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Abstract

In modern cyber-physical systems (CPS), new dimensions of freedom are enabled to energy

efficient solutions. We first focus on the energy delivery side within the smart grid paradigm for

smart, efficient and reliable energy delivery. We then explore the demand side with “green” wire-

less networks for multimedia streaming, in response to the drastic increasing demand in multimedia

service in wireless networks.

In this dissertation, we first study energy management systems in smart grid. We design

power scheduling policies for smoothing power profile in power distribution networks. The pro-

posed power scheduling policies allow the operator to deploy generators, transformers and power

transmission lines with smaller capacity in the grid, thus reducing the capital investment. In addi-

tion, the power consumption can be reduced during peak hours, and the average energy generation

cost will also be minimized. We also propose a smart electricenergy management system in mi-

crogrids (MGs). With the proposed algorithm, the MG achieves the fundamental requirements in

smart grid with distributed renewable energy integration,energy storage systems management and

residential power quality management, while keeping the compatibility to the legacy grid.

We then propose downlink power control frameworks for streaming multiple variable bit rate

(VBR) videos in wireless cellular networks. We develop both centralized and low-complexity dis-

tributed algorithms, which optimally schedule the transmission power for the BS’s, such that VBR

videos can be delivered to mobile users without causing playout buffer underflow or overflow un-

der wireless channel uncertainty. The proposed solutions achieve the quality of experience (QoE)

requirements of users, as well as keeping the systems “green”.

In this dissertation, we adopt a control and optimization approach for energy efficient design

in CPS.The synergy of the advanced control and optimization methods in engineering systems

provides new visions for practical solutions to bring a green world in the future.
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Chapter 1

Introduction

1.1 Enabling Energy Efficient Cyber-Physical Systems

Innovations in energy supply, delivery and consumption in physical systems are the most

effective ways to fight against global warming and environmental degradation. The synergy of

communication, networking, control, computation intelligence and physical components greatly

extends the autonomy, efficiency, flexibility, reliabilityand adaptability of physical systems. Such

an enhanced system as illustrated in Fig. 1.1 is termed acyber-physical system(CPS). The emerg-

ing CPS will significantly enhance the capabilities of physical engineered systems and change

how people interoperates with the physical world through real-time embedded systems by sensing,

computation, optimization and control over communicationnetworks, which makes the engineer-

ing systems reliable, secure, efficient and smart. Examplesinclude smart electricity grid, smart

building, smart manufacturing, and smart transportation [2]. The next generation of CPS brings

new dimension of freedom to the energy efficient solution to the practical physical systems.

In this dissertation, we investigate energy efficient design of smart gridandinformation and

communications technology(ICT) infrastructures. Electric power system is generally identified as

the largest greenhouse gas emission source created by human-beings. Under traditional electricity

grid structure, only1/3 of fuel energy, mainly from fossils, is converted to electricity and almost

8% is then further lost during the transmission on the power transmission lines. In addition, to

manage the peak demand, about20% of generation capacity is reserved. Those reserved capacity

is only used in5% of the time [3]. Thus, an efficient, reliable, flexible and economic electricity de-

livery system is needed for the new era. The next generation of electricity delivery network, called

smart grid [4–6], is an evolution of the 20th centuary traditional grid, which is expected to solve

the major inefficiency of the traditional electricity grid.A smart grid with two-way flow of both
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Figure 1.1: Cyber-physical system - Integration of communication, control and computation [1].

electricity and information provides full visibility and automatic control over the components and

services in power networks. The ubiquitous sensing, monitoring and automatic control enable the

ability for responding to a wide range of conditions and events, which allows the integration of the

computational intelligence into the system to efficiently schedule power generation, transmission,

distribution and usage. The smart grid can also faciliate the penertration of renewable energy, such

as photovoltaics, wind, geothermal, and biofuels, which will greatly reduce resource depletion,

increase sustainablity, lower greenhouse gas emissions and reduce air pollution.

Besides the enhancement of electricity delivery networks, it is equally important to implement

energy efficient design at the demand side. Since the electricity supply continuously matches the

demand under the current operation strategy of traditionalgrid, the emissions of power plants in-

crease as the demand increases. However, it is not environment friendly to proportionally boost the

electricity supply along with demand, especially when we consider that the nation wide electricity

demand is estimated to increase by41% by 2030 [7]. To alleviate the total energy consumption,

there is a great need for energy efficient infrastructures, devices and consumption patterns. One of

the fastest energy consumption growth comes from today’s ICTinfrastructure, which may be re-

sponsible for more than10% of the total electrical power consumption [8], due to the tremendously

wide spread of the Internet and mobile communication networks. According to a recent study by
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Cisco, mobile data traffic will be expected to grow to6.3 Exabytes per month by 2015, a26−fold

increase over 2010 [9]. In addition, mobile video will generate much of the mobile traffic growth

through 2015. Of the6.3 Exabytes per month wireless data crossing the mobile network by 2015,

4.2 Exabytes will be related to video.

Furthermore, it is reported that the energy consumed by end-user equipment only contributes

around7% of the entire consumption, while the remaining93% is consumed by mobile network

components [10], of which more than50% is used by thebase station(BS) equipment [11]. There-

fore, considerable savings on electrical bills could be achieved for wireless operators when the

power of BS’s is minimized for video streaming. The reduced electricity consumption will also

bring about important improvement in the overall carbon footprint of the wireless industry and

achieve the goal of “green” communications.

In this dissertation, we examine energy efficient design in CPS from two sides: energy deliv-

ery networks and energy demand using multimedia wireless networks as an example. We inves-

tigate the problems with a control and optimization theoretic approach, which involves Lyapunov

optimization [12], majorization [13], nonlinear and convex optimization [14]. The synergy of these

advanced mathematical tools brings about new visions for energy efficient solutions to practical

engineering systems with performance bounds to bring a green world in the future.

1.2 Smart Grid

1.2.1 Traditional Electricity Grid

The electric power delivery system, i.e. electricity grid,was named as the greatest engineering

achievement of the 20th century [15]. Generally, the electricity grid consists of three parts: power

generation plants, power transmission networks, and powerdistribution networks, as shown in

Fig. 1.2. The traditional grid is strictly a hierarchical system, in which the power plant is at the

upstream to provide electric power to the user load at the downstream. The electric power is

generated at central power plants normally driven by combustible engines that are mostly fueled

by coal and gas. Due to economic and environmental considerations, the plants are usually located

3



Coal plant Step up

transformer

Step down 

transformer

Transmission networks Distribution networks

Information flow

Electricity flow

Figure 1.2: Traditional electricity grid with unidirectional power and information flow.

far away from users, and they are connected to users by transmission and distribution networks.

The generated electric power is stepped up to a higher voltage (≥ 110 kV) by step up transformers

to overcome the power transmission loss over a long distance. The transmission networks route

the power to the substations, in which the voltage is steppeddown from the transmission level

to medium-voltage distribution level (< 33 kV). After the voltage regulation by the substations,

the power flow is then forwarded into the distribution networks. Finally, when the power flow

arrives at a service location, the voltage is further stepped down to the service level required by

end users, which is generally120 V, 240 V, or 480 V. It can be noticed that the electricity and

information in this type of grid flows in a unidirectional fashion. The generated power strictly

flows from the plant to the end users, while the information atthe downstream is collected by

the upstream components. For example, a distribution control center can acquire load information

from end users, but the users generally have no idea about thestatus of the power generation and

transmission.

The electricity grid must be operated to achieve real-time balance between generation and

load. Otherwise, the grid frequency will drift up or down from the nominal value (typically 50Hz

or 60 Hz). Today, the overall daily load profile in a given service area can be predicted well,

and the day-ahead generating schedule can be developed based on the prediction. Thus, electricity
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generation adopts a “load following” strategy. Due to the limitation of unidirectional flow structure,

loads are not generally controlled directly, except for thecase when there is insufficient generation

available on peak time, and then the “load shifting” operation is executed to encourage users to

shift load from on-peak to off-peak periods.

Increasing environmental concerns urge the high penetration of green and renewable energy

resources, such as solar, wind, geothermal, tidal, and etc.The load-following strategy with the

unidirectional electricity and information flows becomes awkward to meet the penetration of the

new renewable resources into the grid. The electricity generated from renewable resources, such

as wind and solar, is generally random, due to complex fluctuations of weather condition. Thus, it

is hard to accurately predict the generation even in a short period. In addition, renewable energy

sites are largely geographically distributed, due to the distribution of the renewable resources, the

unidirectional electricity and information flow cannot provide the needed services and fast response

to ensure that power generation matches load in real time, which may fail the load following

strategy. To embrace the green electrification age, automated, distributed and advanced energy

delivery networks should be promoted, which are enhanced bythe two-way flow of electricity and

information empowered by digital computation, communication and control technologies.

1.2.2 Smart Grid Evolution

Smart grid is a 21st century evolution of electricity delivery systems. Smart grid enhances the

traditional power grid through communication, computation, and control technologies throughout

the processes of electricity generation, transmission, and distribution. A key feature of smart grid is

the two-way flow of electricity and realtime information through communication networks, which

offers many benefits and flexibilities to both electricity consumers and providers. The US 2009

Recovery Act indicates that a smart grid will replace the traditional power grid system to improve

energy efficiency and advance the liberalization of energy in North America [16].

The smart grid is illustrated in Fig. 1.3. In contrast to the traditional power grid, the power

generation and power flow patterns in the smart grid exhibit more flexibility. The initial concept
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Figure 1.3: Smart grid with plug-and-play interfaces and two-way flow of power and information.

of smart grid begins with the introduction ofautomated meter infrastructure(AMI) systems in

distribution networks. AMI enables the utilities to monitor the demand status of end users and

impose certain control on the consumption and costs [3, 4, 17]. Future evolution with the inte-

gration of various new power electronics and information techniques provides real time sensing,

monitoring and control for every corner of the power delivery system. For example, in power de-

livery networks,phasor measurement unit(PMU) are being deployed to synchronized measure the

real-time phasor data at multiple points in the grid [18].Solid state transformer(SST) can respond

to signals from a facility or a household to change the voltage and other electric characteristics in

the system [19]. On the user side, local renewable resourcesgeneration and storage systems, smart

meters and smart facilities empower the pervasive sensing,monitoring and control of the power

flow and power usage in response to the utility supply and market price fluctuations.

One of the most important benefit from smart grid is that the two-way flow of electricity

and information facilitates the deployment and managementof the distributed renewable energy

resource(DRER), such as wind farms and solar photovoltaic cells. Unlike the load following

strategy, in which the supply continuously matches the demand, the real time information exchange
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among DRERs, central power plants and end users provides a new way to match the demand to the

available supply by regulating the power generation, as well as controlling the load service level

of the users.

The deployment of the DRERs fundamentally alters the operation of power generation, which

is conventionally controlled centrally. Furthermore, theincreasing popularity ofplug-in hybrid

electric vehicles(PHEVs) serves as distributed energy storage system for residential users by

vehicle-to gird(V2G) technology [20]. To cope with distributed generation, a concept ofvir-

tual power plant(VPP) is introduced [21], which clusters numerous DRERs with atotal capacity

comparable to a traditional power plant. The group of DRERs is managed by a central controller

and appears like a virtual central power plant to the grid. VPP provides a promising paradigm to

replace a conventional power plant by a cluster of local DRERs with more flexibility and efficiency.

It can be seen from Fig. 1.3 that the smart grid is organized like the Internet, which may be

called the “Energy Internet” [22], in contrast to the strictly hierarchical structure of the traditional

grid in Fig 1.2. All the components in the power delivery systems, including generation, transmis-

sion,distribution and consumption can be deployed and managed through plug-and-play interfaces.

By the full duplex of electricity and information flows, configuration of the devices in the system

may be customized to respond the grid status in real time. Forexample, energy storage systems

may cooperate with DRERs to balance the supply and demand according to the power generation

conditions. On the other hand, users may customize their demand for low cost energy consumption

by responding to the realtime market price. The concept of Energy Internet envisions the highly

flexible smart grid framework to facilitate a green and sustainable energy-based society, mitigating

the growing energy crisis, and reducing the impact of greenhouse gas emissions.

1.2.3 Microgrid

The existing traditional electricity grid has often been cited as the most complex engineering

system ever built. Thus to fundamentally overhaul the existing infrastructure is either unimple-

mentable or economically inefficient. The transition to thesmart grid would favor the strategy
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based on the reuse and upgrade from the existing grid by adding capabilities and functionalities in

a sustainable growth fashion. In a long period, the smart gird would coexist with the traditional

grid, and also provide certain backward compatibility withthe legacy systems.

With the concept of plug-and-play interface in the smart grid, a new grid paradigm called

microgrid (MG) is regarded as a promising component for future smart grid deployment. Micro-

grids are interconnected networks that provide a localizedcluster of renewable energy generation,

storage, distribution for local demand, to achieve reliable and effective energy supply with small

scale implementation of smart grid functionalities [4, 23]. A typical MG is shown in Fig. 1.4,

which includes DRERs,energy storage systems(ESS’s), wired/wireless networks for information

delivery, anMG central controller(MGCC), and local users. An MG is centrally controlled and

managed by the MGCC [23], which may exchange information withthe local users via two-way

information networks, such as a wireless network or apower line communication(PLC) system.

There is a single common coupling point with the macrogrid. When disconnected, the MG works

in an islanded mode, in which DRERs and ESS’s continuously provide electricity tosatisfy the

local demands. When connected to the macrogrid, the MG may request extra electricity from the

macrogrid or sell the excess energy back to the market [3].

The MGs are designed with the fundamental elements of smart grid, such as the integration

of DRERs, intelligence core, two-way electricity and information flow, self-healing, and demand

side management. This simplified design of the integration of DRERs and the ability to isolate
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the MG from the macrogrid in disturbance will yield highly reliable electricity supply. The island

operation mode has the potential to provide a higher local reliability and efficiency than that pro-

vided by the general macrogrid. In addition, the MG works with the plug-and-play interface to the

macrogrid, which minimizes the regulation effort of DRERs in the cooperative power scheduling

and management with the macrogrid and enables sustainable evolution to the emerging smart grid.

1.2.4 Smart Energy Management Systems

The two-way flow of electricity and information infrastructure enables various innovative

functions and management principles in practicing dynamicenergy management systems, which

significantly alter the nature of future power system operation and consumer behavior. It involves

the incorporation of smart energy management based on advanced control and communications

capabilities, computational intelligence, and smart devices that make the electricity gird “smart”,

as shown in Fig. 1.5. The real time information flow from the grid, such as active/reactive power,

voltage, phase, user demand, as well as energy price on the market, brings great flexibility in

designing the new smart energy management system. With smart energy management systems,

the grid achieves energy savings, operation cost reduction, demand and supply balance, emission

control, peak load reduction and elimination of many inherent inefficiencies that may be caused by

the conventional “load-following” strategy.
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Among various designs of smart energy management,demand response(DR) serves an im-

portant function in smart grid. Demand response is the mechanisms to manage the demand from

user side in response to the supply condition. Unlike the “load-following” strategy, which con-

tinuously matches the supply to the demand, demand responseenables the “generation-following”

strategy to match the demand to the available supply by controlling the service level, thus achieving

better overall capacity utilization [24]. Currently, the research in demand response mainly focuses

on two branches: direct load control and real time pricing.

Direct load control takes advantage of the scheduling flexibility of certain loads, which may

be scheduled on and off remotely without degrading the satisfaction of end users. It is estimated

that up to33% residential loads, such as dishwasher, washer/dryer, and PHEV charging, could

be rescheduled at some level without major impact on users [24]. Unlike the traditional energy

management, the smart demand response mechanism has the capability to aggregate and precisely

control the service level of individual load according to the grid status. The application of direct

load control not only sheds load during peak demand hours, but also intends to actively promote

new types of grid services that could reshape a demand profileto a nicely smoothed demand profile.

Real time pricing is another important method that encourages the users to reshape their elec-

tricity consumption pattern by various price strategies. The utilities change energy price based on

the fluctuation in the cost of generation, the aggregated load demand, and other realtime states of

the grid, thus providing immediate financial incentives to the users to regulate the demand side

applications and perform load shifting. The pricing strategy jointly optimizes the cost of genera-

tion, user electricity payment and user electricity utilization, which increases economic and energy

efficiency and delivers the fair prices to both the utilitiesand users.

In smart grid, both approaches rely on the information exchange between energy providers

and consumers. The control center monitors the real time states of the power networks, as well as

transmits control commands to the users by various communication options, including PLC,wide

area networks(WAN) andlocal area networks(LAN). Smart meters provide the interface between

LAN and home area networks(HAN), and serve as the gateway for security authenticationand
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command interpretation to ensure the command issued from the trusted controller. Smart meters

may plan the service level of each smart load/facility, and send out the control commands with the

service level of individual load through HAN. After the smart load obtains the command, it adjusts

its service level according to the new requirement. The process resorts to the support of information

transmission protocols, security authentication, energyplan intelligent core in smart meter, and

remote control for smart facilities, which are still under development and standardization.

1.3 Energy Efficient Multimedia Networks

1.3.1 Multimedia Networks Architecture

A typical wireless video system is illustrated in Fig. 1.6, which generally consists of the

video encoder/ decoder, the wireless/wireline networks, and mobile receiving/playout devices. To

achieve QoE guaranteed and/or energy efficient wireless multimedia systems, various schemes

have been developed, each of which focuses on one (or several) component(s) of the system .

Video contents provided by commercial video providers or individuals are encoded into com-

pressed frames with different codecs. The picture coding basics are detailed reviewed in [25, 26].

The algorithms in the codecs play large role in the quality ofthe video, which is directly related to

the QoE. Typical encoder and decoder block diagrams are illustrated in Fig. 1.7 and Fig. 1.8, re-

spectively. These frameworks have been adopted in many video coding standards, such as H.264,

and MPEG-4, which consist of motion estimation and compensation, discrete cosine transform

(DCT), quantization, entropy coding, inverse quantization, andinverse DCT(IDCT).

After source coding, the encoded frames are then packetizedby the network transmission

protocols. The video packets are streamed toward the destination through wired and/or wireless

networks. When frames arrive at the destination, the codec decodes the received frames. Since

the video packets could be corrupted or lost during transmission, error control and concealment

techniques at the codec may be applied to mitigate the impactof transmission errors. Then the

reconstructed video frames are played out on screens at the receiving device. Multimedia-aware

network protocols design has gained consideration for multimedia application support [27–33].

11



The Internet

Mobile UserVideo Content Transmitter Wireless Network

High speed wired link 

Figure 1.6: Overview of the wireless video networking system.

Motion 
Compensation

DCT 
Transform

Quantilization
Entropy 
Coder

Inverse 
Quantilization

IDCT 
Transmform

Bit 
stream 
out

Motion 
Esitmation
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Figure 1.8: Block diagram of a typical video decoder.

During the video streaming process, energy is largely consumed by video codec encoding,

network transmissions, receiver decoding, error mitigation, and playout. The energy consumption

incurred at the encoder and decoder are mainly due to the processing of video data at the end
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nodes, while encoding is usually more computation and energy intensive than decoding. The

codec computation and network transmission use up the largest part of the overall energy, and are

also critical components for the achievable QoE of video service [34]. It is important to address

the “green” communication problem in video streaming by exploring the energy savings in both

video codec and video transmission.

1.3.2 Energy Efficiency in Video Coding

In the past decades, the advances of wireless communications and networking technologies

are much significant than that of the battery technology. Consequently, how to prolong the battery

life of mobile devices becomes one of the major environmental and economical concerns. We focus

on power efficient codec design in this section and will explore the energy efficient transmission

in the next section.

As the increasing demand of high quality video, high compression efficiency codecs are de-

signed to enable higher resolution, which significantly increases the complexity of encoding algo-

rithms. Moreover, the stringent delay requirements of video service usually keep the video device

processor constantly busy for managing the high computation tasks. The processor may consume

as much as2/3 of the total power of a mobile device [35]. Thus it is important to balance video

quality and the computational complexity to achieve power-aware video coding.

Typical encoder and decoder block diagrams are illustratedin Fig. 1.7 and Fig. 1.8, respec-

tively. Such approaches have been adopted in many video coding standards, such as H.264,

and MPEG-4. The framework consists of motion estimation andcompensation, DCT, quanti-

zation, entropy coding, inverse quantization, and IDCT. According to recent research [36], mo-

tion estimation/compensation constitutes more than40% of the CPU workload, DCT/IDCT and

quantization/inverse-quantization makes up over16% of the CPU workload, and the entropy en-

coder, whose computational complexity largely depends on the coding bit rate, composes less than

10% of the CPU workload. Thus, it is important to explore the energy efficiency of these compo-

nents that consume the most part of the processing power at a video codec.
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There are many power-aware codec designs to balance power consumption and video quality.

The main idea behind these techniques is that the diverse complexity of the video content may

require different levels of compression. To achieve a certain video quality, slow motion and simple

scenes require much less computation than high motion sports and movie streams. Thus it is theo-

retically feasible to obtain the optimal power efficiency bydynamically adjusting the computation

complexity of the codec components for different videos, frames,macro blocks(MBs) and blocks,

while keeping the video quality relatively constant at a certain level.

In [37], the authors present a configurable coding scheme, which adjusts the codec control

parameters to achieve an optimal operation point on complexity-distortion curves based on ex-

haustive search and the Lagrangian multiplier method. In [38], a power-aware motion estimation

algorithm is presented, which is adaptive to the battery status by a content-based subsample algo-

rithm. When the battery is in the full capacity, all the processing elements in the motion estimation

function are turned on to provide the best quality. On the other hand, when the battery capacity

is decreased, some processing elements are disabled to extend the battery life with little quality

degradation. In [39], the authors extend the functions of DCT/IDCT in a framework to decrease

the power consumption by skipping the low energy MBs in DCT and all zero coefficients input

data in IDCT. The combined method reduces, on average,94% of power dissipation.

Another class of power-aware video codec design aims to dynamically adjust the voltage and

frequency of the CPU for energy conservation. Variousdynamic voltage scaling(DVS) algorithms

are provided to determine the minimum energy consumption for processing video tasks under

stringent delay requirements. With a DVS enabled processor, the voltage level and associated

clock frequency are adapted to the time-varying video processing workload to save energy. The

trade-off between reducing voltage level/clock frequencyand increasing processing time is the

core in the DVS-based design.

In [40], the authors derive the optimal voltage scheduling with linear programming. The

algorithm calculates the optimal scheduling offline with knowledge of the precise complexity and

arrival time of each decoding job, which may not be easy to acquire in real time. A heuristic
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algorithm is then introduced by predicting the stochastic complexity of the workloads. In [41],

a DVS algorithm is presented that adjusts both the clock frequency and the voltage level of the

CPU to achieve energy efficiency for video content processing, while maintaining the QoS of

the video. A comprehensive statistical analysis of the CPU workload is presented in [42] for

multimedia applications. The statistical results show that there is large room for DVS to reduce

energy consumption for multimedia streaming and the processor workload can also be accurately

predicted with a moderate effort. The DVS system is based on the control theoretic framework. A

PID-based DVS controller is developed to achieve a penalty controllable energy reduction, which

can be incorporated into an online algorithm.

In summary, the power-aware codec design focuses on the tension between video quality and

power consumption based on content diversity. The existingpower-aware schemes extend the tra-

ditional video codec functions by jointly considering the video content and power constraint. The

algorithms aim to adjust the codec parameters to minimize the power consumption while preserv-

ing good video quality. In addition, the hardware support for DVS technologies enables adaptive

adjustment of the clock frequency and operating voltage level of the CPU, to accommodate varying

codec workload. It should be noted that the power-aware codec design needs to jointly adjust large

number of configurable parameters, which provides the context for applying effective globally

optimal techniques and algorithms.

1.3.3 Energy Efficiency in Video Transmission

A typical video transmission path is shown in Fig. 1.9. The video frames generated by the

codec are packetized and delivered through the network protocol stack (UDP/RTP/IP). The link

layer schedules the packets with a MAC protocol (e.g., TDMA,FDMA, CDMA, or CSMA/CA)

and passes the frames down to the physical layer, where channel coding, modulation and power

allocation may be applied to overcome the time-varying and unreliable wireless channels. At the
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Figure 1.9: Protocol layers and system controls involved inwireless video transmission.

receiver, received video packets are decoded. The video bitstream is restored and then decom-

pressed by the decoder. Error concealment techniques may beapplied to mitigate the impact of

delayed and corrupted video frames.

The key challenge of video over wireless networks is the time-varying wireless channel,

which has a gain that varies over time due to channel fading, shadowing, and inter channel in-

terference [43]. This causes random packet losses and delays. Thus, fixed resource allocation or

scheduling schemes may not be sufficient to achieve the best video quality or energy efficiency. An

adaptive, video content-aware resource allocation schemeis necessary for supporting energy effi-

cient video streaming over wireless networks. While it is important to increase the bandwidth and

throughput in wireless networks [44, 45], energy efficiencyis also a critical factor for the success

of multimedia applications over wireless networks.

It is reported that BS equipment consumes more than50% of the total power in a typical cel-

lular network. The energy efficiency and power control in cellular networks thus demand careful

reexamination to achieve the goal of green communications.Power control in cellular networks

has been widely studied for more than15 years for voice or data applications. Many effective

power control algorithms are proposed in the literature (see [46–50]), and the closely related ad-

mission control problems are also investigated [51–53]. The problem of video communications in

wireless cellular networks brings about many new challenges to the BS power control problem,
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since the power allocations need to achieve not only the target Signal to Interference-plus-Noise

Ratio(SINR), but also the QoS or QoE of the streamed videos [54–58].

1.3.4 Joint Video Coding and Transmission Design

As shown in Fig. 1.9, the wireless video system is a complex system with many closely

coupled control knobs and parameters. Clearly, a cross-layer design that jointly optimizes multiple

parameters in different layers has the potential of achieving better energy efficiency and video

performance, comparing to the traditional layered approach.

Consider power allocation as an example. Normally, a lower transmission rate requires a

smaller transmit power, as well as high compression ratio atthe video codec. However, as dis-

cussed in the previous section, a higher compression ratio incurs more intensive computations and

consumes more power at the codec. Apparently, a cross-layerdesign framework would be useful

in this case, where video coding in the application layer andthe transmission schemes in the lower

network layers are jointly considered and optimized [56,59]. Specifically, the lower layer network

protocols now have the opportunity to exploit the information from the video content and source

coding parameters to optimize the transmission strategy. On the other hand, video coding in the

application layer may also take advantage of the channel andnetwork information, and thus can

select the coding parameters to provide the best coding quality and be adaptive to the status of wire-

less networks and channels. This approach also provides future support for the “content-centric”

multimedia network design [60–63].

A large number of designs that jointly consider video codingand transmission have been

proposed in the literature. In [64], the authors adopt jointsource coding and channel coding to

minimize the total power consumption, while keeping the end-to-end video quality at a fixed level.

A framework of joint source-channel coding and power adaptation is presented in [65], where error

resilient source coding , channel coding and transmission power adaptation are jointly designed to

optimize video quality, given constraints on the total transmission energy and delay. An algorithm
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is introduced to find the minimal energy source coding and power allocation by adaptively allo-

cating resources to different video segments based on theirrelative importance. In [66], the RF

front-end circuit energy is controlled for wireless video transmission by adjusting parameters in

physical layer and MAC layer. In [67], the authors investigate the transmission over bandwidth-

limited multi-acess wireless uplink channel. Energy-efficient video communication is obtained by

jointly adapting video summarization, coding schemes, modulation schemes, and packet transmis-

sion. In [23],the authors present a framework for joint network optimization, source adaption and

deadline-driven scheduling for multi-user video streaming over wireless networks. Both the physi-

cal layer and application layer are jointly considered to maximize the total users’ reception quality

under the power consumption constraint. In [68], the authors investigate the joint optimization

among source coding at application layers, ARQ scheme at datalink layers and adaptive modula-

tion and channel coding at physical layer. Within the delay-distortion framework, the parameters

of above layers are jointly optimized to achieve the best quality of the received videos.

1.3.5 Video over Emerging Wireless Networks

The video streaming problem has also been considered for several emerging wireless net-

working paradigms.Visual sensor networks(VSN) also represent an important application of en-

ergy efficient multimedia networks. VSN consists of a large number of low-power camera nodes,

which integrate the image sensor, embedded processor, and wireless transceiver. The development

of VSN has brought about many potential applications, such as surveillance, environmental moni-

toring, smart homes/cities, and visual reality [69], to name a few. Due to the battery limitation, the

life time of VSN camera nodes is limited by their energy consumption in wireless channel sens-

ing, transmission, and video and image data processing. Energy efficiency is a critical issue in the

design of VSN nodes, since they may not be recharged as often as smart phones, and are expected

to operate over extended periods of time (e.g., on two AA batteries for one year [70]). Therefore

power efficient designs are highly preferable at all the protocol layers in VSNs.
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Comprehensive surveys of VSNs can be found in [69,70]. It has been shown that power-aware

routing is highly effective in prolonging the lifetime of wireless sensor networks [71]. In [72,

73], the authors investigate the directional-control datafusion scheme to reduce the amount of

sensory data transmission in sensor networks. When processing video data is allowed within the

network, data fusion can be employed to reduce the redundancy among multiple video streams

along the routing path, thus reducing the volume of transmitted video data and saving energy at

the intermediate nodes. Power-aware transport layer designs are mainly based on de facto standard

of TCP. In [74, 75], the authors incorporate a new error-recovery mechanism into TCP to avoid

unnecessary retransmissions caused by AIMD, especially when the network is disconnected or

there are losses due to high bit error. This scheme is shown toprolong the lifetime of wireless

sensor networks.

In [76–79], the authors investigate the problem of video transmission over cognitive radio

networks, where secondary users sense the licensed channels and aim to exploit the transmission

opportunities in the spectrum holes. The uncertain channelavailability condition brings about

many unique challenges. These works investigate the challenging problem of video over cognitive

radio networks with a cross-layer optimization approach, which leads to effective centralized or

distributed algorithm design with performance guarantees.

1.4 Key Contributions

In this dissertation, we address the problem of energy efficient design in CPS, including smart

grid and multimedia communication networks, with a controland optimization approach. The key

contributions are summarized as follows.

First, We explore the problem of smooth electric power scheduling in power distribution net-

works [80]. The smooth power profile greatly simplifies the strategy for balancing the supply and

demand in the grid. Moreover, since electricity generationand transmission systems are generally

designed to accommodate peak electric power [4], the smoothdemand profile has the advantage of
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optimizing the assets and operation cost of the grid. We introduce a deterministic model to char-

acterize the complex relationship between demand and supply. The deterministic model adopts

cumulative electricity demand/supply curves, which characterize the time varying demand/supply

relationship. A constrained nonlinear optimization problem is then formulated aiming to min-

imize the electric power variation, as well as satisfy users’ power usage quality. We develop

majorization-based algorithms for deriving smooth power schedules for the networks. We also

design a distributed algorithm for supplying the power among the users. Although many existing

work reveals the intrinsic connection between pricing policies and demand response, few of the

existing work explicitly address the problem of smooth electric power scheduling. It is shown that

the simple off-peak pricing scheme may not be effective in mitigating the demand peak problem,

because simply shifting the off-peak period may generate a new reboundpeak [81]. To the best

of our knowledge, this is the first work that directly addresses the smooth optimal energy schedul-

ing with majorization theory in power distribution networks. The solutions show the deterministic

performance for smooth power scheduling, peak power and operating cost reduction through the

enhancement of bidirectional communication flow, smart meters and smart facilities.

We next propose a comprehensive design of an energy management system in MG by taking

advantage of the plug-and-play interfaces of smart grid [82–84]. We jointly consider renewable

energy penetration, ESS management, residential demand management, and utility market partici-

pation in the MG and introduce the model ofQuality of Service in Electricity(QoSE). The QoSE

concept takes into account minimization of the MG operationcost, while maintaining the power

usage quality of residents. We transform the QoSE control problem and ESS management problem

into queue stability problems by introducing the QoSE virtual queues and battery virtual queues.

The Lyapunov optimization method is applied to solve the problem and generate the online opti-

mal ESS charge/discharge algorithm, adaptive residentialload service and cost effective operation

strategy on utility market, with hard performance bounds, which do not require any statistics and

future knowledge of the electricity supply, demand and price processes. The proposed policy ef-

fectively reduces the MG operation cost and maintains the QoSE for the residents. With this new
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energy management framework, the MG achieves the fundamental requirements of smart grid in

DRERs integration, ESS’s management, residential power quality management, and maintains the

compatibility to the legacy grid.

Furthermore, we investigate the energy efficient design on the demand side as applications

in wireless communication and networks. Among various green communication technologies, we

focus on the energy efficiency of base stations for downlink video streaming. This is due to the

expected surge in wireless video data, as well as the drasticincrease in the deployment of BS’s.

Therefore, any small improvement in the energy efficiency ofwireless video streaming system will

be amplified by the huge volume of wireless video data and number of BS’s deployed, and will

result in considerable environmental impact.

Specifically, we design the energy efficient streaming forvariable bit rate(VBR) video over

wireless networks. VBR video offers stable and superior quality over constant bit rate(CBR)

videos, however, the complexity statistics of the VBR video frames introduces great challenge

in wireless network design. We first present analytical frameworks for streaming multiple VBR

videos in a wireless cellular networks, where downlink capacities are limited by inter-cell/intracell

interference [55, 56, 58]. By jointly considering the deterministic model for VBR video traffic,

stringent playout delay constraint, BS peak power constraint, wireless channel uncertainty and fi-

nite playout buffer at the mobile users, we formulate the video streaming systems as nonlinear

optimization problems with the objective to maximize the throughput under the QoE and power

constraint. For the intracell interference situation, we analyze the convexity conditions of the

problem and propose a two-step approach to maximize the streaming transmission throughput un-

der power constraint, while maintaining the QoE. We also develop a distributed algorithm based

on the dual decomposition technique. The more challenging problem involved in intercell inter-

ference is solved by a centralized branch-and-bound algorithm incorporating the Reformulation-

Linearization Technique, which can produce optimal bounded solutions. We also propose a low-

complexity distributed algorithm with fast convergence. The proposed solutions effectively make
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use of the power in BS’s to stream the VBR video in cellular networks, while preserving the QoE

requirement.

We further study the energy efficient downlink multi-user VBRstreaming in the wireless cel-

lular networks with orthogonal channels by directly minimizing the power consumption to achieve

green multimedia communications [57,85–87]. We present a cross-layer optimization and schedul-

ing framework with the objective to minimize the BS’s power consumption during steaming period

while maintaining the QoE of video users. We develop a majorization-based solution approach to

solve the formulated problem. We prove the proposed algorithm is unique and global optimum,

and demonstrate that the proposed algorithm is also smoothness optimal. These research projects

may bring about a new paradigm for the design of future green wireless multimedia networks.

1.5 Overview of the Dissertation

In this dissertation work, we focus on the energy efficient design in CPS from two sides: elec-

tricity delivery networks and wireless multimedia networks, which are integrated by the method-

ology of control and optimization theoretic design as indicated in Fig. 1.10. The rest of the disser-

tation is organized as follows.

We present the smooth electric power scheduling in power distribution networks in Chapter 2.

We introduce an electricity supply/demand model that takesinto account of time-varying demands

and their deadlines. We formulate a constraint nonlinear optimization problem and incorporate

the theory of majorization to develop algorithms that can compute smoothness optimal schedules.

After the smooth power schedule is obtained, a distributed user benefit maximization load control

scheme is used to allocate the scheduled power to individualusers, while maximizing their level

of satisfaction. We demonstrate the efficacy of the proposedalgorithms by extensive simulations.

In Chapter 3, we propose a smart energy management framework in MG based on the concept

of QoSE. The MGCC aims to minimize the MG operation cost and maintain the outage probability

of quality usage, i.e., QoSE, below a target value, by scheduling electricity among renewable

energy sources, energy storage systems, and macrogrid. We formulate the problem to a constrained
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Figure 1.10: Overview of the dissertation.

stochastic programming problem and apply Lyapunov optimization technique to derive an adaptive

electricity scheduling algorithm by introducing the QoSE virtual queues and energy storage virtual

queues. We derive several hard performance bounds for the proposed algorithm and evaluate its

performance with trace-driven simulations.

In Chapter 5, we shift the energy efficient design from electricity delivery networks to the

demand side. We investigate the power control for the downlink VBR video streaming in the

cellular networks with intracell interference. We consider a deterministic model for VBR video

traffic and finite playout buffer at the mobile users. The objective is to derive the optimal downlink

power allocation for the VBR video sessions, such that the video data can be delivered in a timely

fashion without causing playout buffer overflow and underflow. The formulated problem is a non-

linear nonconvex optimization problem. We analyze the convexity conditions for the formulated

problem and propose a two-step approach to solve the problem. We also develop a distributed al-

gorithm based on the dual decomposition technique. The performance of the proposed algorithms

are validated with simulations using VBR video traces under realistic scenarios.
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In Chapter 6, we study the more challenging problem of power control for streaming multiple

VBR videos in multicell wireless networks under the intercell interference condition and derived

both centralized and distributed algorithm for the solutions. The problem is formulated to find the

optimal transmit powers for the base stations, such that VBR video data can be delivered to mobile

users without causing playout buffer underflow or overflow. We formulate a nonlinear noncon-

vex optimization problem and prove the condition for the existence of feasible solutions. We then

develop a centralized branch-and-bound algorithm incorporating the Reformulation-Linearization

Technique, which can produce (1 − ǫ)-optimal solutions. We also propose a low-complexity dis-

tributed algorithm with fast convergence. Through simulations with VBR video traces under fad-

ing channels, we find the distributed algorithm can achieve aperformance very close to that of the

centralized algorithm.

In Chapter 7, we relax the channel constraint in the cellular wireless networks to the orthog-

onal channels and directly address power minimization strategy for multiuser VBR video stream-

ing. We also adopt a deterministic model for VBR video traffic that incorporates video frame and

playout buffer characteristics, and formulate a constrained stochastic optimization problem. We

then develop a majorization-based solution approach. For the case of a single VBR video session

with relaxed peak power constraint, we develop a power optimal algorithm with low complexity.

We prove the power optimality of the proposed algorithm and the uniqueness of the global opti-

mum, and demonstrate that the proposed algorithm is also smoothness optimal. For the case of

multiuser VBR video streaming, we develop a heuristic algorithm that selectively suspends some

video sessions when the peak power constraint is violated. In addition to the traditional VBR video

streaming application, we also consider the case of interactive video streaming, and show that the

proposed schemes can be easily adapted and applied.

We conclude the dissertation and present the future work in Chapter 8.
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Chapter 2

Smooth Electric Power Scheduling in Power Distribution Networks

2.1 Introduction

The emergence ofSmart Grid(SG) brings about many fundamental changes in electric power

systems [4]. Various new power electronics and informationtechniques are greatly advancing the

control and management of energy and resources in the power system. For example,solid state

transformers(SST) can respond to signals from a facility or a household tochange the voltage

and other electric characteristics. On the user side, smartmeters and smart facilities empower

the pervasive monitoring and controlling at all levels of power usage in response to power supply

and market price fluctuations [4]. The two-way flows of electricity and information in SG are

instrumental to the control and optimization of energy and resource allocation in the grid to achieve

efficient, green and robust energy systems.

Unlike the traditional grid, in which the electricity supply continuously matches user de-

mands, the next generation power distribution system is based on a network structure [88] and is

capable of allowing users to control their loads in responseto the dynamics in the grid.Demand

response(DR) is a technique to balance power generation and demand in the grid [89]. One of

the important targets of DR is to reduce the peak demand by scheduling user requests. With the

two-way information flow among provider, users and the market, various DR schemes based on

real-time pricing and day-ahead load response concepts have been investigated recently [90–93].

Most of the existing DR schemes aim to maximize the social welfare or minimize the electricity

payment under given demand requirements. Although revealing the intrinsic connection between

pricing policies and demand response, the problem of smoothelectric power scheduling is not ex-

plicitly addressed, although being the key issue in DR. It is shown that the simple off-peak pricing
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scheme may not be effective in mitigating the demand peak problem, because simply shifting the

off-peak period may generate a newreboundpeak [81].

In this chapter, we address the challenging problem ofsmooth electric power schedulingin

power distribution networks. The network model is shown in Fig. 2.1. We assume the end-users are

equipped with smart meters and are capable of communicatingwith the distribution substation and

the distribution control center (DCC) through a communication network, and receiving commands

from the DCC to adjust the user’s electric energy consumptionlevel [3]. The DCC schedules

electricity supply on daily basis, which is further dividedinto multiple time slots. The electricity

usage requests at each user are classified into two categories: thepriority load that must be satisfied

in every time slot, and thedeferrable loadthat should be satisfied before specific deadlines. Users

may set the load for each type according to their preference (e.g., lighting, entertainment, laundry,

or charging a plug-in hybrid electric vehicle (PHEV)) [89].The DCC aggregates the demand

profiles from the users through the aggregator [94] and smooths the aggregated electric power

supply under the priority load and deferrable load deadlineconstraints.

In the smooth electric power scheduling problem, the objective is to minimize the power vari-

ation during a daily period, based on the concept of day-ahead load response. Adeterministic

electricity supply/demand modelis introduced with cumulative electricity demand/supply curves,

which characterize the demand/supply relationship duringthe day. We find the formulated prob-

lem suits well with themajorizationtheory, which concerns with the comparison and ordering of

vectors with respect to the distribution of their elements [13]. Majorization has been used in solv-

ing optimization problems in the communications and networking area [57,95,96]. In this chapter,

we present a majorization-based framework to develop two smooth electric power scheduling al-

gorithms with low computational complexity. After the smooth electric power profile for the entire

network is obtained, a user benefit maximization load control algorithm will be executed to allocate

the total amount of supply to the individual users, while maximizing their satisfaction of electricity

usage. The proposed algorithms can achieve the minimum peakpower, thus requiring smaller ca-

pacity for the generators, transmission lines and transformers to support the same demand. Since
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Figure 2.1: Illustration of the electricity distribution network.

electrical generation and transmission systems are generally designed to accommodate peak elec-

tric power [4], the smooth electric power schedule has the potential of optimizing the deployment

and operation cost of the grid.

The remainder of this chapter is organized as follows. We first present the system model

and problem statement in Section 2.2. The smooth electric power scheduling algorithms are de-

scribed in Section 2.4 and their performance evaluated in Section 2.5. Related work is discussed

in Section 2.6 and Section 2.7 concludes this chapter.

The notations used in this chapter are summarized in Table 2.1.

2.2 Problem Statement

2.2.1 Load Demand Profile

We consider a power distribution network with two-way flows of electricity and information.

We assumeN users in the power distribution network, which may generateresidential, commercial
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Table 2.1: Notation Table for Chapter 2
Symbol Description
R set of the electricity consumption users in the power

distribution networks
N total number of local electricity consumption user
L total number of slots
τ slot period
pn(t) power consumption of usern in slot t
en,p(t) priority load electric energy of usern in slot t
en,d(t) deferrable load electric energy need to be fulfilled

since last deadline of usern in slot t
pmax
n (t) maximum power consumption of usern in slot t
pmin
n (t) minimum power consumption of usern in slot t
en(t) electricity usage of usern in slot t
emax
n (t) maximum electricity usage of usern in slot t
emin
n (t) minimum electricity usage of usern in slot t
En total electricity usage duringL slots for usern
Emax(t) maximum electricity usage for the residential area in slott
Emin(t) minimum electricity usage for the residential area in slott
E(t) scheduled electricity usage for the residential area in slot t
~Wmax cumulative upper bound of electricity usage duringL slots
~Wmin cumulative lower bound of electricity usage duringL slots
~W cumulative scheduled electricity usage duringL slots
Φ total electricity usage for all users duringL slots
~P feasible power supply scheduling duringL slots
~P ∗ smooth optimal power supply scheduling duringL slots
Un(·) utility function for usern
h(t) electricity price at time slott
ν Lagrange multiplier
L Lagrange function
κ(l) stepsize of stepl in equation (2.7)
α(l) stepsize of stepl in equation (2.8)

and industrial loads. LetR = {1, 2, · · · , N} be the set of users. The electric demand of a user is

daily based. Without loss of generality, we assume the one day period is divided intoL time slots,

each with lengthτ . Let pn(t) be the power consumption of usern in time slott, which is time

varying but remains constant within the time slot. Each usern knows its own total daily demand,

i.e.,En =
∑L

t=1 pn(t)τ , and wishes to schedule the demand over the one day period [91].
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We assume the total demandEn consists of two parts: thepriority load and thedeferrable

load. The priority load should be strictly guaranteed in a time slot (e.g., for lighting), while the

deferrable load can be served flexibly but with a specific deadline (e.g., charging a household

battery or PHEVs). We defineen,p(t) anden,d(t) as the electric energy for priority load in time slot

t, and the deferrable load that must be satisfied by time slott, respectively. The minimum demand

of usern in time slott, denoted byemin
n (t), is the sum ofen,p(t) anden,d(t). Finally, letemax

n (t) be

the maximum possible demand for usern, which is limited by the amount of deferrable loads that

have not been satisfied yet, and the capacity of protective relays and switches of the users.

2.2.2 Cumulative Demand and Supply Curves

At the beginning of a day, the DCC will aggregate the individual demand profiles received

by communicating with the smart meters and smart facilitiesvia the communications network [3].

Let the total minimum electricity demand in time slott beEmin(t) =
∑

n∈R e
min
n (t). We have

Emin(L) =
∑

n∈REn = Φ, since the daily aggregated demand of all users, denoted byΦ, should

finally be satisfied by the end of the day. We define thecumulative minimum demand curve~Wmin

as

Wmin(t) =
t
∑

l=1

Emin(l), 1 ≤ t ≤ L. (2.1)

We define thecumulative maximum demand curve~Wmax to represent the maximum amount of

electricity demand that can be consumed up tot as

Wmax(t) = min{Wmin(t− 1) +
∑

n∈R

[emax
n (t) + ∆en(t− 1)],Φ}, 1 ≤ t ≤ L

where∆en(t) = emax
n (t)− emin

n (t) is the deferrable load that can be served in slott but with dead-

lines later thant. To incorporate the priority load in the model,Wmax(t) also satisfiesWmax(t) ≥

Wmax(t− 1) +
∑

n∈R en,p(t).

For given demand curves~Wmin and ~Wmax, we aim to find a feasible electricity schedule

~W , which is thecumulative supplyof electricity to the users that satisfies constraintsWmin(t) ≤
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W (t) ≤ Wmax(t), for all 1 ≤ t ≤ L, andW (L) = Φ (i.e., the total demand should be satisfied

by the end of the day). The three cumulative curves are illustrated in Fig. 2.2, which are all

nondecreasing over time.

The proposed demand and supply model is quite general. It does not assume any mathemat-

ical model for either the supply or the demand. It is more practical than the complex statistical

models for supply and demand used in the literature [4]. The cumulative curves represent the

demand/supply status in the power distribution network. Ineach time slott, Wmin(t) tracks the

priority load and the deferrable load with deadlinet, whileWmax(t) represents an upper bound of

the possible consumption by timet. The gap betweenWmax(t) andWmin(t) may accommodate the

future uncertainty of the electric power usage. The slope ofW (t), denoted byP (t), corresponds to

the scheduled electric power. The DCC aims to find an optimal scheduleW (t) for every time slott

to achieve a specific control target. A feasible power supplyschedule~P = [P (1), P (2), · · · , P (L)]

ensures that~W lies between~Wmin and ~Wmax for all theL time slots, thus preventing both outage

events and energy waste.
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It can be seen from Fig. 2.2 that the feasible electric power schedule may not be unique.

Among various feasible schedules, we are interested in the one that distributes electricity most

smoothly among theL time slots, i.e., thesmoothness optimal schedule. Once the DCC obtains

the smoothness optimal schedule, it can announce the schedule to the smart meters and smart util-

ities at the users’ premises via the communication network,and the users can shape their demand

to match the schedule (assuming cooperative users). Therefore, we can achieve smooth electric-

ity generation, transmission and consumption, which is highly preferable for the grid design and

operation [4].

2.2.3 Smooth Power Scheduling Problem

Based on the demand and supply model, we formulate the smooth power scheduling problem

in this section. LetP̄ = Φ/(Lτ) be the average power consumption in the power distribution

network through the daily period. The scheduled power for each time slot isP (t) = W (t)/τ .

The smoothness optimal schedule minimizes the variations of the supplied power over the entire

period, i.e.,

maximize: S(~P ) (2.2)

subject to: Wmin(t) ≤ W (t) ≤ Wmax(t), for all t

W (L) = Wmin(L) = Wmax(L) = Φ

P (t) ≥ Ep(t)/τ, for all t,

whereS(~P ) is thesmoothnessof a schedule~P , Ep(t) =
∑

n∈R en,p(t) is the total priority load in

time slott.

Generally, smoothness can be measured by different metrics, such as variance, cumulative

absolute difference, etc. Each smoothness measure leads toa different objective function in prob-

lem (2.2), while the solution to the problem will then dependon the specific form of the objective
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function. In addition, the smoothness measures are generally nonlinear, making the problem non-

trivial to solve. In this chapter, we resort to a mathematic theory of majorization [13], which

explicitly addresses the unique mathematical notion for smoothness. Applying majorization the-

ory, we will see that for an arbitrary smoothness objective function in problem (2.2) that satisfies

the Schur-convex properties [13], the problem can be solvedby a universal algorithm in polyno-

mial time. For brevity in the deduction, we minimize variance in the rest of the chapter, while the

solution algorithms developed in Section 2.4 apply to any objective function that is Schur-convex.

We first consider the case where deferrable load is the dominant component [97], i.e.Ep(t) ≈

0. Problem (2.2) is then reduced to problem (2.3).

minimize:
∑L

t=1

[

P (t)− P̄
]2
/L (2.3)

subject to: Wmin(t) ≤ W (t) ≤ Wmax(t), for all t

W (L) = Φ

P (t) ≥ 0, for all t.

This problem fits well with themajorization theory, since the objective function is Schur-

convex [13]. We briefly review Majorization preliminary in Section 2.3. Applying majorization,

we will design a smooth electric power scheduling algorithmfor solving problem (2.3) in Sec-

tion 2.4.1. We will then extend the algorithm for solving problem (2.2) in Section 2.4.3.

2.3 Majorization Preliminaries

Majorization theory [13] describes the “less spread out” or“more nearly equal” properties of

the elements of a vector comparing to the elements of anothervector. It concerns with the problem

of ordering vectors with nonnegative, real elements, as well as order-preserving functions. For

simplicity, all the vectors in this section are row vectors.

Definition 2.1. For two n-dimensional vectors~X = (x1, x2, · · · , xn) and ~Y = (y1, y2, · · · , yn),

with elements sorted in the non-increasing order asx1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and y1 ≥ y2 ≥
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· · · ≥ yn ≥ 0. ~X is said to bemajorizedby ~Y , denoted as~X ≺ ~Y , if (i)
∑t

i=1 xi ≤
∑t

i=1 yi,

t = 1, 2, · · · , n− 1, and (ii)
∑n

i=1 xi =
∑n

i=1 yi [13].

Definition 2.2. A real-valued functionφ defined on a setA ⊂ Rn is said to beSchur-convexonA

if ~X ≺ ~Y onA ⇒ φ( ~X) ≤ φ(~Y ) [13].

Schur-convex functions have the “order-preserving” property, which bridges majorization to

optimization. Schur-convex functions can be validated with the following fact.

Fact 2.1. If φ is symmetric and convex, thenφ is Schur-convex. Consequently,~X ≺ ~Y implies

φ( ~X) ≤ φ(~Y ) [13].

This fact provides connection between ordering and its order-preserving functions. By this

fact, we may solve the minimization optimization problem bygenerating the most possible “spread

out” vector as the solution. Ifφ =
∑

g andg is continuous convex, then we have the following

strong fact:

Fact 2.2.
∑

g(xi) ≤
∑

g(yi) ⇔ ~X ≺ ~Y holds for all continuous convex functiong : R → R

[13].

Lemma 2.1. Let ~X = ( ~X1, · · · , ~XK), and~Y = (~Y1, · · · , ~YK), where each element has dimension

Ji and satisfying~Xi ≺ ~Yi. Then ~X ≺ ~Y .

Proof. Let g be the continuous convex functionR → R. By Fact 2.2,~Xi ≺ ~Yi ⇔
∑Ji

j=1 g(x
j
i ) ≤

∑Ji
j=1 g(y

j
i ) ⇒

∑K
i=1

∑Ji
j=1 g(x

j
i ) ≤

∑K
i=1

∑Ji
j=1 g(y

j
i ) ⇔

~X ≺ ~Y .

Observation 2.0.1.Let ~X = (x̄, · · · , x̄), ~Y = (y1, · · · , yn), ~Z = (z1, · · · , zn), where
∑n

i=1 yi =
∑n

i=1 zi = nx̄. If the elements in each vector is non decreasing, we may plot the normalized

points of ~X/(nx̄), ~Y /(nx̄) and ~Z/(nx̄) on Fig. 2.3. If we explain the element of vectors as the

income of individual, this is Lorenz Curves, which evaluate the social income inequality [98]. The

curves show the normalized cumulative proportion of the income versus the cumulative percentage

of population. The normalized~X forms the straight curveA, which corresponds to the equal
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Figure 2.3: Lorenz Curves.

distribution. Normalized~Y and normalized~Z represent the unequal distribution and bent in the

middle, and are denoted curveB andC, respectively. We call these bow curves in the convex

shape. By the fact that the Lorenz curves are bent more, concentration increases, the bow curve

inside represents more even distribution [13], which leads to ~X ≺ ~Y ≺ ~Z. Similarly, we may

mutate theB and C to B′ and C ′ by only changing the order of the elements. We call these

bow curves in the concave shape. Since the order of the vectors plays no role in majorization,

~X ≺ ~Y ≺ ~Z still holds for concave shape.

Theorem 2.1.The objective function of problems (2.2) and (2.3) is Schur-convex.

Proof. The proof follows the Fact 2.1 straightforward, due to the symmetric, increasing and convex

of the objective function in problem (2.2) and (2.3).

2.4 Smooth Electric Power Scheduling

2.4.1 SEPS-DL Algorithm

We first develop a smooth electric power scheduling for deferrable load algorithm (SEPS-

DL) based on majorization. With Theorem 2.1, we convert the optimization problem (2.3) into an

ordering problem of vectors, each representing a feasible schedule. Thus, we solve problem (2.3)
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by finding the most evenly distributed electric power schedule that is feasible for the entire period.

Obviously, the most evenly distributed schedule is~P opt = [Φ/(Lτ), · · · ,Φ/(Lτ)], corresponding

to having the average power consumptionP̄ in each time slot. However, due to time varying user

demands,~P opt may not be feasible. In general, each feasible schedule is piece-wise linear with a

set ofpower changing points, where the scheduled power increases or decreases to prevent outage

events or electric energy waste.

The proposed SEPS-DL algorithm can generate a feasible piece-wise linear schedule, which

keeps each piece as long as possible into the future and keepsthe power variation as small as

possible. The algorithm is illustrated in Fig. 2.4. Starting from tstart, SEPS-DL first computes two

probe lines:

• One probe line fromtstart to the next corner point ofWmax(t), which can go the furthest

into the future without causing outage events or energy waste (e.g., linesP1P2 in Case 1 and

P5P6 in Case 2 of Fig. 2.4). The power of this probe line isPmax(t) =
Wmax(t)−W (tstart)

t−tstart
.

• The other probe line fromtstart to the next corner point ofWmin(t), which can go the furthest

into the future without causing outage events or energy waste (e.g., linesP1P3 in Case 1 and

P5P7 in Case 2). The power of this probe line isPmin(t) =
Wmin(t)−W (tstart)

t−tstart
.

All feasible schedules should reside between the two probe lines in order to go farther into the

future (i.e., to be smooth). Moreover, when the two probe lines are ended, they must hitbothon

eitherWmax(t) or both onWmin(t). Otherwise, we can always adjust one of the probe lines to

make it go even further into the future. For example, see linesP1P3 andP1P
′
4 in Case 1 of Fig. 2.4.

We can use lineP1P2 (which goes farther into the future) to replace lineP1P
′
4, and both probe lines

hit Wmin(t) eventually. In Case 2 in the figure, both probe linesP5P6 andP5P7 hit Wmax(t).

If both probe lines hitWmin(t) (i.e., Case 1 in Fig. 2.4), any feasible schedule for this interval

will also hitWmin(t), since it must lie between the two probe lines. We then trace back theupper

probe line (i.e., lineP1P2) to find the latest time when the schedule just satisfies the maximum
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Figure 2.4: Illustrate the operation of the SEPS-DL algorithm.

demand (i.e., pointP4 at timetstop). Then segmentP1P4 will be chosen as the schedule for the

interval [tstart, tstop), with powerWmax(tstop)−W (tstart)

tstop−tstart
.

If both probe lines hitWmax(t) (i.e., Case 2 in Fig. 2.4), any feasible schedule for this interval

will also hitWmax(t). We then trace back thelowerprobe line (i.e., lineP5P7) to find the latest time

when the schedule just satisfies the minimum demand (i.e., point P8 at timetstop). Then segment

P5P8 will be chosen as the schedule for the interval [tstart, tstop), with powerWmin(tstop)−W (tstart)

tstop−tstart
.

After the schedule for[tstart, tstop) is determined, we settstart = tstop and repeat the above

procedure to find the schedule for the next time interval.

As shown in Algorithm 1, SEPS-DL probes for the longest feasible power starting fromtstart

in Steps4–10. In Steps11–14, the power for the interval[tstart, tstop) is determined depending on

which of the two cases it is as illustrated in Fig. 2.4. Steps16–17 are for the case that the power

does not change in the time slot. Step19 resets the variables to start the computation for the next

segment ofP (t).

2.4.2 Performance of SEPS-DL

The proposed SEPS-DL algorithm is very easy to implement. Itcan be shown that SEPS-DL

has the following properties.

Theorem 2.2.SEPS-DL is smoothness optimal.

Proof. See Appendix A.1.
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Algorithm 1: Smooth Electric Power Scheduling for Deferrable Load Demand

1 DCC aggregates the demand from all the users by information networks and calculates
~Wmin, ~Wmax for the whole scheduling period ;

2 t = 1, tstart = 0, tstop = tc1 = tc2 = 1, Pmin = 0, Pmax = ∞ ;
3 while some time slots are not scheduleddo
4 CalculatePmax(t) andPmin(t) over interval[tstart, t] ;
5 if Pmin ≤ Pmin(t) & Pmin(t) ≤ min{Pmax, Pmax(t)} then
6 Pmin = Pmin(t) andtc1 = t ;
7 end
8 if Pmax ≥ Pmax(t) & Pmax(t) ≥ max{Pmin, Pmin(t)} then
9 Pmax = Pmax(t) andtc2 = t ;

10 end
11 if Pmin > min{Pmax, Pmax(t)} then
12 SelectPmin from tstart to tstop = tc1 ;
13 else ifPmax < max{Pmin, Pmin(t)} then
14 SelectPmax from tstart to tstop = tc2 ;
15 else
16 t++ ;
17 CONTINUE ;
18 end
19 tstart = tstop, tstop = tc1 = tc2 = tstart + 1, t = tstart + 1, Pmin = 0, Pmax = ∞ ;
20 end

Corollary 2.2.1. The optimal power schedule is unique.

Proof. Suppose~P ∗ is not unique. Then there exists~P ′ ≺ ~Pk, for all k, and~P ′ 6= ~P ∗. ~P ′ must have

a different set of power changing points from that of~P ∗. According to the proof of Theorem 2.2, we

can construct an auxiliary schedule~P1, such that~P ∗ ≺ ~P1 ≺ ~P ′, which contradicts the assumption

that ~P ′ is optimal.

Theorem 2.3.The complexity of SEPS-DL isO(L2).

Proof. In the worst case, the SEPS-DL algorithm computes the optimal schedule for each time slot

by probing the full length of the remaining power sequence (as in Steps4–10 in Algorithm 1). The

worst case execution time is
∑1

i=L i =
L(L+1)

2
⇒ O(L2).

Theorem 2.4. The smooth electric power schedule computed by SEPS-DL has the smallest peak

power.
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Proof. From Theorem 2.2, we have~P ∗ ≺ ~Pk, for all k. We may reorder the elements in both~P ∗

and ~Pk to a non-increasing order. According to the definition of Majorization in Definition 2.3, the

first element in the re-ordered~P ∗ is not greater than that of~Pk, which means the largest element in

~P ∗ is not greater than that of~Pk. Thus, the schedule generated by SEPS-DL has the lowest peak

power.

Corollary 2.4.1. The SEPS-DL achieves highest load factor.

Proof. The load factor in electric power grid is defined as in [99]

Load factor(%)=
AveragePower

PeakPower
× 100%

By Theorem 2.4, the SEPS-DL generates the lowest peak power, which achieves the highest load

factor during the scheduled period.

Theorem 2.4 and Corollary 2.4.1 is highly preferable for griddesign and operation. A lower

peak power allows the operator to deploy generators, transformers and power transmission lines

with smaller capacity in the grid, thus reducing the capitalinvestment. In addition, the grid may

be alleviated of the power usage burden during peak hours, and the electric energy usage quality

of users can be improved.

Theorem 2.5.SEPS-DL is generation operating cost optimal.

Proof. See Appendix A.2.

2.4.3 Extension to the General Case

We next extend SEPS-DL to solve the general case problem (2.2). With the priority load,

a feasible power schedule should satisfyP (t) ≥ Ep(t)/τ in every time slot. The presence of

priority load enforces new constraints on the feasibility of the schedules. For example, consider

the aggregated cumulative priority load curves and deferrable load curves shown in Fig. 2.5(a)
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Figure 2.5: Smooth power scheduling with priority load. (Note that although not deferrable, the
cumulative priority load can also be represented with two curves as shown in (a), where the maxi-
mum and minimum curves meet at the corners.)

and Fig. 2.5(b). According to the definition of feasible power supply schedule in SEPS-DL, both

segments1 and2 in Fig. 2.5(c) are feasible. However, it can be seen that segment1 actually cannot

provide enough power to satisfy the priority load in time slot t2, since its slope is smaller than the

required slope (i.e., that of segment0 in Fig. 2.5(a)).

To solve this problem, we develop the general smooth electric power scheduling algorithm

(GSEPS), which is based on SEPS-DL. Specifically, SEPS-DL assumes no priority load. During

the execution, the generated power segment is compared withthe priority load. If the SEPS-DL

generated power segmentP ∗(t) is less than the priority load in time slott, GSEPS will increase

P ∗(t) to the priority load (e.g., see segment3 in Fig. 2.5). Then SEPS-DL will continue to compute

further segments of the schedule by setting the new startingpoint to t, until the entire schedule is

computed.

2.4.4 Electric Power Allocation Among Individual Users

After the smooth electric power schedule is obtained, the DCCannounces the schedule to all

the users and requests them to control their loads to match the supplied electric energyW ∗(t) =

P ∗(t)τ in each time slott. To divide the total supplyW ∗(t) among theN users, we assume a

benefit functionUn(pn(t)) for each usern, which is a nondecreasing concave function [92] and
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represents the level of satisfaction of the user when receiving pn(t) in time slott. We then develop

an algorithm that maximizes the sum of the benefit functions of all users in the power distribu-

tion network. The maximization of the total benefit under thesmooth schedule constraint can be

formulated in each time slott as follows:

maximize:
∑

n∈RUn(pn(t)) (2.4)

subject to: pmin
n (t) ≤ pn(t) ≤ pmax

n (t), for all n

∑

n∈Rpn(t) = W ∗(t)/τ,

wherepmax
n (t) andpmin

n (t) are the maximum and minimum power consumptions of usern in slot

t, respectively.

Problem (2.4) is a convex optimization problem, which can besolved effectively with a convex

optimization solver. In case that DCC may not know the exact parameters of individual utility

functions in practice, we develop a distributed user benefitmaximization load control algorithm

(DUBMLC) based ondual decomposition[100] to solve problem (2.4). For brevity, we omit the

time slot notationt in following equations.

First, we introduce the non-negative Lagrange multiplierν, and derive the Lagrange function:

L(pn, ν) =
∑

n∈R

Un(pn) + ν

(

W −
∑

n∈R

pn

)

(2.5)

=
∑

n∈R

Ln(pn, ν) + νW,

whereLn(pn, ν) = Un(pn)−νpn. Observing thatLn(·) only depends on usern’s local information,

we have the dual decomposition for each usern. Each user solves subproblem (2.6) for given

Lagrange multipliers̃ν:

pn(ν̃) = argmaxpmin
n ≤pn≤pmax

n
Ln(pn, ν̃), for all n. (2.6)
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Subproblem (2.6) can be solved with the subgradient method [14], sinceLn is strictly concave.

Usern iteratively updates its powerpn until pn converges, as:

pn(l + 1) =

[

pn(l) + κ(l) ·
∂Ln(pn)

∂pn

]+

(2.7)

where[·]+ denotes the projection ofpn onto the range[pmin
n , pmax

n ], andκ(l) is the step size varies

in each stepl according to the Armijo Rule [14]. The solutionpn can be solved locally by the users

and converges to the optimal solution ofp̃n for all n asl → ∞.

For a given optimal solutioñpn, the master dual problem is to solved by DCC:

minimize: L(p̃n, ν),

subject to: ν ≥ 0, for all n.

We can also apply the subgradient method to iteratively update the multipliers as:

ν(l + 1) = max

{

ν(l)− α(l) ·
∂L(ν)

∂ν
, 0

}

, (2.8)

whereα(l) is the step size. The Lagrange multipliers converges to the optimal asl → ∞, since

problem (2.4) is a convex problem, the duality gap is zero andthe solution of (2.6) is unique. The

primal variablepn will also converge to the optimal solutions [100].

The distributed user benefit maximization load control (DUBMLC) algorithm is presented

in Algorithm 2. With DUBMLC, each user greedily maximizes its own benefit by solving (2.6)

with current “price”ν, which is controlled by DCC through the master due problem (2.8). Due to

convexity of the problem, the optimization gap is zero and the optimal total maximum benefit is

reached when the algorithm converges.

Combining of GSEPS and DUBMLC, we now present the General SmoothElectric Power

Scheduling Policy. Specifically, at the beginning of each period, which can be daily based or

be an arbitrary period of time, the users send their slotted demand profiles to the DCC through
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Algorithm 2: Distributed User Benefit Maximization Load Control Algorithm

1 l = 0 and the DCC initializes nonnegative parameterν(l) ;
2 The DCC announces the parameters to the users via the communications network ;
3 Each user locally solves problem (2.6) as in (2.7) to obtain its requested power ;
4 Each user sends its requested power to the DCC via informationnetworks ;
5 The DCC updates the parametersν(l) as in (2.8) and announces the new valueν(l + 1) to

all users ;
6 l = l + 1 and go to Step3, until the solution converges ;

the communications network. After aggregating all the demand profiles, the DCC calculates the

deterministic cumulative supply/demand curves for the power distribution networks and executes

GSEPS to compute the smooth power profile. After that, DCC let the users to control their elec-

tricity usage to match the smooth schedule with DUBMLC. The load control does not necessarily

need to be fully executed at the exact beginning of the period. It may operate at some time ahead

of the scheduled time slot. If a user requests a usage exceeding the planned level, the DCC may

allow the distribution substation to temporally fulfill theexcess demand but charging a penalty

price based on the electric energy availability of the powerdistribution network.

2.5 Simulation Evaluation

In this section, we evaluate the proposed algorithms by simulating an electric power distri-

bution network with250 independent users. We assume a daily period slotted intoL = 144

time slots (i.e.,τ = 10 min). The demand for each user during the period is randomly dis-

tributed from 35 kWh to 50 kWh. The DCC aggregates the load profiles and generates the

cumulative supply/demand curves at the beginning of the period. We adopt a benefit function

Un(t) = k1qn(t) −
1
2
k2qn(t)

2 [101], whereqn(t) ∈ [0, 1] is the normalized value of power sup-

ply pn(t). With thisUn(·), problem (2.4) becomes a quadratic programming problem, which can

be effectively solved with the proposed distributed algorithm. Without loss of generality, we set

k1 = k2 = 1 in the simulations.

We first examine the performance of SEPS-DL and GSEPS. For SEPS-DL, all the electric

energy demand is deferrable. For GSEPS, we assume50% of the demand is deferrable and the
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Figure 2.6: Comparison of the power schedules achieved by SEPS-DL an GSEPS.

deadlines are randomly distributed during the daily period. The cumulative demand curves and the

computed schedules are plotted in Fig. 2.6. We find that both electric power schedules lie between

~Wmin and ~Wmax, meaning they are feasible and satisfying the user demands in the entire period.

In some time slots, e.g., slots [70, 80] and [110, 120], GSEPS requests a larger electric power

than SEPS-DL. This is due to the hard requirement for the priority load, which temporally forces

GSEPS to increase the electric power supply.

After the smooth power schedule is obtained, DUBMLC is executed to divide the power to

individual users in each time slot. For better illustration, we only plot the power convergence

curves for six users in Fig. 2.7. The curves for other users are similar. We find that all the curves

converge to the optimal values very quickly; after one step there is no significant variation in the

electric powers of individual users.

We next compare the proposed algorithms with two alternatives:

• A “supply until deadline” scheme (SUDP), in which the deferrable load demand is served

until the last minute.
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Figure 2.7: Convergence of the individual power allocation achieved by DUMLC.

• The “utility maximization real-time pricing” scheme (UMRP)that is introduced in [102],

which solves the demand side management problem with a real-time pricing strategy and

has been widely cited in the smart grid research community.

In particular, the UMRP scheme maximizes the social welfare in a smart grid at each time slot

independently, i.e.,

max
∑

n∈R

Un(pn(t))− g(P (t), θ(t)), for all t,

subject to the total power generation constraint and user power consumption constraints. This

algorithm can be extended to our simulation scenario. In this work, the operating cost of power

generation is evaluated byg(P (t), θ(t)) = (β1 + β2P (t) + β3P (t)
2)θ(t), which is generalized

from [103].We letβ1 = 120.0, β2 = 6, β3 = 0.04 for a generator [103] andθ(t) be uniformly

distributed in[0.5, 2.5]. This yields a quadratic programming problem, which can be solved in

either a centralized or distributed manner [102]. In the simulations, we use a centralized interior-

point method to solve the problem.
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The peak power, load factor and power variation achieved by the above algorithms for net-

works with different numbers of users are presented in Fig. 2.8, Fig. 2.9, and Fig. 2.10, respec-

tively. Each number is the average of100 simulation runs with different random seeds, with the

95% confidence interval plotted at the top of each bar. We observethat SEPS-DL and GSEPS can

significantly reduce both peak power and power variation in the power distribution network. For

example, for the network with1000 users, SEPS-DL and GSEPS achieves peak powers1947 kW

and2560 kW, respectively, which are only55% and73% of the corresponding SUDP and UMRP

peak powers. We also notice that the load factors achieved bySEPS-DL and GSEPS are more

than100% and50% larger than those of SUDP and UMRP under all cases. Similiarly, we find in

Figure 2.10 that the SEPS-DL and GSEPS schedules are much more smoother than both SUDP

and UMRP schedules. Therefore, to design the power generation, transmission and distribution

infrastructure for this1000-user site, we may select components, such as transformers and trans-

mission lines, based on the capacity specifications of1947 kW and2560 kW, respectively (with

SEPS-DL and GSEPS), instead of3513 kW with SUDP and UMRP. As the network size increases,

the performance gap increases as well. For the smallest gap case when network size is100, the

power reduction is176 kW for SEPS-DL and110 kW for GSEPS, which meets the requirement of

100 kW minimum energy reductions for the DR products atISONE[104].

It is interesting to observe that UMRP and SUDP have almost identical performance in the

simulations. This is largely due to the choice of the object function
∑

n∈R Un(pn(t))−g(P (t), θ(t)).

In the simulation with the above utility functions and cost functions, the effect of the total power

decrement on the cost functions dominates the effect of the individual user power increments in

their utility functions. Thus UMRP attempts to reduce the total power generation, while only main-

taining the minimum user satisfaction level. This strategyindeed degenerates UMRP to SUDP,

both with similar performance. Although UMRP maximizes the welfare of the distribution net-

work, it does not aim to smooth the power schedules. It would be helpful to carefully introduce

some coefficients to balance the contributions of utility and cost to the welfare. This phenomenon

also verifies our motivation of the work that the real-time pricing with utility maximization may
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Figure 2.8: Peak electric powers achieved by SEPS-DL, GSEPS, SUDP and UMRP.
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Figure 2.9: Load factor achieved by SEPS-DL, GSEPS, SUDP andUMRP.

not automatically solve the smooth electric power scheduling and peak power reduction problems.

Compared to UMRP, the proposed algorithms directly target at the smoothness optimization prob-

lem and are robust to various configurations of the distribution network.
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Figure 2.10: Variances of the power schedules achieved by SEPS-DL, GSEPS, SUDP and UMRP.

We finally compare the average generator operating cost of SEPS-DL, GSEPS, SUDP and

UMRP. Similar to the previous scenario, we assume a load site with average aggregated demand

100 MW, which is scheduled by SEPS-DL, GSEPS, SUDP and UMRP based on a daily period.

The average generator operating costs are shown in Table 2.2. It can be seen that both SEPS-

DL and GSEPS obtain smaller operating costs than SUDP and UMRPfor serving the same load

site. It is not surprising to see that SUDP and UMRP obtain similar results, due to the effect of

the objective function. Also note that UMRP is not operating cost optimal, although it seeks to

maximize the social welfare. This is due to the fact that the operating cost is not independent

from time slot to time slot; greedily optimizing social welfare in each time slot does not guarantee

optimality over the entire period. Suppressing user satisfaction level some time slots, may result

in high power allocations at a later time slot to meet all the delayed demands right before their

deadline, leading to larger peak power and electricity generation cost. On the contrary, SEPS-DL

and GSEPS optimize power scheduling over the entire period,and can flexibly serve the demand

to achieve smooth electric power scheduling and low operating cost.
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Table 2.2: Average operating cost of power generation
SEPS-DL GSEPS SUDP UMRP

$/hour 1653 1669 1746 1746

2.6 Related Work

SG is regarded as the next generation power grid that exploits a coexisting communications

network for better control and optimization of power generation and distribution. In SG, infor-

mation technologies and computational intelligence are integrated across electricity generation,

transmission, distribution and consumption to achieve green, reliable, efficient and sustainable en-

ergy goals. Comprehensive surveys of SG technologies can be found in [3–5,105].

The emergence of SG attracts new interest in evolving the next generation of power distri-

bution systems [88]. Demand response is an important power distribution paradigm to reduce the

peak demand and smooth demand profiles in the grid by shaping the user demands. Various imple-

mentation issues of demand response in SG are examined in [104]. Real-time pricing and direct

load control are two important ways to shape user demand profile.

Due to the real-time communications and control through two-way information flows in SG,

new design approaches in demand response are being developed recently [90–93], which are based

on optimization and game theory approaches. In [90], the authors proposed an optimal and au-

tomatic residential energy consumption scheduling framework to achieve the trade-off between

minimization of electricity payment and appliance operation waiting time. In [91], a game the-

ory approach is used to control the power demand at peak hoursby dynamic pricing strategies.

In [92], the authors studied demand response for householdsbased on utility maximization, and

showed that there exist time-varying prices that may achieve social optimality. A recent work [93]

introduced the framework for optimal resource allocation under the uncertainty in the two-way

information network and provided a decentralized algorithm that can be implemented in practice.

Although providing some interesting methods to achieve cost efficient electricity usage, these work

do not explicitly address the problem of smooth electric power scheduling.
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Two recent works [106,107] studied the problem of reducing the peak-to-average ratio (PAR)

of the electric energy consumption in SG. In [106], the authors introduced a game theory frame-

work for a distributed algorithm to minimize the total energy payment and reduce PAR. However,

users need to broadcast control messages to announce their new schedules to the entire network.

The control overhead could be considerable. In [107], energy storage devices were incorporated

in the SG and users’ cost and PAR are minimized with a distributed algorithm. Although the dis-

tributed algorithm only needs to exchange information withthe energy provider, the achieved Nash

equilibrium cannot be guaranteed to be socially optimal. Inaddition, this work does not consider

the operating cost of the energy provider.

Majorization is a useful tool for problems involving vectors [13]. It has been used in solving

optimization problems in the communication and networkingarea [57,95,96]. In [95], majorization

is applied to variable-bit-rate (VBR) video smoothing over a wired CBR link. Ref. [96] presented

an optimal transmission algorithm over a wireless multiple-input single-output (MISO) link based

on majorization. In our recent work [57], we adopted majorization for power efficient VBR video

streaming over a cellular network.

Our work differs from these existing efforts by introducingthe mathematic theory of majoriza-

tion to solve the smoothness scheduling problem in electricdistribution networks, while explicitly

targeting at the unique mathematical notion of smoothness.To the best of our knowledge, this is

the first work that introduces maojorization into electric energy management in power grid, which

jointly considers smooth power scheduling, electric usagequality provisioning on the user side,

and grid operating cost on the electric energy provider side. The effective electric power smooth-

ing solution provides a highly competitive solution for future SG design and operations.

2.7 Conclusions

In this chapter, we addressed the problem of smooth electricpower scheduling in a power dis-

tribution network. We introduced a deterministic model to characterize the complex relationship
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between demand and supply. A constrained nonlinear optimization problem is formulated aim-

ing to minimize the electric power variation and satisfy user power usage quality. We developed

majorization-based algorithms for deriving smoothness optimal schedules for the network, and a

distributed algorithm for dividing the power supply among the users. Our simulation study shows

that the proposed algorithms can effectively reduce the peak power, minimize the power variation,

and reduce the operating cost of the grid, while satisfying user power usage quality.
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Chapter 3

Adaptive Electricity Scheduling in Microgrids

3.1 Introduction

In this chapter, we designed a smart energy management systems inMicrogrid (MG) by taking

advantage of the plug-and-play interfaces of smart grid. MGis a promising component for future

SG deployment. Due to the increasing deployment ofdistributed renewable energy resources(DR-

ERs), MG provides a localized cluster of renewable energy generation, storage, distribution and

local demand, to achieve reliable and effective energy supply with simplified implementation of SG

functionalities [4, 108]. We review the typical MG architecture in Fig. 3.1, consisting of DRERs

(such as wind turbines and solar photovoltaic cells),energy storage systems(ESS), a communica-

tion network (e.g., wireless or powerline communications)for information delivery, anMG central

controller (MGCC), and local residents. The MG has centralized control with the MGCC [108],

which exchanges information with local residents, ESS’s, and DRERs via the information net-

work. There is a single common coupling point with the macrogrid. When disconnected, the MG

works in theislanded modeand DRERs and ESS’s provide electricity to local residents. When

connected, the MG may purchase extra electricity from the macrogrid or sell excess energy back

to the market [3].

The balance of electricity demand and supply is one of the most important requirements in

MG management. Instead of matching supply to demand, smart energy management matches the

demand to the available supply using control technology or off-peak pricing to achieve more effi-

cient capacity utilization [4]. In this chapter, we developa novel access control framework for MG

energy management, exploiting the two-way flows of electricity and information. In particular,

we consider two types of electricity usage: (i) a pre-agreedbasic usagethat is “hard”-guaranteed,

such as basic living usage, and (ii) extra elasticquality usageexceeding the pre-agreed level for
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Figure 3.1: Illustrate the microgrid architecture.

more comfortable life, such as excessive use of air conditioners or entertainment devices. In prac-

tice, residents may set their load priority and preference to obtain the two types of usage [89].

The basic usage should be always satisfied, while the qualityusage is controlled by the MGCC

according to the grid status, such as DRER generation, ESS storage levels and utility prices. The

MGCC mayblock some quality usage demand if necessary. This can be implemented by incor-

porating smart meters, smart loads and appliances that can adjust and control their service level

through communication flows [3]. To quantify residents’ satisfaction level, we define the outage

percentage of the quality usage asQuality of Service in Electricity(QoSE), which is specified in

the service contracts. For example, the residents may customize their outage risk of quality usage

in return for paying an insurance premium, which is differentiated according to local residents

preferences [109] [109]. The MGCC adaptively schedules electricity to keep the QoSE below a

target level, and accordingly dynamically balance the loaddemand to match the available supply.

In this chapter, we investigate the problem of smart energy scheduling by jointly considering

renewable energy distribution, ESS management, residential demand management, and utility mar-

ket participation, aiming to minimize the MG operation costand guarantee the residents’ QoSE.

The MGCC may serve some quality usage with supplies from the DRERs, ESS’s and macrogrid.

On the other hand, the MG can also sell excessive electricityback to the macrogrid to compensate
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for the energy generation cost. The electricity generated from renewable sources is generally ran-

dom, due to complex weather conditions, while the electricity demand is also random due to the

random consumer behavior, and so do the purchasing and selling prices on the utility market. It is

challenging to model the random supply, demand, and price processes for MG management, and

it may also be costly to have precise, real-time monitoring of the random processes. Therefore,

a simple, low cost, and optimal electricity scheduling scheme that does not rely on any statistical

information of the supply, demand, and price processes would be highly desirable.

We tackle the MG electricity scheduling problem with aLyapunov optimizationapproach,

which is a useful technique to solve stochastic optimization and stability problems [12]. We first

introduce two virtual queues: QoSE virtual queues and battery virtual queues to transform the

QoSE control problem and battery management problem to queue stability problems. Second, we

design an adaptive MG electricity scheduling policy based on the Lyapunov optimization method

and prove several deterministic (or, “hard”) performance bounds for the proposed algorithm. The

algorithm can be implementedonlinebecause it only relies on the current system status, without

needing any future knowledge of the energy demand, supply and price processes and any future

information. The proposed algorithm also converges exponentially due to the nice property of

Lyapunov stability design [110]. The algorithm is evaluated with trace-driven simulations and is

shown to achieve significant efficiency on MG operation cost while guaranteeing the residents’

QoSE.

The remainder of this chapter is organized as follows. We present the system model and

problem formulation in Section 3.2. An adaptive MG electricity scheduling algorithm is designed

and analyzed in Section 3.3. Simulation results are presented and discussed in Section 3.4. We

discuss related work in Section 3.5. Section 3.6 concludes the chapter.

The notations used in this chapter are summarized in Table 3.1.
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3.2 System Model and Problem Formulation

3.2.1 System Model

Overview

We consider the electricity supply and consumption in an MG as shown in Fig. 3.1. We as-

sume that the MG is properly designed such that a portion of the electricity demand related to basic

living usage (e.g., lighting) from the residents, termedbasic usage, can be guaranteed by the min-

imum capacity of the MG. There are randomness in both electricity supply (e.g., weather change)

and demand (e.g., entertainment usage in weekends). To copewith the randomness, the MG works

in thegrid-connectedmode and is equipped with ESS’s, such as electrochemical battery, supercon-

ducting magnetic energy storage, flywheel energy storage, etc. The ESS’s store excess electricity

for future use.

The MGCC collects information about the resident demands, DRER supplies, and ESS levels

through the information network. When a resident demand exceeds the pre-agreed level, aquality

usagerequest will be triggered and transmitted to the MGCC. The MGCC will then decide the

amount of quality usage to be satisfied with energy from the DRERS, the ESS’s, or by purchasing

electricity from the macrogrid. The MGCC may also decline some quality usage requests. The

excess energy can be stored at the ESS’s or sold back to the macrogrid for compensating the cost

of MG operation.

Without loss of generality, we consider a time-slotted system. The time slot duration is deter-

mined by the timescale of the demand and supply processes, aswell as how frequent the MG can

switch on and off to the macrogrid.

Energy Storage System Model

The system model is shown in Fig. 3.2. Consider a battery farm with K independent battery

cells, which can be recharged and discharged. We assume thatthe batteries are not leaky and do

not consider the power loss in recharging and discharging, since the amount is usually small. It is
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Figure 3.2: The system model considered in this chapter.

easy to relax this assumption by applying a constant percentage on the recharging and discharging

processes. For brevity, we also ignore the aging effect of the battery and the maintenance cost,

since the cost on the utility market dominates the operationcost of MGs.

LetEk(t) denote the energy level of thekth battery in time slott. The capacity of the battery

is bounded as

Emin
k ≤ Ek(t) ≤ Emax

k , ∀ k, t, (3.1)

whereEmax
k ≥ 0 is the maximum capacity.Emin

k ≥ 0 is the minimum energy level required for

batteryk, which may be set by the battery deep discharge protection settings. The dynamics over

time ofEk(t) can be described as

Ek(t+ 1) = Ek(t)−Dk(t) +Rk(t), ∀ k, t, (3.2)

whereRk(t) andDk(t) are the recharging and discharging energy for batteryk in time slot t,

respectively. The charging and discharging energy in each time slot are bounded as











0 ≤ Rk(t) ≤ Rmax
k , ∀ k, t

0 ≤ Dk(t) ≤ Dmax
k , ∀ k, t.

(3.3)

In each time slott,Rk(t) andDk(t) are determined such that (3.1) is satisfied in the next time slot.
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Usually the recharging and discharging operations cannot be performed simultaneously, which

leads to











Rk(t) > 0 ⇒ Dk(t) = 0, ∀ k, t

Dk(t) > 0 ⇒ Rk(t) = 0, ∀ k, t.
(3.4)

Energy Supply and Demand Model

ConsiderN residents in the MG; each generates basic and quality electricity usage requests,

and each can tolerate a prescribedoutage probabilityδn for the requested quality usage part. The

MGCC adaptively serves quality usage requests at different levels to maintain the QoSE as well

as the stability of the grid. The service of quality usage canbe different for different residents,

depending on individual service agreements.

Let λn be theaverage quality usage arrival rate, andδn a prescribed outage tolerance (i.e., a

percentage) for usern. The averageoutage ratefor the quality usage,ρn, should satisfy

ρn ≤ δn · λn. (3.5)

At each timet, the quality usage request from residentn isαn(t) ∈ [0, αmax
n ] units, which is an i.i.d

random variable with a general distribution. The average rate isλn = limt→∞(1/t)
∑t−1

τ=0 αn(τ)

by the law of large number.

The DRERs in the MG generateU(t) units of electricity in time slott. U(t) can offer enough

capacity to support the pre-agreedbasic usagein the MG, which is guaranteed by islanded mode

MG planning. due to complex weather conditions. The electric is transmitted over power trans-

mission lines. Without loss of generality, we assume the power transmission line is not subject

to outages and the transmission loss is negligible. Letαb
n(t) be the pre-agreedbasic usagefor

residentn in time slott, which can be fully satisfied byU(t), i.e.,
∑N

n=1 α
b
n(t) ≤ U(t), for all t.

In addition, somequality usagerequestαn(t) may be satisfied ifP (t) = U(t)−
∑N

n=1 α
b
n(t) ≥ 0.
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Let pn(t) be the energy allocated for the quality usage of residentn. We have

0 ≤ pn(t) ≤ αn(t). (3.6)

We define a functionIn(t) ≥ 0 to indicate the amount of quality usage outage for resi-

dent n, as In(t) = αn(t) − pn(t). Then the average outage rate can be evaluated asρn =

limt→∞(1/t)
∑t−1

τ=0 In(t).

The MGCC may purchase additional energy from the macrogrid orsell some excess energy

back to the macrogrid. LetQ(t) ∈ [0, Qmax] denote the energy purchased from the macrogrid and

S(t) ∈ [0, Smax] the energy sold on the market in time slott, whereQmax andSmax are determined

by the capacity of the transformers and power lines. Since itis not reasonable to purchase and sell

energy on the market at the same time, we have the following constraints











Q(t) > 0 ⇒ S(t) = 0, ∀ t

S(t) > 0 ⇒ Q(t) = 0, ∀ t.
(3.7)

To balance the supply and demand in the MG, we have

P (t)+Q(t)+
K
∑

k=1

Dk(t)−S(t)−
K
∑

k=1

Rk(t) =
N
∑

n=1

pn(t), ∀ t. (3.8)

Utility Market Price Model

The price for purchasing electricity from the macrogrid in time slott is C(t) per unit. The

purchasing price depends on the utility market state, such as peak/off time of the day. We assume

finiteC(t) ∈ [Cmin, Cmax], which is announced by the utility market at the beginning ofeach time

slot and remains constant during the slot period [111]. Unlike prior work [111], we do not require

any statistic information of theC(t) process, except that it is independent to the amount of energy

to be purchased in that time slot.
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If the MGCC determines to sell renewable energy on the utilitymarket, the selling price from

the market broker is denoted byW (t) ∈ [Wmin,Wmax] in time slott, which is also a stochastic

process with a general distribution and meanλn. We also assumeW (t) is known at the beginning

of each time slot and independent to the amount of energy to besold on the market. We assume

Cmax ≥ Wmax, Cmin ≥ Wmin andC(t) > W (t) for all t. That is, the MG cannot make profit by

greedily purchasing energy from the market and then sell it back to the market at a higher price

simultaneously.

3.2.2 Problem Formulation

Given the above models, a control policyA(t) = {Q(t), S(t), Rk(t), Dk(t), pn(t)} is designed

to minimize the operation cost of the MG and guarantee the QoSE of the residents. We formulate

the electricity scheduling problem as

minimize: lim
t→∞

1

t

t−1
∑

τ=0

E{Q(τ)C(τ)− S(τ)W (τ)} (3.9)

s.t. (3.1), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8)

battery queue stability constraints.

Problem (3.9) is a stochastic programming problem, where the utility prices, utility generation of

DRERs, and utility consumption of residents are all random. The solution also depends on the

evolution of battery states. It is challenging since the supply, demand, and price are all general

processes.

Virtual Queues

We first adopt abattery virtual queueXk(t) that tracks the charge level of each batteryk:

Xk(t) = Ek(t)−Dmax
k − Emin

k − V Cmax, ∀ k, t, (3.10)
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where0 < V ≤ Vmax = mink

{

Emax
k

−Emin
k

−Rmax
k

−Dmax
k

Cmax−Wmin

}

is a constant for the trade-off between al-

gorithm performance and ensuring the battery constraints.This constantVmax is carefully selected

to ensure the evolutions of the battery levels always satisfy the battery constraints (3.1), which will

be examined in detail in Section 3.3.3.The virtual queue canbe deemed as a shifted version of the

battery dynamics in (3.2) as

Xk(t+ 1) = Xk(t)−Dk(t) +Rk(t), ∀ k, t. (3.11)

These queues are “virtual” because they are maintained by the MGCC control algorithm. Unlike

an actual queue, the virtual queue backlogXk(t) may take negative values.

We next introduce a conceptualQoSE virtual queueZn(t), whose dynamics are governed by

the system equation as

Zn(t+ 1) = [Zn(t)− δn · αn(t)]
+ + In(t), ∀ n, t. (3.12)

where[x]+ = max{0, x}.

Theorem 3.1. If an MGCC control policy stabilizes the QoSE virtual queueZn(t), the outage

quality usage of residentn will be stabilized at the average QoSE rateρn ≤ δn · λn.

Proof. See Appendix B.1.

Problem Reformulation

With Theorem 3.1, we can transform the original problem (3.9) into a queue stability problem

with respect to the QoSE virtual queue and the battery virtual queues, which leads to a system
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stability design from the control theoretic point of view. We have a reformulated stochastic pro-

gramming problem as follows.

minimize: lim
t→∞

1

t

t−1
∑

τ=0

E{Q(τ)C(τ)− S(τ)W (τ)} (3.13)

s.t. (3.3), (3.4), (3.6), (3.7), (3.8)

battery and QoSE virtual queue stability

constraints.

Theorem 3.1 indicates that QoSE provisioning is equivalentto stabilizing the QoSE virtual queue

Zn(t), while stabilizing the virtual queues (3.11) ensures that the battery constraints (3.1) are sat-

isfied. We then applyLyapunov optimizationto develop an adaptive electricity scheduling policy

for problem (3.13), in which the policy greedily minimize Lyapunov drift in every slott to push

the system toward the stability.

3.2.3 Lyapunov Optimization

We define theLyapunov functionfor system state~Θ(t) = [ ~X(t), ~Z(t)]T with dimension(N +

K)× 1 as follows, in which~X(t) = [X1(t) · · ·XK(t)]
T and ~Z(t) = [Z1(t) · · ·ZN(t)]

T .

L(~Θ(t)) =
1

2

K
∑

k=1

[Xk(t)]
2 +

1

2

N
∑

n=1

[Zn(t)]
2 , (3.14)

which is positive definite, sinceL(~Θ(t)) > 0 when~Θ(t) 6= ~0 andL(~Θ(t)) = 0 ⇔ ~Θ(t) = ~0. We

then define the conditional one slotLyapunov driftas

∆(~Θ(t)) = E{L(~Θ(t+ 1))− L(~Θ(t))|~Θ(t)}. (3.15)
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With the drift defined as in (3.15), it can be shown that

∆(~Θ(t)) =
1

2
E

{

K
∑

k=1

[(Xk(t+ 1))2 − (Xk(t))
2|Xk(t)]+

N
∑

n=1

[(Zn(t+ 1))2 − (Zn(t))
2|Zn(t)]

}

≤ B +
N
∑

n=1

E{Zn(t)(1− δn)αn(t)|Zn(t)}+

K
∑

k=1

E{Xk(t)(Rk(t)−Dk(t))|Xk(t)} −

N
∑

n=1

E{(Zn(t) + αn(t))pn(t)|Zn(t)}, (3.16)

whereB = 1
2

∑K
k=1(max{Dmax

k , Rmax
k })2 + 1

2

∑N
n=1(2 + δ2n)(α

max
n )2 is a constant. See Ap-

plendix B.2 for the derivation of (3.16).

To minimize the operation cost of the MG, we adopt thedrift-plus-penalty method[112].

Specifically, we select the control policyA(t) = {Q(t), S(t), Rk(t), Dk(t), pn(t)} to minimize the

bound on the drift-plus-penalty as:

∆(~Θ(t)) + V E{Q(t)C(t)− S(t)W (t)|~Θ(t)}

≤ right-hand-side of (3.16)+

V E{Q(t)C(t)− S(t)W (t)|~Θ(t)}, (3.17)

where0 < V ≤ Vmax is defined in Section 3.2.2 for the trade-off between stability performance

and operation cost minimization. Given the current virtualqueue statesXk(t) andZn(t), market

pricesS(t) andW (t), available DRERs energyP (t), and the resident quality usage requestαn(t),
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the optimal policy is the solution to the following problem.

minimize: B +
N
∑

n=1

[Zn(t)(1− δn)αn(t)] +

V [Q(t)C(t)− S(t)W (t)] +
K
∑

k=1

[Xk(t)(Rk(t)−Dk(t))]−

N
∑

n=1

[(Zn(t) + αn(t))pn(t)] (3.18)

s.t. (3.3), (3.4), (3.6), (3.7), (3.8).

Since the control policyA(t) is only applied to the last three terms of (3.18), we can further

simplify problem (3.18) as

minimize: V [Q(t)C(t)− S(t)W (t)] +
K
∑

k=1

[Xk(t)(Rk(t)−

Dk(t))]−
N
∑

n=1

[(Zn(t) + αn(t))pn(t)] (3.19)

s.t. (3.3), (3.4), (3.6), (3.7), (3.8),

which can be solved based on observations of the current system state{Xk(t), Zn(t), C(t),W (t), P (t),

αn(t)}.

3.3 Optimal Electricity Scheduling

3.3.1 Properties of Optimal Scheduling

With the Lyapunov penalty-and-drift method, we transform problem (3.13) to problem (3.19)

to be solved for each time slot. The solution only depends on the current system state; there is

no need for the statistics of the supply, demand and price processes and no need for any future

information. The solution algorithm to this problem is thusan online algorithm. We have the

following properties for the optimal scheduling.
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Lemma 3.1. The optimal solution to problem (3.19) has the following properties:

1. IfQ(t) > 0, we haveS(t) = 0,

(a) If Xk(t) > −V C(t), the optimal solution always selectsRk(t) = 0; if Xk(t) <

−V C(t), the optimal solution always selectsDk(t) = 0.

(b) If Zn(t) > V C(t)− αn(t), the optimal solution always selectspn(t) ≥ (1− δn)αn(t);

if Zn(t) < V C(t)− αn(t), the optimal solution always selectspn(t) = 0.

2. WhenQ(t) = 0, we haveS(t) > 0,

(a) If Xk(t) > −VW (t), the optimal solution always selectsRk(t) = 0; if Xk(t) <

−VW (t), the optimal solution always selectsDk(t) = 0.

(b) If Zn(t) > VW (t)−αn(t), the optimal solution always selectspn(t) ≥ (1− δn)αn(t);

if Zn(t) < VW (t)− αn(t), the optimal solution always selectspn(t) = 0.

Proof. The proof of Lemma 3.1 is given in Appendix B.3.

Lemma 3.2. The optimal solution to the battery management problem has the following proper-

ties:

1. IfXk(t) > −VWmin, the optimal solution always selectsRk(t) = 0.

2. IfXk(t) < −V Cmax, the optimal solution always selectsDk(t) = 0.

Proof. The proof of Lemma 3.2 is given in Appendix B.4.

Lemma 3.3. The optimal solution to the QoSE provisioning problem has the following properties:

1. If Zn(t) > V Cmax, the optimal solution always selectspn(t) ≥ (1− δn)αn(t).

2. If Zn(t) < VWmin − αmax, the optimal solution always selectspn(t) = 0.

Proof. The proof of Lemma 3.3 is given in Appendix B.5.
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Lemma 3.1 provides useful insights for simplifying the algorithm design, which will be dis-

cussed in Section 3.3.2. The intuition behind these lemmas is two-fold. On the ESS management

side, if either the purchasing priceC(t) or the selling priceW (t) is low, the MG prefers to recharge

the ESS’s to store excess electricity for future use. On the other hand, if eitherC(t) or W (t) is

high, the MG is more likely to discharge the ESS’s to reduce the amount of energy to purchase

or sell more stored energy back to the macrogrid. On the QoSE provisioning side, if eitherC(t)

orW (t) is high and the quality usageαn(t) is low, the MG is apt to decline the quality usage for

lower operation cost. On the other hand, if eitherC(t) orW (t) is low andαn(t) is high, the quality

usage are more likely to be granted by purchasing more energyor limiting the sell of energy.

3.3.2 MG Optimal Scheduling Algorithm

In this section, we present the MG control policyA(t) to solve problem (3.19). Given the

current virtual queue state{Xk(t), Zn(t)}, market pricesC(t) andW (t), quality usageαn(t) and

available energyP (t) from the DRERS for serving quality usage, problem (3.19) can bedecom-

posed into the following two linear programming (LP) sub-problems (since one ofS(t) andQ(t)

must be zero, see (3.7)).

minimize:V Q(t)C(t) +
K
∑

k=1

[Xk(t)(Rk(t)−Dk(t))]−

N
∑

n=1

((Zn(t) + αn(t))pn(t)) (3.20)

s.t.S(t) = 0, (3.3), (3.4), (3.6), (3.8).

minimize:−V S(t)W (t) +
K
∑

k=1

[Xk(t)(Rk(t)−Dk(t))]−

N
∑

n=1

((Zn(t) + αn(t))pn(t)) (3.21)

s.t. Q(t) = 0, (3.3), (3.4), (3.6), (3.8).
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Algorithm 3: Adaptive Electricity Scheduling Algorithm

1 MGCC initializes the QoSE target toδn and the virtual queues backlogsZn(t) andXk(t),
for all n andk ;

2 while TRUEdo
3 Residents send usage request (with basic and quality usage) to MGCC via the

information network ;
4 MGCC solves LPs (3.20) and (3.21) ;
5 MGCC selects the optimal solutionA(t) comparing the solutions to (3.20) and (3.21) ;
6 MGCC updates the virtual queuesXk(t) andZn(t) according to (3.11) and (3.12), for

all n andk ;
7 end

In sub-problem (3.20), we setRk(t) = 0 if Xk(t) > −V C(t), andDk(t) = 0 if Xk(t) <

−V C(t) according to Lemma 3.1. Also, ifZn(t) < V C(t) − αn(t), we setpn(t) = 0; otherwise,

we reset constraint (3.6) to a smaller search space of(1 − δn)αn(t) ≤ pn(t) ≤ αn(t). We take a

similar approach for solving sub-problem (3.21) by replacingC(t) with W (t). Then we compare

the objective values of the two sub-problems and select the more competitive solution as the MG

control policy. The complete algorithm is presented in Algorithm 3.

3.3.3 Performance Analysis

The proposed scheduling algorithm dynamically balances cost minimization and QoSE provi-

sioning. It only requires current system state information(i.e., as an online algorithm) and requires

no statistic information about the random supply, demand, and price processes. The algorithm is

also robust to non-i.i.d. and non-ergodic behaviors of the processes [113,114].

Theorem 3.2. The constraint on the ESS battery levelEk(t), Emin
k ≤ Ek(t) ≤ Emax

k , is always

satisfied for allk andt.

Proof. The proof of Theorem 3.2 is given in Appendix B.6.
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Theorem 3.3. The worst-case backlogs of the QoSE virtual queue for each residentn is bounded

by Zn(t) ≤ Zmax
n = V Cmax + αmax

n , for all n, t. Moreover, the worst-case average amount of

outage of quality usage for residentn in a periodT is upper bounded byZmax
n + Tδnα

max
n .

Proof. The proof of Theorem 3.3 is given in Appendix B.7.

Theorem 3.4.The average MG operation cost under the adaptive electricity scheduling algorithm

in Algorithm3,y∗, is bounded asy∗ ≤ yopt + B̂/V , whereB̂ = B +
∑N

n=1 Z
max
n (1− δn)α

max
n .

Proof. The proof of Theorem 3.4 is given in Appendix B.8.

It is worth noting that the choice ofV controls the optimality of the proposed algorithm.

Specifically, a largerV leads to a tighter optimality gap. However, from the proof ofTheorem 3.2,

V is limited byVmax, which ensures the feasibility of the battery constraints.This is actually a

similar phenomenon to the so-calledperformance-congestion trade-off[115]. Through the defi-

nition of Vmax (see Section 3.2.2), it can be seen that if we invest more on the individual storage

components for a larger ESS capacity, the proposed algorithm can achieve a better performance

(i.e., a smaller optimality gap).

It is also worth noting that all the performance bounds of theproposed algorithm are deter-

ministic, which provide “hard” guarantees for the performance of the proposed adaptive scheduling

policy in every time slot. Unlike probabilistic approaches, the proposed method provides useful

guidelines for the MG design, while guaranteeing the MG operation cost, grid stability, and the

usage quality of residents.

3.4 Simulation Study

We demonstrate the performance of the proposed adaptive MG electricity scheduling algo-

rithm through extensive simulations. We simulated an MG with 500 residents, where the electricity

from DRERs is supplied by a wind turbine plant. We use the renewable energy supply data from the
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Western Wind Resources Dataset published by the National Renewable Energy Laboratory [116].

The ESS’s consists of100 PHEV Li-ion battery packs, each of which has a maximum capacity of

16 kWh and the minimum energy level is0. The battery can be fully charged or discharged within

2 hours [117].

The residents’ pre-agreed power demand is uniformly distributed in [2 kW, 25 kW], and the

quality usage power is uniformly distributed in [0, 10 kW]. The MG works in the grid-connected

mode and may purchase/sell electricity from/to the macrogrid. The utility prices in the macrogrid

are obtained from [118] and are time-varying. We assume the sell price by the broker is random

and below the purchasing price in each time slot. The time slot duration is15 minutes. The MGCC

serves a certain level of quality usage according to the adaptive electricity scheduling policy. The

QoSE target is set toδn = 0.07 for all residents. The control parameter isV = Vmax, unless

otherwise specified.

3.4.1 Algorithm Performance

We first investigate the average QoSEs and total MG operationcost with default settings for a

five-day period. We use MATLAB LP solver for solving the sub-problems (3.20) and (3.21). For

better illustration, we only show the QoSEs of three randomly chosen users in Fig. 3.3. It can be

seen that all the average QoSEs converge to the neighborhoodof 0.08 within 200 slots, which is

close to the MG requested criteriaδn = 0.07. In fact the proposed scheme converges exponentially,

due to the inherent exponential convergence property in Lyapunov stability based design [110].

We also plot the MG operation traces from this simulation in Fig. 3.6. The energy for serving

quality usage from the DEREs are plotted in Fig. 3.6(A). It canbe seen that the DRERs generate

excessive electricity from slot150 to 200, which is more than enough for the residents. Thus,

the MGCC sells more electricity back to the macrogrid and obtains significant cost compensation

accordingly. In Fig. 3.6(B), we plot the traces of electricity trading, where the positive values

are the purchased electricity (marked as brown bars), and the negative values represent the sold

electricity (marked as dark blue bars). The MG operation costs are plotted in Fig. 3.6(C). The
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Figure 3.3:Average QoSEs of three residents (V = Vmax).

curve rises when the MG purchases electricity and falls whenthe MG sells electricity. From slot

150 to 200, the operation cost drops significantly due to profits of selling excess electricity from

the DEREs. The operation cost is$418.10 by the end of the period, which means the net spending

of the MG is$418.10 on the utility market.

We then examine the energy levels of the batteries in Fig. 3.4. We only plot the levels of three

batteries in the first50 time slots for clarity. The proposed control policy chargesand discharges

the batteries in the range of0 to 16 kWh, which falls strictly within the battery capacity limit.It

can be seen that the amount of energy for charging or discharging in one slot is limited by2 kWh

in the figure, due to the short time slots comparing to the2-hour fully charge/discharge periods.

For longer time slot durations and batteries with faster charge/discharge speeds, the variation of

the energy level in Fig. 3.4 could be higher. However, Theorem 3.2 indicates that the feasibility of

the battery management constraint is always ensured, if thecontrol parameterV satisfies0 < V ≤

Vmax.

We next evaluate the performance of the proposed adaptive control algorithm under different

values of control parameterV . For different valuesV = {Vmax, Vmax/2, Vmax/4}, the QoSEs

are stabilized at0.081, 0.061, and0.055, and the total operation cost are $418.10, $625.69, and
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Figure 3.4:Energy levels of three Li-ion batteries (V = Vmax).

$717.75, respectively. We find the QoSE decreases from0.081 to 0.055, while the total oper-

ation cost is increased from $418.10 to $717.75, asVmax is decreased. This demonstrates the

performance-congestion trade-off as in Theorem 3.4: a largerV leads to a smaller objective value

(i.e., the operating cost), but the system is also penalizedby a larger virtual queue backlog, which

corresponds to a higher QoSE. On the contrary, a smallerV favors the resident quality usage, but

increases the total operation cost. In practice, we can select a proper value for this parameter based

on the MG design specifications.

It would be interesting to examine the case where the residents require different QoSEs. We

assume5 residents with a service contract for lower QoSEs. We plot the average QoSEs of three

residents withV = Vmax/2 in Fig. 3.5. Resident1 prefers an outage probabilityδ1 = 0.02, while

residents2 and3 require an outage probabilityδ2 = δ3 = 0.07. It can be seen in Fig. 3.5 that

resident1’s QoSE converges to0.015, while the other two residents’ QoSEs remains around0.063.

3.4.2 Comparison with a Benchmark

We compare the performance of the proposed scheme with a heuristic MG electricity control

policy (MECP), which serves as a benchmark. In MECP, the MGCC blocks quality usage requests
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Figure 3.5:QoSEs for three residents with different service contracts (V = Vmax/2).

simply by tossing a coin with the target probability. We useδn = 0.03 in the following simulations.

If there is sufficient electricity from the DRERs, all the quality usage requests will be granted and

the excess energy will be stored in the ESS’s. If there is still any surplus energy, the MGCC

will sell it to the macrogrid. If there is insufficient electricity from the DRERs, the ESS’s will

be discharged to serve the quality usage requests. The MGCC will purchase electricity from the

macrogrid if even more electricity is required. Finally, with a predefined probability, e.g.,0.5 in

the following simulation, the MG purchases as much energy aspossible to charge the ESS’s.

We run100 simulations with different random seeds for a seven-day period. We assume in the

first five days the resident behavior is the same as previous default settings. In the last two days,

we assume the residents are apt to request more electricity (e.g., more activities in weekends)

We assume in the last two days the resident pre-agreed basic usage power demand is uniformly

distributed from5 kW to 35 kW. The quality usage power is uniformly distributed from0 to 20

kW.

We find that the proposed algorithm earns$947.27 from the utility market (with95% con-

fidence interval[950.65, 943.89]). The profit mainly comes from the abundant DRER generation

in the last two days, as shown in Fig. 3.7. MECP only earns$379.74 from the market (with95%
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Figure 3.6: MG operation traces of the proposed algorithm for the5-day period.

confidence interval[387.96, 371.52]), which is60% lower than that of the proposed control pol-

icy. We also find that the QoSEs under the proposed control policy remains about0.025, which is

lower than the criteriaδn = 0.03. This is because there are a sudden price jump from$27/MWh

to $356/MWh in the afternoon of the last day. This sharp increment increasesCmax eight times

and decreases the value ofVmax. Due to the performance-congestion trade-off, the QoSEs become

smaller (lower than MECP’s0.03 level).

3.5 Related Work

SG is regarded as the next generation power grid with two-wayflows of electricity and in-

formation. Several comprehensive reviews of SG technologies can be found in [3, 4]. Recently,
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Figure 3.7: MG operation traces of proposed algorithm for the7-day period.

SG research is attracting considerable interest from the networking and communications commu-

nities [119–124]. For example, the design of wireless communication systems in SG is studied

in [120]. The authors of [121, 122] explore the important wireless communication security issues

in smart grid. The energy management and power flow control inthe grid is investigated in [119]

to reach system-wide reliability under uncertainties. Thefrequency oscillation in power networks

is studied in [123] by epidemic propagation and a social network based approach. The electric

power management with PHEVs are examined in [124].

Microgrid is a new grid structure to group DRERs and local residents loads, which provides

a promising way for the future SG. In [108], the authors review the MG structure with distributed

energy resources. In [125], the integration of random wind power generation into grids for cost
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effective operation is investigated. In [126], the authorspropose a useful online method to discover

all available DRERs within the islanded mode mircogrid and compute a DRER access strategy. The

problem of optimal residential demand management is studied in [92], aiming to adapt to time-

varying energy generation and prices, and maximize user benefit. In [127], the authors investigate

energy storage management with a dynamic programming approach. The size of the ESS’s for MG

energy storage is explored in [128].

Lyapunov optimization is a useful stochastic optimizationmethod [12]. It integrates the Lya-

punov stability concept of control theory with optimization and provides an efficient framework

for solving schedule and control problems. It has been widely used and extended in the communi-

cations and networking areas [12,112]. In two recent work [114,129], the Lyapunov optimization

method is applied to jointly optimize power procurement anddynamic pricing. In [114], the au-

thors investigate the problem of profit maximization for delay tolerant consumers. In [129], the

authors study electricity storage management for data centers, aiming to meet the workload re-

quirement. Both of the work are designed based on asingleenergy consumption entity model.

In this chapter, we investigate a novel smart energy management system for MGs based on the

concept of QoSE, which is different from above work. By jointly consideringmultiple residents,

ESS’s and utility market participation, the adaptive electricity scheduling policy is designed with

Lyapunov optimization for ensuring the quality of service of the electricity usage and minimizing

the MG operation cost.

3.6 Conclusion

In this chapter, we developed an online adaptive electricity scheduling algorithm for smart

energy management in MGs by jointly considering renewable energy penetration, ESS manage-

ment, residential demand management, and utility market participation. We introduced a QoSE

model by taking into account minimization of the MG operation cost, while maintaining the out-

age probabilities of resident quality usage. We transformed the QoSE control problem and ESS

management problem into queue stability problems by introducing the QoSE virtual queues and
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battery virtual queues. The Lyapunov optimization method was applied to solve the problem with

an efficient online electricity scheduling algorithm, which has deterministic performance bounds.

Our simulation study validated the superior performance ofthe proposed approach.
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Table 3.1: Notation for Chapter 3
Symbol Description
N total number of residents
K total number of batteries
T total number of slots
Ek(t) energy level for batteryk at time slott
Rk(t) recharging energy for batteryk at time slott
Dk(t) discharging energy for batteryk at time slott
Emax

k maximum battery energy level for batteryk
Emin

k minimum battery energy level for batteryk
Rmax

k maximum supported recharging energy for batterk in a slot
Dmax

k maximum supported discharging energy for batteryk in a slot
λn average quality usage arrival rate for residentn
ρn average outage rate of quality usage for residentn in MG
δn target QoSE for residentn in MG
αn(t) quality usage of residentsn in time slott
αmax
n maximum quality usage of residentn in a single slot
αb
n(t) basic electricity usage of residentn in time slott
P (t) available electricity from DRERs to supply quality usage in

time slott
U(t) electricity generated from DRERs in time slott
Q(t) electricity purchased from macrogrid in time slott
S(t) electricity sold on the market in time slott
pn(t) electricity to the residentn
C(t) purchasing price on the utility market in time slott
W (t) selling price ob the utility market in time slott
In(t) indicator function for outage events of quality usage of

residentn in time slott
Cmin minimum purchasing price of utility from macrogrid
Cmax maximum purchasing price of utility from macrogrid
Wmin minimum selling price of utility to macrogrid
Wmax maximum selling price of utility to macrogrid
Xk(t) battery virtual queue for the batteryk
Zn(t) QoSE virtual queue for the residentn
~Θ(t) states of the virtual queuesXk(t) andZn(t)
L(·) Lyapunov function
∆(t) Lyapunov one step drift
A(t) proposed scheduling policy includingQ(t), S(t), Rk(t),

Dk(t) andpn(t)
y∗ optimal objective value of problem (3.19)
Â(t) relaxed scheduling policy for problem (B.6)
ŷ optimal objective value of problem (B.6)
yopt optimal objective value of problem (3.9)
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Chapter 4

Overview of Green Video Streaming over Celluar Networks and Variable Bit Rate Video

4.1 Green Video Streaming over Celluar Networks

Besides the redesign of the electricity delivery networks, it is equally important to study the

energy efficiency at the demand side. The rapid proliferation of information and communications

technology(ICT) infrastructures continuously contribute to the overall carbon footprint and bring

the intensity of “green” communications to the research community. Among various green com-

munication technologies, we focus on the energy efficiency of base stations(BS’s) for downlink

video streaming. This is due to the expected surge in wireless video data, as well as the drastic

increase in the deployment of BS’s. It is reported that, in a typical cellular network, more than50%

of the total power consumption is directly attributed to BS equipment [11]. At every year,120, 000

BS’s are added, catering to the300 million to 400 million new mobile phone users adopting mobile

services around the world [130]. Furthermore, Many wireless operators have launched femtocell

service recently, such as AT&T, Sprint, Verizon, and Vodafone. The wide adoption of femtocells

will greatly intensify the proliferation of BS’s. Therefore, any small improvement in the energy ef-

ficiency of video coding or wireless video streaming system will be amplified by the huge volume

of wireless video data and number of BS’s deployed, and will result in considerable environmental

impact. Considerable savings on electrical bills could be achieved for wireless operators when the

power of BS’s is minimized for video streaming. The reduced electricity consumption will also

bring about important improvement in the overall carbon footprint of the wireless industry and

achieve the goal of “green” communications.

In the following chapters, we consider the challenging problem of streaming multiuservari-

able bit rate(VBR) videos in the downlink of cellular networks. This is motivated by the fact that

VBR video offers stable and superior quality overconstant bit rate(CBR) videos. Furthermore,
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(a) Frame 1, VBR (b) Frame 29, VBR (c) Frame 1, CBR (d) Frame 29, CBR

Figure 4.1: Perceived quality of VBR and CBR videos:Footballvideo coded with an H.264 codec.

many stored video content are coded in the VBR format. It is important to support such stored

VBR video over existing wireless networks without the need for transcoding.

VBR video has stable visual quality for the frames, but at the cost of large variations in the

bit rate, while CBR video maintains a stable bit rate, but the frames have large variations in visual

quality. This is illustrated in Fig. 4.1, where the 15 fpsFootball sequence is encoded using an

H.264 codec. Both VBR and CBR videos are encoded at the approximately same bit rate (250

kb/s). It can be seen that although the two Frame 1s have similar visual quality, CBR Frame 29

looks worse than VBR Frame 29 when there is high motion. However, we may also observe that

the sizes of frames of VBR video have much larger variation than those of CBR video in Fig. 4.2.

It can be noted that the frame size varies in CBR from frame 42 to 45. That is because that the

content on the video switches from the high motion players tothe static field, and this simple scene

is kept from frame 42 to frame 43, which allows the rate control algorithm to choose smaller frame

sizes. Starting from frame 44, the players come back to the scene, thus the larger frame sizes are

selected to compensate the rate decrease in previous framesto keep the average rate constant.

The following chapters distinguish themselves from other energy efficient designs over wire-

less networks in the following aspects: First, instead of power-aware mobile video devices, we

focus on the BS power efficiency when transmitting multiuser videos. As mentioned before, the

BS equipment consumes more than50% of the total power in a typical cellular network. Thus, it is

important to improve the BS energy efficiency to achieve the goal of green communications. Sec-

ond, we explicitly investigate streaming of multiple VBR videos. VBR videos can offer constant

and better QoE over CBR videos with the same bit budget. However, VBR videos are notori-

ously difficult to schedule and control in wireless networks, due to the high variability and the
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Figure 4.2: Frame size of VBR and CBR videos:Footballvideo coded with an H.264 codec.

complex autocorrelation structure [131–133]. Third, we adopt the control and optimization ap-

proach to optimize the BS energy allocation as well as thequality of experience(QoE) of users,

by jointly considering power control, wireless channel condition, playout buffer constraints, and

playout deadlines.

4.2 VBR Video System Model

It is a challenging problem to support VBR video traffic, whichis found to exhibit both strong

long-range and short-range-dependence [131,132]. It is nontrivial to develop parsimonious traffic

models that can accurately capture the auto-correlation structure. The large frame size variations

may cause frequent playout buffer underflow or overflow [134]. To address this issue, we adopt

a deterministic traffic modelfor stored VBR video, which considers frame size, frame rate,and

playout buffers [54, 95, 135, 136]. Unlike prior work that isfocused on a single video session

over a given CBR or VBR channel, we exploit power control, a unique capability in wireless

networks, to adjust the downlink capacities based on prior knowledge of frame sizes and playout

schedules. Usually large frames are rarely transmitted simultaneously. Thus jointly optimizing
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the BS transmit powers is, in some sense, analogous to statistical multiplexing VBR videos in the

cellular networks.

A stochastic model capturing the auto-correlation structure often requires a large number of

parameters, and is thus hard to be incorporated for scheduling real-time video data. To this end,

we adopt adeterministic modelthat considers frame sizes, playout buffers, and schedule [95].

Let Di(t) denote thecumulative consumption curveof the i-th user, representing the cumulative

amount of bits consumed by the decoder at timet. The cumulative consumption curve is deter-

mined by video characteristics such as frame sizes and rates, and playout schedule. Assume useri

has a playout buffer of sizebi bits and its video hasLi frames. We can derive acumulative overflow

curvefor useri as

Bi(t) = min{Di(t− 1) + bi, Di(Li)}, 0 ≤ t ≤ Li. (4.1)

Bi(t) is the maximum number of cumulative received bits at timet without overflowing useri’s

playout buffer. Finally we definecumulative transmission curveXi(t) as the cumulative amount

of bits transmitted to useri at time t. To simplify notation, we assume the video sessions have
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identical frame rate and the frame intervals are synchronized. Thus a time slott is equal to thet-th

frame interval, denoted asτ , for 0 ≤ t ≤ maxi{Li}.
1

SinceDi(t), Bi(t) andXi(t) are cumulative curves, they are all nondecreasing functions of

time. The three curves for usern are illustrated in Fig. 4.3. A feasible transmission schedule will

produce a cumulative transmission curveXi(t) that lies withinDi(t) andBi(t), i.e., causing neither

underflow nor overflow at the playout buffer. In practice,Di(t)’s are known for stored videos and

are delivered to the BS’s (or a centralized video scheduler) during the session setup phase, and

Bi(t)’s are then derived as in (4.1).

This deterministic VBR video model will be adopted in following chapters.

1This assumption can be relaxed for more general cases. For example, if the frame rates are different, we can use a time slot duration that is
equal to the greatest common divisor of all the frame intervals (if not too small). If the frame intervals are not synchronized,a time slot can be a
fraction of a frame interval within which theDi(t)’s of all the videos remain constant. In fact, the time slot duration could be arbitrary as in [50]
(i.e., equal to multiple frame intervals). Since the cumulative overflow and consumption curves are known, we can still determine the upper and
lower bounds for the transmission rate in each time slot. The problem formulation and proposed solution procedures to be discussed in the following
sections apply to these cases.
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Chapter 5

Downlink Power Allocation for Stored Variable-Bit-Rate Video in Cellular Network

5.1 Introduction

In this chapter, we present a downlink power control framework for streaming multiplevari-

able bit rate(VBR) videos in a cellular network with intracell interference. With the determin-

istic VBR video traffic model 4.2, we formulate an optimization problem that jointly considers

donwlink power control, intra-cell interference, VBR videotraffic characteristics, playout buffer

underflow and overflow constraints, and base station (BS) peakpower constraint. The objective is

to maximize the total throughput, which can achieve high playout buffer utilization. As a result,

playout buffer underflow or overflow events can be minimized.We analyze the convex/concave

regions of the formulated problem and develop a two-step downlink power allocation algorithm

for solving the problem. We also develop a distributed algorithm based on the dual decomposition

technique from convex optimization, in order to reduce the control and computation overhead at

the BS. We evaluate the performance of the proposed distributed algorithm with simulations using

VBR video traces. Our simulation results verify the accuracyof the analysis and demonstrate the

efficacy of the proposed algorithms.

The remainder of this chapter is organized as follows. The deterministic VBR video model is

introduced in Section 4.2. The system model is presented in Section 5.2. We develop a two-step

algorithm to solve the power allocation problem in Section 5.3, and a distributed algorithm based

on dual decomposition in Section 5.4. Simulation results are presented in Section 5.5 and related

work are discussed in Section 5.6. Section 5.7 concludes this chapter.

The notation used in this chapter are summarized in Table 5.1.
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Table 5.1: Notation for Chapter 5

Symbol Description
N total number of users in a cell
L processing gain
β interference proportion
U set of users sharing the same channel
Tn total number of frames for usern video
bn playout buffer size of usern
Dn(t) cumulative consumption curve at usern
Xn(t) cumulative transmission curve at usern
Bn(t) cumulative overflow curve at useri
~P (t) BS transmit power vector in time slott
~Pmax max. power allocation vector without overflow
~Pmin min. power allocation vector without underflow
P̄ peak power constraint for the BS’s
P̄min sum of the elements in~Pmin

~P ∗ inflection power vector
~̂
P optimal power vector
Gn path gain from BS to usern
Bw channel bandwidth
τ duration of a time slot
ηn noise power at usern
Cn capacity from the base station to usern
Bw Channel bandwidth
κ Constant for the proof of Lemma 5.2
~P ′(t), ~P ′′(t) Auxiliary power allocation in the Lemma 5.2 proof
An Ratio of noise power and channel gain of usern
P th
n Minimum betweenPmax

n andP ∗
n

θ(l) Stepsize of stepl in (5.26)
αλ(l), αµ(l), αν(l) Stepsize of stepl in (5.29)
γn(t) SINR at userunn in time slott
γmin
n (t) minimum SINR corresponding toCmin

n (t)
γmax
n (t) max. SINR for userunn without overflow
γthn receiver sensitivity at usern
F N ×N matrix defined in (5.13)
λ, µ, ν Lagrange Multipliers
L Lagrange function

5.2 System Model and Problem Formation

We consider the downlink of a cellular network. In the cell, aBS streams multiple VBR videos

simultaneously to mobile users in the cell, which share the downlink bandwidth. We assume the
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last-hop wireless link is the bottleneck, while the wired segment of a session path is reliable with

sufficient bandwidth. Thus the corresponding video data is always available at the BS before

the scheduled transmission time. Thedeterministic VBR video modelis adopted as indicated in

Section 4.2.

We considerN subscribers in the cell and letU denote the set of users. In each time slott, the

BS transmits to each usernwith powerPn(t) and thepower allocationis ~P (t) = [P1(t), · · · , Pn(t)]
T .

We also consider amaximum transmit powerconstraintP̄ , i.e.,
∑

n∈U Pn(t) ≤ P̄ , for all t. When

the power allocation~P (t) is determined, theSignal to Interference-plus-Noise Ratio(SINR) at user

n can be written as [50,137]

γn(~P (t)) =
LnGnPn(t)

β
∑

k 6=nGnPk(t) + ηn
, (5.1)

wherePn is the power allocated to usern, Gn is the path gain between the BS and usern, ηn is

the noise power at usern, Ln is a constant for usern (e.g., processing gain), andβ denotes the

orthogonality factor, with0 ≤ β ≤ 1. In this chapter, we consider the caseβ = 1, where the

SINR of a user not only depends on its own power allocation butalso the power allocations of

other users.

We assume slow-fading channels such that the path gains do not change within each time

slot [50]. The downlink capacityCn(t) depends on the SINR at usern, the channel bandwidthBw,

and the transceiver design, such as modulation and channel coding. Without loss of generality, we

use the upper bound as predicted by Shannon’s Theorem:

Cn(~P (t)) = Bw log
(

1 + γn(~P (t))
)

. (5.2)

In time slott, Cn(t)τ bits of video data will be delivered to usern. The cumulative transmis-

sion curveXn(t) is

Xn(0) = 0; Xn(t) = Xn(t− 1) + Cn(t)τ. (5.3)
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For a feasible power allocation, the cumulative transmission curves should satisfy

Dn(t) ≤ Xn(t) ≤ Bn(t), for all n, t, (5.4)

i.e., without causing playout buffer underflow or overflow.

From (5.2)∼(5.4), the lower and upper limit on the feasible SINR at usern can be derived as











γmin
n (t) = max

{

exp
{

max{0,Dn(t)−Xn(t−1)}
Bwτ

}

, γthn

}

γmax
n (t) = exp

{

Bn(t)−Xn(t−1)
Bwτ

}

,
(5.5)

whereγthn is the minimum SINR requirement imposed by the transceiver design. γmin
n (t) is the

SINR that the just empties the buffer at the end of time slott, without causing underflow;γmax
n (t)

is the SINR that just fills up the buffer at the end of time slott, without causing overflow.

Generally, feasible power allocation~P (t) is not unique for a given set of VBR video sessions.

Among the set of feasible solutions, a schedule that transmits more data is more desirable since

it provides more flexibility for optimizing future power allocations. We formulate the problem of

optimal downlink power control for VBR videos, termed problem A, as

(A) maximize
∑

n∈U

log(1 + γn(t)) (5.6)

subject to:

γn(t) =
LnGnPn(t)

∑

k 6=nGnPk(t) + ηn
, for all n (5.7)

γmin
n (t) ≤ γn(t) ≤ γmax

n (t), for all n (5.8)
∑

n∈U

Pn ≤ P̄ . (5.9)

In problemA, the objective is to achieve the maximum buffer uitilization at the users, under

playout buffer underflow and overflow constraints and BS maximum transmit power constraints.

This is a nonlinear nonconvex problem, to which traditionalconvex optimization techniques cannot

directly apply. Due to the large variability of VBR traffic, the SINRs may assume values ranging
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from very low to very high, to avoid playout buffer underflow and overflow. Thus the existing

high SINR approximation [59] and low SINR approximation [138] techniques cannot be directly

applied.

5.3 Two-Step Downlink Power Allocation

In problemA, we consider an interference-limited system, where the capacity of downlinkn

depends on the power allocations for all the users. In the following, we first derive conditions for

the optimal solution, and then present a two-step power allocation algorithm for solving problem

A.

Lemma 5.1. If there exists a feasible power allocation~P (t) that achievesγmax
n (t) for all n, the

solution is optimal.

Proof. See Appendix C.1.

Lemma 5.2. If the upper limitγmax
n (t) cannot be achieved for every usern, then the optimal power

allocation ~P (t) satisfies
∑

n∈U Pn(t) = P̄ .

Proof. See Appendix C.2.

We have the following result for the optimal solution of problem A, which directly follows

Lemmas 5.1 and 5.2.

Theorem 5.1.A solution to problemA is optimal if (i) it achieves the maximum SINRγmax
n (t) for

all n; or (ii) its total transmit power isP̄ .

Proof. By Lemma5.1 andLemma5.2, it is straightforward to obtain the result.

Theorem 5.1 implies that we can examine the SINR (or buffer) constraints and the peak power

constraint separately. In the rest of this section, we present a two-step power allocation algorithm
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for solving problemA. We first examine problemA under condition (i) in Theorem 5.1, to obtain

problemB as

(B) γmax
n (t) =

LnGnPn(t)
∑

k 6=nGnPk(t) + ηn
, for all n, (5.10)

subject to:
∑

n∈U

Pn ≤ P̄ . (5.11)

In problemB, (5.10) is a system of linear equations of power allocation~P (t). Rearranging

the terms, we can rewrite (5.10) in the matrix form as:

(I− F) ~P (t) = ~u, for ~P (t) ≻ ~0, (5.12)

whereI is theidentity matrix, F is aN ×N matrix with

Fnm =











0, if n = m

γmax
n /Ln, otherwise,

(5.13)

and~u = [η1γ
max
1 /LnG1, η2γ

max
2 /LnG2, · · · , ηNγ

max
N /LnGN ]

T .

Since all the variables are nonnegative,F is a non-negative matrix. According to the Perron-

Frobenius Theorem, we have the following equivalent statements [47]:

Fact 5.1. The following statements are equivalent: (i) there exits a feasible power allocation sat-

isfying (5.12); (ii) the spectrum radius ofF is less than 1; (iii) the reciprocal matrix(I − F)−1 =
∑∞

k=0 (F)
k exists and is component-wise positive.

Based on Theorem 5.1 and Fact 5.1, we derive thefirst stepof the two-step power allocation

algorithm, as given in Algorithm 4. If problemB is solvable, the Step I algorithm in Algorithm 4

produces the optimal solution for problemA according to Theorem 5.1. Otherwise, we derive
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Algorithm 4: Two-Step Power Allocation Algorithm: Step I

1 BS obtainsbn, Dn, andBn, and computesγmax
n for all usern;

2 BS tests the existence of feasible solutions using (5.12);
3 if (5.12) is solvablethen
4 Compute its solution~P (t);
5 else
6 Go to Step II of the algorithm, as given in Algorithm 5;
7 end
8 if

∑

n∈U Pn(t) ≤ P̄ then
9 Stop with the optimal solution~P (t);

10 else
11 Go to Step II of the algorithm, as given in Algorithm 5;
12 end

problemC by applying Lemma 5.2, as

(C) maximize
∑

n∈U

log(1 + γn(t)) (5.14)

subject to:

γn(t) =
LnPn(t)

P̄ − Pn(t) + An

, for all n (5.15)

Pmin
n (t) ≤ Pn(t) ≤ Pmax

n (t), for all n (5.16)
∑

n∈U

Pn(t) = P̄ , (5.17)

whereAn = ηn/Gn is the ratio of noise power and channel gain, representing the quality of the

usern downlink channel.Pmin
n (t) andPmax

n (t) are solved from (5.8) and (5.15), as











Pmin
n (t) = γmin

n (P̄ + An)/(Ln + γmin
n )

Pmax
n (t) = γmax

n (P̄ + An)/(Ln + γmax
n ).

(5.18)

Since the total transmit power is̄P , the objective value in (5.14) and the SINR in (5.15) for

each user only depends on its own power. Note that all the constraints are now linear. To solve

problemC, we examine the objective function to see if it is convex. We omit time indext in the

following for brevity.
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Figure 5.1: Normalized capacity curves and inflection points for a two-user system, where link1
has better quality than link2, i.e.A1 < A2.

Lemma 5.3. The capacity of each usern, Cn, has oneinflection pointP ∗
n : whenPn < P ∗

n , Cn is

in concave; whenPn > P ∗
n , Cn is convex.

Proof. See Appendix C.3.

The normalized capacities for a two-user system is plotted in Fig. 5.1, with the inflection

points marked. It can been observed that the curves are concave on the left hand side of the

inflection points and convex on the right hand side of the inflection points. The processing gain is

usually large for practical systems (e.g.,Ln = 128 in IS-95 CDMA). We assumeLn ≫ 1 in the

following analysis.

Theorem 5.2. For problemC, there can be at most two links operating in the convex region if

Ln ≥ (4P̄ + 6An)/(P̄ + 3An).

Proof. See Appendix C.4.

For a clean channel whereAn ≈ 0, Ln ≥ 4 will guarantee at most two links operating in the

convex region. The following results are on the impact of channel qualityAn = ηn/Gn.

88



Theorem 5.3. For a givenLn, the inflection pointP ∗
n is an increasing function ofAn. For two

links i and j with the same transmit powerP , if Ai < Aj, we haveCi(P,Ai) > Cj(P,Aj) and

∂Ci(Pi,Ai)
∂Pi

|Pi=P >
∂Cj(Pj ,Aj)

∂Pj
|Pj=P > 0.

Proof. See Appendix C.5.

Theorem 5.3 shows that, for two links in the convex region with the same initial powerP ,

allocating more power to the link with better quality can achieve larger objective value than alter-

native ways of splitting the power between the two links (i.e., achieving the multi-user diversity

gain). Based on the above analysis, we develop thesecond stepof the power allocation algorithm

for solving problemC, as given in Algorithm 5. In Algorithm 5, Lines3 ∼ 4 tests the feasibility

of the power allocation. If the sum of the total minimum required power is larger than the BS peak

power, there is no feasible power allocation and there will be buffer underflow. In this case, we

select users with “good” channels for transmission and suspend the users with “bad” channels.

The Step II algorithm checks the three possible solution scenarios for problemC depending

on the network status and video parameters:

• All links operate in the convex region;

• One link operates in the convex region and the remaining links operate in the concave region

• Two links operate in the convex region and the remaining links operate in the concave region.

Each of the three phases in Algorithm 5 considers the optimality condition for one of the three

scenarios. In particular, Phase 1 first optimizes the power allocation in the concave region and

then allocates the remaining power to the links that could bemoved to the convex region. Phase

2 allocates as much power as possible to the link with the bestquality, which could work in the

convex region. Phase 3 attempts to move the second best link to the convex region if the total

power constraint is not violated. Usually whenLn andn are large, Phase 3 will rarely occur due

to the peak power constraint.
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Algorithm 5: Two-Step Power Allocation Algorithm: Step II

1 Initialization ;
2 BS obtainsbn, Dn, andBn for all usern;
3 BS computesγmax

n , γmin
n , andP ∗

n , for all n;
4 BS computes the minimum required sum powerP̄min =

∑

n∈U Pmin
n and gap∆P = P̄ − P̄min;

5 if P̄min > P̄ then
6 Remove links fromU , according to descending order ofAn, until P̄min ≤ P̄ ;
7 end

8 ComputeRn = Cn(min{Pmax
n ,Pmin

n +∆P })−Cn(Pmin
n )

min{Pmax
n ,Pmin

n +∆P }−Pmin
n

, for all Pmax
n > P ∗

n ;

9 Phase 1;
10 Select all the users satisfyingPmin

n < P ∗
n as a setU ′ ⊆ U ;

11 Solve problemC under constraintsPmin
n ≤ Pn ≤ min (Pmax

n , P ∗
n) and

∑

n∈U ′ Pn ≤ P̄ ′ = P̄ −
∑

n∈Ū ′ Pmin
n , whereŪ ′ is the complementary set ofU ′, and obtain

solution ~P1;
12 CalculateRn by updatingPmin

n to the solution in Line11 and assign the remaining power to the
nodes in setU , in descending order ofRn;

13 Obtain the Phase1 solution,~Pp1 , and objective valuefp1 ;

14 Phase 2;
15 Select the link with the maximumRn, and assign all the available powerP̄ − P̄min to the link,

until either all the power is assigned or the link attains powerPmax
n ;

16 if there is still power to allocatethen
17 Select all the nodes in setU\n and repeat Lines8 ∼ 12;
18 end
19 Obtain the Phase2 solution,~Pp2 , and objective valuefp2 ;

20 Phase 3;
21 Select the first 2 links with the largestRn’s, and assign all the available powerP̄ − P̄min to the

links, until all the power is assigned or the links attains powerPmax
n , and repeat Lines16 ∼ 18;

22 Obtain the Phase3 solution,~Pp3 , and objective valuefp3 ;

23 Decision;
24 Choose the largest objective value amongfp1 , fp2 andfp3 , and stop with the corresponding power

assignment;

In Algorithm 5, Line 7 presents a convex optimization component, for which several effective

solution techniques can be applied. In the following section, we describe a distributed algorithm

for Line 7 based on dual decomposition.

5.4 Distributed Algorithm

As discussed in Section 5.3, the core of the Step II algorithmis to solve problemC in the

concave region (see Fig. 5.1). In this section, we present a distributed algorithm for this purpose,
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where the users are involved in power allocation to reduce the control and computation overhead

on the BS. In the concave region, we have problemD as

(D) maximize
∑

n∈U

log(1 + γn(t)) (5.19)

subject to:

γn(t) =
LnPn(t)

P̄ − Pn(t) + An

, for all n (5.20)

Pmin
n (t) ≤ Pn(t) ≤ min{Pmax

n , P ∗
n}, for all n (5.21)

∑

n∈U

Pn(t) ≤ Ptot, (5.22)

wherePtot ≤ P̄ is the total power budget for the links in the concave region.For brevity, we define

P th
n = min{Pmax

n , P ∗
n} and drop the time slot indext in the following analysis.

Introducing non-negative Lagrange multipliersλn, µn, andν for constraints (5.21) and (5.22),

respectively, we obtain the Lagrange function as

L(~P ,~λ, ~µ, ν) (5.23)

=
∑

n∈U

[

log

(

1 +
LnPn

P̄ − Pn + An

)

+ λn(Pn − Pmin
n )

]

+

∑

n∈U

[

µn(P
th
n − Pn)

]

+ ν

(

Ptot −
∑

n∈U

Pn

)

=
∑

n∈U

[

Ln(Pn, λn, µn, ν)+(µnP
th
n −λnP

min
n )

]

+νPtot,

where

Ln(Pn, λn, µn, ν) = log

(

1 +
LnPn

P̄ − Pn + An

)

+ (λn − µn − ν)Pn. (5.24)

SinceLn only depends on usern’s own parameters, we have the dual decomposition for each user

n. For given Lagrange multipliers (or, prices)λ̂n, µ̂n, andν̂, we have the following subproblem for

each usern.

P̂n(λ̂n, µ̂n, ν̂) = [Pmin
n ≤ Pn ≤ P th

n ]argmaxLn(Pn, λ̂n, µ̂n, ν̂), for all n. (5.25)
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Subproblem (5.25) has a unique optimal solution due to the strict concavity ofLn. We use the

gradient method [14] to solve (5.25), where usern iteratively updates its powerPn as:

Pn(l + 1) (5.26)

= [Pn(l) + θ(l)∇nLn(Pn)]
∗

=

[

Pn(l) + θ(l)
Ln(P̄ + An)

(P̄ − Pn + An)(P̄ + (Ln − 1)Pn + An)
+ θ(l)(λn − µn − ν)

]∗

,

where[·]∗ denotes the projection onto the range of[Pmin
n , P th

n ]. The update stepsizeθ(l) varies in

each stepl and is determine by the Armijo Rule [14]. Due to the strict concavity of Ln, the series

{Pn(1), Pn(2), · · · } will converge to the optimal solution̂Pn asl → ∞.

For a given optimal solution for problem (5.25),~̂P = [P̂1, · · · , P̂N ]
T , the master dual problem

is as follows:

minimize L(
~̂
P, ~λ, ~µ, ν) (5.27)

subject to: λn, µn, ν ≥ 0, for all n. (5.28)

Since the objective function (5.27) is differentiable, we also apply the gradient method to solve the

master dual problem [14], where the Lagrange multipliers are iteratively updated as























λn(l + 1) = [λn(l)− αλ(l) ·
∂L(~λ,~µ,ν)

∂λn
]+, for all n

µn(l + 1) = [µn(l)− αµ(l) ·
∂L(~λ,~µ,ν)

∂µn
]+, for all n

ν(l + 1) = [ν(l)− αν(l) ·
∂L(~λ,~µ,ν)

∂ν
]+,

(5.29)

where[·]+ denotes the projection onto the nonnegative axis. The update stepsizes are also deter-

mined by the Armijo Rule [14]. As the dual variables~λ(l), ~µ(l), ν(l) converge to their stable values

asl → ∞, the primal variables~̂P will also converge to the optimal solution [100].
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Algorithm 6: Distributed Power Control Algorithm

1 BS setsl = 0 and pricesλn(l), µn(l), ν(l) equal to some nonnegative initial values for alln;
2 BS broadcasts the prices to the selected users;
3 Each user locally solves problem (5.25) as in (5.26) to obtain its requested power;
4 Each user sends its requested power to the BS;
5 BS updates pricesλn(l), µn(l), ν(l) as in (5.29) and broadcasts new prices
λn(l + 1), µn(l + 1), ν(l + 1) for all n;

6 Setl = l + 1 and go to Step3, until the solution converges;

The distributed algorithm is given in Algorithm 6, where theabove procedures are repeated

iteratively. The BS first broadcasts Lagrange multipliers tothe users. Each user updates its re-

quested power as in (5.26), using local informationPmin
n , Pmax

n , P ∗
n , An, Ln, and BS peak power

P̄ . Each user then sends its requested power back to the BS, and the BS will updates the Lagrange

multipliers as in (5.29). And so forth, until the optimal solution is obtained.

5.5 Simulation Results

We evaluate the proposed algorithms with MATLAB simulations, where the deterministic

VBR traffic model and the optimization solution algorithms are implemented. We use a cellular

network with 20 users;1 the network topology is illustrated in Fig. 5.2. The downlink bandwidth

is 1 MHz. The path gain averages areGn = d−4
n , wheredn is the physical distance from the BS to

usern. The downlink channel is modeled as log-normal block fadingwith zero mean and variance

8 dB [50]. The processing gains are set toLn = 128 for all n. The distancedn is uniformly

distributed in [100m, 1000m]. The device temperature isT0 = 290 Kelvin and the equivalent noise

bandwidth isBw = 1MHz. The BS peak power constraints is set toP̄ = 10 Watts. We use three

VBR movies traces,Star Wars, NBC News, andTokyo Olympics, from the Video Trace Library

maintained at Arizona State University [139]. We plot the sizes of the first100 frames of theNBC

Newsvideo sequence in Fig. 5.3, to illustrate the high variationof VBR video frame sizes, which

makes it very challenging to develop accurate mathematicalmodels. Each playout buffer is set to

1.5 times of the largest frame size in the requested VBR video.

1The number of users/links in the cellular network is chosen according to the resource specified in the simulation:
bandwidth and the total BS power limit.
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Figure 5.2: Topology of the cellular network.
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Figure 5.3: The sizes of the first100 frames of theNBC Newssequence.

In the simulations, we have 7 user streaming NBC news, 7 users streaming Star Wars, and

6 users streaming Tokyo Olympics. The proposed power allocation algorithm is executed at the

beginning of each time slot. In Fig. 5.4, we plot the cumulative consumption, overflow and trans-

mission curves forNBC Newstransmitted to user 2. The top sub-figure is the overview of10, 000
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Figure 5.4: Transmission schedule for videoNBC Newsto user 2.

frames. We also plot the curves from frame2, 620 to 2, 640 in the bottom sub-figure. We observe

that the cumulative transmission curveX(t) is very close to the cumulative overflow curveB(t),

indicating that the algorithm always aim to maximize the transmission rate as allowed by the buffer

and power constraints. The playout buffers are almost fullyutilized most of the time. There is no

playout buffer overflow and underflow for the entire range of10, 000 frames. Among theNBC

Newsframes, frame2, 625 is the largest frame. We let seven out of the20 links playout this largest

frame simultaneously at time slot2, 625 in the simulation. There is no buffer underflow under such

heavy load.

In Fig. 5.5, we plot the power allocation and price updates for all the20 links in one of the

10,000 time slots. The power and prices converges in around70 steps. The converged power

vector is ~̂P = [0.0022, 1.396, 0.0356, 0.0024, 1.396, 0.0351, 0.0016, 1.396, 0.0356, 0.0026, 1.396,

0.0356, 0.0023, 1.396, 0.0356, 0.0018, 1.396, 0.0356, 0.0034, 1.394] Watts. Note that with the

distributed algorithm, the computation in each iteration only consisting updating power or price as

in (5.26) and (5.29), which takes only a negligible amount oftime. The 70-step convergence time

is very small comparing to the power control in cellular standards (e.g., 1500 Hz for UMTS power
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Figure 5.5: Convergence of power allocation and Lagrange multipliers.

control [140]). Since the gradient method is used, the convergence of the algorithm is dependent

on the gradients, which further depend on the system parameters such asLn andAn. Another main

factor for the convergence speed is the choice of the stepsize. As discussed, we use Armijo Rule to

determine step size, in which the stepsize evolves according to the difference of the target values

between steps.

Finally, we compare the proposed algorithm with a diversity-aware power allocation scheme,

where the BS allocates power according to channel quality. With this scheme, the best channel

n will be assigned power to achieve its maximum required powerPmax
n (t). Then the second best

channel will be allocated power until its maximum required power is achieved, and so forth until

all of P̄ is allocated. In this simulation, we increase the number of users to50 to stress the capacity

of the cellular network, such that the system is close to saturate. The purpose is to show the

performance of the algorithms under a nearly congested scenario, which is more interesting in

performance analysis than an under-load scenario.
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Figure 5.6: Average playout buffer utilization for the entire video sequence (10000 frames).

We compare the algorithms by their average playout buffer utilization. In Fig. 5.6, we plot

the average buffer utilizations achieved by the proposed scheme and the diversity-aware scheme

for the entire video sequence. A zoomed in version is presented in Fig. 5.7 from frames ranging

from 2, 000 to 2, 500. It can be seen that the proposed algorithm consistently achieves high buffer

utilization, ranging from 60% to 100%. The diversity schemeachieves buffer utilization lower

than 50% for frames from2, 000 to 2, 250. Such considerably higher buffer utilization translates to

better video quality: there is no buffer overflow or underflowfor proposed algorithm, while there

is buffer underflow in17% of the playout frames for the diversity scheme.

5.6 Related Work

Most of the prior work on VBR video streaming consider wired networks, which can be clas-

sified according to their traffic models, i.e.,statisticalor deterministicmodels. With the former

approach, stochastic models are developed to capture the burstiness in VBR traffic. In [131, 132],

the authors observed thelong-range-dependencein VBR video traffic and modeled the autocorre-

lation with self-similar processes. This class of work provides valuable insights on the nature of
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Figure 5.7: Average playout buffer utilization for frames 2000 to 2500.

VBR video traffic. The stochastic models can be incorporated in quality of service(QoS) mecha-

nisms for VBR videos, and for traffic synthesizing in simulations [133].

With the deterministic approach, the piecewise-constant-rate transmission and transport (PCRTT)

method was used, aiming to optimize one or more objectives while preserving continuous video

playout. In [135], Liew and Chan proposed bandwidth allocation schemes for dynamically shar-

ing a CBR channel among multiple VBR video streams, either i) to minimize the total receiver

buffer size, or ii) to avoid underflow and overflow for a given playout buffer size. In [95], Salehi

et al. considered smoothing VBR video over a CBR link and developed an effective algorithm to

achieve the greatest smoothness in rate. In [141], McManus and Ross introduced a dynamic pro-

gramming framework to set PCRTT rates and intervals to optimize different objective functions.

These techniques do not directly apply to our problem of VBR over wireless networks, due to the

fundamental difference between wireless and wired CBR links.

The downlink power allocation problem was studied in [50,137], aiming to obtain the power

allocation that maximizes a properly defined system utility. A distributed algorithm based on

dynamic pricing and partial cooperation was proposed. Deng, Webera, and Ahrens [142] studied
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the achievable maximum sum rate of multi-user interferencechannels. These papers provide the

theoretical foundation and effective algorithms for utility maximization of downlink traffic, but the

techniques used cannot be directly applied for VBR video overwireless networks with buffer and

delay constraints.

In [54, 143], the authors studied the problem of one VBR streamover a given time-varying

wireless channel. In [143], it was shown that the separationbetween a delay jitter buffer and

a decoder buffer is in general suboptimal, and several critical system parameters were derived.

In [54], the authors studied the frequency of jitters under both network and video system constraint

and provided a framework for quantifying the trade-offs among several system parameters. In this

chapter, we jointly consider power control in wireless networks, playout buffers, and video frame

information, and address the more challenging problem of streaming multiple VBR videos, and

present a cross-layer optimization approach that does not depend on any specific channel or video

traffic models.

5.7 Conclusions

We developed a downlink power allocation model for streaming multiple VBR videos in a cel-

lular network. The model considers interactions among downlink power control, channel interfer-

ence, playout buffers, and VBR video traffic characteristics. The formulated problem aims at max-

imizing the total transmission rate under both peak power and playout buffer overflow/underflow

constraints. We presented a two-step approach for solving the problem and a distributed algorithm

based on the dual decomposition technique. Our simulation studies validated the efficacy of the

proposed algorithms.
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Chapter 6

Downlink Power Control for Variable Bit Rate Video over Multicell Wireless Networks

6.1 Introduction

In this chapter, we extend power control invariable bit rate(VBR) video streaming to mul-

ticell wireless networks scenario. We consider video streaming over a multicell wireless network,

a wireless network architecture widely deployed all over the world. We consider the typical case

of downlink video transmissions. For the multicell system,generally intra-cell interference can be

effectively controlled with precise synchronization or the use of guard times. The capacities of the

downlinks are mainly limited by the inter-cell interference due to simultaneous base station (BS)

transmissions using the same channel. Therefore, effective downlink power control is necessary to

support concurrent videos.

In this chapter, we presented a problem formulation that considers downlink power control,

inter-cell interference, VBR video characteristics, and playout buffer requirements. The objective

is to achieve high playout buffer utilization, under playout buffer underflow and overflow con-

straints and peak power constraint. This is a nonlinear nonconvex problem to which traditional

convex optimization techniques [59] and low- or high-Signal to Interference-plus-Noise Ratio

(SINR) approximations [59,138] do not directly apply.

We first derive the condition of the existence of feasible power assignments, which can achieve

downlink capacities to guarantee no buffer underflow and overflow. We then develop a central-

ized algorithm that can produce solutions with bounded optimality gap. Specifically, we use the

Reformulation-Linearization Technique (RLT) to obtain a linear programming (LP) relaxation of

the original problem. Solving this LP relaxation yields an upper bound to the original problem.

Interestingly, since the constraints are preserved in the relaxation procedure, the upper-bounding
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solution is also feasible to the original problem; the corresponding objective value with this solu-

tion provides a lower bound to the global optimum. The LP relaxation is then incorporated into

the branch-and-bound framework to obtain a centralized algorithm, which can produce a solution

within the (1-ǫ) range of the global optimal.

To simplify computation and control, we also develop a distributed algorithm based on dis-

tributed constrained power control (DCPC) [48], where each BS iteratively updates transmit power

based on feedback of measured SINR at the target receiver. Itis shown that with DCPC, the power

vector converges to a unique power vector that can achieve the goal of maximizing playout buffer

utilization and avoiding playout buffer underflow and overflow. We evaluate the proposed al-

gorithms with simulations using VBR video traces [139] and fading channels. The distributed

algorithm is shown to achieve a performance very close to that of the centralized algorithm. Both

algorithms are demonstrated to be highly effective for streaming VBR videos over multicell wire-

less networks.

In the reminder of this chapter, we present the problem formulation in Section 6.2. We de-

scribe a centralized algorithm in Section 6.3 and a distributed algorithm in Section 6.4. Simulation

results are presented in Section 6.5 and related work is discussed in Section 6.6. Section 6.7 con-

cludes this chapter. The notation used in this chapter are summarized in Table 6.1.

6.2 Problem Statement

6.2.1 Network and Video System Model

We consider the downlinks of anM -cell wireless network as shown in Fig. 6.1. In each cell,

a BS streams video to mobile users in the cell, each allocated with a downlink channel. A channel

is a spectral resource slot, the nature of which depends on the specific multiple access technique

adopted for the multicell network. Without loss of generality, we assume that the downlink chan-

nels within a cell are orthogonal (e.g., due to perfect synchronization of spreading codes or use of

guard times). The main interference at a user stems from the concurrent downlink transmissions
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Table 6.1: Notation Table for Chapter 6

Symbol Description
M total number of cells (or, BS’s)
U set of users sharing the same channel
Li total number of frames for useri video
bi playout buffer size of useri
Di(t) cumulative consumption curve at useri
Xi(t) cumulative transmission curve at useri
Bi(t) cumulative overflow curve at useri
Pm(t) transmit power of BSm in time slott
~P (t) BS transmit power vector in time slott
P̄ peak power constraint for the BS’s
~P ∗ optimal power vector to the LP relaxation
Gm

k path gain from BSk to userunm

Bw channel bandwidth
τ duration of a time slot
ηm noise power at userunm

Cm capacity of the cellm downlink
Cmin

m (t) min. rate for userunm without underflow
C̄min

m (t) the largest value ofCmin
m (t)

γm(t) SINR at userunm

γmin
m (t) minimum SINR corresponding toCmin

m (t)
γ̄min
m (t) SINR corresponding tōCmin

m (t)
γmax
m (t) max. SINR for userunm without overflow
γthm receiver sensitivity at userunm

A matrix of path gain ratios defined in (D.5)
Γ

min defined as diag{γmin
1 (t), γmin

2 (t), · · · , γmin
M (t)}

Γ̄
min defined as diag{γ̄min

1 (t), γ̄min
2 (t), · · · , barγmin

M (t)}
∆ M ×M matrix defined as(Γ̄min − Γmin)
γtarm target userunm SINR for distributed alg.
Γ̄

tar defined as diag{γtar1 (t), γtar2 (t), · · · , γtarM (t)
νm vector of elementsηm/Gm

m

um RLT substitution variable for logarithm terms
vmk RLT substitution variable for quadratic terms
α, β parameters for the distributed algorithm

in neighboring cells that use the same channel. There is a need for the BS’s to adopt power control

to mitigate such inter-cell interference.

We consider the problem of streaming multiple VBR videos in the multicell network. We

assume the wired segment of a video session path is reliable with sufficient bandwidth, while

the last-hop wireless link is the bottleneck [144]. Thus thecorresponding video data is always
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Figure 6.1: A multicell wireless network with concurrent VBRvideo sessions. The inter-cell
interference experienced by the central cell user is illustrated.

available at the BS before the scheduled transmission time. We adopt thedeterministic VBR video

modelin 4.2.

6.2.2 Problem Formation

For the multicell wireless video network, consider a specific channel and letU = {un1, un2,

· · · , unM} denote the set of users sharing the channel, whereunm is the user in cellm.1 Let the

BS transmit power vectorbe ~P (t) = [P1(t), P2(t), · · · , PM(t)]T in time slott. The capacity of the

downlink from BSm to userunm, denoted asCm(t), depends on the SINR atunm, which can be

written as

γm(~P (t)) =
Gm

mPm(t)
∑

k 6=mG
m
k Pk(t) + ηm

, (6.1)

whereGm
k is the path gain from BSk to userunm andηm is the noise power atunm. We assume

slow-fading channels such that the path gains do not change within each time slot [50], but vary

over different time slots following a certain distribution. The downlink capacityCm(t) also de-

pends on the channel bandwidthBw and the transceiver design, such as modulation and channel

10-1 index variables can be used to model the case where no user uses the channel in some cells, but are omitted for brevity.
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coding. Without loss of generality, we use the upper bound aspredicted by Shannon theorem:

Cm(~P (t)) = Bw log
(

1 + γm(~P (t))
)

. (6.2)

The impact of fading channels is incorporated in the SINR in (6.2). For practical systems, the

achievable capacity may be a fraction ofCm(~P (t)), but this part is omitted for brevity.

Once the link capacity is determined,Cm(t)τ video bits will be delivered to userunm in that

time slot. The cumulative transmission curveXm(t) can be written as

Xm(0) = 0; Xm(t) = Xm(t− 1) + Cm(t)τ. (6.3)

Assume peak power constraint0 ≤ Pm ≤ P̄ , for all m. The problem is to determine the transmit

power vector~P (t), for 0 < t ≤ maxi{Li}, such that the resulting cumulative transmission curves

satisfy

Dm(t) ≤ Xm(t) ≤ Bm(t), for all m, t, (6.4)

i.e., without causing playout buffer underflow or overflow. Since the video frames have variable

sizes and the video sessions have random phases, large frames from different sessions are less

likely to occur in the same time slot. Jointly considering power control for the downlinks is, in

some sense, analogous to statistical multiplexing of VBR video flows.

From (6.2)∼(6.4), the feasible SINR range at userunm is

e
max{0,Dm(t)−Xm(t−1)}

Bwτ −1 ≤ γm ≤ e
Bm(t)−Xm(t−1)

Bwτ −1. (6.5)

In (6.5), the lower bound is the SINR that just empties the buffer without causing underflow. The

upper bound is the SINR that just fills up the buffer without causing overflow.

Generally, the feasible transmit power vector~P (t) is not unique for a given set of VBR video

sessions. Among the set of feasible solutions, a schedule that transmits more data is more desir-

able since it provides a larger search space for optimizing transmit power vectors for future time
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slots. Omitting the constantBw, we formulate the optimal power control problem for VBR videos,

termed problem OPT-VBR, as

maximize
∑

m∈U

log(1 + γm(t)) (6.6)

subject to: γm(t) =
Gm

mPm(t)
∑

k 6=mG
m
k Pk(t) + ηm

, ∀ m (6.7)

γmin
m (t) ≤ γm(t) ≤ γmax

m (t), ∀ m (6.8)

0 ≤ Pm ≤ P̄ , ∀ m, (6.9)

whereγmax
m (t) is the upper bound in (6.5) andγmin

m (t) is the larger one between the lower bound

in (6.5) andγthm , a minimum SINR requirement imposed by the transceiver design.

In problem OPT-VBR, the total amount of video data delivered intime slott is maximized,

under playout buffer underflow and overflow constraints and peak transmit power constraints. This

is a nonlinear nonconvex problem, to which traditional convex optimization techniques do not

directly apply. Furthermore, to achieve the objective of avoiding playout buffer underflow and

overflow, the SINRs may assume values ranging from very low to very high. Thus the existing

high SINR approximation [59] and low SINR approximation [138] techniques cannot be used. In

the following, we first prove the existence of feasible solutions. We then derive effective centralized

and distributed algorithms to solve problem OPT-VBR in Sections 6.3 and 6.4.

6.2.3 Existence of Feasible Solutions

Due to the wide range of VBR video frame sizes, the corresponding SINR requirements also

assume a wide range of values. Under conditions where many video sessions coincidently transmit

their large frames in the same time slot, problem OPT-VBR may not have a feasible power assign-

ment to deliver all the frames. In this section, we derive theconditions for the existence of feasible

power assignments. We assume a centralized scheduler in themulticell network, which has prior

knowledge of all the path gains and the cumulative consumption and overflow curves.
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We define theminimum required ratefor userunm in time slott, denoted asCmin
m (t), as the

bit rate such that the playout buffer is just emptied, but without underflow, at the end of time slott.

We have the following result forCmin
m (t).

Lemma 6.1. The largest value for the minimum required rateCmin
m (t) is C̄min

m (t) = [Dm(t)−

Dm(t− 1)]/τ .

Proof. See Appendix D.1.

We have the following condition for the existence of a feasible power assignment for problem

OPT-VBR.

Theorem 6.1. There exits a feasible power assignment for problem OPT-VBR for time slott, if

there exits a feasible power assignment that can achieve the rate vector
[

C̄min
1 (t) , C̄min

2 (t), · · · ,

C̄min
M (t)

]

.

Proof. See Appendix D.2.

Theorem 6.1 allows us to evaluate, for a given set of videos, if there is a feasible power

assignment for each time slot. There is no need to consider the transmission schedules and playout

buffer occupancies in previous time slots. At the beginningof time slott, we obtainγ̄min
m (t) from

the cumulative consumption curveD(t) and channel gains. If the linear system (D.4) is solvable

and the resulting~P satisfies constraint (6.9), then there is a feasible power assignment for problem

OPT-VBR for this time slot. The following fact from [51] can beused for the feasibility test.

Fact 6.1. The following statements are equivalent: (i) there exits a feasible power assignment sat-

isfying (D.4); (ii) the maximum modulus eigenvalue of
(

Γ̄
min

A
)

is less than1; (iii) the reciprocal

matrix (I− Γ̄
min

A)−1 =
∑∞

k=0

(

Γ̄
min

A
)k

exists and is positive component-wise.

106



6.2.4 Comparison with a Lazy Scheme

A “lazy” scheme is proposed in [136] for VBR video transmission over a wired network.

This is an ON-OFF scheme and it transmits a video frame as lateas possible before its playout

deadline at the maximum link speed, which minimizes the required client buffer size. In multicell

multi-user wireless VBR video streaming, the maximum link speed varies from time to time due

to interference and channel fading. Thus, the original lazyscheme cannot be applied directly.

We enhance the lazy scheme to support multicell multi-user VBR video streaming, termed W-

Lazy, where every BS transmits a frame that is needed for playout in the next time slot. Then we

can determine the rate vector (and the transmit powers) as given in Theorem 6.1. We use W-Lazy

as a benchmark for comparison and evaluation of the proposedalgorithms. We have the following

results for W-Lazy.

Corollary 6.1.1. Problem OPT-VBR has a larger solution space than the W-Lazy scheme.

Proof. This result directly follows Theorem 6.1.

Corollary 6.1.2. If ~C∗(t) = [C∗
1(t), ..., C

∗
n(t)] is the solution to problem VBR-OPT, then any other

vector ~C(t) that is element-wise smaller than~C∗(t) has a smaller solution space.

Proof. This result also follows a similar process as in the proof of Theorem 6.1.

6.3 Centralized Algorithm

As discussed, problem OPT-VBR is a nonlinear nonconvex problem, to which traditional

convex optimization techniques do not directly apply. In this section, we present a centralized

algorithm to provide solutions with bounded optimality gap. We first use RLT to obtain a linear

programming (LP) relaxation of problem OPT-VBR [145]. We then incorporate the linear relax-

ation into a branch-and-bound framework, which can produce(1-ǫ)-optimal solutions.
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6.3.1 Reformulation and Linearization

We first applypolyhedral outer approximationfor the logarithm functions in problem OPT-

VBR to obtain a Polynomial Programming Problem OPT-VBR(p) [146]. We then useRLT bound-

factor product constraintsto relax the quadratic terms to obtain an LP relaxation OPT-VBR(l).

The time slot index(t) is dropped in the following to simplify notation.

We first process the logarithm functions in the objective function. Lettingum = log (1 + γm),

we obtain a linear objective function
∑

m∈U um and new constraintsum = log (1 + γm). We deal

with the new constraints using polyhedral outer approximation. Sinceγmin
m ≤ γm ≤ γmax

m , we

chooseH points, denoted as{γhm}, within this range as

γhm = (1 + γmin
m )

(

1 + γmax
m

1 + γmin
m

)
h

H−1

− 1, h = 0, · · · , H − 1, (6.10)

whereγ0m = γmin
m andγH−1

m = γmax
m . We can obtain aconvex envelopfor the logarithm function

in [γmin
m , γmax

m ], which consists ofH tangent lines at theH points given in (6.10) and the line

segment connecting the two end points. We relax the logarithm constraint by using its convex

envelop, represented by the following new linear constraints:











um ≥ log (1+γmin
m )

γmax
m −γmin

m
(γmax

m − γm) +
log (1+γmax

m )
γmax
m −γmin

m
(γm − γmin

m )

um ≤ log(1 + γhm) +
γm−γh

m

1+γh
m
, h = 0, 1, · · · , H − 1.

The first line is for the segment connecting the two end points, and the second line is for the tangent

lines at theH points. A four-point approximation is illustrated in Fig. 6.2.

With the polyhedral outer approximation, we obtain a polynomial programming problem

OPT-VBR(p), as given in (6.11)∼ (6.18). We can rewrite the last constraint (6.18) as

∑

k 6=m

Gm
k γmPk −Gm

mPm + ηmγm = 0,
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Figure 6.2: Four-point polyhedral outer approximation forum = log(1 + γm), 1 < γmin
m ≤ γm ≤

γmax
m .

maximize
∑

m∈U

um (6.11)

subject to:

Gm
mPm −

(

∑

k 6=m

Gm
k Pk + ηm

)

γmin
m ≥ 0, ∀ m (6.12)

Gm
mPm −

(

∑

k 6=m

Gm
k Pk + ηm

)

γmax
m ≤ 0, ∀ m (6.13)

0 ≤ Pm ≤ P̄ , ∀ m (6.14)

um ≥
log (1 + γmin

m )

γmax
m − γmin

m

(γmax
m − γm) +

log (1 + γmax
m )

γmax
m − γmin

m

(γm − γmin
m ), ∀ m (6.15)

um ≤ log(1 + γhm) +
γm − γhm
1 + γhm

, ∀ m,h (6.16)

γhm = (1 + γmin
m )

(

1 + γmax
m

1 + γmin
m

)
h

H−1

− 1, ∀ m,h (6.17)

γm =
Gm

mPm
∑

k 6=mG
m
k Pk + ηm

, ∀ m. (6.18)

which contains quadratic terms in the form ofγmPk. We next introduce RLT bound-factor product

constraints to remove such terms and to obtain an LP relaxation.

Define substitution variablesvmk = γmPk, for all m, k. Sinceγm andPk are bounded by

their respective lower and upper bounds asγmin
m ≤ γm ≤ γmax

m and0 ≤ Pk ≤ P̄ , we obtain the
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following RLT bound-factor product constraints



































(γm − γmin
m ) · (Pk − 0) ≥ 0

(γmax
m − γm) · (Pk − 0) ≥ 0

(γm − γmin
m ) · (P̄ − Pk) ≥ 0

(γmax
m − γm) · (P̄ − Pk) ≥ 0.

SubstitutingγmPk = vmk, we obtain the following four linear constraints forvmk:



































vmk − γmin
m Pk ≥ 0

γmax
m Pk − vmk ≥ 0

γmP̄ − vmk − γmin
m P̄ + γmin

m Pk ≥ 0

γmax
m P̄ − γmax

m Pk − γmP̄ + vmk ≥ 0.

The quadratic termsPkγm are thus replaced withvmk with the above linear RLT bound-factor

constraints, and an LP relaxation OPT-VBR(l) is obtained as given in (6.19)∼ (6.30).

The LP relaxation OPT-VBR(l) can be effectively solved with an LP solver in polynomial

time. The optimal solution to the LP relaxation consists of{~P ∗, ~u∗, ~γ∗, ~v∗}. It is worth noting that

during the reformulation and linearization procedure, we mainly relax the logarithm function in

the objective function of OPT-VBR. The original constraints of OPT-VBR are preserved in OPT-

VBR(l). Therefore, we have the following theorem regarding the feasibility of the solution, which

greatly simplifies thelocal searchprocedure of the branch-and-bound algorithm to be presented in

Section 6.3.2.

Theorem 6.2.The optimal transmit power vector~P ∗ to the LP relaxation OPT-VBR(l) is a feasible

solution to the original problem OPT-VBR.

6.3.2 Branch-and-Bound Algorithm

According to Theorem 6.2, we can substitute the optimal power assignment~P ∗ for the LP

relaxation into problem OPT-VBR to obtain a lower bound, while the LP solution itself provides
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maximize
∑

m∈U

um (6.19)

subject to:

Gm
mPm −

(

∑

k 6=m

Gm
k Pk + ηm

)

γmin
m ≥ 0, ∀ m (6.20)

Gm
mPm −

(

∑

k 6=m

Gm
k Pk + ηm

)

γmax
m ≤ 0, ∀ m (6.21)

0 ≤ Pm ≤ P̄ , ∀ m (6.22)

um ≥
log (1 + γmin

m )

γmax
m − γmin

m

(γmax
m − γm) +

log (1 + γmax
m )

γmax
m − γmin

m

(γm − γmin
m ), ∀ m (6.23)

um ≤ log(1 + γhm) +
γm − γhm
1 + γhm

, ∀ m,h (6.24)

γhm = (1 + γmin
m )

(

1 + γmax
m

1 + γmin
m

)
h

H−1

− 1, ∀ m,h (6.25)

vmk − γmin
m Pk ≥ 0, ∀ m, k 6= m (6.26)

(γm − γmin
m )P̄ − vmk + γmin

m Pk ≥ 0, ∀ m, k 6= m (6.27)

γmax
m Pk − vmk ≥ 0, ∀ m, k 6= m (6.28)

(γmax
m − γm)P̄ − γmax

m Pk + vmk ≥ 0, ∀ m, k 6= m (6.29)
∑

k 6=m

vmkG
m
k −Gm

mPm + ηmγm = 0, ∀ m. (6.30)

an upper bound. We next incorporate the LP relaxation into a branch-and-bound framework to

obtain an algorithm that can produce (1-ǫ)-optimal solutions.

Branch-and-bound is an iterative method for solving optimization problems, especially for

discrete and combinatorial problems. A branch-and-bound procedure has two key components.

The first one, calledbranching, is to partition a problem into subproblems. The procedure is re-

peated recursively to each of the subproblems and all produced subproblems naturally form a tree

structure, i.e., thebranch-and-bound tree. Its nodes are the constructed subproblems. The leaves

of the tree is also call theProblem List. The other component isbounding, which is a fast way of

finding upper and lower bounds for the optimal solution for each subproblem. For a maximization

problem, an infeasible upper bound (UB) can be found by solving a relaxed problem. Alocal
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searchalgorithm is then used to explore the neighborhood, to find a feasible lower-bounding solu-

tion (LB). As discussed, we can easily derive upper and lower bounds by solving the LP relaxation

(no need for local search). The core of the approach is an observation that, for a maximization

task, if the upper bound for a subprobleml1 is smaller than the lower bound for any other sub-

probleml2, thenl1 and the branch rooted atl1 can be safely discarded from the tree, such that the

computational complexity can be reduced. This procedure iscalledpruning.

The algorithm terminates when the upper bound reaches(1 + ǫ) of the lower bound. Let the

optimal object value beO ≤ UB, we haveLB ≥ 1
1+ǫ

UB ≥ 1
1+ǫ

O = (1− ǫ+ ǫ2 − ǫ3 + · · · )O ≈

(1 − ǫ)O, for 0 ≤ ǫ ≪ 1. The pseudo code for the branch-and-bound algorithm is given in

Algorithm 7.

6.3.3 Enhancement

In this section, we further introduce a heuristic to accelerate the convergence of the branch-

and-bound algorithm. At the beginning of time slott, if the playout buffer occupancy is above a

certain threshold, say, 80%, andXm(t− 1) ≥ Dm(t) at userm, we setPm(t) = 0 and remove the

link from the optimization process.

Generally the playout buffer size should at least be greaterthan the largest frame size. Given

the large variations in VBR frame sizes, there could be multiple frames stored when the buffer is

close to full. When the above conditions are satisfied, there is little chance of buffer underflow

at the end of time slott even if we do not transmit anything to userm. On the other hand, if we

schedule a non-zero powerPm(t) for this link, only a small amount of bits can be transmitted due

to the buffer overflow constraint, but at the cost of reduced SINRs at all other links. Excluding

such links from transmission not only greatly speeds up the convergence of the branch-and-bound

algorithm, but also increases the SINR and capacity of otheractive links.
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Algorithm 7: Branch-and-Bound Algorithm

1 Initialization ;
2 Obtain LP relaxation OPT-VBR(l) as Prob 1 ;
3 Set optimal solutionsol = φ, Problem listS = {Prob 1}, UB = ∞, andLB = 0 ;

4 Solve Prob 1 for solution{~P ′, ~u′, ~γ′, ~v′} and upper boundUB1 ;

5 Use ~P ′, (6.6), and (6.7) to get lower boundLB1 ;
6 SetUB = UB1 andLB = LB1 ;

7 Iteration & pruning ;

8 Select Probl with the largestUBl in S and setUB = UBl;
9 if LBl > LB then

10 Setsol = ~P ′
l andLB = LBl ;

11 if UB ≤ (1 + ǫ)LB then
12 stop with solutionsol ;
13 else
14 remove all probsk in S with UBk ≤ (1 + ǫ)LB ;
15 end
16 end
17 Partition ;
18 For Probl, find the maximum relaxation error among all RLT variables, e.g.,

maxm,k{|γmPk − vmk|} ;
19 Evaluate the following condition:

(γmax
m −γmin

m )·min{γ′m−γ
min
m , γmax

m −γ′m} ≥ (Pmax
m −Pmin

m )·min{P ′
m−P

min
m , Pmax

m −P ′
m};

20 if true then
21 partition [γmin

m , γmax
m ] into [γmin

m , γ′m] and[γ′m, γ
max
m ] ;

22 else
23 partition [Pmin

m , Pmax
m ] into [Pmin

m , P ′
m] and[P ′

m, P
max
m ] ;

24 end
25 Bounding ;

26 Solve the partitioned probsl1 andl2 to get solutionssoll1 , soll2 and boundsUBl1, UBl2,
LBl1 , LBl2 ;

27 Remove Probl from S ;
28 if (1 + ǫ)LB < UBl1 then
29 add Probl1 into S ;
30 end
31 if (1 + ǫ)LB < UBl2 then
32 add Probl2 into S ;
33 end
34 if S = φ then
35 stop ;
36 else
37 go to Step8 ;
38 end
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6.4 Distributed Algorithm

Although the RLT-based branch-and-bound algorithm can provide a(1− ǫ)-optimal solution,

it requires a centralized implementation. A centralized controller is needed to collect network, link

and video related information, and to update transmit powerfor each downlink. In this section, we

develop a distributed algorithm for problem OPT-VBR that canbe implemented in each BS and

operate with local information.

We assume each BS obtains video cumulative consumption curves and playout buffer sizes

for its users during the video session initiation phase. At the beginning of time slott, each BS

m computes for userunm the minimum rate as[Dm(t) − Xm(t − 1)]/τ , i.e., the data rate that

empties the playout buffer at the end of time slott but without underflow, and the maximum rate

as[Bm(t) −Xm(t − 1)]/τ , i.e., the data rate that makes the playout buffer full at theend of time

slot t but without overflow. BSm then translates the minimum and maximum rates to minimum

and maximum SINRs, i.e.,γmin
m (t) andγmax

m (t) as given in (6.5). In the following, we again drop

the time slot index(t) to simplify notation.

To maximize objective function (6.6), BSm sets a target SINR asγtarm = γmax
m , and tries to

achieve the target SINR by adjusting its transmit power. Theproblem then becomes aDistributed

Constrained Power Control(DCPC) problem [48]. BSm first randomly sets its initial transmit

power as0 < P 0
m ≤ P̄ . Let γim be thei-th SINR measurement at userunm, which is fed back to

BSm. BSm then uses the following DCPC algorithm to update its power after receiving thei-th

SINR feedback:

P i
m = min

{

P̄ ,
γtarm

γim
P i−1
m

}

, i = 1, 2, · · · . (6.31)

If the γtarm ’s are feasible (see Section 6.2.3), the power vector series{~P 0, ~P 1, · · · , ~P i, · · · } is

proved to converge to a unique positive power vector satisfying the following equation [48]

~P = min
{

~̄P,Γtar(A~P + ~ν)
}

, (6.32)
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Algorithm 8: DCPC Algorithm

1 Initialization ;
2 BSm obtainsbm,Dm, andBm for userunm ;
3 BSm computes SINR boundsγmax

m andγmin
m ;

4 BSm setsγtarm = γmax
m andPm(0) ∈ (0, P̄ ] ;

5 Iteration ;
6 BSm receives SINR feedbackγim and updates its power as:
P i
m = min

{

P̄ , (γtarm /γim)P
i−1
m

}

;
7 if (P i

m = P̄ for β iterations) & (γim 6= γtarm ) then
8 reset the target SINR as:γtarm = γmin

m + α · (γtarm − γmin
m ) ;

9 end
10 i = i+ 1 and go to Step 6 ;

whereΓtar = diag{~γtar} = diag{γtar1 , γtar2 , · · · , γtarM }. Furthermore, the converged power vector

~P ∗(t) also achieves the target SINRγtarm (t) for each BSm. The convergence result is summarized

as the following fact from [48].

Fact 6.2. With the DCPC algorithm (6.31), the transmit power vector converges to a unique pos-

itive power vector~P ∗ satisfying (6.32). After convergence, either~P ∗ achieves~γtar or at least one

of the components in~P ∗ is equal toP̄ .

The pseudo code for the distributed DCPC algorithm is given inAlgorithm 8, whereα is a

fraction in (0,1) andβ is a positive integer. If BSm’s transmit power remains at the maximum

powerP̄ for β iterations, while the target SINRγtarm is still not achieved, we reset the target SINR

asγtarm = γmin
m + α · (γtarm − γmin

m ) and restart the iterative update process. We chooseα = 0.618,

the reciprocal of thegolden ratio, andβ from 2 to 5 in our simulations.

In practice, the path gains vary over time due to channel fading. It is possible that during some

time slot, the transmission is not feasible even for the minimum required rate. It is nontrivial to test

the feasibility of the target SINR vector~γtar in a distributed manner with only local information.

In fact, if the target SINR vector is infeasible, the problemof finding the largest set of links that

can be supported at the given SINRs is proved to be NP-Complete [147]. Therefore, we adopt the

following heuristic strategies to handle the case when the target SINR vector cannot be achieved

by a feasible power assignment due to deep fading channels.
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i) In the first time slot, if the DCPC algorithm does not converge in a certain number of steps,

suspend the transmission of the video with the largest framesize for sometime and retry the

algorithm.

ii) Adopt the acceleration enhancement as in the centralized algorithm, which is described in

Section 6.3.3.

iii) If the DCPC algorithm does not converge for the reducedγtarm (see Line 5 in Algorithm 8),

further reduce the target SINR asγtarm = γmin
m + α · (γtarm − γmin

m ). If still no convergence

whenγtarm = (1 + ǫ) · γmin
m , for 0 < ǫ ≪ 1, all the links whose buffer will not be empty in

the next time slot will pause their transmissions. Since thealgorithm always tries to transmit

as more data as possible (i.e., by setting a high target SINR whenever possible), it is highly

likely that such links won’t have buffer underflow in the following time slots.

iv) If all the above steps fail, the BS suspends its transmission and the user freezes the playout

precess until the next time slot.

6.5 Simulation Results

To evaluate the performance of the proposed algorithms, we simulate streaming VBR videos

in a 7-cell wireless network. We assume the channels within a cellare orthogonal and inter-cell

interference is the major limiting factor. The channel bandwidth is Bw = 1 MHz. The path

gain averages are set tōGm
k = d−4

km, wheredkm is the physical distance from BSk to userunm.

We assume Rayleigh fading channels in all the simulations, where the normalized path gain is

exponentially distributed asf(Gm
k ) = exp{−Gm

k /Ḡ
m
k } for Gm

k ≥ 0. The distance from a user to

its corresponding BS is uniformly distributed from 100 m to 1000 m and the inter-cell BS distance

is from 1600 m to 2000 m. The temperature isT0 = 290 Kelvin and the equivalent noise bandwidth

is also 1 MHz. The peak power constraint isP̄ = 1 Watt.

In each cell, the channel is dedicated to one mobile user for VBR video streaming. We assume

BS’s 1, 4 and 7 are streaming movieStar Wars, BS’s 2 and 5 are streamingNBC News, and the
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remaining links 3 and 6 are transmittingTokyo Olympics. We use the VBR traces for these videos

from the Video Trace Library hosted at Arizona State University [139] in all the simulations. The

playout buffer size is set to be 1.5 times of the largest framesize in the requested VBR video.

6.5.1 Centralized Algorithm

We implement the branch-and-bound centralized algorithm using MATLAB. We chooseǫ =

10% for the simulations. From the VBR video traces, we derive the cumulative consumption and

overflow curves. The centralized algorithm computes the optimized power assignment for the BS’s

at beginning of each time slot. In Fig. 6.5.1, we plot the cumulative consumption, overflow and

transmission curves forStar Warstransmitted on link 1. The top subfigure is for 10,000 frames.We

also plot the curves from frame 1,960 to frame 1,980 in the bottom subfigure, while frame 1,969

has the largest size among the 10,000 frames. We observe thatthe cumulative transmission curve

X1(t) is very close to the cumulative overflow curveB1(t), indicating that the centralized algorithm

always aims to maximize the transmission rate as allowed by the buffer and power constraints, and

the playout buffer is fully utilized for most of the time. There is no playout buffer overflow or

underflow for the entire range of the movies.

In Fig. 6.6, we plot the upper and lower bounds for objective function (6.6) for time slot 1.

This is the hardest time slot with respect to power control, since all the sessions are transmitting

I-frames and all the playout buffers are empty in this time slot in our simulations. We observe

the optimality gap between UB and LB is continuously decreased until theǫ = 0.1 threshold is

reached. In other time slots where the frame sizes are not consistently large and the playout buffers

are close to full, it usually takes only a few (e.g., 5 or 6) iterations to reach the optimality gap

threshold.

We also evaluate the accelerated scheme under the same videoand network conditions. The

curves for link 1 are plotted in Fig. 6.5.1. It can be seen thatduring time slots 1,963, 1,967,

and 1,971, there is no transmission on link 1 since the playout buffer is over 80% full. Pausing

transmission in these time slots makes it easier for other links to transmit large frames and speeds
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Figure 6.3: The cumulative overflow, transmission, and consumption curves when transmitting
Star Warsat link 1 with centralized algorithm in the seven-cell network.
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Figure 6.4: The cumulative overflow, transmission, and consumption curves when transmitting
Star Warsat link 1 with Accelerated centralized algorithm in the seven-cell network.
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Figure 6.5: The cumulative overflow, transmission, and consumption curves when transmitting
Star Warsat link 1 with DCPC in the seven-cell network.

up the convergence of the algorithm, while causing no bufferunderflow at link 1. Since usually

large frames rarely occur in the same time slot (except for time slot 1), this is analogous to statistical

multiplexing of VBR videos. We find in the simulation, a link can pause in over 60% of the time

slots with the acceleration heuristic, resulting in significant reduction in computation time.

6.5.2 Distributed Algorithm

We next examine the performance of DCPC. The network and video setups are the same

as those in the centralized algorithm simulations. The cumulative overflow, transmission, and

consumption curves obtained by DCPC are plotted in Fig. 6.5.1for Star Warstransmitted on link

1. We observe very similar performance as in the case of the centralized algorithm shown in

Fig. 6.5.1. The cumulative transmission curve is again veryclose toBm(t), and there is neither

buffer overflow nor underflow during the transmission of 10,000 frames.

To compare the distributed and centralized algorithms, we compute the sum of the bit rates

of all the links in each time slot. The acceleration scheme isnot used for both algorithms in this
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Figure 6.6: Convergence of the branch-and-bound algorithm in time slot 1 when all the I-frames
are transmitted and all the buffers are empty (i.e., the worst case scenario).

6800 6810 6820 6830 6840
0

5000

10000

15000

Frame−time

Su
m

 o
f b

it 
ra

te
s 

(k
bp

s)

 

 

Centralized algorithm
Distributed algorithm

Figure 6.7: Rate sums with the algorithms with a seven-link network.

simulation. The rate sums are plotted in Fig. 6.5.2 from timeslot 6,800 to 6,840. We observe

that the sum rates achieved by the centralized algorithm andthat by the distributed algorithm are

identical for most part of this interval. Examining the ratesums for the entire 10,000 time slots,

we find that the rate sum achieved by the DCPC algorithm is within 99% of the corresponding rate

sum achieved by the centralized algorithm in over 97% of the time slots.
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Figure 6.8: Convergence of transmit powers of DCPC with a seven-link network.
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Figure 6.9: Convergence of bit rates of DCPC with a seven-link network.

The convergence of the distributed DCPC algorithm is plottedin Figs. 6.5.2 and 6.5.2 for one

of the time slots. The accelerated scheme is incorporated with DCPC, such that a linkmmay pause

its transmission if its buffer is over 80% full andXm(t − 1) > Dm(t). The evolution of the BS

transmit powers are plotted in Fig. 6.5.2, where after 23 steps, all the transmit powers converges

to a value between 0 and̄P = 1 Watt. The converged power vector is~P ∗ = [0.0023, 0.208, 0.185,

0.0013, 0.163,7.1 × 10−04, 0.188] Watt. The evolution of the bit rates are plotted in Fig. 6.5.2. It

is interesting to see the data rates converge faster than thetransmit powers in this case. All the data

rates reach stable values after a few steps.

121



6.5.3 Empirical Performance Evaluation

We evaluate the performance of the proposed schemes by comparing them with the following

two schemes.

• A round-robin scheme where the BS allocates power in aquality of service(QoS) based

round-robin fashion, which favors the session that would suffer buffer starvation if no trans-

mission is scheduled. When a specific BS is selected for transmission, it transmits the video

with maximum power without overflowing the client buffer, and all its neighbors remain

silent in the same frame-time slot.

• W-Lazy, as described in Section 6.2.3.

First, we investigate the average buffer utilization at endof each time slot. When underflow

happens, the missing frame is discarded, and the next frame will be scheduled for the transmission

in the next time slot. We observe that the proposed RLT and DCPC schemes achieve higher average

buffer utilization than the other two schemes. Fig. 6.10 shows the average buffer utilization from

frame-time slot1, 600 to 1, 700. We find that the buffer utilization of RLT and DCPC fluctuate

around90% mostly, while the utilization of the Round-robin scheme is inthe range of50% to

80%. We also find that the W-Lazy scheme always achieves a zero buffer utilization,since it only

transmits each frame as late as possible in each time slot. Atthe end of a time slot, all the data will

be comsumed by the user and the buffer is left empty.

We then compare the average number of underflow events in Table 6.2. we find RLT achieves

underflow free transmission, while the number of underflow events for DCPC is negligible in the

simulations. This is because both schemes aim to transmit asmuch video data as possible under the

feasible condition in each frame-time slot. The extra videodata transmitted will be in the playout

buffer to provide a cushion to future large frames or networkdynamics. On the other hand, both

Round-robin and W-Lazy suffers a large number of underflow events. We also illustrate the buffer

underflow events in the period from1, 680 to 1, 700 in Fig. 6.11. The red dot circles indicate the

buffer underflow. It can be seen that the cumulative transmission curve lies below the cumulative
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Figure 6.10: Average buffer utilization of the four schemes.

Table 6.2: Number of underflow events

RLT DCPC Round-robin W-Lazy
Mean 0 0.2 516 1076
Conf. Int. [0, 0] [−0.355, 0.755] [442, 591] [514, 1637]

consumption curve when buffer underflow events occur. This results in an infeasible transmission

schedule, which causes frozen playout.

The average power consumption of the schemes are shown in Fig6.12. W-Lazy has the lowest

power consumption. Due to the variation of frame size and network condition, the transmission

of W-Lazy are infeasible in many time slots. To prevent the divergence of power allocation, some

video sessions should be paused and the power savings of W-Lazy are achieved by pausing video

transmissions. However, this is at the cost of significantlymore buffer underflow events, which are

undesirable for user experience. The Round-robin scheme tries to transmit as much video data as

possible. However, it chooses a session greedily and pausesother unselected video sessions. This

also causes many underflow events for the unselected sessions. Also, due to the round robin fashion

and limited buffer size, when the unselected session becomeselected, its low buffer utilization will

lead to a larger power consumption in order to fill the buffer,especially when it misses the previous

good channel condition and the channel condition is worse atthe current time slot. Thus, the
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Figure 6.11: Illustration of underflow events.

proposed algorithms achieve the better balance between theenergy consumption and the quality of

experience of the video streaming.

6.6 Related Work

A thorough review in VBR video model and VBR video streaming over wired networks has

been explored in 5.6. Due to the fundamental difference between wireless and wired CBR links,

these techniques do not directly apply to our problem of VBR over the multicellular wireless

networks. In this chapter, we take advantage of power control in wireless networks to adjust the

capacity of wireless links based on video frame size information, such that we can jointly optimize

the transmission ofmultipleVBR video sessions overmultipleVBR channels. Our approach does

not depend on any channel or video traffic models, and can be adopted for CBR video as well.

Power control is an important problem for interference-limited wireless networks. Most prior

work focuses on maximizing network utility in the forms of SINR or bit rate [48,59,138]. In [48],

Grandhi, Zander, and Yates presented centralized and distributed power control algorithms for
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Figure 6.12: Average power consumption.

achieving target SINRs in a cellular network. In [59], Chiang studied the problem of joint power

control and congestion control, aming to maximize the throughput of TCP-Vegas over an ad hoc

network. Gjendemsjet al. [138] presented centralized binary power control algorithms for max-

imizing the sum rate over multiple interfering links. Although laid out the theoretical foundation

and developed effective algorithms, these techniques cannot be directly applied for VBR video

over multicell wireless networks with buffer and delay constraints.

6.7 Conclusions

We studied downlink power control for VBR video streaming in multicell wireless networks.

The problem formulation considers downlink power control,inter-cell interference, VBR video

characteristics, and playout buffer requirements. We developed a centralized algorithm that can

provide (1-ǫ)-optimal solutions, and a fast distributed algorithm thatonly needs local informa-

tion. The algorithms are evaluated with extensive simulations with VBR video traces and fading

channels, and are demonstrated to be effective for streaming VBR videos over multicell wireless

networks.
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Chapter 7

Energy Efficiency on Downlink Multiuser VBR Video Streaming

7.1 Introduction

In this chapter, we present a power efficient downlink power control framework in wireless

system with orthogonal channels forvariable bit rate(VBR) streaming with focus on minimizing

the power consumption for the total streaming period. We consider the problem of optimal power

allocation for multiuser VBR video streaming in the downlinkof a cellular network with orthog-

onal channels. We assume the wireline segment of a video session path is reliable with sufficient

bandwidth, while the last-hop wireless link is the bottleneck. Thus the corresponding video data

is always available at the BS before the scheduled transmission time. We adopt a deterministic

model for VBR video traffic that incorporates video frame and playout buffer characteristics. The

BS allocates a transmit power to each user in each time slot. The problem is to find the optimal

power control schedule to stream the requested VBR video datato users, such that the total trans-

mit power consumption can be minimized, while minimizing the buffer underflow and overflow

events.

The problem is formulated as a constrained stochastic optimization problem. We show that the

problem fits well with majorization theory, which concerns with partial ordering of real vectors and

order-preserving functions. It answers the question of howto order vectors with nonnegative real

components and its order-preserving functions [13]. A majorization-based solution framework is

developed to tackle the problem. First, we prove that the objective function of the formulated prob-

lem is Schur-convex with the order-preserving property [13]. Second, we investigate the case of a

single VBR video session with relaxed peak power constraint.We develop a majorization-based

power optimal algorithm with low complexity, and prove the power optimality of the proposed
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algorithm and the uniqueness of the global optimum. We also demonstrate that the proposed algo-

rithm is smoothness optimal as well. Third, we investigate the case of multiuser VBR streaming,

where power allocations for the users are coupled with the BS peak power constraint. We develop

a heuristic algorithm that selectively suspends some videosessions, which will not incur underflow

in the next time slot, when the peak power constraint is violated. Finally, the proposed algorithms

are evaluated with trace-driven simulations [139], and areshown to achieve considerable power

savings and improved video quality over a conventional “lazy” scheme [136]. The rest of this

chapter is organized as follows. The system model and problem statement are presented in Sec-

tion 7.2. We transform the problem into a majorization problem in Section 7.3. The proposed

algorithms are described in Section 7.4 and simulation results are presented in Section 7.5. We

review related work in Section 7.6. Section 7.7 concludes this chapter. The notation used in this

chapter is summarized in Table 7.1.

7.2 System Model

7.2.1 Network and Video Source Model

We consider the downlink in a cellular network, as shown in Fig. 7.1. There areN active

mobile users in a setU = {1, 2, · · · , N} in the cell that subscribe to the video service. A BS

transmits multiple VBR videos to the mobile users. Each user occupies a downlink channel, which

is a spectral/time resource slot, the nature of which depends on the specific multiple access tech-

nique adopted. We assume that the downlink channels within acell are orthogonal, due to perfect

synchronization of the spreading codes or the use of guard times or frequencies. We further as-

sume the wireline segment of a video session path is reliablewith sufficient bandwidth, while the

last-hop wireless link is the bottleneck. Thus the corresponding video data is always available at

the BS before the scheduled transmission time. We adopt adeterministic VBR video model, which

was presented in the Section 4.2.

The BS allocates a transmit power to each user in each time slot. Let ~P (t) = [P1(t), · · · , PN(t)]

be the power allocation in time slott. TheSignal to Interference-plus-Noise Ratio(SINR) at user
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Table 7.1: Notation Table for Chapter 7

Symbol Description
N number of mobile users in the cell
U set of users
bn playout buffer size at usern
Tn total number of frames of the usern video
Ωn total number of bits of the usen video
Dn(t) cumulative consumption curve of usern
Bn(t) cumulative overflow curve of usern
Xn(t) cumulative transmission curve of usern
Pn(t) transmit power of usern in time slott
~P (t) power allocation in time slott
γn(t) SINR at usern in time slott
Gn(t) path gain from BS to usern in time slott
ηn(t) noise power at usern in time slott
cn(t) downlink data rate of usern in time slott
Bw channel bandwdith
κ a transceiver dependent constant
P̄ peak power constraint
~C i
n thei-th feasible transmission schedule
~C∗
n the optimal solution to (7.9)
~Copt
n an evenly distributed rate vector
~C1
n an auxiliary schedule used in Theorem 7.2 proof

Φ(·) a mapping functionRTn → R defined in (7.12)
~X, ~Y , ~Z n-dimensional nonnegative vectors
Cmax(t), Cmin(t) rate of probe lines
U( ~C) smoothness utility function

n in time slott can be written as

γn(t) = Gn(t)Pn(t)/ηn(t), (7.1)

whereGn(t) is the path gain from BS to usern andηn(t) is the noise power at usern in time

slot t. We assume block fading channels, where theGn(t)’s are i.i.d. random variables with a

certain distribution, fort = 1, · · · , Tn [50]. The downlink data rate can be written ascn(t) =

Bw log (1 + κγn(Pn(t))), whereBw is the channel bandwidth andκ depends on the transceiver

design, such as modulation and channel coding. Without lossof generality, we use the Shannon
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Figure 7.1: Cellular network and video streaming system model.

capacity as an upper bounding approximation:

cn(t) = Bw log (1 + γn(Pn(t))) . (7.2)

Once the link capacity is determined,cn(t)τ bits of video data will be delivered to usern in

that time slot. The cumulative transmission curveXn(t) can be written as

Xn(0) = 0; Xn(t) = Xn(t− 1) + cn(t)τ. (7.3)

A feasible transmission schedule should cause neither playout buffer underflow nor overflow, i.e.,

satisfying

Dn(t) ≤ Xn(t) ≤ Bn(t), for all t, n. (7.4)

7.2.2 Power-Aware Transmission Scheduling

As discussed, we jointly consider the traffic source model inthe application layer and power

allocation in the physical layer. We adopt cross-layer design to compute the optimal feasible

transmission schedule{Xn(t), 0 < t ≤ Tn}, for all usersn ∈ U , such that the total transmit power

consumption can be minimized. From (7.2), the required transmit power for usern is

Pn(t) = (2cn(t)/Bw − 1)ηn(t)/Gn(t). (7.5)
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A peak power constraint may be applied at the BS, i.e.,
∑

n∈U Pn(t) ≤ P̄ , for all t. We then formu-

late the followingconstrained stochastic optimization problem, aiming to minimize the expected

total transmit power.

minimize
∑

n∈U

Tn
∑

t=1

E[Pn(t)] (7.6)

subject to:Dn(t) ≤ Xn(t) ≤ Bn(t), for all n, t (7.7)
∑

n∈U

Pn(t) ≤ P̄ , for all t. (7.8)

Due to orthogonal channels, transmission in one channel does not interfere with those in other

channels. We first relax the peak power constraint (7.8) (i.e., the case when̄P is large). Then,

problem (7.6) can be decomposed intoN sub-problems, each minimizing the transmit power of a

video session.

minimize
Tn
∑

t=1

E[Pn(t)], for all n ∈ U (7.9)

subject to:Dn(t) ≤ Xn(t) ≤ Bn(t), for all n, t. (7.10)

For givenBn(t) andDn(t), the feasible transmission schedule satisfying (7.10) is not unique.

The i-th feasible transmission schedule is a piece-wise linear curve that can be represented as a

vector ~C i
n = [cin(1), · · · , c

i
n(Tn)], wherecin(t) ≥ 0 is the data rate in time slott, for all t. Let

~C∗
n = [c∗n(1), · · · , c

∗
n(Tn)] be the optimal solution to (7.9). For a given VBR video, all thefeasible

transmission schedules transmit the same amount of video data, i.e.,

Tn
∑

t=1

cin(t) =
Tn
∑

t=1

c∗n(t) = Ωn, for all i, n. (7.11)

Furthermore, the total transmit power for a feasible schedule can be viewed as a mapping function

Φ : RTn → R with

Φ( ~C i
n) =

Tn
∑

t=1

(2c
i
n(t)/Bw − 1)ηn(t)/Gn(t). (7.12)
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Given such an interpretation of the relaxed problem (7.9), the objective is to find an optimal

feasible vector~C∗
n, such that its total powerP ∗

n , obtained through the mappingΦ(·), is the minimum

among all feasible vectors~C i
n. This interpretation fits well with themajorizationtheory introduced

in Chapter 2, which provides useful order preserving resultsfor inequality problems. Applying

these results, we design an optimal algorithm for solving the decomposed sub-problem (7.9) in

Section 7.4.1. Then we will examine the case of multiuser VBR video streaming coupled with the

peak power constraint in Section 7.4.3.

7.3 Problem Reformulation

7.3.1 Majorization Preliminaries

The preliminaries of majorization have been given in Section 2.3 of Chapter 2.

7.3.2 Schur-convexity of Problem (7.9)

As discussed, problem (7.9) fits well with majorization theory with a mapping function (7.12).

To solve the problem, we need to find the optimal rate vector~C∗
n that is majorized by all other

feasible transmission rate vectors~C i
n, as~C∗

n ≺ ~C i
n, for all i. If the mapping (7.12) is Schur-convex,

then the total transmit power to achieve~C∗
n will also be dominated by those of other feasible

transmission rate vectors. That is, the minimum power is found for problem (7.9). Due to random

path gains and noise powers, stochastic majorization (rather than ordinary majorization) should be

used, which investigates the inequality properties related to random variables [13]. We have the

following theorem for the mapping (7.12) in problem (7.9).

Theorem 7.1.The objective function of (7.9) is an increasing Schur-convex function.

Proof. See Appendix E.1.

With Theorem 7.1, solving problem (7.9) is equivalent to finding the optimal rate vector~C∗
n,

such that~C∗
n ≺ ~C i

n, for all i. Then the total power associated with~C∗
n is the minimum since the
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mapping (7.12) is order-conserving. The feasible rate vector that is closest to equal distribution

will be majorized by all other feasible rate vectors. Therefore, we transform problem (7.9) to

finding a transmission schedule with the most evenly distributed rates for all the time slots.

7.4 Power Allocation Algorithms

Based on the stochastic majorization interpretation of problem (7.9) and the Schur-convex

property of its objective function, we first develop a power minimization algorithm (PMA) for the

case of relaxed peak power constraint. We prove its optimality and the uniqueness of the global

optimal, as well as the equivalence of power optimal and smoothness optimal. We then describe a

heuristic algorithm for the case of multiple videos coupledwith the peak power constraint.

7.4.1 Power Minimization Algorithm

From Section 7.3, an evenly distributed rate vector~Copt
n = [Ωn/(Tnτ), · · · ,Ωn/(Tnτ)] is

majorized by all feasible schedules, i.e.,~Copt
n ≺ ~C i

n, for all i. However, due to the high variability

of VBR video frames, limited playout buffer size, random pathgains and noise powers,~Copt
n may

not always be feasible. In general, each feasible schedule is piece-wise linear with a set of rate

change points, where the rate is increased or decreased to prevent buffer underflow or overflow.

~Copt
n is a special case with no such rate change points.

The algorithm in Algorithm 9, termed PMA, can generate a piece-wise linear schedule, while

keeping each piece as long as possible and rate variation as small as possible. The operation of the

algorithm is illustrated in Fig. 7.2. Starting fromtstart (e.g.,h1 in Fig. 7.2), PMA first computes

two probe lines:

• One through the starting point and one of the future corner points ofBn(t), which can go the

furthest into the future without causing buffer underflow oroverflow (e.g., linesh1h2 in Case

1 andh5h6 in Case 2 of Fig. 7.2). The rate of this probe line isCmax(t) =
Bn(t)−Xn(tstart)

t−tstart
.
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Figure 7.2: Two cases for determine the next transmission rate.

• The other through the starting point and one of the future corner points ofDn(t), which

can go the furthest into the future without causing buffer underflow or overflow (e.g., lines

h1h3 in Case 1 andh5h7 in Case 2 of Fig. 7.2). The rate of this probe line isCmin(t) =

Dn(t)−Xn(tstart)
t−tstart

.

All feasible transmission curves should lie in between these two probe lines in order to go that far.

Furthermore, when the probe lines end, they hitbothon eitherBn(t) orDn(t). Otherwise, we can

always adjust one of the probe lines to make them go even further into the future. For example,

see linesh1h3 andh1h′4 in Case 1 of Fig. 7.2. We can use lineh1h2, which goes further into the

future, to replace lineh1h′4, and both probe lines hitDn(t) eventually (also see linesh5h6 andh5h′8

in Case 2).

If both probe lines hitDn(t) (i.e., Case 1 in Fig. 7.2), any feasible schedule for this interval

will also hit Dn(t), since they must lie in between the two probe lines. We then trace back the

upper probe line (i.e., lineh1h2) to find the latest time when the buffer is full (i.e., pointh4 at time

tstop). Then segmenth1h4 will be chosen as the transmission schedule for this interval, with rate

Bn(tstop)−Xn(tstart)

tstop−tstart
.

If both probe lines hitBn(t) (i.e., Case 2 in Fig. 7.2), any feasible schedule for this interval

will also hitBn(t). We then trace back the lower probe line (i.e., lineh5h7) to find the latest time

when the buffer is empty (i.e., pointh8 at timetstop). Then segmenth5h8 will be chosen as the

transmission schedule for this interval, with rateDn(tstop)−Xn(tstart)

tstop−tstart
.
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Algorithm 9: Power Minimization Algorithm (PMA-1)

1 BS obtainsbn,Dn,Bn, andBw for all usern ;
2 Sett = 1, tstart = 0, tstop = tc1 = tc2 = 1, Cmin = 0, Cmax = ∞ ;
3 while some time slots are not assigned a ratedo
4 CalculateCmax(t) andCmin(t) over interval[tstart, t] ;
5 if Cmin ≤ Cmin(t) & Cmin(t) ≤ min{Cmax, Cmax(t)} then
6 Cmin = Cmin(t) andtc1 = t ;
7 end
8 if Cmax ≥ Cmax(t) & Cmax(t) ≥ max{Cmin, Cmin(t)} then
9 Cmax = Cmax(t) andtc2 = t ;

10 end
11 if Cmin > min{Cmax, Cmax(t)} then
12 SelectCmin from tstart to tstop = tc1 ;
13 else ifCmax < max{Cmin, Cmin(t)} then
14 SelectCmax from tstart to tstop = tc2 ;
15 else
16 t++ ;
17 CONTINUE ;
18 end
19 tstart = tstop, tstop = tc1 = tc2 = tstart + 1, t = tstart + 1, Cmin = 0, Cmax = ∞ ;
20 end
21 while more video frames to transmitdo
22 Measure the channel gain of the time slot, calculate power using (7.5), and transmit

the video data ;
23 end

After the transmission schedule for[tstart, tstop) is determined, we settstart = tstop and repeat

the above procedure to find the schedule for the next time interval. In Algorithm 9, the algorithm

probes for the longest feasible rate starting fromtstart in Steps4–10. In Steps11–14, the transmis-

sion rate for the interval[tstart, tstop) is determined depending on which of the two cases it is as

illustrated in Fig. 7.2. Steps16–17 are for the case that the rate does not change in the time slot.

Step19 resets the variables to start the computation for the next segment ofXn(t). Finally, Steps

21–23 transmit the frames following the computed schedule.
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7.4.2 Optimality Proof

We next show that the algorithm given in Algorithm 9 computesthe optimal solution to prob-

lem (7.9).

Theorem 7.2.The power minimization algorithm PMA is optimal to problem (7.9).

Corollary 7.2.1. The power optimal transmission scheme~C∗
n is unique for givenBn(t) andDn(t).

Corollary 7.2.2. The computational complexity of Algorithm PMA isO(T 2
n).

The proofs of above conclusions are similar to the proofs of in Chapter 2 and thus omitted for

brevity.

Note that Algorithm PMA is executed during the session setuptime. It only incurs a small

initialization delay. In our simulations with VBR video traces, we find the execution time is usually

negligible. When the channel statistics are changed (i.e., due to handoff), the schedule will be

recomputed for the remaining video frames.

Corollary 7.2.3. The power optimal transmission schedule~C∗
n is also the smoothest one among

all feasible schedules.

Proof. The proof of Corollary 7.2.3 is given in Appendix E.2.

7.4.3 Multiuser Video Transmissions

We now consider problem (7.6) to compute transmission schedules forN VBR video sessions,

which are coupled by the peak power constraint (7.8). Due to the peak power constraint and random

channel gains, the individually calculated transmit powers may violate (7.8) in some time slots.

The problem is further complicated because of the random channel gains, which is not available a

priori (except for the statistics of the channels).
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Algorithm 10: Power Minimization Algorithm for Multiuser Videos (PMA-m)

1 Execute power minimization algorithm PMA to compute transmission schedules for all
active users ;

2 while there are more video frames to transmitdo
3 Measure channel gains of the current time slot and calculatethe transmit powers using

(7.5) ;
4 if peak power constraint is violatedthen
5 Select the users who won’t have underflow even without transmission in this time

slot ;
6 Sort the selected users in decreasing order of powers ;
7 while peak power constraint is not satisfieddo
8 Decrease the power of the selected users by the order ;
9 end

10 end
11 Transmit the videos and recalculate the optimal transmission scheme for the paused

mobile users for the next time interval ;
12 end

To solve problem (7.6), we develop a heuristic algorithm, termed PMA-m, as presented in

Algorithm 10. The PMA-m algorithm uses PMA to compute transmission schedules for all active

users. Then based on current channel state information, it computes the power needed to achieved

the rate for each user, and checks the peak power constraint
∑

n∈Un
Pn(t) ≤ P̄ . If the constraint

is not violated, each user’s video data will be transmitted at the computed power. Otherwise, as in

Steps4–10, PMA-m selects those users who will not have buffer underflow if their transmissions

are suspended in the following time slot, and sort them in thedeceasing order of their required

powers. Starting with the first user, PMA-m decreases the powers of the users in the list; if the first

user’s power reaches 0 W but the peak power constraint is tillnot satisfied, PMA-m starts to reduce

the power of the second user in the list; and so forth until thepeak power constraint is satisfied.

In some extremely severe channel conditions, the total power P̄ cannot even support the

minimum required bit rate for all the users. Some users have to be paused and the current frames

be discarded. The corresponding playout of such a user will be frozen until the next time slot.

Finally, the transmission schedules for the suspended users will be recomputed using PMA as in

Step 11 and the above procedure is repeated.
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7.4.4 Application to Interactive Video Streaming

The ubiquitous spread of mobile devices and trend of multimedia applications require the

interactive service be supported [148–150]. Thus, it is necessary to investigate how to apply the

proposed schemes to the case of interactive video streaming. Interactive video is a relatively new

and still evolving technology with a broad scope. We focus onthe three interactive video streaming

related typical scenarios in the following, and show that the proposed schemes are applicable for

these scenarios for improved performance.

First, for quick response to user inputs, many interactive video streaming applications have

tight delay requirements. Such stringent delay requirements have two implications:(i) unlike

stored video, not all the future frame sizes are known now; only the frames sizes for a shortlook-

ahead period(LAP) are known. (ii) the playout buffer sizes cannot be large, since a large buffer

usually introduces large delay. Clearly, the proposed schemes can be applied to the look-ahead

time period for which the future frame sizes are known, to compute a schedule for the near future.

Furthermore, given the small playout buffer size, usually achosen transmission rate won’t last

very long into the future before it hits either the cumulative overflow curve or the cumulative

consumption curve (see Fig.4). Therefore the impact of limited look-ahead period would be small

or moderate at best.

Second, many interactive video applications supportVCR controls[151]. For example, a

user may slide the progress bar of the video player to replay or skip a part of the video. This

case is equivalent to a change in the cumulative overflow and consumption curves. The proposed

algorithms will seek to the new start frame that the user requires and recalculate the transmission

schedules for the following frames.

Third, in both“exploratory” online interactive videos (where a user can move through dif-

ferent locations in a space or view an object from different angles) andvideo click throughs[152]

(where a user can click objects in the video that are linked toother contents), new data will be

transmitted after each user input. These are equivalent to the case of VCR controls. A new set
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Table 7.2: VBR Video Trace Statistics
Video Trace Average Rate Frame Rate Average PSNR

Star Wars 331,681 b/s 30 f/s 44.62 dB
NBC News 784,840 b/s 30 f/s 38.80 dB

Tokyo Olympics 509,191 b/s 30 f/s 41.46 dB
Terminator 2 5,085,453 b/s 30 f/s 43.92 dB

From Mars to China 4,849,711 b/s 30 f/s 39.26 dB
Sony Demo 5,803,650 b/s 30 f/s 44.07 dB

of cumulative overflow and consumption curves will be delivered (derived from the new data re-

quested) and new schedules computed.

In Section 7.5.1, we evaluate the performance of the proposed schemes under the above in-

teractive video streaming scenarios. Our simulation results show that the proposed schemes still

achieve considerable power savings and better video quality than a conventional scheme for inter-

active videos.

7.5 Performance Evaluation

We demonstrate the performance of the proposed optimal power control algorithm through

trace-driven simulations. We simulate the downlink of a cell with 1 mile radius. The channels are

assumed to be orthogonal, each withBw = 1 MHz bandwidth. We assume that bit errors can be

corrected by error correction codes. The path gain averagesareḠn = d−4
n , wheredn is the physical

distance from the BS to usern. We assume log-normal fading with zero mean and8 dB standard

deviation. The device temperature is290 Kelvin and the equivalent noise bandwidth isBw = 1

MHz. The BS streams three moviesStar Wars, NBC News, andTokyo Olympicsto active users.

The video traces are obtained from the Video Trace Library atArizona State University [139]. The

statistics of the three video traces are summarized in Table7.2.

We first investigate the performance of the power optimal algorithm. In the simulation, the BS

streams3, 000 frames of a video sequence to each mobile user located at different distances to the

BS. The cumulative consumption, overflow and transmission curves of theStar warsvideo session
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Figure 7.3: Simulation results: transmission curves ofStar wars.

are plotted in Fig. 7.3. It can be seen that the transmission schedule always lie in between the

cumulative consumption and overflow curves, indicating that there is no playout buffer underflow

or overflow events in this simulation.

We next compare the optimal power algorithm with a conventional transmission scheme with

respect to the average power consumption at the BS. In each time slot, the conventional scheme

only transmits the video data that is needed by the decoder atthe end of the time slot. It achieves

a cumulative transmission curve that connects all the corner points ofDn(t) (also called the “lazy”

scheme). Intuitively, such lazy approach should be energy efficient since it always transmits the

minimal amount of data as needed. However, we will see that the proposed algorithm outperform

this lazy approach in the simulations.

In Fig. 7.4, we plot the average power consumption achieved by the two schemes for increased

distance to the BS. Each point in the figure is the average of10, 000 simulation runs. The 95%

confidence intervals are plotted as vertical bars in the figure, which are all very small.

It can be seen that the proposed algorithm outperforms the conventional scheme for the entire

range of distances examined. When the distance to BS is small, both schemes use small transmit
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Figure 7.4: Simulation results: average power consumption.

powers and the power savings are not very big. However, when the distance is increased, channel

fading has a bigger impact on interference and channel capacity. The proposed algorithm achieves

considerable power savings than the conventional scheme. When the distance is 1,600 m, the total

power of the proposed scheme is only 46.62% of that of the conventional approach, corresponding

to a 54.34% normalized improvement.

We further investigate in more detail the difference of the transmissions between the two

schemes. The position of a mobile node is set to1, 000 m from the BS. The first3, 000 frames

of the Star warsmovie are transmitted to the node using the PMA-1 scheme and conventional

scheme, respectively. Fig. 7.5 shows the cumulative power consumption for the first1, 000 frames,

while the energy consumption for each video frame is plottedin Fig. 7.6 for frames in [200, 250].

We observe that at the beginning, the “lazy” scheme archives smaller power consumption than

the PMA scheme, due to the fact that it only transmits the minimum amount of required frames

in each time slot. However, the transmission of frame241 of the conventional scheme generates

a sharp power increase, because it encounters a large frame as well as bad channel condition, as

indicated in Fig. 7.6. The transmission curves of the two schemes are plotted in Fig. 7.7 for the
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Figure 7.5: Cumulative power consumptions achieved by PMA-1and the conventional scheme.

first 250 frames for the two schemes. Although the conventional scheme archives smaller power

consumption frame by frame for about80% of the3, 000 frames, the average power consumption

of the proposed scheme during the entire period (0.0055 W) is much smaller than that of the

conventioanal scheme (0.0141 W). In summary, the “lazy” scheme only uses the current video

and channel status, and transmits only the minimum amount ofrequired video data, It does not

effectively utilize the playout buffer capacity. Thus during the entire transmission period, the

cumulative power may increased due to some large frames and bad channel conditions. On the

contrary, the proposed scheme aims at minimizing the total average transmission power during the

entire period. Thus, it achieves considerable power savings comparing to the conventional scheme.

We also obtain the average execution time of the proposed algorithm, under the same setting

but for 20, 000 Star Warsframes. We find that the average execution time is about0.06 s on an

IBM Laptop with Intel T24001.83 GHz processor and2 GB RAM.

Finally, we examine the buffer underflow events. The following scenarios are simulated:
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Figure 7.6: Power consumption for each frame achieved by PMA-1 and the conventional scheme.

• Scenario 1: P̄ = 1 W; the movies areStar Wars, NBC News, andTokyo Olympics; 50 mobile

users;Bw = 1 MHz;

• Scenario 2: The same setting as i) except thatBw = 125 KHz;

• Scenario 3: P̄ = 10 W; the HD movies areTerminator 2, From Mars to China, andSony

Demo; 20 mobile users;Bw = 1 MHz.

The HD movies have larger frame sizes and higher variabilityin frame sizes. The buffer underflow

rates are presented in Table 7.3, each being the ratio of the number of underflow frames over the

total number of frames. PMA-m achieves considerably lower underflow rates for all the three sce-

narios. The PMA-m underflow rates are 0.056%, 13.60%, and 14.26% of that of the conventional

scheme. Therefore, PMA-m achieves not only considerable energy savings, but also much better

video quality for the mobile users.
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Figure 7.7: Transmission curves achieved by PMA-1 and the conventional scheme.

Table 7.3: Simulation Results: Playout Buffer Underflow Rates

Scenario 1 Scenario 2 Scenario 3
PMA-m 0.0005% 1.8% 1.66%

Conventional 0.89% 13.24% 11.64%

7.5.1 Simulation Results for Interactive Video Streaming

In this section, we study the performance of the proposed algorithms for interactive video

streaming. First, we simulate the interactive real-time video streaming with stringent delay require-

ments and small playout buffer sizes. The same simulation settings are used. All the positions of

mobile nodes are randomly generated in the cell. We apply theproposed PMA-m, but only assume

only the frame sizes in a small LAP are known.

The transmission curves of VBR movieNBC Newsare plotted in Fig. 7.8 for the first100

frames, where the length of the LAP is 16 frames. We may observe that the proposed algorithm

PMA-m is executed piecewisely for each block of LAP frames, where LAP=16. For this range

of frames, there is neither playout buffer overflow nor playout buffer underflow occurs. We then
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Figure 7.8: Transmission curves for real-time interactivevideo streaming:NBC Newsand LAP =
16.

Table 7.4: Playout Buffer Underflow Rates for Interactive VBR Videos with Different LAPs

Scenario I Scenario II Scenario III
LAP=16

PMA-m 0.387% 5.969% 4.766%
Conventional 0.711% 12.446% 12.495%

LAP=8
PMA-m 0.377% 5.690% 4.894%

Conventional 0.620% 11.409% 9.645%

compute the number of the underflow frames over the total number of frames, as presented in

Table 7.4. The PMA-m still archive the underflow rate that are54.56%, 47.96%, 38.15% of those

of the conventional scheme in this case.

To illustrate the impact of the length of LAP, we further decrease it to8 frames and then

run the simulations with random deployed mobile nodes. The playout buffer underflow rates are

presented in Table 7.4. For the halved delay requirement, naturally the proposed scheme’s perfor-

mance is slightly degraded due to limited information aboutthe video frame sizes. However, the

PMA-m scheme still archives underflow rates that are60.90%, 49.88%, 50.74% of those of the
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Figure 7.9: Transmission curves after the user skips the frames in [10s, 20s]:Star Wars.

conventional scheme, indicating considerably superior viewer performance over the conventional

“lazy” approach.

Finally, we demonstrate the application of the proposed schemes to VCR control in interactive

video streaming. We assume that after10 seconds of streaming the VBR video (i.e, corresponding

to 300 frames), the user skips the next10 seconds of the video, and then resumes the video playout

from 20 second. We plot the dynamics in the transmission/schedule curves of theStar Warsvideo

in Fig. 7.9. Comparing the curves with the original non-skipped transmissions in Fig. 7.10, we

observe that after playing out the300th frame, the frame from301 to 600 are skipped by user’s

operation. Then the frame601 is moved to the time-slot301 and a new transmission schedule is

computed for the following frames.

7.6 Related Work

A thorough review in VBR video model and VBR video streaming over wired networks has

been explored in 5.6. In an interesting work [95], Salehi, etal. applied majorization to VBR video

smoothing and developed a smoothness optimal algorithm. The proof of Theorem 7.2 follows a
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Figure 7.10: Transmission curves for the original non-skipped video streaming:Star Wars.

similar approach as in [95]. These prior work are based on theassumptions of a single video session

and constant rate channels, which may not be directly applied to the case of wireless networks.

In this chapter, we consider multiuser VBR video streaming within a cellular network with or-

thogonal channels. We jointly consider power control, video traffic, and video palyout information

for power minimization. Our stochastic majorization theory based approach is quite different from

the prior works [54,143], which allow us to develop effective algorithms with low complexity and

proven optimality.

7.7 Conclusion

In this chapter, we studied the problem of downlink multiuser VBR video streaming in cel-

lular networks. Our formulation takes into account the interactions among power control, fading

channels, VBR video traffic and playout characteristics. We formulate a constrained stochastic

optimization problem aiming to minimize the BS power consumption and to avoid playout buffer
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overflow or underflow. We developed majorization-based algorithms to solve the formulated prob-

lem. For the case of large peak power constraints, we prove the optimality of the proposed algo-

rithm and the uniqueness of the global optimal, as well as theequivalence of power optimal and

smoothness optimal. For the case of multiple videos coupledwith the peak power constraint, we

develop an effective heuristic algorithm that selectivelysuspends some video sessions when the

peak power constraint is violated. The superior performance of the proposed algorithms over a

conventional scheme is validated with trace-driven simulations.
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Chapter 8

Summary and Future Work

8.1 Summary

In the previous chapters, we proposed frameworks for energyefficient designs in Cyber-

physical systems. We investigated the problems by a controland optimization approach, which

contains Lyapunov optimization [12], majorization [13], nonlinear and convex optimization [14].

The synergy of these advanced mathematical tools produces new visions for the energy efficient

solutions to alleviate energy resource depletion, decrease greenhouse gases emission and air pol-

lution, which evolves a green world in the future.

In Chapter 2, we presented the electric power scheduling policies for smoothing the demand

profile in power distribution networks. We introduced adeterministic electricity supply/demand

modelthat takes into account time-varying demands and their deadlines. We formulated a con-

straint nonlinear optimization problem and incorporated the theory of majorization to develop

algorithms that can compute smooth optimal electric power schedules. After the smooth power

schedule is obtained, a distributed user benefit maximization load control scheme is used to al-

locate the scheduled power to individual users, while maximizing their level of satisfaction. The

proposed algorithms are highly desirable for grid design and operation, which provide smooth

electric power scheduling, minimum peak power and operating cost. The simulation showed that

the proposed algorithms can alleviate the peak power up to45%. This means we can deploy trans-

formers, transmission lines and other electrical devices with much smaller capacity, which save the

captital investment in the power grid construction. The generation cost saving is about5% by the

proposed algorithms. Due to the tremendous amount of energyof bulk generation,5% cost savings

could indeed contribute to billions of dollars.
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In Chapter 3, we investigated the problem of balancing supplyand demand of electric en-

ergy in microgrid (MG). We presented a novel framework for smart energy management based

on the concept ofquality-of-service in electricity(QoSE). Specifically, the resident electricity de-

mand is classified into basic usage and quality usage. The basic usage is always guaranteed by

the MG, while the quality usage is controlled based on the MG status. Themicrogrid control

center(MGCC) aims to minimize the MG operation cost and maintain the outage probability of

quality usage, i.e., QoSE, below a target value, by scheduling electricity among DRERs, ESS’s,

and macrogrid. The problem is formulated as a constrained stochastic programming problem. The

Lyapunov optimization technique is then applied to derive an adaptive electricity scheduling algo-

rithm by introducing the QoSE virtual queues and energy storage virtual queues. The proposed

algorithm is an online algorithm since it does not require any statistics and future knowledge of the

electricity supply, demand and price processes. We derive several “hard” performance bounds for

the proposed algorithm. and evaluate its performance with trace-driven simulations. The proposed

electricity scheduling algorithm enables an efficient integration of DRERs, ESS’s, and residential

power quality management into the smart grid by plug-and-play interfaces, and provides a promis-

ing paradigm for smart energy management systems in smart grid. The simulation showed that the

MG operation cost can be saved up to60%, while keeping the power quality of the users.

In Chapter 5, we studied the problem of power allocation ofbase station(BS) for streaming

multiplevariable bit rate(VBR) videos in the downlink of a wireless cellular network with intracell

interference. We considered adeterministic modelfor VBR video traffic and finite playout buffer

at the mobile users. The objective is to derive the optimal downlink power allocation for the VBR

video sessions, such that the video data can be delivered in atimely fashion without causing playout

buffer overflow and underflow. The formulated problem is a nonlinear nonconvex optimization

problem. We analyzed the convexity conditions for the formulated problem and proposed a two-

step greedy approach to solve the problem. We also developeda distributed algorithm based on the

dual decomposition technique. The proposed algorithms effectively allocated the power in BS’s
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to stream the VBR video in cellular networks, while preserving thequality of experience(QoE)

requirement.

In Chapter 6 we further extended the problem of downlink powercontrol for streaming mul-

tiple VBR videos in a multicell wireless networks, where downlink capacities are limited by inter-

cell interference. We adopted a deterministic model for VBR traffic that considers video frame

sizes and playout buffers at the mobile users. The problem isto find the optimal transmit powers

for the BS’s, such that VBR video data can be delivered to mobileusers without causing play-

out buffer underflow or overflow. We formulated a nonlinear nonconvex optimization problem

and proved the condition for the existence of feasible solutions. We then developed a centralized

branch-and-bound algorithm incorporating the Reformulation-Linearization Technique, which can

produce(1− ǫ)−optimal solutions. We also proposed a low-complexity distributed algorithm with

fast convergence. Numerical results showed that the proposed algorithms is QoE performance

bounded and achieve effective usage of the BS’s power in streaming VBR videos.

In Chapter 7, we addressed the energy saving for BS in wireless cellular networks with or-

thogonal channels to achieve energy efficient VBR video streaming. We took into account the

interactions among power control, fading channels, VBR video traffic, and playout characteristics.

A constrained stochastic optimization problem was formulated aiming to minimize the BS power

consumption and to avoid playout buffer overflow or underflow. We then developed majorization-

based algorithms to achieve energy efficiency, while preserving the QoE demands, for BS downlink

VBR streaming in cellular networks. The simulation showed that the average power consumption

can achieve54% improvement and the proposed algorithms are also compativle to interactive video

streaming in wireless cellular networks.

8.2 Future Work

Although there has been considerable advances in energy efficient Cyber-physical systems,

many problems still remain open in this interesting area. Webriefly extend our discussion on
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the control and optimization in distributed smart electricenergy management systems and low

complexity energy efficient wireless multimedia networks.

Distributed Electric Energy Management Systems

We investigated the efficient electric energy scheduling inthe power delivery in previous

chapters. The proposed policies are mainly based on the centralized control in the electric power

delivery networks and Microgrids, which were largely inherited from the control infrastructure of

legacy grid. In the evolution of smart grid, all the components, such as DRERs, ESS’s, MGs, and

users, will be deployed in an ad-hoc mode and accessed in a plug-and-play fashion. Accordingly,

such distributed electric power delivery networks prefer distributed intelligent electric energy man-

agement systems.

Compared to the centralized approaches, distributed management systems make decisions

based on local information with very limited timely information exchange, which reduce the

amount of real time information delivery in the communication networks. The distributed manage-

ment systems are less susceptible to the information loss due to the impairment of the communi-

cation links and also have faster response to the grid status. The security design and cryptographic

systems would also be simplified due to reduced amount of information exchange. However, due to

the limitation on the accessible information, the distributed management systems usually are not

capable of computing a globally optimal decision. Further,analytical models and mathematical

tools would be necessary to provide the performance boundedoptimal decisions locally.

Low Complexity Energy Efficient Wireless Multimedia Networks

Due to the intrinsic complexity of video sources and the dynamics and uncertainty of wireless

systems, we conjecture that a holistic approach that encompasses the parameter space would be

necessary and the trade-off between complexity and efficiency of a solution algorithm should be

carefully investigated. In particular, we list some interesting problems that may be worth of further

investigation in the following.
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• Complexity-distortion analysis and the design of energy-efficient video codecs require ac-

curate models of video codecs. However, a video codec is a combination of complex func-

tional blocks, which makes accurate mathematic modeling extremely difficult. In addition,

the quality of compressed video and the power consumption ofthe video codec depend on

a large number of parameters. A content-based power-aware design may encounter a large

search space for optimal solutions. It would be useful to develop an accurate and effective

model for video codec that can be incorporated into the mathematical optimization frame-

works for both energy efficient codec design and wireless multimedia system design.

• Cross-layer design has been widely adopted for video networking problems. It has been

shown that an adaptive strategy with cooperation of severallayers can achieve optimal power

efficiency for video streaming. Most prior work assume that the wireless channel informa-

tion and network status are known apriori (e.g., by accurateestimation, measurement, and

timely feedback). In practice, this assumption may not be true, because of channel/network

uncertainty and dynamics, and delay and congestion in the network. Thus, balancing the

achievable performance and the control overhead of the design is still an open problem.

Effective schemes that are robust to the channel/network uncertainties would be highly ap-

pealing.
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Appendix A

Proofs in Chapter 2

A.1 Proof of Theorem 2.2

The schedule computed by SEPS-DL,~P ∗, could be a straight line or in the general case,

consist of one or more convex and concave segments. If~P ∗ is a straight line, it is obvious that

~P ∗ ≺ ~Pk for any other~Pk (see Fig. 2.3) and it is smooth optimal. In the general case, we need to

show ~P ∗ ≺ ~Pk, for all k in every convex or concave segment. Then according to Lemma 2.1, we

have~P ∗ ≺ ~Pk for all k and it is optimal.

Let ~Pk denote an arbitrary feasible schedule. We introduce an auxiliary schedule~P1, which

intersects with~P ∗ at all its power changing points in every convex segment, andwith ~Pk at all its

power changing points in every concave segment, as shown in Fig. A.1.

First, we prove that~P ∗ ≺ ~P1. For a convex segment of~P ∗, because~P1 intersects with~P ∗ at

all the power changing points of~P ∗, we have~P ∗ = ~P1 in all the convex segments. For a concave

segment of~P ∗, the endpoints of the concave segment should be the last (first) power changing

point of the previous (next) convex segment, where~P ∗ intersects with~P1. The power changing

points within the concave segment are all onWmin(t), as in SEPS-DL. Therefore,~P1 is an outer

concave curve above~P ∗ (or, it is farther away from the straight lineA in Fig. 2.3) in this segment.

From the discussion of Fig. 2.3, we have~P ∗ ≺ ~P1 for all the concave segments. It follows that

~P ∗ ≺ ~P1 according to Lemma 2.1.

We next prove that~P1 ≺ ~Pk. For a convex segment of~P ∗, the endpoints of the convex segment

should be the last (first) power changing point of the previous (next) concave segment, where~Pk

intersects with~P1. The power changing points of~P1 (or, of ~P ∗) in the convex segment are all on

Wmax(t). Therefore,~Pk is an outer convex curve below~P1 in this segment. From the discussion of

Fig. 2.3, it follows that~P1 ≺ ~Pk in all the convex segments. In a concave segment, we have either
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Figure A.1: Illustration for the optimality proof of SEPS-DL algorithm

~Pk = ~P1 or ~Pk ≺ ~P1, because~P1 intersects with~Pk at each power changing point. Thus, we obtain

~P1 ≺ ~Pk for all the concave segments, and~P1 ≺ ~Pk according to Lemma 2.1.

Finally we have~P ∗ ≺ ~P1 ≺ ~Pk. Proposition 2.1 states that problem (2.3) is Schur-convexand

order preserving. It follows from Fact 2.1 that~P ∗ is optimal to problem (2.3).

A.2 Proof of Theorem 2.5

Without loss of generality, we assume the fuel cost at time slot t is C(t) = g(P (t), θ(t)),

which a nondecreasing convex function of the supplied powerP (t) [92]. This assumption is gen-

erally practical, e.g. classically, the fuel cost for the electric energy generation is usually considered

as a quadratic function of its power generation [103]. We also assume the costC(t) is affected by

the random factorsθ(t), which correspond to the cost uncertainty during the period, such as the

fuel market price disturbance, and etc. We assume each element in θ(t) is i.i.d over slots. Thus,
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the minimization of the expectation of the total cost over the periodL is:

Minimize:
L
∑

t=1

E{g(P (t), ~θ(t))}

s.t. Wmin(t) ≤ W (t) ≤ Wmax(t), ∀t

P (t) = W (t)/τ
L
∑

t=1

W (t) = Φ (A.1)

Due to the convexity of the cost functiong(·) respective toP (t), problem (A.1) is similar to

problem (2.3), except the random variableθ(t). Thus, we resort tostochastic majorization(rather

than ordinary majorization) to solve this constraint nonlinear stochastic optimization problem.

Lemma A.1. The objective function of problem (A.1) is an increasing Schur-convex function.

Proof. The i.i.d. random variablesθ(t) are exchangeable for allt. The objective function (A.1)

can be rewritten as

G(~P ) = E

{

L
∑

t=1

g(P (t), θ(t))

}

,

whereg(P (t), θ(t)) is convex and increasing with respective toP (t) for each fixedθ(t), and
∑L

t=1 g(P (t), θ(t)) is a symmetric, convex and increasing function w.r.t.P (t). According to

Proposition 11.B.5 in [13], the expectationG(~P ) is symmetric, convex and increasing. Following

Fact 2.1, the objective function (A.1) is Schur-convex and increasing.

By Lemma A.1, the solution of problem (A.1) is equivalent to finding the optimal power vector

~P ∗, which is majorized by any other feasible power vectors. Thus, the smooth optimal solution~P ∗

in Table 1 is also the solution for problem (A.1). Thus, the proposed SEPS-DL achieves fuel cost

optimal for energy generation.
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Appendix B

Proofs in Chapter 3

B.1 Proof of Theorem 3.1

According to the system equation (3.12), we have























Zn(1) ≥ Zn(0)− δn · αn(0) + In(0)

· · ·

Zn(t) ≥ Zn(t− 1)− δn · αn(t− 1) + In(t− 1).

(B.1)

Summing up the inequalities in (B.1), we have

Zn(t) ≥ Zn(0)− δn ·

t−1
∑

τ=0

αn(τ) +
t−1
∑

τ=0

In(τ). (B.2)

Dividing both sides byt and lettingt go to infinity, we have

lim
t→∞

Zn(t)−Zn(0)

t
≥ lim

t→∞

1

t

[

−δn

t−1
∑

τ=0

αn(τ)+
t−1
∑

τ=0

In(τ)

]

.

Zn(0) is finite. If Zn(t) is rate stable by a control policyIn(t), it is finite for all t. We have

limt→∞
Zn(t)−Zn(0)

t
= 0, which yieldsρn ≤ δn · λn due to the definitions ofλn andIn(t).
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B.2 Derivation of Equation (3.16)

With the drift defined as in (3.15), we have

∆(~Θ(t)) =
1

2
E

{

K
∑

k=1

[(Xk(t+ 1))2 − (Xk(t))
2|Xk(t)]+

N
∑

n=1

[(Zn(t+ 1))2 − (Zn(t))
2|Zn(t)]

}

≤
1

2

K
∑

k=1

E
{[

(Dk(t))
2 + (Rk(t))

2 + 2Xk(t)(Rk(t)−

Dk(t))|Xk(t)]}+
1

2

N
∑

n=1

E
{[

In(t)
2+

(δnαn(t))
2 + 2Zn(t)(In(t)− δnαn(t))|Zn(t)}

=
1

2

K
∑

k=1

E{[(Dk(t))
2 + (Rk(t))

2]}+

K
∑

k=1

E{Xk(t)(Rk(t)−Dk(t))|Xk(t)}+

1

2

N
∑

n=1

E{[(1 + (σn)
2)(αn(t))

2 + (pn(t))
2]}+

1

2

N
∑

n=1

E{2Zn(t)(1− δn(t))αn(t)−

(Zn(t) + αn(t))pn(t)|Zn(t)}

≤ B +
N
∑

n=1

E{Zn(t)(1− δn)αn(t)|Zn(t)}+

K
∑

k=1

E{Xk(t)(Rk(t)−Dk(t))|Xk(t)} −

N
∑

n=1

E{(Zn(t) + αn(t))pn(t)|Zn(t)}.

whereB = 1
2

∑K
k=1(max{Dmax

k , Rmax
k })2 + 1

2

∑N
n=1(2 + δ2n)(α

max
n )2 is a constant.
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B.3 Proof of Lemma 3.1

In part 1) of Lemma 3.1, ifQ(t) > 0, we haveS(t) = 0 according to (3.7). The objective

function of problem (3.19) becomes

V Q(t)C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t))−

N
∑

n=1

(Zn(t) + αn(t))pn(t). (B.3)

We first prove Lemma 3.1-1a). IfXk(t) > −V C(t), we assumeRk(t) > 0. Then we have

Dk(t) = 0 according to (3.4). Accordingly, the object function (B.3) is transformed to

V Q(t)C(t) +
∑

i 6=k

Xi(t)(Ri(t)−Di(t))−

N
∑

n=1

(Zn(t) + αn(t))pn(t) +Xk(t)Rk(t)

> V Q(t)C(t) +
∑

i 6=k

Xi(t)(Ri(t)−Di(t))−

N
∑

n=1

(Zn(t) + αn(t))pn(t)− V C(t)(P (t) +Q(t)−

∑

i 6=k

(Ri(t)−Di(t))−
N
∑

n=1

pn(t)

= V

[

∑

i 6=k

(Ri(t)−Di(t)) +
N
∑

n=1

pn(t)− P (t)

]

C(t) +

∑

i 6=k

Xi(t)(Ri(t)−Di(t))−
N
∑

n=1

(Zn(t) + αn(t))pn(t).

The above inequality is due toXk(t) > −V C(t) andRk(t) = P (t)+Q(t)−
∑

i 6=k(Ri(t)−Di(t))−
∑N

n=1 pn(t) ≥ 0. The last expression shows, given the assumptionRk(t) > 0, we may find another

feasible electricity allocation schemẽQ(t) =
∑

i 6=k(Ri(t) −Di(t)) +
∑N

n=1 pn(t) − P (t), which

can achieve a smaller objective value by choosingRk(t) = 0 andDk(t) = 0. This contradicts with
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the assumptionRk(t) > 0. Thus, we prove thatRk(t) = 0 whenXk(t) > −V C(t), under the

situationQ(t) > 0, S(t) = 0.

We then prove the second part of Lemma 3.1-1a). It follows (3.4) thatRk(t) = 0 if Dk(t) > 0.

Then (B.3) becomes

V Q(t)C(t) +
∑

i 6=k

Xi(t)(Ri(t)−Di(t))−

N
∑

n=1

(Zn(t) + αn(t))pn(t)−Xk(t)Dk(t)

> V Q(t)C(t) +
∑

i 6=k

Xi(t)(Ri(t)−Di(t))−

N
∑

n=1

(Zn(t) + αn(t))pn(t) + V C(t)(
N
∑

n=1

pn(t)− P (t)−

Q(t) +
∑

i 6=k

(Ri(t)−Di(t)))

= V

[

∑

i 6=k

(Ri(t)−Di(t)) +
N
∑

n=1

pn(t)− P (t)

]

C(t) +

∑

i 6=k

Xi(t)(Ri(t)−Di(t))−
N
∑

n=1

(Zn(t) + αn(t))pn(t).

The above inequality is due toXk(t) < −V C(t) < 0 andDi(t) = −P (t)−Q(t) +
∑

i 6=k(Ri(t) +

Dk(t)) +
∑N

n=1 pn(t) > 0. The last expression shows, given the assumptionDk(t) > 0, we may

find another electricity allocation scheme with̃Q(t) =
∑

i 6=k(Ri(t) − Di(t)) +
∑N

n=1 pn(t) −

P (t), which can achieve a smaller objective value by choosingRk(t) = 0 andDk(t) = 0. This

contradicts with the assumptionDk(t) > 0. We thus prove thatDk(t) = 0 whenXk(t) < −V C(t),

under the situationQ(t) > 0, S(t) = 0, which completes the proof of Lemma 3.1-1a).
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We next prove Lemma 3.1-1b). For the first part, ifZn(t) > V C(t) − αn(t), we assume

0 ≤ pn(t) < (1− δn)αn(t). Following (3.18) andS(t) = 0, we have

B + V Q(t)C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t)) +

∑

j 6=n

(Zj(t)(1− δj)αj(t)− (Zj(t) + αj(t))pj(t)) +

Zn(t)(1− δn)αn(t)− (Zn(t) + αn(t))pn(t)

=B + V Q(t)C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t)) +

∑

j 6=n

(Zj(t)(1− δj)αj(t)− (Zj(t) + αj(t))pj(t)) +

Zn(t)[(1− δn)αn(t)− pn(t)]− αn(t)pn(t)

>B + V Q(t)C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t)) +

∑

j 6=n

(Zj(t)(1− δj)αj(t)− (Zj(t) + αj(t))pj(t)) +

(V C(t)− αn(t))[(1− δn)αn(t)− pn(t)]− αn(t)pn(t)

=B + V [
K
∑

k=1

(Rk(t)−Dk(t)) +
∑

j 6=n

pj(t)− P (t) +

(1− δn)αn(t)]C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t)) +

∑

j 6=n

(Zj(t)(1− δj)αj(t)− (Zj(t) + αj(t))pj(t)) +

Zn(t)(1− δn)αn(t)− (Zn(t) + αn(t))(1− δn)αn(t).

The above inequality is due toZn(t) > V C(t)−αn(t) and the assumptionpn(t) < (1− δn)αn(t).

The last equality shows, given the assumptionpn(t) < (1−δn)αn(t), we may find another electric-

ity allocation scheme withpn(t) = (1−δn)αn(t) andQ̃(t) =
∑K

k=1(Rk(t)−Dk(t))+
∑

j 6=n pj(t)−

P (t) + (1− δn)αn(t), which can achieve a smaller objective value. This contradicts with the pre-

vious assumption. Thus, we havepn(t) ≥ (1− δn)αn(t).
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For the second part of Lemma 3.1-1b), assumepn(t) > 0 for 0 ≤ Zn(t) < V C(t) − αn(t).It

follows (3.7) thatS(t) = 0. The objective function (3.18) can be written as

B + V Q(t)C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t)) +

∑

j 6=n

(Zj(t)(1− δj)αj(t)− (Zj(t) + αj(t))pj(t)) +

Zn(t)(1− δn)αn(t)− (Zn(t) + αn(t))pn(t)

> B + V Q(t)C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t)) +

∑

j 6=n

(Zj(t)(1− δj)αj(t)− (Zj(t) + αj(t))pj(t)) +

Zn(t)(1− δn)αn(t)− V C(t)pn(t)

≥ B + V [−P (t) +
K
∑

k=1

(Rk(t)−Dk(t)) +

∑

j 6=n

pj(t)]C(t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t)) +

∑

j 6=n

(Zj(t)(1− δj)αj(t))−
∑

j 6=n

((Zj(t) + αj(t))pj(t)).

The first inequality is due to0 ≤ Zn(t) < V C(t) − αn(t) and the assumptionpn(t) > 0. The

second inequality is due to the non-negativity ofZn(t) andαn(t). The last equation shows, given

the assumptionpn(t) > 0, we may find another electricity allocation scheme withpn(t) = 0 and

Q̃(t) = −P (t) +
∑K

k=1(Rk(t) − Dk(t)) +
∑

j 6=n pj(t), which can achieve a smaller objective

value. This contradicts with the previous assumption. Thus, we havepn(t) = 0, which completes

the proof of Lemma 3.1-1b).

In part 2) of Lemma 3.1, ifS(t) > 0, we haveQ(t) = 0 according to (3.7). The objective

function (3.19) becomes

−V S(t)W (t) +
K
∑

k=1

Xk(t)(Rk(t)−Dk(t))−

N
∑

n=1

(Zn(t) + αn(t))pn(t). (B.4)
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We can prove part 2) with a similar approach as in the case of part 3.1. The detailed proof is

omitted for brevity.

B.4 Proof of Lemma 3.2

Since0 ≤ Cmin ≤ C(t) ≤ Cmax andV > 0, we haveRk(t) = 0 whenXk(t) < −V Cmax,

andDk(t) = 0 whenXk(t) > −V Cmin according to Lemma 3.1-3.1). Similarly, since0 ≤

Wmin ≤ W (t) ≤ Wmax andV > 0, we obtainRk(t) = 0 whenXk(t) < −VWmax, andDk(t) = 0

whenXk(t) > −VWmin according to Lemma 3.1-2)

SinceCmax > Wmax andCmin > Wmin, we conclude that ifXk(t) > −VWmin, the optimal

solution always selectRk(t) = 0. If Xk(t) < −V Cmax, the optimal solution always selectDk(t) =

0. The proof is completed.

B.5 Proof of Lemma 3.3

The proof directly follows Lemma 3.1 and is similar to the proof of Lemma 3.2. We omit the

details for brevity.

B.6 Proof of Theorem 3.2

From the battery virtual queue definition (3.10), the constraint Emin
k ≤ Ek(t) ≤ Emax

k is

equivalent to

−V Cmax −Dmax
k ≤Xk(t)≤Emax

k − V Cmax −Dmax
k − Emin

k .

We assume all the batteries satisfy the battery capacity constraint at the initial timet = 0, i.e.,

Emin
k ≤ Ek(0) ≤ Emax

k , for all k. Supposing the inequalities hold true for timet, we then show

the inequalities still hold true for timet+ 1.

First, we showXk(t + 1) ≤ Emax
k − V Cmax − Dmax

k − Emin
k . If −VWmin < Xk(t) ≤

Emax
k −V Cmax −Dmax

k −Emin
k , then withXk(t) > −VWmin ⇒ Rk(t) = 0 from Lemma 3.2, we
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haveXk(t+1) = Xk(t)−Dk(t) ≤ Xk(t) ≤ Emax
k −V Cmax−D

max
k −Emin

k . If Xk(t) ≤ −VWmin,

then the largest value isXk(t+ 1) = −VWmin +Rmax
k . For any0 < V ≤ Vmax, we have

Emax
k − V Cmax −Dmax

k − Emin
k

≥ Emax
k −min

k

{

Emax
k − Emin

k −Rmax
k −Dmax

k

Cmax −Wmin

}

Cmax

−Dmax
k − Emin

k ≥ Rmax
k ≥ Xk(t+ 1).

It follows thatXk(t+ 1) ≤ Emax
k − V Cmax −Dmax

k − Emin
k .

Next, we showXk(t + 1) ≥ −V Cmax − Dmax
k . Assuming−V Cmax − Dmax

k ≤ Xk(t) ≤

−V Cmax, then from Lemma 3.2, we haveXk(t) ≤ −V Cmax ⇒ Dk(t) = 0. It follows that

Xk(t+ 1) = Xk(t) +Rk(t) ≥ Xk(t) ≥ −V Cmax −Dmax
k .

If Xk(t) ≥ −V Cmax, following (3.10), we have

Xk(t+ 1) = Xk(t)−Dk(t) +Rk(t) ≥ Xk(t)−Dmax
k

≥ −V Cmax −Dmax
k .

Therefore, we haveXk(t + 1) ≥ −V Cmax −Dmax
k . Thus the inequalities also hold true for time

t+ 1.

It follows thatEmin
k ≤ Ek(t) ≤ Emax

k is satisfied under the optimal scheduling algorithm for

all k, t.

B.7 Proof of Theorem 3.3

(i) We first prove the upper boundZmax
n . Initially, we haveZn(0) = 0 ≤ V Cmax + αmax

n .

Assume that in time slott the backlog of the QoSE virtual queue of residentn satisfiesZn(t) ≤

Zmax
n = V Cmax + αmax

n . We then check the backlog at timet + 1 and show the bound still holds

true.
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If Zn(t) > V Cmax, following Lemma 3.3, the optimal scheduling for the quality usage of

residentn satisfiespn(t) ≥ (1− δn)αn(t). From the virtual queue dynamics (3.12), we have

Zn(t+ 1) ≤ [Zn(t)− δnαn(t)]
+ + δnαn(t).

If Zn(t) ≥ δnαn(t), we haveZn(t + 1) ≤ Zn(t) ≤ V Cmax + αmax
n ; otherwise, it follows that

Zn(t+ 1) ≤ δnαn(t) < V Cmax + αmax
n .

If Zn(t) ≤ V Cmax, we haveZn(t+1) ≤ [Zn(t)− δnαn(t)]
+ +αmax

n . If Zn(t) ≥ δnαn(t), we

haveZn(t + 1) ≤ Zn(t) − δnαn(t) + αmax
n ≤ V Cmax + αmax

n ; otherwise, we haveZn(t + 1) ≤

αmax
n ≤ V Cmax + αmax

n .

Thus we haveZn(t + 1) ≤ Zmax
n = V Cmax + αmax

n . The proof of the QoSE virtual queue

backlog bound is completed.

(ii) Consider an interval[t1, t2] with length ofT = t2 − t1. Summing (3.12) fromt1 to t2, we

haveZn(t2 +1) ≥ Zn(t1)− δn
∑t2

τ=t1
αn(τ) +

∑t2
τ=t1

[αn(τ)− pn(τ)] ≥
∑t2

τ=t1
[αn(τ)− pn(τ)]−

Tδnα
max
n . It follows that

t2
∑

τ=t1

[αn(τ)− pn(τ)] ≤ Zmax
n + Tδnα

max
n .

B.8 Proof of Theorem 3.4

From Theorem 3.2, the battery capacity constraints is met ineach time slot with the adaptive

control policy. Take expectation on (3.2) and sum it over theperiod[0, t− 1]:

E{Ek(t)}−E{Ek(0)} =
t−1
∑

τ=0

[E{Rk(t)}−E{Dk(t)}], ∀ k.

SinceEmin
k ≤ Ek(t) ≤ Emax

k , we divide both sides byt and lett go to infinity, to obtain

lim
t→∞

1

t

t−1
∑

τ=0

E{Rk(t)} = lim
t→∞

1

t

t−1
∑

τ=0

E{Dk(t)}, ∀ k. (B.5)
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Consider the following relaxed version of problem (3.9).

minimize: lim
t→∞

1

t

t−1
∑

τ=0

E{Q(τ)C(τ)− S(τ)W (τ)} (B.6)

s.t. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (B.5).

Since the constraints in problem (B.6) are relaxed from that in problem (3.9), the optimal solution

to problem (3.9) is also feasible for problem (B.6). The solution of (B.6) is a stationary and

randomized policy does not depend on battery energy levels [115, 129]. Let the optimal solution

for problem (B.6) bêA(t) = {Q̂(t), Ŝ(t), R̂k(t), D̂k(t), p̂n(t)} and the corresponding object value

is ŷ ≤ yopt. According to the properties of optimality of stationary and randomized policies [115],

the optimal solution̂A(t) satisfiesE{R̂k(t)− D̂k(t)} = 0 andŷ = E{Q̂(τ)C(τ)− Ŝ(τ)W (τ)}.

We substitute solution̂A(t) into the right-hand-side of the drift-and-penalty (3.17).Since our

proposed policy minimizes the right-hand-side of (3.17), we have

∆(~Θ(t)) + V E{Q(t)C(t)− S(t)W (t)|~Θ(t)}

≤ B +
N
∑

n=1

E{Zn(t)(1− δn)αn(t)|Zn(t)}+

K
∑

k=1

Xk(t)E{R̂k(t)− D̂k(t)|Xk(t)} −

N
∑

n=1

(Zn(t) + αn(t))E{p̂n(t)|Zn(t)}+

V E{Q̂(t)C(t)− Ŝ(t)W (t)|~Θ(t)}

≤ B +
N
∑

n=1

Zmax
n (1− δn)α

max
n + V · yopt.
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The second inequality is due to the properties of stationaryand randomized policy and̂y ≤ yopt.

Taking expectation and sum up from0 to T − 1, we obtain

T−1
∑

t=0

V E{Q(t)C(t)− S(t)W (t)}

≤ T · B̂ + T · V · yopt − E{L(~Θ(T ))}+ E{L(~Θ(0))}

≤ T · B̂ + T · V · yopt + E{L(~Θ(0))}.

The second inequality is due to the nonnegative property of Lyapunove functions. Divide both

sides byV · T and letT go to infinity. Since the initial system state~Θ(0) is finite, we have

limT→∞
1
T

∑T−1
t=0 V E{Q(t)C(t)− S(t)W (t)} = y∗ ≤ yopt +

B̂
V

.
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Appendix C

Proofs in Chapter 5

C.1 Proof of Lemma 5.1

If the feasible power allocation~P (t) achievesγmax
n (t) for all n, then all the user buffers are

full at the end of the time slot, according to (5.5). The objective value (5.6) cannot be further

improved without causing buffer overflow. Thus the solutionis optimal.

C.2 Proof of Lemma 5.2

Consider a feasible power allocation~P ′(t) = [P ′
1(t), P

′
2(t), · · · , P

′
N(t)]

T and
∑

n∈U P
′
n(t) <

P̄ . We can construct another feasible power allocation~P ′′(t) = [P ′′
1 (t), P

′′
2 (t), · · · , P

′′
N(t)]

T , such

thatP ′′
n (t) = κ · P ′

n(t), for all n, andκ ·
∑

n∈U P
′
n(t) =

∑

n∈U P
′′
n (t) ≤ P̄ , whereκ > 1. For the

SINR at usern, we have

γn(~P
′′(t)) =

LnGnP
′′
n (t)

∑

k 6=nGnP ′′
k (t) + ηn

=
κLnGnP

′
n(t)

∑

k 6=n κGnP ′
k(t) + ηn

>
κLnGnP

′
n(t)

∑

k 6=n κGnP ′
k(t) + κηn

= γn(~P
′(t)).

It follows that
∑

n∈U log(1 + γn(~P
′′(t))) >

∑

n∈U log(1 + γn(~P
′(t))), sincelog(1 + x) is an

increasing function ofx.

Choosingκ = P̄ /
∑

n∈U P
′
n(t), we can construct a feasible solution~P ′′′(t) = κ · ~P ′(t), such

that
∑

n∈U P
′′′
n (t) = P̄ . Then we haveγn(~P ′′′(t)) > γn(~P

′(t)) and
∑

n∈U log(1 + γn(~P
′′′(t))) >

∑

n∈U log(1 + γn(~P
′(t))). That is, any feasible solution with

∑

n∈U P
′
n(t) < P̄ will be dominated
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by feasible solutions with
∑

n∈U P
′′′
n (t) = P̄ . We conclude that the optimal solution~P (t) must

satisfy
∑

n∈U Pn(t) = P̄ .

C.3 Proof of Lemma 5.3

Taking the first and second derivatives of the objective function (5.14) with respect toPn, we

have

∂Cn(Pn)

∂Pn

=
Ln(P̄ + An)

(P̄ − Pn + An)[P̄ + (Ln − 1)Pn + An]
(C.1)

∂2Cn(Pn)

∂Pn
2 =

−Ln[(Ln − 2)(P̄ + An) + 2(1− Ln)Pn](P̄ + An)

[(P̄ − Pn + An)2 + LnPn(P̄ − Pn + An)]2
. (C.2)

SincePn ≤ P̄ andAn > 0, both the first and second derivatives exist. Letting∂2Cn(Pn)

∂Pn
2 = 0, we

derive the unique inflection point

P ∗
n =

Ln − 2

2(Ln − 1)
(P̄ + An). (C.3)

WhenPn < P ∗
n , it can be shown that∂

2Cn(Pn)

∂Pn
2 < 0; whenPn > P ∗

n , it can be shown that∂
2Cn(Pn)

∂Pn
2 >

0.

C.4 Proof of Theorem 5.2

The reflection point isP ∗
n = Ln−2

2(Ln−1)
(P̄ + An). As Ln → ∞, we haveP ∗

n = 0.5(P̄ + An).

Only one link can operate in the convex region due to constraint (5.17). Since∂P
∗
n

∂Ln
> 0, P ∗

n is an

increasing function ofLn. When1 ≪ Ln < ∞, we haveP ∗
n < 0.5 · (P̄ + An). Letting3P ∗

n = P̄ ,

we haveLn = (4P̄ + 6An)/(P̄ + 3An).
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C.5 Proof of Theorem 5.3

The first part can be easily shown by the first derivative ofP ∗
n with respect toAn, which is

∂P ∗
n

∂An
= Ln−2

2(Ln−1)
> 0, for Ln > 2. The second part can be easily shown by evaluating (5.14), (5.15),

and (C.1).
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Appendix D

Proofs in Chapter 6

D.1 Proof of Lemma 6.1

According to the definition ofXm(t) in (6.3), we haveCm(t) = [Xm(t)−Xm(t− 1)] /τ .

From the definition ofCmin
m (t), the playout buffer is emptied at the end of time slott, i.e.,Xm(t) =

Dm(t). Therefore, we can derive the minimum required rate as

Cmin
m (t) = max {0, Dm(t)−Xm(t− 1)} /τ. (D.1)

From the feasibility condition (6.4), we haveXm(t − 1) ≥ Dm(t − 1). Substituting it into (D.1),

we have

Cmin
m (t) ≤ [Dm(t)−Dm(t− 1)] /τ ≡ C̄min

m (t). (D.2)

RateC̄min
m (t) occurs when the playout buffer is empty at both the beginningand end of time slott,

but without buffer overflow during the entire time slot.

D.2 Proof of Theorem 6.1

Recall thatγmin
m is the SINR corresponding to the minimum required rateCmin

m (t). Let γ̄min
m (t)

be the SINR corresponding tōCmin
m (t). Since (6.2) is a monotonically increasing function, we have

0 ≤ γmin
m (t) ≤ γ̄min

m (t).

We now consider the power assignment that achieves ratesC̄min
m (t), or, the corresponding

SINRsγ̄min
m (t). From (6.7) and (6.8), the minimum SINR constraint is:

γm(t) =
Gm

mPm(t)
∑

k 6=mG
m
k Pk(t) + ηm

≥ γ̄min
m (t), ∀ m. (D.3)
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Eqn. (D.3) is a system of linear equations of the power vector~P (t), which can be written in the

matrix form as:
(

I− Γ̄
min

A
)

~P (t) � Γ̄
min~ν, (D.4)

whereI is the identity matrix,A is anM ×M matrix with

Amk =











0, m = k

Gm
k /G

m
m, m 6= k,

(D.5)

Γ̄
min = diag{γ̄min

1 (t), γ̄min
2 (t), · · · , γ̄min

M (t)} is a diagonal matrix, and~ν = [η1/G
1
1, η2/G

2
2, · · · ,

ηM/G
M
M ]T .

DefineΓmin = diag{γmin
1 (t), γmin

2 (t), · · · , γmin
M (t)} and∆ = Γ̄

min − Γ
min � 0. Assume~P

is a power assignment that achievesγ̄min
m (t) for all m, which satisfies (D.4). SubstitutinḡΓmin =

∆+ Γ
min into (D.4), we have

(

I− Γ
min

A
)

~P � Γ
min~ν +∆

(

~ν +A~P
)

.

Since∆, ~ν, A and ~P all have non-negative elements, we have∆

(

~ν +A~P
)

� 0, and therefore,

(

I− Γ
min

A
)

~P � Γ
min~ν.

That is,~P can also achieveγmin
m (t) for allm and it satisfies the minimum SINR constraint in (6.8).

Once the minimum SINR constraint in (6.8) (i.e., no buffer underflow) is satisfied, the max-

imum SINR constraint in (6.8) (i.e., no buffer overflow) can be satisfied since BSm can stop

transmission when the playout buffer at userunm is full.
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Appendix E

Proofs in Chapter 7

E.1 Proof of Theorem 7.1

Due to i.i.d. channel gains and noise powers, the random variablesηn(t)/Gn(t)’s are ex-

changeable, for all t. Definew(g, η, c) = (2c/Bw − 1)η/g, which is convex and increasing withc,

for all g ≥ 0 andη ≥ 0. Letψ( ~C) = E[Φ( ~C)] = E[
∑T

t=1w(g(t), η(t), c(t))]. Φ( ~C) is a symmet-

ric, convex and increasing function in~C for each fixed~G and~η. According to Proposition 11.B.5

in [13], ψ( ~C) is symmetric, convex and increasing. Following Fact 2.1, the objective function (7.9)

is Schur-convex and increasing.

E.2 Proof of Corollary 7.2.3

To evaluate the smoothness of a transmission schedule~C, the following smoothness utility

function can be used:

U( ~C) =
Tn
∑

t=1

([c(t)− c̄]/Tn), (E.1)

where c̄ =
∑Tn

t=1 c(t)/Tn is the average rate. This is a continuous symmetric convex function

U : RTn → R. From Fact 2.1,U is Schur-convex and order preserving. The optimal power

transmission schedule~C∗
n satisfies~C∗

n ≺ ~C i
n for all i. Therefore, it also achieves the minimum

value forU(·).
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Appendix F

Acronyms

AMI Automated Meter Infrastructure

BS Base Station

CBR Constant Bit Rate

CDMA Code Division Multiple Access

CPS Cyber-Physical System

CSMA Carrier Sense Multiple Access

DCC Distribution Control Center

DCPC Distributed Constrained Power Control

DCT Discrete Cosine Transform

DR Demand Response

DRER Distributed Renewable Energy Resource

DUBMLC Distributed User Benefit Maximization Load Control

DVS Dynamic Voltage Scaling

ESS Energy Storage System

GSEPS General Smooth Electric Power Scheduling

FDMA Frequency-Division Multiple Access

HAN Home Area Network

ICT Information and Communications Technology

IDCT Inverse DCT

LAN Local Area Network

LB Lower Bound

LP Linear Programming
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MB Macro Block

MG Microgrid

MGCC MG Central Controller

PMA Power Minimization Algorithm

PMU Phasor Measurement Unit

PHEV Plug-in Hybrid Electric Vehicles

PLC Power Line Communication

QoE Quality of Experience

QoS Quality of Service

QoSE Quality of Service in Electricity

RLT Reformulation-Linearization Technique

RTP Real-time Transport Protocol

SEPS-DL Smooth Electric Power Scheduling for Deferrable Load

SINR Signal to Interference-plus-Noise Ratio

SG Smart Grid

SST Solid State Transformer

SUDP Supply Until Deadline Policy

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

UB Upper Bound

UDP User Datagram Protocol

UMRP Utility Maximization Real-time Pricing

V2G Vehicle-to Gird

VBR Variable Bit Rate

VPP Virtual Power Plant

VSN Visual Sensor Networks

WAN Wide Area Network
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