, F is the fraction, k (T
-1

) is the first order 

decay constant. The yield coefficient determines the number of moles of a component converted 

into its daughter product. For example, the term Yc4/c2 determines the number of moles of 

component 2 converting into component 4. The yield coefficient is set to 1 for all components 

and this means there is a complete conversion of the component at each time step. The fraction 

governs the amount of total degraded component converting from one component to another. For 

example, Fc4/c2 determines the fraction of total degraded component 2 converting into component 

2. This dependence on fractions causes the coupling effects between different components. Also, 

the reaction equations themselves contain the terms for other components causing coupling 

effects. The above reaction equations could be written in code format as follows: 

dydt(1) = -RC(1) * Conc(1) / R(1) 

dydt(2) = (RC(11) * RC(5) * RC(1) * Conc(1) - RC(2) * Conc(2) + RC(12) * RC(6) * RC(3) * 

Conc(3)) / R(2) 

dydt(3) = (RC(13) * RC(7) * RC(1) * Conc(1) + RC(14) * RC(8) * RC(2) * Conc(2) - RC(3) * 

Conc(3)) / R(3) 

dydt(4) = (RC(14) * RC(9) * RC(2) * Conc(2) + RC(16) * RC(10) * RC(3) * Conc(3) - RC(4) * 

Conc(4)) / R(4) 
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where dydt(i) is the expression for ODE for component i; i could be either 1, 2, 3 or 4; 

R(i) is the retardation factor for the component i; RC(i) is the user-set reaction parameters, 

Conc(i) is the concentration of the component i. The model parameters for this problem are 

presented in Table 2.2 and the results from this simulation are presented in Figure 2.17. It can be 

observed from the figure that the results from the RT1D simulations were able to match the 

analytical solutions well. 

Table 2.2: Model parameters used in Test Problem 2 obtained from Quezada et al. (2004) 

Column Length, L (m) 40 

Dispersivity (m) 0.2 

Velocity  (m d
-1

) 0.4 

Singularity parameter (α) 0.1 

R1 1 

R2 2 

R3 3 

R4 4 

k1 (days
-1

) 0.075 

k2 (days
-1

) 0.05 

k3 (days
-1

) 0.02 

k4 (days
-1

) 0.045 

Yield(all) 1 

Fc2/c1 0.75 

Fc3/c1 0.25 

Fc3/c2 0.5 

Fc4/c2 0.5 

Fc2/c3 0.9 

Fc4/c3 0.1 

Boundary for Species 1 (mol l
-1

) 1.0  

Boundary for Species 2-4 (mol l
-1

) 0 

Total Time (d) 50  
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Figure 2.17 Comparison of RT1D simulation results with analytical solutions for problem-2 

2.4.3 Four component decay chain 

Bauer et al. (2001) presented analytical solutions for the transport of a decay chain for in 

homogenous porous media. The reaction equations presented in the paper were used as a built-in 

reaction package for the RT1D. The reaction equations are as follows 

2

1 1 1
1 1 12

C C C
R =-V +D -k C

t x x  
(2.23) 

2

2 2 2
2 1 1 1 2 2 22

C C C
R =-V +D +k R C -k R C

t x x  

(2.24) 

2

3 3 3
3 2 2 2 3 3 32

C C C
R =-V +D +k R C -k R C

t x x  

(2.25) 

2

4 4 4
4 3 3 3 4 4 42

C C C
R =-V +D k R C -k R C

t x x  

(2.26) 
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where Ri is the retardation factor; V the seepage velocity (LT
-1

), D is the hydrodynamic 

dispersion coefficient (LT
-2

), ki (T
-1

) is the first order decay constant. Further details of the model 

are available in Bauer et al. (2001). The code format for this reaction package is as follows: 

dydt(1) = -RC(1) * Conc(1) 

dydt(2) = (RC(1) * Conc(1) * R(1) - RC(2) * Conc(2) * R(2)) / R(2) 

dydt(3) = (RC(2) * Conc(2) * R(2) - RC(3) * Conc(3) * R(3)) / R(3) 

dydt(4) = (RC(3) * Conc(3) * R(3) - RC(4) * Conc(4) * R(4)) / R(4) 

The model parameters for this problem are presented in Table 2.3 and the results from this 

simulation are available in Figure 2.18. It can be observed from the figure that the RT1D 

simulations were able to match the analytical solutions well. 

 
Figure 2.18 Comparison of RT1D simulation results with analytical solutions for problem 3 
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Table 2.3: Model parameters used in problem 3 obtained from Bauer et al (2002) 

Column Length, L (m) 3000 

Dispersivity (m) 10 

Velocity  (m d
-1

) 1 

R1 5.30 

R2 1.90 

R3 1.20 

R4 1.30 

K1 (days
-1

) 7.5E-4 

K2 (days
-1

) 5.0E-4 

K3 (days
-1

) 4.5E-4 

K4 (days
-1

) 3.8E-4 

Boundary for Species 1 (mg l
-1

) 100 

Boundary for Species 2-4 (mg l
-1

) 0 

Total Time (d) 3000 

 

2.4.4 Modified Monod kinetics for TCE bioaugmentation 

Schaefer et al. (2009b) conducted batch experiments to study the bioaugmentation of TCE. They 

used Modified monod kinetics to model these reactions. The reaction package for this model is 

as follows: (note that there are no advection and dispersion terms as this is a batch system) 

TCE TCE TCE

TCE TCE TCE

dC q XC1
=-

dt R C +K
 

(2.27) 

DCE DCE DCE TCE TCE

DCE TCE TCE TCETCE
DCE DCE

TCE

dC q XC q XC1 1
=-

dt R R C +KC
C +K 1+

I
 

(2.28) 



41 
 

VC VC VC DCE DCE

VC DCETCE DCE TCE
VC VC DCE DCE

TCE DCE TCE

dC q XC q XC1 1
=- +

dt R RC C C
C +K 1+ + C +K 1+

I I I
 

(2.29) 

TCE TCE DCE DCE VC VC

TCE TCE TCE DCE VCTCE TCE DCE
DCE DCE VC VC

TCE TCE DCE

q C q C q CdX 1 1 1
=YX + +

dt R C +K R RC C C
C +K 1+ C +K 1+ +

I I I
 

(2.30) 

where Ci (mM) and X (cells/L) are the concentration of ith compound and biomass 

respectively; i can be either TCE, DCE and VC; qi is the maximum biomass utilization rate, Ki is 

the half velocity coefficient of the compound, I is the competition coefficient, Ri is the 

retardation due to the presence of air-gap. For further details about the model and the 

experimental methods, refer to Schaefer et al. (2009b). The code form of this reaction package is 

given below: 

mTCE = ((RC(4) * Conc(1)) / (Conc(1) + RC(1))) 

mDCE = ((RC(5) * Conc(2)) / (Conc(2) + RC(2) * (1 + (Conc(1) / RC(7))))) 

mVC = ((RC(6) * Conc(3)) / (Conc(3) + RC(3) * (1 + (Conc(1) / RC(7)) + (Conc(2) / RC(8))))) 

dydt(1) = (-1 / R(1)) * Conc(5) * mTCE 

dydt(2) = -Conc(5) * (mDCE / R(2) - mTCE / R(1)) 

dydt(3) = -Conc(5) * (mVC / R(3) - mDCE / R(2)) 

dydt(4) = Conc(5) * mVC / R(3) 

dydt(5) = (RC(10) * Conc(5)) * (mTCE / R(1) + mDCE / R(2) + mVC / R(3)) 

To simplify the equations, we have defined three different variables (mTCE, mDCE and 

mVC) to define the Monod terms for each component. The monod parameters used in this 
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simulations are presented in Table 2.4 and the results from the RT1D simulations and it‘s 

comparison with the model simulations from Schaefer et al. (2009b) is shown in Figure 2.19. It 

can be observed from the figure that the RT1D simulations were able to predict the concentration 

trends exactly. 

Table 2.4: Model parameters regressed from batch experiments in Schaefer et al (2009) 

Component 

Initial 

Condition 

(mM) 

Boundary 

Condition 

(mg/L) 

Kd 

(L/Kg) R K (mM) q (mmol L
-1

 (cell h)
-1

) I (mM) 

DCE 0.123788 0.103157 0.070 1.340 2.00E-03 7.00E-13 5.20E-03 

VC 0 0 0.016 1.078 1.40E-02 1.40E-12 1.00E+06 

Ethene 0 0 - 1.000 - - - 

DHC 

(Immobile) 0 0 - - - - - 

DHC (mobile) 0 0 - 1.000 - - - 

 
Figure 2.19 Comparison of RT1D simulation results with the published model results for 

problem-4 
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2.4.5 Rate-limited sorption reaction in porous media 

In case of non-equilibrium conditions, the sorption is controlled by a mass-transfer coefficient 

(ξ). When the ξ value is really low, the plume acts like tracer because there is no sorption and 

when the ξ value is really high, the plume acts like a retarded plume due to the linear sorption. 

This kind of rate-limited sorption kinetics can be modeled using the following reaction package: 

2

2

d

C C C S
V D ξ C- kC

t x x K
 

(2.31) 

d

dS φξ S
C-

dt ρ K
 

(2.32) 

   where C is the concentration of the aqueous phase component (mg/L); S is the concentration of 

the solid phase component (mg/mg); ρ is the bulk density (mg/L); φ is the porosity; Kd is the 

linear sorption constant (L/mg); k is the first order decay constant (day
-1

); and ξ is the mass 

transfer coefficient (day
-1

).  Clement et al. (1998) used a similar type of formulation to model 

rate-limited reactions, although their study ignored the first order decay term.  This reactive 

transport problem involves two components: a mobile component that represents the aqueous 

phase concentration (C), and an immobile component that represents the solid phase 

concentration (S).  Using the operator split strategy, the reaction kinetics for this problem can be 

formulated as: 

d

dC S
ξ C- kC

dt K
 

(2.33) 
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d

dS φξ S
C-

dt ρ K
 

(2.34) 

Equations (2.33) and (2.34) are coded into a reaction package. The column was assumed 

to be initially clean and the left hand boundary condition was fixed at 1 mg/L.  The porosity of 

the column was assumed to be 0.3, the bulk density of the porous media (ρ) was set to 1600 g/L, 

and the sorption constant (Kd) was set at 1.875 x 10
-4

 L/g.  The model was run using three 

different mass transfer coefficients (ξ): 0.00015, 0.015, and 2 (day
-1

).  Other model parameters 

used in this benchmark problem are summarized in Table 2.5.  Note when the value of mass 

transfer coefficient is low, the solute is expected to behave like a tracer with R=1; on the other 

hand, when the mass transfer coefficient is high, the solute is expected to behave like a retarded 

plume with R=2. The scenarios in-between these two extreme conditions would result in rate 

limited, non-equilibrium transport conditions.  Toride et al. (1993) presented a set of analytical 

solutions for transport equations involving non-equilibrium sorption and first-order decay terms. 

Valocchi and Werth (2004) developed a web-based Java applet to implement the analytical 

solutions developed by Toride et al. (1993).  This Java applet was used to benchmark the results 

of the RT1D code. The definition of model parameters used in the analytical solution vary 

slightly from the model definitions described above; in order to compare the results, the mass 

transfer coefficient to be used in the analytical solutions must be calculated using the formula 

d

ξ
ξ =

ρK
  where ξ` is the mass transfer coefficient used in the analytical solution.  

Figure 2.20a shows the aqueous phase concentrations simulated by RT1D for different 

values of mass transfer coefficients; the figure also shows the analytical solution results.  Similar 

results for solid phase concentrations are shown in Figures 2.20b, 2.20c, and 2.20d. Simulations 
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were also completed using a constant decay co-efficient (k) of 0.03 day
-1

 and Figure 2.21 

compares the numerical results with analytical results. The total computer time required for 

solving this benchmark problem was about 18 seconds.  The figures show that the results from 

the RT1D simulations were able to match the analytical results.  Furthermore, as expected, 

Figure 2.20a shows that the aqueous phase concentration profile was retarded by a factor of R=2, 

when the mass transfer coefficient was set to an arbitrarily high value.   

  

  

Figure 2.20 Comparison of RT1D simulations with analytical solutions for problem–5: (a) 

aqueous concentration for different mass transfer coefficients; (b) solid phase concentrations for 

ξ=0.00015; (c) solid phase concentrations for ξ=0.015; and (d) solid phase concentrations for ξ=2 
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Table 2.5: Model parameters used for problem–5 

Length (cm) 40 

Total time (days) 50 

∆x 0.4 

∆t 0.01 

Pore Velocity (cm/day) 0.53 

Longitudinal Dispersion Coefficient (cm
2
/day) 0.08 

# Mobile Species 1 

# Immobile Species 1 

 

 

Figure 2.21 Comparison of the RT1D results with the analytical solutions for problem–5 with a 

decay rate constant value of 0.03 day
-1 
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2.4.6 Microbial transport and growth under denitrification conditions  

Clement et al. (1997) studied the effects of denitrifying conditions on the growth and transport of 

bacteria in a porous media column under two substrate loading conditions. A numerical model 

was developed to generate the breakthrough profiles of bacterial cells and substrates.  A first 

order attachment and detachment model was used to describe the exchange processes between 

mobile and immobile-phase bacterial cells. This benchmark problem considered three mobile 

components namely nitrate, acetate and aqueous-phase bacteria, and one immobile component 

namely immobile bacteria.   The reaction package used in the problem is given below: 

N N s
N a

dC r X ρ
=-r X -

dt n  

(2.35) 

A sA
A a

r X ρdC
=-r X -

dt n  

(2.36) 

a de s
X a at a

dX K X ρ
r X K X

dt n  

(2.37) 

s at a
X s de s

dX nK X
r X K X

dt ρ  

(2.38) 

where CN, CA, Xa and Xs are concentrations (mg/L) of nitrate, acetate, aqueous-phase 

bacteria and immobile-phase bacteria (mg/mg), respectively. The parameters Kat (day
-1

) and Kde 

(day
-1

) are the attachment and detachment coefficients of mobile and immobile phase bacteria, 

respectively; n is the porosity of soil; and ρ is the bulk density of the soil (mg/L).  The rate 

expression  is the nitrate utilization rate described using Monod kinetics as: Nr
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N A
N max

N N A A

C C
r q

K C K C
,where qmax is the maximum nitrate utilization rate (mg nitrate/ 

mg biomass-day), KN is the half saturation coefficient for nitrate (mg/L); KA is the half saturation 

coefficient for acetate (mg/L). The specific utilization rate of acetate ( ) and biomass growth 

rate ( ) are given by the expressions:  and X X/N N dr Y r K
, where YA/N and YX/N 

are the yield coefficients for acetate and biomass, respectively, and Kd is the cell decay rate 

coefficient (day
-1

).  A finite difference grid of size 1 cm and a time step of 0.001 day were used 

in this problem. Other model parameters used are summarized in Table 2.6.  Further details of 

the experiments are available in Clement et al. (1997). The total amount of computer time 

required for solving this benchmark problem was about 590 seconds.  Figure 2.22a-d compare 

RT1D simulation results with published model results and data available in the literature. Figures 

2.22a and 2.22c compare effluent concentrations of nitrate at different times and Figures 2.22b 

and 2.22d show mobile phase bacteria concentrations in the effluent.  The results show that the 

RT1D model simulations closely matched published data.  

  

Ar

Xr A A/N Nr Y r
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Table 2.6: Model parameters used for problem–6 

Pore Velocity (cm/day) 1890.91 

Length (cm) 50 

Longitudinal dispersion coefficient (cm
2
/day) (D) 1890.91 

Porosity (n) 0.44 

Bulk density (ρ) (mg/l) 1.56E6 

Time (days) 15 

Microbial decay rate (day
-1

) (Kd) 0.06 

Attachment coefficient (day
-1

) (Kat)  288 

Detachment coefficient (day
-1

) (Kde) 0.32  

Distribution coefficient (L/mg) 3.9E-7 

Half saturation coefficient: (mg/L) 

Acetate (KA) 

Nitrate (KN) 

1.20 

0.66 

Maximum specific nitrate utilization rate (mg 

nitrate/ mg biomass-day) (qmax) 7.21 

Yield: 

Acetate (mg acetate/mg NO3)  (YA/N) 

Biomass (mg biomass/mg NO3) (Yx/N)  

0.84 

0.13 

Initial condition (mg/L): 

Acetate (CA) 

Nitrate (CN) 

Mobile bacteria (XM) 

Immobile bacteria (mg/mg) (XIM) 

 

0 

0 

1.0E-15 

3.0E-07 

Boundary condition (Low Substrate) (mg/L): 

Acetate (CA) 

Nitrate (CN) 

Mobile bacteria (XM) 

5.0 

5.5 

0 

Boundary condition (High Substrate) (mg/L): 

Acetate (CA) 

Nitrate (CN) 

Mobile bacteria (XM) 

48.0 

58.0 

0 
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Figure 2.22 Comparison of the RT1D model results (solid line) with the published model results 

(dotted line) and published data (dots) for benchmark problem–2: (a) effluent nitrate for low 

substrate conditions; (b) effluent biomass for low substrate conditions; (c) effluent nitrate for 

high substrate conditions; and (d) effluent biomass for high substrate conditions 

2.4.7 Carbon Tetrachloride Biodegradation  

Phanikumar et al. (2002) developed a bioremediation model to predict carbon tetrachloride (CT) 

degradation processes observed in sequential column experiment. In this study, we have used 

one of their experiments, identified as once-fed (OF) column, as a benchmark problem. The 

laboratory experiment used a 200 cm long column fitted with an 11-cm long slug injection zone 

at a distance of 34 cm away from the column inlet.  The injection zone was fitted with an inlet 

and an outlet to circulate flow within this zone.  This injection-extraction setup was used to 
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inoculate the column with nutrients and mobile bacteria for about 16 minutes by circulating flow 

at rate of 20 ml/min. The inoculation step was completed just once at the beginning of the 

experiment.  It was assumed that the inoculation step completely replaced the initial contents of 

the slug injection zone and hence the concentrations in the inoculant solution were used as the 

initial conditions for the 11 cm zone.  Table 3 summarizes the details of the boundary and initial 

conditions used in this problem for the entire column. The transport problem considered four 

mobile components: carbon tetrachloride, acetate, nitrate, and mobile-phase bacteria; and two 

immobile components: sorbed carbon tetrachloride and immobile-phase bacteria. The reaction 

package used for modeling this bioremediation problem, as provided in  Phanikumar et al. (2002) 

is : 

'd CT
CT M IM d CT CT

ρfK dC ρκ
1 -k C (X +X )- 1-f K C S

φ dt φ
 

(2.39) 

a max a n
a M IM

a

dC μ M M
R - (X X )

dt Y
 

(2.40) 

max a n KCn
n M IM a n M IM

n nb

μ M M bdC
R (X +X )- (1 M ) γM (X +X )

dt Y Y
 

(2.41) 

M
max a n KC a at M de a IM

dX
μ M M b (1 M ) K X K (1 M )X

dt  
(2.42) 

CT
d CT CT

dS
κ 1-f K C S

dt  
(2.43) 
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IM
max a n KC a de a IM at M

dX
μ M M b (1 M ) K (1 M ) X K X

dt  

(2.44) 

where f is the fraction of equilibrium sites, bKC is the microbial decay rate (day
-1

), Kat is 

the attachment coefficient (day
-1

), Kde is the detachment coefficient (day
-1

), k` is the CT reaction 

rate (day
-1

), γ is the nitrate reaction rate (day
-1

), κ is the kinetic desorption rate (day
-1

), µmax is the 

maximum specific growth rate (day
-1

), Ya, Yn and Ynb are the yield rates of acetate, nitrate and 

biomass respectively; CCT, Ca, Cn and SCT are the aqueous concentrations of carbon tetrachloride, 

acetate, nitrate and the sorbed concentration of carbon tetrachloride, respectively; XM and XIM 

are the concentrations of mobile and immobile bacteria, respectively. Also, Ma and Mn are the 

Monod terms for acetate and nitrate reactions, respectively, and given by the expressions: 

a
a

sa a

C
M

K C
and 

n
n

sn n

C
M

K C
 where Ksa and Ksn are the half saturation coefficients of 

acetate and nitrate utilization reactions, respectively.  The kinetic equations (2.39) to (2.41) 

describe biodegradation of carbon tetrachloride, utilization of an electron donor (acetate), and an 

electron acceptor (nitrate).  Equation (2.42) describes the growth, decay, and attachment of the 

mobile phase bacteria, equation (2.43) describes the sorption of carbon tetrachloride using a two-

site sorption model, and equation (2.44) describes the growth, decay, and detachment of 

immobile-phase bacteria.  The grid size used was 1 cm and time step was 0.001 day. Other 

model parameters are summarized in Table 2.7.  

Figure 2.23 compares RT1D simulation results with the published model results. Figure 

2.23a shows the biodegradation patterns of carbon tetrachloride within the column after 4 days. 

We present the published model data as well as the experimental in Figure 2.23a because the 

RT1D simulated concentrations were able to match the concentrations from the experimental 
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data much better than the published model data. The total amount of computer time required for 

simulating this benchmark problem was 28 seconds. As expected, the model results show 

increased biodegradation activity near the slug injection zone which was inoculated with active 

bacterial cells.  It can be observed from the figures that the results from the RT1D simulations 

match well with the published model results.  
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Table 2.7: Model parameters used for problem– 7 

Parameter Value 

Pore Velocity (cm/day) 10 

Length (cm) 200 

Longitudinal dispersion coefficient (cm
2
/day) (D) 2 

Porosity (φ) 0.35 

Bulk density (ρ) (mg/L) 1.63E6 

Time (days) 4 

Microbial decay rate (day
-1

)(bKC) 0.221 

Fraction of equilibrium sites (f)  0.437 

Attachment coefficient (day
-1

) (Kat)  0.9 

Detachment coefficient (day
-1

) (Kde) 0.043 

Distribution coefficient (Kd) (L/mg) 3.9E-7 

Half saturation coefficient: (mg/L) 

Acetate (Ksa) 

Nitrate (Ksn) 

1.0 

12.0 

CT reaction rate (day
-1

) (k`) 0.189 

Nitrate utilization coefficient (day
-1

) (γ) 5.730 

Kinetic desorption rate (day
-1

) (κ) 0.36 

Maximum specific growth rate (day
-1

) (μmax) 3.11 

Yield: 

Acetate (Ya) 

Nitrate (Yn) 

Biomass (Ynb) 

0.4 

0.25 

0.46 

Initial condition (ppm): 

Carbon tetrachloride (CCT) 

Acetate (Ca) 

Nitrate (Cn) 

Mobile bacteria (XM) 

Immobile bacteria (XIM) 

Sorbed CT (mg/mg) (SCT) 

0.130 

0 

42 

0 

0 

2.8E-8 

Boundary condition (ppm): 

Carbon tetrachloride (CCT) 

Acetate (Ca) 

Nitrate (Cn) 

Mobile bacteria (XM) 

Immobile bacteria (XIM) 

0.130 

0 

42 

0 

0 

Slug injection zone inoculation (ppm): 

Carbon tetrachloride (CCT) 

Acetate (Ca) 

Nitrate (Cn) 

Mobile bacteria (XM) 

Immobile bacteria (XIM) 

0.1 

1650 

42 

11.8 

0 
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Figure 2.23 Comparison between the published model data (dots) and the RT1D simulations 

(line) for benchmark problem–3: (a) carbon tetrachloride after 4 days; (b) acetate after 13 days; 

(c) nitrate after 4 days; (d) mobile KC after 7 days; (e) mobile KC after 11 days; (f) mobile KC 

after 14 days; (g) mobile KC after 4 days; and (h) mobile KC after 13 days (Note: KC is the 

strain of the mobile bacteria) 

2.4.8 Geochemical transport involving a constant capacitance model 

Cederberg et al. (1985) developed a research code, TRANQL, to simulate geochemical multi-

component transport in a saturated groundwater system.  The TRANQL code was used to study 

cadmium transport in the presence of chloride and bromide ions. The one-dimensional reactive 

transport model considered advection, dispersion, surface complexation of cadmium ion, and 

sorption of free cadmium to solids in the column.  They used the finite-element approach to 

solve the governing transport equations. The geochemical problem was defined using the tableau 

nomenclature similar to the method presented by Westall (1979a).  The chemical equilibrium 

problem considered a total of 6 components and 14 species.  Table 2.8 provides the reaction 

tableau for the problem and the log K values for all the chemical reactions.  Using the RT1D 

code, we tracked the concentrations of the following three mobile components: cadmium, 

bromide, and chloride.  The remaining three components in this problem including hydrogen ion 
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(H
+
), surface hydroxyl group (SOH) and electrostatic potential (Psi) were not tracked in the 

transport module for the following reasons: pH and total SOH values are fixed in this problem 

and hence remained constant throughout the simulation. The last component, electrostatic 

potential (Psi), is a hypothetical component which is only used within MICROQL calculations.  

In order to compute the aqueous cadmium component concentration, we subtracted the 

concentration of sorbed cadmium species SOCd
+
 (species 14 in the tableau) from the total 

cadmium component concentration.  Similar calculations can also be made for other components 

of interest, as described in Cederberg et al. (1985).  The grid size used in this problem was 0.03 

cm and the time step was 0.06 hours.  Cederberg et al. (1985) solved a total of six cases with 

different initial and boundary concentration levels. These six cases were divided into two groups 

of three cases based on the total initial and boundary concentrations of cadmium, chloride and 

bromide ions.  Further details about each of these cases are available in Cederberg et al. (1985).  

In this benchmark exercise, we solved two cases namely, Case-1 and Case-5, described in 

Cederberg et al.‘s study. These two cases were chosen because Case-1 is a base case scenario 

where the initial and boundary conditions chloride and bromide ion concentrations remained the 

same at the background levels.   Case-5, on the other hand, shows the system‘s response when 

bromide and chloride ion concentration levels were allowed to be higher than the background 

concentration levels. The transport parameters the initial and boundary conditions used for these 

two cases are summarized in Table 2.9.  The amount of computer time required for solving this 

benchmark problem was about 30 seconds. 

The results predicted by the RT1D are compared against TRANQL model results, 

reported in Cederberg et al., in Figures 2.24a and 2.24b.  Figure 6a shows that the aqueous-phase 

and sorbed-phase cadmium profiles predicted by RT1D are in good agreement with TRANQL 
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results.  Since concentrations of chloride and bromide remained constant during Case-1, they are 

not presented in Figure 2.24a.  However, when the concentration of chloride was increased 

(Case-5 problem), it interacted with sorbed-phase cadmium species and this, resulted in reduced 

chloride ion levels; these results are shown in Figure 2.24b.  Overall, the results from RT1D 

simulations are in excellent agreement with published results.  

  

Figure 2.24 Comparison of the RT1D results (solid lines) with the published model results (dots) 

for the benchmark problem–4: (a) simulation results for Case-I and (b) simulation results for 

Case-V  
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Table 2.8: Stoichiometry of chemical reactions (tableau) for the problem–8 

   

Cl- Br- 

 

Cd+2 SOH Psi H+ log K 

1  H[+]        0 0 0 0 0 1 0 

2 Cd+2 0 0 1 0 0 0 0 

3 Cl- 1 0 0 0 0 0 0 

4 Br- 0 1 0 0 0 0 0 

5 CdCl+ 1 0 1 0 0 0 1.8 

6 CdCl2 2 0 1 0 0 0 2.6 

7 CdBr+ 0 1 1 0 0 0 2.2 

8 CdBr2 0 2 1 0 0 0 3 

9 CdOH+ 0 0 1 0 0 -1 -12.69 

10 OH- 0 0 0 0 0 -1 -13.91 

11 SOH 0 0 0 1 0 0 0 

12 SOH2 0 0 0 1 1 1 7.4 

13 SO- 0 0 0 1 -1 -1 -9.24 

14 SOCd+ 0 0 1 1 -1 -1 -7 

 

 

  

XOHHXOHH
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Table 2.9: Model parameters used for problem–8 

Parameter Value 

Pore Velocity (cm/hr) 0.33 

Length (cm) 10 

Longitudinal dispersion coefficient (cm
2
/hr) 0.0067 

Porosity 0.3 

Bulk density (g/l) 2500 

Time (hrs) 15 

Total no. of sites (mol/l) 0.046 

Ionic Strength (mol/l) 0.1 

pH (constant) 7 

Capacitance (F/m
2
) 1.06 

Solid surface area (m
2
/g) 1 

Boundary condition (Case-I): 

Cd
2+ 

(M) 

Cl
- 
(M) 

Br
- 
(M)

 

1.0E-4 

3.0E-4 

1.0E-4 

Initial condition (Case-I): 

Cd
2+

(M) 

Cl
- 
(M) 

Br
- 
(M)

 

SOH (M) 

H+ (M) 

1.0E-5 

3.0E-4 

1.0E-4 

4.6E-2 

1.0E-7 

Boundary condition (Case-V): 

Cd2+ (M) 

Cl- (M) 

Br- (M) 

1.0E-4 

3.0E-2 

1.0E-2 

Initial condition (Case-V): 

Cd2+(M) 

Cl- (M) 

Br- (M) 

SOH (M) 

H+ (M) 

1.0E-4 

3.0E-3 

1.0E-3 

4.6E-2 

1.0E-7 

 

2.4.9 Multiple Sequential Batch Reactor 

Jeppu et al. (2012) proposed a sequential equilibration reactor (SER) system to investigate 

transport problems involving geochemical equilibrium reactions. They studied adsorption of 

As(V) on goethite-coated sand using three sequentially linked reactors, identified as a multiple 
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sequential batch reactors (MSER).  We simulated the results of their MSER experiment as our 

fifth benchmark problem.  In this experiment, as an initial step, the first reactor was filled with 

As(V) solution while reactors 2 and 3 were filled with clean water. This is the initial condition 

for the problem.  After equilibrating for 24 hours, the aqueous solution from the first reactor was 

transferred to the second reactor and was allowed to equilibrate with the solids in the second 

reactor.  During the same time period, new arsenic laden solution was transferred to the first 

reactor, the solution in the second reactor was transferred to the third reactor, and the solution in 

the third reactor was discharged for chemical analysis. The volume of water discharged from a 

single reactor was designated as the ―reactor volume.‖  The experiment had two distinct phases; 

during the first phase, a total of 14 reactor volumes were discharged from the system while 

simultaneously renewing the solution in the first reactor with new arsenic-laden solution. During 

the second phase, a total of 4 reactor volumes were discharged while simultaneously replacing 

the solution in the first reactor with clean water.  To simulate this experiment, a hypothetical 

column with 4 finite-difference nodes was used.  The length of the each finite difference grid is 

set to 1 cm, and the total distance between node-1 to node-4 was 3 cms, representing the 3 

reactors. The velocity was assumed to be 1 cm/day and the time step used was 1 day, 

maintaining a Courant number 1.  Note, although there were 4 nodes in the system, the boundary 

node was used as an hypothetical node to define the boundary condition; geochemical reactions 

are allowed to occur only in nodes 2, 3, and 4, which represented the three sequentially coupled 

reactors. There is no hydrodynamic dispersion in this sequential batch problem and hence the 

dispersion module was not used.  The Courant number was set to 1 in the numerical model to 

allow one node explicit advection that exactly mimicked the batch transfer process without any 

numerical dispersion effects.  The total period of simulation was 18 days.  The aqueous phase 
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As(V) concentration at the inlet boundary node was set at 1.25 M for 14 days, followed by zero 

concentration for 4 more days.  Other model parameters and the tableau for representing the 

chemical reactions are given in Tables 2.10 and 2.11, respectively.  The total amount of 

computer time required for solving this benchmark problem was 2 seconds.  RT1D simulation 

results are compared against PREEQCI (Charlton and Parkhurst, 2002) results (reported in Jeppu 

et al. 2012) and the experimental data (also reported in Jeppu et al. 2012) in Figure 2.25.  It can 

be observed from the figure RT1D matched the published data well. 

Table 2.10: Model parameters used for problem–9 

Length (cm) 4 

Total time (days) 18 

Pulse time (days) 14 

∆x 1 

∆t 1 

Velocity (cm/day) 1 

# Mobile Species 1 

# Immobile Species 1 

Boundary condition:  

As(V) concentration (μM) 

 0-14 days 

 15-18 days 

1.25 

0 

pH (constant/fixed) 7 

Ionic strength 0.01 

Surface site density (sites/nm
2
) 1.04 

Surface area (m
2
/g) 1.08 

Sorbent concentration (mg/L) 1.0 
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Table 2.11: Stoichiometry of chemical reactions (tableau) used for problem–9 

 AsO4- SOH Psi H+ Log K 

H+ 0 0 0 1 0 

AsO4[-3]Aq 1 0 0 0 0 

FeOH 0 1 0 0 0 

OH- 0 0 0 -1 -13.91 

HAsO4[-2] 1 0 0 1 11.23 

H2AsO4[-1] 1 0 0 2 18.01 

H3AsO4 1 0 0 3 20.16 

>FeH2AsO4 1 1 0 3 31.44 

>FeHAsO4- 1 1 -1 2 26.18 

>FeAsO4-2 1 1 -2 1 20.1 

>FeOH2[+] 0 1 1 1 7.17 

>FeO[-] 0 1 -1 -1 -9.32 

 

Figure 2.25 Comparison of the RT1D results with the published model results for problem–9 
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2.4.10 Ion exchange 

Valocchi et al (1981) presented an analytical framework that allowed the characterization of 

certain key concentration profiles during the transport of ion-exchange solutes based on the 

chromatography theory. The validity of this theory was tested by applying it to a field situation 

in Palo Alto Baylands in California. The field project involved the injection of advanced 

municipal effluent into the aquifer. The principal chemical mechanism involved is the 

heterovalent ion exchange of Na+, Mg2+ and Ca2+. The pore velocity was about 1.01 m/day and 

the dispersivity was 1 m and the total length of the column was 16 m. The stoichiometric table 

for this problem is presented in Table 2.12 and the results from the RT1D simulations and the 

comparison against the published model data are available in Figure 2.26. It can be observed 

from the figures that RT1D was able to simulate the results well. 

No. Species Name Na+ Mg2+ Ca2+ X H+ Log K 

1 Na+ 1 0 0 0 0 0 

2 Mg2+ 0 1 0 0 0 0 

3 Ca2+ 0 0 1 0 0 0 

4 Na-X 1 0 0 1 -1 0 

5 Mg-X 0 1 0 2 -2 0.355 

6 Ca-X 0 0 1 2 -2 0.602 

7 H+ 0 0 0 0 1 0 

Table 2.12 Stoichiometric matrix for the simulation of Test Problem – 10 

 



65 
 

  

 

Figure 2.26. Results for example problem 10 a) Breakthrough profile for Na+ b) Breakthrough 

profile for Mg2+ c) Breakthrough profile for Ca2+ 

2.5 Summary and Conclusions 

In this study, we have presented the details of a numerical modeling tool for solving a variety of 

biochemical and geochemical reactive transport problems.  The code was developed within the 

EXCEL Visual Basic platform and it can be run within the standard EXCEL without any 

additional software. The tool is capable of solving a wide range of kinetic-limited reactive 

transport problems that could be defined through a reaction package.  RT1D can also solve a 

variety of equilibrium-controlled geochemical transport problems defined through a chemical 

reaction matrix (also known as the tableau).  The capabilities of the tool were demonstrated by 

solving several benchmark problems of varying level of complexity.  The results show that 
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RT1D simulations closely matched previously published results. RT1D is a flexible tool that 

allows users to add their own routine to define any type of user-defined kinetic reactions.  The 

geochemistry package can be used to define and solve transport problems involving a variety of 

surface complexation reactions.  The tool is equipped with a robust TVD advection solver, an 

implicit dispersion solver, and an adaptive time stepping ODE solver to handle any complex 

problem.  RT1D code is a useful tool for laboratory researchers who are interested in analyzing 

batch and column data within a user-friendly EXCEL platform.  
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Chapter 3 

MODELING Dehalococcoides Sp. AUGMENTED BIOREMEDIATION IN A SINGLE 

FRACTURE SYSTEM 

3.1 Introduction 

Extensive use of various forms of chlorinated ethenes as solvents for dry cleaning and metal 

degreasing efforts has resulted in widespread contamination of groundwater and soil systems. 

The toxicity and carcinogenicity potential of these compounds can be high hence they pose a 

significant threat to human and ecological health (Coleman et al., 2002). At contaminated field 

sites, depending on the history of the spill and the heterogeneity of the subsurface, the 

chlorinated solvents discharged as a dense non-aqueous phase liquid (DNAPL) might be 

immobilized in the form of trapped blobs or as pools.  These trapped DNAPL phases continue to 

dissolve for a long time to form large aqueous chlorinated ethene plumes (Clement et al., 2004). 

The most commonly observed chlorinated ethenes in groundwater are: perchloroethene 

(PCE), trichloroethene (TCE), the dichloroethenes (cis-1,2- (cDCE), trans-1,2- (tDCE), and 1,1- 

(1,1DCE)), and vinyl chloride (VC). Microbial metabolism plays a crucial role in the degradation 

of these chlorinated compounds.  The biodegradation process can occur under both aerobic and 

anaerobic conditions (Beeman and Bleckmann, 2002).  During anaerobic degradation, PCE and 

TCE are reductively dechlorinated to form cis-DCE, VC and the end product ethane, mostly via 

halorespiration (Bradley, 2003; El Fantroussi et al., 1998; Smidt and de Vos, 2004).   
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Bioaugmentation remediation methods that employ Dehalococcoides sp. (DHC) have 

been widely tested for treating chlorinated solvent contaminant plumes (Maymo-Gatell et al., 

1997; Schaefer et al., 2009b; Schaefer et al., 2010b).   Several laboratory and field experiments 

have been conducted to study the degradation patterns of chlorinated ethenes in the presence of 

DHC.  Cupples et al (2004) studied the reductive dechlorination of PCE using DHC and 

developed the Monod kinetics model to account for competition between the electron acceptors. 

They attributed the accumulation of chlorinated intermediate compounds DCE and VC to the 

lack of appropriate microorganisms, insufficient supply of donor substrate, or reaction kinetic 

limitations.  

Lee et al (2004) used glucose as a model carbohydrate to understand the effectiveness of 

dechlorination process using a culture obtained from a PCE-contaminated site in Victoria, TX. 

They developed a numerical model that simulated the batch experiments.This model included 

kinetic expressions to simulate the competition between fermentors, methanogens, and two 

separate dehalogenator groups. Their model simulations suggested that the amount of 

dechlorination achieved was significantly affected by the initial relative population of 

dehalogenators and the H2 utilizing methanogens.  

Yu et al (2005) modeled the reductive dechlorination reaction kinetics using two models 

that employed the Michaelis-Menten equation.  In this study, the competitive and Haldane 

inhibition models were tested by fitting batch kinetic data obtained using three types of 

dechlorinating populations: PM culture (obtained from a chlorinated solvent contaminated site in 

Point Mugu, CA), EV culture (obtained from Evanite in Corvallis, OR), and BM culture (a 

binary mixture of PM and EV).  The study demonstrated that for accurate modeling a 

combination of competitive and Haldane inhibition kinetics is necessary, and such models could 
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make accurate predictions over a broad range of PCE/TCE concentrations. Schaefer et al (2009b) 

studied the fate and transport of DCE in the presence of DHC. They performed both batch and 

column experiments to evaluate the transport, growth, and dechlorination activity of DHC in a 

bioaugmentation column experiment. The results from the column experiment showed that the 

dechlorination occurred over the entire length of the column. They also observed that the 

reaction rates of DHC in the column experiments were 200 times more efficient than those 

observed in batch experiments; however, this 200-fold enhancement was not observed at the 

field scale (Schaefer et al., 2010a).  

Schaefer et al. (2010b) performed laboratory experiments in discretely fractured 

sandstone blocks to study the use of bioaugmentation to treat residual PCE-DNAPL. Results 

from these experiments indicated significant dechlorination activity and growth of DHC within 

the fracture. The DNAPL dissolution was enhanced during bioaugmentation by a factor of 5 and 

the dissolved PCE concentration levels were close to the solubility level. The extent of 

dechlorination and DNAPL dissolution enhancement depended on the fracture characteristics, 

residence time, and the dissolved concentration of PCE.  

Although considerable amount of experimental data are available to test the feasibility of 

bioaugmentation process to treat chlorinated ethenes, very few reactive transport models are 

available that can describe these experimental data by simulating the bacterial growth and 

dechlorination activity coupled with transport processes.  Development of such a model would 

help facilitate the design and operation of bioaugmentation applications.  In this study, we 

propose a comprehensive reactive transport modeling framework for modeling bioaugmentation 

remediation process that employs DHC to treat a PCE-contaminated fracture system.  The model 
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was calibrated and tested using the batch and transport experimental results presented in 

Schaefer et al (2009b) and Schaefer et al. (2010b).  

3.2 Experimental method and governing equations 

 Schaefer et al. (2010b) examined the enhanced dissolution of residual DNAPL sources in bench-

scale fractured sandstone blocks during bioaugmentation. The data reported for two experiments 

used in this study were conducted in an Arizona buff sandstone block (29 cm × 29 cm × 5 cm). A 

discrete linear fracture of aperture size 0.054 cm (Schaefer et al., 2009a) was created along the 

naturally occurring bedding plane in this sandstone block. The outer edges were sealed and small 

holes were drilled into the rock along the influent and effluent fracture edges. Artificial 

groundwater was used in all the experiments. The DHC used in these bioaugmentation 

experiments was a commercially available microbial culture SDC-9 (Vainberg et al., 2009). The 

biodegradation experiments were performed after residual PCE-DNAPL saturation was attained 

in the rocks as described in Schaefer et al (2009a). Residual DNAPL within the fracture served 

as a long-term source for dissolved PCE throughout the duration of the experiment. The fractures 

were flushed with an anoxic solution for 2 to 7 days before bioaugmentation with DHC was 

performed.  

Two experimental datasets were reviewed and used in this study; these were identified as 

Experiment-1 and Experiment-3 in the Schaefer et al. (2010b) paper. As reported in Schaefer et 

al. (2010b), Experiment-1 was a ―high‖ flow rate experiment whereas Experiment-3 was a ―low‖ 

flow rate experiment. In this study, we will identify Experiment-3 and Experiment-1 as 

Experiment-A and Experiment-B, respectively.  We used Experiment-A dataset for model 

calibration and Experiment-B dataset for testing the calibrated model. 
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Similar to Schaefer et al. (2009a) study, the single fracture system was conceptualized as an 

equivalent, one-dimensional porous media system with a constant transport velocity.  Reductive 

dehalogenation of PCE into TCE, DCE, VC and ethene and the growth of mobile and immobile 

DHC were modeled using Monod kinetics (Schaefer et al., 2009b; Yu et al., 2005). The 

governing transport equations with appropriate kinetic biochemical reaction terms are 

summarized below: 
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(3.8) 

 

where Ci (mM) is the aqueous concentration of the compound i (where i is either PCE, 

TCE, DCE, VC, ethene or chloride), V is the transport velocity (cm/hr), D is the hydrodynamic 

dispersion co-efficient (cm
2
/hr) Ii (mM)is the competition coefficient, qi (mmol L

-1
 (cell h)

 -1
) is 

the DHC maximum utilization rate coefficient, Ki (mM) is the half velocity coefficient, XM 

(cells/L) is the mobile phase DHC concentration XIM (cells/L) is the immobile phase DHC 

concentration, X (cells/L) is the sum of the mobile and immobile DHC (X=XM+XIM),  Y 

(cell/mM) is the yield and ξi (h
-1

)  is the back-partitioning coefficient, and Kdet (h
-1

) is the bacteria 

cell detachment coefficient.  

The reactive transport model contains 7 mobile species: PCE, TCE, DCE, VC, ethene, 

chloride and mobile DHC. The only immobile species present in the system is the DHC bacterial 

population attached to the solid phase. Note that the immobile species equation does not have 

advection and dispersion terms. 

Equations (3.1) – (3.5) describe biodegradation of PCE into its daughter products by both 

mobile and immobile DHC. Equation (3.1) describes the degradation of PCE to TCE; equation 

(3.2) describes formation of TCE from PCE and its subsequent degradation to DCE. Similarly, 
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equations (3.3) – (3.5) describe the formation DCE, VC and Ethene, along with the formation of 

the daughter products VC and ethene, respectively. The equations (3.2) – (3.5) also have a model 

coefficient (ξ), which was used to account for the expected loss of aqueous phase contaminant 

concentration due to back-partitioning of the daughter products into residual DNAPL; this back-

partitioning mechanism was described in Schaefer et al. (2010b) and Ramsburg et al (2010). 

Note the back-partitioning process was not included in equation (3.1) because PCE cannot back-

partition onto itself.  Equation (3.6) describes the accumulation process for chloride where one 

mole of chloride is formed for every mole of the daughter product. Equations (3.7) and (3.8) 

describe the bacterial growth along with the attachment and detachment kinetics for mobile and 

immobile bacteria cells (Clement et al., 1997; Peyton et al., 1995).  

In all the numerical simulations we used a one-dimensional finite difference grid of size 1 

cm (total of 30 nodes).  Other numerical parameters used are summarized in Table 3.1.  The 

above set of equations was solved using the operator-split strategy.  The fully-implicit finite 

difference approximation was used for solving the advection and dispersion terms, and a Runge-

Kutta procedure was used for solving the reaction terms on a node-by-node basis.  Further details 

of the numerical scheme used for solving the coupled multi-species reactive transport problem 

are available in the literature (Clement et al., 2004; Clement et al., 1996; Clement et al., 1997; 

Clement et al., 1998; Walter et al., 1994; Zheng and Wang, 1999). 
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Table 3.1: Summary of numerical model parameters used for Experiment A 

Length  29 cm 

Velocity  

 6.45 if t < 13 days  

1.46 if t > 13 days 

Dispersivity   5 cm 

Simulation time  2640 hrs 

Grid size (Δx)  1 cm 

Time step (Δt)  0.1 hr 

Immobile bacteria per node at t=0  1.00E+06 cells/L 

Detachment factor (Kdet) 6E-07 hr
-1

 

 

3.3 Results and discussion 

3.3.1 Testing the batch kinetic model against Schaefer et al (2009a) model predictions 

The biodegradation kinetic model was first tested to reproduce batch simulation results reported 

in Schaefer et al (2009b). The purpose of this exercise was to test the numerical code by 

reproducing published batch simulation results. In addition, this modeling step also tested 

whether a simplified version of the kinetic model presented in the earlier section can be used to 

reproduce literature results. The governing reaction kinetic equations used in this batch 

simulation are summarized in Section 2.4.4. Note that the equations shown in the appendix are a 

simplified version of the reaction model used in equations (3.2)-(3.5).  These simplifications 

were required since this batch study used TCE instead of PCE (Schaefer et al., 2009b).  The 

biodegradation parameters used in batch simulations, summarized in Table 3.2, were obtained 

from Schaefer et al (2009b). The results from this model comparison study are shown in Figure 

3.1.  The figure shows that the current model predictions were almost identical to those predicted 

using the Schaefer et al (2009b) model, indicating an excellent match.  
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Table 3.2: Bio-augmentation parameters regressed from batch experiments in Schaefer et al 

(2009a). 

Species K(mM) q (mmol L
-1

 (cell hr)
-1

) I (mM) 
Yield (Cells/mM) 

PCE* 0.42 1.70E-12 2.50E -01 4.4E+09 

TCE 0.0032 1.30E-12 1.00E+06 

DCE 0.002 7.00E-13  5.20E -03 

VC 0.014 1.40E-12 1.00E+06 

 

*Note: PCE model parameters were estimates provided by the research group identified in 

Schaefer et al (2009b). 

 

 

Figure 3.1. Batch model results: Comparison of proposel model results against the model results 

reported in Schaefer et al (2009b)  
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3.3.2 Calibration of the reactive transport model 

The successful recreation of the batch results reported in Schaefer et al (2009b) provided 

sufficient basis to build a simulation model for the bio-reactive transport experiment completed 

by Schaefer et al. (2010b).   Note both Schaefer et al (2009b) and Schaefer et al. (2010b) studies 

have used identical microorganisms for simulating biodegradation.  As discussed in the methods 

section, the low velocity experiment, Experiment-A, was used for the calibration effort.  

Experiment-A was the most comprehensive dataset since it included chloride ion concentrations. 

Chloride data was important information for verifying the mass-balance closure of calibrated 

model results.  

It was inferred from the experimental data that there was substantial variations in 

dissolved PCE concentrations in both experiments. Such variation is not uncommon for DNAPL 

dissolution studies in bedrock fractures systems (Dickson and Thomson, 2003).  For the purpose 

of modeling, we conceptualized that most of the residual DNAPL was trapped near the inlet and 

contributed to the dissolved aqueous PCE concentrations.  However, in this study, we did not 

explicitly model DNAPL dissolution processes; instead an equivalent input PCE concentration 

signal was estimated from the measured values of PCE and its daughter product concentrations.  

This function was used to define the average daily input PCE concentration levels at the inlet. To 

model the bioaugmentation step, it was assumed that the initial inoculation process equally 

distributed DHC among all the 30 nodes. The model was constrained to allow bacterial 

accumulation at a node to a maximum limiting value of 1.0E+11 cells/L; this is a common 

approach used for preventing unrealistic accumulation of cells within pore spaces.  For example, 

Zysset et al (1994) studies used a parameter θmax to describe the maximum capacity for the 

adhering bacteria.  The limiting parameter used in this study employs a similar methodology.    
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Two distinct values of DHC maximum utilization rate for DCE degradation, qDCE, were 

used to account for possible inhibitory effects due to presence of high concentrations of PCE 

(Amos et al., 2009; Yu and Semprini, 2004).  When the PCE concentration was less than 0.3mM, 

the value of qDCE was assume to be identical to the batch value.  Yu and Sempirini (2004) have 

indicated that the system might show possible inhibitory effects when the concentration of PCE 

was more than 0.3mM.  Therefore, under high PCE concentration conditions, the value of qDCE 

was allowed go below the batch-estimated value.  The lower rate was estimated as a part of the 

calibration process. 

During the calibration step, we used the Monod parameters from the batch experiments, 

shown in Table 3.2, as reference values and perturbed them by an order of magnitude and used a 

trial-and-error process to fit the observed experimental data.  In addition to adjusting the Monod 

parameters, we also fitted the back-partitioning coefficient.  Based on chloride mass balance 

results, Ramsburg et al. (2010) and Schaefer et al. (2010b)  have postulated that certain fraction 

of degraded daughter products can back-partition to the original DNAPL phases, thus the 

original DNAPL can serve as a sink for the daughter species.  It was observed from the 

experimental data that DCE was the major daughter product which indicated maximum back 

partitioning.  Hence, the back-partitioning coefficient for DCE was identified as the primary 

fitting parameter.   It is logical to assume that the value of back partitioning coefficient ξ would 

depend on the solubility level (which is affinity of the species to remain in the aqueous phase). 

Based on this assumption, the values of ξ for the remaining daughter products were simply 

scaled using their respective values of solubility.   The equation used for this scaling process 

was: 
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i DCE

DCE solubility in mM
ξ = *ξ

Solubility of daughter product i  
(3.9) 

Appendix A2 provides various values ξ and the detailed calculation procedure.  

Figure 3.2 shows the comparison of the final (fitted) model results against the 

Experiment-A data. The calibrated values of Monod parameters are summarized in Table 3.3.  It 

can be observed from the Figure 3.2 that the results from the model simulations closely follow 

the trends observed in the experimental results. A qualitative assessment of the model indicated 

that the model results showed good overall mass balance and predicted the observed chloride ion 

concentrations reasonably well.  Comparison of the values shown in Table 3.3 and Table 3.2 

indicate that the fitted model parameters for the transport experiment are within an order of 

magnitude of the batch parameters. The observed differences in model parameters estimated for 

the transport and batch model could be due to the heterogeneities present in the fractured system, 

and/or the elevated PCE and DCE concentrations observed in the fracture experiments compared 

to the batch experiments that were used to derive the Monod parameters. Several published 

studies have concluded that batch and column parameters could differ due to pore-scale 

variations and other heterogeneities (Brusseau, 2006; Jeong-Hun Park et al., 2001).  

Table 3.3: Calibrated Monod parameters for the Experiment A 

Species K(mM) q (mmol L
-1

 (cell hr)
-1

) I (mM) Yield (Cells/mM) 

PCE 0.42 0.87E-12 2.50E -01 1.85E+10 

TCE 0.0032 1.05E-12 1.00E+06 

DCE 0.002      1.85E-13, 7.00E-13 5.20E -03 

VC 0.014 1.05E-12 1.00E+06 
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Figure 3.2   Model calibration results.  Continuous lines represent the model results and the 

symbols represent Experimental-A data 

3.3.3 Testing the reactive transport model  

The calibrated model developed using the low flow rate data, Experiment-A, was used to 

simulate the high-flow experimental system, Experiment-B.  It should be noted that the all the 

Monod parameters used in the validation simulation were identical to those used estimated in the 

calibration step.  However, the validation step required scaling of two physical transport 

parameters—the back-partitioning coefficient (ξ for DCE) and the detachment factor (Kdet) to 

scale for the high velocity conditions.  The back portioning coefficient is likely a function of the 
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residence time (higher velocity would allow less time for daughter products to back-partition into 

the DNAPL). Also, the detachment process would depend on shear forces in the system (higher 

velocity would induce more shear, as observed in Schaefer et al. 2010b).   Therefore, we 

recalibrated these two values to reflect the new transport conditions. The modified values of ξDCE 

and kdet are 0.004 hr
-1

, and 0.0018 hr
-1

, respectively.  Other parameters for this experimental 

study are presented in Table 3.4. The simulation results along with the experimental data for all 

daughter products are summarized in see Figure 3.3.  A comparison of the measured PCE 

concentration data and the modeled PCE concentrations for Experiment-B is shown in Figure 

3.4. The parent and daughter product data were reported in separate figures since the 

concentrations of PCE were much higher than any of the daughter products.  The results from 

model-simulations closely follow the trends observed in the experimental data. 

Table 3.4: Summary of numerical model parameters used for Experiment B 

Length  29 cm 

Velocity  

6.45 cm hr
-1

 

 

Dispersivity )  5 cm 

Simulation time 5712 hr 

Grid size (Δx)  1 cm 

Time step (Δt)  0.1 hr 

Immobile bacteria per node at t=0 1.33E+07 cells/L 

Detachment factor (Kdet) 0.0018 hr
-1
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Figure 3.3 Model validation results.  Continuous lines represent the model results and the 

symbols represent Experimental-B data 
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Figure 3.4 Comparison of modeled and observed PCE concentration levels  

 

3.3.4 Sensitivity Analysis  

To further understand the sensitivity of the model to variations in the parameter values, we 

completed a sensitivity study.  During the calibration step we have identified that the yield 

coefficient and DHC maximum utilization rate coefficient (q) were the most sensitive model 

parameters.  We focused on these two model parameters and perturbed them within an order of 

magnitude and explored its effects on model predicted results for Experiment-A.  The results are 

summarized in the following sections. 



84 
 

3.3.4.1 Model response to variations in the yield coefficient 

The yield coefficient is an important parameter that governs the rate of growth of the bacteria. In 

this analysis, the yield coefficient was perturbed by the following two factors: 0.5 and 5.  Figures 

3.5 and 3.6 provide a summary of these simulation results.  It can be observed from these figures 

that the growth of the bacteria increased with increase in yield coefficient and thereby causing 

significant amount of biodegradation. It can also be observed from Figure 3.6 that when the yield 

coefficient is lower, the amount of bacterial growth was low and the biodegradation activity is 

delayed until 50 days instead of the expected 20 days. However, when the yield coefficient is 

higher, as shown in Figure 3.6, the bacterial growth is faster and the biodegradation occurs 

earlier.  
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Figure 3.5 Model response to an decrease in the yield value (by 0.5) for Experiment-A 
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Figure 3.6 Model response to an increase in the yield value (by 5) for Experiment-A 

3.3.4.2 Model response to variations in the DHC maximum utilization rate constant (q) 

The parameter q governs the rate at which the chlorinated ethenes are degraded into their 

daughter products. The DHC maximum utilization rate constant (q) was varied by the following 

two factors: 0.5 and 2. Figures 3.7 and 3.8 provide a summary of these simulation results. It can 

be observed from the figures that when the values of q were higher, the biodegradation of PCE 

and its daughter products was higher as shown in Figure 3.8. This increase in biodegradation 

activity was marked by a significant increase in the chloride ion concentrations. However, 

decrease in the q value, decreased the biodegradation rate. Therefore, the predicted aqueous 
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concentrations of PCE and its daughter products are considerably lower when compared to the 

experimental data.  

 

Figure 3.7 Model response a decrease in the q value (by 0.5) for Experiment-A 
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Figure 3.8 Model response to an increase in the q value (by 2) for Experiment-A 

3.4 Summary and Conclusions 

We present a mathematical modeling framework that can be used to model bioremediation of 

PCE contamination using Dehalococcoides in a single fracture system.  The model was 

calibrated to a previously published experimental dataset.  The performance of the calibrated 

model was tested by completing another simulation where the model was used to predict a 

transport scenario involving higher flow rate. The model was able to predict the high-flow rate 

dataset using the calibrated values of biological process parameter.  Only minimal changes had 

to be made to scale transport parameters such as back-partitioning coefficient and the detachment 
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rate, to reflect the high flow conditions.  Our sensitivity studies show that the yield coefficient 

and the DHC maximum utilization rate coefficient are highly sensitive parameters that need to be 

carefully calibrated.  However, the batch estimates of yield coefficient and maximum utilization 

rate coefficient provide good estimates to guide the calibration process, and final calibrated 

values were within an order of magnitude of the batch-kinetic values presented in Schaefer et al 

(2009b). The disparities in the process scales between the batch and fracture experiments are 

probably the cause of the variations in the parameter values. The sensitivity analysis studies 

show that some of these parameters are highly sensitive and can alter the biodegradation 

processes significantly. Both batch and flow datasets considered in this study were obtained from 

well-controlled experimental conditions that might not reflect actual field conditions.  Therefore, 

future experiments and simulations studies should include field observations before this 

modeling framework could be up scaled to predict field scenarios.  
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Chapter 4 

ASSESSMENT OF PARALLEL GENETIC ALGORITHMS FOR CALIBRATING ONE-

DIMENSIONAL MULTI-COMPONENT REACTIVE TRANSPORT MODELS 

4.1 Background 

Reactive transport models have been commonly used to simulate the fate and transport of 

contaminants in both laboratory and field-scale problems. The accuracy and reliability of these 

models would strongly depend on the values of model parameters, which are commonly 

estimated from controlled laboratory and/or field experiments. These experiments are often 

conducted by isolating certain reaction steps, to fully understand the complex bio-geochemical 

interactions occurring in the subsurface. The experimental data obtained from the laboratory 

experiments are then used to formulate more general bio-kinetic or geochemical models that can 

describe contaminant transformation processes. Once the process model is formulated, several  

unknown parameters in the overall model are normally estimated by a trial and error process to 

minimize the sum-squared errors between the experimental data and the model fitted data 

(Engesgaard and Kipp, 1992; Gramling et al., 2002; Schaefer et al., 2009b; Torlapati et al., 

2012). However, the trial-and-error process could become inefficient as the number of 

parameters in the model increases.  Therefore, some type of numerical inverse routines are 

employed (e.g., CXTFIT (Toride et al., 1995)) to automatically estimate the model parameters. 

However, several of these inverse methods might converge to a local minima and their overall 

performance would depend on the robustness of the search algorithm and the choice of the 
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initial parameters supplied by the user (Toride et al., 1995). Doherty and Hunt (2010) developed 

a more robust parameter estimator, PEST, for solving highly parameterized groundwater 

problems using regularized inversion schemes. Baginska et al. (2003) applied the Annualized 

Agricultural Nonpoint Source Model (AnnAGNPS) for the prediction of export of nitrogen and 

phosphorous in Currency Creek of the Sydney Region. In addition, they have also used PEST to 

determine the sensitivity and importance of the key parameters of the model.  Yabusaki et al. 

(2007) used PEST by coupling with BIOGEOCHEM to automate the calibration procedure in 

understanding the transport and bioreduction of Uranium. More recently, genetic algorithms 

have been employed in parameter estimation of column and batch reactive transport experiments 

(Majdalani et al., 2009; Massoudieh et al., 2008).  

Genetic Algorithms (GAs) are a branch of evolutionary algorithms which are primarily used to 

optimize nonlinear problems in various fields (Massoudieh et al., 2008). The development of 

GAs are based on the concept of natural selection and the rearrangement of genetic material 

(Holland, 1975). In the field of groundwater hydrology, the GAs have been used in the 

optimization of the pumping problem and for the estimation of system parameters in  

heterogeneous aquifers (El Harrouni et al., 1996).  Wagner (1992) applied GAs to estimate the 

transport parameters in kinetically controlled one- or two-site sorption models. Wang (1997) 

studied the usefulness of GAs for calibrating rainfall-runoff models with nine parameters and 

found that the GA was able to attain the global minimum for a hypothetical catchment. Wang 

and Zheng (1997) have coupled MODFLOW and MT3D with a GA routine to find the optimal 

pumping and injection rates for a remediation process. They applied the model to a three 

dimension field problem and demonstrated the superiority of their GA solution to an existing 

solution obtained using a trial and error approach. Mulligan and Brown (1998) used a GA to 
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optimize the water quality model parameters and found that GA was a useful calibration tool to 

estimate least squares parameters by accumulating useful information about the response surface. 

Reed et al. (2000) studied GAs to find a theoretical relationship for population size and number 

of generations required for convergence in groundwater well monitoring design applications. 

Giacobbo et al. (2002) investigated the feasibility of using GAs for estimating groundwater 

contaminant transport parameters for a three-layered one-dimensional saturated flow and 

transport problem.  Singh et al. (2005) presented an interactive GA to solve an inverse problem 

that estimated the conductivity of a heterogeneous hypothetical aquifer whose value was known 

a priori. Béranger et al. (2005) coupled a GA with an analytical, one-dimensional, multi-

component, reactive transport model to estimate the first-order decay coefficients and enrichment 

factors. Singh et al. (2008) developed a novel interactive framework, called the ‗Interactive 

Multi-Objective Genetic Algorithm‘ (IMOGA), to solve the groundwater inverse problem 

considering different sources of quantitative data and qualitative expert knowledge. Massoudieh 

et al. (2008) used GA to minimize the error between measured and modeled breakthrough data 

for reactive transport involving Cd and tributyltin, and estimated the equilibrium constants.  Lee 

and Heber (2010) combined GA with biofiltration models to estimate unknown model 

parameters, and the model was subsequently used to predict ethylene removal efficiencies. 

Madsen and Perry (2010) coupled a simple GA with MODFLOW to optimize the net 

groundwater flow into a river by optimizing the following four input parameters: recharge rate, 

river conductance, and water levels at two general head boundaries.  

While GAs are useful tools, they are also computationally intensive routines since they search 

through a large population to find the optimal solution. The search process could take a 

substantial amount of time, if it is not optimized. Parallel computing techniques can be used to 
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improve the efficiency of GAs by exploiting the concurrency of calculations performed in 

genetic algorithms.  

Depending on their architecture, the computers capable of running parallel codes can be 

classified as either distributed memory computers or shared memory computers (Cantú-Paz, 

1998). Most of the earlier work on parallel computing efforts focused on distributed memory 

computers, where several computers are connected using a fast network to reduce 

communication time between the processors to implement parallel genetic algorithms (Abramson 

et al., 1994; Baluja, 1992; Fogarty and Huang, 1991; Tanese, 1989). In the field of groundwater, 

McKinney and Lin (1994) used parallel genetic algorithms to solve three groundwater 

management problems involving maximization of pumping from an aquifer, minimization of 

cost for a water supply problem, and minimization of cost for an aquifer remediation problem. 

They observed that the genetic algorithms performed effectively to obtain globally optimal 

solutions and the speedup of the parallel genetic algorithm was almost linear. Tsai et al. (2009) 

developed a production well management model for the water resource management in semi-arid 

areas by integrating a large-scale pressurized water distribution system management model, 

EPANET, and a three-dimensional groundwater model, MODFLOW, under a unified 

optimization framework. They used a 64 processor cluster to run the computer code in a parallel 

mode.  

The speedup on distributed memory computers is hindered by the communication time between 

the processors because each processor has its own local memory, which is not available to the 

other processors; hence, the programmer has to manually sync the variables after each 

generation. However, in shared memory computers, all the processors have access to the same 

memory and the synchronization step can be avoided (Abramson and Abela, 1991). Sarma and 
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Adeli (2002) used parallel fuzzy genetic algorithms for optimizing steel structures using two 

different schemes. The authors also presented two bi-level parallel genetic algorithms that 

combine message passing interface (MPI) and OpenMP programming languages for 

optimization. They observed almost linear speedup for 16 processors. Fredrickson et al. (2003) 

evaluated the performance of parallel genetic algorithm (PGA) using OpenMP constructs, 

kernels and application benchmarks on large-scale SMP systems using a 72 node Sun Fire 15k 

SMP node. They reported the basic timings, scalability and run times for different parallel 

regions.  

GAs are robust algorithms that have been proven to be suitable for solving different types of 

parameter estimation problems using an appropriate encoding method. The process by which a 

population is coded into a suitable form that enables genetic recombination is called encoding. 

The early studies of GA in reactive transport problems are limited by their usage of binary 

encoding especially when the parameters of different magnitudes are present (El Harrouni et al., 

1996; Massoudieh et al., 2008). Also, most of these algorithms have been optimized to solve a 

single problem and their ability to run different kinds of reactive transport problems has not been 

explored. Moreover, none of these studies considered optimizing the implementation of parallel 

GA algorithms for multicore personal computers that use shared memory architecture. 

Shared memory, multi-core PCs have become common computational platforms in the recent 

years with the introduction of INTEL and other multicore processors in desktop and laptop 

computers.  These multicore systems are powerful processors that can be used to improve the 

efficiency of current GA algorithms by implementing them using a shared memory, parallel 

computing languages such as OpenMP FORTRAN. Currently, there are no studies available in 

the hydrogeology literature that uses an OpenMP platform to parallelize a GA algorithm for 
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estimating model parameters in multi-component reactive transport models.  The objective of 

this study is to develop a general parallel genetic algorithm (PGA) that is capable of estimating 

both transport and kinetic parameters in reactive transport models.  We compare the performance 

of the PGA using four different benchmark problems.  Speedup data for the PGA are also 

presented. 

4.2 Methodology – General Steps in Genetic Algorithm 

The six key steps involved in a traditional GA are: encoding, population generation, selection, 

crossover, mutation, and termination (Holland, 1975). The GA starts with a randomly-generated 

initial set of solutions (also known as chromosomes) and this is called the initial population. The 

fitness of this population is calculated using the objective function. The fitness of each 

chromosome in the population is used to assess its ability to survive the current generation. For a 

minimization optimization problem, a lower value of fitness is desirable. Based on this fitness 

value, two parents are selected using a selection process. The selected parents undergo a 

crossover, where the genetic information is exchanged between the parents using a crossover 

function. Since, the genetic information is transferred to the subsequent generation of children it 

is always preferable to choose individuals with better fitness in the selection process. It is also 

possible that an offspring generated from the crossover of the parents could undergo a mutation 

operation governed by a mutation probability. The fitness of the offspring is calculated and is 

combined with the entire population. The individuals with poor fitness are removed from the 

population (death) at the end of the generation.  There are several strategies available for the 

discarding bad solutions, and for implementing the process of encoding, selection, crossover, and 

mutation.  The specific methods used in this study are discussed below.  
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4.3 Genetic Algorithm Implemented in this Study 

In this study, a real value encoding is used because each parameter value in our problem could 

have a different magnitude.  It has been observed that for engineering applications, which are 

sensitive to parameter variations, real value encoding method performs better than the binary 

encoding method (Gaffney et al., 2010; Michalewicz, 1996; Reed et al., 2000) . We generated an 

initial population of 32 solutions within a specified range given by the user. The parameter 

values were then transformed to log (of base 10) scale and a uniform random number (distributed 

between 0 and 1) was used to generate various random parameter values using the formula: 

log(low)+r*[log(high) - log(low)], where r is the random number.  The random parameter values 

were then raised to the power of 10 (to transform back to real number scale) and the value was 

used for populating the chromosome. A one-dimensional multi-component reactive transport 

model was used to simulate the concentrations.  The concentrations generated from these 

parameters were used to calculate the sum square of errors (SSE) between model predicted 

concentrations and concentrations obtained from experimental data. This calculated SSE value 

was assigned as the fitness parameter for that particular chromosome. The selection of parents 

was done using a tournament selection method (Koza, 1992). In this method, the algorithm 

randomly selected 5 possible candidates for the parents from the population and the individual 

with the best fitness is chosen as the parent. The process was repeated to find the second parent. 

Tournament selection allows  the selection of individuals with best fitness so that their genetic 

material can be passed on to the next generation (Koza, 1992). The selected parents underwent a 

crossover using a weighted average. The weights between the parents are chosen by randomly 

generating a real number between 1 and 0.5. If the chosen random number is r, then the new 

parameters are calculated by the formula: r*parent1+(1-r)*parent2 (Cantú-Paz, 1998). This 
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weightage within the bounds of 1 and 0.5 allows us to keep the offspring within the boundaries 

specified at the beginning of the program. If the random number generated is close to 0.5, then 

we have an average of both the parents whereas if the random number generated was close to the 

higher bound (of 1), then the value of the offspring will be closed to the first parent. A total of 8 

children were generated by performing the crossover 8 times. The total number of children and 

the initial population were ensured to be multiples of 4 so that the total load distributed on each 

processor (we used 4 Pentium processors, details given below) during parallelization is equal. 

These children could undergo a mutation step if a randomly generated number is less the 

probability of mutation (Pm). The mutation operator used in this algorithm multiplies the 

parameter by 0.5 before ensuring that it does not cross the bounds set at the beginning of the 

program. The fitness of the offspring is calculated and is combined with the initial population. 

The population is then sorted according to its fitness and the best 32 solutions are preserved for 

the next generation. The best solution is always preserved in this fashion and hence this 

algorithm can be classified as an elitist approach. The process of selection, crossover, mutation 

and death were repeated for about 100 generations, and it was observed from our sensitivity 

analysis studies that the GA solution does not improve after about 100 generations.  

4.4 Parallelization of the Genetic Algorithm  

GA provides a natural and easy approach for parallelization within each generation since most of 

the loops within a generation contain variables that are not dependent on its value at the previous 

iteration. This allows for little to virtually no communication time between the processors for 

synchronization. The parallelization of the GA was achieved by using the shared memory 

programming procedure OpenMP available within the Intel FORTRAN90 compiler. The desktop 
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computer used for performing simulations used an Intel Xeon processor with two dual core 

processors, with a total of four processors available for parallelization.   

The parallelization was accomplished by placing OpenMP constructs at the beginning and the 

end of the loop that is desired to be run in parallel mode. The OpenMP constructs are also used 

to specify the number of processors to be used for parallelization and the variables that are 

private or public to each processor and the kind of schedule to be used to distribute the load 

among the processors. A guided schedule was used in this study.  

The loops that were parallelized include the fitness calculation of the initial population since this 

was the most time consuming part of the program. Also, the fitness calculations of the offspring 

were completed in a parallel mode. Figure 4.1 illustrates the computational steps involved in 

implementing the PGA algorithm for a four processor system.  Although the selection, crossover 

and mutation processes can be performed in parallel, these are not computationally intensive 

tasks; we found the performance gains to be marginal when these loops were optimized. 
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Figure 4.1 Illustration showing the flow of a parallel genetic algorithm 

4.5 Details of the Numerical Model used for Fitness Calculation  

To calculate the fitness of the chromosomes, a multi-component one-dimensional reactive 

transport model was used.  The simulation model is a Fortran version of a previously published 

Visual Basic software RT1D (Torlapati and Clement, 2012b).  The model solves a set of 

advection-dispersion-reaction equations that describe the transport of ―m‖ mobile components 
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and ―n‖ immobile components. The general form of the transport equations are (Torlapati and 

Clement, 2012b): 

2

i i i
i i2

C C C
R =-V +D +β

t x x   where i = 1, 2,3… m
 (4.1) 

j

j j

S
R =β

t   where j = (m+1), (m+2), (m+3)+… (m+n) 

(4.2) 

Where V is the velocity (m/day), D is the hydrodynamic dispersion coefficient (m
2
/day), Ci is the 

aqueous phase concentration (mg/L) of mobile component ―i,‖ where i = 1, 2...m; Sj is the solid 

phase concentration (mg/mg) of immobile component ―j,‖ where j = m+1, m+2... m+n; and βi & 

βj are the reaction terms for the mobile and immobile components, respectively.  Note the 

immobile component equations do not have the advection dispersion terms but will have a 

reaction term that might be coupled to other reaction terms in mobile components.  

The equations (4.1) and (4.2) are numerically solved using the operator split strategy (Clement et 

al., 1998; Torlapati and Clement, 2012b).  An implicit finite difference scheme was used to solve 

the advection-dispersion part of the equation and the reaction part, which reduces to a set of 

ordinary differential equations, is solved using a Runge-Kutta-Felhberg with an adaptive time 

stepping (Chapra and Canale, 1998). The model concentrations obtained for each chromosome 

were used to calculate the absolute error using the given experimental dataset. This error was 

squared and a sum of all these errors was calculated and was designated as the fitness for the 

chromosome. The objective of the PGA was to minimize this sum square error. 
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4.6 Results and Discussion 

To test the performance of PGA, four test problems that have different levels of complexity were 

selected.  All of these problems either have published experimental data, or analytical solution 

that can be used to verify the results. After completing the parameter identification step, we 

performed speedup tests by varying the number of threads and quantified the advantages of 

adding additional processors. We also performed sensitivity analysis tests to quantify the 

sensitivity of the solution to changes in the initial population size and total number of 

generations.    

4.6.1 Benchmark Problem 1 – Parameter estimation  in a rate-limited sorption problem 

In this benchmark problem, we solve a rate-limited sorption process where non-equilibrium 

conditions exist. Clement et al. (1998) and Torlapati and Clement (2012b) modeled these kinetic 

processes using the following governing equations.  

2

2

d

C C C S
V D ξ C-

t x x K
 (4.3) 

d

dS φξ S
C-

dt ρ K
 (4.4) 

where C is the concentration in the component in the aqueous phase (mg/L), S is the 

concentration of the component in the solid phase (mg/mg), ρ is the bulk density (mg/L), φ is the 

porosity, Kd is the linear sorption constant (L/mg), k is the first order decay constant (day
-1

), and 

ξ is the mass transfer coefficient (day
-1

).   
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The unknown parameters in this problem are: D, ξ and Kd. The model was run in the 

forward simulation model using known parameter values, and the aqueous phase concentrations 

predicted after 50 days was used as the data. The pore velocity used in this problem was 0.53 

cm/day.  The concentration values were made available at every 2 cm over 30 cm long column.   

The temporal and spatial time steps used are 0.4 cm and 0.01 days respectively.  The lower and 

higher bounds for each unknown model parameters were perturbed by two orders of magnitude 

(one in each direction), as Table 4.1.  The parameters estimated by the PGA after 100 

generations are given in Table 4.1 along with their true values. The minimum value of fitness 

obtained at the end of PGA simulations was 2.5E-05. It can be seen from Table 4.1 that the 

parameter values estimated by the code are close to the original values. Comparison of the 

concentration profiles simulated using PGA-estimated parameter values and the ―true‖ parameter 

values are shown in Figure 4.2. It can be seen from the figure that PGA-estimated model 

predictions fit this synthetic dataset well.  Table 1 also shows that the parameter values estimated 

by PGA only have about 3 to 5% difference from the original estimates. 

Table 4.1: Comparison of the PGA estimated parameters with true solutions along with their 

bounds and percentage error for benchmark problem -1 

Parameter True Value Low High 
PGA 

Estimate 
Error % 

Longitudinal dispersion coefficient, D 

(cm
2
/day) 

8.00E-02 1.00E-02 1.00E-01 7.80E-02 2.50% 

Mass transfer coefficient, ξ 1.50E-02 1.00E-02 1.00E-01 1.43E-02 4.67% 

Linear sorption constant, Kd (L/mg) 1.84E-04 1.00E-04 1.00E-03 1.90E-04 3.26% 
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Figure 4.2 Comparison of results from PGA estimated parameters and the true parameters for 

benchmark problem – 1 

4.6.2 Benchmark Problem 2 – Parameter estimation in a sequential decay problem  

Quezada et al. (2004) presented analytical solutions for solving coupled multi-dimensional multi-

species transport equations involving first-order kinetic interactions. This is a four-component 

problem with four kinetic parameters. The governing transport equations are: 

2

1 1 1
1 1 12

C C C
R =-V +D -k C

t x x
 (4.5) 

2

2 2 2
2 c2/c1 c2/c1 1 1 2 2 c2/c3 c2/c3 3 32

C C C
R =-V +D +F Y k C -k C +F Y k C

t x x
 

(4.6) 

2

3 3 3
3 c3/c1 c3/c1 1 1 c3/c2 c3/c2 2 2 3 32

C C C
R =-V +D +F Y k C +F Y k C -k C

t x x
 

(4.7) 

2

4 4 4
4 c4/c2 c4/c2 2 2 c4/c3 c4/c3 3 3 4 42

C C C
R =-V +D +F Y k C +F Y k C -k C

t x x
 

(4.8) 
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where Ci is the aqueous concentration of the component i (i=1, 2, 3 or 4) (mg/L), ki is the 

first order degradation constants for the component i (day
-1

), Y is the yield coefficient between 

two components, F is the fraction of yield between two components. The unknown parameters in 

this benchmark problem are:  D, k1, k2, k3, and k4. The concentrations of all the components at an 

interval of 1 cm along the 30 cm long column predicted after 50 days of transport were made 

available for the fitness calculation. The pore velocity used in this problem was 0.4 cm/day. The 

time step and the grid size used for the simulations were 0.1 days and 0.1 cm respectively. The 

yield values were set to 1. The simulation was run for 100 generations and the minimum SSE 

observed was about 1.5E-2. The comparison of the PGA estimated parameters along with their 

low and high bounds used assumed in the simulation are given in Table 4.2.   The concentration 

profiles generated using PGA-estimated parameters and the ―true‖ parameters are shown in 

Figure 4.3. It can be observed from the figure that both solutions match well.  The error in the 

parameter values vary by 4 to 38%.   

Table 4.2 Comparison of the GA estimated parameters with true solutions along with their 

bounds for benchmark problem - 2 

Parameter 
True 

Value 
Low High 

PGA 

Estimate 
Error % 

Longitudinal dispersion coefficient, D 

(cm
2
/day) 

8.00E-02 1.0E-03 1.0E-01 8.40E-02 5.00% 

Decay constant for Component 1, k1 (day
-1

) 7.50E-02 1.0E-03 1.0E-01 7.80E-02 4.00% 

Decay constant for Component 2, k2 (day
-1

) 5.00E-02 1.0E-03 1.0E-01 5.80E-02 16.00% 

Decay constant for Component 3, k3 (day
-1

) 2.00E-02 1.0E-03 1.0E-01 2.77E-02 38.50% 

Decay constant for Component 4, k4 (day
-1

) 4.50E-02 1.0E-03 1.0E-01 4.00E-02 11.11% 
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Figure 4.3 Comparison of results from PGA estimated parameters and the true parameters for 

benchmark problem – 2 

4.6.3 Benchmark Problem – 3: Parameter estimation for a TCE Biodegradation Model 

Schaefer et al. (2009b) conducted batch experiments to study the degradation of TCE in the 

presence of Dehalococcoides Sp. They used modified Monod kinetics to model the 

bioaugmentation process and the associated biochemical reactions. The kinetic equations are:   

TCE TCE TCE

TCE TCE TCE

dC q XC1
=-

dt R C +K
 (4.9) 

DCE DCE DCE TCE TCE

DCE TCE TCE TCETCE
DCE DCE

TCE

dC q XC q XC1 1
=-

dt R R C +KC
C +K 1+

I

 (4.10)
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VC VC VC DCE DCE

VC DCETCE DCE TCE
VC VC DCE DCE

TCE DCE TCE

dC q XC q XC1 1
=- +

dt R RC C C
C +K 1+ + C +K 1+

I I I
 

(4.11)

 

TCE TCE DCE DCE VC VC

TCE TCE TCE DCE VCTCE TCE DCE
DCE DCE VC VC

TCE TCE DCE

q C q C q CdX 1 1 1
=YX + +

dt R C +K R RC C C
C +K 1+ C +K 1+ +

I I I
 

(4.12)

 

Where Ci (mM) and X (cells/L) are the concentration of ith component and biomass 

respectively; i can be either TCE, DCE and VC; qi is the maximum biomass utilization rate 

(mmol/L/(cell h)), Ki is the half velocity coefficient of the compound (mM), I is the competition 

coefficient (mM), Ri is a retardation term that accounts for the presence of air in the system 

(Schaefer et al., 2009b). 

The unknown model parameters are: qTCE, qDCE, qVC, KTCE, KDCE, KVC and IDCE. The 

batch simulation experiments were performed for a total of 12 days and the time step used was 

about 0.01 days. The initial concentration of TCE, ethene and biomass were 0.08 mM, 0.003 mM 

and 2.8E+10 cells/L respectively. The biomass yield coefficient used in this problem was 

4.4E+09. The concentrations of TCE, DCE, VC and ethene after every hour were provided for 

the calculation of the fitness of the PGA. The PGA was run for 100 generations and the PGA 

estimated model parameters are compared with the ―true values‖ and the corresponding relative 

errors are given in Table 4.3. The table also provides the low and upper bounds used in this PGA 

search.  The comparison of the concentration profiles predicted using the PGA-estimated 

parameters and the ―true‖ parameters are shown in Figure 4.4. The figure also shows the actual 
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experimental measurements.  It can be observed from the figure that the parameters estimated 

from the PGA are able to predict the experimental results reasonably well. 

Table 4.3: Comparison of the PGA estimated parameters with true solutions along with their 

bounds for benchmark problem - 3 

Parameter 
True 

Value 
Low High 

PGA 

Estimate 
Error % 

Biomass utilization rate for TCE, qTCE 

(mmol/L/cells h) 
3.2E-03 1E-04 1E-02 5.47E-03 70.94% 

Biomass utilization rate for DCE, qDCE 

(mmol/L/cells h) 
2.0E-03 1E-04 1E-02 6.12E-03 206.00% 

Biomass utilization rate for VC, qVC 

(mmol/L/cells h) 
1.4E-02 1E-03 1E-01 7.10E-02 407.14% 

Half velocity constant for TCE, KTCE (mM) 1.3E-12 1E-13 1E-11 1.42E-12 9.23% 

Half velocity constant for DCE, KDCE (mM) 7.0E-13 1E-14 1E-12 7.46E-13 6.57% 

Half velocity constant for VC, KVC (mM) 1.4E-12 1E-13 1E-11 5.10E-12 264.29% 

Competition coefficient for DCE, IDCE (mM) 5.2E-03 1E-04 1E-02 4.20E-03 19.23% 
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Figure 4.4 Comparison of results from PGA estimated parameters and the true parameters for 

benchmark problem – 3 

4.6.4 Benchmark Problem – 4: Parameter estimation for a carbon tetrachloride 

bioremediation problem 

Phanikumar et al. (2002) conducted experiments to study the bioremediation of carbon 

tetrachloride (CT) contaminated column which was intermittently fed with nutrient such as 

acetate and nitrate. They developed a reactive transport model for the system and used a 

modified version of the RT3D code to simulate their experimental data. The model included a 

total of 4 mobile and 2 immobile components. The mobile components in the system were CT, 

acetate, nitrate and the mobile bacteria whereas the immobile components were the sorbed CT 

and immobile phase bacteria. The kinetic reaction equations used in the reactive transport model 

are: 
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where f is the fraction of equilibrium sites, bKC is the microbial decay rate (day
-1

), Kat is 

the attachment coefficient (day
-1

), Kde is the detachment coefficient (day
-1

), k` is the CT reaction 

rate (day
-1

), γ is the nitrate reaction rate (day
-1

), κ is the kinetic desorption rate (day
-1

), µmax is the 

maximum specific growth rate (day
-1

), Ya, Yn and Ynb are the yield rates of acetate, nitrate and 

biomass respectively; CCT, Ca, Cn and SCT are the aqueous concentrations of carbon tetrachloride, 

acetate, nitrate and the sorbed concentration of carbon tetrachloride, respectively; XM and XIM 

are the concentrations of mobile and immobile bacteria, respectively. Also, Ma and Mn are the 

Monod terms for acetate and nitrate reactions, respectively, and given by the expressions: 

a
a

sa a

C
M

K C
and n

n

sn n

C
M

K C
 where Ksa and Ksn are the half saturation coefficients of 
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acetate and nitrate utilization reactions, respectively. Further details of the model and the 

experiment are given in Phanikumar et al. (2002) and Torlapati and Clement (2012b).  

The unknown parameters in this model are:  k`, γ, Kde, and bKC. The known parameters 

for this model are summarized in Table 4.4. The known concentrations values after 4 days of 

operation at each node point were supplied to the PGA to calculate the fitness. The PGA was run 

for 100 generations and the SSE after 100 generation was 666.  The PGA-estimated parameters 

are compared against the ―true‖ values in Table 4.5; the table also provided estimated error for 

each parameter value and the lower and higher bounds values.  The concentration profiles 

predicted by the PGA-estimated parameters and compared against the simulated data points in 

Figure 4.5.  It can be observed from the figure that the results compare well.   
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Table 4.4: Model parameters used for benchmark problem – 4 

Parameter Value 

Pore Velocity (cm/day) 10 

Length (cm) 200 

Longitudinal dispersion coefficient (cm
2
/day) (D) 2 

Δx (cm) 1 

Δt (days) 0.001 

Porosity (φ) 0.35 

Bulk density (ρ) (mg/L) 1.63E6 

Time (days) 4 

Fraction of equilibrium sites (f)  0.437 

Attachment coefficient (day
-1

) (Kat)  0.9 

Distribution coefficient (Kd) (L/mg) 3.9E-7 

Half saturation coefficient: (mg/L) 

Acetate (Ksa) 

Nitrate (Ksn) 

1.0 

12.0 

Kinetic desorption rate (day
-1

) (κ) 0.36 

Maximum specific growth rate (day
-1

) (μmax) 3.11 

Yield: 

Acetate (Ya) 

Nitrate (Yn) 

Biomass (Ynb) 

0.4 

0.25 

0.46 

Initial condition (ppm): 

Carbon tetrachloride (CCT) 

Acetate (Ca) 

Nitrate (Cn) 

Mobile bacteria (XM) 

Immobile bacteria (XIM) 

Sorbed CT (mg/mg) (SCT) 

0.130 

0 

42 

0 

0 

2.8E-8 

Boundary condition (ppm): 

Carbon tetrachloride (CCT) 

Acetate (Ca) 

Nitrate (Cn) 

Mobile bacteria (XM) 

Immobile bacteria (XIM) 

0.130 

0 

42 

0 

0 

Slug injection zone inoculation (ppm): 

Carbon tetrachloride (CCT) 

Acetate (Ca) 

Nitrate (Cn) 

Mobile bacteria (XM) 

Immobile bacteria (XIM) 

0.1 

1650 

42 

11.8 

0 

Note: Carbon tetrachloride is abbreviated as CT.  
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Table 4.5: Comparison of the PGA estimated parameters with true solutions along with their 

bounds for benchmark problem - 4 

Parameter True Value Low High PGA Estimate Error % 

CT reaction rate (day
-1

) (k`) 0.189 0.1 0.5 0.282 49.21% 

Nitrate utilization coefficient (day
-1

) (γ) 5.73 1 10 5.89 2.79% 

Detachment coefficient (day
-1

) (Kde) 0.043 0.01 0.1 0.063 46.51% 

Microbial decay rate (day
-1

)(bKC) 0.221 0.1 1 0.219 0.90% 

Note: Carbon tetrachloride is abbreviated as CT. 

  

  
Figure 4.5 Comparison of results from PGA estimated parameters and the true parameters for 

benchmark problem – 4 

4.6.5 Scalability of Parallel GA  

The computational performance of the PGA was tested on a computer with four processors.  All 

four benchmark problems were run using 1, 2, 3 and 4 processors and the total program run time 
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was calculated using the omp_wall_time() function. This internal clock time function was called 

at the beginning of the program and subsequently at the end of the program. The difference 

between these two times gave an estimate of total program run time. The speedup of the parallel 

program was calculated using the formula: 

sequential time
speedup=

parallel time
 (4.19) 

The sequential time in equation (4.19) was obtained by solving the problems using a 

single processor.   The performance of the PGA for different benchmark problems and its 

comparison against an idealistic linear speedup function are shown in Figure 4.6.   The details of 

simulation times are summarized in Table 4.6. It can be observed from the figure that the 

performance of the PGA for all the benchmark problems is close to the ideal linear speedup 

function, except for the third problem. This is because, the total simulation time taken for 

Problem-3 was extremely small and hence the calculation of fitness was not as time intensive 

compared to other benchmark problems. In a problem where the parallelized parts of the problem 

are not as computationally intensive, as expected, the time taken to perform the non-parallelized 

tasks become a limiting factor and thereby reduce the total efficiency of the parallel operations. 

Table 4.6: Simulation times for all the benchmark problems for different number of processors in 

seconds 

# Processors BP-1 BP-2 BP-3 BP-4 

1 885.00 132.00 7.00 3920.00 

2 446.00 66.00 3.92 1976.00 

3 339.73 50.00 3.12 1479.00 

4 249.63 39.00 2.71 1100.00 
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Figure 4.6 Speedup for all benchmark problems for different number of processors 

 4.6.6 Sensitivity to Initial Population and Generations 

The final quality of the solution that GA would find would depend on the size of the initial 

population generated by the GA and the number of generations. Ideally, a larger number of 

initial solutions would allow the GA to search a larger solution space, but this also increases the 

computational burden as the fitness has to be calculated for all the initial solutions.  On the other 

hand, having a smaller initial population would limit the solution space of the GA and this could 

cause the GA to be trapped in a local minimum.   To check the sensitivity of GA to the size of 

the initial population and the number of generations, we ran all four benchmark problems using 

four different initial population sizes, 8, 16, 32 and 64; in addition, we also increased the total 

number of generation to 300. The best solution for each generation was stored to compare the 

general convergence pattern for different initial population sizes. The results from the sensitivity 

analysis for all four benchmark problems are shown in Figure 4.7 (a)-(d). It can be observed 

from the results that the convergence rate was faster when the initial population size was 
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increased; however, increasing the number of generations did not affect the quality of the 

solution found by the algorithm. Also, in the case of simulations with fewer population sizes, the 

minimum value reached was away from global minimum value. It is necessary to find an optimal 

initial population size and this could vary based on the number of parameters being estimated. 

Increasing the population size might not always result in a better solution as it can be seen that an 

increase in population size from 32 to 64 did not improve in the solutions. For problems 

involving high levels of computational complexity, evaluation of another 32 candidates for 

fitness could increase the overall simulation time drastically without improving the solution.  In 

this study, we found a population size of 32 to be the optimal number in all our simulations.   

  

  

Figure 4.7 Fitness of the best solution for each generation by varying initial population for each 

benchmark problem  
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4.6.7 Sensitivity to the Bounds of the Unknown Parameters 

The rate of convergence and the quality of the final solution is also a function of level of 

uncertainty (characterized by bounds used to define the minimum and maximum values) 

associated with the unknown parameter.  To understand the sensitivity of GA to these bounds, 

we ran the test Problem 1 multiple times using different bounds.  This problem was selected 

because some parameters in this problem were highly sensitive, and even a minor change would 

cause considerable fluctuations in the concentration profiles.  We developed four different 

scenarios to test the sensitivity of GA to parameter bounds.  In the first scenario, the bounds were 

kept within an order of magnitude of the true parameter; in the second scenario, the lower bound 

was reduced by an order of magnitude; in the third scenario, the lower bound is kept the same as 

the first scenario, but the higher bound was increased by an order of magnitude, and in the fourth 

scenario both lower and higher bounds were increased by an order of magnitude. Table 4.7 

summarizes the lower and higher bounds used in all four the scenarios. The concentration 

profiles predicted under different scenarios are shown in Figure 4.8. It was observed from the 

figure that the quality of the solution deteriorated as the bounds for the unknown parameters 

were increased above an order of magnitude in either direction.   The results were far away from 

the original solution when both upper and lower bounds were increased by an order of 

magnitude.  This shows that for highly sensitive problems one would need reasonable guesses to 

get meaningful solutions.  For problems like this, GA should perhaps be viewed as a polishing 

algorithm that can refine the solution within a known domain, rather than a true search algorithm 

that can operate on totally unknown domain. 
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Table 4.7: High and low bounds for the four difference scenarios along with the GA estimated 

value 

 
Parameter Lower bound Higher Bound GA Estimated Value 

Scenario-1 

D 1.00E-02 1.00E-01 8.17E-02 

ξ 1.00E-02 1.00E-01 2.25E-02 

Kd 1.00E-04 1.00E-03 1.37E-04 

Scenario-2 

D 1.00E-03 1.00E-01 3.85E-02 

ξ 1.00E-03 1.00E-01 4.44E-02 

Kd 1.00E-05 1.00E-03 8.53E-05 

Scenario-3 

D 1.00E-02 1.00E+00 2.08E-01 

ξ 1.00E-02 1.00E+00 4.04E-02 

Kd 1.00E-04 1.00E-02 1.00E-04 

Scenario-4 

D 1.00E-03 1.00E+00 8.79E-01 

ξ 1.00E-03 1.00E+00 6.93E-01 

Kd 1.00E-05 1.00E-02 6.10E-05 

 

 

Figure 4.8 Comparison of different scenarios of the high and low bounds with the true solution 

for the benchmark problem – 1 
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The GA used in this study works by systematically searching through a given solution space to 

find the best solution. Therefore, it is important that the initial population contains good quality 

solutions for the GA to attain the global optimum.  The quality of the initial population is largely 

dependent on the bounds set by the user at the beginning of the simulation. Most reactive 

transport problems contain a few highly sensitive parameters and small changes in these 

parameter values would significantly alter the solution. Therefore, depending on the type of 

problem, the user might have to restrict the GA within a narrow boundary, if the solution had 

convergence problems. Future studies explore options to modify the algorithm to automatically 

identify a set of sensitive parameters and automatically narrow the bounds.   

4.7 Conclusions 

In this study, we have tested the performance of a parallel version of GA by solving four 

benchmark problems that simulated both batch and reactive-transport scenarios.  The PGA 

algorithm was able to successfully estimate the model parameters for different types of reaction 

models. In all the cases, the PGA estimated parameters were close to the original parameters; 

furthermore, the simulation results from these parameters were able to match the original 

experimental or analytical/numerical data well. The PGA routines were general enough to solve 

all four benchmark problems without the need for any problem-specific modifications to the 

routines.  One of the limitations, however, is that the user must provide a good initial guess 

(which should be known within an order of magnitude) for all the model parameters to obtain 

good quality, convergent final results.  In most real cases, the order of magnitude estimates for 

parameter values can be obtained from literature data and PGA can be used to refine these 

estimates.  The user should, however, be careful not to over-constrain the problem and ensure 
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that the upper and lower parameter bounds are adequately large to generate sufficient number of 

solutions to avoid convergence to a local optimum. 

The PGA was optimized to run in parallel mode using OpenMP framework available within Intel 

FORTRAN v9.0 compiler on a shared memory system. The speedup was quantified for four 

benchmark problems and the results indicate close to linear speedup for three benchmark 

problems. The fourth benchmark (designated as Problem 3) was a much simpler problem that 

required very little computational effort and hence the parallel computing steps did not reduce 

the overall computational time.  These results show that the use of PGA was more appropriate 

for solving computationally intensive reactive transport problems.  The PGA used in this study 

was successfully demonstrated to run on a standard multi-core desktop Pentium PC platform.  

The overall computation gain obtained using this hardware was significant.  Since most modern 

desktop PCs are now equipped with multi-core processors, the methods used in this study can be 

easily adapted to take advantage of these platforms.  The proposed optimization framework, 

which was used for estimating unknown kinetic and transport parameters in our multi-component 

reactive transport problems, is a generic procedure that can be extended to solve a variety of 

environmental problems. 
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Chapter 5 

SUMMARY AND CONCLUSIONS 

5.1 Summary and Conclusion 

The overall goal of this dissertation was to develop a comprehensive set of tools that can be used 

to simulate the fate and transport of reactive contaminants in one-dimensional groundwater 

systems, as well as estimate the model parameters relevant to these systems by solving the 

inverse problem. A comprehensive one-dimensional model, RT1D, was developed and the 

capabilities of the tool were demonstrated by simulating a variety of kinetic and geochemistry 

problems. The mathematical model was then used to simulate a bioaugmentation experiment 

completed to remediate PCE-DNAPL in a single fracture system. We developed a mathematical 

framework to simulate the bioaugmentation of PCE-DNAPL in single fracture system. The 

mathematical framework describes multi-species bioreactive transport processes that include 

bacterial growth and detachment dynamics, biodegradation of chlorinated species, competitive 

inhibition of various reactive species, and the loss of daughter products due to back-partitioning 

effects. The kinetic Monod parameters evaluated from batch experiments were scaled to estimate 

the parameters for the fracture system using a trial and error method. We were able to verify and 

validate these parameters by simulating two different experimental datasets conducted using high 

and low flow velocities. The model was able to predict the data well. During the calibration 

process, we realized the limitations of trial-and-error methods and the need for a flexible 

parameter identification tool for assisting in the calibration process.  Therefore, in the final phase
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of this study, we explored the use of parallel genetic algorithms (PGA) for automatic parameter 

estimation in reactive transport models. 

We developed a PGA to estimate the kinetic parameters in a reactive transport model for 

a given experimental dataset. We demonstrated the flexibility and usefulness of the PGA code by 

solving four different benchmark problems that have published model results or analytical 

solutions. The PGA was able to estimate the parameters that were close to the true parameters. In 

some cases, the percentage error between the estimated parameters and the true parameters were 

high (over 400% in the case of benchmark problem - 3). It should be noted that the goal of the 

PGA was to minimize the sum square of errors between the given experimental data and the 

simulated concentrations from the PGA estimated parameters. The PGA was able to accomplish 

this goal as the predicted concentrations from the PGA estimated parameters and the true 

parameters are very close; however, in some cases, the error percentages are high. This suggests 

that the underlying parameter estimation problem is non-unique. As the number of unknown 

parameters increases, the non-uniqueness of the problem could become a major issue. In such 

cases, the PGA estimated parameters have to be validated using a different experimental dataset 

to ensure that the PGA estimated parameters are unique to that dataset. It was also observed that 

the GAs are computationally intensive search algorithms; however, we made it computationally 

efficient by running the GA in a parallel mode using the shared memory parallel computing 

platform and the OpenMP FORTRAN complier.  The efficiency of the parallel code showed 

close to linear speedup for a desktop computer with 4 processors.  

5.2 Recommendations for future work 

The modeling tool developed as a part of the first objective is an advanced numerical tool 

equipped with a variety of solvers. Further improvements can be made to the tool by either 
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adding better solvers or scaling it for multi-dimensional framework. In order to improve the 

solvers, accurate advection solvers that are being developed in the fluid dynamics literature can 

be incorporated and the ODE solver could also be upgraded to provide the user additional 

options for solving stiff kinetic problems. The EXCEL-VB modeling tool can also be further 

extended for solving multi-dimensional problems.   The necessary matrix and ODE solvers can 

be written in EXCEL-VB and could be integrated within a multi-dimensional modeling 

framework. However, the user-friendliness of the EXCEL-VB platform would always be 

undermined by the lack of parallel processing capabilities. Also, the overall speed of EXCEL-

VB could be slightly slower compared than other computer languages such as FORTRAN and C. 

Therefore, careful trade-off assessments should be made before developing multi-dimensional 

tools within the EXCEL framework. 

 The mathematical modeling framework developed as a part of the second objective for 

the bioaugmentation of PCE-DNAPL would be more robust if a dissolution model for DNAPL 

could be included. The dissolution of DNAPL in fractures is fraught with statistical variations 

and a dissolution model capable of accounting for these stochastic variations would be a 

significant addition to the existing mathematical framework.  

The PGA developed as a part of the third objective is a generic genetic algorithm. 

Although, this algorithm is capable of estimating variety of parameters without modifying the 

algorithm, it is dependent on the quality of initial guesses to provide a good solution space for its 

convergence. Several strategies can be employed to improve the algorithm to overcome the 

limitations caused by bad initial guess values. A preliminary analysis could be performed in the 

algorithm to identify the sensitive parameters and their sensitivity in a particular range and the 

GA could limit the variation of these parameters to this specific range. Another strategy would 
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be to use a multi-objective genetic algorithm (MOGA) by using the niche Pareto curve to find 

the ideal solution space (Singh et al., 2008). In this strategy, the MOGA can identify the ideal 

solution space by optimizing the parameters for each component and this solution space can be 

used to identify the global minimum for that problem.  Genetic algorithms are a vastly improving 

modern field and there are several ways to apply some of these modified algorithms to improve 

the parameter estimation schemes.  
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APPENDIX-A1 

RT1D PROGRAM DETAILS 

A1.1 Understanding the spreadsheet 

In this section, we will briefly discuss the different sections of the spreadsheet and illustrate their 

use to set up various problems. As explained in the earlier section, RT1D has four different 

simulation options. The parameters for the transport module can be set in Section-1 as shown in 

Figure A1.1. These parameters are used by the model when a simulation option involving 

transport module is selection (2 & 4). The left side of Section-2 is dedicated for kinetic type 

problem whereas the right side is dedicated for the geochemistry equilibrium type problem. 

Depending on the type of problem, only one of the sections is used. The program automatically 

sets the unused type of problem to ―N/A‖. The Section-3 in Figure A1.1 is a ―Generate Input 

Template‖ button that will automatically generate a spreadsheet input table depending on the 

simulation option and the reaction-type parameters set in the Section-2. It can be observed from 

this figure that the input for kinetic-type reaction has been set to ―N/A‖ by the program after 

pressing the button in Section-3.  An example for a kinetic-type input sheet is shown in Figure 

A1.2 and a geochemistry-type input sheet is shown in Figure A1.3 respectively.  
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Figure A1.1. Spreadsheet layout for RT1D parameters to generate reaction-specific input 

template 

In the following section, we will briefly discuss the various steps involved in running a 

simulation using RT1D. The parameters and the required short codes for each module and 

options is made available in a textbox in the spreadsheet for the convenience of the user.  

Step 1: Transport module - To perform simulations that involve the use of a transport module, 

the advection-dispersion parameters along with the length of the column need to be input in their 

respectively columns in Section-1.  The total simulation time and the amount of time for which 

the concentration pulse has been supplied should also be provided by the user. For a continuous 

pulse, the pulse time should be equal to the total simulation time. The user should also provide 

the type of advection-dispersion solver to be used for the transport module. The simulation 

option (SO) describes the different types of problems that RT1D can solve. The options are: 
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batch kinetics (1), kinetic reactive transport (2), geochemistry (3), and geochemistry coupled 

with transport (4) 

Step 2: Simulation option parameters – Depending on the simulation option chosen in the 

Section-1, the kinetic or the geochemistry parameters should be input in Section-2. For a kinetic-

type problem, the user should input number of mobile and immobile components, the reaction 

reaction package number and type of ODE solver module used to solve this reaction package. 

The user can also set the total number of user-defined reaction parameters that will be used with 

the reaction package.  

For a geochemistry problem, the user should input the number of components, species, 

components whose concentrations are fixed (example: fixed pH), number of aqueous component 

concentrations that need to be tracked, number of sorbed concentrations that are required for 

correcting the aqueous concentrations during transport and the type of surface complexation 

model.  

Step 3: Generate the input template – The ―Generate Input Template‖ button shown in 

Section-3 of Figure A1.1 will generate a table to enter the parameters specific to the kind of 

simulation option selected by the user. Example input template for a kinetic-type and 

geochemistry equilibrium-type problem are shown in Figures A1.2 and A1.3 respectively. The 

Section-4 shown in these figures changes depending on the parameters set in Section-2 of the 

spreadsheet. 

For the simulation options 1 and 2 (kinetic), the button generates a template to input 

retardation factor, initial and boundary conditions based on the number of mobile and immobile 

species entered in Section-2. The input template also provides an area for the user to input 

reaction parameters specific to that reaction package.  
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For the simulation options 3 and 4 (geochemistry), the button (3) will generate an input layout 

similar to Figure A1.3 to enter the tableau, surface complexation parameters, initial and 

boundary conditions for the aqueous component concentrations, initial condition for the sorbed 

concentrations, the composition of the sorbed concentrations and the surface complexation 

parameters.  

 

Figure A1.2. Example input template for a kinetic-type reactive transport 
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Figure A1.3. Example input template for a geochemistry equilibrium coupled with transport 

Step 4: Solve – Prior to running a simulation, the user should ensure that the following list of 

things is completed 

a) Kinetic problem - Simulation options (1 & 2) 

i. Pick an existing reaction package from the several built-in packages using the 

short code or go to step (b) 

ii. Program your own kinetic reaction package by opening the code editor. 
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iii. Input the reaction parameters as necessary.  

iv. Click the solve button shown in Section-5 to perform the simulation 

b) Geochemistry equilibrium problem – Simulation options (3 & 4) 

i. Input the total component concentrations at the boundary and the initial 

concentrations at the nodes, if any.   

ii. Input the guess concentrations, this is used by the solver for the starting 

solution to converge to the correct solution. A good starting point would be 

the total concentration. Please do not input ―0‖ for the guess values as the 

logarithm is calculated for these guess concentrations as a part of the solution 

process. 

iii. Input the tableau and the surface complexation parameters, if any. 

iv. Input the initial sorbed concentration present in the column and the species 

that combine to form the sorbed concentration. This sorbed concentration is 

used to calculate the aqueous species concentrations at each time step. 

v. Click the solve button shown in Section-5 to perform the simulation 

Step 5: Viewing the solutions: The results are presented in Sheets 2 & 3 of the model 

spreadsheet. Sheet 2 provides the spatial variation of the component concentrations after the 

completion of the simulation time. Sheet 3 provides the breakthrough component concentrations 

at the outlet after each time step. By default, the breakthrough component concentrations are 

printed at the last node (end of the column). The program can be modified to print the 

breakthrough component concentrations at any node in the column.  

WARNING!! - The spreadsheet erases the data below the buttons (after cells A27) when either 

button 3 or 6 are pressed. The output data in Sheets 2 & 3 is cleared every time the button 5 is 
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pressed. The user is advised to use a different a spreadsheet for post-processing of the results and 

other intermediate calculations. 

A1.2 Input spreadsheet label details 

A1.2.1 Transport module 

i. Length (L) – Length of the column for the transport module 

ii. Total time (T) – Total simulation time  

iii. Pulse time (T) – Total time for which the concentration is pumped through the 

column during the experiment at the boundary. This is less than or equal to the 

Total time set in (ii).  

iv. delx (L) – Grid size. This is used to calculate the total number of nodes using the 

formula (length/delx)+1. 

v. delt (T) – Time step. The total number of iterations is calculated using the formula 

(total time/delt).  

vi. Velocity (LT
-1

) – This is the pore velocity of the liquid flowing through the 

column. This is calculated from the flowrate (Q) as follows (Q/cross-sectional 

area)/porosity. Please make sure that units are same as the length/total time 

vii. Dispersion coefficient (LT
-2

) – This is the hydrodynamic dispersion coefficient 

calculated by multiplying the value of dispersivity with the velocity. Please 

provide the hydrodynamic dispersion coefficient value and not the dispersivity 

value. The code does not multiply with the velocity. 

viii. Adv-Disp type – This takes a short code for the type of Advection-Dispersion 

solver. The choices are 0, 1, and 2 for explicit advection method, fully implicit 
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advection-dispersion or TVD advection respectively. For choices 0 and 2, 

dispersion is solved by fully implicit dispersion module.  

ix. Simulation option – Type of problem 

  1 - Batch Kinetics 

  2 - Reactive Transport 

  3 - Batch Geochemistry 

  4 - Geochemistry coupled with Transport 

A1.2.2 Kinetic reaction module 

i. # Mobile components – This is the number of aqueous components inside the system. 

The mobile components will have an advection/dispersion and reaction term. There 

should be at least 1 mobile species for the program to work. 

ii. # Immobile components – This is the number of solid phase components in the system 

that do not undergo advection-dispersion. They only undergo reaction. The immobile 

components will be placed at the bottom after all the mobile components. In the reaction 

package, the immobile species number will start after the mobile species. That is, if there 

are 6 mobile species and 2 immobile species, we will count the immobile species as 7 & 

8. Please look at the example problem for a detailed explanation. 

iii. Reaction package # – This is a short code for the type of reaction kinetics. The different 

kinds of reaction kinetics that have been pre-programmed into the RT1D model. We are 

adding more packages as we continue developing the model. The user can use their 

reaction kinetics by picking the option 10.  

1 – First order sequential degradation 

2 – Four-component coupled sequential degradation 
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3 – Four-component decay chain (Bauer et al., 2001) 

4 – Modified Monod kinetics of TCE bioaugmentation 

5 – Rate-limited sorption (Benchmark problem – 1 Torlapati et al., 2012) 

6 – Denitrification (Benchmark problem – 2 Torlapati et al., 2012) 

7 – Biodegradation of Carbon Tetrachloride (Benchmark problem – 3 Torlapati et 

al., 2012) 

8 – Open 

9 – Open 

10 – User-defined reaction package 

iv. ODE Solver type – Short code for the type of reaction solver 

0 – Adaptive Runge-Kutta-Fehlberg solver 

                               1 – Fourth order Runge-Kutta solver 

v. # Reaction parameters – Set the number of user-defined reaction terms needed 

A1.2.3 Geochemistry equilibrium module 

These variables come into the picture only when you‘re using the geochemistry module of the 

code. This is when you enter either 3 or 4 short codes for the reaction type 

i. # Components – Number of components 

ii. # Species – Number of species 

iii. # Fixed component concentrations – set the number of components whose 

concentrations are fixed (Example: fixed pH) 

iv. # Aqueous components – number of aqueous components that we are tracking 

v. # Sorbed concentrations – the number of solid phase concentrations that are necessary 

for correcting the aqueous phase component concentrations 
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vi. SCM TYPE – Type of surface complexation method.  

0 – No surface complexation 

1 – Constant capacitance 

2 – Diffuse layer 

3 – Stern Layer 

4 – Triple Layer 

5 – Generalized Two Layer Modem (Dzombak & Morel, 1990) 

A1.2.4 Kinetic reaction parameters  

These labels are generated in the Section-4 of Figure 3 when either simulation option 1 or 2 are 

chosen. The spreadsheet displays four different columns requiring the input for the following 

parameters: 

i. Component name: The input template automatically populates it with a default 

component name. This can be changed to a more appropriate name by the user. The 

program reads this name and uses for output in Sheets 2 and 3. 

ii. R (Retardation factor): In case of linear sorption, we have a retardation factor. This 

retardation factor is given by 

dρK
1

where ρ is bulk density of the soil (mg/L), Kd is 

the linear sorption constant (L/mg) and φ is the porosity. This is equal to 1 when there is 

no sorption. Cannot be less than 1.  

iii. Initial: This is the initial concentration of the species in the column. It is possible that 

there is a residual component concentration present in the column before the simulation 

time has begun. This option sets a constant initial concentration, as specified in the 
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spreadsheet, across the all the nodes in the column. It is possible to set a variable initial 

concentration by modifying the setinit() subroutine in the code. 

iv. Boundary: This is the inlet concentration of the species at time = 0. This boundary 

concentration will be supplied to the column until the end of the pulse time.  

v. Reaction terms: Generates a table for entering the reaction terms and labels based on the 

total reaction terms. 

A1.2.5 Geochemistry equilibrium parameters (without transport) 

The input is different geochemistry package with advection and without advection. The input 

template also changes based on the kind of surface complexation reaction chosen in the 

geochemistry input sheet. 

i. Mobile species: This presents with 4 columns of different parameters for the mobile 

species.  

a. Index # is the serial number of the component name. This is automatically 

populated and should not be changed 

b. Comp. Name: A default component name is generated automatically. It is advised 

that this component name be changed to something more suitable. The 

components with fixed concentration are input after all the variable components 

have been entered into the spreadsheet cells. 

c. Total concentration: If the total concentration of the component is known, please 

enter the value here.  

d. Guess concentration: If the values are unknown, please enter a guess value so the 

program has a starting value for the iteration process. The iterative process 

converges faster if suitable starting concentrations are chosen. A good guess for 
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the guess concentration is the initial concentration itself unless it is zero. Since the 

logarithm of the guess concentrations are calculated during the solution 

procedure, please do not use 0‘s as guess concentrations. If the solution does not 

converge, try a different guess value or check the problem inputs. 

ii. Tableau: This is the tableau where you fill in the stoichiometric matrix. Make sure the 

components are in the same order as the Total concentrations in the column. Also enter 

the Log K values in the end for each species for the mass action matrix. 

iii. Additional parameters are required based on the surface complexation model chosen. 

a. LSIG0: Index for PSI0 in the component list [L0 in Westall (1979)] 

b. LSIG1: Index for PSI1 in the component list [L1 in Westall (1979)] 

c. LSIG2: Index for PSI2 in the component list [L2 in Westall (1979)] 

d. LSIG3: Index for SOH in the component list [L3 in Westall (1979)] 

e. SSD: Surface site density (sites/m
2
) [C1 in Westall (1979)] 

f. SURFA: Specific surface area (m
2
/g) [C2 in Westall (1979)] 

g. CONCS: Concentration of sorbing solid (g/L) [C3 in Westall (1979)] 

h. XMU: Ionic strength (moles/L) [C4 in Westall (1979)] 

i. CAP1: Inner capacitance (F/m
2
) [C5 in Westall (1979)] 

j. CAP2: Outer Capacitance (F/m
2
) [C6 in Westall (1979)] 

iv. Sorbed Species ID: When generating isotherms, the program requires Species index 

numbers of the sorbed species in the tableau. The number of sorbed species displayed 

here is based on the ―Sorbed concentrations‖ set before pressing the ―Generate Input 

Template‖ button. Please input all the ID‘s of the sorbed species here. This is used to 

calculate the amount of total sorbed species in moles/L. The program reads the 



151 
 

concentrations of all the sorbed species entered here and displays the total sum of their 

concentrations as total sorbed concentration. In case of a speciation problem where the 

sorbed concentrations are not required, this should be left blank.  

v. Component # of the aqueous species: This is only required when generating isotherms. 

Enter the component number of the aqueous species. The aqueous concentration of the 

component is calculated at the end of the simulation by subtracting the sorbed 

concentration from the total concentration of the component in moles/L.  

A1.2.6 Geochemistry equilibrium parameters (with transport) 

The input template is similar to the above except we have a few additional parameters. This 

section discusses about the additional parameters to avoid repetition. 

i. Boundary: The total concentrations of all the components at the inlet have to be entered 

here. The initial guess value for the concentrations is also entered here.  

ii. Initial: The total residual concentration of the existing in the column before the beginning 

of the simulation.  

iii. The tableau information is similar to the batch geochemistry problem 

iv. Sorbed phase concentrations: The initial concentration of the sorbed species is input in 

the cells. The number of sorbed concentrations is dependent on the input parameter set in 

Section-2. The user needs to enter the sorbed species index and the initial concentration 

for the sorbed phase.  

v. Sorbed phase species composition: In this section, we define the composition of sorbed 

phase concentrations. We have to provide the index of the sorbed phase concentration, 

and the number of species it is composed of and the species index # of all the species in 

the same row. 
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APPENDIX-A2 

CALCULATION OF BACK-PARTITIONING COEFFICIENT 

Solubility of TCE = 1100 mg/L or 8.37 mM (Molecular weight = 131 g/mol) (Information, May 

18, 2011) 

Solubility of cis-DCE = 3500 mg/L or 36 mM (Molecular weight = 96.95 g/mol) (Cleanup-

Information, April 15, 2011) 

Solubility of VC = 2763 mg/L or 44.20 mM (Molecular weight = 62.5 g/mol) (ATSDR, March 

3, 2011) 

Solubility of Ethene = 131 mg/L or 4.67 mM (Molecular weight = 28.05 g/mol) (Inchem, 2011) 

Regressed value of DCE back-partitioning coefficient for Experiment-A = 0.04 hr
-1

 

 

 

 

Regressed value of DCE back-partitioning coefficient for Experiment-B = 0.004 hr
-1 

Similar calculations can be performed and the back-partitioning coefficients for the other 

daughter products of Experiment-B could be determined.  

136
*0.04 0.17 

8.37
TCE hr

136
*0.04 0.03 

44
VC hr

136
*0.04 0.3 

4.67
Eth hr


