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Abstract

Magnetic resonance spectroscopic imaging (MRSI), combining both magnetic resonance

spectroscopy (MRS) and magnetic resonance imaging (MRI) techniques, has proven to be

a powerful approach to reveal information about metabolite distributions and discriminate

multiple resonant frequencies in the spectrum. Due to its nondestructive nature and sensi-

tivity to the molecular environment of individual atoms [1], MRSI is widely applied in the

clinical community. The typical applications include mapping abnormal tissues in the brain

[2, 3, 4], in the prostate [3, 5], in the breast [6, 7], as well as pathologic analysis after resection

operations [8]. All of these clinical studies require satisfactory resolution in both spatial and

spectral dimensions, which in conventional MRSI demands a great deal of acquisition time.

Unfortunately, patient discomfort, motion artifacts and cost will significantly increase when

the acquisition time lengthens. To overcome these problems, we propose to implement an

imaging protocol that only acquires an optimal subset of data to accelerate the collection

process without sacrificing spatial and spectral accuracy in reconstruction.

In most MRSI applications, the spectral domain has great sparsity, which raises the pos-

sibility of reconstructing spectral information with limited time series data [9]. Therefore, an

efficient sequential backward selection (SBS) [10] technique is proposed to select a limited set

of but the most informative echo-time values, which are then applied to echo-planar imaging

(EPI) acquisition [11]. By exploiting multi-echo EPI, multiple k-space frames can be ac-

quired within one excitation to further reduce the acquisition time. To achieve this purpose,

we modify the selection method to a more efficient approach. Instead of selecting echo-time

value one by one, the modified algorithm selects multiple echo-time values simultaneously,

which would then be used in one excitation acquisition.
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For the EPI technique, a k-space frame cannot be collected instantly. In other words,

every k-space sample will have a different time delay even in the same k-space frame. Con-

sequently, selecting one echo-time value for a whole k-space frame might not be accurate

enough. We then extend the data selection method to both k-space and time domains. In

addition, an advanced EPI strategy is introduced. On the other hand, if SBS algorithm

is the only restriction for k-t data selection, the acquisition efficiency might be reduced,

which leads to longer observation procedure. Considering this, sequential k-t selection with

constraint will be studied for a better selection result in a more efficient way.

Due to the selection method and the EPI acquisition technique, the collected data

are normally nonuniform and time varying. Therefore, fast Fourier Transforms (FFTs)

are not capable reconstructing the spatial and spectral information directly. Besides, an

FFT cannot separate spatial information of different metabolite resonances. On the other

side, conventional optimization methods [12], such as conjugate gradients (CG), require very

high computational effort and large memory storage to find the matching parameters of

the images. A fast reconstruction method combining polynomial approximation with FFTs

is investigated, which can greatly accelerate the reconstruction process without sacrificing

reconstruction quality.

During the reconstruction procedure, the finite data set raises a practical problem:

frequency local minima, which means convergence to the global minimum is not guaranteed.

In order to overcome this problem, we study the origin of the local minima, and propose an

easily implemented method: varying estimated decays during the optimization. However,

this method has its own limitations, especially in reconstruction efficiency and accuracy.

Therefore, another advanced technique, applying weighted scalars to the cost function model,

is presented. The results show that the second method can efficiently attenuate frequency

local minima effect, while avoiding the reconstruction speed and accuracy problems.
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Chapter 1

Introduction

Magnetic resonance spectroscopic imaging, which is a combination of magnetic reso-

nance spectroscopy (MRS) and magnetic resonance imaging (MRI), is an important appli-

cation of the phenomenon of nuclear magnetic resonance (NMR). It can produce metabolite

distributions and spatially localized spectra inside subjects. Because of its relative safety,

MRSI is widely used to diagnose health conditions of human and animals. 1H, 13C, 31P

MRSI studies have many applications in clinical practice. They can indicate information

about cellular activities in a variety of diseases including brain tumors [2], breast tumors [6],

prostate tumors [5], epilepsy [13], as well as abnormalities in various pathologies [14, 15].

Despite its attractive potential, MRSI has remained largely in the realm of health care

research because long acquisition time is required in a standard acquisition scheme. Factors

like patient comfort, motion artifacts and expense limit the time available to obtain good

image resolutions in MRSI. To accelerate the data acquisition and keep the quality of the

reconstructed image, we are pursuing strategies where the imaging procedure is optimized

so that only an optimal subset of data is collected and used for reconstruction. On the other

hand, these acquired data are normally laid out nonuniformly. Fast reconstruction methods,

like the Fourier transform, are not applicable anymore. Therefore, we propose to develop a

new optimization method to find the best matching parameters of the images.

1.1 Organization of the Proposal

In this chapter, we briefly review the physics of nuclear magnetic resonance and basic

principles of magnetic resonance spectroscopic imaging.

1



In Chapter 2, a new efficient acquisition technique is presented. We propose a sequential

selection method to choose limited but optimal echo-time values which are then used in

echo-planar imaging acquisition. 1H phantom experiments demonstrate that our approach

achieves similar results to standard MRSI while using much less acquired data.

In Chapter 3, we address limitations of echo-time selection in data acquisition. We

propose two alternative data selection strategies: one is k-t selection, which extends the

sequential selection technique in both k-space and time domains; another one is overlapped

echo-time selection, which makes the acquisition time for each k-space frame shorter and

may lead to a fast reconstruction process.

In Chapter 4, we summarize the standard reconstruction method used for MRSI. Then

a new iterative reconstruction method based on a polynomial model is detailed discussed.

This technique decomposes the exponential time function and utilizes fast Fourier transform

to speed up the optimization procedure.

In Chapter 5, a practical problem of parameter fitting in reconstruction is described:

local minima. Two methods, varying estimated decays / applying weighted scalars to the

cost function model during the optimization, are prsented to solve the local minima problem.

Experiments and comparisons indicate their efficiency and simplicity of implementation.

Finally, conclusions are given in Chapter 6. The innovative ideas are summarized, and

possible future work is discussed.

1.2 Physical Bases of Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a phenomenon when the nuclei [16] of certain

atoms are immersed in a magnetic field, absorbing and re-emitting electromagnetic (EM)

energy. This energy owns a specific resonant frequency that depends on the strength of

the external magnetic field and the chemical environment of the nuclei. Many scientific

techniques exploit NMR phenomena to probe molecule structures as well as detailed internal

forms of the observed subjects.
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Figure 1.1: Stationary states of nuclear spins in a static magnetic field

In the absence of an external magnetic field, the nuclei have random orientations. The

vector sum of these orientations will be zero. When an external magnetic field is applied,

randomly oriented nuclei experience an external force that aligns the nuclei either in a parallel

or an anti-parallel direction in reference to the applied magnetic field. The lower-energy state

with the nuclei aligned with the field is called the α-spin state; the higher-energy state with

the nuclei aligned against the field is called the β-spin state. This situation is depicted in

Figure 1.1. In fact, the energy difference between two states is proportional to the strength

of the external magnetic field.

∆E =
rh

2π
×B0 (1.1)

where ∆E is the energy difference between α and β states; h is Planck’s constant; B0 is the

strength of the external magnetic field and r is the gyromagnetic ratio (26.753sec−1Gauss−1for

a proton). Due to Boltzmann’s law, the lower-energy state always has a larger population of

3



spins than the higher-energy state. However, when a nucleus is irradiated with an extra EM

radiation with energy ∆E = rhB0/2π, the nucleus can flip from the lower-energy state to

the higher-energy state. This energy is usually supplied by application of an rf pulse signal

to the system. After the rf signal, the excited nuclei tend to return to their low-energy state

by emitting a well-defined resonant frequency (the same frequency as the applied rf). This

emission of rf signals is then detected by rf coils placed close to the excited object. This is

the origin of NMR and the emitted signal is called a free induction decay (FID). Besides

(1.1), nuclear energy can also be represented as

E = hv (1.2)

where h is Planck’s constant and v is the frequency of the EM wave. When (1.1) combines

with (1.2)

∆E =
rh

2π
×B0 = hv (1.3)

The resonant frequency v is proportional to the applied field B0

v =
r

2π
×B0 =

26, 753sec−1Gauss−1

2π
×B0 = 4257.8sec−1Gauss−1 ×B0 (1.4)

For the fields of currently available magnets, the resonant frequencies occur in the radio-

frequency range of the spectrum. Because hydrogen is a major component of organic com-

pounds and historically NMR was first used to study protons, we limit our discussion of

NMR to proton magnetic resonance.

1.2.1 Chemical Shift

In nature, protons do not exist independently. Instead, they are surrounded by electrons.

In the presence of an external magnetic field, the electrons will partially shield the proton

4



from the external field. Their negative charges generate an opposite magnetic field to the

externally applied field. As a result, the actual field strength is weaker than the external

field strength. This is known as chemical shielding.

Bactual = Bexternal −Bshielding (1.5)

vactual = 4257.8sec−1Gauss−1 ×Bactual (1.6)

In different molecular environments, protons are shielded by different amounts of electrons.

Therefore, the resonant frequencies of individual protons vary with the chemical surround-

ings. For example, in methanol, the hydroxyl proton is not shielded as much as the methyl

proton, so the actual field strength applied to the hydroxyl proton is stronger. Consequently

the hydroxyl proton has a higher resonant frequency than the methyl proton.

Generally speaking, chemical shielding is very small compared to the external field.

Therefore, it is not accurate enough to utilize absolute differences of resonant frequencies to

distinguish individual protons. A more reasonable way to express resonant frequency differ-

ences is in parts per million (ppm), which defines frequency differences between a reference

frequency and the observed resonant frequency relative to a reference frequency.

δ =
(vsignal − vref )× 106

vref
(1.7)

The relative frequency differences expressed in (1.7) are known as chemical shifts. For a

given proton, the chemical shift in ppm is the same regardless of the external field, which

makes the chemical shift values easier to interpret.

1.2.2 NMR Signals

As we mentioned above, different chemical environments lead to different chemical

shielding of protons. Thus, the number of NMR signals of a molecule corresponds to the

number of different types of protons present in the molecule. For instance, ethanol, as shown
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Figure 1.2: Molecular structure of (a) ethanol (b) acetone

in Figure 1.2a, has one methyl group (1), one ethyl group (2) and one hydroxyl group (3).

The protons from different groups have their own chemical shifts. Consequently, three NMR

signals can be observed from ethanol. Acetone, as shown in Figure 1.2b, for another instance,

has two identical methyl groups (4), where all protons from these two groups have the same

chemical shift and are said to be chemically equivalent.

In practice, however, there may be fewer signals in the NMR spectrum than the number

of types of protons in a molecule, especially a large molecule. The reason is that large

molecules may have similar functional groups, which lead to similar resonant frequencies.

Association of chemical shifts with different types of protons must be done carefully.

Unlike the number of resonant peaks, the strength of resonant peaks represented by

the area under each peak is only determined by the number of protons contributing to that

peak. For example, butanone, as shown in Figure 1.3, has two different methyl groups (1)(3).

These two groups create two NMR peaks with different resonant frequencies; but these two

signals have the same area under the peaks. One thing we need to mention here: the number

of protons is only proportional to the area under the peak, not the peak height. Therefore,

when we reconstruct the magnitudes of resonances, the number of protons cannot be used for

accurate proportional estimation of magnitudes, may only be used for the start estimation.
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Figure 1.3: Molecular structure of butanone

1.3 MRSI Basics

MR imaging and MR spectroscopy are two important applications of NMR, which make

use of the property of NMR to get spatial and spectral information inside the subjects. The

combination of these two techniques is called magnetic resonance spectroscopic imaging

(MRSI).

For MR spectroscopy, spectral information is only presented at one spatial location,

which makes MRS unable to visualize the detailed internal form of subjects. On the other

hand, in conventional MR imaging, spatial information is non-time-varying, which makes

MRI unable to separate different resonant frequencies. Thus, MRI can only map the proton

distribution of water. MRSI, instead, gives results that are readily interpretable. At a

given resonant frequency, there is a detailed spatial map; while at a given spatial location,

a spectral plot is available (examples are shown in experiment section of Chapter 2). MRSI

allows collection of spectroscopic data from multiple regions simultaneously.

1.3.1 Imaging Model

The basic 2-D form of MRI can be expressed as:

s(kx, ky) =

∫ ∫
ρ(x, y) exp[−j2π(kxx+ kyy)]dxdy (1.8)

where
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kx =
γ

2π

∫ T

0

Gx(τ)dτ

ky =
γ

2π

∫ T

0

Gy(τ)dτ

Gx(τ), Gy(τ) are the time-dependent field gradients along x and y axes, which are applied

to the system to distinguish the spatial distribution of spins by Fourier encodings [1]. ρ(x, y)

represents the spatial distribution. Notice that the observed s(kx, ky) is in effect a Fourier

transform domain representation of the spatially distributed spin density of ρ(x, y) at the

spatial-frequency coordinate (kx, ky).

The difference between MRI and MR spectroscopic imaging is the inclusion of the time

domain (or equivalently the spectral domain) to the spatial MR data in MRSI. Therefore,

in order to extend the 2-D MRI model to 3-D MRSI model, the original spatial distribution

ρ(x, y) needs to include an extra time coordinate becoming a time-varing spatial distribution

ρ̃(x, y, t) (t is later used for spectral reconstruction). In consequence, the observations of

MRSI can be expressed as

s(kx, ky, t) =

∫ ∫
ρ̃(x, y, t) exp[−j2π(kxx+ kyy)]dxdy (1.9)

As we mentioned in our previous NMR physical section, after the extra rf signal is turned

off, the spin system returns to the low-energy state with the emission of NMR signals. Two

relaxation mechanisms are associated with this process: longitudinal(T1) relaxation, which

realigns the spins along the original external B0 field direction; another called transverse or

T2 relaxtion, which is a decay process of the FID. In practice, because of magnetic field in-

homogeneity, the observed FID decays even more rapidly than the inherent T2. The effective

relaxation time T ∗2 is given as

1

T ∗2
=

1

T2

+
γ∆B

2
(1.10)
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where ∆B represents the field inhomogeneity [17]. Because the readout time is very short

in conventional MR imaging, it is not necessary to include these relaxation effects in imag-

ing model. However, MRSI requires relatively long readout time to get the spectroscopic

information. In this case, relaxation times can not be ignored. Beacuse the FID signal is

the major interest of this research work, in our study, we only consider the effect of trans-

verse relaxation. Now the time-varing spatial distribution ρ̃(x, y, t) in MRSI model can be

represented as

ρ̃(x, y, t) = ρ(x, y)e
− 1
T∗2 (x,y)

t
(1.11)

Normally, in MRSI, we want to observe more than one type of proton. Since the relax-

ations and their respective relaxation times are quite sensitive to the chemical enviroments

surrounding the nuclei, each type of proton has its own T ∗2 . In addition to the decay of the

FID, each type of proton has its own resonant frequency (in this research work, we treat

water proton having 0Hz resonant frequency). Hence, for multiple resonance MRSI, (1.11)

is updated as

ρ̃(x, y, t) =
∑
i

ρi(x, y)e
− 1
T∗
2i

(x,y)
t
e−jωi(x,y)t (1.12)

where i represents different resonant peaks and ωi is the frequency offset from water peak.

Now, the observed MRSI signal can be rewritten as

s(kx, ky, t) =

∫ ∫ ∑
i

ρi(x, y)e
− 1
T∗
2i

(x,y)
t
e−jωi(x,y)te−j2π[kxx+kyy]dxdy (1.13)

1.3.2 Echo-Planar Imaging

The standard MRSI protocol is to acquire a set of k-t samples on uniform grids and

perform Fourier transforms on the acquired data to obtain the spatial distributions and the

resonant spectra. A large number of coding steps are required for spectroscopic imaging,
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Figure 1.4: (a) EPI pulse sequence (b) EPI trajectory

and they are often too time-consuming for in-vivo imaging. Therefore, “high-speed imaging”

has been introduced to the MRSI field [17]. Due to developments in gradient hardware and

processing methods, an imaging technique called echo-planar imaging (EPI) has become

popular in MRSI [18, 19]. In this technique, one rf excitation is followed by a series of

gradient reversals, thereby collecting a complete data set of one k-space image. Figure 1.4

shows a standard EPI trajectory and pulse sequence.

Echo-planar imaging can be further divided into single-echo EPI and multi-echo EPI. In

single-echo EPI, only one complete data set of a k-space image is observed in one excitation,

while in multi-echo EPI, several k-space frames can be observed in one excitation, which will

accelerate the imaging procedure further.

As shown in Figure 1.4a, there is an echo-time (TE) parameter defined as the time

between the start of the rf pulse and the center of k-space. By changing the echo-time value,

we will get a set of k-space images with different time offsets and therefore the 3-D (kx, ky, t)

MRSI data. Figure 1.5 shows 21 k-space frames with different echo-time shifts. For instance,
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Figure 1.5: EPI images with different echo-time values

TE10 is the echo-time value describing the time between the start of the rf pulse and the

center of 10th k-space image and the observed data at TE10 is represented as

s(TE10) =

∫ ∫
ρ̃(x, y, TE10) exp {−j2π[kxx+ kyy]} dxdy (1.14)

In practice, a k-space image cannot be collected instantly in EPI. In other words, k-

space images acquired in EPI are evolving images, not static images as in conventional MRI

methodology. Each k-space sample is time dependent, so imaging model (1.13) can be to be

updated for EPI with only one varible:

s(t) =

∫ ∫
ρ̃(x, y, t) exp {−j2π[kx(t)x+ ky(t)y]} dxdy (1.15)
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Besides of its high speed, EPI is able to capture specified echo-time values and k-space

trajectory during the acquisition process. Thus, in our study, we choose to work with

variations of echo-planar imaging in MRSI acquisition.
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Chapter 2

Efficient Data Acquisition with Echo-Time Selection

Long acquisition time is one of the major challenges of magnetic resonance spectro-

scopic imaging. Standard MRSI collects data of both k-space and time domains to obtain

spatial and spectral information of subjects. In order to maintain satisfactory spatial and

spectral accuracy while reducing the acquisition time, several selection techniques have been

developed to choose the best possible data subset to guarantee the reconstruction quality.

Gao and Reeves [20, 21] and Plevritis and Macovski [22] investigated the optimal subset

of k-space samples. The authors proposed to collect a limited number of k-space samples

rather than all k-space data to reconstruct the image with a limited region of support,

while keeping full data information in the time series. Conventional phase encoding imaging

[17] is used in these methods, which requires one excitation to record an individual sample

in k-space through the time domain. In this way, if accurate spatial details are needed,

the acquisition time is still relatively long. Alternatively, within a comfortable acquisition

time, only a limited number of k-space samples can be gathered for the subject, and the

reconstructed images will have relatively poor spatial resolution.

In some clinical applications, especially in locating abnormal biochemistry in specific

tissues, spatial details may be more useful than spectal information to indicate disease states.

Therefore, other researchers emphasize the spatial distribution of key metabolites, acquiring

high-resolution k-space coverage with limited chemical-shift encoding echo-time values. S.

B. Reeder et al. [23] discussed optimization of echo-time spacing for maximum noise per-

formance. However, their proposed method was only applied to a relatively small image

assuming the spectral peaks are ideal at known locations; no T2/T2∗ [17] effects are present;

and each chemical metabolite only has one resonant frequency. These assumptions are not
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Figure 2.1: (a) k-space sample selection, (b) echo-time sample selection

always realistic for in vivo imaging. Figure 2.1 shows two types of selection methods de-

scribed above: in the upper plot, data on each blue line is collected in one excitation, so

the total acquisition time is proportional to the number of k-space sample locations; in the

lower plot, data on each k-space is collected in one excitation, so the total acquisition time

is proportional to the number of echo-time values.

In MRSI, the spectral domain normally has greater sparsity than the spatial domain.

Thus, we can reconstruct spectra with limited time series data more easily than reconstruct-

ing the spatial domain with limited k-space data. In addition, as we mentioned in Chapter 1,

EPI can easily capture specified echo-time values during the acquisition procedure. There-

fore, in this chapter we focus on an efficient selection technique to choose the best echo-time

values, which are then applied in EPI acquisition.
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2.1 Echo-Time Selection Theory

2.1.1 Observation Model

To understand the method for selecting echo-time values, consider a linear observation

model in matrix notation:

ρ = Aq + e (2.1)

where ρ is a set of observations, q is the unknown vector of interest, A is a matrix that

describes the transformation between the unknown q and the observations ρ, and e represents

zero-mean white Gaussian noise. The least-squares solution of q is:

q̂ = (AHA)−1AHρ (2.2)

where the superscript H represents Hermitian transpose. Since e is independently and

identically distributed, the mean squared error (MSE) in the reconstruction is proportional

to

E {‖q̂ − q‖} = tr
{

(AHA)−1
}

(2.3)

where tr{} means the trace of the inside matrix. This error criterion only depends on

the transformation matrix A. Once we determine the A matrix, the MSE is fixed and

consequently the reconstruction quality of q is determined.

For most types of MRSI, a desired time-varying image ρ(x, y, t) can be described as

ρ(x, y, t) =
M∑
i=1

ai(x, y) exp {[−di(x, y) + jωi(x, y)]t} (2.4)

where M is the maximum number of metabolite resonances contained in a voxel. The com-

plex weight ai is proportional to the contribution from different resonances. The parameter
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ωi is the resonant frequency and di is the rate of damping of each resonance. After sampling,

we can rewrite the basic image model at a given (x, y) location as

ρ(tn) =
M∑
i=1

ai exp {[−di + jωi]tn}+ e(tn) (2.5)

where e(tn) is zero-mean, independent, identically distributed Gaussian noise, and tn is the

echo time used to encode the nth EPI frame. The primary difference of (2.5) from (2.1) is

that the equations are nonlinear in the parameters of interest. To utilize the error criteria

shown in (2.3), we propose to linearize (2.5) and use the linearized model to develop the

error criterion. Note that the linearized model is only used in the selection procedure; during

reconstruction, parameters of interest are still estimated using the more accurate nonlinear

model. The linearized model is given by:

ρ(tn) =
M∑
i=1

a0i exp [(−d0i + jω0i)tn] + (ai − a0i) exp [(−d0i + jω0i)tn]

+ [(−di + jωi)− (−d0i + jω0i)] tna0i exp [(−d0i + jω0i)tn] + e(tn)

=
M∑
i=1

ai exp [(−d0i + jω0i)tn] + (−di + jωi)tna0i exp [(−d0i + jω0i)tn]

− (−d0i + jω0i)tna0i exp [(−d0i + jω0i)tn] + e(tn)

=
M∑
i=1

ai exp [(−d0i + jω0i)tn] + (−di + jωi)tna0i exp [(−d0i + jω0i)tn] + e∗(tn) (2.6)

Experiments show that the the linearized model is adequate enough for the selection process

(more details in Section 2.3 ). Here ai, di, ωi are unknown signal parameters, while a0i, d0i,

ω0i are known from prior information. Equation (2.6) can be rewritten in matrix format

like (2.1) with bi = −di + jωi and b0i = −d0i + jω0i, as the unknown parameters q =
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[a1, a2, . . . , aM , b1, b2, . . . , bM ]T . The transformation matrix is then given by

A =


eb01t1 · · · eb0M t1 a01t1e

b01t1 · · · a0M t1e
b0M t1

...
...

...
...

...
...

eb01tn · · · eb0M tn a01tne
b01tn · · · a0M tne

b0M tn

 (2.7)

At this point, A has only one set of variables, the choice of echo-time values tn (a0i, d0i, ω0i

are fixed values from prior knowledge). Each row of the A matrix corresponds to a specific

tn. Hence, when we optimize the combination of rows in the A matrix, we are selecting the

optimal combination of echo-time values that determines the reconstructed image quality.

The MSE value is not merely a function of the number of rows removed from A. The specific

choice of echo-time values is more important than the number of echo times that are selected.

In some cases fewer acquired echo times may result in better reconstruction.

2.1.2 Selection Algorithm

Careful selection of the echo-time values to be applied in EPI acquisition, represented

by rows of A, is required to minimize the MSE and hence optimize the reconstruction perfor-

mance. Unfortunately, exhaustive search for the optimal row combination is prohibitive for a

large matrix. A suboptimal sequential backward selection algorithm (SBS) is therefore used

to optimize echo-time selection. We begin with all possible echo-time values and evaluate

all possible choices of eliminating a single row from the current A, which corresponds to a

specific echo-time value. Let ri represent row i of A. If ri is eliminated from A, using the

Sherman-Morrison matrix inversion formula [10], the modified (AHA)−1 is given by:

(ÃHÃ)−1 = (AHA)−1 +
(AHA)−1rHi ri(A

HA)−1

1− ri(AHA)−1rHi
(2.8)

Taking the trace of both sides and using the property that tr {AB} = tr {BA}, we can

formulate an updated error criterion as
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tr{(ÃHÃ)−1} = tr{(AHA)−1}+
ri(A

HA)−2rHi
1− ri(AHA)−1rHi

(2.9)

The first term in (2.9) is the same for every choice of an eliminated row. The error criterion

will yield the smallest increase by eliminating the row that minimizes the second term of

(2.9). Then the least important row will be removed and A updated to Ã. This process is

repeated until the desired number of echo-time values remains. This approach can achieve

a satisfactory selection result in an efficient manner. Moreover, SBS has other attractive

advantages for echo-time selection:

• The actual values of the parameters of interest do not enter into the linear criterion.

Therefore, the optimization process can be accomplished before MRSI acquisition.

• The a0i values are scalars in the criterion and have only a small effect on the optimiza-

tion process. Therefore, even if the prior amplitude information is not accurate, the

inaccuracy will only have a small effect on the optimality of the echo-time selection.

• If the differences among resonant frequencies are fixed, a global frequency shift due to

field inhomogeneity will not affect the optimality of the selected samples.

The global frequency shift we mention here is not spatially global. It means that at a

given (x, y) spatial location, due to field inhomogeneity, the same frequency shift occurs

for all resonant peaks. Compared to the global shifts, in general, the local variation for

each resonance is small enough to ignore. Figure 2.2 shows the global shifts ∆ω and local

variations ∆ω1,∆ω2,∆ω3 at one spatial location. At different locations, the values of global

shifts can vary.
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Figure 2.2: (a) Global frequency shift (b) local variations

Recall (2.7), if a global shift ∆ω exists, the A matrix will update as

Ā =


eb01t1ej∆ωt1 · · · eb0M t1ej∆ωt1 a01t1e

b01t1ej∆ωt1 · · · a0M t1e
b0M t1ej∆ωt1

...
...

...
...

...
...

eb01tnej∆ωtn · · · eb0M tnej∆ωtn a01tne
b01tnej∆ωtn · · · a0M tne

b0M tnej∆ωtn

 (2.10)

let

D =



ej∆ωt1 0 0 0 · · · · · · 0

0 ej∆ωt2 0 0 · · · · · · 0

...
...

...
...

...
...

0 0 0 0 · · · · · · ej∆ωtn


then

Ā = A×D (2.11)
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Notice that the updated Ā can be represented as the original A multiplying by a diagonal

matrix with terms ej∆ωti . When we apply the updated Ā in (2.9),

tr
{

(ĀHĀ)−1
}

= tr
{

(DHAHAD)−1
}

= tr
{

(ADDHAH)−1
}

= tr
{

(AHA)−1
}

(2.12)

These two diagonal matrices multiplied together are identity. Therefore, the mean squared

error will not change with a global shift ∆ω and so does selection result. Thus in MRSI, the

echo-time selection is minimally affected by global frequency shifts due to field inhomogeneity.

Sometimes, the number of remaining echo-time values is required to be relatively large.

For EPI acquisition, if we only scan one k-space frame, corresponding to one echo-time value,

within one excitation, the total acquisition time will still be long. By exploiting multi-echo

EPI, one can acquire multiple k-space images within one excitation to further reduce the

acquisition time. The basic timing scheme of Multi-Echo EPI is shown in Figure 2.3. The

phase gradient Gy(t) is rewound to the original starting position after each k-space image to

ensure identical k-space trajectories for all echo-images. Furthermore, the adjacent echo-time

values used in one excitation should be just long enough to accommodate one k-space frame

acquisition so that scanning time is not wasted between k-space frames. The time difference

between adjacent echoes cannot be smaller than one k-space frame acquisition time, or the

k-space frames cannot be completely collected.

To achieve this purpose, we modify the selection algorithm. Instead of removing one

echo-time value at each elimination step, the modified algorithm removes multiple echo-time

values simultaneously. We consider candidate echo-time values for individual k-space frames

to be laid out uniformly in time as shown in Figure 2.4a. The square red dots represent

the elimination pattern, while the round black dots represent other time choices to which

the elimination array can be shifted. Figure 2.4b shows an example of elimination using a
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Figure 2.3: Basic multi-echo EPI sequence

periodic pattern to remove the least useful twelve echo-time points, four at a time. That

is to say: the red, green and blue frames are not collected in the acquisition process; only

black frames are actually acquired. In general, the selection algorithm allows the elimination

pattern to be arbitrarily spaced. However, if the elimination pattern is unequally spaced,

sometimes the remaining echo-time points cannot be efficiently used in multi-echo EPI.

Therefore, we restrict the elimination pattern to be equally spaced and the echo interval to

be a little longer than one k-space frame acquisition time. The MSE criterion for multi-echo

selection can be generalized as

tr{(ÃHÃ)−1} = tr{(AHA)−1}+ tr{
Rj(A

HA)−2RH
j

1−Rj(AHA)−1RH
j

} (2.13)
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Figure 2.4: (a) Elimination pattern (b) periodic nonuniform elimination

where Rj represents the jth combination of several rows in A, which corresponds to echo-time

values that might be removed simultaneously in one elimination step. The combination that

minimizes the term on the right is selected for elimination.

2.2 Phantom Experiment

2.2.1 Materials and Methods

Data from a 1H phantom intended to verify the selection algorithm was acquired on

a 4.7T 60cm-vertical-bore Varian primate MRI system (Varian Inc., Palo Alto, CA) at the

University of Alabama at Birmingham, courtesy of Prof. Donald B. Twieg. The phantom,

shown as Figure 2.5, was constructed from four cylindrical test tubes. One of them (right

upper corner) held a methanol and water mixture with a 1:1 volume ratio. The other three

tubes held ethanol and water mixtures with a 1:1 volume ratio. The four tubes were arranged

in a rectangular configuration and placed inside a larger glass cylinder filled with water.
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Figure 2.5: Phantom structure

Figure 2.6 shows spectra of the phantom obtained with a conventional phase-encoding

technique. Chemical shifts are relative to hydroxyl at 4.7T. In the methanol-water spectrum,

the methyl (CH3) peak is 298 Hz downfield from hydroxyl (OH), while the signal contribu-

tion of CH3 : OH ≈ 1 : 1.8. In the ethanol-water spectrum, the ethyl (CH2) peak is 241

Hz and the methyl peak is 728 Hz downfield from hydroxyl, while the signal contribution of

CH2 : CH3 : OH ≈ 2 : 3 : 7.5. These parameters are treated as prior information which is

used in the selection algorithm.

3-D MRSI data were observed by echo-planar imaging with a traditional bottom-up

uniform trajectory as shown in Figure 1.4b. 500 echoes separated by 0.3788ms were used in

the EPI acquisition (from 17.81ms to 206.83ms). These represent the distribution of echo

times available for optimal echo-time selection. Note that in practice only the optimized

echo-time EPI frames would be acquired, whereas here all EPI frames were acquired so that

different sampling patterns could be studied. In this work, the time required for one EPI
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Figure 2.6: 1H spectrum of methanol (upper plot) 1H spectrum of ethanol (lower plot)

frame acquisition is 32.77ms. Therefore, if we want to utilize multi-echo EPI, the adjacent k-

space images acquired within one excitation must have at least 32.77 ms echo-time difference.

In addition, the phase gradient needs some time to rewind to the original starting position

after each k-space image. Thus, we chose the elimination pattern with a 34 ms interval.

The spectral bandwidth was 2640Hz, and spatial resolution was 2mm×2mm with a 64×64

matrix.

Since the EPI technique is used in this work, each k-space frame cannot be collected

instantly. In other words, every k-space sample will have its own time delay even in the

same frame. Therefore, we cannot simply use fast Fourier Transforms to reconstruct the

images. Furthermore, an FFT cannot separate spatial information from different metabolite

resonances. Therefore, we use conjugate gradients (CG) to find the best matching parameters

of the images. (details are discussed in Chapter 4).
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(which is proportional
to MSE)

Here all programming used MATLAB running on a single core of a workstation equipped

with 2.4 GHz AMD Opteron 880 dual-core processors (@Xi Computer Corp).

2.2.2 Results

In order to compare the speed and accuracy of single/multi-echo algorithms, we use

both methods to eliminate echo-time values (from 500 available echoes). The multi-echo

algorithm removes four values at a time. Figure 2.7 shows how the error criteria vary with

the number of remaining echo-time values.

We observe that the single-echo selection has better MSE performance. However, the

MSE performance of the multi-echo selection is almost as good. In both cases, the MSE
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increases significantly when the number of remaining echo-time values is less than 48 but

increases slowly when the remaining number is greater than 80. Nyquist density is not neces-

sary for our selection technique. Because the remaining echoes are nonuniformly spaced and

we have prior information about the spectral peaks, the Nyquist criterion does not apply.

The selection time (average of 100 repetitions) comparison of the two selection methods is

shown in Table 2.1. For the same number of remaining echoes, the multi-echo selection is

much faster. In both selection processes, eliminating all but 32 echo times can be accom-

plished in less than 5 seconds. Even if real-time selection is necessary, the time required is

feasible for clinical applications. However, sufficient prior information may be available to

do the selection offline before the imaging session begins.

Table 2.1: Selection Time Comparison (s)

Number of remaining echo-time values 256 128 96 64 48 32
Single-echo selection time 3.0352 3.8885 4.0268 4.0325 4.0455 4.0657
Multi-echo selection time 0.4031 0.4990 0.5152 0.5248 0.5298 0.5354

Since MSE from the multi-echo technique is comparable to the single-echo techique and

it has advantages in the acquisition process, we used the multi-echo algorithm (eliminat-

ing echo-time values four at a time) to demonstrate the value of the selection technique.

Forty-eight out of five hundred echo-time values were selected for EPI acquisition, and these

collected EPI data were used for image reconstruction. For comparison purposes, images

reconstructed from 500 echoes were treated as ground truth. We also reconstructed images

from 48 out of 500 randomly selected echoes and 48 out of 500 equally spaced echoes.

Figure 2.8 shows reconstructed spatial details at different resonant frequencies. When

water mixes with ethanol or methanol, their hydroxyls exchange very quickly. Therefore, we

can treat all hydroxyls in the phantom as having the same resonant frequency. Hence, the

hydroxyl resonance should exist at every spatial location of the cylindrical container and four

tubes (Figure 2.8, first column). Only ethanol has an ethyl part; when the spatial distribution
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Figure 2.8: Spatial images reconstructed from 500 echo-time values (first row), 48 optimized
echo-time values (second row), 48 randomly selected echo-time values (third row), 48 equally
spaced echo-time values (fourth row). Each column from left to right represents spatial
distributions of: hydroxyl, ethyl, methyl of methanol, methyl of ethanol.
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of ethyl is shown, the resonant signals should only appear in the three ethanol tubes (Figure

2.8, second column). Both ethanol and methanol have a methyl part; however, the molecular

environments around the methyl are very different from each other. Consequently, there are

two resonances of methyl, one from ethanol and another one from methanol. In other words,

when the spatial distribution of methyl from methanol is shown, there should be no signals

in the ethanol tube (Figure 2.8, third column); when the spatial distribution of methyl

from ethanol is shown, there should be no signals in the methanol tube (Figure 2.8, fourth

column).

Figure 2.9 shows reconstructed spectra at different spatial locations. In the water-

ethanol tube, there should be three resonant peaks from hydroxyl, ethyl and methyl (Figure

2.9, upper plot); in the water-methanol tube, there should be two resonant peaks from

hydroxyl and methyl (Figure 2.9, middle plot); in the big glass cylinder filled with water,

there should be only one resonant peak from hydroxyl (Figure 2.9, lower plot).

As shown in the spatial and spectal reconstruction results, both multi-echo SBS and

full selection distinguished these four different resonances well. The spatial distribution

and spectra display good agreement between the full data set and the optimized echo-time

data set. In contrast, random selection and equally spaced selection yielded much greater

reconstruction errors and artifacts, and they did not separate different resonant frequencies

clearly.

2.3 Discussion

In this chapter, we presented a novel technique to accelerate the data acquisition in

MRSI. An efficient SBS method was developed to optimize the echo-time selection in the

context of multi-echo EPI. We analyzed the computation time and reconstruction MSE of

this selection algorithm and demonstrated its feasibility in MRSI acquisition. The phantom

experiments demonstrate that spatial maps of different resonances of interest can be sepa-

rated with a limited number of echo-time values if those echo times are chosen properly. In
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Figure 2.9: Spectra in the tube of water and ethanol mixture (upper plot), in the tube of
water and methanol mixture (middle plot), in the big glass cylinder of pure water (lower
plot). Each plot from lower left to upper right from: 500 echo-time values, 48 optimized
echo-time values, 48 randomly selected echo-time values, and 48 equally spaced echo-time
values. Plots are offset for easier viewing.
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addition, spatial maps of different spectra can also be reconstructed properly with a limited

number of echo-time values. In our experiments, the volume of acquired data for the opti-

mized selection was only 9.6% that of the full echo-time set. Thus, the proposed method

has great potential to reduce overall acquisition time for obtaining spatial maps of spectral

peaks of interest.

As mentioned in the Materials and Methods subsection, linearization is an important

step of the selection algorithm. If the prior values a0i, d0i, ω0i have the same values as un-

known signal parameters ai, di, ωi, (2.6) is equal to (2.5). Therefore, accuracy of the prior

information is a factor in the selection performance. In order to understand the impact of

each kind of parameter on the selection performance, we did separate tests with param-

eter offsets of magnitude, decay and frequency. Each study adheres to the following the

experiment flow, as shown in Figure 2.10. Using original parameters instead of estimated

parameters in the selection, the specific combination of selected echo-time values can be

totally different. However, that does not means the echo-time selection relying on the esti-

mated parameters is not good. A more reasonable way to evaluate the selection performance

is to examine how much the MSE increases if the parameters used in the selection process

vary from the true parameters. Thus, a selection is made with parameters that are per-

turbed from the true parameters, and the reconstruction MSE for that selection is evaluated

assuming the true parameters. Meanwhile, the reference MSE for the selection from the

true parameters is approximated using the linearized matrix equation around the true pa-

rameters, which is asymptotically accurate as noise variance decreases. Here we treat the

parameters reconstructed from 500 echo-time values as original values.

For each kind of parameter, we tested 10 offset ranges. For each offset range, we repeated

the experiment flow 1000 times with random offsets in that range to find the minimum,

maximum and average MSE increases. Figure 2.11 shows how the MSE increase was affected

by different parameter offsets. In Figure 2.11a, when estimated magnitudes are randomly

perturbed by a maximum offset of 10% of the original magnitudes, the minimum MSE
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Figure 2.10: Experiment flow: Parameter offsets affect the selection performance

increase is 0%, the maximum MSE increase is 0.2% and the average MSE increase within

10% offset range is 0.01%. Similarly, when estimated magnitudes are randomly perturbed

by a maximum of 15% to 50% from the original magnitudes, the maximum increase in MSE

goes from 0.25% to 4.3%. The average increase in MSE goes from 0.04% to 0.37%. In Figure

2.11b, when estimated decays are randomly perturbed by a maximum of 10% to 50% from

the original decays, the maximum increase in MSE goes from 0.7% to 9.3%, and the average

increase in MSE goes from 0.23% to 1.6%. In Figure 2.11c, when estimated frequencies are

randomly perturbed by a maximum of 1 to 10 Hz offset from the original frequencies, the

maximum increase in MSE goes from 0.2% to 23%, and the average increase in MSE goes

from 0.05% to 3.5%.

From these observations, errors in prior knowledge of magnitudes have the smallest

effect on echo-time selection performance. If the magnitude error is limited to 50%, the

MSE increase is less than 5%. Errors in prior knowledge of decay have a larger effect on
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Figure 2.11: MSE increase as a function of (a) magnitude offset (b) decay offset (c) frequency
offset
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echo-time selection. However, if we can keep the maximum decay error within 50%, the

MSE increase can be limited to 10%. Compared to the resonant frequencies themselves,

the frequency offset is relatively small. But the maximum MSE amplifies rapidly with the

increase of frequency offset. Therefore, frequency accuracy is the most critical factor in

echo-time selection. In practice, the chemical shifts of common metabolites used in MRSI

are well known. In addition, normally the local variations of the resonant frequencies change

very little, while frequency global shifts have no effect on the optimality of the echo-time

selection as shown in Section 2.1.2.

For the proposed method, the MSE decreases when the number of selected echoes in-

creases (Figure 2.7), which means the reconstruction quality improves with more data acqui-

sition. For equally spaced selection and random selection, however, this property is not true.

Figure 2.13 shows the MSE variation based on the number of remaining echo-time values.

All the parameters come from prior information. For these sampling methods, MSE does

not decrease monotonically when the number of echoes increases. In other words, equally

spaced selection and random selection cannot guarantee better reconstruction results with

more acquisition data. For the equal sampling pattern, we know that the frequency band-

with is the reciprocal of time resolution [24]. When the bandwidth is larger than any of

the frequency differences, which means the time resolution (the echo-time interval) is fine

enough, there will be no aliasing (Figure 2.12a ∆ω < bw1). However, once the difference

between two resonant frequencies is an integral multiple of the spectral bandwidth (Figure

2.12b ∆ω = 2bw2), reconstruction from equally spaced selection cannot separate resonant

peaks due to aliasing.

In our phantom experiment, the time difference between adjacent echoes for equally

spaced selection is 4.1668 ms and the spectral bandwidth is 239.9 Hz. The frequency differ-

ence between hydroxyl and ethyl is 241 Hz, and the frequency difference between hydroxyl

and methyl from ethanol is 487 Hz. Both differences are close to an integral multiple of

239.9 Hz, hence the reconstruction from equally spaced selection cannot separate these three
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Figure 2.12: Spectrum of equally-spaced selection (a) from a small echo-time interval (b)
from a large echo-time interval.

resonances properly. For random selection, the echo-time values are not optimized, and

the performance is-not surprisingly-random. Thus, random selection is not reliable for data

acquisition either.

In the selection procedure, a global frequency shift of resonannces has no effect on the

optimality of the selection. However, in the reconstruction procedure, large global shifts

must be compensated by a field map (This will be discussed in more detail in Chapter 5).

Otherwise, spectral peaks may be initialized too far from the correct values, resulting in a

failure to find these values due to local minima. Consequently, magnitudes and decays of

metabolite resonances will also be incorrect.

In conclusion, we have developed an efficient echo-time selection technique, which can

be easily implemented in MRSI acquisition. A lower-than-Nyquist density can be achieved

with the proposed method. It greatly reduces the data requirements (and thus acquisition

time) without sacrificing spatial and spectral accuracy in reconstruction.
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Figure 2.13: MSE as a function of the number of remaining echo-time values (a) with equally
spaced selection (b) with random selection
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Chapter 3

Alternative Optimal Data Acquisitions

In the previous chapter, we focused on selection techniques which choose the best echo-

time values for echo-planar imaging acquisitions, while keeping high-resolution of k-space

coverage. In fact, using EPI, a high-resolution k-space image cannot be acquired instantly

at a single echo time; instead EPI requires a relatively long readout time. Every k-space

sample has its own time delay even in the same k-space frame. Therefore, the echo-time

selection might be optimal for a subset of k-space data but may not be the best choice for

every k-space datum. Thus, in EPI, acquiring full coverage of k-space at each selected echo-

time is somewhat imprecise. In addition, we cannot simply ignore the time required to scan

each echo and use FFTs to reconstruct the images, because of this relative long acquisition

time for high-resolution k-space frames.

With these issues in mind, we introduce two alternative selection strategies: one is k-t

selection, which use the sequential backward selection in both k-space and time domains;

another one is echo-time selection that explicitly utilizes overlapped EPI, which can reduce

the acquisition time for each k-space image and allows the possibility of using FFTs to

shorten the reconstruction procedure.

3.1 Optimal k-t Selection

Unlike the echo-time selection method, the k-t selection algorithm considers the k-space

and time domain selection simultaneously. We try to choose the most useful k-t samples,

which are then acquired for image reconstruction.

As shown in Figure 3.1a, for standard echo-planar imaging, the k-space data are dis-

tributed uniformly in the ky direction. This is because the pulse blips in the Gy direction
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Figure 3.1: (a) Standard EPI with uniform k-space acquisition (b) Modified EPI with nonuni-
form k-space acquisition
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have the same amplitudes and durations, leading to equal spacing. Similarly, the k-space

data are also distributed uniformly in the kx direction. The reason is the pulses in the Gx

direction have the same amplitudes and durations. Here we can see that, for the same ky

value, the kx value can vary from −N/2 to N/2, which means the data acquisition in the kx

direction is much faster than in the ky direction. Therefore, we still maintain full coverage

in the kx direction and limit our k-t data selection only in ky-t domain.

If we change the pulse amplitude or duration of Gy, the sample density in the ky direction

changes. Normally, there is no data collection during the ky jump, so we keep the duration of

each pulse in the Gy direction short. When the pulse amplitude increases, the trajectory will

jump by a bigger step in the ky direction. When the pulse amplitude decreases, the trajectory

will shrink to a smaller jump in the ky direction. In consequence, the nonuniform k-space

frame can be acquired, as shown in Figure 3.1(b). Once the locations in the ky domain are

determined, the pulse sequence for Gy can be implemented in echo-planar imaging.

3.1.1 k-t Selection Theory

Figure 3.2 shows the main idea of k-t selection theory: all potential samples are supposed

to lie on a uniform grid (black dots) in both ky and t domains. And the red dots represent

the selected ky-t locations. As the figure shows, at some time points several ky samples

are selected, while at some time points no ky sample is chosen. Similarly, at different ky

locations, the number of selected time samples varies. On the other hand, at each selected

ky-t location, we still fully sample the kx dimension.

Similar to the echo-time selection, k-t selection also utilizes the sequential backward

selection algorithm. Consider a linear observation model in matrix notation:

ρ = Aq + e (3.1)
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Figure 3.2: ky-t data selection strategy

where ρ is a set of observations, q is the unknown vector of interest, A is the transformation

matrix and e represents zero-mean white Gaussian noise. Then the mean squared error in

the reconstruction is proportional to

E
{
‖q̂ − q‖2} = tr

{
(AHA)−1

}
(3.2)

This error criterion only depends on the transformation matrix A. Once we determine the

A matrix, the MSE is fixed and consequently the reconstruction quality of q is determined.

Since we fully sample the kx direction, an inverse FFT can be directly applied to the kx

direction to get x spatial information. Here we only consider ky in k-space and y in the

spatial domain. For most types of MRSI, a ky-t acquired image model can be described as:

ρ(ky, t) =
N∑
y=1

M∑
i

ai(y) exp {[−di(y) + jωi(y)]t} exp [−j2π(kyy)] (3.3)
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where M is the number of metabolite resonances contained in a voxel, N is the spatial

coverage in the y direction, and ai, ωi and di are the complex weight, resonant frequency

and decay rate of each resonance. In order to utilize the error criterion shown in (3.2), we

need to modify (3.3) and make it linear in the parameters of interest. After a linearized

approximation, (3.3) becomes:

ρ(ky, t) =
N∑
y=1

M∑
i=1

ai(y) exp [b0i(y)t] exp [−j2π(kyy)] + bi(y)ta0i(y) exp [b0i(y)t] exp [−j2π(kyy)]

− b0i(y)ta0i(y) exp [b0i(y)t] exp [−j2π(kyy)] + e(t) (3.4)

where bi = −di + ωi. ai and bi are unknown signal parameters, while a0i and b0i are known

from prior information. The noise term e(t) is zero-mean, white Gaussian noise. Equation

(3.4) can be rewritten in matrix format, as the unknown parameters q = [a1(y1), . . . , aM(y1), a1(y2), . . . ,

aM(y2), . . . , a1(yN),

. . . , aM(yN), b1(y1), . . . , bM(y1), b1(y2), . . . , bM(y2), . . . , b1(yN), . . . , bM(yN)]T . The transforma-

tion matrix is then given by

A =



P1:M,y1
(ky(1), t(1)) · · · P1:M,yN

(ky(1), t(1)) Q1:M,y1
(ky(1), t(1)) · · · Q1:M,yN

(ky(1), t(1))

P1:M,y1(ky(2), t(1)) · · · P1:M,yN
(ky(2), t(1)) Q1:M,y1(ky(2), t(1)) · · · Q1:M,yN

(ky(2), t(1))

...
...

...
...

...
...

P1:M,y1(ky(N), t(1)) · · · P1:M,yN
(ky(N), t(1)) Q1:M,y1(ky(N), t(1)) · · · Q1:M,yN

(ky(N), t(1))

...
...

...
...

...
...

...
...

...
...

...
...

P1:M,y1(ky(N), t(n)) · · · P1:M,yN
(ky(N), t(n)) Q1:M,y1(ky(N), t(n)) · · · Q1:M,NyN

(ky(N), t(n))


(3.5)
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where

P1:M,yl(ky(j), t(h)) = [eb01t(h)e−j2πky(j)×l, · · · , eb0M t(h)e−j2πky(j)×l]

Q1:M,yl(ky(j), t(h)) = [t(h)a01e
b01t(h)e−j2πky(j)×l, · · · , t(h)a0Me

b0M t(h)e−j2πky(j)×l]

At this point, A has two sets of variables, the choice of ky and t. Each row of A corresponds

to a specific (ky, t) sample. Hence, optimizing the combination of rows in A means selecting

the optimal combination of (ky, t) samples which determines the quality of the reconstructed

images. The MSE value is not merely a function of the number of rows remaining in A.

The specific choice of (ky, t) samples is more important than the number of samples that

are selected. Compared to individual echo-time selection, the transformation matrix is much

bigger in (ky, t) data selection. Thus, even using the sequential technique, the k-t selection

requires longer computation time. The good thing is, in many clinical applications, sufficient

prior information may be available to do the selection offline before the imaging session

begins.

In the selection procedure, we begin with all possible (ky, t) samples and evaluate all

possible choices of eliminating a single row from the current A, which corresponds to a specific

(ky, t) sample. Then the least important row, which causes the smallest MSE increase, will

be removed from A. This process is repeated until the desired number of (ky, t) samples

remain. Experiments shows that if there is no constraint in k-t selection procedure, the

remaining (ky, t) samples scatter in a seemingly random pattern.

3.1.2 k-t Selection with Constraint

As we mentioned at the beginning of this chapter, using EPI, the entire k-space cannot

be acquired instantly at a single echo time; every k-space sample has its own time delay

even in the same k-space frame. Therefore, we can modify our echo-time selection into the

ky-t domain in a more accurate way, as shown in Figure 3.3a. If time points 1, 9, 17 and 25
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Figure 3.3: Trajectory of (a) multi-echo EPI selection (b) k-t selection without constraint

are selected in echo-time selection, this implies that all samples along the four red lines are

chosen in k-t selection.

In Figure 3.3, we have 8×36 potential (ky, t) samples in total (black dots), and our goal

is to select the optimal 96 of them. Utilizing muti-echo time selection (acquiring 4 k-space

images in one shot), only three excitations are needed to acquire the 96 (ky, t) samples. If

non-constrained k-t selection is used, the acquired ky-t samples have no specific pattern as

shown in Figure 3.3b. At time point 1, five ky samples are selected (red dot, blue dot, green

dot, yellow dot and purple dot); at time point 2, three ky samples are selected; at time point

4, four ky samples are selected; at time point 6, two ky samples are selected; at time point

13, no ky sample is selected; and at time point 15, only one ky sample is selected. For one

excitation, we can only pick one ky sample at one time point. Therefore, we need at least

five excitations (shown as five color trajectories) to acquire 96 (ky, t) data. None of these

trajectories can collect a selected point at every available sample time, so the overall scheme
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is inefficient. For example, the red trjactory misses ky samples at time point 13 and point

25. Other color trajectories miss more ky samples during one excitation. Consequently, even

though this k-t selection can achieve smaller MSE with the same amount of data (details in

Experiment section) than echo-time selection, it still somewhat wastes acquisition time.

In order to avoid wasting acquisition time, we update the k-t selection technique with

a constraint. Assume the the potential range of the ky-t domain is m × n and the total

number of desired (ky, t) samples is N . In order to get fully efficient acquisition in one

excitation, at each time point one ky sample must be selected. Then q = N/n excitations

are needed to acquire the total N samples. Figure 3.4 shows an overview of the updated

method: (1) create an accumulator for each time point and set the initial value to zero; (2)

use the SBS technique to eleminate the least useful (ky, t) sample, which make the smallest

increment of MSE; (3) determine the time point (i) of the selected sample and increment

the ith accumulator by one; (4) compare the value of accumulator to (m− q), if it is smaller

than (m− q); then repeat Step 2 and 3; if it is larger than (m− q), shrink the potential k-t

selection range to exclude all samples at time point i; (5) repeat Steps 2, 3 and 4 until the

desired number of (ky, t) samples remain. Of course, the k-t selection with constraint has

less freedom in selection, but it greatly enhance the acquisition efficiency compared to the

original k-t selection method. More comparison details are shown in the experiment section.

3.2 Echo-Time Selection with Overlapped EPI

For the k-t selection with or without constraint, the pulse sequence design would be a

challenge, because it requires different k-space trajectories for each excitation. Hence, we

introduce another selection method: echo-time selection with overlapped EPI, which is still

a form of time domain selection and much easier in the pulse sequence design.

In EPI, every k-space sample has its own time delay within the same k-space frame.

A high-resolution k-space image (including many k-space samples) requires long scanning

time. Therefore, the original echo-time selection technique is somewhat imprecise because it

43



Set n accumulators [a1, a2, …, an]=0

U se SB S to eliminate the least

useful ( K y - t)  sample, w hich is at

time point i

 ai: =ai+ 1

U se SB S to eliminate the least

useful ( K y - t)  sample, but no more at

time point i

ai> ( m- q )

D etermine this ( K y - t)  sample located

at time point j

aj : =aj + 1

aj > ( m- q )

U se SB S to eliminate the least

useful ( K y - t)  sample, but no more at

time point i &  j

Stop until the desired number of samples remain

ai< ( m- q )

aj < ( m- q )

Figure 3.4: Flow of the updated method
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assumes full coverage of k-space at each selected echo-time. However, if we can acquire the

entire k-space in a negligible period, then the echo-time values we choose would be optimal

for more samples of the selected k-space frame.

For traditional echo-planar imaging, the observed data are distributed uniformly in the

whole k-space domain as shown in Figure 3.5a. TR1 is the total readout time for a whole

k-space image. If we want to decrease the readout time, we can simply reduce the resolution

either in the kx domain, ky domain or both. Since for the same ky value, the kx value varies

(data acquisition in the kx direction is much faster than in the ky direction), we here only

consider reducing the resolution in the ky direction.

When we double the pulse amplitude in the Gy direction shown in Figure 3.5b , the jump

size in the ky direction also doubles and the sample density in the ky direction becomes half

of the original one. Scanning the same k-space range, the total number of k-space samples

in this frame will be halved and the readout time, TR2, is consequently half of TR1. On

the other hand, in some clinical applications, especially in locating abnormal biochemistry

in specific tissues, high-resolution in k-space is very important. We want to shrink the

readout time but without sacrificing the spatial resolution. Hence, in the next excitation,

another half-resolution k-space image is acquired at the same echo-time as shown in 3.5c.

The only thing different between these two low-resolution k-space frames is the initial setup

of Gy: ∆GY 1 is larger than ∆GY 2, so there is an offset in the ky direction between the blue

trajectory and red trajectory. In consequence, we can combine these two images into one

with full k-space coverage, and the image readout time shrinks to half.

For one full-coverage k-space image, the orignal EPI requires one excitation and there is

one echo-time value to represent the whole k-space image with TR1 readout time; while the

overlapped EPI requires two excitations and also only one echo-time value to represent this

k-space image with smaller (TR2) readout time. That is, the original EPI is more efficient

in data acquisition, while the overlapped EPI is more accurate in echo selection.
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In order to increase the efficiency of overlapped EPI acquisition, we try to observe more

echoes during one excitation than in original EPI. For regular multi-echo EPI, as shown in

3.6a, four full-coverage k-space frames (four different echoes) are acquired in one excitation.

These four images are distributed equally in the time domain (= TR1) for high efficiency of

data acquisition. So we choose these four echoes as a set in the echo-time selection process.

During the next excitation, another set (four full-coverage) of k-space frames are acquired

with an optimal time shift, which is calculated in SBS echo-time selection. For overlapped

multi-echo EPI, as shown in 3.6b, eight half-coverage k-space frames (eight different echoes)

are acquired in one excitation. The time interval of these echoes is TR2 for data acquisition

efficiency. Here we choose these eight echoes as a set in the echo-time selection process.

During the next excitation, another eight half-coverage k-space frames are acquired using

the same echo time values.

For one excitation process, both selection methods acquire the same amount of k-space

data. For the same acqusition efficiency, regular EPI has more flexibility in choosing echo-

time values, while echo time values selected for the overlapped EPI are more accurate in

representing one k-space image. Because the k-space images acquired in overlapped EPI

have a shorter readout time, FFTs may be sufficient for reconstructing spatial information.

Similarly, if we want to reduce the readout time further for one k-space image, we can reduce

the resolution of ky more but with even less flexibility in echo-time selection.

3.3 Experiments and Comparisons

3.3.1 Materials and Methods

To compare the performance of different selection methods, 3-D MRSI data were ob-

served by conventional phase-encoding imaging. During one excitation, data is acquired

uniformly along the time domain at one k-space location at the red-dot line shown in Figure

3.7. For the next excitation, the pulse sequence changes the k-space location and rewinds

to the original time point to start acquiring data at the blue-dot line shown in Figure 3.7.
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Figure 3.6: (a) Traditional multi-echo EPI with uniform k-space acquisition for two excitation
(b) Modified multi-echo EPI with coarse ky resolutions for two excitation
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Figure 3.7: Data distribution of conventional phase-encoding imaging
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Consequently, after a number of excitations, at each time point, we can get a full k-space

image, in which the k-space date is distributed uniformly.

In our experiment, 1024 time points separated by 0.5ms and 64 uniformly located ky

samples acquired. These represent the distribution of (ky, t) samples available for optimal

selection. Note that the phase-encoding imaging utilized, which has uniform distribution in

ky and time domain, was used here for acquisition so that different sampling patterns could

be studied under the same experiment conditions. In practice echo planar imaging would be

used in the acquisition for all of these selection methods.

The 1H phantom was acquired in a 4.7T 60cm-vertical-bore Varian primate MRI sys-

tem (Varian Inc., Palo Alto, CA) at the University of Alabama at Birmingham. The phan-

tom, shown in Figure 3.8, was constructed from four cylindrical tubes. Three of them held

methanol and water mixture with a 1:4 volume ratio, while the other tube (left lower corner)

and the large glass cylinder were filled with pure water. Chemical shifts are relative to hy-

droxyl at 4.7T. In the methanol-water spectrum, the methyl (CH3) peak is 298Hz downfield

from hydroxyl (OH), while the signal contribution of CH3 : OH ≈ 1 : 6.2. These parame-

ters are treated as prior information, which is used in the selection algorithms. The spectral

bandwidth was 2000Hz, and spatial resolution was 2mm×2mm with a 64×64 matrix.

3.3.2 Results

Table 3.1: Selection Time(s) and MSE Comparison

Selection time MSE
k-t selection with constraint 7,565.4 8.8634

(3072 remaining (ky, t) samples out of 65,536)
k-t selection without constraint 13,565.4 8.2845

(3072 remaining (ky, t) samples out of 65,536)
Regular multi-echo time selection 4.413 11.3561

(48 remaining t samples out of 1024, eliminate 4 at a time)
Overlapped multi-echo time selection (eight frames in one excitation) 1.096 12.6538

(48 remaining t samples out of 1024, eliminate 8 at a time)
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Figure 3.8: Phantom structure

Table 3.1 shows the comparisons of the selection time and mean-square errors of four

selection methods mentioned in this chapter: k-t selection with constraint, k-t selection

without constraint, regular muti-echo time selection (eliminate four least informative echoes

at a time and at each of the remaining echoes, one full coverage k-space image is acquired)

and overlapped multi-echo time selection (eliminate eight least informative echoes at a time

and at each of the remaining echoes, two half coverage k-space image are acquired). The two

k-t selection methods retained 3072 (ky, t) samples out of 65,536, while the two echo-time

selections retained 48 time samples out of 1024.

As discussed in Section 3.1.2, to compare these selection methods in a more resonable

way, we should transfer the selection results from both echo-time selections to the k-t domain

as shown in Figure 3.3a. For instance, if 48 echo-time values remain in echo-time selection,

there should be 48×N (N is the resolution in ky domain, in this experiment N=64) samples

left after k-t selection. Therefore, 48 echo-time values and 3072 (ky, t) samples represent the

same amount of remaining k-space data.

Two echo-time selection methods have a much faster selection process than the two k-t

selection methods. This is because when we use the SBS algorithm to eliminate samples in

these methods, the transformation matrix A (see (2.7) and (3.5)) has very different sizes.
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Therefore, when we eliminate samples by calculating the MSE using tr
{

(AHA)
}

, the pro-

cessing time will be much different. The k-t selection without constraint has an even slower

selection process than the k-t selection with constraint. The reason is, for the k-t selection

with constraint, once all the desired number of samples have been eliminated at one time

point ti, we shrink the potential k-t selection range. This eliminates all samples at time

point i, which reduces the size of transformation matrix A faster.

The two k-t selection techinques have better MSE performance than the two echo-

time selections. The MSE of the two k-t selection methods are comparable and so is the

MSE of the two echo-time selection techniques. Nyquist density is not necessary for our

selection techniques. Because the remaining samples from these selection methods are all

nonuniformly spaced and we have prior information about the spectral peaks, the Nyquist

criterion does not apply.

Since MSE from k-t selection with constraint is comparable to k-t selection without

constraint and the constrained version has higher scanning efficiency in the acquisition pro-

cess, we used the k-t selection with constraint to demonstrate the value of the k-t selection

technique. 3072 out of 65,536 (ky, t) samples were selected for modified EPI acquisition, and

these collected EPI data were used for image reconstruction later. For regular muti-echo

selection, 48 out of 1024 echo-time values were selected for regular EPI acquisition (elimi-

nating echo-time values four at a time); for overlapped muti-echo selection, 48 out of 1024

echo-time values were selected for overlapped EPI acquisition (eliminating echo-time values

eight at a time). Of course, when the remaining echo-time values are determined, we also

need to transfer these echo-time values to (ky, t) samples to make the comparison fair. For

comparison purposes, images reconstructed from full k-space data were treated as ground

truth. We also reconstructed images from 48 out of 1024 equally spaced echoes.

Figure 3.9 shows reconstructed spatial details at different resonant frequencies using

different selection techniques. When water mixes with methanol, their hydroxyls exchange

very quickly. Therefore, we can treat all hydroxyls in the phantom as having the same
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Figure 3.9: Spatial images on the left picture are reconstructed from full k-space data (first
row), 3072 optimized (ky, t) samples out of 65,536 (second row), 48 optimized echo-time
values using regular echo-time selection (third row), 48 optimized echo-time values using
overlapped echo-time selection (fourth row). The first column represents spatial distributions
of hydroxyl; the second column represents spatial distributions of methyl. Spatial images
on the right picture are reconstructed from 48 equally spaced echo-time values. The upper
image represents spatial distribution of hydroxyl and the lower image represents spatial
distribution of methyl.
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resonant frequency. Hence, a hydroxyl resonance should exist at every spatial location of

the cylindrical container and four tubes (Figure 3.9, first column of the left picture and

the upper image of the right picture). Besides the hydroxyl part, methanol also has a

methyl part. When the spatial distribution of methyl is shown, the resonant signals should

only appear in the three methanol tubes: upper two tubes and right lower one (Figure 3.9,

second column of the left picture and the lower image of the right picture). We observed that

the images reconstructed from both full selection data and k-t selection data can distinguish

these two resonances very well. Both echo-time selection methods have good reconstruction

performance in hydroxyl images, although there are some small artifacts in the reconstructed

methyl images. In contrast, equally spaced selection yielded much greater reconstruction

errors and artifacts and it did not separate different resonant frequencies clearly.

Figure 3.10 shows reconstructed spectra at different spatial locations. In the big glass

cylinder and left lower tube filled with water, there should be only one resonant peak from

hydroxyl (Figure 3.10, left plot). However, the reconstructed spectra from the two echo-

time selection methods also have tiny spikes at methyl resonant frequency, which should not

appear. Clearly the spectra reconstructed from k-t selection displays better agreement with

the full data set than other selection methods. In the other three water-methanol tubes,

there should be two resonant peaks from hydroxyl and methyl (Figure 3.10, right plot). All

selection techniques except equally spaced echoes show good reconstruction results.

3.3.3 Conclusion

This chapter introduces two new data selection methods. Compared to the original echo-

time selection technique, each of them has advantages and limitations. k-t selection expands

the selection range from only the time domain to both k-space and time domains. It makes

the selection process more accurate, and the reconstructed images from selected samples

have better quality. However, the k-t selection technique has more demanding requirements

in pulse sequence design and requires longer computation time to select the most informative
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Figure 3.10: Spectra in the big glass cylinder and lower left tube full of pure water (left
plot), in the tubes of water and methanol mixture (right plot). Each plot from lower left to
upper right from: full data set, 3072 optimized (ky, t) samples out of 65,536, 48 optimized
echo-time values using regular echo-time selection, 48 optimized echo-time values using over-
lapped echo-time selection, and 48 equally spaced echo-time values. Plots are offset for easier
viewing.
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(k, t) samples. On the other hand, the echo-time selection using overlapped EPI can be easily

implemented in MSRI acquisition. The selection process can be done in seconds, so even if

real-time selection is necessary, the selection time is feasible for many applications. Another

advantage of overlapped echo-time selection is that the acquired k-space images has relative

short readout time. In this case, FFTs might be good for spatial reconstruction, which leads

to a much faster reconstruction procedure. From our experimental data, we can also observe

that the reconstruction quality is comparable to the original echo-time selection but is not

as good as the k-t selection method.

In summary, choosing the selection methods depends on the application demands. If the

application requires real-time selection, either the original echo-time selection or echo-time

selection with overlapped EPI would be good. In addition, if a fast reconstruction process

is desired, echo-time selection with overlapped EPI might be the best choice. In another

aspect, if sufficient prior information is available and selection offline before the imaging

session is acceptable, the k-t selection method would be preferred because it yields smaller

reconstruction errors and artifacts.
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Chapter 4

Fast Reconstruction for Nonlinear Model

In our research work, echo-planar imaging is used for image acquisition, which allows us

to obtain single/multiple k-space image(s) with one excitation. EPI models each datum as a

sample in the (k, t) domains rather than a non-time-varying k-space image. In other words,

every k-space datum has its own time delay (leading to local decay and phase variations) even

in the same frame. Therefore, fast Fourier Transforms (FFTs) directly used in k-space can

cause artifacts in the reconstruction. Additionally, for our proposed acquisition methods,

the observed k-space data are selected based on sequential backward selection algorithm

and normally are sampled nonuniformly in the time domain. Therefore, an FFT is not

appropriate to separate spectrum information from different metabolite resonances either.

In this chapter, we present a fast iterative reconstruction method by applying polynomial

approximations to the exponential time functionand and then utilizing FFTs to find the best

matching parameters of the images. Simulation and phantom experiments demonstrate that

our approach achieves satisfactory reconstruction quality while largely reducing computation

time.

4.1 Introduction to Iterative Reconstruction Method

As mentioned in Chapter 2, the observations of MRSI from echo-planar imaging can be

represented as

s(t) =

∫ ∫
ρ(x, y, t) exp {−j2π[kx(t)x+ ky(t)y]} dxdy (4.1)
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and the discrete version of (4.1) is given by

s(tn) =
∑
x

∑
y

ρ(x, y, tn) exp {−j2π[kx(tn)x+ ky(tn)y]} (4.2)

in which the time-dependent spatial distribution ρ(x, y, tn) is

ρ(x, y, tn) =
M∑
i=1

ai(x, y) exp {[−di(x, y) + jωi(x, y)]tn} (4.3)

where M is the number of metabolite resonances contained in a voxel, ai(x, y), di(x, y) and

ωi(x, y) are signal parameters we want to estimate from the observed signal s(tn) by solving

(4.2) and tn is the time point where we observe k-space data. From (4.2) and (4.3), one

can understand EPI observation in another way: Fourier Transforms are taken at each time

point tn for ρ(x, y, tn), and only one sample at [kx(tn), kx(tn)] in each k-space frame is selected

instead of the whole k-space image. Therefore, if the image size is N × N , for traditional

MRI, we only need to perform one FFT to get one k-space image, while in EPI we need N2

FFTs to get one k-space image.

For conventional phase-encoding MRSI, the spatial information ρ(x, y, tn) at each spe-

cific tn can be reconstructed by taking the inverse Fourier Transform of k-space at tn, because

the trajectory within one k-space frame observes a single static image at the same time. The

trajectory of EPI, however, samples the k-space of different spatial images that vary by an

exponential time function exp (−d+ jω)tn. Because the observation model is nonlinear in

the parameters of interest and does not have the direct structure of an FFT, an iterative

method is needed to reconstruct the spatial information.

Besides the spatial details, the spectral information is also important in spectroscopic

imaging. For conventional phase-encoding MRSI, after taking the inverse Fourier transform

of k-space at each tn, one can do another direct FFT at every (x,y) location along the time

domain to get the spectral information at each voxel. But for EPI acquisition with our

proposed acquisition methods, the observed data normally are sampled nonuniformly in the
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time domain and the average density is much lower that the Nyquist density. Therefore, one

also needs to use an iterative method to reconstruct the spectral information.

The most common way to solve this problem is to use an iterative technique to recon-

struct the image parameters (the spatial distribution a, the decay rate d and the resonant

frequency ω) instead of reconstructing spatial images and spectra. We propose to use an

iterative conjugate-gradients (GC) algorithm to minimize the cost function:

C(p) =
∑
tn

|stn − ŝtn(p)|2 (4.4)

with respect to p, where p represents the image parameters: a, d and ω. Here stn is the

observed data and ŝtn is the estimated data from (4.2).

The regular conjugate gradient algorithm used to reconstruct p is processed as follows

[12]:

1. Initialize p = p0

2. Calculate the gradients of parameters g0 = −∇pC(p0). If g0 = 0, stop, else set

Λp0 = −g0

3. Line search αk = arg minα≥0C(pk +αkΛpk). Find the optimal αk to minimize the cost

function with updated parameters (pk + αkΛpk)

4. Let pk+1 = pk + αkΛpk

5. Calculate the gradients of parameters gk+1 = −∇pC(pk+1). If gk+1 = 0, stop

6. βk =
(gk+1)T gk+1

(gk)T gk

7. Set Λpk+1 = −gk+1 + βkΛpk

8. Let k = k + 1; repeat from Step 3 to Step 8
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In this procedure, Step 3 to Step 8 need to repeat as many times to achieve the optimal

results. The line search calculation in Step 3 and gradients calculation in Step 5 are the two

main computational parts of the operation.

4.1.1 Parameter Gradient

The computation of parameter gradients ∇pC includes three parts: ∂C/∂a, ∂C/∂d and

∂C/∂ω.

C(p) =
∑
tn

|stn − ŝtn(p)|2

=
∑
tn

[ŝtn(p)− stn ][ŝtn(p)− stn ]∗

∂C

∂a
=
∑
tn

∂ŝtn
∂a

[ŝtn(p)− stn ]∗ + [ŝtn(p)− stn ]
∂(ŝtn)∗

∂a
(4.5)

Let ftn = [ŝtn(p)− stn ]∗. Combine with (4.2) plus (4.3), (4.5) can be modified as

∂C

∂a
=
∑
tn

[
∂ŝtn
∂a

ftn + f ∗tn
∂(ŝtn)∗

∂a
]

= 2Re{
∑
tn

∂ŝtn
∂a

ftn}

= 2Re

{∑
tn

e(−d+jω)tne−j2π[kx(tn)x+ky(tn)y]ftn

}
(4.6)
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Similarly, the other two types of gradients can be represented as

∂C

∂d
= 2Re{

∑
tn

∂ŝtn
∂d

ftn}

= 2Re

{∑
tn

ae(−d+jω)tn × (−tn)× e−j2π[kx(tn)x+ky(tn)y]ftn

}
(4.7)

∂C

∂ω
= 2Re{

∑
tn

∂ŝtn
∂ω

ftn}

= 2Re

{∑
tn

ae(−d+jω)tn × (jtn)× e−j2π[kx(tn)x+ky(tn)y]ftn

}
(4.8)

For ith resonance at (x,y) spatial location, these parameter gradients are described as

∂C

∂ai(x, y)
= 2Re

{∑
tn

e[−di(x,y)+jωi(x,y)]tne−j2π[kx(tn)x+ky(tn)y]ftn

}
(4.9)

∂C

∂di(x, y)
= 2Re

{∑
tn

ai(x, y)e[−di(x,y)+jωi(x,y)]tn × (−tn)× e−j2π[kx(tn)x+ky(tn)y]ftn

}
(4.10)

∂C

∂ωi(x, y)
= 2Re

{∑
tn

ai(x, y)e[−di(x,y)+jωi(x,y)]tn × (jtn)× e−j2π[kx(tn)x+ky(tn)y]ftn

}
(4.11)

4.1.2 Line Search

Line search is another critical step in the conjugate gradient method. After we calculate

the gradients of parameters g and determine the directions of parameter optimization Λp,

we need to figure out how large the adjustable step size α should be to minimize the error

cost (4.4) at the current iteration. Exhaustive search for the optimal α is inefficient because

we may need to try a large number of different α values and for each α value we try, we

need to update the parameters and reevaluate (4.4), which is computationally intensive.

Therefore, we desire to restrict the number of α values that we evaluate to minimize the cost

function C. We numerically analyzed the function of C(α) and found that the cost function

along α is a quadratic-like shape and the quadratic approximation can be used to reduce the

computational complexity of the line search.
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An overview of the quadratic approximation is described as follows (here “C0” represents

the value of the cost function when α = 0):

1. Initialize α = α1 and update parameters as p1 = p + α1Λp.

2. Evaluate the cost function C1 as shown in (4.4) with the updated parameters p1.

3. Update parameters as p2 = p + 2α1Λp, and evaluate the cost function C2 based on

updated parameters p2.

4. If C0 ≥ C1 and C2 > C1 , go to Step 7; else continue to the next step.

5. If C0 ≤ C1, set α = 0.5α1 and C2 = C1; update p1 = p + 0.5α1Λp; evaluate the cost

function C1 with the updated parameters p1; and then go back to Step 4. Otherwise

continue to the next step.

6. If C0 > C1 and C1 > C2, set α = 2α1 and C1 = C2; update p2 = p + 2 × 2α1Λp;

evaluate the cost function C2 with the updated parameters p2; and then go back to

Step 4. Otherwise stop with an error sign.

7. Approximate the cost function C as a quadratic function as C(α) = hα2 + kα + l.

8. Utilize C(0) = C0, C(α) = C1 and C(2α) = C2 to find the values of h, k and l.

9. Calculate αmin = −k/2h.

Figure 4.1 shows the cost function varying with different α values. We can see the

original line search is very close to a quadratic approximation over the range of interest.

At A (α = 0), B(α = 4 × 10−7) and C(α = 8 × 10−7) points, the two cost lines have

intersections and these three points are used to create the quadratic shape and determine

the αmin used in the current iteration. In theory, any three points on the C(α) function

can determine a quadratic waveform shape. However, different points chosen from C(α)

function will lead to a different quadratic approximation. Based on our numerical analysis,
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Figure 4.1: Original vs. quadratic approximation of line search

62



Figure 4.2: Quadratic approximation of line search based on different intersections
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we notice that if C point is lower than B point and B point is lower than A point (Figure

4.2, upper plot), or if C point is higher than B point and B point is higher than A point

(Figure 4.2, lower plot), the quadratic approximation is not that close to the original line

search. Therefore, in our line search process, we change the α values to make A and C

points higher than B point (try to make the B point close to the bottom of the original line

search function) and then use the quadratic approximation to find the αmin. Furthermore,

in order to make this procedure more reliable, the value of C(p+αminΛp) will be compared

to C(p). If C(p + αminΛp) > C(p), it means the cost function along α is not quadratic-like

in the current α searching range, and we need a full line search to be performed to find the

minimizer.

In Chapter 2 and Chapter 3, we used the conjugate gradients algorithm as described

above to reconstruct parameters from EPI acquisitions, and we found some drawbacks with

this technique:

• Directly evaluating C(p) in the line search is computationally intensive.

• Directly evaluating ∇pC(p) is computationally intensive.

• The speed of convergence to optimal parameters is relatively slow.

All of these problems lead to long reconstruction time. Therefore, we propose to develop an

efficient parameter-fitting algorithm that approximates the exponential time function as a

polynomial model and utilizes FFTs to accelerate the reconstruction procedure.

4.2 Fast Reconstruction Algorithm

Examining (4.2), (4.4), (4.6), (4.7) and (4.8), we notice that both data evaluations in

the line search and gradient calculations include a exp[−2π(kxx+ kyy)] term, which is very

similar to the form of a Fourier Transform. The reason we can not directly use FFTs in these

equations is the exponential time function exp (−d + jω)tn. Unlike conventional MRI, which

samples the k-space of a static image, EPI samples the k-space of different images that are
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related by this exponential time function. Therefore, if we can utilize some approximations

in the reconstruction model and replace the direct calculation of exp[−2π(kxx + kyy)] by

FFTs, the iteration process should accelerate.

4.2.1 Reconstruction Model Directly Utilizing FFTs

In the previous chapters, we presented several acquisition methods for MRSI. All of

them utilized EPI to shorten the acquisition duration. Echo-time selection methods use

standard EPI, and the observed data is uniformly sampled in k-space while nonuniformly in

the time domain. For k-t selection, a modified EPI technique is used and the observed data

is only uniformly sampled in kx direction while nonuniformly sampled in the (ky, t) domain.

In addition, no matter which EPI techniques we use, the data acquisition in the kx direction

is very fast. For instance, in the phantom experiment of Chapter 2, the time needed to

acquire a single kx line is only 0.5 ms. Therefore, in order to speed up the reconstruction

process, we can ignore the time difference among the data in the same kx line and use FFTs

directly in the kx direction.

The standard discrete observation model of MRSI from echo-planar imaging can be

represented as

s(tn) =
∑
x

∑
y

M∑
i=1

ai(x, y) exp {[−di(x, y) + jωi(x, y)]tn} exp {−j2π[kx(tn)x+ ky(tn)y]}

(4.12)

After FFTs in the kx direction, the data used for reconstruction is given by

s(xk, tn) =
∑
y

M∑
i=1

ai(xk, y) exp {[−di(xk, y) + jωi(xk, y)]tn} exp[−j2πky(tn)y] (4.13)

In consequence, when we use the same iterative conjugate-gradient idea mentioned in the

first section, the parameter gradients (4.5), (4.5) and (4.8) can be updated as
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∂C

∂a
= 2Re

{∑
tn

e(−d+jω)tne−j2πky(tn)yftn

}
(4.14)

∂C

∂d
= 2Re

{∑
tn

ae(−d+jω)tn × (−tn)× e−j2πky(tn)yftn

}
(4.15)

∂C

∂ω
= 2Re

{∑
tn

ae(−d+jω)tn × (jtn)× e−j2πky(tn)yftn

}
(4.16)

Notice here, the reconstruction problem becomes parameter fitting at one x location (xk),

which means we need to repeat this iterative process at every x location. The parameters

a, b and ω have no information in the x direction; they only vary with y location and

different resonance i. After the whole iterative process, we combine the parameter set for

each x location to get the full parameter package. Even though we need to repeat the iterative

process at each (x) location, the calculation time still decreases significantly. This is because,

during each iteration, the sizes of calculation matrices in (4.13), (4.14), (4.15) and (4.16)

shrink considerably, which is the main factor contributing to computational complexity.

Recall that echo-time selection used overlapped EPI, the data acquisition for one k-space

is relative fast and the k-space data is observed uniformly. So we may further accelerate

the reconstruction process by using FFTs in both kx and ky domains. Consequently, the

reconstruction problem becomes parameter fitting at each (x, y) location. The parameter

gradients (4.5), (4.5) and (4.8) can be updated as

∂C

∂a
= 2Re

{∑
tn

e(−d+jω)tnftn

}
(4.17)

∂C

∂d
= 2Re

{∑
tn

ae(−d+jω)tn × (−tn)× ftn

}
(4.18)

∂C

∂ω
= 2Re

{∑
tn

ae(−d+jω)tn × (jtn)× ftn

}
(4.19)
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and s(tn) =
∑M

i=1 ai exp {[−di + jωi]tn} used in line search calculations. The parameters a,

b and ω have no information in the (x, y) direction; they only vary with different resonance

i. To get the full parameter package, we need to repeat the iterative process at every (x, y)

location.

Sometimes, because the values of resonant frequency and decay rate are very large,

even if the time difference are very small, the local decay and phase difference are still big.

Therefore, ignoring the time differences in k-space may not be accurate enough, and we need

to find a more accurate way to approximate the reconstruction model.

4.2.2 Reconstruction model based on polynomial approximations

As we discussed in the previous sections, because of the exponential time function

exp (−d + jω)tn, directly using FFTs in the gradient calculation and data evaluation in line

search is sometimes not accurate enough. If we can separate the time variable tn from decay

rate d and resonant frequency ω, then a combination of FFTs can be used to speed up the

reconstruction process.

Tang and Reeves [25] proposed a polynomial approximation to separate desired image

parameters and time in the exponential function. However, this method is limited to func-

tional MRI with the SS-PARSE technique (Single-shot parameter assessment by retrieval

from signal encoding). Unlike MRSI, functional MRI only includes one k-space image and

only cares about one resonant frequency from water. Therefore, based on their methods, we

develop a more general approximation algorithm for MRSI, which can accommodate more

k-space images and more resonances.

The common polynomial approximation of the exponential function is a Taylor series

as shown below:

ept =
∞∑
n=0

(pt)n

n!
(4.20)
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However, in order to get an acceptable approximation result, the number of the polynomial

terms must be very large. Although we can separate the p and t, we still need to calculate

FFTs many times, which means the Taylor approximation does not solve the problem of

computational complexity.

In the EPI technique, the acquisition time needed for one k-space image is relatively

short (dozens of microseconds level). It is reasonable to assume that the exp[(−d + jω)t]

term is bounded within a limited small range. Here t represents the time points within one

k-space frame. Based on this assumption, one can approximate the exponential function

with limited polynomials and find the coefficients in a least squares sense. Equation (4.20)

can be updated as

ept = cLp
LtL + cL−1p

L−1tL−1 + . . .+ c1pt+ c0 (4.21)

where ci is the polynomial coefficient for ascending powers and these coefficients are fixed

through the whole reconstruction process, not varying with time. The coefficients we look

for need to provide a good approximation for a range of pt values, not just a single pt value.

In other words, within a bounded range, no matter how p or t changes, each exp(pt) must

be expressed with the same set of polynomial coefficients. The coefficient estimation process

can be written in matrix form, if the length of vector pt is N

argminc

∥∥ept −PTc
∥∥2

(4.22)

where

PT =



(pt1)0 (pt1)1 (pt1)2 · · · (pt1)L

(pt2)0 (pt2)1 (pt2)2 · · · (pt2)L

...
...

...
...

...

(ptN)0 (ptN)1 (ptN)2 · · · (ptN)L


(4.23)
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Figure 4.3: Original exponential function vs. polynomial approximation

Figure 4.3 shows the precision of the polynomial approximation (order 17) for the ex-

ponential time function exp(pt), where Re(p) varies within [−10, 0], Im(p) varies within

[−80π, 0] and t varies within [0, 0.033].

Figure 4.4 shows the mean squared error (MSE) between the original exponential func-

tion (ept, where p = −10+j80π and t ∈ [0.0.033]) and the polynomial approximation varying

with the polynomial orders.

MSEL =
∑
t

∣∣∣∣∣ept −
L∑
l=0

clp
ltl

∣∣∣∣∣
2

69



10 11 12 13 14 15 16 17 18 19 20
10

−25

10
−20

10
−15

10
−10

10
−5

Order Number (L)

M
ea

n 
S

qu
ar

ed
 E

rr
or

Figure 4.4: Absolute error varies with polynomial order

70



Apply the polynomial approximation to our exponential term exp[(−d(x, y)+jω(x, y))tn]

e[−d(x,y)+jω(x,y)]tn = e[−d(x,y)+jω0+jω1(x,y)]tn

= ejω0tne[−d(x,y)+jω1(x,y)]tn

= ejω0tne[−d(x,y)+jω1(x,y)]TEme[−d(x,y)+jω1(x,y)](tn−TEm)

= ejω0tne[−d(x,y)+jω1(x,y)]TEm
∑
l

cl[−d(x, y) + jω1(x, y)]l(tn − TEm)l (4.24)

where TEm is the echo-time (the time center) of the mth EPI frame. In this approximation,

we make ω(x, y) = ω0 + ω1(x, y) and ω0 does not vary with spatial location (x, y). In our

research, we assume that we know what kinds of resonances exist in our subject, so we can

start our evaluation with the ideal resonant frequency of that resonance. For example, if

we know the resonance is water, ω0 here is equal to 0 Hz. Even if some spatial have no

water resonance, we still let ω0 = 0 everywhere while the magnitude of water resonance at

these locations is 0. The term ω1(x, y), which is caused by field inhomogeneity and noise,

can vary at different spatial locations. If there is more than one resonance in one voxel,

there is a different ideal resonant frequency ω0i for each resonance. And let pi(x, y) =

−di(x, y) + jω1i(x, y) for each resonance, the observed MRSI data (4.12) can be represented

as

s(tm) =
∑
x

∑
y

∑
i

ai(x, y)ejw0itmepi(x,y)tme−j2π[kx(tm)x+ky(tm)y]

=
∑
x

∑
y

∑
i

ai(x, y)ejw0itmepi(x,y)TEmepi(x,y)(tm−TEm)e−j2π[kx(tm)x+ky(tm)y]

=
∑
x

∑
y

∑
i

ai(x, y)ejw0itmepi(x,y)TEm
∑
l

clp
l
i(x, y)(tm − TEm)le−j2π[kx(tm)x+ky(tm)y]

(4.25)

=
∑
i

ejw0itm
∑
l

cl(tm − TEm)l
∑
x

∑
y

ai(x, y)epi(x,y)TEmpli(x, y)e−j2π[kx(tm)x+ky(tm)y]

(4.26)
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where tm presents the time point in the mth k-space frame. If one wants to approximate the

observed data in the (m+1)th k-space image, echo-time value TE needs to be changed to

TEm+1. On the other hand, for observed data at different k-space frames, we still only need

to do a polynomial approximation once to get a set of cl. This is because for different m

values, the time variance (tm−TEm) is bounded within the same small range (as in Chapter

2 phantom experiment, this time range is [-16ms 16ms]). In consequence, exp[pi(x, y)(tm −

TEm] can be approximated by the same set of cl. Similarly, for observed data of different

resonance i, the same set of cl are used. The reason is the value of (tm− TEm) is very small

(dozens of microseconds level), even though the pi(x, y) varies with i (pi(x, y) = −di(x, y) +

jω1i(x, y) and nomally di(x, y) is no larger than 50 and |ω1i(x, y)| is no larger than 150π),

the multiplication of [pi(x, y)× (tm − TEm)] is still bounded within a limited small range.

Let Bil−m(x, y) = ai(x, y)epi(x,y)TEmpli(x, y). Then (4.26) can be simplified as

s(tm) =
∑
i

ejw0itm
∑
l

cl(tm − TEm)l
∑
x

∑
y

Bil−m(x, y)e−j2π[kx(tm)x+ky(tm)y] (4.27)

We can calculate the inside term
∑

x

∑
y Bil−m(x, y)ej[kx(tm)x+ky(tm)y] of (4.27) with a 2D

FFT, and the observed data s(tm) can be approximated with a linear combination of a

relatively small number of FFTs.

s(tm) =
∑
i

ejw0itm
∑
l

cl(tm − TEm)lB̃il−m[k(tm)] (4.28)

where B̃il−m[k(tm)] is the Fourier transforms of Bil−m(x, y). Similarly, for the gradient

calculation (4.9), (4.10) and (4.11) can be approximated as

∂C

∂ai(x, y)
= 2Re

{∑
t

e[−di(x,y)+jωi(x,y)]te−j2π[kx(t)x+ky(t)y]ft

}

= 2Re

{∑
m

∑
tm

ejω0itmepi(x,y)tme−j2π[kx(tm)x+ky(tm)y]ftm

}
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Here
∑

tm
represents adding all observed time points in the mth k-space frame, while

∑
m

represents adding all observed k-space frames.

∂C

∂ai(x, y)

= 2Re

{∑
m

∑
tm

ejω0itmepi(x,y)TEmepi(x,y)(tm−TEm)e−j2π[kx(tm)x+ky(tm)y]ftm

}

= 2Re

{∑
m

∑
tm

ejω0itmepi(x,y)TEm
∑
l

clpi(x, y)l(tm − TEm)le−j2π[kx(tm)x+ky(tm)y]ftm

}

= 2Re

{∑
l

clpi(x, y)l
∑
m

epi(x,y)TEm
∑
tm

ejω0itm(tm − TEm)le−j2π[kx(tm)x+ky(tm)y]ftm

}
(4.29)

∂C

∂di(x, y)

= 2Re

{
ai(x, y)

∑
l

clpi(x, y)l
∑
m

epi(x,y)TEm
∑
tm

ejω0itm(tm − TEm)le−j2π[kx(tm)x+ky(tm)y](−tm)ftm

}
(4.30)

∂C

∂ωi(x, y)

= 2Re

{
ai(x, y)

∑
l

clpi(x, y)l
∑
m

epi(x,y)TEm
∑
tm

ejω0itm(tm − TEm)le−j2π[kx(tm)x+ky(tm)y](jtm)ftm

}
(4.31)

The inside summations
∑

tm
of (4.29), (4.30) and (4.31) can also be evaluated by FFTs.

Therefore, the gradient calculations can be approximated with a linear combination of a

relatively small number of FFTs. One thing we need to pay attention to: when FFTs are

utilized, uniformly sampling in k-space is required. Therefore, k-t selection samples may not

compatible with this polynomial approximation.
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In this reconstruction protocol, even though an extra polynomial approximation step is

added to the reconstruction process, the utilization of the FFTs and the reduction of the ma-

trix size in the calculations give this algorithm high potential to accelerate the reconstruction

speed.

4.3 Experiment

Simulation and phantom experiments are presented in this section to validate the poly-

nomial approximations used in the reconstruction process. Both simulation data and phan-

tom data were acquired by the EPI technique. 500 echoes separated by 0.3788 ms were used

in the EPI acquisition (from 17.81ms to 206.83ms). Utilizing SBS selection method, 48 out of

500 echo-time values were selected (48 k-space images) for the reconstruction procedure. For

comparison, we used regular conjugate gradients, modified conjugate gradients (direct FFTs

in kx direction) and polynomial approximation (order number=17) to reconstruct the spatial

information. There are four different resonances: hydroxyl, ethyl, methyl from methanol and

methyl from ethanol. The spectral bandwidth was 2640 Hz, and spatial resolution was 2

mm×2 mm with a 64× 64 matrix.

4.3.1 Simulation experiment

We evaluated the performance of different reconstruction techniques with a set of noisy

simulation data. The first column of Figure 4.5 shows the true spatial distributions at

different resonant frequencies (0Hz-hydroxyl, 241Hz-ethyl, 298Hz-methyl from methanol and

728Hz-methyl from ethanol). This information is used to synthesize the decaying k-space

images. We added 20 dB SNR white Gaussian noise to the synthesized k-space data and

reconstructed the spatial information from these noisy data. The estimated parameters (a,d)

we started with had 30% offset from the original ones and the estimated resonant frequencies

started with ±5 Hz offset.
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Figure 4.5 shows reconstructed spatial details at different resonant frequencies. The

reconstruction results from both regular conjugate gradient methods and polynomial ap-

proximation display good agreement with the original spatial distributions.

The MSEPCT s (mean squared errors in %) of the reconstructed parameters are listed in

Table 4.1, 4.2 and 4.3.

MSEPCT =

∑
x,y |p(x, y)− p̂(x, y)|2∑

x,y |p(x, y)|2
× 100%

Table 4.1: MSEPCT of reconstructed magnitude (%)

hydroxyl ethyl methyl of methanol methyl of ethanol
ordinary CG 3.72 13.73 15.90 7.56

polynomial approx 4.09 14.35 17.08 8.23
modified CG 5.36 18.89 22.49 10.25

Table 4.2: MSEPCT of reconstructed decay (%)

hydroxyl ethyl methyl of methanol methyl of ethanol
ordinary CG 0.86 14.90 11.63 3.48
modified CG 0.93 15.44 12.34 3.75

polynomial approx 0.98 21.57 15.45 5.63

Table 4.3: MSEPCT of reconstructed frequnecy (%)

hydroxyl ethyl methyl of methanol methyl of ethanol
ordinary CG 5.3957e-02 7.8051e-03 5.5608e-03 6.6698e-04
modified CG 5.5441e-02 7.8223e-03 5.7638e-03 6.6895e-04

polynomial approx 5.7344e-02 8.9078e-03 6.4547e-03 8.4903e-04

All of the reconstructions were implemented in MATLAB running on a single core of a

workstation equipped with 2.4 GHz AMD Opteron 880 dual-core processors (@Xi Computer

Corp). We compared their computation time for 100 iterations, shown in Table 4.4. One

can see that using polynomial approximation in the reconstruction procedure, we can greatly

shortens the calculation time without sacrificing the reconstruction quality. For the modified
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Figure 4.5: Original simulated spatial images (first row), spatial images reconstructed from
48 optimized echo-time values with regular conjugate gradient method (second row), spatial
images reconstructed from 48 optimized echo-time values with polynomial approximation
method (third row), spatial images reconstructed from 48 optimized echo-time values with
modified conjugate gradient method (fourth row). Each column from left to right represents
spatial distributions of: hydroxyl, ethyl, methyl of methanol, methyl of ethanol.

76



conjugate gradient method (direct FFTs in kx direction), the reconstruction can also be

accelerated and the reconstruction results are also acceptable, though not as good as the

regular conjugate gradient method or polynomial approximation technique.

Table 4.4: Comparison of reconstruction time for 100 iterations (s)

ordinary CG modified CG polynomial approx
189.62k 16.23k 3.87k

4.3.2 Phantom Experiment

The phantom data we used to demonstrate the value of the reconstruction techniques

is the same set used in Chapter 2 phantom experiment. For comparison purposes, images

reconstructed from 500 echoes with the regular conjugate gradient method were treated as

ground truth.

The reconstructed spatial results of the phantom experiment are compared in Figure 4.6.

We observed that the images reconstructed from 48 optimized echo-time values with both the

regular conjugate gradient method and polynomial approximation can distinguish different

resonances very well. The reconstructed spatial distributions from these two methods yield

good agreement with the ground truth. In contrast, the modified conjugate gradient method

(direct FFTs in kx direction) also held acceptable reconstruction performance but there were

some small artifacts, especially in the x direction.

4.3.3 Conclusion

In this chapter, we focus on how to reduce the computational complexity to accelerate

the reconstruction procedure of MRSI using the EPI technique. Sometimes, FFTs can be

directly used in the reconstruction. In our case, we applied FFTs directly in the kx domain

to obtain x direction information because the acquisition time in the kx direction is short

enough to ignore. However, in many practical situations, this kind of approach may not be
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Figure 4.6: Spatial images reconstructed from full k-space data with regular conjugate gra-
dient method (first row), spatial images reconstructed from 48 optimized echo-time values
with regular conjugate gradient method (second row), spatial images reconstructed from
48 optimized echo-time values with polynomial approximation method (third row), spatial
images reconstructed from 48 optimized echo-time values with modified conjugate gradient
method (fourth row). Each column from left to right represents spatial distributions of:
hydroxyl, ethyl, methyl of methanol, methyl of ethanol.
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accurate enough and the reconstruction time is still relatively long. We present a polynomial

approximation used for the time exponential function in the observed MRSI model. In this

case a linear combination of FFTs can be applied to reduce the computational complexity.

Simulation and phantom experiments show that this method can greatly reduce the recon-

struction time, and there is no significant difference in reconstructed results compared to

the regular conjugate gradient reconstruction method. However, this polynomial approxi-

mation requires the observed data to be distributed uniformly in k-space; therefore, if the

data is acquired by the k − t selection method, we cannot use the polynomial approach to

accelerate the reconstruction process. For future work, we intend to develop a more flexible

reconstruction algorithm that can accommodate more acquisition strategies and handle more

parameter offsets.
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Chapter 5

Optimization Techniques to Attenuate Frequency Local Minima Effect

In MRSI, many reconstruction problems can be posed as image parameter estimation

from a sequence of discrete, finite measurements. Unfortunately, frequency local minima are

a common practical problem when signal model-fitting procedures are implemented. Con-

ventional, gradient-based optimization methods such as steepest descent, Newton’s method

and conjugate gradients are subject to frequency local minima. As a result, convergence to

the global minimum is not guaranteed. What is worse, if the estimated frequency is not

correct, the estimated signal amplitude and decay rate will be inaccurate.

5.1 Origins of Local Minima

Many signals used in MRSI are decaying sinusoids (cosines). Thus we only consider an

exponential signal model defined by amplitude, decay rate and frequency in our work:

x(t) = ae(−d+jω)t + ε(t) (5.1)

where x(t) is the observed signal; a, d and ω are unknown signal parameters which need to

be estimated; and ε(t) represents zero-mean, independent, identically distributed Gaussian

noise. To understand the cause of local minima in the parameter fitting procedure, consider

a simple cost function with one resonant peak in 1-D:

∫ T

0

∣∣ae(−d+jω)t − a0e
(−d0+jω0)t

∣∣2 dt (5.2)
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Here a0, d0 and ω0 are original signal parameters; and T is the observed signal length. Let

ω̃ = ω − ω0 and utilize ejφ = cos(φ) + j sin(φ), cos(φ) = (ejφ+e−jφ)
2

and
∣∣ejφ∣∣ = 1. Then (5.2)

can be updated as

∫ T

0

∣∣ejω0t
∣∣ ∣∣ae−dtejω̃t − a0e

−d0t
∣∣2 dt

=

∫ T

0

∣∣ae−dt(cos ω̃t+ j sin ω̃t)− a0e
−d0t
∣∣2 dt

=

∫ T

0

∣∣(ae−dt cos ω̃t− a0e
−d0t) + jae−dt sin ω̃t

∣∣2 dt
=

∫ T

0

(a2e−2dt + a2
0e
−2d0t)dt−

∫ T

0

2aa0e
−(d+d0)tcosω̃tdt (5.3)

=

∫ T

0

(a2e−2dt + a2
0e
−2d0t)dt− aa0

∫ T

0

e−(d+d0)te−jω̃tdt− aa0

∫ T

0

e−(d+d0)tejω̃tdt (5.4)

We notice that the second and third terms of (5.4) are very similar to the form of a Fourier

transform. However, in practice, T must be a finite value (none of the observed signals could

be infinite length). In order to take advantage of the Fourier transform relationship, we

extend the range of integration from (0, T ) to (−∞,∞) while adding a window function to

the original expression. Therefore, (5.4) is modified as

a0
2

−2d0

(e−2d0T − 1) +
a2

−2d
(e−2dT − 1)− aa0

∫ ∞
−∞

e−(d+d0)tu(t)[u(t)− u(t− T )]e−jω̃tdt

− aa0

∫ ∞
−∞

e−(d+d0)tu(t)[u(t)− u(t− T )]ejω̃tdt (5.5)

Now, the third term of (5.5) is the Fourier transform of e−(d+d0)tu(t)[u(t)−u(t−T )], and the

fourth term of (5.5) can be treated as a conjugate component of the third term. Now we use

the fact that if two functions multiply in the time domain, their Fourier transform functions

will convolve in the frequency domain. The extra u(t) here is used for easy Fourier transform
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of the exponential term e−(d+d0)t, which does not change the value of this expression. Let

G(ω̃) = F{[e−(d+d0)tu(t)]} =
1

(d0 + d) + jω̃

H(ω̃) = F{[u(t)− u(t− T )]} = T sinc(
ω̃T

2
)× e

−jω̃T
2

Then (5.5) will become

a0
2

−2d0

(e−2d0T − 1) +
a2

−2d
(e−2dT − 1)− aa0 × {G(ω̃) ∗H(ω̃) + [G(ω̃) ∗H(ω̃)]∗}

=
a0

2

−2d0

(e−2d0T − 1) +
a2

−2d
(e−2dT − 1)− 2aa0 ×<[G(ω̃) ∗H(ω̃)]

=
a0

2

−2d0

(e−2d0T − 1) +
a2

−2d
(e−2dT − 1)− 2aa0 ×<

{
[T sinc(

ω̃T

2
)× e

−jω̃T
2 ] ∗ 1

(d0 + d) + jω̃

}
(5.6)

Examining (5.6), the first term is a fixed value based on the original signal parameters;

the second term varies with estimated magnitude and decay does not oscillate; and the third

term including sinc( ω̃T
2

) has obvious local minima. Since the sinc( ω̃T
2

) shape originates from

the window function, the reason for local minima is the finite signal observations. Figure 5.1

shows the cost function as it varies with different parameter offsets.

If there are only magnitude offset and decay offset, the cost function is non-oscillatory

(Figure 5.1, lower plot). If frequency offset presents, local minima appear in the cost function

(Figure 5.1, upper and middle plots). In practice, many signals in MRSI have more than

one resonant peaks. In these cases, the general cost function is a combination of several

oscillating functions and local minima still exist. For instance, if there are two resonant

peaks, the cost function becomes

∫ T

0

∣∣∣∣∣∑
i=1,2

aie
(−di+jωi)t −

∑
i=1,2

a0ie
(−d0i+jω0i)t

∣∣∣∣∣
2

dt (5.7)
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Figure 5.1: Cost function varying with frequency and decay offsets (upper plot) frequency
and magnitude offsets (middle plot) magnitude and decay offsets (lower plot)
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After expansion, (5.7) updates as

∫ T

0

∣∣a1e
−d1t cosω1t+ a2e

−d2t cosω2t− a01e
−d01t cosω01t− a02e

−d02t cosω02t
∣∣2 dt

+

∫ T

0

∣∣a1e
−d1t sinω1t+ a2e

−d2t sinω2t− a01e
−d01t sinω01t− a02e

−d02t sinω02t
∣∣2 dt

=

∫ T

0

(a1
2e−2d1t + a2

2e−2d2t + a01
2e−2d01t + a02

2e−2d02t)dt

+ 2a1a2

∫ T

0

e(−d1−d2)t(cosω1t cosω2t+ sinω1t sinω2t)dt

+ 2a01a02

∫ T

0

e(−d01−d02)t(cosω01t cosω02t+ sinω01t sinω02t)dt

− 2a1a01

∫ T

0

e(−d1−d01)t(cosω1t cosω01t+ sinω1t sinω01t)dt

− 2a1a02

∫ T

0

e(−d1−d02)t(cosω1t cosω02t+ sinω1t sinω02t)dt

− 2a2a01

∫ T

0

e(−d2−d01)t(cosω2t cosω01t+ sinω2t sinω01t)dt

− 2a2a02

∫ T

0

e(−d2−d02)t(cosω2t cosω02t+ sinω2t sinω02t)dt (5.8)

Utilizing the sum and difference formulas of sin / cos

cosω1t cosω2t+ sinω1t sinω2t = cos(ω1 − ω2)t

(5.8) becomes as

∫ T

0

(a1
2e−2d1t + a2

2e−2d2t + a01
2e−2d01t + a02

2e−2d02t)dt

+

∫ T

0

[2a1a2e
(−d1−d2)t cos(ω1 − ω2)t+ 2a01a02e

(−d01−d02)t cos(ω01 − ω02)t]dt

−
∫ T

0

[2a1a01e
(−d1−d01)t cos(ω1 − ω01)t+ 2a1a02e

(−d1−d02)t cos(ω1 − ω02)t]dt

−
∫ T

0

[2a2a01e
(−d2−d01)t cos(ω2 − ω01)t+ 2a2a02e

(−d2−d02)t cos(ω2 − ω02)t]dt (5.9)
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Normally, multi-resonant peaks in one MRSI signal have almost the same frequency offset,

which means ω1 − ω01 = ω2 − ω02 = ω̃, and ω01 − ω02 = ω is known before observation.

Therefore, (5.9) can be simplified as

∫ T

0

(a1
2e−2d1t + a2

2e−2d2t + a01
2e−2d01t + a02

2e−2d02t)dt

+

∫ T

0

[2a1a2e
(−d1−d2)t + 2a01a02e

(−d01−d02)t] cos(ω)tdt

−
∫ T

0

[2a1a01e
(−d1−d01)t + 2a2a02e

(−d2−d02)t] cos(ω̃)tdt

−
∫ T

0

2A1A02e
(−d2−d01)t cos(ω̃ + ω)tdt−

∫ T

0

2A2A01e
(−d2−d01)t cos(ω̃ − ω)tdt (5.10)

Comparing (5.3) and (5.10), one can see that only the last three items including frequency

offset(cos ω̃t, cos(ω̃ + ω)t and cos(ω̃ − ω)t) are the reasons for the oscillatory shape of the

cost function. And the oscillating frequencies are all related to ω̃, ω̃ + ω and ω̃ − ω.

5.2 Optimization Protocol with Varying Decay

In the previous section, we know that local minima come from the finite signal observa-

tions (here, we focus on the case of one resonant peak), which is represented as the third term

of (5.6). The estimated magnitude a is just a scalar in the third term of (5.6); it will not

increase or decrease the number of local minima. Therefore, if we can decrease the oscillation

from
{

[T sinc( ω̃T
2

)× e−jω̃T2 ] ∗ 1
(d0+d)+jω̃

}
, the local minima effect can be attenuated.

5.2.1 Theory

Considering the various sectional views of Figure 5.1a and b, we can see that increasing

the estimated a value does not change the shape of the cost function (Figure 5.2a), while

increasing the estimated d value can spread out the main lobe of the cost function, and

the local minima fade away. In the middle plot of Figure 5.2b, even though there are some

local minima remaining, the main lobe that includes the global minimum is expanded. That
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Figure 5.2: Cost function varying with frequency at (a) different magnitude offsets (b)
different decay offsets

means the potential of finding the global minimum is enhanced. On the other hand, when

the decay rate decreases, the gradient of the main lobe becomes sharper, yielding faster

convergence and more accurate estimates [12].

As a result, in order to converge to the global optimum accurately and efficiently, the

following procedure is used. The initial estimated decay d is set large to widen the main

lobe to ensure that the frequency offset value is inside the main lobe. Then conjugate

gradient (GC) is used to modify the frequency parameters. Next, we decrease the decay

value and repeat CG. The procedure becomes a narrower search, so that the global optimum

is estimated more accurately. In addition, decreasing the decay value through iterations

will also accelerate the convergence speed. In consequence, an accurate global optimum can

be detected within a limited number of iterations. Here we need to be alert that in each
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Figure 5.3: Overview of the proposed method

iteration step, the frequency offset is always required to be inside the main lobe. Figure 5.3

shows an overview of the proposed method.

5.2.2 Experiments and Results

To investigate the validity of the proposed method, three simulation experiments are

presented. To focus on frequency local minima, we assume the signal magnitudes in the

following experiments are one.

• Experiment 1: single resonant peak with uniform samples
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Figure 5.4: Cost function with (a) decay=-2 (b) decay=-20 (c) decay=-50

x(t) = e(−1.3+j535π)t t ∈ (0 : 0.18) (5.11)

The cost function is

C =

∫ 0.18

0

∣∣e(−d+jω)t − x(t)
∣∣2 (5.12)

The observed x(t) has 64 uniform samples, d is the estimated decay and ω is the estimated

frequency. We explore the frequency offsets (ω−535
2π

) from -50 Hz to 50 Hz. Figure 5.4

compares different estimated decays applied to the cost function: d = 2 (upper plot), d = 20

(middle plot) and d = 50 (bottom plot).

If we initialize the estimated frequency 30 Hz away from the original: for the cost func-

tion of Figure 5.4a, the reconstructed frequency is 28.5 Hz away from the original (converging

to the nearest local minimum); while for the cost function of Figure 5.4b and 5.4c, the recon-

structed frequency will be almost the same as the original (achieving the global minimum).
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Table 5.1 shows the acceptable frequency offset range for cost functions with different decays

and compares the number of iterations required for minimum convergence. Here acceptable

frequency offset range indicates the region within which there are no frequency local minima,

and the number of iterations indicates the convergence speed.

Table 5.1: Comparison of offset range (Hz)and number of iterations

Acceptable frequency Number of iterations for
offset range converging from ±30 Hz

offset to a minimum
Cost function as Figure 5.4a -4 ↔ 4 7 (Local minimum)
Cost function as Figure 5.4b -45 ↔ 45 113 (Global minimum)
Cost function as Figure 5.4c -45 ↔ 45 252 (Global minimum)

Varying cost function as
proposed method -45 ↔ 45 78 (Global minimum)

• Experiment 2: two resonant peaks with uniform samples

x(t) = e(−1.3+j535π)t + e(−3+j580π)t t ∈ (0 : 0.18) (5.13)

The observed x(t) has 64 uniform samples, di is the estimated deacy and ωi is the estimated

frequency. We explore the frequency offsets from -50 Hz to 50 Hz. Figure 5.5 compares

different estimated decays applied to the cost function: d = 2 (upper plot), d = 20 (middle

plot) and d = 50 (bottom plot). Table 5.2 shows the acceptable frequency offset range

for cost functions with different decays and compares the number of iterations required for

minimum convergence.

• Experiment 3: one resonant peak with nonuniform samples

Uniformly sampled signals were investigated in the previous two experiments, now we

execute another experiment using the following signal, and the measured signal is selected
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Figure 5.5: Cost function with (a) decay=-2 (b) decay=-20 (c) decay=-50

nonuniformly (64 samples) within (0, 0.18):

x(t) = e(−1.3+j535π)t (5.14)

We explore the frequency offsets from -50Hz to 50Hz. Figure 5.6 compares different estimated

decays applied to the cost function: di = 2 (upper plot), di = 20 (middle plot), di = 50

(bottom plot). Table 5.3 shows the acceptable frequency offset range for cost functions with

different decays and compares the number of iterations required for minimum convergence.

Comparing Experiment 1 and Experiment 3 (with the same signal parameters), one can

see that the acceptable frequency offset range is different. Revising (5.4),

∫ T

0

(ae−2dt + a0e
−2d0t)dt− aa0

∫ T

0

e−(d+d0)te−jω̃tdt− aa0

∫ T

0

e−(d+d0)tejω̃tdt
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Table 5.2: Comparison of offset range (Hz) and number of iterations

Acceptable frequency Number of iterations for
offset range converging from ±25 Hz

offset to a minimum
Cost function as Figure 5.5a -4 ↔ 4 7 (Local minimum)
Cost function as Figure 5.5b -26.5 ↔ 26.5 132 (Global minimum)
Cost function as Figure 5.5c -27 ↔ 27 308 (Global minimum)

Varying cost function as
proposed method -27 ↔ 27 83 (Global minimum)

Table 5.3: Comparison of offset range (Hz) and number of iterations

Acceptable frequency Number of iterations for
offset range converging from ±15 Hz

offset to a minimum
Cost function as Figure 5.6a -3.5 ↔ 3.5 5 (Local minimum)
Cost function as Figure 5.6b -15.5 ↔ 15.5 104 (Global minimum)
Cost function as Figure 5.6c -16 ↔ 16 216 (Global minimum)

Varying cost function as
proposed method -16 ↔ 16 67 (Global minimum)

if t is not sampled uniformly, we can not extended the range of integration from (0, T ) to

(−∞,∞) by just adding a window function to the original expression. Besides the window

function, there must be another sampling function to represent the sampling pattern. Now

(5.4) can be modified as

∫ T

0

(ae−2dt + a0e
−2d0t)dt− 2aa0<

{∫ ∞
−∞

e−(d+d0)tu(t)p(t)[u(t)− u(t− T )]e−jω̃tdt

}
(5.15)

where p(t) is the nonuniform sampling pattern. The second term of (5.15) becomes the

Fourier transform of e−(d+d0)tu(t)p(t)[u(t)−u(t−T )], which is the convolution of F [e−(d+d0)tu(t)],

F [u(t)− u(t− T )] and F [p(t)]. Normally, increasing the decay values to avoid local minima

has better performance in the uniformly sampled case than in the nonuniformly sampled

case.
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Figure 5.6: Cost function with estimated (a) decay=-2 (b) decay=-20 (c)decay=-50

From these experiments, one can see that enlarging the estimated decay value is an easy

way to extend the acceptable frequency offset range within which the global minimum can

be detected by gradient methods. However, when we keep increasing the decay values (in

these experiments, from -20 to -50), the acceptable frequency offset ranges rarely change.

In other words, if the estimated decay exceeds some values, enlarging decay will not further

help in solving local minimum problems. In addition, a cost function with large estimated

decays converges slowly (needs more iterations). Therefore, we need to select the estimated

decays very carefully so that we can fully utilize the acceptable frequency offset range while

keeping a relatively sharp gradient of the cost function.

5.3 Optimization Protocol with Weighted Scalars

Examing Figure 5.4, Figure 5.5 and Figure 5.6, we notice that when the estimated

decays increase, the dynamic range of the cost function shrinks significantly. Especially
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at the edge of the acceptable frequency offset range, the gradient of cost function is very

small. In gradient-based method, if the gradient is very small, it will affect the optimization

performance and speed [12, 26]. Moreover, when we use varying estimated decays to extend

the acceptable frequency offset range, there is no easy way to decide what is the estimated

decay value to start with: if the estimated decay is not big enough, we may not find the

largest acceptable frequency offset range; but if the estimated decay is too big, it will sacrifice

optimization speed and accurancy. Therefore, in this section, we introduce a new method:

applying a sequence of weighted scalars to the signal, which could get the cost function

having a better acceptable frequency offset range than the varying decay method, while

avoiding these issues mentioned above.

5.3.1 Theory

Figure 5.7 shows a typical cost function. Normally, it is reasonable to assume that the

cost function C(ω̃) is symmetrical from ω̃ = 0, so here we focus on the positive side of the

cost function. The solid waveform is the original shape of the cost function, the first gradient

of C(ω̃) in (0, ω̃p) is always C ′(ω̃) ≥ 0. Our goal is to change the shape of the cost function

and let C ′(ω̃) ≥ 0 in (0, ω̃p1) as dashed line shown.

In our case, the cost function is continuous, so is the gradient of the cost function. As

shown in Figure 5.7, when the frequency offset = ω̃p, then C ′(ω̃p) = 0. In order to extend

the acceptable frequency offset range to ω̃p1, we need to make C ′(ω̃p) > 0. In consequence,

we utilize the following criterion:

min

ω̃p∑
0

φ[C ′(ω̃)] (5.16)

where

φ[C ′(ω̃)] =


1

C′(ω̃)+∆
, if C ′(ω̃) ≥ 0.

1
∆
− C ′(ω̃), if C ′(ω̃) < 0.
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Figure 5.7: Typical cost function

and ∆ is a very small positive number, which makes C ′(ω̃) + ∆ not equal to zero. During

each iteration step to minimize
∑ω̃p

0 φ[C ′(ω̃)], we need to update the cost function C(ω̃) and

the first gradient of the cost function C ′(ω̃) with the varying weighted scalars.

C(ω̃) =

∫ T

0

W (t)
∣∣ae(−d+jω)t − a0e

(−d0+jω0)t
∣∣2 dt

=

∫ T

0

W (t)(ae−2dt + a0e
−2d0t)dt−

∫ T

0

W (t)2aa0e
−(d+d0)tcosω̃tdt (5.17)

C ′(ω̃) =

∫ T

0

W (t)2aa0e
−(d+d0)ttsinω̃tdt (5.18)

Here W (t) is a function defined by scalar weights that control the value of the function where

the signal samples are observed. The following procedure is used to implement the proposed

method:

1. Find first positive ω̃ = ω̃p, which makes C ′(ω̃p) = 0. Hence, we can define the summa-

tion range of criterion (5.16).
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2. Update the cost function and the first gradient of the cost function using (5.17) and

(5.18) and the initial W (t) = 1.

3. Vary the values of W (t) to minimize
∑
φ[C ′(ω̃)] in the range (0, ω̃p), where ω̃p is defined

in step 1.

4. Repeat step 1, 2 and 3 until the new ω̃p changes only slightly from the previous one.

5.3.2 Experiments and Results

In order to compare the performance between the weighted scalar method and varying

decay method, three simulation experiments using the same orginal signal, are presented.

• Experiment 1: single resonant peak with uniform samples

x(t) = e(−1.3+j535π)t t ∈ (0 : 0.18) (5.19)

The observed x(t) has 64 uniform samples. Exploring the frequency offsets from -50Hz

to 50Hz, Figure 5.8 compares cost functions: without weighted scalars (upper plot), and

with weighted scalars (bottom plot). Table 5.4 shows comparisons among the original cost

function, the cost function applying varying decays and the cost function applying weighted

scalars.

Table 5.4: Comparison of offset range (Hz) and number of iterations

Acceptable frequency Number of iterations for
offset range converging from ±30 Hz

offset to a minimum
Original cost function -4 ↔ 4 7 (Local minimum)
Cost function applied

varing decays -45 ↔ 45 78 (Global minimum)
Cost function applied

weighted scalars -50 ↔ 50 42 (Global minimum)
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Figure 5.8: Cost function using estimated decay =-2 (a) without weighted scalars (b) with
weighted scalars

• Experiment 2: two resonant peaks with uniform samples

x(t) = e(−1.3+j535π)t + e(−3+j580π)t t ∈ (0 : 0.18) (5.20)

The observed x(t) has 64 uniform samples. We explore the frequency offsets from -50Hz

to 50Hz. Figure 5.9 compares the cost functions with or without weighted scalars. Table

5.5 shows the acceptable frequency offset ranges and the number of iterations required for

different cost functions.

• Experiment 3: one resonant peak with nonuniform samples

x(t) = e(−1.3+j535π)t (5.21)

The observed signal is selected nonuniformly (64 samples) within (0, 0.18). Figure 5.10

compares the cost functions with or without weighted scalars for the frequency offsets from
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Figure 5.9: Cost function using estimated decay =-2 (a) without weighted function (b) with
weighted function

-50Hz to 50Hz. Table 5.6 shows the acceptable frequency offset ranges and the number of

iterations required for different cost functions.

5.4 Conclusion and Future Work

In this chapter, we introduced two methods to alleviate local minima effects. One is

varying estimated decay during the reconstruction process; the other is optimizing a weighted

function applied to the observed and estimated signal. Both methods intend to change the

shape of the cost function and make the global minimum located in a wider main lobe.

Based on the above experiments, one can see that enlarging the estimated decay value

is an easy way to extend the acceptable frequency offset range. However, since it will

significantly decrease the gradient of the cost function, the reconstruction might be not

accurate and is relatively slow. On the other hand, applying the weighted scalars to the
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Table 5.5: Comparison of offset range (Hz) and number of iterations

Acceptable frequency Number of iterations for
offset range converging from ±25 Hz

offset to a minimum
Original cost function -4 ↔ 4 7 (Local minimum)
Cost function applied

varing decays -27 ↔ 27 83 (Global minimum)
Cost function applied

weighted scalars -33 ↔ 33 37 (Global minimum)

Table 5.6: Comparison of offset range (Hz) and number of iterations

Acceptable frequency Number of iterations for
offset range converging from ±15 Hz

offset to a minimum
Original cost function -3.5 ↔ 3.5 5(Local minimum)
Cost function applied

varing decays -16 ↔ 16 67 (Global minimum)
Cost function applied

weighted scalars -25 ↔ 25 26 (Global minimum)

signal can also extend the acceptable frequency offset range, while avoiding problems with

reconstruction speed and accuracy.

In the reconstruction procedure, large global shifts due to field inhomogeneity must be

compensated by a field map. Otherwise, spectral peaks may be initialized too far from the

correct values, resulting in a failure to find these values due to local minima.

Future research will focus on making these methods are more robust to nonuniform

measurements and accelerate the process of convergence.
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Figure 5.10: Cost function using estimated decay =-2 (a) without weighted function (b) with
weighted function
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Chapter 6

Conclusion

6.1 Summary of the Contributions of This Dissertation

In this dissertation, we studied several problems related to data acquisition and recon-

struction in magnetic resonance spectroscopic imaging.

To accelerate the acquisition time, we first proposed an efficient acquisition scheme

with echo-time selection. A criterion to estimate the mean square error in reconstruction

was derived. Both single-echo SBS and multi-echo SBS were used to select a limited set of

the most important echo-time values which were then applied to EPI acquisition. A lower-

than-Nyquist density can be achieved with the proposed method. 1H phantom experiments

demonstrate that our approach achieves similar results to standard MRSI while only using

9.6% as much acquired data.

Due to the limitations of echo-time selection in data acquisition, two alternative data

selection strategies were studied in Chapter 3. One is k-t selection, which extends the data

selection in both k-space and time domains. Another one uses echo-time selection but with

overlapped EPI, which can reduce the acquisition time for each k-space image. From the

phantom experiment, we observe that k-t selection makes the selection process more accurate

while requiring longer computation time to select the most informative data. In contrast,

the selection process of echo-time selection using overlapped EPI can be done in seconds,

but the reconstruction quality is not as good as k-t selection. Therefore, choosing which

selection methods to use for acquisition depends on the application demands.

In Chapter 4, fast reconstruction methods for the nonlinear imaging model were inves-

tigated. We proposed to apply a polynomial approximation to the time exponential function
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in the observed MRSI model and utilize a linear combination of FFTs to reduce the compu-

tational complexity in reconstruction. Simulation and phantom experiments show that this

technique can largely accelerate the reconstruction process without sacrificing reconstruction

accuracy.

The last part of this dissertation described two methods to alleviate frequency local

minima effects. One is varying estimated decay during the reconstruction process, which

can be easily implemented but does not achieve very good performance in reconstruction

efficiency and accuracy. Another advanced technique we developed is optimizing a weighted

function applied to the observed and estimated signal. The experimental results show that

the weighted function method can efficiently attenuate frequency local minima effects, while

avoiding the reconstruction speed and accuracy problems.

6.2 Future Works

For the acquisition part, the future research will focus on how to simplify the selection

process in the k-t domain while still keeping the selection accuracy. Since our proposed

methods are validated by simulation and phantom experiments, if it is possible, we also plan

to apply our optimized selection strategies to in vivo experiments.

For the reconstruction part, we intend to develop a fast and more flexible reconstruction

algorithm, which can accommodate more acquisition strategies and handle more parameter

offsets.
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