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Abstract

In modern cyber-physical systems (CPS), new dimensioneefibm are enabled to energy
efficient solutions. We first focus on the energy deliveryesidthin the smart grid paradigm for
smatrt, efficient and reliable energy delivery. We then exgtbe demand side with “green” wire-
less networks for multimedia streaming, in response totastit increasing demand in multimedia
service in wireless networks.

In this dissertation, we first study energy management systa smart grid. We design
power scheduling policies for smoothing power profile in powistribution networks. The pro-
posed power scheduling policies allow the operator to degémerators, transformers and power
transmission lines with smaller capacity in the grid, theducing the capital investment. In addi-
tion, the power consumption can be reduced during peak handsthe average energy generation
cost will also be minimized. We also propose a smart eleetngergy management system in mi-
crogrids (MGs). With the proposed algorithm, the MG achsethe fundamental requirements in
smart grid with distributed renewable energy integratemergy storage systems management and
residential power quality management, while keeping thepatibility to the legacy grid.

We then propose downlink power control frameworks for streg multiple variable bit rate
(VBR) videos in wireless cellular networks. We develop bothtcaized and low-complexity dis-
tributed algorithms, which optimally schedule the trarssion power for the BS’s, such that VBR
videos can be delivered to mobile users without causingopialguffer underflow or overflow un-
der wireless channel uncertainty. The proposed solutiohgae the quality of experience (QoE)
requirements of users, as well as keeping the systems “green

In this dissertation, we adopt a control and optimizatioprapch for energy efficient design
in CPS.The synergy of the advanced control and optimizatiethads in engineering systems

provides new visions for practical solutions to bring a gre®rld in the future.
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Chapter 1

Introduction

1.1 Enabling Energy Efficient Cyber-Physical Systems

Innovations in energy supply, delivery and consumption liygical systems are the most
effective ways to fight against global warming and environtaedegradation. The synergy of
communication, networking, control, computation inggihce and physical components greatly
extends the autonomy, efficiency, flexibility, reliabiliyd adaptability of physical systems. Such
an enhanced system as illustrated in Fig. 1.1 is tern®dbar-physical syste(€CPS). The emerg-
ing CPS will significantly enhance the capabilities of phgbiengineered systems and change
how people interoperates with the physical world througtt-tiene embedded systems by sensing,
computation, optimization and control over communicatietworks, which makes the engineer-
ing systems reliable, secure, efficient and smart. Exampt#sde smart electricity grid, smart
building, smart manufacturing, and smart transportatjn The next generation of CPS brings
new dimension of freedom to the energy efficient solutiorhtogractical physical systems.

In this dissertation, we investigate energy efficient desijsmart gridandinformation and
communications technolodyCT) infrastructures. Electric power system is generalnitified as
the largest greenhouse gas emission source created by heimys. Under traditional electricity
grid structure, onlyl /3 of fuel energy, mainly from fossils, is converted to elegtyi and almost
8% is then further lost during the transmission on the powargmgission lines. In addition, to
manage the peak demand, ab2ftc of generation capacity is reserved. Those reserved cgpacit
is only used irb% of the time [3]. Thus, an efficient, reliable, flexible and romic electricity de-
livery system is needed for the new era. The next generafieleatricity delivery network, called
smart grid [4—6], is an evolution of the 20th centuary triaial grid, which is expected to solve

the major inefficiency of the traditional electricity gridh smart grid with two-way flow of both

1



04 A 0 .
01480000300 \WaElsl
01011101104 0

Figure 1.1: Cyber-physical system - Integration of commaitiar, control and computation [1].

electricity and information provides full visibility andugomatic control over the components and
services in power networks. The ubiquitous sensing, maongand automatic control enable the
ability for responding to a wide range of conditions and ésgwhich allows the integration of the
computational intelligence into the system to efficientthedule power generation, transmission,
distribution and usage. The smart grid can also faciliaggo#nertration of renewable energy, such
as photovoltaics, wind, geothermal, and biofuels, which gvieatly reduce resource depletion,
increase sustainablity, lower greenhouse gas emissiahiednce air pollution.

Besides the enhancement of electricity delivery netwotks giqually important to implement
energy efficient design at the demand side. Since the aiggtsupply continuously matches the
demand under the current operation strategy of traditignid| the emissions of power plants in-
crease as the demand increases. However, it is not envirdrinendly to proportionally boost the
electricity supply along with demand, especially when westder that the nation wide electricity
demand is estimated to increase4iy; by 2030 [7]. To alleviate the total energy consumption,
there is a great need for energy efficient infrastructuregicgs and consumption patterns. One of
the fastest energy consumption growth comes from today’sih@@structure, which may be re-
sponsible for more thatD% of the total electrical power consumption [8], due to theteadously

wide spread of the Internet and mobile communication netsioAccording to a recent study by



Cisco, mobile data traffic will be expected to growct8 Exabytes per month by 20152é—fold
increase over 2010 [9]. In addition, mobile video will gestermuch of the mobile traffic growth
through 2015. Of thé.3 Exabytes per month wireless data crossing the mobile nktlaypoP015,
4.2 Exabytes will be related to video.

Furthermore, it is reported that the energy consumed byused-equipment only contributes
around7% of the entire consumption, while the remainiégf% is consumed by mobile network
components [10], of which more tha0% is used by théase statior{BS) equipment [11]. There-
fore, considerable savings on electrical bills could beedd for wireless operators when the
power of BS’s is minimized for video streaming. The reduceteicity consumption will also
bring about important improvement in the overall carbontfoot of the wireless industry and
achieve the goal of “green” communications.

In this dissertation, we examine energy efficient design i® @Bm two sides: energy deliv-
ery networks and energy demand using multimedia wirelessanks as an example. We inves-
tigate the problems with a control and optimization theorapproach, which involves Lyapunov
optimization [12], majorization [13], nonlinear and corwptimization [14]. The synergy of these
advanced mathematical tools brings about new visions ferggnefficient solutions to practical

engineering systems with performance bounds to bring angreeld in the future.

1.2 Smart Grid

1.2.1 Traditional Electricity Grid

The electric power delivery system, i.e. electricity gues named as the greatest engineering
achievement of the 20th century [15]. Generally, the elgtgrgrid consists of three parts: power
generation plants, power transmission networks, and paoistribution networks, as shown in
Fig. 1.2. The traditional grid is strictly a hierarchicalsggm, in which the power plant is at the
upstream to provide electric power to the user load at thendowam. The electric power is
generated at central power plants normally driven by comittilesengines that are mostly fueled

by coal and gas. Due to economic and environmental consiolesathe plants are usually located

3
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Figure 1.2: Traditional electricity grid with unidirectial power and information flow.

far away from users, and they are connected to users by trssismand distribution networks.
The generated electric power is stepped up to a higher wo(tad 10 kV) by step up transformers
to overcome the power transmission loss over a long distanbe transmission networks route
the power to the substations, in which the voltage is stegoeeh from the transmission level
to medium-voltage distribution levek( 33 kV). After the voltage regulation by the substations,
the power flow is then forwarded into the distribution netkgor Finally, when the power flow
arrives at a service location, the voltage is further stdppmwvn to the service level required by
end users, which is generally0 V, 240 V, or 480 V. It can be noticed that the electricity and
information in this type of grid flows in a unidirectional faen. The generated power strictly
flows from the plant to the end users, while the informationhat downstream is collected by
the upstream components. For example, a distribution alocegnter can acquire load information
from end users, but the users generally have no idea abostahes of the power generation and
transmission.

The electricity grid must be operated to achieve real-tirakafce between generation and
load. Otherwise, the grid frequency will drift up or downrndhe nominal value (typically 50Hz
or 60 Hz). Today, the overall daily load profile in a given seevarea can be predicted well,

and the day-ahead generating schedule can be developetidrade prediction. Thus, electricity



generation adopts a “load following” strategy. Due to tihatation of unidirectional flow structure,
loads are not generally controlled directly, except fordase when there is insufficient generation
available on peak time, and then the “load shifting” operais executed to encourage users to
shift load from on-peak to off-peak periods.

Increasing environmental concerns urge the high penetrafi green and renewable energy
resources, such as solar, wind, geothermal, tidal, andTéte. load-following strategy with the
unidirectional electricity and information flows becomegaard to meet the penetration of the
new renewable resources into the grid. The electricity gead from renewable resources, such
as wind and solar, is generally random, due to complex flticiosof weather condition. Thus, it
is hard to accurately predict the generation even in a slesibg. In addition, renewable energy
sites are largely geographically distributed, due to tls¢rithution of the renewable resources, the
unidirectional electricity and information flow cannot pide the needed services and fast response
to ensure that power generation matches load in real timghwihay fail the load following
strategy. To embrace the green electrification age, autmmaistributed and advanced energy
delivery networks should be promoted, which are enhanceabédywo-way flow of electricity and

information empowered by digital computation, communaaand control technologies.

1.2.2 Smart Grid Evolution

Smart grid is a 21st century evolution of electricity detiweystems. Smart grid enhances the
traditional power grid through communication, computatiand control technologies throughout
the processes of electricity generation, transmissiahdastiribution. A key feature of smart grid is
the two-way flow of electricity and realtime information dtugh communication networks, which
offers many benefits and flexibilities to both electricitytneamers and providers. The US 2009
Recovery Act indicates that a smart grid will replace theitrawlal power grid system to improve
energy efficiency and advance the liberalization of enemgyarth America [16].

The smart grid is illustrated in Fig. 1.3. In contrast to thedttional power grid, the power

generation and power flow patterns in the smart grid exhiloitenflexibility. The initial concept
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Figure 1.3: Smart grid with plug-and-play interfaces and-tmay flow of power and information.

of smart grid begins with the introduction atitomated meter infrastructuit@MI) systems in
distribution networks. AMI enables the utilities to monitine demand status of end users and
impose certain control on the consumption and costs [3,}4, Edture evolution with the inte-
gration of various new power electronics and informatiachteques provides real time sensing,
monitoring and control for every corner of the power delvsystem. For example, in power de-
livery networks phasor measurement ufRMU) are being deployed to synchronized measure the
real-time phasor data at multiple points in the grid [183lid state transformeg(SST) can respond
to signals from a facility or a household to change the vatagd other electric characteristics in
the system [19]. On the user side, local renewable resogereeration and storage systems, smart
meters and smart facilities empower the pervasive sensiogjtoring and control of the power
flow and power usage in response to the utility supply and etgmkce fluctuations.

One of the most important benefit from smart grid is that the-tvay flow of electricity
and information facilitates the deployment and managerottite distributed renewable energy
resource(DRER), such as wind farms and solar photovoltaic cells. Wntlke load following

strategy, in which the supply continuously matches the aelytae real time information exchange



among DRERSs, central power plants and end users provides aagtwmatch the demand to the
available supply by regulating the power generation, a$ agetontrolling the load service level
of the users.

The deployment of the DRERs fundamentally alters the operafipower generation, which
is conventionally controlled centrally. Furthermore, thereasing popularity oplug-in hybrid
electric vehiclegPHEVS) serves as distributed energy storage system faterggl users by
vehicle-to gird(V2G) technology [20]. To cope with distributed generati@nconcept ofvir-
tual power plant(VPP) is introduced [21], which clusters numerous DRERs withtal capacity
comparable to a traditional power plant. The group of DRERsdsaged by a central controller
and appears like a virtual central power plant to the gridP\fPovides a promising paradigm to
replace a conventional power plant by a cluster of local DRERsmwore flexibility and efficiency.

It can be seen from Fig. 1.3 that the smart grid is organizedthe Internet, which may be
called the “Energy Internet” [22], in contrast to the sigidtierarchical structure of the traditional
grid in Fig 1.2. All the components in the power delivery gyss, including generation, transmis-
sion,distribution and consumption can be deployed and gethtnrough plug-and-play interfaces.
By the full duplex of electricity and information flows, contigation of the devices in the system
may be customized to respond the grid status in real time.ekample, energy storage systems
may cooperate with DRERSs to balance the supply and demanddaagado the power generation
conditions. On the other hand, users may customize theiaddror low cost energy consumption
by responding to the realtime market price. The concept @rg@ninternet envisions the highly
flexible smart grid framework to facilitate a green and sastiale energy-based society, mitigating

the growing energy crisis, and reducing the impact of greasl gas emissions.

1.2.3 Microgrid

The existing traditional electricity grid has often beetedias the most complex engineering
system ever built. Thus to fundamentally overhaul the mgsinfrastructure is either unimple-

mentable or economically inefficient. The transition to #meart grid would favor the strategy
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Figure 1.4: Microgrid: Localized cluster of DRERs, ESS’spmhation networks and residents.

based on the reuse and upgrade from the existing grid by @ddjpabilities and functionalities in
a sustainable growth fashion. In a long period, the smadt \@wuld coexist with the traditional
grid, and also provide certain backward compatibility vitie legacy systems.

With the concept of plug-and-play interface in the smartga new grid paradigm called
microgrid (MG) is regarded as a promising component for future smadtdgployment. Micro-
grids are interconnected networks that provide a localctester of renewable energy generation,
storage, distribution for local demand, to achieve reéadmd effective energy supply with small
scale implementation of smart grid functionalities [4,.23 typical MG is shown in Fig. 1.4,
which includes DRERsnergy storage systen{iSSS’s), wired/wireless networks for information
delivery, anMG central controller(MGCC), and local users. An MG is centrally controlled and
managed by the MGCC [23], which may exchange information tiéhlocal users via two-way
information networks, such as a wireless network goaer line communicatio(PLC) system.
There is a single common coupling point with the macrogrid.ewHisconnected, the MG works
in anislanded modgin which DRERs and ESS’s continuously provide electricitysétisfy the
local demands. When connected to the macrogrid, the MG maestgxtra electricity from the
macrogrid or sell the excess energy back to the market [3].

The MGs are designed with the fundamental elements of smidrtggich as the integration
of DRERSs, intelligence core, two-way electricity and infotroa flow, self-healing, and demand

side management. This simplified design of the integratifoDRERs and the ability to isolate
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the MG from the macrogrid in disturbance will yield highlfliedle electricity supply. The island
operation mode has the potential to provide a higher lodialiéty and efficiency than that pro-
vided by the general macrogrid. In addition, the MG workdwtiite plug-and-play interface to the
macrogrid, which minimizes the regulation effort of DRERshe tooperative power scheduling

and management with the macrogrid and enables sustainadblgien to the emerging smart grid.

1.2.4 Smart Energy Management Systems

The two-way flow of electricity and information infrastrucé enables various innovative
functions and management principles in practicing dynamiergy management systems, which
significantly alter the nature of future power system operaand consumer behavior. It involves
the incorporation of smart energy management based on eelyarontrol and communications
capabilities, computational intelligence, and smart desithat make the electricity gird “smart”,
as shown in Fig. 1.5. The real time information flow from the&lgsuch as active/reactive power,
voltage, phase, user demand, as well as energy price on thetnbrings great flexibility in
designing the new smart energy management system. Witht emangy management systems,
the grid achieves energy savings, operation cost redyatemand and supply balance, emission
control, peak load reduction and elimination of many inhéneefficiencies that may be caused by

the conventional “load-following” strategy.



Among various designs of smart energy managenuarhand respong®R) serves an im-
portant function in smart grid. Demand response is the nmeshres to manage the demand from
user side in response to the supply condition. Unlike thadiollowing” strategy, which con-
tinuously matches the supply to the demand, demand respoadées the “generation-following”
strategy to match the demand to the available supply by aliinty the service level, thus achieving
better overall capacity utilization [24]. Currently, thesearch in demand response mainly focuses
on two branches: direct load control and real time pricing.

Direct load control takes advantage of the scheduling figitof certain loads, which may
be scheduled on and off remotely without degrading thefaatisn of end users. It is estimated
that up to33% residential loads, such as dishwasher, washer/dryer, Hifity/Reharging, could
be rescheduled at some level without major impact on usdis [2nlike the traditional energy
management, the smart demand response mechanism hasdbéityaip aggregate and precisely
control the service level of individual load according te trid status. The application of direct
load control not only sheds load during peak demand houtsalba intends to actively promote
new types of grid services that could reshape a demand pimélaicely smoothed demand profile.

Real time pricing is another important method that encowgdige users to reshape their elec-
tricity consumption pattern by various price strategielse Ttilities change energy price based on
the fluctuation in the cost of generation, the aggregated d@mand, and other realtime states of
the grid, thus providing immediate financial incentiveshe tisers to regulate the demand side
applications and perform load shifting. The pricing stggt@intly optimizes the cost of genera-
tion, user electricity payment and user electricity uéitinn, which increases economic and energy
efficiency and delivers the fair prices to both the utiliteesl users.

In smart grid, both approaches rely on the information ergleabetween energy providers
and consumers. The control center monitors the real tintesstd the power networks, as well as
transmits control commands to the users by various comratiaicoptions, including PLGyide
area network¢WAN) andlocal area networkgLAN). Smart meters provide the interface between

LAN and home area network@HAN), and serve as the gateway for security authenticedioh
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command interpretation to ensure the command issued frertrakted controller. Smart meters
may plan the service level of each smart load/facility, agnbdsout the control commands with the
service level of individual load through HAN. After the srhlrad obtains the command, it adjusts
its service level according to the new requirement. Thegsscesorts to the support of information
transmission protocols, security authentication, engigy intelligent core in smart meter, and

remote control for smart facilities, which are still undewvdlopment and standardization.

1.3 Energy Efficient Multimedia Networks

1.3.1 Multimedia Networks Architecture

A typical wireless video system is illustrated in Fig. 1.6hieh generally consists of the
video encoderdecoder, the wireless/wireline networks, and mobile reegiplayout devices. To
achieve QoE guaranteed and/or energy efficient wirelesimadia systems, various schemes
have been developed, each of which focuses on one (or sevenaponent(s) of the system .

Video contents provided by commercial video providers diiilduals are encoded into com-
pressed frames with different codecs. The picture codirsicbare detailed reviewed in [25, 26].
The algorithms in the codecs play large role in the qualitthefvideo, which is directly related to
the QoE. Typical encoder and decoder block diagrams amgréited in Fig. 1.7 and Fig. 1.8, re-
spectively. These frameworks have been adopted in many widéing standards, such as H.264,
and MPEG-4, which consist of motion estimation and comp@msadiscrete cosine transform
(DCT), quantization, entropy coding, inverse quantizatammdinverse DCT(IDCT).

After source coding, the encoded frames are then packeligdtle network transmission
protocols. The video packets are streamed toward the déstinthrough wired antbr wireless
networks. When frames arrive at the destination, the codecd#s the received frames. Since
the video packets could be corrupted or lost during transioms error control and concealment
techniques at the codec may be applied to mitigate the ingfacansmission errors. Then the
reconstructed video frames are played out on screens attee/ing device. Multimedia-aware

network protocols design has gained consideration forimatlia application support [27-33].
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Figure 1.8: Block diagram of a typical video decoder.

During the video streaming process, energy is largely cmesliby video codec encoding,
network transmissions, receiver decoding, error mitaygtand playout. The energy consumption

incurred at the encoder and decoder are mainly due to theegsing of video data at the end
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nodes, while encoding is usually more computation and gnierignsive than decoding. The
codec computation and network transmission use up thesiapget of the overall energy, and are
also critical components for the achievable QoE of videwiser[34]. It is important to address
the “green” communication problem in video streaming bylesipg the energy savings in both

video codec and video transmission.

1.3.2 Energy Efficiency in Video Coding

In the past decades, the advances of wireless communisatimhnetworking technologies
are much significant than that of the battery technology. €guently, how to prolong the battery
life of mobile devices becomes one of the major environmemad economical concerns. We focus
on power efficient codec design in this section and will expline energy efficient transmission
in the next section.

As the increasing demand of high quality video, high comgimesefficiency codecs are de-
signed to enable higher resolution, which significantly@&ases the complexity of encoding algo-
rithms. Moreover, the stringent delay requirements of @igervice usually keep the video device
processor constantly busy for managing the high computasisks. The processor may consume
as much ag/3 of the total power of a mobile device [35]. Thus it is impottém balance video
guality and the computational complexity to achieve poaware video coding.

Typical encoder and decoder block diagrams are illustretédg. 1.7 and Fig. 1.8, respec-
tively. Such approaches have been adopted in many videmgadandards, such as H.264,
and MPEG-4. The framework consists of motion estimation emahpensation, DCT, quanti-
zation, entropy coding, inverse quantization, and IDCT. gkding to recent research [36], mo-
tion estimation/compensation constitutes more tha of the CPU workload, DCT/IDCT and
quantization/inverse-quantization makes up oM of the CPU workload, and the entropy en-
coder, whose computational complexity largely dependfiercoding bit rate, composes less than
10% of the CPU workload. Thus, it is important to explore the egefficiency of these compo-

nents that consume the most part of the processing powerid¢a eodec.
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There are many power-aware codec designs to balance ponsroption and video quality.
The main idea behind these techniques is that the diverselegity of the video content may
require different levels of compression. To achieve a gextiaeo quality, slow motion and simple
scenes require much less computation than high motionsspod movie streams. Thus it is theo-
retically feasible to obtain the optimal power efficiencydynamically adjusting the computation
complexity of the codec components for different videasnfesmacro block§MBs) and blocks,
while keeping the video quality relatively constant at aa&ierlevel.

In [37], the authors present a configurable coding scheme&hnddjusts the codec control
parameters to achieve an optimal operation point on contpidistortion curves based on ex-
haustive search and the Lagrangian multiplier method. 8}, [8 power-aware motion estimation
algorithm is presented, which is adaptive to the batterysthy a content-based subsample algo-
rithm. When the battery is in the full capacity, all the praging elements in the motion estimation
function are turned on to provide the best quality. On thesottand, when the battery capacity
is decreased, some processing elements are disabled il élkte battery life with little quality
degradation. In [39], the authors extend the functions of DBTT in a framework to decrease
the power consumption by skipping the low energy MBs in DCT ahdexo coefficients input
data in IDCT. The combined method reduces, on avefage,of power dissipation.

Another class of power-aware video codec design aims tordigadly adjust the voltage and
frequency of the CPU for energy conservation. Varidysamic voltage scalin(pVS) algorithms
are provided to determine the minimum energy consumptiompfocessing video tasks under
stringent delay requirements. With a DVS enabled proceskervoltage level and associated
clock frequency are adapted to the time-varying video msiog workload to save energy. The
trade-off between reducing voltage level/clock frequeany increasing processing time is the
core in the DVS-based design.

In [40], the authors derive the optimal voltage schedulinthvinear programming. The
algorithm calculates the optimal scheduling offline witlokhedge of the precise complexity and

arrival time of each decoding job, which may not be easy taigeqn real time. A heuristic
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algorithm is then introduced by predicting the stochastimplexity of the workloads. In [41],
a DVS algorithm is presented that adjusts both the clockugaqy and the voltage level of the
CPU to achieve energy efficiency for video content processitgle maintaining the QoS of
the video. A comprehensive statistical analysis of the CPUWkload is presented in [42] for
multimedia applications. The statistical results showt thare is large room for DVS to reduce
energy consumption for multimedia streaming and the psmresorkload can also be accurately
predicted with a moderate effort. The DVS system is baseth@wcantrol theoretic framework. A
PID-based DVS controller is developed to achieve a penailtyrollable energy reduction, which
can be incorporated into an online algorithm.

In summary, the power-aware codec design focuses on thiemdmstween video quality and
power consumption based on content diversity. The exigtovger-aware schemes extend the tra-
ditional video codec functions by jointly considering thdeo content and power constraint. The
algorithms aim to adjust the codec parameters to minimiegtwer consumption while preserv-
ing good video quality. In addition, the hardware supportd¥'S technologies enables adaptive
adjustment of the clock frequency and operating voltagel leithe CPU, to accommodate varying
codec workload. It should be noted that the power-awareacddsign needs to jointly adjust large
number of configurable parameters, which provides the goiive applying effective globally

optimal techniques and algorithms.

1.3.3 Energy Efficiency in Video Transmission

A typical video transmission path is shown in Fig. 1.9. Theead frames generated by the
codec are packetized and delivered through the networlo@obstack (UDP/RTP/IP). The link
layer schedules the packets with a MAC protocol (e.g., TDMBMA, CDMA, or CSMA/CA)
and passes the frames down to the physical layer, where eheoding, modulation and power

allocation may be applied to overcome the time-varying ameliable wireless channels. At the
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Figure 1.9: Protocol layers and system controls involvedineless video transmission.

receiver, received video packets are decoded. The videsirbam is restored and then decom-
pressed by the decoder. Error concealment techniques maggdbed to mitigate the impact of
delayed and corrupted video frames.

The key challenge of video over wireless networks is the taging wireless channel,
which has a gain that varies over time due to channel fadingd®wving, and inter channel in-
terference [43]. This causes random packet losses andsdelays, fixed resource allocation or
scheduling schemes may not be sufficient to achieve the lolesi guality or energy efficiency. An
adaptive, video content-aware resource allocation schemecessary for supporting energy effi-
cient video streaming over wireless networks. While it is arignt to increase the bandwidth and
throughput in wireless networks [44, 45], energy efficierscglso a critical factor for the success
of multimedia applications over wireless networks.

It is reported that BS equipment consumes more tiéh of the total power in a typical cel-
lular network. The energy efficiency and power control iludal networks thus demand careful
reexamination to achieve the goal of green communicati®wsver control in cellular networks
has been widely studied for more thah years for voice or data applications. Many effective
power control algorithms are proposed in the literature (46—50]), and the closely related ad-
mission control problems are also investigated [51-53¢ pitoblem of video communications in

wireless cellular networks brings about many new challsrigethe BS power control problem,
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since the power allocations need to achieve not only theet&ignal to Interference-plus-Noise

Ratio(SINR), but also the QoS or QoE of the streamed videos [54-58].

1.3.4 Joint Video Coding and Transmission Design

As shown in Fig. 1.9, the wireless video system is a complestesy with many closely
coupled control knobs and parameters. Clearly, a cross-tiagegn that jointly optimizes multiple
parameters in different layers has the potential of achgeWetter energy efficiency and video
performance, comparing to the traditional layered apgroac

Consider power allocation as an example. Normally, a lonangmission rate requires a
smaller transmit power, as well as high compression ratihatvideo codec. However, as dis-
cussed in the previous section, a higher compression ratios more intensive computations and
consumes more power at the codec. Apparently, a cross-di@gsgn framework would be useful
in this case, where video coding in the application layerthedransmission schemes in the lower
network layers are jointly considered and optimized [56¢., Specifically, the lower layer network
protocols now have the opportunity to exploit the inforraatfrom the video content and source
coding parameters to optimize the transmission strategyth® other hand, video coding in the
application layer may also take advantage of the channehatwlork information, and thus can
select the coding parameters to provide the best codingtyjaall be adaptive to the status of wire-
less networks and channels. This approach also providesefatipport for the “content-centric”
multimedia network design [60—63].

A large number of designs that jointly consider video codamgl transmission have been
proposed in the literature. In [64], the authors adopt jemirce coding and channel coding to
minimize the total power consumption, while keeping the-tménd video quality at a fixed level.
A framework of joint source-channel coding and power adaptas presented in [65], where error
resilient source coding , channel coding and transmissigvepadaptation are jointly designed to

optimize video quality, given constraints on the total siamssion energy and delay. An algorithm
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is introduced to find the minimal energy source coding andguailocation by adaptively allo-
cating resources to different video segments based onrilaiive importance. In [66], the RF
front-end circuit energy is controlled for wireless videartsmission by adjusting parameters in
physical layer and MAC layer. In [67], the authors investigthe transmission over bandwidth-
limited multi-acess wireless uplink channel. Energy-éffit video communication is obtained by
jointly adapting video summarization, coding schemes, ufaiitbn schemes, and packet transmis-
sion. In [23],the authors present a framework for joint rextwoptimization, source adaption and
deadline-driven scheduling for multi-user video streagromer wireless networks. Both the physi-
cal layer and application layer are jointly considered tximéze the total users’ reception quality
under the power consumption constraint. In [68], the awthiavestigate the joint optimization
among source coding at application layers, ARQ scheme alidiatayers and adaptive modula-
tion and channel coding at physical layer. Within the dedestertion framework, the parameters

of above layers are jointly optimized to achieve the bestityuaf the received videos.

1.3.5 Video over Emerging Wireless Networks

The video streaming problem has also been considered feraesmerging wireless net-
working paradigmsVisual sensor networkd/SN) also represent an important application of en-
ergy efficient multimedia networks. VSN consists of a largenber of low-power camera nodes,
which integrate the image sensor, embedded processor,iegldss transceiver. The development
of VSN has brought about many potential applications, sscsuaveillance, environmental moni-
toring, smart homes/cities, and visual reality [69], to eaafew. Due to the battery limitation, the
life time of VSN camera nodes is limited by their energy canption in wireless channel sens-
ing, transmission, and video and image data processinggieéiciency is a critical issue in the
design of VSN nodes, since they may not be recharged as cftemart phones, and are expected
to operate over extended periods of time (e.g., on two AAehiais for one year [70]). Therefore

power efficient designs are highly preferable at all thequoklayers in VSNs.
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Comprehensive surveys of VSNs can be found in [69,70]. It basishown that power-aware
routing is highly effective in prolonging the lifetime of veless sensor networks [71]. In [72,
73], the authors investigate the directional-control datson scheme to reduce the amount of
sensory data transmission in sensor networks. When progegsieo data is allowed within the
network, data fusion can be employed to reduce the redugdanong multiple video streams
along the routing path, thus reducing the volume of trartechivideo data and saving energy at
the intermediate nodes. Power-aware transport layermesig mainly based on de facto standard
of TCP. In [74, 75], the authors incorporate a new error-recpynechanism into TCP to avoid
unnecessary retransmissions caused by AIMD, especialgnwihe network is disconnected or
there are losses due to high bit error. This scheme is shownotong the lifetime of wireless
sensor networks.

In [76-79], the authors investigate the problem of videmgraission over cognitive radio
networks, where secondary users sense the licensed chamaehim to exploit the transmission
opportunities in the spectrum holes. The uncertain chaawglability condition brings about
many unique challenges. These works investigate the cluatlg problem of video over cognitive
radio networks with a cross-layer optimization approachicW leads to effective centralized or

distributed algorithm design with performance guarantees

1.4 Key Contributions

In this dissertation, we address the problem of energy efftadesign in CPS, including smart
grid and multimedia communication networks, with a con&nodl optimization approach. The key
contributions are summarized as follows.

First, We explore the problem of smooth electric power sahirg in power distribution net-
works [80]. The smooth power profile greatly simplifies thatggy for balancing the supply and
demand in the grid. Moreover, since electricity generatind transmission systems are generally

designed to accommodate peak electric power [4], the snawsttand profile has the advantage of
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optimizing the assets and operation cost of the grid. Wedhice a deterministic model to char-
acterize the complex relationship between demand andsupple deterministic model adopts
cumulative electricity demand/supply curves, which chtaaze the time varying demand/supply
relationship. A constrained nonlinear optimization pesblis then formulated aiming to min-
imize the electric power variation, as well as satisfy uspmver usage quality. We develop
majorization-based algorithms for deriving smooth powareslules for the networks. We also
design a distributed algorithm for supplying the power aghtire users. Although many existing
work reveals the intrinsic connection between pricing @e8 and demand response, few of the
existing work explicitly address the problem of smooth giegpower scheduling. It is shown that
the simple off-peak pricing scheme may not be effective itigaiing the demand peak problem,
because simply shifting the off-peak period may generatevareboundpeak [81]. To the best
of our knowledge, this is the first work that directly addessthe smooth optimal energy schedul-
ing with majorization theory in power distribution netwsrkThe solutions show the deterministic
performance for smooth power scheduling, peak power anchtipg cost reduction through the
enhancement of bidirectional communication flow, smartarseand smart facilities.

We next propose a comprehensive design of an energy managsyséem in MG by taking
advantage of the plug-and-play interfaces of smart grid-$82. We jointly consider renewable
energy penetration, ESS management, residential demamag@aent, and utility market partici-
pation in the MG and introduce the model@tiality of Service in ElectricityQoSE). The QoSE
concept takes into account minimization of the MG operatiost, while maintaining the power
usage quality of residents. We transform the QoSE contofllpm and ESS management problem
into queue stability problems by introducing the QoSE ttgueues and battery virtual queues.
The Lyapunov optimization method is applied to solve thebfm and generate the online opti-
mal ESS charge/discharge algorithm, adaptive residdatidiservice and cost effective operation
strategy on utility market, with hard performance boundsiciv do not require any statistics and
future knowledge of the electricity supply, demand andgpeoocesses. The proposed policy ef-

fectively reduces the MG operation cost and maintains th8EJor the residents. With this new
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energy management framework, the MG achieves the fundaireouirements of smart grid in
DRERs integration, ESS’s management, residential poweitguahnagement, and maintains the
compatibility to the legacy grid.

Furthermore, we investigate the energy efficient designhendemand side as applications
in wireless communication and networks. Among various igi@anmunication technologies, we
focus on the energy efficiency of base stations for downlidle@ streaming. This is due to the
expected surge in wireless video data, as well as the diastiease in the deployment of BS's.
Therefore, any small improvement in the energy efficienoyiogless video streaming system will
be amplified by the huge volume of wireless video data and reurobBS’s deployed, and will
result in considerable environmental impact.

Specifically, we design the energy efficient streamingvimiable bit rate(VBR) video over
wireless networks. VBR video offers stable and superioriualer constant bit rate(CBR)
videos, however, the complexity statistics of the VBR videanfes introduces great challenge
in wireless network design. We first present analytical farks for streaming multiple VBR
videos in a wireless cellular networks, where downlink s are limited by inter-cell/intracell
interference [55, 56, 58]. By jointly considering the detaristic model for VBR video traffic,
stringent playout delay constraint, BS peak power congtraiineless channel uncertainty and fi-
nite playout buffer at the mobile users, we formulate thesgidtreaming systems as nonlinear
optimization problems with the objective to maximize theotighput under the QoE and power
constraint. For the intracell interference situation, walgze the convexity conditions of the
problem and propose a two-step approach to maximize thensiing transmission throughput un-
der power constraint, while maintaining the QoE. We alscetigy a distributed algorithm based
on the dual decomposition technique. The more challengiogl@m involved in intercell inter-
ference is solved by a centralized branch-and-bound alhgorincorporating the Reformulation-
Linearization Technique, which can produce optimal bodnsidutions. We also propose a low-

complexity distributed algorithm with fast convergencéeTproposed solutions effectively make
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use of the power in BS’s to stream the VBR video in cellular nekspwhile preserving the QoE
requirement.

We further study the energy efficient downlink multi-user VBiReaming in the wireless cel-
lular networks with orthogonal channels by directly miremg the power consumption to achieve
green multimedia communications [57,85-87]. We presentsselayer optimization and schedul-
ing framework with the objective to minimize the BS’s powensamption during steaming period
while maintaining the QoE of video users. We develop a magtion-based solution approach to
solve the formulated problem. We prove the proposed alyaris unique and global optimum,
and demonstrate that the proposed algorithm is also smesdloptimal. These research projects

may bring about a new paradigm for the design of future greeslegs multimedia networks.

1.5 Overview of the Dissertation

In this dissertation work, we focus on the energy efficiesigiein CPS from two sides: elec-
tricity delivery networks and wireless multimedia netwsrkvhich are integrated by the method-
ology of control and optimization theoretic design as iatkd in Fig. 1.10. The rest of the disser-
tation is organized as follows.

We present the smooth electric power scheduling in powrildision networks in Chapter 2.
We introduce an electricity supply/demand model that takiesaccount of time-varying demands
and their deadlines. We formulate a constraint nonline&anuopation problem and incorporate
the theory of majorization to develop algorithms that campate smoothness optimal schedules.
After the smooth power schedule is obtained, a distribussst benefit maximization load control
scheme is used to allocate the scheduled power to indivitheats, while maximizing their level
of satisfaction. We demonstrate the efficacy of the propasgatithms by extensive simulations.

In Chapter 3, we propose a smart energy management framewi® ibased on the concept
of QOSE. The MGCC aims to minimize the MG operation cost andhtaai the outage probability
of quality usage, i.e., QOSE, below a target value, by sdireglelectricity among renewable

energy sources, energy storage systems, and macrogridrkivel&te the problem to a constrained
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stochastic programming problem and apply Lyapunov opation technique to derive an adaptive
electricity scheduling algorithm by introducing the QoSEual queues and energy storage virtual
gueues. We derive several hard performance bounds for tpoged algorithm and evaluate its
performance with trace-driven simulations.

In Chapter 5, we shift the energy efficient design from elettyridelivery networks to the
demand side. We investigate the power control for the downiBR video streaming in the
cellular networks with intracell interference. We considedeterministic model for VBR video
traffic and finite playout buffer at the mobile users. The otiye is to derive the optimal downlink
power allocation for the VBR video sessions, such that thewdhata can be delivered in a timely
fashion without causing playout buffer overflow and undevfldhe formulated problem is a non-
linear nonconvex optimization problem. We analyze the egity conditions for the formulated
problem and propose a two-step approach to solve the probMaralso develop a distributed al-
gorithm based on the dual decomposition technique. Th@peance of the proposed algorithms

are validated with simulations using VBR video traces undalistic scenarios.
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In Chapter 6, we study the more challenging problem of powetrobfor streaming multiple
VBR videos in multicell wireless networks under the intekroaterference condition and derived
both centralized and distributed algorithm for the solusioThe problem is formulated to find the
optimal transmit powers for the base stations, such that VidBo/data can be delivered to mobile
users without causing playout buffer underflow or overflowe Wrmulate a nonlinear noncon-
vex optimization problem and prove the condition for thestatice of feasible solutions. We then
develop a centralized branch-and-bound algorithm incatpay the Reformulation-Linearization
Technique, which can produce € ¢)-optimal solutions. We also propose a low-complexity dis-
tributed algorithm with fast convergence. Through simaola with VBR video traces under fad-
ing channels, we find the distributed algorithm can achieperéormance very close to that of the
centralized algorithm.

In Chapter 7, we relax the channel constraint in the celluiaeless networks to the orthog-
onal channels and directly address power minimizatioriegyafor multiuser VBR video stream-
ing. We also adopt a deterministic model for VBR video traffiattincorporates video frame and
playout buffer characteristics, and formulate a conséaistochastic optimization problem. We
then develop a majorization-based solution approach. Heocase of a single VBR video session
with relaxed peak power constraint, we develop a power agptatgorithm with low complexity.
We prove the power optimality of the proposed algorithm dreluniqueness of the global opti-
mum, and demonstrate that the proposed algorithm is alsotbmess optimal. For the case of
multiuser VBR video streaming, we develop a heuristic atbarithat selectively suspends some
video sessions when the peak power constraint is violateaddition to the traditional VBR video
streaming application, we also consider the case of intigeacideo streaming, and show that the
proposed schemes can be easily adapted and applied.

We conclude the dissertation and present the future work ap€eh 8.
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Chapter 2

Smooth Electric Power Scheduling in Power Distributionidaks

2.1 Introduction

The emergence @mart Grid(SG) brings about many fundamental changes in electric powe
systems [4]. Various new power electronics and informatémmniques are greatly advancing the
control and management of energy and resources in the pgstns. For examplesolid state
transformers(SST) can respond to signals from a facility or a householdhtange the voltage
and other electric characteristics. On the user side, smeat¢rs and smart facilities empower
the pervasive monitoring and controlling at all levels ofyeo usage in response to power supply
and market price fluctuations [4]. The two-way flows of eletty and information in SG are
instrumental to the control and optimization of energy asburce allocation in the grid to achieve
efficient, green and robust energy systems.

Unlike the traditional grid, in which the electricity supptontinuously matches user de-
mands, the next generation power distribution system isdas a network structure [88] and is
capable of allowing users to control their loads in respdogée dynamics in the gridDemand
responsgDR) is a technique to balance power generation and demarkeeigrtd [89]. One of
the important targets of DR is to reduce the peak demand sdsding user requests. With the
two-way information flow among provider, users and the mankarious DR schemes based on
real-time pricing and day-ahead load response concepésltieen investigated recently [90-93].
Most of the existing DR schemes aim to maximize the sociafamelor minimize the electricity
payment under given demand requirements. Although renge#thie intrinsic connection between
pricing policies and demand response, the problem of snmadetitric power scheduling is not ex-

plicitly addressed, although being the key issue in DR. Ihsan that the simple off-peak pricing
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scheme may not be effective in mitigating the demand pealii@no, because simply shifting the
off-peak period may generate a nesbboundpeak [81].

In this chapter, we address the challenging problersnodoth electric power schedulimg
power distribution networks. The network model is shownim B.1. We assume the end-users are
equipped with smart meters and are capable of communicatthghe distribution substation and
the distribution control center (DCC) through a communigatietwork, and receiving commands
from the DCC to adjust the user’s electric energy consumggeal [3]. The DCC schedules
electricity supply on daily basis, which is further dividedo multiple time slots. The electricity
usage requests at each user are classified into two categbepriority load that must be satisfied
in every time slot, and thdeferrable loadhat should be satisfied before specific deadlines. Users
may set the load for each type according to their preferemcg, (ighting, entertainment, laundry,
or charging a plug-in hybrid electric vehicle (PHEV)) [89T.he DCC aggregates the demand
profiles from the users through the aggregator [94] and shsotbte aggregated electric power
supply under the priority load and deferrable load deadiomstraints.

In the smooth electric power scheduling problem, the olyjecs$ to minimize the power vari-
ation during a daily period, based on the concept of day-lead response. Aeterministic
electricity supply/demand modislintroduced with cumulative electricity demand/suppiywves,
which characterize the demand/supply relationship duttiegday. We find the formulated prob-
lem suits well with themajorizationtheory, which concerns with the comparison and ordering of
vectors with respect to the distribution of their elemed®]] Majorization has been used in solv-
ing optimization problems in the communications and nekivay area [57,95, 96]. In this chapter,
we present a majorization-based framework to develop twaosimelectric power scheduling al-
gorithms with low computational complexity. After the sntlb@lectric power profile for the entire
network is obtained, a user benefit maximization load coatgmrithm will be executed to allocate
the total amount of supply to the individual users, while maxing their satisfaction of electricity
usage. The proposed algorithms can achieve the minimumpaeedr, thus requiring smaller ca-

pacity for the generators, transmission lines and transéos to support the same demand. Since
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Figure 2.1: lllustration of the electricity distributioretwork.

electrical generation and transmission systems are ggndesigned to accommodate peak elec-
tric power [4], the smooth electric power schedule has themitl of optimizing the deployment
and operation cost of the grid.

The remainder of this chapter is organized as follows. We firssent the system model
and problem statement in Section 2.2. The smooth electiepscheduling algorithms are de-
scribed in Section 2.4 and their performance evaluated atic8e2.5. Related work is discussed
in Section 2.6 and Section 2.7 concludes this chapter.

The notations used in this chapter are summarized in Table 2.

2.2 Problem Statement

2.2.1 Load Demand Profile

We consider a power distribution network with two-way flowstectricity and information.

We assuméV users in the power distribution network, which may genemgalential, commercial
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Table 2.1: Notation Table for Chapter 2
Symbol Description

R set of the electricity consumption users in the power
distribution networks

N total number of local electricity consumption user

L total number of slots

T slot period

pn(t) power consumption of userin slot¢

enp(t)  priority load electric energy of userin slot?
enq(t)  deferrable load electric energy need to be fulfilled
since last deadline of userin slott¢
prer(t)  maximum power consumption of useiin slott
p™m(t)  minimum power consumption of userin slot¢
en(t) electricity usage of user in slott
er®(t)  maximum electricity usage of userin slott
min(¢)  minimum electricity usage of userin slot¢
total electricity usage during slots for usern
maximum electricity usage for the residential area in slot
(t)  minimum electricity usage for the residential area in slot

g
3

8

E(t) scheduled electricity usage for the residential area itvslo
Winas cumulative upper bound of electricity usage duringlots
Wmm cumulative lower bound of electricity usage durihglots
W cumulative scheduled electricity usage duringlots
) total electricity usage for all users duririgslots
P feasible power supply scheduling durihgslots
P smooth optimal power supply scheduling duribglots
Un() utility function for usern
h(t) electricity price at time slot
v Lagrange multiplier
L Lagrange function
k(1) stepsize of stepin equation (2.7)
a(l) stepsize of stepin equation (2.8)

and industrial loads. LeR = {1,2,--- , N} be the set of users. The electric demand of a user is

daily based. Without loss of generality, we assume the oggdaod is divided intal time slots,
each with lengthr. Letp,(t) be the power consumption of userin time slot¢, which is time
varying but remains constant within the time slot. Each uskenows its own total daily demand,

e, E, = Zf:1 pn(t)7T, and wishes to schedule the demand over the one day peripd [91
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We assume the total dematié] consists of two parts: thpriority load and thedeferrable
load. The priority load should be strictly guaranteed in a tima §b.g., for lighting), while the
deferrable load can be served flexibly but with a specific lileade.g., charging a household
battery or PHEVS). We defing, ,(¢) ande,, 4(t) as the electric energy for priority load in time slot
t, and the deferrable load that must be satisfied by time stespectively. The minimum demand
of usern in time slott, denoted by (¢), is the sum ot,, ,(t) ande,, 4(t). Finally, lete™*(¢) be

the maximum possible demand for usemwhich is limited by the amount of deferrable loads that

have not been satisfied yet, and the capacity of protectisgg@nd switches of the users.

2.2.2 Cumulative Demand and Supply Curves

At the beginning of a day, the DCC will aggregate the individiemand profiles received
by communicating with the smart meters and smart facilitiagthe communications network [3].
Let the total minimum electricity demand in time skobe E,,,;,,(t) = >,z er™(t). We have
Enin(L) = >, cr £n = @, since the daily aggregated demand of all users, denotdg bigould
finally be satisfied by the end of the day. We definedtmulative minimum demand CUrVE i

as

Winin(t) = Emin(),1 <t < L. (2.1)

We define thecumulative maximum demand cuﬂfémw to represent the maximum amount of

electricity demand that can be consumed upds

Winaa () = min{ Wi (t — 1) + > [er"(t) + Ae,(t — 1)), @}, 1 <t < L

neR

whereAe, (t) = e™®(t) — e™n(t) is the deferrable load that can be served in shait with dead-

n

lines later thart. To incorporate the priority load in the modéV;,,...(t) also satisfie$V,,,..(t) >

Wmax (t - 1) + ZnER envp(t)'
For given demand curved’,;, and W,,.., we aim to find a feasible electricity schedule

W, which is thecumulative supplyf electricity to the users that satisfies constraimis;, (t) <
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Figure 2.2: Cumulative demand and supply curves.

W(t) < Wha(t), forall < ¢ < L,andW(L) = @ (i.e., the total demand should be satisfied
by the end of the day). The three cumulative curves are itestl in Fig. 2.2, which are all
nondecreasing over time.

The proposed demand and supply model is quite general. # moteassume any mathemat-
ical model for either the supply or the demand. It is more ficatthan the complex statistical
models for supply and demand used in the literature [4]. Turautative curves represent the
demand/supply status in the power distribution networkedoh time slot, W,,;,(¢) tracks the
priority load and the deferrable load with deadlinevhile 17,,,,..(¢) represents an upper bound of
the possible consumption by timeThe gap betweeW,,,...(t) andW,,.;,,(t) may accommodate the
future uncertainty of the electric power usage. The slog& ¢f), denoted byP(¢), corresponds to
the scheduled electric power. The DCC aims to find an optinteddualelV () for every time slot
to achieve a specific control target. A feasible power supphedule” = [P(1), P(2),-- - , P(L)]
ensures thall’ lies betweenV,,;, andW,,,, for all the L time slots, thus preventing both outage

events and energy waste.
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It can be seen from Fig. 2.2 that the feasible electric powbedule may not be unique.
Among various feasible schedules, we are interested in ttleetloat distributes electricity most
smoothly among thé, time slots, i.e., themoothness optimal schedul®nce the DCC obtains
the smoothness optimal schedule, it can announce the deltedbe smart meters and smart util-
ities at the users’ premises via the communication netwamkl, the users can shape their demand
to match the schedule (assuming cooperative users). Tnerafe can achieve smooth electric-
ity generation, transmission and consumption, which islyigreferable for the grid design and

operation [4].

2.2.3 Smooth Power Scheduling Problem

Based on the demand and supply model, we formulate the smowtr scheduling problem
in this section. LetP = ®/(L7) be the average power consumption in the power distribution
network through the daily period. The scheduled power faheame slot isP(t) = W(t)/r.
The smoothness optimal schedule minimizes the variatibtiseosupplied power over the entire

period, i.e.,

maximize:  S(P) (2.2)
subject to: Wi, (t) < W(t) < Wineo(t), forallt
W (L) = Wipin(L) = Wiae(L) = ®

P(t) > E,(t)/, forallt,

whereS(P) is thesmoothnessf a schedule?, Ey(t) = > ,.cr enp(t) is the total priority load in
time slott.

Generally, smoothness can be measured by different mesucé as variance, cumulative
absolute difference, etc. Each smoothness measure leadffferent objective function in prob-

lem (2.2), while the solution to the problem will then dep@&mdithe specific form of the objective
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function. In addition, the smoothness measures are g&namilinear, making the problem non-
trivial to solve. In this chapter, we resort to a mathematieory of majorization [13], which
explicitly addresses the unique mathematical notion fonahmess. Applying majorization the-
ory, we will see that for an arbitrary smoothness objectivgction in problem (2.2) that satisfies
the Schur-convex properties [13], the problem can be sdbyed universal algorithm in polyno-
mial time. For brevity in the deduction, we minimize variann the rest of the chapter, while the
solution algorithms developed in Section 2.4 apply to angdive function that is Schur-convex.
We first consider the case where deferrable load is the dernimanponent [97], i.eE, (1) ~
0. Problem (2.2) is then reduced to problem (2.3).

minimize: Y/, [P(t) — P}Q /L (2.3)
subject to:  Win(t) < W(t) < Winae(t), forall t
W(L) = ®

P(t) >0, forall ¢.

This problem fits well with themajorizationtheory, since the objective function is Schur-
convex [13]. We briefly review Majorization preliminary ire€tion 2.3. Applying majorization,
we will design a smooth electric power scheduling algoritemsolving problem (2.3) in Sec-

tion 2.4.1. We will then extend the algorithm for solving plem (2.2) in Section 2.4.3.

2.3 Majorization Preliminaries

Majorization theory [13] describes the “less spread out’oore nearly equal” properties of
the elements of a vector comparing to the elements of aneéotor. It concerns with the problem
of ordering vectors with nonnegative, real elements, a$ agebrder-preserving functions. For

simplicity, all the vectors in this section are row vectors.

Definition 2.1. For two n-dimensional vectors\ = (z1, 2, -+ ,z,) andyY = (y1, vz, , Yn)s

with elements sorted in the non-increasing orderras> x, > --- > x, > 0andy; > y, >
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. >y, > 0. X is said to bemajorizedby Y, denoted asX < Y, if (i) S0, 2, < ' i,

t=1,2,--- ,n—1and (i) >0, z; = >, v [13].

Definition 2.2. A real-valued functior defined on a setl C R" is said to beSchur-convexon A

if X <Y onA= ¢(X)<o¢(Y)[13].

Schur-convex functions have the “order-preserving” pripevhich bridges majorization to

optimization. Schur-convex functions can be validatedhlie following fact.

Fact 2.1. If ¢ is symmetric and convex, thenis Schur-convex. Consequently, < Y implies

—

$(X) < ¢(Y) [13].

This fact provides connection between ordering and itsrgpdeserving functions. By this
fact, we may solve the minimization optimization problemganerating the most possible “spread
out” vector as the solution. kb = > g andg is continuous convex, then we have the following

strong fact:

Fact 2.2. 3 g(z;) < S g(y;) < X < Y holds for all continuous convex functign: R — R
[13].

Lemma2.1.LetX = (X,---, Xg),andY = (Y}, -, Yx), where each element has dimension

J; and satisfyingX; < Y;. ThenX < Y.

Proof. Let g be the continuous convex functidd — R. By Fact 22X, <Y, & Zj;l g(m{) <

Zj;l g(yzj) = Zfil Zj;l g(fvf) < Efil E}];l 9(?/5) e X <Y, u

—

Observation 2.0.1.Let X = (z,---,2),Y = (g1, ,¥n), Z = (21, , zn), WhereS " y; =

> r,z = nZ. If the elements in each vector is non decreasing, we may ipdohormalized
points of X /(nz),Y /(nz) and Z/(nz) on Fig. 2.3. If we explain the element of vectors as the
income of individual, this is Lorenz Curves, which evaluagedibcial income inequality [98]. The
curves show the normalized cumulative proportion of themne versus the cumulative percentage

of population. The normalized” forms the straight curved, which corresponds to the equal
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distribution. Normalized’ and normalizedZ represent the unequal distribution and bent in the
middle, and are denoted curve@ and C, respectively. We call these bow curves in the convex
shape. By the fact that the Lorenz curves are bent more, otnat®n increases, the bow curve
inside represents more even distribution [13], which leal(t < Y < Z. Similarly, we may
mutate theB and C' to B’ and C’ by only changing the order of the elements. We call these
bow curves in the concave shape. Since the order of the gegplays no role in majorization,

X <Y < Z still holds for concave shape.

Theorem 2.1. The objective function of problems (2.2) and (2.3) is Sctunvex.

Proof. The proof follows the Fact 2.1 straightforward, due to th@syetric, increasing and convex

of the objective function in problem (2.2) and (2.3). O

2.4 Smooth Electric Power Scheduling

2.4.1 SEPS-DL Algorithm

We first develop a smooth electric power scheduling for defde load algorithm (SEPS-
DL) based on majorization. With Theorem 2.1, we convert thinaization problem (2.3) into an

ordering problem of vectors, each representing a feasibledsile. Thus, we solve problem (2.3)
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by finding the most evenly distributed electric power schethat is feasible for the entire period.
Obviously, the most evenly distributed schedulé’ = [®/(L7),--- ,®/(L7)], corresponding
to having the average power consumpti®iin each time slot. However, due to time varying user
demands vt may not be feasible. In general, each feasible scheduledeprise linear with a
set ofpower changing pointsvhere the scheduled power increases or decreases to poevage
events or electric energy waste.

The proposed SEPS-DL algorithm can generate a feasibleqiese linear schedule, which
keeps each piece as long as possible into the future and keegsower variation as small as
possible. The algorithm is illustrated in Fig. 2.4. Stagtiromt,,,;, SEPS-DL first computes two

probe lines

e One probe line front,,,; to the next corner point ofl’,,,...(t), which can go the furthest

into the future without causing outage events or energyev@sy., lines?, P, in Case 1 and

P; P in Case 2 of Fig. 2.4). The power of this probe linéig,, (t) = el W (tstare)

t—tstart

e The other probe line from,, to the next corner point d#/,,,;,,(¢), which can go the furthest

into the future without causing outage events or energyenv@st., lines?, P; in Case 1 and

PsP; in Case 2). The power of this probe linefs,, (t) = Yminl)—W(tstar)

t—tstart

All feasible schedules should reside between the two privias in order to go farther into the
future (i.e., to be smooth). Moreover, when the two probediare ended, they must bibth on
eitherW,,,..(t) or both onW,,.;,,(t). Otherwise, we can always adjust one of the probe lines to
make it go even further into the future. For example, seaslihé’; and P, P; in Case 1 of Fig. 2.4.
We can use liné’, P, (which goes farther into the future) to replace liig”;, and both probe lines
hit W,,;,,(t) eventually. In Case 2 in the figure, both probe lidg#s and Ps P; hit W,,...(%).

If both probe lines hitV,,;,(¢) (i.e., Case 1 in Fig. 2.4), any feasible schedule for thigate
will also hit W,,.;,,(t), since it must lie between the two probe lines. We then track kheupper

probe line (i.e., lineP, %) to find the latest time when the schedule just satisfies thamuan
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Figure 2.4: lllustrate the operation of the SEPS-DL aldponit

demand (i.e., poinf, at timet,,,). Then segment’; P, will be chosen as the schedule for the

Wmaa: (tstop)fw(tstart)
tstop_tstuxrt '

interval [tsuart, totop), With power

If both probe lines hitV,,....(t) (i.e., Case 2 in Fig. 2.4), any feasible schedule for thigwaie
will also hit W,,,...(t). We then trace back tHewerprobe line (i.e., line’s P;) to find the latest time

when the schedule just satisfies the minimum demand (i.et pb at timet,,,). Then segment

P; P will be chosen as the schedule for the intervalf;, t4.p), With powerW"”'"Ezz;@;mt“m)
After the schedule fOftga,+, tstop) IS determined, we seét;,,.. = ts., and repeat the above
procedure to find the schedule for the next time interval.
As shown in Algorithm 1, SEPS-DL probes for the longest fiel@spower starting from,;,,.:
in Stepsd—10. In Stepsl1-14, the power for the intervat .., tsip) IS determined depending on
which of the two cases it is as illustrated in Fig. 2.4. Stepsl7 are for the case that the power

does not change in the time slot. Stepresets the variables to start the computation for the next

segment ofP ().

2.4.2 Performance of SEPS-DL

The proposed SEPS-DL algorithm is very easy to implemertartbe shown that SEPS-DL

has the following properties.
Theorem 2.2. SEPS-DL is smoothness optimal.
Proof. See Appendix A.1. m
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Algorithm 1: Smooth Electric Power Scheduling for Deferrable Load Desnan
1 DCC aggregates the demand from all the users by informatitwonks and calculates
Winins Winas for the whole scheduling period ;

21= 17tstart = 07tstop = Z501 = tCQ = 17szn = Oapmax = 00,
3 while some time slots are not scheduldal

4 CalculateP,,..(t) and Py, (t) over interval[t sq,, t] ;

5 if Prin < Prin(t) & Prin(t) < min{ Paz, Prae(t)} then
6 | Puin = Puin(t) andt,, =t ;

7 end

8 if Prae > Prax(t) & Praz(t) > max{ Pyn, Pnin(t)} then
9 | Pras = Prao(t) andt,, = ¢;

10 end

11 if Prin > min{ Paz, Praz(t)} then

12 SelectP,,;, from ¢, 10 ts10p = 1, ;

13 else if Pup < max{Pyin, Pmin(t)} then

14 | SelectP,,q, from tyap t0 tyop = te, ;

15 else

16 t++;

17 CONTINUE ;

18 end

19 Lstart = Cstop, tstop = tey = tey = Cstart + 1, = taare + 1, Prin, = 0, Pryge = 00 ;
20 end

Corollary 2.2.1. The optimal power schedule is unique.

Proof. Suppose’* is not unique. Then there exists < B, for all k, andP’ # P*. P’ must have
a different set of power changing points from thafot According to the proof of Theorem 2.2, we
can construct an auxiliary schedufe, such that? < P, < P, which contradicts the assumption

that 7' is optimal. O
Theorem 2.3. The complexity of SEPS-DL3(L?).

Proof. In the worst case, the SEPS-DL algorithm computes the opsianedule for each time slot
by probing the full length of the remaining power sequenear{étepsi—10 in Algorithm 1). The

worst case execution timeJ§,_, i = X2 = O(L2). O

Theorem 2.4. The smooth electric power schedule computed by SEPS-DL édasnallest peak

power.
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Proof. From Theorem 2.2, we havé* < B, for all k. We may reorder the elements in bdh
andP, to a non-increasing order. According to the definition of &dggation in Definition 2.3, the

first element in the re-orderee is not greater than that df,, which means the largest element in

P+ is not greater than that d¥,. Thus, the schedule generated by SEPS-DL has the lowest peak

power. O
Corollary 2.4.1. The SEPS-DL achieves highest load factor.

Proof. The load factor in electric power grid is defined as in [99]

verage Power

A
Load factor(%)= Poak P
eqa ower

x 100%

By Theorem 2.4, the SEPS-DL generates the lowest peak powahachieves the highest load

factor during the scheduled period. ]

Theorem 2.4 and Corollary 2.4.1 is highly preferable for gikesgign and operation. A lower
peak power allows the operator to deploy generators, wamgfrs and power transmission lines
with smaller capacity in the grid, thus reducing the capitaéstment. In addition, the grid may
be alleviated of the power usage burden during peak houdsthenelectric energy usage quality

of users can be improved.
Theorem 2.5. SEPS-DL is generation operating cost optimal.

Proof. See Appendix A.2.

2.4.3 Extension to the General Case

We next extend SEPS-DL to solve the general case problem (®i&h the priority load,
a feasible power schedule should satigfyt) > E,(t)/7 in every time slot. The presence of
priority load enforces new constraints on the feasibilityhe schedules. For example, consider

the aggregated cumulative priority load curves and ddbrbbad curves shown in Fig. 2.5(a)
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Figure 2.5: Smooth power scheduling with priority load. {&l¢that although not deferrable, the
cumulative priority load can also be represented with twwesi as shown in (a), where the maxi-
mum and minimum curves meet at the corners.)

and Fig. 2.5(b). According to the definition of feasible powepply schedule in SEPS-DL, both
segments and2 in Fig. 2.5(c) are feasible. However, it can be seen that segihractually cannot
provide enough power to satisfy the priority load in timet $lg since its slope is smaller than the
required slope (i.e., that of segménn Fig. 2.5(a)).

To solve this problem, we develop the general smooth etepttwer scheduling algorithm
(GSEPS), which is based on SEPS-DL. Specifically, SEPS-Bumass no priority load. During
the execution, the generated power segment is comparedheitpriority load. If the SEPS-DL
generated power segmeRt(¢) is less than the priority load in time slot GSEPS will increase
P*(t) to the priority load (e.g., see segmérh Fig. 2.5). Then SEPS-DL will continue to compute
further segments of the schedule by setting the new stgobing to¢, until the entire schedule is

computed.

2.4.4 Electric Power Allocation Among Individual Users

After the smooth electric power schedule is obtained, the B@@unces the schedule to all
the users and requests them to control their loads to magchupplied electric energy *(¢) =
P*(t) in each time slot. To divide the total supplyV*(¢) among theN users, we assume a

benefit function,,(p,(t)) for each user, which is a nondecreasing concave function [92] and
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represents the level of satisfaction of the user when reweiy,(¢) in time slott. We then develop
an algorithm that maximizes the sum of the benefit functidnallousers in the power distribu-
tion network. The maximization of the total benefit under $heooth schedule constraint can be

formulated in each time slatas follows:

maximize: > pUn(pn(t)) (2.4)

subjectto:  p™(t) < p,(t) < pe(t), foralln

2 nerPn(t) = W)/,

wherep™*(t) andp™"(t) are the maximum and minimum power consumptions of usarslot
t, respectively.

Problem (2.4) is a convex optimization problem, which carddeed effectively with a convex
optimization solver. In case that DCC may not know the exacapaters of individual utility
functions in practice, we develop a distributed user benadiximization load control algorithm
(DUBMLC) based ordual decompositiofit00] to solve problem (2.4). For brevity, we omit the
time slot notatiort in following equations.

First, we introduce the non-negative Lagrange multiplieaind derive the Lagrange function:

L(pp,v) = Z Un(pn) +v (W — an) (2.5)

neR neR

= Z Ly (pn,v) +vW,

neR

whereL,,(p,,v) = U,(p,)—vp,. Observing that’,,(-) only depends on users local information,
we have the dual decomposition for each userEach user solves subproblem (2.6) for given

Lagrange multipliers:

pn(V) = arg max,min <, <pmaz Ln(pn, 7), forall n. (2.6)
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Subproblem (2.6) can be solved with the subgradient meth®jd$incel,, is strictly concave.

Usern iteratively updates its power, until p,, converges, as:

L, (pn)] ™"

Pall 1) = |pall) + 5(0) - =5

(2.7)

n

where[-]* denotes the projection @f, onto the rangép™, pme*], andx(l) is the step size varies
in each step according to the Armijo Rule [14]. The solutigr can be solved locally by the users
and converges to the optimal solutionggffor all n asl — oc.

For a given optimal solutiop,,, the master dual problem is to solved by DCC:

minimize:  L(p,,v),

subjectto: v >0, foralln.

We can also apply the subgradient method to iteratively tgoithee multipliers as:

(1 + 1) = max {y(z) a2V 0} , (2.8)

wherea(l) is the step size. The Lagrange multipliers converges to phienal as/ — oo, since
problem (2.4) is a convex problem, the duality gap is zerothrdolution of (2.6) is unique. The
primal variablep,, will also converge to the optimal solutions [100].

The distributed user benefit maximization load control (DUBB) algorithm is presented
in Algorithm 2. With DUBMLC, each user greedily maximizes itaro benefit by solving (2.6)
with current “price”v, which is controlled by DCC through the master due probler®)(Due to
convexity of the problem, the optimization gap is zero areldptimal total maximum benefit is
reached when the algorithm converges.

Combining of GSEPS and DUBMLC, we now present the General Snibleittric Power
Scheduling Policy. Specifically, at the beginning of eachgae which can be daily based or

be an arbitrary period of time, the users send their slotegdanhd profiles to the DCC through
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Algorithm 2: Distributed User Benefit Maximization Load Control Algorithm

1 [ = 0 and the DCC initializes nonnegative parametg ;

2 The DCC announces the parameters to the users via the conationgcnetwork ;

3 Each user locally solves problem (2.6) as in (2.7) to obtasindquested power ;

4 Each user sends its requested power to the DCC via informadétworks ;

5 The DCC updates the paramete($) as in (2.8) and announces the new valge+ 1) to
all users ;

6 [ = [+ 1 and go to Steg, until the solution converges ;

the communications network. After aggregating all the deanarofiles, the DCC calculates the
deterministic cumulative supply/demand curves for the grosstribution networks and executes
GSEPS to compute the smooth power profile. After that, DCChietusers to control their elec-
tricity usage to match the smooth schedule with DUBMLC. Thelloantrol does not necessarily
need to be fully executed at the exact beginning of the petiaday operate at some time ahead
of the scheduled time slot. If a user requests a usage excetdi planned level, the DCC may
allow the distribution substation to temporally fulfill thexcess demand but charging a penalty

price based on the electric energy availability of the poslistribution network.

2.5 Simulation Evaluation

In this section, we evaluate the proposed algorithms by Isitimg an electric power distri-
bution network with250 independent users. We assume a daily period slotted/inte 144
time slots (i.e., = 10 min). The demand for each user during the period is randonsly d
tributed from35 kWh to 50 kWh. The DCC aggregates the load profiles and generates the
cumulative supply/demand curves at the beginning of theogerWe adopt a benefit function
Un(t) = kign(t) — 2k2g,(t)* [101], whereg, (t) € [0,1] is the normalized value of power sup-
ply p.(t). With thisU,,(-), problem (2.4) becomes a quadratic programming problenchwtan
be effectively solved with the proposed distributed altyon. Without loss of generality, we set
k1 = ko = 1 in the simulations.

We first examine the performance of SEPS-DL and GSEPS. FOEZHR all the electric

energy demand is deferrable. For GSEPS, we assiifieof the demand is deferrable and the
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Figure 2.6: Comparison of the power schedules achieved by SHPan GSEPS.

deadlines are randomly distributed during the daily peridte cumulative demand curves and the
computed schedules are plotted in Fig. 2.6. We find that Hetiirec power schedules lie between
Wonin andWinaz, meaning they are feasible and satisfying the user demantie ientire period.

In some time slots, e.g., slot3(, 80] and [110, 120], GSEPS requests a larger electric power
than SEPS-DL. This is due to the hard requirement for theripritbad, which temporally forces
GSEPS to increase the electric power supply.

After the smooth power schedule is obtained, DUBMLC is exedub divide the power to
individual users in each time slot. For better illustratiove only plot the power convergence
curves for six users in Fig. 2.7. The curves for other usexsamilar. We find that all the curves
converge to the optimal values very quickly; after one skeye is no significant variation in the
electric powers of individual users.

We next compare the proposed algorithms with two altereativ

e A “supply until deadline” scheme (SUDP), in which the de&dxle load demand is served

until the last minute.
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Figure 2.7: Convergence of the individual power allocatiohieved by DUMLC.

e The “utility maximization real-time pricing” scheme (UMR®)at is introduced in [102],
which solves the demand side management problem with aine@lpricing strategy and

has been widely cited in the smart grid research community.

In particular, the UMRP scheme maximizes the social welfara smart grid at each time slot

independently, i.e.,

max Y Un(pa(t)) — g(P(t),0(t)), for all t,

neR

subject to the total power generation constraint and useepaonsumption constraints. This
algorithm can be extended to our simulation scenario. Iswuork, the operating cost of power
generation is evaluated hy(P(t),0(t)) = (61 + B2P(t) + B3 P(t)?)6(t), which is generalized
from [103].We lets; = 120.0,8; = 6,03 = 0.04 for a generator [103] and(¢) be uniformly
distributed in[0.5,2.5]. This yields a quadratic programming problem, which can dieesl in
either a centralized or distributed manner [102]. In thewdations, we use a centralized interior-

point method to solve the problem.
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The peak power, load factor and power variation achievechbyabove algorithms for net-
works with different numbers of users are presented in E#§). Rig. 2.9, and Fig. 2.10, respec-
tively. Each number is the average 18f0 simulation runs with different random seeds, with the
95% confidence interval plotted at the top of each bar. We obsbateSEPS-DL and GSEPS can
significantly reduce both peak power and power variatiothengower distribution network. For
example, for the network with000 users, SEPS-DL and GSEPS achieves peak poigeiskW
and2560 kW, respectively, which are onl§5% and73% of the corresponding SUDP and UMRP
peak powers. We also notice that the load factors achieve8HRS-DL and GSEPS are more
than100% and50% larger than those of SUDP and UMRP under all cases. Similiayfind in
Figure 2.10 that the SEPS-DL and GSEPS schedules are muehsmaother than both SUDP
and UMRP schedules. Therefore, to design the power generatemsmission and distribution
infrastructure for this 000-user site, we may select components, such as transforme tsaas-
mission lines, based on the capacity specifications9af kW and 2560 kW, respectively (with
SEPS-DL and GSEPS), instead3afl 3 kW with SUDP and UMRP. As the network size increases,
the performance gap increases as well. For the smallestaggpwehen network size i€)0, the
power reduction i§76 kW for SEPS-DL and 10 kW for GSEPS, which meets the requirement of
100 kW minimum energy reductions for the DR product3&DNE[104].

It is interesting to observe that UMRP and SUDP have almosttici performance in the
simulations. This is largely due to the choice of the objaattion} " . U, (p,(t))—g(P(t),0(t)).

In the simulation with the above utility functions and castétions, the effect of the total power
decrement on the cost functions dominates the effect ofrttligidual user power increments in
their utility functions. Thus UMRP attempts to reduce thakpower generation, while only main-
taining the minimum user satisfaction level. This strategleed degenerates UMRP to SUDP,
both with similar performance. Although UMRP maximizes thelfare of the distribution net-
work, it does not aim to smooth the power schedules. It woeldthdpful to carefully introduce
some coefficients to balance the contributions of utilitg anst to the welfare. This phenomenon

also verifies our motivation of the work that the real-timéimg with utility maximization may
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not automatically solve the smooth electric power scheduind peak power reduction problems.
Compared to UMRP, the proposed algorithms directly targdteasinoothness optimization prob-

lem and are robust to various configurations of the distiglouetwork.
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We finally compare the average generator operating cost BISSBL., GSEPS, SUDP and
UMRP. Similar to the previous scenario, we assume a load siteaverage aggregated demand
100 MW, which is scheduled by SEPS-DL, GSEPS, SUDP and UMRP baseddaily period.
The average generator operating costs are shown in Tahlel2can be seen that both SEPS-
DL and GSEPS obtain smaller operating costs than SUDP and UldiRserving the same load
site. It is not surprising to see that SUDP and UMRP obtainlamnesults, due to the effect of
the objective function. Also note that UMRP is not operatingtaoptimal, although it seeks to
maximize the social welfare. This is due to the fact that therating cost is not independent
from time slot to time slot; greedily optimizing social waté in each time slot does not guarantee
optimality over the entire period. Suppressing user satigin level some time slots, may result
in high power allocations at a later time slot to meet all teéaged demands right before their
deadline, leading to larger peak power and electricity getien cost. On the contrary, SEPS-DL
and GSEPS optimize power scheduling over the entire peaiod can flexibly serve the demand

to achieve smooth electric power scheduling and low opegatost.
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Table 2.2: Average operating cost of power generation
SEPS-DL GSEPS SUDP UMRP
$/hour 1653 1669 1746 1746

2.6 Related Work

SG is regarded as the next generation power grid that eg@aibexisting communications
network for better control and optimization of power gemieraand distribution. In SG, infor-
mation technologies and computational intelligence ategmated across electricity generation,
transmission, distribution and consumption to achievemreeliable, efficient and sustainable en-
ergy goals. Comprehensive surveys of SG technologies cavube in [3-5, 105].

The emergence of SG attracts new interest in evolving thé gexeration of power distri-
bution systems [88]. Demand response is an important poistitdition paradigm to reduce the
peak demand and smooth demand profiles in the grid by shapengser demands. Various imple-
mentation issues of demand response in SG are examined4h [R@al-time pricing and direct
load control are two important ways to shape user demandearofi

Due to the real-time communications and control throughway information flows in SG,
new design approaches in demand response are being devetapatly [90-93], which are based
on optimization and game theory approaches. In [90], theaxstproposed an optimal and au-
tomatic residential energy consumption scheduling fraamrkvio achieve the trade-off between
minimization of electricity payment and appliance openatwaiting time. In [91], a game the-
ory approach is used to control the power demand at peak fyudynamic pricing strategies.
In [92], the authors studied demand response for housebalsisd on utility maximization, and
showed that there exist time-varying prices that may aehsecial optimality. A recent work [93]
introduced the framework for optimal resource allocatioer the uncertainty in the two-way
information network and provided a decentralized algamithat can be implemented in practice.
Although providing some interesting methods to achieve effigient electricity usage, these work

do not explicitly address the problem of smooth electric @oscheduling.
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Two recent works [106,107] studied the problem of reduchegypeak-to-average ratio (PAR)
of the electric energy consumption in SG. In [106], the arghotroduced a game theory frame-
work for a distributed algorithm to minimize the total enggpyment and reduce PAR. However,
users need to broadcast control messages to announcediveschedules to the entire network.
The control overhead could be considerable. In [107], gnstgrage devices were incorporated
in the SG and users’ cost and PAR are minimized with a digiibalgorithm. Although the dis-
tributed algorithm only needs to exchange information whihenergy provider, the achieved Nash
equilibrium cannot be guaranteed to be socially optimakddition, this work does not consider
the operating cost of the energy provider.

Majorization is a useful tool for problems involving vectdd 3]. It has been used in solving
optimization problems in the communication and networlkdrepn [57,95,96]. In [95], majorization
is applied to variable-bit-rate (VBR) video smoothing overieedt CBR link. Ref. [96] presented
an optimal transmission algorithm over a wireless multipjeut single-output (MISO) link based
on majorization. In our recent work [57], we adopted majatian for power efficient VBR video
streaming over a cellular network.

Our work differs from these existing efforts by introducithg mathematic theory of majoriza-
tion to solve the smoothness scheduling problem in eledisicibution networks, while explicitly
targeting at the unique mathematical notion of smoothnésgthe best of our knowledge, this is
the first work that introduces maojorization into electmesgy management in power grid, which
jointly considers smooth power scheduling, electric usgqggity provisioning on the user side,
and grid operating cost on the electric energy provider.slde effective electric power smooth-

ing solution provides a highly competitive solution fordue SG design and operations.

2.7 Conclusions

In this chapter, we addressed the problem of smooth elgmvier scheduling in a power dis-

tribution network. We introduced a deterministic model kaxacterize the complex relationship
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between demand and supply. A constrained nonlinear ogtiorz problem is formulated aim-
ing to minimize the electric power variation and satisfyrysewer usage quality. We developed
majorization-based algorithms for deriving smoothnegstd schedules for the network, and a
distributed algorithm for dividing the power supply amohg users. Our simulation study shows
that the proposed algorithms can effectively reduce th& pewer, minimize the power variation,

and reduce the operating cost of the grid, while satisfysegy power usage quality.
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Chapter 3
Adaptive Electricity Scheduling in Microgrids

3.1 Introduction

In this chapter, we designed a smart energy managementrsyst®licrogrid (MG) by taking
advantage of the plug-and-play interfaces of smart grid. is1&promising component for future
SG deployment. Due to the increasing deploymemdistiibuted renewable energy resour¢esR-
ERs), MG provides a localized cluster of renewable energeggion, storage, distribution and
local demand, to achieve reliable and effective energylgwpith simplified implementation of SG
functionalities [4, 108]. We review the typical MG architere in Fig. 3.1, consisting of DRERsS
(such as wind turbines and solar photovoltaic ceiggrgy storage systen(isSS), a communica-
tion network (e.g., wireless or powerline communicatidos)jnformation delivery, aMG central
controller (MGCC), and local residents. The MG has centralized contrth thie MGCC [108],
which exchanges information with local residents, ESS&] BRERS via the information net-
work. There is a single common coupling point with the madhgwWhen disconnected, the MG
works in theislanded modeind DRERs and ESS’s provide electricity to local residents. Whe
connected, the MG may purchase extra electricity from therawaid or sell excess energy back
to the market [3].

The balance of electricity demand and supply is one of thet inggortant requirements in
MG management. Instead of matching supply to demand, smeargg management matches the
demand to the available supply using control technologyffep@ak pricing to achieve more effi-
cient capacity utilization [4]. In this chapter, we devebbpovel access control framework for MG
energy management, exploiting the two-way flows of eleityriand information. In particular,
we consider two types of electricity usage: (i) a pre-agiessic usagehat is “hard’-guaranteed,

such as basic living usage, and (ii) extra elagtiality usageexceeding the pre-agreed level for
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more comfortable life, such as excessive use of air conwit®or entertainment devices. In prac-
tice, residents may set their load priority and preferemcelttain the two types of usage [89].
The basic usage should be always satisfied, while the quadage is controlled by the MGCC
according to the grid status, such as DRER generation, ES&sttevels and utility prices. The
MGCC mayblock some quality usage demand if necessary. This can be imptethey incor-
porating smart meters, smart loads and appliances thatdjast and control their service level
through communication flows [3]. To quantify residents’isaiction level, we define the outage
percentage of the quality usage@sality of Service in ElectricityQoSE), which is specified in
the service contracts. For example, the residents mayrmistdheir outage risk of quality usage
in return for paying an insurance premium, which is diff¢i@tied according to local residents
preferences [109] [109]. The MGCC adaptively schedulestrtéy to keep the QOSE below a
target level, and accordingly dynamically balance the ldachand to match the available supply.

In this chapter, we investigate the problem of smart enecggduling by jointly considering
renewable energy distribution, ESS management, resaleleimand management, and utility mar-
ket participation, aiming to minimize the MG operation castl guarantee the residents’ QoSE.
The MGCC may serve some quality usage with supplies from theRM¥RESS’s and macrogrid.

On the other hand, the MG can also sell excessive electbeitk to the macrogrid to compensate
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for the energy generation cost. The electricity generaimu fenewable sources is generally ran-
dom, due to complex weather conditions, while the ele¢yridemand is also random due to the
random consumer behavior, and so do the purchasing anaigsptices on the utility market. It is
challenging to model the random supply, demand, and pricegssses for MG management, and
it may also be costly to have precise, real-time monitorihghe random processes. Therefore,
a simple, low cost, and optimal electricity scheduling sohehat does not rely on any statistical
information of the supply, demand, and price processesduoeihighly desirable.

We tackle the MG electricity scheduling problem witH.gapunov optimizatiompproach,
which is a useful technique to solve stochastic optimizaéind stability problems [12]. We first
introduce two virtual queues: QOSE virtual queues and hattigtual queues to transform the
QOSE control problem and battery management problem toegsiaibility problems. Second, we
design an adaptive MG electricity scheduling policy basedhe Lyapunov optimization method
and prove several deterministic (or, “hard”) performanoars for the proposed algorithm. The
algorithm can be implementemhline because it only relies on the current system status, without
needing any future knowledge of the energy demand, supplypane processes and any future
information. The proposed algorithm also converges expiisley due to the nice property of
Lyapunov stability design [110]. The algorithm is evaluwhwth trace-driven simulations and is
shown to achieve significant efficiency on MG operation costi@vguaranteeing the residents’
QoOSE.

The remainder of this chapter is organized as follows. Wegrethe system model and
problem formulation in Section 3.2. An adaptive MG eledtyischeduling algorithm is designed
and analyzed in Section 3.3. Simulation results are predesmid discussed in Section 3.4. We
discuss related work in Section 3.5. Section 3.6 concluaeshapter.

The notations used in this chapter are summarized in Table 3.
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3.2 System Model and Problem Formulation

3.2.1 System Model
Overview

We consider the electricity supply and consumption in an MGlzown in Fig. 3.1. We as-
sume that the MG is properly designed such that a portioneoékictricity demand related to basic
living usage (e.qg., lighting) from the residents, ternbadic usagecan be guaranteed by the min-
imum capacity of the MG. There are randomness in both etégtsupply (e.g., weather change)
and demand (e.g., entertainment usage in weekends). Towthpthe randomness, the MG works
in thegrid-connectedanode and is equipped with ESS’s, such as electrochemidalastupercon-
ducting magnetic energy storage, flywheel energy storageTée ESS’s store excess electricity
for future use.

The MGCC collects information about the resident demands, ®Ripplies, and ESS levels
through the information network. When a resident demandexigthe pre-agreed levelgaality
usagerequest will be triggered and transmitted to the MGCC. The MGGICthen decide the
amount of quality usage to be satisfied with energy from the RE&Ehe ESS'’s, or by purchasing
electricity from the macrogrid. The MGCC may also decline sajuality usage requests. The
excess energy can be stored at the ESS’s or sold back to thegniddor compensating the cost
of MG operation.

Without loss of generality, we consider a time-slotted systThe time slot duration is deter-
mined by the timescale of the demand and supply processeslleass how frequent the MG can

switch on and off to the macrogrid.

Energy Storage System Model

The system model is shown in Fig. 3.2. Consider a battery faitim & independent battery
cells, which can be recharged and discharged. We assumth¢hlaatteries are not leaky and do

not consider the power loss in recharging and dischargingeshe amount is usually small. It is
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Figure 3.2: The system model considered in this chapter.
easy to relax this assumption by applying a constant peageran the recharging and discharging
processes. For brevity, we also ignore the aging effect @fthttery and the maintenance cost,
since the cost on the utility market dominates the operatost of MGs.
Let E(t) denote the energy level of tii¢h battery in time slot. The capacity of the battery
is bounded as

EM < Ey(t) < B Y kLt (3.1)

where E*** > () is the maximum capacityE;”" > 0 is the minimum energy level required for
batteryk, which may be set by the battery deep discharge protectiting® The dynamics over

time of E(¢) can be described as

Ep(t+1) = Ep(t) — Di(t) + Ri(t),V k. t, (3.2)

where R (t) and Dy(t) are the recharging and discharging energy for batteny time slott,

respectively. The charging and discharging energy in éaahglot are bounded as

0< Ru(t) < RV k.t
< Rill) < By (3.3)
0 < Dy(t) < Dpes, ¥ k,t.

In each time slot, Ry (t) and Dy (t) are determined such that (3.1) is satisfied in the next tiote sl
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Usually the recharging and discharging operations cammpebformed simultaneously, which
leads to

Ry(t) > 0= Dy(t) =0, Vk,t (3.4)

Di(t) > 0= Ri(t) =0, Vk,t.

Energy Supply and Demand Model

ConsiderN residents in the MG; each generates basic and quality ieigctisage requests,
and each can tolerate a prescrilmedage probabilitys,, for the requested quality usage part. The
MGCC adaptively serves quality usage requests at diffeeseld to maintain the QoSE as well
as the stability of the grid. The service of quality usage lbardifferent for different residents,
depending on individual service agreements.

Let )\, be theaverage quality usage arrival rat@ando,, a prescribed outage tolerance (i.e., a

percentage) for user. The averageutage ratefor the quality usagey,,, should satisfy

At each timet, the quality usage request from residems o, (t) € [0, a/7**] units, which is an i.i.d
random variable with a general distribution. The average i\, = lim; .. (1/t) S0} v, (1)
by the law of large number.

The DRERSs in the MG generaté&(t) units of electricity in time slot. U(t) can offer enough
capacity to support the pre-agrelealsic usagen the MG, which is guaranteed by islanded mode
MG planning. due to complex weather conditions. The eledsritransmitted over power trans-
mission lines. Without loss of generality, we assume thegvawansmission line is not subject
to outages and the transmission loss is negligible. d’¢t) be the pre-agreelasic usageor

residentn in time slot¢, which can be fully satisfied by (¢), i.e., Y ab(t) < U(t), for all t.

In addition, somejuality usageequesty, (t) may be satisfied i’(t) = U(t) — ij:l ab(t) > 0.
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Letp,(t) be the energy allocated for the quality usage of residellte have

0 < pu(t) < an(t). (3.6)

We define a function/,,(t) > 0 to indicate the amount of quality usage outage for resi-
dentn, asl,(t) = «,(t) — p.(t). Then the average outage rate can be evaluated, as
limy oo (1/6) 125 I (2).

The MGCC may purchase additional energy from the macrogragkthrsome excess energy
back to the macrogrid. LeP(t) € [0, Q....] denote the energy purchased from the macrogrid and
S(t) € 10, Saz) the energy sold on the market in time siptvhere@, ... andsS,, .. are determined
by the capacity of the transformers and power lines. Sinisenibt reasonable to purchase and sell

energy on the market at the same time, we have the followingtcaints

Q(t)>0=S(t)=0, Vt

(3.7)
Sit)y>0=0Q(t) =0, Vt.
To balance the supply and demand in the MG, we have
K K N
PH)+Q(t)+ Y _ Dip(t)—S(t) = > Ri(t)=Y_pa(t). V1. (3.8)
k=1 k=1 n=1

Utility Market Price Model

The price for purchasing electricity from the macrogridime slot¢ is C'(¢) per unit. The
purchasing price depends on the utility market state, sagieak/off time of the day. We assume
finite C(t) € [Chnin, Cimaz|, Which is announced by the utility market at the beginningath time
slot and remains constant during the slot period [111]. kénfirior work [111], we do not require
any statistic information of thé'(¢) process, except that it is independent to the amount of gnerg

to be purchased in that time slot.
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If the MGCC determines to sell renewable energy on the utitiirket, the selling price from
the market broker is denoted BY (¢) € [Wiin, Winae) in time slott, which is also a stochastic
process with a general distribution and meganWe also assum#/(¢) is known at the beginning
of each time slot and independent to the amount of energy swloeon the market. We assume
Cinaz = Winazs Cmin = Wiin @ndC'(t) > W(t) for all t. That is, the MG cannot make profit by
greedily purchasing energy from the market and then selékhlio the market at a higher price

simultaneously.

3.2.2 Problem Formulation

Given the above models, a control polieyt) = {Q(t), S(t), Rk(t), Di(t), pn(t)} is designed
to minimize the operation cost of the MG and guarantee theEQ@i$he residents. We formulate

the electricity scheduling problem as

minimize: lim % ;E{Q(T)C(T) — ()W)} (3.9)
st (3.1), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8)

battery queue stability constraints.

Problem (3.9) is a stochastic programming problem, whezeuthity prices, utility generation of
DRERs, and utility consumption of residents are all randome 3blution also depends on the
evolution of battery states. It is challenging since thepdypdemand, and price are all general

processes.

Virtual Queues

We first adopt @attery virtual queueX,(t) that tracks the charge level of each battery

ch(t> = Ek:(t) - Dzmm - E]’;mn - VCmawa v ka t, (310)
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Emaz _ pmin _ Rmaz _ pmax
k k k k
Cmam _szn

where) < V < V,,,, = miny { } is a constant for the trade-off between al-

gorithm performance and ensuring the battery constraliitis constant/,,,.... is carefully selected
to ensure the evolutions of the battery levels always gat&f battery constraints (3.1), which will
be examined in detail in Section 3.3.3.The virtual queuebsadeemed as a shifted version of the

battery dynamics in (3.2) as
Xi(t+1) = Xp(t) — Di(t) + R(t), Y k,t. (3.11)

These queues are “virtual” because they are maintainedeotBCC control algorithm. Unlike
an actual queue, the virtual queue backlgt) may take negative values.
We next introduce a conceptu@bSE virtual queu¢’,,(¢), whose dynamics are governed by

the system equation as
Zy(t+1) = [Z,(t) = 0y - ()] + L,(t), Vn,t. (3.12)

where[z]T = max{0, z}.

Theorem 3.1. If an MGCC control policy stabilizes the QoSE virtual quedgt), the outage

quality usage of resident will be stabilized at the average QOSE rate< 6, - \,.

Proof. See Appendix B.1. ]

Problem Reformulation

With Theorem 3.1, we can transform the original problem)B1® a queue stability problem

with respect to the QoSE virtual queue and the battery Vidquaues, which leads to a system
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stability design from the control theoretic point of view.eWave a reformulated stochastic pro-

gramming problem as follows.

minimize:  lim % tz;E{Q(T)C(T) — S(r)W(7)}

st (3.3)(3.4), (3.6), (3.7), (3.8)

battery and QoSE virtual queue stability

constraints.

(3.13)

Theorem 3.1 indicates that QOSE provisioning is equivalestabilizing the QoSE virtual queue

Z,(t), while stabilizing the virtual queues (3.11) ensures thatliattery constraints (3.1) are sat-

isfied. We then applyyapunov optimizatioto develop an adaptive electricity scheduling policy

for problem (3.13), in which the policy greedily minimize agunov drift in every slot to push

the system toward the stability.

3.2.3 Lyapunov Optimization

We define thé.yapunov functioior system staté(t) = [X (¢), Z(t)]” with dimension N +
K) x 1 as follows, in whichX (t) = [X,(t) - - - Xk ()T and Z(t) = [Z1(t) - - - Zn(1)]7.

—

which is positive definite, sinc&(6(t)) > 0 when6(t) # 0 andL(O(t)) = 0 < O(t) = 0. We

then define the conditional one slotapunov driftas

A(6(t) = E{L(B(t + 1)) — L(E(1))|6(¢)}-
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With the drift defined as in (3.15), it can be shown that

ABW) = SE {Z[(Xk(t +1))% = (X(1)*| Xk ()] +

2
k=1

D (Zalt+1)) ~ (Zn(t))Q\Zn(tﬂ}

n=1

IA

B+ E{Z.(t)(1 = 6n)on(t)| Zu(t)} +
> E{XK()(Ri(t) — Di(t))| Xi(t)} —

Y E{(Za(t) + an(®))pa(D)| Za(D)}, (3.16)

where B = 138 (max{Dye, Rper})? + LN (2 + 62)(i™**)? is a constant. See Ap-
plendix B.2 for the derivation of (3.16).

To minimize the operation cost of the MG, we adopt thét-plus-penalty methodil12].
Specifically, we select the control poliey(t) = {Q(t), S(t), Rk(t), Dx(t), p.(t)} to minimize the

bound on the drift-plus-penalty as:

—

A(O(t) + VE{Q(1)C(t) — S()W ()| 6(t)}
< right-hand-side of (3.16)}

VE{Q()C(t) = S(HW (1)|6(1)}, (3.17)

where0 < V < V... is defined in Section 3.2.2 for the trade-off between stgiyierformance
and operation cost minimization. Given the current viripaéue stateX(,(¢) and Z,(t), market

pricesS(t) andWW (t), available DRERs energ§(t), and the resident quality usage requegtt),
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the optimal policy is the solution to the following problem.

minimize: B+ i[Zn(t)(l — On) i (1)) +

Y U(Zalt) + an(®))pa(t)] (3.18)

n=1

st (3.3), (3.4), (3.6), (3.7), (3.8)

Since the control policyA(¢) is only applied to the last three terms of (3.18), we can &urth
simplify problem (3.18) as

]~

minimize: V[Q(#)C(t) — SOW(B)] + S [Xi(£) (Ru(t)—

k=1
N

Z ) + (1)) pu(t)] (3.19)
. (33), (34, (3 6), (3.7), (3.8)

which can be solved based on observations of the curremreystatg X, (¢), Z,.(t), C(t), W (t), P(t),
an(t)}.

3.3 Optimal Electricity Scheduling

3.3.1 Properties of Optimal Scheduling

With the Lyapunov penalty-and-drift method, we transfonmlglem (3.13) to problem (3.19)
to be solved for each time slot. The solution only dependsherctirrent system state; there is
no need for the statistics of the supply, demand and priceggses and no need for any future
information. The solution algorithm to this problem is tharsonline algorithm We have the

following properties for the optimal scheduling.
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Lemma 3.1. The optimal solution to problem (3.19) has the following nies:
1. 1fQ(t) > 0, we haveS(t) = 0,

(@) If Xix(t) > =V C(t), the optimal solution always selecty,(t) = 0; if Xi(t) <

—VC(t), the optimal solution always seledts,(t) = 0.

(b) If Z,(t) > VC(t) — a(t), the optimal solution always selegts(t) > (1 — d,,) ., (t);

if Z,(t) < VC(t) — an(t), the optimal solution always selegis(t) = 0.
2. WhenQ(t) = 0, we haveS(t) > 0,

(@) If Xx(t) > —VW(t), the optimal solution always selects,(t) = 0; if X.(f) <

—V W (t), the optimal solution always seledt;(¢) = 0.

(b) If Z,(t) > VW (t) — a,(t), the optimal solution always selegts(t) > (1 — d,)an(t);
if Z,(t) < VW (t) — a,(t), the optimal solution always selegis(t) = 0.

Proof. The proof of Lemma 3.1 is given in Appendix B.3. ]

Lemma 3.2. The optimal solution to the battery management problem hagdllowing proper-

ties:
1. If Xi(t) > —V W, the optimal solution always seledg (¢) = 0.
2. If Xj(t) < =V Cpaz, the optimal solution always seledts, (t) = 0.

Proof. The proof of Lemma 3.2 is given in Appendix B.4. n

Lemma 3.3. The optimal solution to the QOSE provisioning problem hadstiowing properties:
1. If Z,(t) > Vs, the optimal solution always selegis(t) > (1 — d0,,)a,(%).
2. If Z,(t) < VWin — iz, the optimal solution always selegts(t) = 0.

Proof. The proof of Lemma 3.3 is given in Appendix B.5. n
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Lemma 3.1 provides useful insights for simplifying the alton design, which will be dis-
cussed in Section 3.3.2. The intuition behind these lemmagad-fold. On the ESS management
side, if either the purchasing pri¢gt) or the selling pricéV () is low, the MG prefers to recharge
the ESS'’s to store excess electricity for future use. On therdhand, if eitheC'(t) or W (t) is
high, the MG is more likely to discharge the ESS’s to redueeaimount of energy to purchase
or sell more stored energy back to the macrogrid. On the Q@aB¥#sioning side, if either”(¢)
or W (t) is high and the quality usage,(¢) is low, the MG is apt to decline the quality usage for
lower operation cost. On the other hand, if eith&t) or W (¢) is low anda,,(t) is high, the quality

usage are more likely to be granted by purchasing more emerdgyiting the sell of energy.

3.3.2 MG Optimal Scheduling Algorithm

In this section, we present the MG control poligyt) to solve problem (3.19). Given the
current virtual queue stateXy(¢), Z,.(t)}, market prices” (¢t) and(t), quality usagev,(t) and
available energyP(t) from the DRERS for serving quality usage, problem (3.19) caddmmm-
posed into the following two linear programming (LP) sulefpems (since one df (¢) andQ(t)

must be zero, see (3.7)).

minimize:V Q(t)C(t) + Z [ X5 (6)(Ri(t) — Di(t))] —
D ((Za(t) + an())pa(t)) (3.20)

s.t.g:(t) —0,(3.3), (3.4), (3.6), (3.9).

minimize: -V S(t ) + i — Dy(t))] —

hE

((Zn(t) + an(t))pa(t)) (3.21)
s.t. Q) = 0,(3.3), (3.4), (3.6), (3.8).

S
I
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Algorithm 3: Adaptive Electricity Scheduling Algorithm

1 MGCC initializes the QOSE target tq and the virtual queues backlogs(t) and X (t),

for all n andk ;
2 while TRUEdo
3 Residents send usage request (with basic and quality usay&3€C via the
information network ;
4 MGCC solves LPs (3.20) and (3.21) ;
MGCC selects the optimal solutiat(t) comparing the solutions to (3.20) and (3.21) ;
MGCC updates the virtual queués;(¢) andZ,(t) according to (3.11) and (3.12), for
all n andk ;
7 end

In sub-problem (3.20), we sét,.(t) = 0if Xx(t) > —VC(t), andDy(t) = 0if Xi(t) <
—VC(t) according to Lemma 3.1. Also, #,,(t) < VC(t) — a,(t), we setp,(t) = 0; otherwise,
we reset constraint (3.6) to a smaller search spac¢e ef,,)a,(t) < p,(t) < a,(t). We take a
similar approach for solving sub-problem (3.21) by repigei’(¢) with 1 (¢). Then we compare
the objective values of the two sub-problems and select thre mompetitive solution as the MG

control policy. The complete algorithm is presented in Alitjon 3.

3.3.3 Performance Analysis

The proposed scheduling algorithm dynamically balancesromimization and QoSE provi-
sioning. It only requires current system state informagian, as an online algorithm) and requires
no statistic information about the random supply, demand,f@ice processes. The algorithm is

also robust to non-i.i.d. and non-ergodic behaviors of foe@sses [113,114].

Theorem 3.2. The constraint on the ESS battery lev®l(t), /""" < Ei(t) < E**, is always

satisfied for allk andt.

Proof. The proof of Theorem 3.2 is given in Appendix B.6.
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Theorem 3.3. The worst-case backlogs of the QoSE virtual queue for eadtierets: is bounded
by Z,.(t) < Z"* = VCpae + ai2®, for all n, t. Moreover, the worst-case average amount of

outage of quality usage for residentn a period7 is upper bounded by"** + T'§,,a;**.

Proof. The proof of Theorem 3.3 is given in Appendix B.7.

Theorem 3.4.The average MG operation cost under the adaptive electrsmheduling algorithm

in Algorithm3,y*, is bounded ag* < y,,. + B/V,whereB = B + 3. | Zme(1 — §,)armee,

n

Proof. The proof of Theorem 3.4 is given in Appendix B.8. ]

It is worth noting that the choice df* controls the optimality of the proposed algorithm.
Specifically, a largeV’ leads to a tighter optimality gap. However, from the prooThéorem 3.2,

V' is limited by V,,..., which ensures the feasibility of the battery constraifhis is actually a
similar phenomenon to the so-callpdrformance-congestion trade-¢ff15]. Through the defi-
nition of V,,,... (see Section 3.2.2), it can be seen that if we invest more @imthvidual storage
components for a larger ESS capacity, the proposed algotn achieve a better performance
(i.e., a smaller optimality gap).

It is also worth noting that all the performance bounds ofghsposed algorithm are deter-
ministic, which provide “hard” guarantees for the performoa of the proposed adaptive scheduling
policy in every time slot. Unlike probabilistic approachése proposed method provides useful
guidelines for the MG design, while guaranteeing the MG apen cost, grid stability, and the

usage quality of residents.

3.4 Simulation Study

We demonstrate the performance of the proposed adaptive IBtHieity scheduling algo-
rithm through extensive simulations. We simulated an MGWwil) residents, where the electricity

from DRERs is supplied by a wind turbine plant. We use the rebenenergy supply data from the
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Western Wind Resources Dataset published by the NationaWiRdxhe Energy Laboratory [116].
The ESS’s consists df)0 PHEV Li-ion battery packs, each of which has a maximum capadi
16 kWh and the minimum energy levels The battery can be fully charged or discharged within
2 hours [117].

The residents’ pre-agreed power demand is uniformly éisted in P kW, 25 kW], and the
quality usage power is uniformly distributed i, [LO kW]. The MG works in the grid-connected
mode and may purchase/sell electricity from/to the maatogrhe utility prices in the macrogrid
are obtained from [118] and are time-varying. We assumedhgsce by the broker is random
and below the purchasing price in each time slot. The timiedsication is15 minutes. The MGCC
serves a certain level of quality usage according to thetagaglectricity scheduling policy. The
QOSE target is set td, = 0.07 for all residents. The control parameterlis= V,,,., unless

otherwise specified.

3.4.1 Algorithm Performance

We first investigate the average QoSEs and total MG operatistwith default settings for a
five-day period. We use MATLAB LP solver for solving the sutsiplems (3.20) and (3.21). For
better illustration, we only show the QO0SEs of three rangochlosen users in Fig. 3.3. It can be
seen that all the average QO0SEs converge to the neighbodia@ooB within 200 slots, which is
close to the MG requested critefig= 0.07. In fact the proposed scheme converges exponentially,
due to the inherent exponential convergence property ipluyav stability based design [110].

We also plot the MG operation traces from this simulationig B.6. The energy for serving
quality usage from the DERESs are plotted in Fig. 3.6(A). It barseen that the DRERs generate
excessive electricity from slat50 to 200, which is more than enough for the residents. Thus,
the MGCC sells more electricity back to the macrogrid andiabtsignificant cost compensation
accordingly. In Fig. 3.6(B), we plot the traces of electyiditading, where the positive values
are the purchased electricity (marked as brown bars), amaegative values represent the sold

electricity (marked as dark blue bars). The MG operatioriscage plotted in Fig. 3.6(C). The
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Figure 3.3:Average QoSEs of three residents € V;,,4.).

curve rises when the MG purchases electricity and falls wherMG sells electricity. From slot
150 to 200, the operation cost drops significantly due to profits ofiisglexcess electricity from
the DERESs. The operation costi$18.10 by the end of the period, which means the net spending
of the MG is$418.10 on the utility market.

We then examine the energy levels of the batteries in Fig.\8&lonly plot the levels of three
batteries in the firs50 time slots for clarity. The proposed control policy chargesl discharges
the batteries in the range 6fto 16 kWh, which falls strictly within the battery capacity limitt
can be seen that the amount of energy for charging or disicigairg one slot is limited by kWh
in the figure, due to the short time slots comparing to2Heur fully charge/discharge periods.
For longer time slot durations and batteries with fastergévaischarge speeds, the variation of
the energy level in Fig. 3.4 could be higher. However, TheoB8e2 indicates that the feasibility of
the battery management constraint is always ensured, dahiol parametey” satisfies) < V' <
Vinaz-

We next evaluate the performance of the proposed adaptiveot@algorithm under different
values of control parametér. For different valued” = {V,.uz, Vinaz /2, Vinaz/4}, the QOSEs

are stabilized a0.081, 0.061, and0.055, and the total operation cost ar¢1$.10, $625.69, and
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Figure 3.4:Energy levels of three Li-ion batterie® (= V;,4z)-

$717.75, respectively. We find the QoSE decreases ff@fg1 to 0.055, while the total oper-
ation cost is increased fromd$.10 to $717.75, asV,,.. is decreased. This demonstrates the
performance-congestion trade-off as in Theorem 3.4: &tdrdeads to a smaller objective value
(i.e., the operating cost), but the system is also penabyeallarger virtual queue backlog, which
corresponds to a higher QoSE. On the contrary, a smélli@vors the resident quality usage, but
increases the total operation cost. In practice, we caotslgroper value for this parameter based
on the MG design specifications.

It would be interesting to examine the case where the redequire different QOSEs. We
assume residents with a service contract for lower QoSEs. We pletaverage QoSEs of three
residents with/ = V,,,,,./2 in Fig. 3.5. Resident prefers an outage probability = 0.02, while
residents2 and 3 require an outage probabilityy = d3 = 0.07. It can be seen in Fig. 3.5 that

residentl’s QOSE converges @015, while the other two residents’ QOSESs remains ardunds3.

3.4.2 Comparison with a Benchmark

We compare the performance of the proposed scheme with stieMG electricity control

policy (MECP), which serves as a benchmark. In MECP, the MGCCKslquality usage requests
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Figure 3.5:Qo0SEs for three residents with different service contraéts=(V;,,q./2).

simply by tossing a coin with the target probability. We dse= 0.03 in the following simulations.

If there is sufficient electricity from the DRERS, all the gtplisage requests will be granted and
the excess energy will be stored in the ESS’s. If there is @ty surplus energy, the MGCC
will sell it to the macrogrid. If there is insufficient eleity from the DRERS, the ESS’s will
be discharged to serve the quality usage requests. The MGIL@unchase electricity from the
macrogrid if even more electricity is required. Finallythva predefined probability, e.d),5 in
the following simulation, the MG purchases as much energyoasible to charge the ESS'’s.

We run100 simulations with different random seeds for a seven-daipgekVe assume in the
first five days the resident behavior is the same as previdasiltisettings. In the last two days,
we assume the residents are apt to request more electiécgy (more activities in weekends)
We assume in the last two days the resident pre-agreed bsege power demand is uniformly
distributed from5 kW to 35 kW. The quality usage power is uniformly distributed frénto 20
KW.

We find that the proposed algorithm eaf§tgl7.27 from the utility market (with95% con-
fidence interval950.65, 943.89]). The profit mainly comes from the abundant DRER generation
in the last two days, as shown in Fig. 3.7. MECP only e&8¥9.74 from the market (with95%
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Figure 3.6: MG operation traces of the proposed algorithniHfe5-day period.
confidence interval387.96, 371.52]), which is60% lower than that of the proposed control pol-
icy. We also find that the QoSEs under the proposed contrayprmains aboud.025, which is
lower than the criteria,, = 0.03. This is because there are a sudden price jump 82I¥MWh
to $356/MWh in the afternoon of the last day. This sharp incrementdases’,,... eight times

and decreases the valuelgf,.... Due to the performance-congestion trade-off, the QoSEgrhe

smaller (lower than MECP'8.03 level).

3.5 Related Work

SG is regarded as the next generation power grid with two-fleays of electricity and in-

formation. Several comprehensive reviews of SG technetogan be found in [3,4]. Recently,
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Figure 3.7: MG operation traces of proposed algorithm ferrtalay period.

SG research is attracting considerable interest from theanking and communications commu-
nities [119-124]. For example, the design of wireless compation systems in SG is studied
in [120]. The authors of [121, 122] explore the importanteléiss communication security issues
in smart grid. The energy management and power flow contrbleérgrid is investigated in [119]
to reach system-wide reliability under uncertainties. frequency oscillation in power networks
is studied in [123] by epidemic propagation and a social ndtviased approach. The electric
power management with PHEVS are examined in [124].

Microgrid is a new grid structure to group DRERs and local resid loads, which provides
a promising way for the future SG. In [108], the authors revMiee MG structure with distributed

energy resources. In [125], the integration of random wiodigr generation into grids for cost
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effective operation is investigated. In [126], the authmgpose a useful online method to discover
all available DRERs within the islanded mode mircogrid andpote a DRER access strategy. The
problem of optimal residential demand management is duidi¢92], aiming to adapt to time-
varying energy generation and prices, and maximize usesfivelm [127], the authors investigate
energy storage management with a dynamic programming apiprd he size of the ESS'’s for MG
energy storage is explored in [128].

Lyapunov optimization is a useful stochastic optimizatioethod [12]. It integrates the Lya-
punov stability concept of control theory with optimizatiand provides an efficient framework
for solving schedule and control problems. It has been widséd and extended in the communi-
cations and networking areas [12,112]. In two recent woilkd[129], the Lyapunov optimization
method is applied to jointly optimize power procurement dgdamic pricing. In [114], the au-
thors investigate the problem of profit maximization forajetolerant consumers. In [129], the
authors study electricity storage management for dateecerdiming to meet the workload re-
guirement. Both of the work are designed based simgleenergy consumption entity model.

In this chapter, we investigate a novel smart energy managesystem for MGs based on the
concept of QoSE, which is different from above work. By jontbnsideringmultiple residents,
ESS’s and utility market participation, the adaptive aletty scheduling policy is designed with
Lyapunov optimization for ensuring the quality of serviddte electricity usage and minimizing

the MG operation cost.

3.6 Conclusion

In this chapter, we developed an online adaptive eleatresxteduling algorithm for smart
energy management in MGs by jointly considering renewabkrgy penetration, ESS manage-
ment, residential demand management, and utility marketiicgeation. We introduced a QoSE
model by taking into account minimization of the MG operataost, while maintaining the out-
age probabilities of resident quality usage. We transforthe QoSE control problem and ESS

management problem into queue stability problems by inkcod) the QoSE virtual queues and
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battery virtual queues. The Lyapunov optimization methed applied to solve the problem with
an efficient online electricity scheduling algorithm, wiilcas deterministic performance bounds.

Our simulation study validated the superior performanahefproposed approach.

74



Table 3.1: Notation for Chapter 3

Symbol Description

N total number of residents

K total number of batteries

T total number of slots

Ei(t)  energy level for battery at time slot

Ri(t)  recharging energy for battefyat time slott

Dy (t discharging energy for battekyat time slott

Eer maximum battery energy level for battery

B minimum battery energy level for batteky

R maximum supported recharging energy for batter a slot

D+ maximum supported discharging energy for batteny a slot

An average quality usage arrival rate for resident

Pn average outage rate of quality usage for residentMG

On target QOSE for residentin MG

an,(t)  quality usage of residentsin time slott

mar maximum quality usage of residentn a single slot

a’(t)  basic electricity usage of residentn time slott

P(t) available electricity from DRERSs to supply quality usage in
time slott

U(t) electricity generated from DRERS in time stot

Q(t) electricity purchased from macrogrid in time stot

S(t) electricity sold on the market in time slot

pn(t) electricity to the resident

C(t) purchasing price on the utility market in time stot

W(t)  selling price ob the utility market in time slot

I,(t) indicator function for outage events of quality usage of
residentn in time slott

Cinin minimum purchasing price of utility from macrogrid

Craz maximum purchasing price of utility from macrogrid

Win — minimum selling price of utility to macrogrid

Wiae — maximum selling price of utility to macrogrid

Xi(t)  battery virtual queue for the batteky

Z,(t)  QOSE virtual queue for the resident

o(t) states of the virtual queue$, (t) andZ,,(t)

L(-) Lyapunov function

A(t) Lyapunov one step drift

A(t) proposed scheduling policy includirg(t), S(t), Rk (t),
Dk(t) andpn(t)

y* optimal objective value of problem (3.19)

A(t)  relaxed scheduling policy for problem (B.6)

1 optimal objective value of problem (B.6)

Yopt optimal objective value of problem (3.9)
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Chapter 4

Overview of Green Video Streaming over Celluar Networks aadable Bit Rate Video

4.1 Green Video Streaming over Celluar Networks

Besides the redesign of the electricity delivery networkss equally important to study the
energy efficiency at the demand side. The rapid prolifenatiinformation and communications
technology(ICT) infrastructures continuously contribute to the ollezarbon footprint and bring
the intensity of “green” communications to the research mamity. Among various green com-
munication technologies, we focus on the energy efficieidyase station¢BS’s) for downlink
video streaming. This is due to the expected surge in wselaeo data, as well as the drastic
increase in the deployment of BS’s. It is reported that, inpgc cellular network, more thas0 %
of the total power consumption is directly attributed to B8ipment [11]. At every yean,20, 000
BS’s are added, catering to tBe0 million to 400 million new mobile phone users adopting mobile
services around the world [130]. Furthermore, Many wirglegerators have launched femtocell
service recently, such as AT&T, Sprint, Verizon, and Vod&foThe wide adoption of femtocells
will greatly intensify the proliferation of BS’s. Therefqrany small improvement in the energy ef-
ficiency of video coding or wireless video streaming systeithbg amplified by the huge volume
of wireless video data and number of BS’s deployed, and wsliliten considerable environmental
impact. Considerable savings on electrical bills could lieened for wireless operators when the
power of BS’s is minimized for video streaming. The reducesticity consumption will also
bring about important improvement in the overall carbontfoiot of the wireless industry and
achieve the goal of “green” communications.

In the following chapters, we consider the challenging pebof streaming multiuserari-
able bit rate(VBR) videos in the downlink of cellular networks. This is matied by the fact that

VBR video offers stable and superior quality owemstant bit rat CBR) videos. Furthermore,
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(a) Frame 1, VBR (b) Frame 29, VBR (c) Frame 1, CBR (d) Frame 29, CBR

Figure 4.1: Perceived quality of VBR and CBR vide&sptball video coded with an H.264 codec.

many stored video content are coded in the VBR format. It isoirtgmt to support such stored
VBR video over existing wireless networks without the neadfanscoding.

VBR video has stable visual quality for the frames, but at &t of large variations in the
bit rate, while CBR video maintains a stable bit rate, but thenes have large variations in visual
quality. This is illustrated in Fig. 4.1, where the 15 fipsotball sequence is encoded using an
H.264 codec. Both VBR and CBR videos are encoded at the appretjmrsgtme bit rate (250
kb/s). It can be seen that although the two Frame 1s haveasimgual quality, CBR Frame 29
looks worse than VBR Frame 29 when there is high motion. Howeve may also observe that
the sizes of frames of VBR video have much larger variation thase of CBR video in Fig. 4.2.
It can be noted that the frame size varies in CBR from frame 45toThat is because that the
content on the video switches from the high motion playetbégstatic field, and this simple scene
is kept from frame 42 to frame 43, which allows the rate cdralgorithm to choose smaller frame
sizes. Starting from frame 44, the players come back to teeesdhus the larger frame sizes are
selected to compensate the rate decrease in previous ftarkesp the average rate constant.

The following chapters distinguish themselves from othmargy efficient designs over wire-
less networks in the following aspects: First, instead ofigreaware mobile video devices, we
focus on the BS power efficiency when transmitting multiusdeos. As mentioned before, the
BS equipment consumes more tH#@% of the total power in a typical cellular network. Thus, it is
important to improve the BS energy efficiency to achieve the gbgreen communications. Sec-
ond, we explicitly investigate streaming of multiple VBR gms. VBR videos can offer constant
and better QOoE over CBR videos with the same bit budget. How&®R videos are notori-

ously difficult to schedule and control in wireless networétae to the high variability and the

77



x 10

I I
—— VBR(Constant QP)
4f - = =CBR(Rate Control) H

Bits

Figure 4.2: Frame size of VBR and CBR vide#sotball video coded with an H.264 codec.

complex autocorrelation structure [131-133]. Third, wedhe control and optimization ap-
proach to optimize the BS energy allocation as well asgiiiity of experienc€QoE) of users,
by jointly considering power control, wireless channel dition, playout buffer constraints, and

playout deadlines.

4.2 VBR Video System Model

Itis a challenging problem to support VBR video traffic, whisliound to exhibit both strong
long-range and short-range-dependence [131, 132]. Iinfin@l to develop parsimonious traffic
models that can accurately capture the auto-correlatroctste. The large frame size variations
may cause frequent playout buffer underflow or overflow [13%) address this issue, we adopt
a deterministic traffic modefor stored VBR video, which considers frame size, frame ratel
playout buffers [54, 95, 135, 136]. Unlike prior work thatfecused on a single video session
over a given CBR or VBR channel, we exploit power control, a ueigapability in wireless
networks, to adjust the downlink capacities based on pmomnkedge of frame sizes and playout

schedules. Usually large frames are rarely transmittedli&ameously. Thus jointly optimizing
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Figure 4.3: Transmission schedules for VBR video session

the BS transmit powers is, in some sense, analogous to is@tisiultiplexing VBR videos in the
cellular networks.

A stochastic model capturing the auto-correlation stmgctften requires a large number of
parameters, and is thus hard to be incorporated for scimegdrdal-time video data. To this end,
we adopt adeterministic modethat considers frame sizes, playout buffers, and sche®3k [
Let D;(t) denote thecumulative consumption curad the i-th user, representing the cumulative
amount of bits consumed by the decoder at tim&he cumulative consumption curve is deter-
mined by video characteristics such as frame sizes and eatdplayout schedule. Assume user
has a playout buffer of size bits and its video has; frames. We can deriveamulative overflow

curvefor useri as

B;(t) is the maximum number of cumulative received bits at tinvgthout overflowing usei’s
playout buffer. Finally we defineumulative transmission curvg;(¢) as the cumulative amount

of bits transmitted to userat timet¢. To simplify notation, we assume the video sessions have
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identical frame rate and the frame intervals are synchezhiZhus a time slatis equal to the-th
frame interval, denoted as for 0 < ¢ < max;{L;}.1

Since D;(t), B;(t) and X;(¢) are cumulative curves, they are all nondecreasing furstidn
time. The three curves for userare illustrated in Fig. 4.3. A feasible transmission schealuill
produce a cumulative transmission cugt) that lies withinD;(¢) andB;(¢), i.e., causing neither
underflow nor overflow at the playout buffer. In practié&(¢)’s are known for stored videos and
are delivered to the BS’s (or a centralized video schedulerng the session setup phase, and
B;(t)’s are then derived as in (4.1).

This deterministic VBR video model will be adopted in followj chapters.

IThis assumption can be relaxed for more general cases. For Exafipe frame rates are different, we can use a time slot durdhbat is
equal to the greatest common divisor of all the frame intervatsof too small). If the frame intervals are not synchronizadime slot can be a
fraction of a frame interval within which th®; (¢)'s of all the videos remain constant. In fact, the time slot darecould be arbitrary as in [50]
(i.e., equal to multiple frame intervals). Since the cumutativerflow and consumption curves are known, we can still deter the upper and
lower bounds for the transmission rate in each time slot. Takblpm formulation and proposed solution procedures to ldied in the following
sections apply to these cases.
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Chapter 5

Downlink Power Allocation for Stored Variable-Bit-Rate Vi@ Cellular Network

5.1 Introduction

In this chapter, we present a downlink power control framdwor streaming multiplesari-
able bit rate(VBR) videos in a cellular network with intracell interferencWith the determin-
istic VBR video traffic model 4.2, we formulate an optimizatiproblem that jointly considers
donwlink power control, intra-cell interference, VBR vid&affic characteristics, playout buffer
underflow and overflow constraints, and base station (BS) peakr constraint. The objective is
to maximize the total throughput, which can achieve higlyqla buffer utilization. As a result,
playout buffer underflow or overflow events can be minimiz&é& analyze the convex/concave
regions of the formulated problem and develop a two-stepniiok power allocation algorithm
for solving the problem. We also develop a distributed atgor based on the dual decomposition
technique from convex optimization, in order to reduce thetwl| and computation overhead at
the BS. We evaluate the performance of the proposed digdlalgorithm with simulations using
VBR video traces. Our simulation results verify the accurakcthe analysis and demonstrate the
efficacy of the proposed algorithms.

The remainder of this chapter is organized as follows. Therdenistic VBR video model is
introduced in Section 4.2. The system model is presente@atich 5.2. We develop a two-step
algorithm to solve the power allocation problem in Sectid, &nd a distributed algorithm based
on dual decomposition in Section 5.4. Simulation resukspesented in Section 5.5 and related
work are discussed in Section 5.6. Section 5.7 concludse<ttapter.

The notation used in this chapter are summarized in Table 5.1
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Table 5.1: Notation for Chapter 5

Symbol Description

N total number of users in a cell

L processing gain

B interference proportion

U set of users sharing the same channel

T, total number of frames for uservideo

b, playout buffer size of user

D, (t) cumulative consumption curve at user

X,(t) cumulative transmission curve at user

B (t) cumulative overflow curve at user

P(t) BS transmit power vector in time slot

Pous max. power allocation vector without overflow
P min. power allocation vector without underflow
P peak power constraint for the BS’s

P sum of the elements iR,;,,

P inflection power vector

P optimal power vector

Gp path gain from BS to user

By, channel bandwidth

T duration of a time slot

M noise power at user

C, capacity from the base station to user

B, Channel bandwidth

K Constant for the proof of Lemma 5.2

P'(t), P"(t) Auxiliary power allocation in the Lemma 5.2 proof
A, Ratio of noise power and channel gain of user
pi Minimum betweenP** and P

(1) Stepsize of stepin (5.26)

ax(l), a,(l), o, (1) Stepsize of stepin (5.29)

Yn(t) SINR at usetun,, in time slot¢

iR (t) minimum SINR corresponding 0" (¢)
ymaT(t) max. SINR for uset:n,, without overflow

ik receiver sensitivity at user

F N x N matrix defined in (5.13)

A L, v Lagrange Multipliers

L Lagrange function

5.2 System Model and Problem Formation

We consider the downlink of a cellular network. In the ceB&streams multiple VBR videos

simultaneously to mobile users in the cell, which share thendink bandwidth. We assume the
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last-hop wireless link is the bottleneck, while the wiregreent of a session path is reliable with
sufficient bandwidth. Thus the corresponding video datdvigys available at the BS before
the scheduled transmission time. Tdeterministic VBR video modiel adopted as indicated in
Section 4.2.

We considerV subscribers in the cell and l&tdenote the set of users. In each time s|ohe
BS transmits to each usemith powerP, (t) and thepower allocatioris P(t) = [P (t), - - , P.(t)]".
We also consider maximum transmit poweronstraint?, i.e.,, ., P.(t) < P, for all t. When
the power aIIocationﬁ(t) is determined, th&ignal to Interference-plus-Noise Ra{leINR) at user

n can be written as [50, 137]

L,G,P,(t)

Y (P(1)) = B SN A

(5.1)

where P, is the power allocated to user G, is the path gain between the BS and usen,, is
the noise power at user, L, is a constant for uset (e.g., processing gain), artidenotes the
orthogonality factor, withh < g < 1. In this chapter, we consider the case= 1, where the
SINR of a user not only depends on its own power allocationatad the power allocations of
other users.

We assume slow-fading channels such that the path gainstdchange within each time
slot [50]. The downlink capacitg’,(t) depends on the SINR at userthe channel bandwidtB,,,
and the transceiver design, such as modulation and chamoati@lgc Without loss of generality, we

use the upper bound as predicted by Shannon’s Theorem:
Ca(P(t)) = Bulog (1+7(P(t))). (52)

In time slott, C,,(t)7 bits of video data will be delivered to user The cumulative transmis-
sion curveX,,(t) is

X,(0)=0; X,(t) =X,(t—1)+ Cu(t)r. (5.3)
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For a feasible power allocation, the cumulative transraissurves should satisfy

D, (t) < X,(t) < B,(t), forall n,t, (5.4)

i.e., without causing playout buffer underflow or overflow.

From (5.2)~(5.4), the lower and upper limit on the feasible SINR at usean be derived as

,qu'n (t) = max {GXP {max{O,DngU);Xn(t—l)} } ) %t%h}

(5.5)
~,max t S}:]C Bn t _;<n t—1
n ( ) { ( )Bw7 ( ) } ’

where~!" is the minimum SINR requirement imposed by the transceiesigh. 17" (¢) is the

n

SINR that the just empties the buffer at the end of time slatithout causing underflowy”** ()

is the SINR that just fills up the buffer at the end of time $lavithout causing overflow.
Generally, feasible power aIIocatid?(t) is not unique for a given set of VBR video sessions.

Among the set of feasible solutions, a schedule that trassmore data is more desirable since

it provides more flexibility for optimizing future power altations. We formulate the problem of

optimal downlink power control for VBR videos, termed prabld, as

(A) maximize > log(1 + 7,(t)) (5.6)
neu
subject to:
L,G.P,(t)
(1) = , foralln 5.7
) > tpn GnBi(t) + 1 (-7
A () < y(t) < (L), forall n (5.8)
> P, <P (5.9)
nel

In problemA, the objective is to achieve the maximum buffer uitilizatiat the users, under
playout buffer underflow and overflow constraints and BS maxmtransmit power constraints.
This is a nonlinear nonconvex problem, to which traditiar@ivex optimization techniques cannot

directly apply. Due to the large variability of VBR traffic,dlfSINRs may assume values ranging
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from very low to very high, to avoid playout buffer underflomdchoverflow. Thus the existing
high SINR approximation [59] and low SINR approximation § 3echniques cannot be directly

applied.

5.3 Two-Step Downlink Power Allocation

In problemA, we consider an interference-limited system, where thaagpof downlinkn
depends on the power allocations for all the users. In tHeviodg, we first derive conditions for
the optimal solution, and then present a two-step powecaiion algorithm for solving problem

A.

Lemma 5.1. If there exists a feasible power allocatid®(¢) that achieves,™=(t) for all n, the

n

solution is optimal.
Proof. See Appendix C.1. n

Lemma 5.2. If the upper limity**(¢) cannot be achieved for every userthen the optimal power

n

allocation P(t) satisfiesy", _,, P.(t) = P.

Proof. See Appendix C.2.
O

We have the following result for the optimal solution of plain A, which directly follows

Lemmas 5.1 and 5.2.

Theorem 5.1. A solution to problenA is optimal if (i) it achieves the maximum SINR**(¢) for

all n; or (ii) its total transmit power isP.
Proof. By Lemmab.1 andLemmab.2, it is straightforward to obtain the result. n

Theorem 5.1 implies that we can examine the SINR (or bufi@nstraints and the peak power

constraint separately. In the rest of this section, we prteséwo-step power allocation algorithm
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for solving problemA. We first examine problerA under condition (i) in Theorem 5.1, to obtain

problemB as

L,G,P,(t)

B)  r(r) =
) Zk;en G Py (t) + 1
subject to:

ZP" <P.

, for all n,

(5.10)

(5.11)

In problemB, (5.10) is a system of linear equations of power aIIocavfth). Rearranging

the terms, we can rewrite (5.10) in the matrix form as:

— —

(I—-F)P(t) =i, for P(t) = 0,

wherel is theidentity matrix F isa/N x N matrix with

0, ifn=m
an:

ymer /L, otherwise

andi = [y /L, Gy, noy5 | L,Ga, - -+, nyyRe® ) L,Gn]T.

(5.12)

(5.13)

Since all the variables are nonnegatileis a non-negative matrix. According to the Perron-

Frobenius Theorem, we have the following equivalent statem[47]:

Fact 5.1. The following statements are equivalent: (i) there exitsesitde power allocation sat-

isfying (5.12); (i) the spectrum radius &f is less than 1; (iii) the reciprocal matrigl — F)~! =

S0, (F)" exists and is component-wise positive.

Based on Theorem 5.1 and Fact 5.1, we derivditeestepof the two-step power allocation

algorithm, as given in Algorithm 4. If problem is solvable, the Step I algorithm in Algorithm 4

produces the optimal solution for probleaccording to Theorem 5.1. Otherwise, we derive
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Algorithm 4: Two-Step Power Allocation Algorithm: Step |

BS obtaing,,, D,,, andB,,, and computes,*** for all usern;
BS tests the existence of feasible solutions using (5.12);
if (5.12) is solvablehen

| Compute its solutiorP(t);
else

\ Go to Step Il of the algorithm, as given in Algorithm 5;
end
if >,y Pa(t) < Pthen

o | Stop with the optimal solutiod(t);
10 else
11 \ Go to Step Il of the algorithm, as given in Algorithm 5;
12 end

0w N o 0o A~ W N P

problemC by applying Lemma 5.2, as

(C) maximize > " log(1 + 7(t)) (5.14)

neu
subject to:
B L,P,(t)

Tn(t) = D)+ A forall n (5.15)
P (1) < P,(t) < P (¢t), forall n (5.16)
> Pi(t)=P, (5.17)
neu

where A, = n,/G, is the ratio of noise power and channel gain, representiagtiality of the

usern downlink channel. P (¢) and P™*(t) are solved from (5.8) and (5.15), as

Pin(t) = (P o+ An) /(Lo +7)
Pos(t) = 7 (P + An)/(Ln + 7).

(5.18)

Since the total transmit power 1B, the objective value in (5.14) and the SINR in (5.15) for
each user only depends on its own power. Note that all thetrzonts are now linear. To solve
problemC, we examine the objective function to see if it is convex. Watdime indext in the

following for brevity.
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Figure 5.1: Normalized capacity curves and inflection gofot a two-user system, where link
has better quality than link, i.e. A; < As.
Lemma 5.3. The capacity of each user, C,,, has onanflection pointP!: whenP, < P!, C, is

in concave; wherP,, > P, C,, iS convex.
Proof. See Appendix C.3.

The normalized capacities for a two-user system is plotteHig. 5.1, with the inflection
points marked. It can been observed that the curves are womgathe left hand side of the
inflection points and convex on the right hand side of the atifb® points. The processing gain is
usually large for practical systems (e.g,, = 128 in 1S-95 CDMA). We assumé,,, > 1 in the

following analysis.

problemC, there can be at most two links operating in the convex redion i

L, > (4P +6A,)/(P + 3A,).
Proof. See Appendix C.4.

For a clean channel wherg, ~ 0, L,, > 4 will guarantee at most two links operating in the

convex region. The following results are on the impact ofncted qualityA,, = 7,,/G.,.
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Theorem 5.3. For a givenL,, the inflection point”; is an increasing function aofi,,. For two

links i and j with the same transmit powe?, if A, < A;, we haveC;(P, A;) > C;(P, A;) and

301((31;:;141) P—p > 807‘(61;%714,7‘) ‘Pj:P > 0.
Proof. See Appendix C.5. ]

Theorem 5.3 shows that, for two links in the convex regiorhwiite same initial power,
allocating more power to the link with better quality can iaek larger objective value than alter-
native ways of splitting the power between the two links.(iaehieving the multi-user diversity
gain). Based on the above analysis, we develoséoend stepf the power allocation algorithm
for solving problemC, as given in Algorithm 5. In Algorithm 5, Line3 ~ 4 tests the feasibility
of the power allocation. If the sum of the total minimum reqdipower is larger than the BS peak
power, there is no feasible power allocation and there valbbffer underflow. In this case, we
select users with “good” channels for transmission andesugphe users with “bad” channels.

The Step Il algorithm checks the three possible solutiomages for problenC depending

on the network status and video parameters:
¢ All links operate in the convex region;
e One link operates in the convex region and the remainingloperate in the concave region
¢ Two links operate in the convex region and the remainingsliofrerate in the concave region.

Each of the three phases in Algorithm 5 considers the opitynebndition for one of the three
scenarios. In particular, Phase 1 first optimizes the poWecadion in the concave region and
then allocates the remaining power to the links that coulthbged to the convex region. Phase
2 allocates as much power as possible to the link with the dpgity, which could work in the
convex region. Phase 3 attempts to move the second besolitiletconvex region if the total
power constraint is not violated. Usually whép andn are large, Phase 3 will rarely occur due

to the peak power constraint.
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Algorithm 5: Two-Step Power Allocation Algorithm: Step Il

Initialization|;

BS obtaing,,, D,,, andB,, for all usern;
BS computeg/ %%, ymin and P, for all n;

n

1
2
3
4 BS computes the minimum required sum poues;, = >, P and gapAp = P — Ppin;
5
6
7

if P > P then ) )
\ Remove links froni/, according to descending order 4f,, until P,,,;, < P;
end

g ComputeR,, = SnilP B A =Cn(P"Y) for g)| pmas > P

min{ Pia®, Prin { A p}— Pin

:

10 Select all the users satisfyifg*" < P} as a set’ C U;

11 Solve problent under constraint®™" < P, < min (P P*) and
e Po < P'=P =%, P, wherel{’ is the complementary set of, and obtain
solution P, ;

12 CalculateR,, by updatingP™" to the solution in Linel 1 and assign the remaining power to the
nodes in sel/, in descending order a&,,;

13 Obtain the Phasesolution, P,,, and objective valug,, ;

1

15 Select the link with the maximurR,,, and assign all the available powr— P,,;, to the link,
until either all the power is assigned or the link attains poR&f*;

16 if there is still power to allocatéhen

17 \ Select all the nodes in si&t\n and repeat Line8 ~ 12;

18 end

19 Obtain the Phas%solution,ﬁm, and objective valug,, ;

20 |Phase §

21 Select the first 2 links with the largeRt,’s, and assign all the available powBr— P,,;, to the
links, until all the power is assigned or the links attains poW&f'*, and repeat Line$6 ~ 18;

22 Obtain the Phasg solution, P,.,, and objective valug,;

23 | Decision)

24 Choose the largest objective value amgpg f,, and f,,, and stop with the corresponding power
assignment;

In Algorithm 5, Line 7 presents a convex optimization comguatn for which several effective
solution technigues can be applied. In the following sectiwe describe a distributed algorithm

for Line 7 based on dual decomposition.

5.4 Distributed Algorithm

As discussed in Section 5.3, the core of the Step Il algorithto solve problenC in the

concave region (see Fig. 5.1). In this section, we preserstabdited algorithm for this purpose,
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where the users are involved in power allocation to redueetimtrol and computation overhead

on the BS. In the concave region, we have probl2as

(D) maximize " log(1 + yu(t)) (5.19)

neu
subject to:
L,P,(t)

w(t) = = , for all 5.20
Tu(t) Fo b+ A, oraln (5.20)
P™(t) < P,(t) < min{P™* P*} forall n (5.21)
Z P.(t) < Py, (5.22)
nelu

whereP,,; < P is the total power budget for the links in the concave regker.brevity, we define
P = min{ P™ P} and drop the time slot indexin the following analysis.
Introducing non-negative Lagrange multipliess 1.,,, andy for constraints (5.21) and (5.22),

respectively, we obtain the Lagrange function as

L(P,X fi,v) (5.23)
L,P 4

=3 " log 1+ 2" ) + A\, (B, — P""
S Jlow (14 5y ) ¢
neu
Z [Mn(Péh_Pn)] +v <Ptot _an>
nelU neu

= Z ['Cn(Pna >\n> /Lna V)_‘_(#nprih_)\npgmn)] +VPtot7
neu

where
L, (P, \ )=log 1+ _ b + (A )P, (5.24)
- _ — U, — V)P,. .
n nH n?/’LTIJ 14 Og P _ Pn + An n /"LTZ n

SinceL,, only depends on users own parameters, we have the dual decomposition for eaah us
n. For given Lagrange multipliers (or, price}), /i,,, andi, we have the following subproblem for

each usen.

Po( X, fin, D) = [P < P, < PMargmaxl,,(P,, A\, fin, ), forall n. (5.25)
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Subproblem (5.25) has a unique optimal solution due to thet soncavity ofZ,,. We use the

gradient method [14] to solve (5.25), where useteratively updates its powe?, as:

Pyl +1) (5.26)

- [Pn(l) + e(l)vnﬁn(Pn)]*
L.(P+A,) i

= |FaD+00) (P—P,+A)(P+ (L, —1)P, + A,) OO =i =v)|

where[-]* denotes the projection onto the range Bf*"", P"]. The update stepsizd/) varies in
each step and is determine by the Armijo Rule [14]. Due to the strict aonty of £,,, the series

{P,(1), P,(2),---} will converge to the optimal solutioR, as! — cc.

For a given optimal solution for problem (5.2%),= [P, - - - , Py|?, the master dual problem
is as follows:
minimize ~ L(P, X, i, v) (5.27)
subjectto: A\, in, v > 0, for all n. (5.28)

Since the objective function (5.27) is differentiable, i&eaapply the gradient method to solve the
master dual problem [14], where the Lagrange multiplieesi@ratively updated as

All +1) = a(l) — ax(l) - 20821+ for all n

a4 1) = (D) — 0, (1) - Z£822]5 for all n (5.29)

V(I +1) = (D) = o (1) - 2250

)

where|-]* denotes the projection onto the nonnegative axis. The amlapsizes are also deter-
mined by the Armijo Rule [14]. As the dual variabl&§), /i(1), v(I) converge to their stable values

asl — oo, the primal variable$” will also converge to the optimal solution [100].
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Algorithm 6: Distributed Power Control Algorithm

1 BS setd = 0 and prices\,,(1), un (1), v(1) equal to some nonnegative initial values forrall
2 BS broadcasts the prices to the selected users;
3 Each user locally solves problem (5.25) as in (5.26) to obtain its requestest;p
4 Each user sends its requested power to the BS;
5 BS updates prices, (1), un (1), v(1) as in (5.29) and broadcasts new prices
A+ 1), pn(l+1),v(l+ 1) for all n;
6 Setl =1+ 1 and go to Steg, until the solution converges;

The distributed algorithm is given in Algorithm 6, where thisove procedures are repeated
iteratively. The BS first broadcasts Lagrange multipliershi® users. Each user updates its re-
quested power as in (5.26), using local informatijp®, P, P* A,, L,, and BS peak power
P. Each user then sends its requested power back to the BS,eaB& twill updates the Lagrange

multipliers as in (5.29). And so forth, until the optimal 8tdn is obtained.

5.5 Simulation Results

We evaluate the proposed algorithms with MATLAB simulaspmhere the deterministic
VBR traffic model and the optimization solution algorithme anplemented. We use a cellular
network with 20 users;the network topology is illustrated in Fig. 5.2. The dowklinandwidth
is 1 MHz. The path gain averages akg = d,,*, whered,, is the physical distance from the BS to
usern. The downlink channel is modeled as log-normal block fadhitt) zero mean and variance
8 dB [50]. The processing gains are set/ip = 128 for all n. The distancel, is uniformly
distributed in [100m, 1000m]. The device temperaturg,is- 290 Kelvin and the equivalent noise
bandwidth isB,, = 1M Hz. The BS peak power constraints is sefte= 10 Watts. We use three
VBR movies tracesStar Wars NBC News and Tokyo Olympicsfrom the Video Trace Library
maintained at Arizona State University [139]. We plot theesiof the first 00 frames of theNBC
Newsvideo sequence in Fig. 5.3, to illustrate the high variabbWBR video frame sizes, which
makes it very challenging to develop accurate mathematicalels. Each playout buffer is set to

1.5 times of the largest frame size in the requested VBR video.

1The number of users/links in the cellular network is chosssoeding to the resource specified in the simulation:
bandwidth and the total BS power limit.
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Figure 5.2: Topology of the cellular network.
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Figure 5.3: The sizes of the first0 frames of theVBC Newssequence.

In the simulations, we have 7 user streaming NBC news, 7 us@@nsing Star Wars, and
6 users streaming Tokyo Olympics. The proposed power ditotalgorithm is executed at the
beginning of each time slot. In Fig. 5.4, we plot the cumuatonsumption, overflow and trans-

mission curves foNBC Newstransmitted to user 2. The top sub-figure is the overview0o600
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Figure 5.4: Transmission schedule for vidgBC Newsto user 2.

frames. We also plot the curves from frame20 to 2, 640 in the bottom sub-figure. We observe
that the cumulative transmission cur¥gt) is very close to the cumulative overflow curigt),
indicating that the algorithm always aim to maximize thesmission rate as allowed by the buffer
and power constraints. The playout buffers are almost futihzed most of the time. There is no
playout buffer overflow and underflow for the entire rangel@f000 frames. Among théN\BC
Newsframes, frame, 625 is the largest frame. We let seven out of fiidinks playout this largest
frame simultaneously at time sI®t625 in the simulation. There is no buffer underflow under such
heavy load.

In Fig. 5.5, we plot the power allocation and price updatesafbthe 20 links in one of the
10,000 time slots. The power and prices converges in arGargteps. The converged power
vector iSI3 =[0.0022, 1.396, 0.0356, 0.0024, 1.396, 0.0351, 0.008861.0.0356, 0.0026, 1.396,
0.0356, 0.0023, 1.396, 0.0356, 0.0018, 1.396, 0.0356,3@,00.394] Watts. Note that with the
distributed algorithm, the computation in each iteratiofy@onsisting updating power or price as
in (5.26) and (5.29), which takes only a negligible amourtiroke. The 70-step convergence time

is very small comparing to the power control in cellular starms (e.g., 1500 Hz for UMTS power
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Figure 5.5: Convergence of power allocation and Lagrangdipliafts.

control [140]). Since the gradient method is used, the cgarece of the algorithm is dependent
on the gradients, which further depend on the system paess®ich ag,, andA,,. Another main
factor for the convergence speed is the choice of the seep&gdiscussed, we use Armijo Rule to
determine step size, in which the stepsize evolves acaptdithe difference of the target values
between steps.

Finally, we compare the proposed algorithm with a diversaityare power allocation scheme,
where the BS allocates power according to channel qualityth Wiis scheme, the best channel
n will be assigned power to achieve its maximum required paf#et”(¢). Then the second best
channel will be allocated power until its maximum requireaver is achieved, and so forth until
all of P is allocated. In this simulation, we increase the numbesefsitds0 to stress the capacity
of the cellular network, such that the system is close toratgu The purpose is to show the
performance of the algorithms under a nearly congestedasogrwhich is more interesting in

performance analysis than an under-load scenario.
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Figure 5.6: Average playout buffer utilization for the eatvideo sequence (10000 frames).

We compare the algorithms by their average playout bufféization. In Fig. 5.6, we plot
the average buffer utilizations achieved by the proposéérse and the diversity-aware scheme
for the entire video sequence. A zoomed in version is presentFig. 5.7 from frames ranging
from 2,000 to 2, 500. It can be seen that the proposed algorithm consistentigeeh high buffer
utilization, ranging from 60% to 100%. The diversity scheawhieves buffer utilization lower
than 50% for frames fror, 000 to 2, 250. Such considerably higher buffer utilization translates t
better video quality: there is no buffer overflow or underflimw proposed algorithm, while there

is buffer underflow inl'7% of the playout frames for the diversity scheme.

5.6 Related Work

Most of the prior work on VBR video streaming consider wiretiwegks, which can be clas-
sified according to their traffic models, i.statistical or deterministicmodels. With the former
approach, stochastic models are developed to capture thnass in VBR traffic. In [131,132],
the authors observed tiheng-range-dependende VBR video traffic and modeled the autocorre-

lation with self-similar processes. This class of work pdeg valuable insights on the nature of
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Figure 5.7: Average playout buffer utilization for frame30® to 2500.

VBR video traffic. The stochastic models can be incorporateguality of servicdQoS) mecha-
nisms for VBR videos, and for traffic synthesizing in simwas [133].

With the deterministic approach, the piecewise-constatgiransmission and transport (PCRTT)
method was used, aiming to optimize one or more objectivakewwheserving continuous video
playout. In [135], Liew and Chan proposed bandwidth alleraschemes for dynamically shar-
ing a CBR channel among multiple VBR video streams, either i) tmimize the total receiver
buffer size, or ii) to avoid underflow and overflow for a givelayout buffer size. In [95], Salehi
et al. considered smoothing VBR video over a CBR link and developedfaative algorithm to
achieve the greatest smoothness in rate. In [141], McMand$Rass introduced a dynamic pro-
gramming framework to set PCRTT rates and intervals to opémdifferent objective functions.
These techniques do not directly apply to our problem of VBBravireless networks, due to the
fundamental difference between wireless and wired CBR links.

The downlink power allocation problem was studied in [5F]1&iming to obtain the power
allocation that maximizes a properly defined system utilify distributed algorithm based on

dynamic pricing and partial cooperation was proposed. D@febera, and Ahrens [142] studied
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the achievable maximum sum rate of multi-user interfereri@nnels. These papers provide the
theoretical foundation and effective algorithms for tfilnaximization of downlink traffic, but the
techniques used cannot be directly applied for VBR video awezless networks with buffer and
delay constraints.

In [54, 143], the authors studied the problem of one VBR streaar a given time-varying
wireless channel. In [143], it was shown that the separatietwveen a delay jitter buffer and
a decoder buffer is in general suboptimal, and severaktatiBystem parameters were derived.
In [54], the authors studied the frequency of jitters undehimetwork and video system constraint
and provided a framework for quantifying the trade-offs agseveral system parameters. In this
chapter, we jointly consider power control in wireless natg, playout buffers, and video frame
information, and address the more challenging problemregsting multiple VBR videos, and
present a cross-layer optimization approach that doeseapErdl on any specific channel or video

traffic models.

5.7 Conclusions

We developed a downlink power allocation model for stregmmultiple VBR videos in a cel-
lular network. The model considers interactions among dimkipower control, channel interfer-
ence, playout buffers, and VBR video traffic characterisfid®e formulated problem aims at max-
imizing the total transmission rate under both peak powedr@ayout buffer overflow/underflow
constraints. We presented a two-step approach for sollimgroblem and a distributed algorithm
based on the dual decomposition technique. Our simulatioiies validated the efficacy of the

proposed algorithms.
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Chapter 6

Downlink Power Control for Variable Bit Rate Video over Multit®/ireless Networks
6.1 Introduction

In this chapter, we extend power controlariable bit rate(VBR) video streaming to mul-
ticell wireless networks scenario. We consider video stiiag over a multicell wireless network,
a wireless network architecture widely deployed all overworld. We consider the typical case
of downlink video transmissions. For the multicell systgranerally intra-cell interference can be
effectively controlled with precise synchronization oe tise of guard times. The capacities of the
downlinks are mainly limited by the inter-cell interferendue to simultaneous base station (BS)
transmissions using the same channel. Therefore, effedtiwnlink power control is necessary to
support concurrent videos.

In this chapter, we presented a problem formulation thasicems downlink power control,
inter-cell interference, VBR video characteristics, arayplt buffer requirements. The objective
is to achieve high playout buffer utilization, under playdwffer underflow and overflow con-
straints and peak power constraint. This is a nonlinear erex problem to which traditional
convex optimization techniques [59] and low- or highignal to Interference-plus-Noise Ratio
(SINR) approximations [59, 138] do not directly apply.

We first derive the condition of the existence of feasible oassignments, which can achieve
downlink capacities to guarantee no buffer underflow andftove We then develop a central-
ized algorithm that can produce solutions with boundednaglity gap. Specifically, we use the
Reformulation-Linearization Technique (RLT) to obtain aekmn programming (LP) relaxation of
the original problem. Solving this LP relaxation yields gwpar bound to the original problem.

Interestingly, since the constraints are preserved indlaxation procedure, the upper-bounding
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solution is also feasible to the original problem; the cep@nding objective value with this solu-
tion provides a lower bound to the global optimum. The LPxaten is then incorporated into
the branch-and-bound framework to obtain a centralizedrdhlgn, which can produce a solution
within the (1<) range of the global optimal.

To simplify computation and control, we also develop a dstied algorithm based on dis-
tributed constrained power control (DCPC) [48], where eacht&&tively updates transmit power
based on feedback of measured SINR at the target receii@shown that with DCPC, the power
vector converges to a unique power vector that can achievgdal of maximizing playout buffer
utilization and avoiding playout buffer underflow and ovenfl We evaluate the proposed al-
gorithms with simulations using VBR video traces [139] andifig channels. The distributed
algorithm is shown to achieve a performance very close toahthe centralized algorithm. Both
algorithms are demonstrated to be highly effective forastrilg VBR videos over multicell wire-
less networks.

In the reminder of this chapter, we present the problem fdéatimn in Section 6.2. We de-
scribe a centralized algorithm in Section 6.3 and a distedbalgorithm in Section 6.4. Simulation
results are presented in Section 6.5 and related work isigigd in Section 6.6. Section 6.7 con-

cludes this chapter. The notation used in this chapter anesuized in Table 6.1.

6.2 Problem Statement

6.2.1 Network and Video System Model

We consider the downlinks of al-cell wireless network as shown in Fig. 6.1. In each cell,
a BS streams video to mobile users in the cell, each allocatbcavdownlink channel. A channel
is a spectral resource slot, the nature of which dependseoapécific multiple access technique
adopted for the multicell network. Without loss of gendyalve assume that the downlink chan-
nels within a cell are orthogonal (e.g., due to perfect symaization of spreading codes or use of

guard times). The main interference at a user stems fromaheucrent downlink transmissions
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Table 6.1: Notation Table for Chapter 6

Symbol Description

M total number of cells (or, BS’s)

U set of users sharing the same channel

L; total number of frames for uséwideo

b; playout buffer size of user

D;(t) cumulative consumption curve at user

X;(t) cumulative transmission curve at user

Bi(t) cumulative overflow curve at uséer

P,.(t)  transmit power of BSn in time slot¢

P(t) BS transmit power vector in time slot

P peak power constraint for the BS’s

P optimal power vector to the LP relaxation
m path gain from BS: to userun,,

By, channel bandwidth

T duration of a time slot

. noise power at usern,,,

Cn capacity of the celin downlink

Cm(¢)  min. rate for usenn,, without underflow
Cmin(t)  the largest value of ™" (t)

) SINR at usemun,,

Ami(¢) - minimum SINR corresponding 077" (t)

Amin(t)  SINR corresponding te'™ (t)

ymaz(t)  max. SINR for usetin,, without overflow

Atk receiver sensitivity at usen,,,

A matrix of path gain ratios defined in (D.5)

rmin defined as diafy ™" (t), v (t), - - - , v (t)}

| N defined as diagy"™ (t), 35" (t), - - -, bar~yiE" ()}

A M x M matrix defined agl'™ — [™in)

~ytar target usenn,,, SINR for distributed alg.

Lt defined as dia@y!™ (t), v (t), - -+ , 4% (¢)

Vp, vector of elements,,, /G

U RLT substitution variable for logarithm terms
Urnike RLT substitution variable for quadratic terms
a, B parameters for the distributed algorithm

in neighboring cells that use the same channel. There ischfoethe BS'’s to adopt power control
to mitigate such inter-cell interference.

We consider the problem of streaming multiple VBR videos ia thulticell network. We
assume the wired segment of a video session path is reliatheswfficient bandwidth, while

the last-hop wireless link is the bottleneck [144]. Thus tberesponding video data is always
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Figure 6.1: A multicell wireless network with concurrent VBRIeo sessions. The inter-cell
interference experienced by the central cell user is riist.

available at the BS before the scheduled transmission tineeadlipt theleterministic VBR video

modelin 4.2.

6.2.2 Problem Formation

For the multicell wireless video network, consider a specifiannel and lg = {un;, una,
- ,unys } denote the set of users sharing the channel, whegegis the user in celn.! Let the
BStransmit power vectobe P(t) = [P (t), Py(t), - -+ , Py (¢)]" in time slott. The capacity of the
downlink from BSm to userun,,, denoted a¢’,,,(t), depends on the SINR at,,,, which can be

written as
_ G P (1)
Zk;ﬁm G?Pk(ﬂ +

whereG}" is the path gain from B to userun,,, andn,, is the noise power atn,,. We assume

Y (P(2)) (6.1)

slow-fading channels such that the path gains do not chaftenveach time slot [50], but vary
over different time slots following a certain distributiomhe downlink capacity”,,(t) also de-

pends on the channel bandwidlh, and the transceiver design, such as modulation and channel

10-1 index variables can be used to model the case where nosesthe channel in some cells, but are omitted for brevity.
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coding. Without loss of generality, we use the upper bourgredicted by Shannon theorem:
Con(P() = Bylog (1+3m(P(1))) (62)

The impact of fading channels is incorporated in the SINRGIRY. For practical systems, the
achievable capacity may be a fraction@f,(P(t)), but this part is omitted for brevity.
Once the link capacity is determined,, ()7 video bits will be delivered to usen,, in that

time slot. The cumulative transmission cut¥g,(¢) can be written as
Xm(0) =0; X,n(t) = Xon(t — 1) + Cr(t)T. (6.3)

Assume peak power constraint P,, < P, for all m. The problem is to determine the transmit
power vectorP(t), for 0 < ¢ < max;{L;}, such that the resulting cumulative transmission curves
satisfy

Dy (t) < X (t) < Bp(t), forall m, t, (6.4)

i.e., without causing playout buffer underflow or overflowné the video frames have variable
sizes and the video sessions have random phases, largesffaomedifferent sessions are less
likely to occur in the same time slot. Jointly consideringveo control for the downlinks is, in
some sense, analogous to statistical multiplexing of VBRitflows.

From (6.2)(6.4), the feasible SINR range at user,, is

max{0,Dm (t) = Xm (t—1)} Bm (t)—Xm (t—1)

e Byt 1<y, <e Byt —1. (6.5)

In (6.5), the lower bound is the SINR that just empties thédsutithout causing underflow. The
upper bound is the SINR that just fills up the buffer withoutsiag overflow.

Generally, the feasible transmit power vect(t) is not unique for a given set of VBR video
sessions. Among the set of feasible solutions, a schedatérdnsmits more data is more desir-

able since it provides a larger search space for optimizengsimit power vectors for future time
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slots. Omitting the consta,,, we formulate the optimal power control problem for VBR video

termed problem OPT-VBR, as

maximize )~ log(1 + v (1)) (6.6)
meU
. G™ P (t)
subjectto: ~,,(t) = n ,Vm 6.7
’ O S PR T 61
T () < ym(t) < 9™ (t), Vm (6.8)
0<P,<P,Vm, (6.9)

wherevy™me(t) is the upper bound in (6.5) and’(t) is the larger one between the lower bound
in (6.5) andh!*, a minimum SINR requirement imposed by the transceiveesi
In problem OPT-VBR, the total amount of video data deliveretinre slott¢ is maximized,

under playout buffer underflow and overflow constraints agmkgransmit power constraints. This
is a nonlinear nonconvex problem, to which traditional enweptimization techniques do not
directly apply. Furthermore, to achieve the objective adiding playout buffer underflow and
overflow, the SINRs may assume values ranging from very lowety high. Thus the existing
high SINR approximation [59] and low SINR approximation §]3echniques cannot be used. In

the following, we first prove the existence of feasible Solus. We then derive effective centralized

and distributed algorithms to solve problem OPT-VBR in Sewi6.3 and 6.4.

6.2.3 Existence of Feasible Solutions

Due to the wide range of VBR video frame sizes, the correspgn8INR requirements also
assume a wide range of values. Under conditions where mdey @essions coincidently transmit
their large frames in the same time slot, problem OPT-VBR nwyhave a feasible power assign-
ment to deliver all the frames. In this section, we derivedbieditions for the existence of feasible
power assignments. We assume a centralized scheduler muttieell network, which has prior

knowledge of all the path gains and the cumulative conswongtnd overflow curves.
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We define theminimum required ratdor userun,, in time slott, denoted a&™"(t), as the
bit rate such that the playout buffer is just emptied, buhaiit underflow, at the end of time slot

We have the following result fa®"(¢).

Lemma 6.1. The largest value for the minimum required r&t@" (¢) is C™(t) = [D,,(t) —

Dy, (t —1)]/7.
Proof. See Appendix D.1. n

We have the following condition for the existence of a felsfimwer assignment for problem

OPT-VBR.

Theorem 6.1. There exits a feasible power assignment for problem OPT-\(BRnhe slott, if

there exits a feasible power assignment that can achieveatieevector[C;"" (t), C5™(t), - -,
Cri™(1)].

Proof. See Appendix D.2.
O

Theorem 6.1 allows us to evaluate, for a given set of videothere is a feasible power
assignment for each time slot. There is no need to considdrahsmission schedules and playout
buffer occupancies in previous time slots. At the beginmifiime slott, we obtainy™"(¢) from
the cumulative consumption curve(t) and channel gains. If the linear system (D.4) is solvable
and the resulting® satisfies constraint (6.9), then there is a feasible povsgasient for problem

OPT-VBR for this time slot. The following fact from [51] can lbsed for the feasibility test.

Fact 6.1. The following statements are equivalent: (i) there exitsaaitdle power assignment sat-
isfying (D.4); (i) the maximum modulus eigenvalugbf*"A) is less thart; (iii) the reciprocal

matrix (I — TminA)~1 =3 (I_‘"”'”A)k exists and is positive component-wise.
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6.2.4 Comparison with a Lazy Scheme

A “lazy” scheme is proposed in [136] for VBR video transmissiaver a wired network.
This is an ON-OFF scheme and it transmits a video frame asakmssible before its playout
deadline at the maximum link speed, which minimizes the iregwclient buffer size. In multicell
multi-user wireless VBR video streaming, the maximum linkexp varies from time to time due
to interference and channel fading. Thus, the original Bayeme cannot be applied directly.

We enhance the lazy scheme to support multicell multi-u&f Video streaming, termed W-
Lazy, where every BS transmits a frame that is needed for ptaydhe next time slot. Then we
can determine the rate vector (and the transmit powersyvags gi Theorem 6.1. We use W-Lazy
as a benchmark for comparison and evaluation of the proplgedthms. We have the following

results for W-Lazy.
Corollary 6.1.1. Problem OPT-VBR has a larger solution space than the W-Lelzgrse.
Proof. This result directly follows Theorem 6.1. n

Corollary 6.1.2. If C*(t) = [C;(t), ..., C(t)] is the solution to problem VBR-OPT, then any other

vectorC(t) that is element-wise smaller tha (t) has a smaller solution space.

Proof. This result also follows a similar process as in the proofloédrem 6.1. O

6.3 Centralized Algorithm

As discussed, problem OPT-VBR is a nonlinear nonconvex propko which traditional
convex optimization techniques do not directly apply. Iistbection, we present a centralized
algorithm to provide solutions with bounded optimality gafpe first use RLT to obtain a linear
programming (LP) relaxation of problem OPT-VBR [145]. Werthacorporate the linear relax-

ation into a branch-and-bound framework, which can prodieg-optimal solutions.
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6.3.1 Reformulation and Linearization

We first applypolyhedral outer approximatiofor the logarithm functions in problem OPT-
VBR to obtain a Polynomial Programming Problem OPT-VBH{46]. We then us®LT bound-
factor product constraint$o relax the quadratic terms to obtain an LP relaxation OBRY).
The time slot indext) is dropped in the following to simplify notation.

We first process the logarithm functions in the objectivection. Lettingu,,, = log (1 + v,,),
we obtain a linear objective function, ., u,, and new constraints,, = log (1 + ~,,). We deal
with the new constraints using polyhedral outer approxiomat Sincey™" < -,, < 47 we

chooseH points, denoted a&y” }, within this range as

1+ e
14

H-1

wherey? = ymn and~H-1 = qmaz_\We can obtain @onvex envelofor the logarithm function
in [ymin - ~maz] -which consists ofH tangent lines at thé/ points given in (6.10) and the line

segment connecting the two end points. We relax the logarithnstraint by using its convex

envelop, represented by the following new linear constsain

log (4™ ¢, max log (14+97,%%) min
um 2 max __ ,{;Lin (/Ym - ’Ym) + max __ ,%in (/ym - 7777, )
Tm Tm Tm Tm

U < log(1+98) + 208 h=0,1,-  H—1.

The first line is for the segment connecting the two end ppamd the second line is for the tangent
lines at theH points. A four-point approximation is illustrated in Fig26
With the polyhedral outer approximation, we obtain a polyn programming problem

OPT-VBR(p), as given in (6.11) (6.18). We can rewrite the last constraint (6.18) as

> Grym Py — GPry + 1y = 0,
k#m
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Figure 6.2: Four-point polyhedral outer approximationdgr = log(1 + 7,,), 1 < v < «,, <

e,
maximize Z U (6.11)
melU
subject to:
GrPy — (Z GpP, + nm> ymin >0, ¥ m (6.12)
k#m
GrPy — (Z GpP, + nm> ymar <0, ¥ m (6.13)
k#m
0<P,<P,Vm (6.14)
m 2 TfLELm—TYLZTL)(’ym - f)/m) +
Tm T Tm
1 1 max .
M(%ﬂ iy (6.15)
Y= Y
h Y — Vi
m < log(1 N b 6.16
tm < log(1+77) + o, ¥ (6.16)
) 1 _|_,ymax H—_1
ho= (14 yminy —1,Vm,h 6.17
Tm ( Tm ) 1+ ryglun y V1T, ( )
G"P,,
Ym “ , Vm. (6.18)

Dt G P+ 1

which contains quadratic terms in the formrgf P.. We next introduce RLT bound-factor product
constraints to remove such terms and to obtain an LP retaxati
Define substitution variables,, = ., P, for all m, k. Since~,, and P, are bounded by

their respective lower and upper boundsyg$* < v,, < v and0 < P, < P, we obtain the
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following RLT bound-factor product constraints

[ (oo =" - (P = 0) 2 0
(4% = ) - (Pe = 0) = 0
(o = 2) - (P = P) = 0

| (™ =) - (P = P) =0

Substitutingy,,, P. = v,.x, We obtain the following four linear constraints fay,:

Uk — Y Py > 0
Y Py — U 2> 0

ymarp _ aymaz Py Pt vy > 0.

The quadratic term$,~,, are thus replaced with,,, with the above linear RLT bound-factor
constraints, and an LP relaxation OPT-VBRS$ obtained as given in (6.19) (6.30).

The LP relaxation OPT-VBR) can be effectively solved with an LP solver in polynomial
time. The optimal solution to the LP relaxation consists{éf, w*,y*,v*}. Itis worth noting that
during the reformulation and linearization procedure, wanty relax the logarithm function in
the objective function of OPT-VBR. The original constrainf<QPT-VBR are preserved in OPT-
VBR(!). Therefore, we have the following theorem regarding tlaesitality of the solution, which
greatly simplifies théocal searchprocedure of the branch-and-bound algorithm to be predemte
Section 6.3.2.

Theorem 6.2. The optimal transmit power vectdt to the LP relaxation OPT-VBR)(is a feasible

solution to the original problem OPT-VBR.

6.3.2 Branch-and-Bound Algorithm

According to Theorem 6.2, we can substitute the optimal passignment®* for the LP

relaxation into problem OPT-VBR to obtain a lower bound, wtitie LP solution itself provides
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maximize Z U (6.19)

meUu
subject to:
G Py — (Z Gy Py + nm) i >0, Y m (6.20)
k#m
G Py — (Z GPPy+ nm) YR <0, ¥ m (6.21)
k#m

0<P,<P,Vm (6.22)

m > ﬁ(% —Ym) +

Tm T Tm
log 1 + /YTTfrlmx min
ﬁ(% — "), Vm (6.23)
T T Tm

U, < log(1+92) + D = v m,h (6.24)

— m 1 +r)/7’17:74 ) Y

) 1 + ,yma:c H-_1

h— (1 4 Amin (—m> —1,Vm,h 6.25
Tm ( Tm ) 1+ 'Vynr;”n V.M, ( )
Ve — V" P, >0, VM, k #m (6.26)
(Y — YVP — Ve + Y P, > 0, Y om, k #m (6.27)
VY Py — Uy > 0, YV m, k #m (6.28)
(Y = Yn) P = 4™ P + Ui > 0, ¥V m, k #m (6.29)
> 0mkGy = G Py + MY = 0, ¥ m. (6.30)

k#m

an upper bound. We next incorporate the LP relaxation intoaadh-and-bound framework to
obtain an algorithm that can produced)teptimal solutions.

Branch-and-bound is an iterative method for solving optatian problems, especially for
discrete and combinatorial problems. A branch-and-boundgulure has two key components.
The first one, calledbranching is to partition a problem into subproblems. The procedsinei
peated recursively to each of the subproblems and all pemtisebproblems naturally form a tree
structure, i.e., théranch-and-bound treelts nodes are the constructed subproblems. The leaves
of the tree is also call theroblem List The other component Isounding which is a fast way of
finding upper and lower bounds for the optimal solution faztesubproblem. For a maximization

problem, an infeasible upper bound (UB) can be found by sglarelaxed problem. Aocal
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searchalgorithm is then used to explore the neighborhood, to firehaible lower-bounding solu-
tion (LB). As discussed, we can easily derive upper and lowends by solving the LP relaxation
(no need for local search). The core of the approach is amadigmn that, for a maximization
task, if the upper bound for a subproblémis smaller than the lower bound for any other sub-
problemi,, thenl; and the branch rooted gtcan be safely discarded from the tree, such that the
computational complexity can be reduced. This procedutalledpruning

The algorithm terminates when the upper bound rea¢hese) of the lower bound. Let the
optimal object value b® < UB,we haveLB > -UB > =0 = (1 —e+ €& - € +--- )0 =
(1 — €O, for0 < € < 1. The pseudo code for the branch-and-bound algorithm isngive

Algorithm 7.

6.3.3 Enhancement

In this section, we further introduce a heuristic to acakethe convergence of the branch-
and-bound algorithm. At the beginning of time sioif the playout buffer occupancy is above a
certain threshold, say, 80%, aig,(t — 1) > D,,,(t) at usern, we setP,,(¢) = 0 and remove the
link from the optimization process.

Generally the playout buffer size should at least be grehger the largest frame size. Given
the large variations in VBR frame sizes, there could be mleltimmes stored when the buffer is
close to full. When the above conditions are satisfied, tref#tle chance of buffer underflow
at the end of time slat even if we do not transmit anything to user On the other hand, if we
schedule a non-zero powe, (t) for this link, only a small amount of bits can be transmitteed
to the buffer overflow constraint, but at the cost of reduc8dRS at all other links. Excluding
such links from transmission not only greatly speeds up timyergence of the branch-and-bound

algorithm, but also increases the SINR and capacity of abgve links.
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Algorithm 7: Branch-and-Bound Algorithm

1 [Initialization|

2 Obtain LP relaxation OPT-VBR)as Prob 1 ;

3 Set optimal solutiosol = ¢, Problem listS = {Prob I}, UB = oo, andLB =0 ;
4 Solve Prob 1 for solutiof P, @, 7, 7'} and upper bound B; ;

5 Use P, (6.6), and (6.7) to get lower bourldB; ;

6 SetUB =UB; andLB = LBy ;

7 | Iteration & pruning;

8 Select Prold with the largest/ B, in S and sel/ B = U B;;

o if LB, > LB then

10 | Setsol = P/andLB = LB, ;

11 if UB < (1+ ¢)LB then

12 | stop with solutionsol ;

13 else

14 \ remove all probg in S with UBy, < (1 +¢)LB ;
15 end

16 end

17 | Partition/;
18 For Probl, find the maximum relaxation error among all RLT variableg,,e.
maX, k{[Vm Pk — Vmkl} ;
19 Evaluate the following condition:
(Y =) min{yy, =y, Y = b = (PRt =Pt ) min{ Py, — P, Pret— P L
20 if truethen
21 | partition [y, e into [y, ;] and[vy,, v ;
22 else
23 | partition [P, prer)into [P, Py ) and [Py, Prer] ;
24 end

26 Solve the partitioned prolds and(, to get solutionsol;, , sol;, and bound$/ B,,, U B,,,
LBll, LBl2 ;

27 Remove Prold from S ;

28 if (14 ¢)LB < UB,, then

20 | add Prob; into S ;

30 end

31 if (1+¢€)LB < UB;, then

32 | add ProbintoS;

33 end

34 if S = ¢ then

35 | stop;

36 else

37 | goto Stes;

38 end
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6.4 Distributed Algorithm

Although the RLT-based branch-and-bound algorithm canigeoa(1 — €)-optimal solution,
it requires a centralized implementation. A centralizedtoaler is needed to collect network, link
and video related information, and to update transmit pdaregach downlink. In this section, we
develop a distributed algorithm for problem OPT-VBR that t@nimplemented in each BS and
operate with local information.

We assume each BS obtains video cumulative consumptionscane playout buffer sizes
for its users during the video session initiation phase. h&tlbeginning of time slot, each BS
m computes for usetin,, the minimum rate asD,,(t) — X,.(t — 1)]/7, i.e., the data rate that
empties the playout buffer at the end of time gldut without underflow, and the maximum rate
as[B,,(t) — Xn(t — 1)]/7, i.e., the data rate that makes the playout buffer full atthe of time
slot ¢ but without overflow. BSn then translates the minimum and maximum rates to minimum
and maximum SINRs, i.ey™"(t) andy™*(t) as given in (6.5). In the following, we again drop
the time slot indext) to simplify notation.

To maximize objective function (6.6), B& sets a target SINR ag’” = ~™**, and tries to
achieve the target SINR by adjusting its transmit power. giedlem then becomeshistributed
Constrained Power ContrqDCPC) problem [48]. BSn first randomly sets its initial transmit
power as) < P2 < P. Let~! be thei-th SINR measurement at use,,,, which is fed back to
BS m. BSm then uses the following DCPC algorithm to update its poweratceiving the-th
SINR feedback:

tar
p,;:mm{p, I P;gl}, i=1,2. (6.31)
/77,

m

If the 7/*"'s are feasible (see Section 6.2.3), the power vector séfi¥sP! ... Pi ...} is

m

proved to converge to a unique positive power vector satigfthe following equation [48]

—

P = min {ﬁ, T (AP + ﬁ)} , (6.32)
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Algorithm 8: DCPC Algorithm

1 | Initialization | ;
2 BSm obtainsb,,,, D,,, andB,, for userun,, ;
3 BSm computes SINR boundg"*® and~™ ;

m

4 BSm setsy!e" = yme* and P,,(0) € (0, P ;

s [Iteration;

6 BSm receives SINR feedback and updates its power as:
Py, = min { P, (v /7,,) Pt}

7 if (P! = P for g iterations) & (!, # ") then

g8 | resetthe target SINR asj" = " + o - (ylor — yminy ;

9 end

10i=17+1andgoto Step6;

whereT" = diag{7"*"} = diag{~i*",~4",--- ,~{"}. Furthermore, the converged power vector
P*(t) also achieves the target SINB" (¢) for each BSn. The convergence result is summarized

as the following fact from [48].

Fact 6.2. With the DCPC algorithm (6.31), the transmit power vector &ges to a unique pos-
itive power vectorP* satisfying (6.32). After convergence, eitHer achievesy'®" or at least one

of the components iF* is equal toP.

The pseudo code for the distributed DCPC algorithm is giveAlgorithm 8, wherea is a
fraction in (0,1) and3 is a positive integer. If BSn’s transmit power remains at the maximum
power P for j3 iterations, while the target SINR" is still not achieved, we reset the target SINR
asylar = ymin 4 o . (ytar — 4min) and restart the iterative update process. We chaose).618,
the reciprocal of thgolden ratiq and from 2 to 5 in our simulations.

In practice, the path gains vary over time due to channehtadi is possible that during some
time slot, the transmission is not feasible even for the mim required rate. It is nontrivial to test
the feasibility of the target SINR vectgf*” in a distributed manner with only local information.
In fact, if the target SINR vector is infeasible, the problefifinding the largest set of links that
can be supported at the given SINRs is proved to be NP-Com[ik.[Therefore, we adopt the
following heuristic strategies to handle the case whenahget SINR vector cannot be achieved

by a feasible power assignment due to deep fading channels.
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i) In the first time slot, if the DCPC algorithm does not conweng a certain number of steps,

suspend the transmission of the video with the largest freireefor sometime and retry the

algorithm.

i) Adopt the acceleration enhancement as in the centcagorithm, which is described in

Section 6.3.3.

iii) If the DCPC algorithm does not converge for the redugé&d (see Line 5 in Algorithm 8),

further reduce the target SINR a§"™ = ™" + o - (yle" — 4™"), If still no convergence
wheny" = (1 4 ¢€) - y™" for 0 < € < 1, all the links whose buffer will not be empty in
the next time slot will pause their transmissions. Sinceatgerithm always tries to transmit
as more data as possible (i.e., by setting a high target SINEhever possible), it is highly

likely that such links won't have buffer underflow in the fmNing time slots.

If all the above steps fail, the BS suspends its transimmsand the user freezes the playout

precess until the next time slot.

6.5 Simulation Results

To evaluate the performance of the proposed algorithmsjwelate streaming VBR videos

in a 7-cell wireless network. We assume the channels within aarellorthogonal and inter-cell

interference is the major limiting factor. The channel baitth is B, = 1 MHz. The path

gain averages are set€@j" = d,.!, whered,,, is the physical distance from BSto userun,,.

We assume Rayleigh fading channels in all the simulationgr&vthe normalized path gain is

exponentially distributed ag(Gy") = exp{—G7/G™} for G > 0. The distance from a user to

its corresponding BS is uniformly distributed from 100 m t®Q@0n and the inter-cell BS distance

is from 1600 m to 2000 m. The temperatur&is= 290 Kelvin and the equivalent noise bandwidth

is also 1 MHz. The peak power constraintis= 1 Watt.

In each cell, the channel is dedicated to one mobile userBi Video streaming. We assume

BS’s 1, 4 and 7 are streaming moviar Wars BS’s 2 and 5 are streamingBC Newsand the
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remaining links 3 and 6 are transmittifigkyo OlympicsWe use the VBR traces for these videos
from the Video Trace Library hosted at Arizona State Uniig{d.39] in all the simulations. The

playout buffer size is set to be 1.5 times of the largest fraine in the requested VBR video.

6.5.1 Centralized Algorithm

We implement the branch-and-bound centralized algoritemguMATLAB. We choose =
10% for the simulations. From the VBR video traces, we derive tlmawative consumption and
overflow curves. The centralized algorithm computes theropéd power assignment for the BS’s
at beginning of each time slot. In Fig. 6.5.1, we plot the clative consumption, overflow and
transmission curves f@tar Wardransmitted on link 1. The top subfigure is for 10,000 franvés.
also plot the curves from frame 1,960 to frame 1,980 in théobosubfigure, while frame 1,969
has the largest size among the 10,000 frames. We observia¢ghatmulative transmission curve
X (t) is very close to the cumulative overflow curie(t), indicating that the centralized algorithm
always aims to maximize the transmission rate as alloweté¥puffer and power constraints, and
the playout buffer is fully utilized for most of the time. Tigeis no playout buffer overflow or
underflow for the entire range of the movies.

In Fig. 6.6, we plot the upper and lower bounds for objectivection (6.6) for time slot 1.
This is the hardest time slot with respect to power contiogesall the sessions are transmitting
I-frames and all the playout buffers are empty in this time 8 our simulations. We observe
the optimality gap between UB and LB is continuously deaedamtil thee = 0.1 threshold is
reached. In other time slots where the frame sizes are nsistently large and the playout buffers
are close to full, it usually takes only a few (e.g., 5 or 6)atens to reach the optimality gap
threshold.

We also evaluate the accelerated scheme under the sameavide®twork conditions. The
curves for link 1 are plotted in Fig. 6.5.1. It can be seen thaing time slots 1,963, 1,967,
and 1,971, there is no transmission on link 1 since the plaofier is over 80% full. Pausing

transmission in these time slots makes it easier for oth&s lio transmit large frames and speeds
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Figure 6.3: The cumulative overflow, transmission, and gon#ion curves when transmitting
Star Warsat link 1 with centralized algorithm in the seven-cell netkwo
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Figure 6.5: The cumulative overflow, transmission, and gonion curves when transmitting
Star Warsat link 1 with DCPC in the seven-cell network.

up the convergence of the algorithm, while causing no buffeterflow at link 1. Since usually
large frames rarely occur in the same time slot (exceptrioe 8lot 1), this is analogous to statistical
multiplexing of VBR videos. We find in the simulation, a linkrcpause in over 60% of the time

slots with the acceleration heuristic, resulting in sigrfit reduction in computation time.

6.5.2 Distributed Algorithm

We next examine the performance of DCPC. The network and vidags are the same
as those in the centralized algorithm simulations. The dative overflow, transmission, and
consumption curves obtained by DCPC are plotted in Fig. 6ds.5tar Warstransmitted on link
1. We observe very similar performance as in the case of theazed algorithm shown in
Fig. 6.5.1. The cumulative transmission curve is again wdvge toB,,(t), and there is neither
buffer overflow nor underflow during the transmission of D0,@&rames.

To compare the distributed and centralized algorithms, evapute the sum of the bit rates

of all the links in each time slot. The acceleration schemwisused for both algorithms in this
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Figure 6.7: Rate sums with the algorithms with a seven-lirtkwoek.

simulation. The rate sums are plotted in Fig. 6.5.2 from tstg 6,800 to 6,840. We observe
that the sum rates achieved by the centralized algorithntlaatdoy the distributed algorithm are
identical for most part of this interval. Examining the ratans for the entire 10,000 time slots,
we find that the rate sum achieved by the DCPC algorithm is wBBP6 of the corresponding rate

sum achieved by the centralized algorithm in over 97% ofithe slots.
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rates reach stable values after a few steps.
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The convergence of the distributed DCPC algorithm is platideigs. 6.5.2 and 6.5.2 for one
of the time slots. The accelerated scheme is incorporatddD@PC, such that a linke may pause
its transmission if its buffer is over 80% full and,,,(t — 1) > D,,(t). The evolution of the BS
transmit powers are plotted in Fig. 6.5.2, where after 2Bsstall the transmit powers converges
to a value between 0 and = 1 Watt. The converged power vectoris = [0.0023, 0.208, 0.185,
0.0013, 0.1637.1 x 10794, 0.188] Watt. The evolution of the bit rates are plotted ig.F.5.2. It

is interesting to see the data rates converge faster tharatiemit powers in this case. All the data



6.5.3 Empirical Performance Evaluation

We evaluate the performance of the proposed schemes by doggaem with the following

two schemes.

e A round-robin scheme where the BS allocates power quality of service(QoS) based
round-robin fashion, which favors the session that wouftesbuffer starvation if no trans-
mission is scheduled. When a specific BS is selected for trasgmni it transmits the video
with maximum power without overflowing the client buffer,daall its neighbors remain

silent in the same frame-time slot.
e W-Lazy, as described in Section 6.2.3.

First, we investigate the average buffer utilization at ehdach time slot. When underflow
happens, the missing frame is discarded, and the next fraliegevecheduled for the transmission
in the next time slot. We observe that the proposed RLT and DCRéhses achieve higher average
buffer utilization than the other two schemes. Fig. 6.10xghthe average buffer utilization from
frame-time slotl, 600 to 1,700. We find that the buffer utilization of RLT and DCPC fluctuate
around90% mostly, while the utilization of the Round-robin scheme igtie range oH0% to
80%. We also find that the W-Lazy scheme always achieves a zeferhuiflization,since it only
transmits each frame as late as possible in each time slthheAgnd of a time slot, all the data will
be comsumed by the user and the buffer is left empty.

We then compare the average number of underflow events ie Babl we find RLT achieves
underflow free transmission, while the number of underfloengs for DCPC is negligible in the
simulations. This is because both schemes aim to transmitiak video data as possible under the
feasible condition in each frame-time slot. The extra vidata transmitted will be in the playout
buffer to provide a cushion to future large frames or netwdykamics. On the other hand, both
Round-robin and W-Lazy suffers a large number of underflomevélNe also illustrate the buffer
underflow events in the period from 680 to 1,700 in Fig. 6.11. The red dot circles indicate the

buffer underflow. It can be seen that the cumulative transioriscurve lies below the cumulative
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Table 6.2: Number of underflow events

RLT DCPC Round-robin  W-Lazy
Mean 0 0.2 516 1076
Conf. Int. [0,0] [—0.355,0.755] [442,591] [514,1637]

consumption curve when buffer underflow events occur. Tégslts in an infeasible transmission
schedule, which causes frozen playout.

The average power consumption of the schemes are shown@IagW-Lazy has the lowest
power consumption. Due to the variation of frame size and/ok condition, the transmission
of W-Lazy are infeasible in many time slots. To prevent thedience of power allocation, some
video sessions should be paused and the power savings ozWalkka achieved by pausing video
transmissions. However, this is at the cost of significamitye buffer underflow events, which are
undesirable for user experience. The Round-robin schee®ttyitransmit as much video data as
possible. However, it chooses a session greedily and patisesunselected video sessions. This
also causes many underflow events for the unselected ses8isn, due to the round robin fashion
and limited buffer size, when the unselected session beesetreted, its low buffer utilization will
lead to a larger power consumption in order to fill the bu#specially when it misses the previous

good channel condition and the channel condition is wordheaicurrent time slot. Thus, the
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Figure 6.11: lllustration of underflow events.

proposed algorithms achieve the better balance betweamtdrgy consumption and the quality of

experience of the video streaming.

6.6 Related Work

A thorough review in VBR video model and VBR video streamingrov@ged networks has
been explored in 5.6. Due to the fundamental difference &etwireless and wired CBR links,
these techniques do not directly apply to our problem of VBRrahe multicellular wireless
networks. In this chapter, we take advantage of power cbimmwireless networks to adjust the
capacity of wireless links based on video frame size infaglonasuch that we can jointly optimize
the transmission ahultiple VBR video sessions ovenultiple VBR channels. Our approach does
not depend on any channel or video traffic models, and candeted for CBR video as well.

Power control is an important problem for interferencetiéd wireless networks. Most prior
work focuses on maximizing network utility in the forms ofN&R or bit rate [48,59, 138]. In [48],

Grandhi, Zander, and Yates presented centralized andbdistd power control algorithms for
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achieving target SINRs in a cellular network. In [59], Chiatgdsed the problem of joint power
control and congestion control, aming to maximize the thhguut of TCP-Vegas over an ad hoc
network. Gjendemsgt al. [138] presented centralized binary power control alganghfor max-
imizing the sum rate over multiple interfering links. Altingh laid out the theoretical foundation
and developed effective algorithms, these techniquesatarendirectly applied for VBR video

over multicell wireless networks with buffer and delay ciamts.

6.7 Conclusions

We studied downlink power control for VBR video streaming inlticell wireless networks.
The problem formulation considers downlink power contioter-cell interference, VBR video
characteristics, and playout buffer requirements. We ldpeel a centralized algorithm that can
provide (l¢)-optimal solutions, and a fast distributed algorithm thaty needs local informa-
tion. The algorithms are evaluated with extensive simatetiwith VBR video traces and fading
channels, and are demonstrated to be effective for strga¥®RR videos over multicell wireless

networks.
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Chapter 7

Energy Efficiency on Downlink Multiuser VBR Video Streaming

7.1 Introduction

In this chapter, we present a power efficient downlink powsrtiol framework in wireless
system with orthogonal channels feariable bit rate(VBR) streaming with focus on minimizing
the power consumption for the total streaming period. Wesichar the problem of optimal power
allocation for multiuser VBR video streaming in the downlioka cellular network with orthog-
onal channels. We assume the wireline segment of a videmsgssth is reliable with sufficient
bandwidth, while the last-hop wireless link is the bottlekeThus the corresponding video data
is always available at the BS before the scheduled trangmissne. We adopt a deterministic
model for VBR video traffic that incorporates video frame aka/put buffer characteristics. The
BS allocates a transmit power to each user in each time sla.pitblem is to find the optimal
power control schedule to stream the requested VBR videotdatsers, such that the total trans-
mit power consumption can be minimized, while minimizing thuffer underflow and overflow
events.

The problem is formulated as a constrained stochastic gg&tian problem. We show that the
problem fits well with majorization theory, which concernighwpartial ordering of real vectors and
order-preserving functions. It answers the question of tearder vectors with nonnegative real
components and its order-preserving functions [13]. A mzgdion-based solution framework is
developed to tackle the problem. First, we prove that thedailye function of the formulated prob-
lem is Schur-convex with the order-preserving property.[S2cond, we investigate the case of a
single VBR video session with relaxed peak power constrale.develop a majorization-based

power optimal algorithm with low complexity, and prove thewer optimality of the proposed
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algorithm and the uniqueness of the global optimum. We atsoahstrate that the proposed algo-
rithm is smoothness optimal as well. Third, we investighte¢ase of multiuser VBR streaming,
where power allocations for the users are coupled with thed& power constraint. We develop
a heuristic algorithm that selectively suspends some séssions, which will not incur underflow
in the next time slot, when the peak power constraint is WealaFinally, the proposed algorithms
are evaluated with trace-driven simulations [139], andstm@wn to achieve considerable power
savings and improved video quality over a conventionalylaacheme [136]. The rest of this
chapter is organized as follows. The system model and probtatement are presented in Sec-
tion 7.2. We transform the problem into a majorization peoblin Section 7.3. The proposed
algorithms are described in Section 7.4 and simulationlteswe presented in Section 7.5. We
review related work in Section 7.6. Section 7.7 concludesdhapter. The notation used in this

chapter is summarized in Table 7.1.

7.2 System Model

7.2.1 Network and Video Source Model

We consider the downlink in a cellular network, as shown ig. Fi.1. There areV active
mobile users in a séf = {1,2,---, N} in the cell that subscribe to the video service. A BS
transmits multiple VBR videos to the mobile users. Each useupies a downlink channel, which
is a spectral/time resource slot, the nature of which dependhe specific multiple access tech-
nigue adopted. We assume that the downlink channels witbéll are orthogonal, due to perfect
synchronization of the spreading codes or the use of guanestor frequencies. We further as-
sume the wireline segment of a video session path is relaitihesufficient bandwidth, while the
last-hop wireless link is the bottleneck. Thus the corresiotg video data is always available at
the BS before the scheduled transmission time. We addeteaministic VBR video mode&Vhich
was presented in the Section 4.2.

The BS allocates a transmit power to each user in each timeLgloP(t) = [Py (t), - - - , Py(t)]

be the power allocation in time slét The Signal to Interference-plus-Noise Ra{f8INR) at user
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Table 7.1: Notation Table for Chapter 7

Symbol Description

N number of mobile users in the cell

U set of users

b, playout buffer size at user

T, total number of frames of the usewideo
Q, total number of bits of the usevideo
D, (t) cumulative consumption curve of user
B, (t) cumulative overflow curve of user
X,(t) cumulative transmission curve of user
P,(t) transmit power of uset in time slott
P(t) power allocation in time slat

Yn (1) SINR at user in time slott

Gn(t) path gain from BS to user in time slott
M (1) noise power at uset in time slot¢

cn(t) downlink data rate of user in time slott
B, channel bandwdith

a transceiver dependent constant

peak power constraint

thei-th feasible transmission schedule

the optimal solution to (7.9)

an evenly distributed rate vector

an auxiliary schedule used in Theorem 7.2 proof

a4 :Ql:%lzglzg-l R

) a mapping functiorR’" — R defined in (7.12)
Y. Z n-dimensional nonnegative vectors

Crnaz(t), Couin(t)  rate of probe lines

U(C) smoothness utility function

n in time slott can be written as

() = Gn(t) Bu(t) /0 (1), (7.1)

whereG,,(t) is the path gain from BS to userand,(t) is the noise power at userin time
slott. We assume block fading channels, where @hgt)’s are i.i.d. random variables with a
certain distribution, for = 1,--- T, [50]. The downlink data rate can be written @3t) =
By log (14 k7,(P,(t))), whereB,, is the channel bandwidth anddepends on the transceiver

design, such as modulation and channel coding. Withoutdbggnerality, we use the Shannon
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capacity as an upper bounding approximation:

cn(t) = Bylog (1 4+ vn(Pu(t))). (7.2)

Once the link capacity is determineg),(¢)7 bits of video data will be delivered to userin

that time slot. The cumulative transmission cuX/g(t) can be written as

Xn(0) = 0; Xp(t) = Xu(t — 1) + colt)r. (7.3)

A feasible transmission schedule should cause neitheoptdyuffer underflow nor overflow, i.e.,
satisfying
D, (t) < X,(t) < B,(t), forall ¢, n. (7.4)

7.2.2 Power-Aware Transmission Scheduling

As discussed, we jointly consider the traffic source modéh@application layer and power
allocation in the physical layer. We adopt cross-layer glesdo compute the optimal feasible
transmission scheduleX,,(¢),0 < t < T, }, for all usersn € U, such that the total transmit power

consumption can be minimized. From (7.2), the requiredstrahpower for user. is

P.(t) = (QCn(t)/Bw — D)na(t)/Gu(t). (7.5)
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A peak power constraint may be applied at the BS, }.&,,,, P..(t) < P, for all t. We then formu-
late the followingconstrained stochastic optimization probleaiming to minimize the expected

total transmit power.

Tn
minimize Y ) "E[P,(t)] (7.6)
ned t=1
subject to: D, (t) < X,.(t) < B,(t),forall n,t (7.7)
> Pu(t) < Pforallt. (7.8)
neu

Due to orthogonal channels, transmission in one channslmiatenterfere with those in other
channels. We first relax the peak power constraint (7.8), be case whet® is large). Then,
problem (7.6) can be decomposed idosub-problems, each minimizing the transmit power of a

video session.

Tn

minimize ) "E[P,(t)],for all n € U (7.9)
t=1

subject to: D, (t) < X, (t) < By(t), for all n, t. (7.10)

For givenB,(t) andD,,(t), the feasible transmission schedule satisfying (7.10piginique.
The i-th feasible transmission schedule is a piece-wise linaarecthat can be represented as a
vectorCi = [¢i(1),--- ¢ (T;,)], whereci (t) > 0 is the data rate in time slat for all ¢. Let

Cr =[ex(1),--- , ¢ (T,)] be the optimal solution to (7.9). For a given VBR video, all taasible

transmission schedules transmit the same amount of vidagida,

D )= c(t)=Q,, forallin. (7.11)

Furthermore, the total transmit power for a feasible scleedan be viewed as a mapping function

d: R — R with

Ty

O(CL) =Y (2% Be — 1), (1) /Gu(t). (7.12)

t=1
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Given such an interpretation of the relaxed problem (718 ,dbjective is to find an optimal
feasible vecto€’, such that its total powe?:, obtained through the mappixg-), is the minimum
among all feasible vecto@;. This interpretation fits well with thenajorizationtheory introduced
in Chapter 2, which provides useful order preserving redaltsnequality problems. Applying
these results, we design an optimal algorithm for solviregdecomposed sub-problem (7.9) in
Section 7.4.1. Then we will examine the case of multiuser VBR@ streaming coupled with the

peak power constraint in Section 7.4.3.

7.3 Problem Reformulation

7.3.1 Majorization Preliminaries

The preliminaries of majorization have been given in Sec#@® of Chapter 2.

7.3.2 Schur-convexity of Problem (7.9)

As discussed, problem (7.9) fits well with majorization thewith a mapping function (7.12).
To solve the problem, we need to find the optimal rate veétpthat is majorized by all other
feasible transmission rate vect«ﬁs, as(f;; < 5;, for all i. If the mapping (7.12) is Schur-convex,
then the total transmit power to achieg& will also be dominated by those of other feasible
transmission rate vectors. That is, the minimum power isdoior problem (7.9). Due to random
path gains and noise powers, stochastic majorizationdrailan ordinary majorization) should be
used, which investigates the inequality properties rdl&erandom variables [13]. We have the

following theorem for the mapping (7.12) in problem (7.9).
Theorem 7.1. The objective function of (7.9) is an increasing Schur-earfunction.
Proof. See Appendix E.1. O

With Theorem 7.1, solving problem (7.9) is equivalent to ifiigdthe optimal rate vectc(ﬁ;;,

such thatC* < C', for all i. Then the total power associated wifj is the minimum since the
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mapping (7.12) is order-conserving. The feasible rateordtiat is closest to equal distribution
will be majorized by all other feasible rate vectors. Theref we transform problem (7.9) to

finding a transmission schedule with the most evenly disteith rates for all the time slots.

7.4 Power Allocation Algorithms

Based on the stochastic majorization interpretation of lpral(7.9) and the Schur-convex
property of its objective function, we first develop a powenimization algorithm (PMA) for the
case of relaxed peak power constraint. We prove its optiynahd the uniqueness of the global
optimal, as well as the equivalence of power optimal and shr@ss optimal. We then describe a

heuristic algorithm for the case of multiple videos coupléth the peak power constraint.

7.4.1 Power Minimization Algorithm

From Section 7.3, an evenly distributed rate vec{ft;’{ft = [Q./(Ty7), -,/ (T,7)] IS
majorized by all feasible schedules, i.@;;pt < (jjb, for all i. However, due to the high variability
of VBR video frames, limited playout buffer size, random pg#ins and noise powerégpt may
not always be feasible. In general, each feasible scheduylece-wise linear with a set of rate
change points, where the rate is increased or decreasedvenphbuffer underflow or overflow.
@3’” is a special case with no such rate change points.

The algorithm in Algorithm 9, termed PMA, can generate a@ietse linear schedule, while
keeping each piece as long as possible and rate variationadlsas possible. The operation of the
algorithm is illustrated in Fig. 7.2. Starting frotg,,; (€.9.,h; in Fig. 7.2), PMA first computes

two probe lines:

¢ One through the starting point and one of the future cornentpof B,,(¢), which can go the
furthest into the future without causing buffer underflovogerflow (e.g., lines h, in Case

1 andhshg in Case 2 of Fig. 7.2). The rate of this probe lin€lis,, (¢) = Ze=Xnlsare)

t—tstart
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e The other through the starting point and one of the futur@eopoints ofD,,(¢), which
can go the furthest into the future without causing buffedenflow or overflow (e.g., lines

hihs in Case 1 andhsh; in Case 2 of Fig. 7.2). The rate of this probe linels;,(t) =

D () Xn(tefarf)
t— tstart

All feasible transmission curves should lie in betweené¢h®ag probe lines in order to go that far.
Furthermore, when the probe lines end, theybbithon eitherB,,(¢) or D,,(t). Otherwise, we can
always adjust one of the probe lines to make them go evenefuiio the future. For example,
see linesh hy andhy k) in Case 1 of Fig. 7.2. We can use lihgh,, which goes further into the
future, to replace liné, 1}, and both probe lines hid,, () eventually (also see linéghg andh;hy
in Case 2).

If both probe lines hitD,,(¢) (i.e., Case 1 in Fig. 7.2), any feasible schedule for thigwale
will also hit D,,(t), since they must lie in between the two probe lines. We thecetback the
upper probe line (i.e., link, h,) to find the latest time when the buffer is full (i.e., pointat time

tstop). Then segment, hy will be chosen as the transmission schedule for this intewi¢h rate

Bn (tstop) Xn (tstav‘t)
tatop tstart

If both probe lines hitB, () (i.e., Case 2 in Fig. 7.2), any feasible schedule for thigwaie
will also hit B,,(t). We then trace back the lower probe line (i.e., liné;) to find the latest time

when the buffer is empty (i.e., poihg at timety,,). Then segmenk;hs will be chosen as the

transmission schedule for this interval, with rédedtston) = Xn(tstare)

tst stop —tstart
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Algorithm 9: Power Minimization Algorithm (PMA-1)

1 BS obtaing,,, D,,, B,,, andB,, for all usern ;

2 Sett = 17tstart = Oatstop = tcl = tCQ = 17 C(min = 07 Cmaz =00 ;
3 while some time slots are not assigned a rete

4 CalculateC,,..(t) andC,,;, (t) over intervallt o, ] ;

5 if Crnin < Crin(t) & Chin(t) < min{Chaz, Craz(t) } then

6 | Chin = Crin(t) andt,, =1t ;

7 end

8 if Crnaz > Crnaz(t) & Crge(t) > max{Cin, Crnin(t) } then

9 | Chnaz = Craa(t) @andte, =t ;

10 end

11 if Crin > min{Chuaz, Craz(t)} then

12 | SelectCip, from tyqr 10 Loy = to, ;

13 else ifCpor < max{Chin, Crnin(t)} then

14 | SelectCq, from tgan 10 gy = to, ;

15 else

16 t+ 4+

17 CONTINUE ;

18 end

19 start = tstop; tstop = tcl = tc2 = tstart + 17t = tstart + 1; Cm'm = 07 Cmax = 00,

20 end

21 while more video frames to transnub

22 Measure the channel gain of the time slot, calculate powiagy3.5), and transmit
the video data ;

23 end

After the transmission schedule f@t;.,+, tst0p) iS determined, we sel,,,: = ts,, and repeat
the above procedure to find the schedule for the next timeviteln Algorithm 9, the algorithm
probes for the longest feasible rate starting frQy), in Stepsi—10. In Stepsl1-14, the transmis-
sion rate for the interval ..+, tsi0p) IS determined depending on which of the two cases it is as
illustrated in Fig. 7.2. Steps—17 are for the case that the rate does not change in the time slot.
Step19 resets the variables to start the computation for the nexheat of X, (¢). Finally, Steps

21-23 transmit the frames following the computed schedule.
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7.4.2 Optimality Proof

We next show that the algorithm given in Algorithm 9 computesoptimal solution to prob-

lem (7.9).

Theorem 7.2. The power minimization algorithm PMA is optimal to problen®j7

Corollary 7.2.1. The power optimal transmission scheéigis unique for giver3, (£) and D,, (¢).

Corollary 7.2.2. The computational complexity of Algorithm PMAGST?).

The proofs of above conclusions are similar to the proofe @hapter 2 and thus omitted for
brevity.

Note that Algorithm PMA is executed during the session séiup. It only incurs a small
initialization delay. In our simulations with VBR video trag, we find the execution time is usually
negligible. When the channel statistics are changed (iwe,td handoff), the schedule will be

recomputed for the remaining video frames.

Corollary 7.2.3. The power optimal transmission schedﬂg is also the smoothest one among

all feasible schedules.

Proof. The proof of Corollary 7.2.3 is given in Appendix E.2.

7.4.3 Multiuser Video Transmissions

We now consider problem (7.6) to compute transmission sdhedior NV VBR video sessions,
which are coupled by the peak power constraint (7.8). Dued@eak power constraint and random
channel gains, the individually calculated transmit p@v@iay violate (7.8) in some time slots.
The problem is further complicated because of the randomredaains, which is not available a

priori (except for the statistics of the channels).
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Algorithm 10: Power Minimization Algorithm for Multiuser Videos (PMAg)

1 Execute power minimization algorithm PMA to compute trarssion schedules for all
active users ;

2 while there are more video frames to transmd

3 Measure channel gains of the current time slot and calcthiatdransmit powers using

(7.5);

4 if peak power constraint is violatetien

5 Select the users who won't have underflow even without tréssaon in this time
slot ;

6 Sort the selected users in decreasing order of powers ;

7 while peak power constraint is not satisfidd

8 \ Decrease the power of the selected users by the order ;

9 end

10 end

11 Transmit the videos and recalculate the optimal transomsstheme for the paused
mobile users for the next time interval ;
12 end

To solve problem (7.6), we develop a heuristic algorithmmed PMA+n, as presented in
Algorithm 10. The PMA# algorithm uses PMA to compute transmission schedules facte
users. Then based on current channel state informatiooirpates the power needed to achieved
the rate for each user, and checks the peak power conspraing P, (t) < P. If the constraint
is not violated, each user’s video data will be transmittetthe@ computed power. Otherwise, as in
Stepsi—10, PMA-m selects those users who will not have buffer underflow ifrttr@nsmissions
are suspended in the following time slot, and sort them inddeeasing order of their required
powers. Starting with the first user, PMA-decreases the powers of the users in the list; if the first
user’s power reaches 0 W but the peak power constraint mtibatisfied, PMAm starts to reduce
the power of the second user in the list; and so forth untijébek power constraint is satisfied.

In some extremely severe channel conditions, the total padweannot even support the
minimum required bit rate for all the users. Some users habe paused and the current frames
be discarded. The corresponding playout of such a user wifrdzen until the next time slot.
Finally, the transmission schedules for the suspended wa#rbe recomputed using PMA as in

Step 11 and the above procedure is repeated.
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7.4.4 Application to Interactive Video Streaming

The ubiquitous spread of mobile devices and trend of mutlimapplications require the
interactive service be supported [148-150]. Thus, it ieBsary to investigate how to apply the
proposed schemes to the case of interactive video streanmtegactive video is a relatively new
and still evolving technology with a broad scope. We focutherthree interactive video streaming
related typical scenarios in the following, and show thatphoposed schemes are applicable for
these scenarios for improved performance.

First, for quick response to user inputs, many interactide streaming applications have
tight delay requirements Such stringent delay requirements have two implicatidsunlike
stored video, not all the future frame sizes are known nowy; the frames sizes for a shddok-
ahead periodLAP) are known. (ii) the playout buffer sizes cannot be éargince a large buffer
usually introduces large delay. Clearly, the proposed seleran be applied to the look-ahead
time period for which the future frame sizes are known, to pote a schedule for the near future.
Furthermore, given the small playout buffer size, usuallghasen transmission rate won't last
very long into the future before it hits either the cumulatioverflow curve or the cumulative
consumption curve (see Fig.4). Therefore the impact otéichiook-ahead period would be small
or moderate at best.

Second, many interactive video applications supMR controls[151]. For example, a
user may slide the progress bar of the video player to repleskip a part of the video. This
case is equivalent to a change in the cumulative overflow andumption curves. The proposed
algorithms will seek to the new start frame that the userirequand recalculate the transmission
schedules for the following frames.

Third, in both“exploratory” online interactive videos (where a user can move through dif
ferent locations in a space or view an object from differemglas) andsideo click through$152]
(where a user can click objects in the video that are linkedth@r contents), new data will be

transmitted after each user input. These are equivaleimetadse of VCR controls. A new set
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Table 7.2: VBR Video Trace Statistics

Video Trace| Average Rate Frame Rate Average PSNR
Star Wars| 331,681 b/s 30 f/s 44.62 dB
NBC News 784,840 b/s 30 f/s 38.80 dB
Tokyo Olympics 509,191 b/s 30f/s 41.46 dB
Terminator 2| 5,085,453 b/s 30 f/s 43.92 dB
From Mars to China| 4,849,711 b/s 30fls 39.26 dB
Sony Demaq 5,803,650 b/s 30 fls 44.07 dB

of cumulative overflow and consumption curves will be delaee(derived from the new data re-
guested) and new schedules computed.

In Section 7.5.1, we evaluate the performance of the prapsskemes under the above in-
teractive video streaming scenarios. Our simulation tesllow that the proposed schemes still

achieve considerable power savings and better video yuladin a conventional scheme for inter-

active videos.

7.5 Performance Evaluation

We demonstrate the performance of the proposed optimal poeverol algorithm through
trace-driven simulations. We simulate the downlink of d wéth 1 mile radius. The channels are
assumed to be orthogonal, each with = 1 MHz bandwidth. We assume that bit errors can be
corrected by error correction codes. The path gain aveg€s, = d,, 4, whered,, is the physical
distance from the BS to user We assume log-normal fading with zero mean &mB standard
deviation. The device temperature290) Kelvin and the equivalent noise bandwidthig, = 1
MHz. The BS streams three movi&sar Wars NBC NewsandTokyo Olympicdo active users.
The video traces are obtained from the Video Trace LibraArabna State University [139]. The
statistics of the three video traces are summarized in TaBle

We first investigate the performance of the power optimabetigm. In the simulation, the BS
streams3, 000 frames of a video sequence to each mobile user located etatiffdistances to the

BS. The cumulative consumption, overflow and transmissiovesuof theStar warsvideo session
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Figure 7.3: Simulation results: transmission curveStair wars

are plotted in Fig. 7.3. It can be seen that the transmisstbeduile always lie in between the
cumulative consumption and overflow curves, indicating thare is no playout buffer underflow
or overflow events in this simulation.

We next compare the optimal power algorithm with a convergidransmission scheme with
respect to the average power consumption at the BS. In eaehstoty the conventional scheme
only transmits the video data that is needed by the decodke &nd of the time slot. It achieves
a cumulative transmission curve that connects all the eqroiats of D,,(¢) (also called thelazy
scheme). Intuitively, such lazy approach should be eneffgyient since it always transmits the
minimal amount of data as needed. However, we will see tleaptbposed algorithm outperform
this lazy approach in the simulations.

In Fig. 7.4, we plot the average power consumption achieyedétwo schemes for increased
distance to the BS. Each point in the figure is the average) df00 simulation runs. The 95%
confidence intervals are plotted as vertical bars in the digihich are all very small.

It can be seen that the proposed algorithm outperforms thnvecdional scheme for the entire

range of distances examined. When the distance to BS is smo#llsbhemes use small transmit
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powers and the power savings are not very big. However, wineedistance is increased, channel
fading has a bigger impact on interference and channel dgp@be proposed algorithm achieves
considerable power savings than the conventional schemen\tie distance is 1,600 m, the total
power of the proposed scheme is only 46.62% of that of theardianal approach, corresponding
to a 54.34% normalized improvement.

We further investigate in more detail the difference of trengsmissions between the two
schemes. The position of a mobile node is set, @00 m from the BS. The firs8, 000 frames
of the Star warsmovie are transmitted to the node using the PMA-1 scheme andeational
scheme, respectively. Fig. 7.5 shows the cumulative poareswmption for the first, 000 frames,
while the energy consumption for each video frame is platte€ig. 7.6 for frames in300, 250].
We observe that at the beginning, thazy’ scheme archives smaller power consumption than
the PMA scheme, due to the fact that it only transmits the mmimh amount of required frames
in each time slot. However, the transmission of fra2né of the conventional scheme generates
a sharp power increase, because it encounters a large feamellaas bad channel condition, as

indicated in Fig. 7.6. The transmission curves of the twceswds are plotted in Fig. 7.7 for the
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Figure 7.5: Cumulative power consumptions achieved by PMghd the conventional scheme.

first 250 frames for the two schemes. Although the conventional sehamhives smaller power
consumption frame by frame for abai% of the 3,000 frames, the average power consumption
of the proposed scheme during the entire peri@d065 W) is much smaller than that of the
conventioanal schemd.(141 W). In summary, the lazy’ scheme only uses the current video
and channel status, and transmits only the minimum amourgcfired video data, It does not
effectively utilize the playout buffer capacity. Thus dwgithe entire transmission period, the
cumulative power may increased due to some large frames athahmnnel conditions. On the
contrary, the proposed scheme aims at minimizing the totabge transmission power during the
entire period. Thus, it achieves considerable power sawogiparing to the conventional scheme.

We also obtain the average execution time of the proposexditiign, under the same setting
but for 20, 000 Star Warsframes. We find that the average execution time is abd@ s on an
IBM Laptop with Intel T24001.83 GHz processor an2l GB RAM.

Finally, we examine the buffer underflow events. The follogvscenarios are simulated:
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Figure 7.6: Power consumption for each frame achieved by ANAd the conventional scheme.

e Scenario 1 P = 1 W; the movies ar&tar Wars NBC NewsandTokyo Olympics50 mobile

users;B,, = 1 MHz;
e Scenario 2 The same setting as i) except that = 125 KHz;

e Scenario 3 P = 10 W; the HD movies arderminator 2 From Mars to ChinaandSony

Demq 20 mobile usersp,, = 1 MHz.

The HD movies have larger frame sizes and higher variahiifygame sizes. The buffer underflow
rates are presented in Table 7.3, each being the ratio ofuimder of underflow frames over the
total number of frames. PMAr achieves considerably lower underflow rates for all theetlsee-
narios. The PMA=m underflow rates are 0.056%, 13.60%, and 14.26% of that ofdheemtional
scheme. Therefore, PMA achieves not only considerable energy savings, but alsd heiter

video quality for the mobile users.
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Figure 7.7: Transmission curves achieved by PMA-1 and theerttional scheme.

Table 7.3: Simulation Results: Playout Buffer Underflow Rates

Scenariol Scenario2 Scenario3

PMA-m
Conventional

0.0005%

1.8%
13.24%

1.66%

0.89% 11.64%

7.5.1 Simulation Results for Interactive Video Streaming

In this section, we study the performance of the proposedrifitgns for interactive video

streaming. First, we simulate the interactive real-tintwi streaming with stringent delay require-

ments and small playout buffer sizes. The same simulatitimgs are used. All the positions of

mobile nodes are randomly generated in the cell. We applgritygosed PMAm, but only assume

only the frame sizes in a small LAP are known.

The transmission curves of VBR movidBC Newsare plotted in Fig. 7.8 for the first00

frames, where the length of the LAP is 16 frames. We may obsiat the proposed algorithm

PMA-m is executed piecewisely for each block of LAP frames, whed®+16. For this range

of frames, there is neither playout buffer overflow nor platybuffer underflow occurs. We then
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Figure 7.8: Transmission curves for real-time interactiekeo streamingNBC Newsand LAP =
16.

Table 7.4: Playout Buffer Underflow Rates for Interactive VBRI&bs with Different LAPs

Scenariol Scenarioll Scenario lll
LAP=16
PMA-m | 0.387% 5.969% 4.766%
Conventional] 0.711% 12.446% 12.495%
LAP=8
PMA-m | 0.377% 5.690% 4.894%
Conventional| 0.620% 11.409% 9.645%

compute the number of the underflow frames over the total murobframes, as presented in
Table 7.4. The PMAm still archive the underflow rate that a¥é.56%, 47.96%, 38.15% of those
of the conventional scheme in this case.

To illustrate the impact of the length of LAP, we further dease it to8 frames and then
run the simulations with random deployed mobile nodes. Tagqut buffer underflow rates are
presented in Table 7.4. For the halved delay requiremeturadly the proposed scheme’s perfor-
mance is slightly degraded due to limited information altbetvideo frame sizes. However, the

PMA-m scheme still archives underflow rates that &0e90%, 49.88%, 50.74% of those of the
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Figure 7.9: Transmission curves after the user skips tmedsan [10s, 20s]|Star Wars

conventional scheme, indicating considerably superiewer performance over the conventional
“lazy” approach.

Finally, we demonstrate the application of the proposedsas to VCR control in interactive
video streaming. We assume that aft@éiseconds of streaming the VBR video (i.e, corresponding
to 300 frames), the user skips the néxtseconds of the video, and then resumes the video playout
from 20 second. We plot the dynamics in the transmission/scheduies of theStar Warsvideo
in Fig. 7.9. Comparing the curves with the original non-skiggransmissions in Fig. 7.10, we
observe that after playing out tl80!" frame, the frame fron301 to 600 are skipped by user’s
operation. Then the franm&)1 is moved to the time-sld01 and a new transmission schedule is

computed for the following frames.

7.6 Related Work

A thorough review in VBR video model and VBR video streamingrov@ed networks has
been explored in 5.6. In an interesting work [95], Salehaletpplied majorization to VBR video

smoothing and developed a smoothness optimal algorithre. pfbof of Theorem 7.2 follows a
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similar approach as in [95]. These prior work are based oagkamptions of a single video session
and constant rate channels, which may not be directly apfdi¢he case of wireless networks.

In this chapter, we consider multiuser VBR video streamirttpnvia cellular network with or-
thogonal channels. We jointly consider power control, wittaffic, and video palyout information
for power minimization. Our stochastic majorization thebased approach is quite different from
the prior works [54, 143], which allow us to develop effeetsgorithms with low complexity and

proven optimality.

7.7 Conclusion

In this chapter, we studied the problem of downlink multiugBR video streaming in cel-
lular networks. Our formulation takes into account the iatéions among power control, fading
channels, VBR video traffic and playout characteristics. Wentilate a constrained stochastic

optimization problem aiming to minimize the BS power constiorpand to avoid playout buffer
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overflow or underflow. We developed majorization-basedrilgms to solve the formulated prob-
lem. For the case of large peak power constraints, we pra/eptimality of the proposed algo-
rithm and the uniqueness of the global optimal, as well aethévalence of power optimal and
smoothness optimal. For the case of multiple videos couplddthe peak power constraint, we
develop an effective heuristic algorithm that selectiv@igpends some video sessions when the
peak power constraint is violated. The superior perforreasfcthe proposed algorithms over a

conventional scheme is validated with trace-driven sirtnorha.
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Chapter 8

Summary and Future Work

8.1 Summary

In the previous chapters, we proposed frameworks for eneffigient designs in Cyber-
physical systems. We investigated the problems by a coatr@loptimization approach, which
contains Lyapunov optimization [12], majorization [13fminear and convex optimization [14].
The synergy of these advanced mathematical tools prodwesevisions for the energy efficient
solutions to alleviate energy resource depletion, deergesenhouse gases emission and air pol-
lution, which evolves a green world in the future.

In Chapter 2, we presented the electric power schedulingipslfor smoothing the demand
profile in power distribution networks. We introducedleterministic electricity supply/demand
modelthat takes into account time-varying demands and theirlohessd We formulated a con-
straint nonlinear optimization problem and incorporated theory of majorization to develop
algorithms that can compute smooth optimal electric powbedules. After the smooth power
schedule is obtained, a distributed user benefit maxinozdtad control scheme is used to al-
locate the scheduled power to individual users, while maiing their level of satisfaction. The
proposed algorithms are highly desirable for grid desigd eperation, which provide smooth
electric power scheduling, minimum peak power and opeagatost. The simulation showed that
the proposed algorithms can alleviate the peak power dp%o This means we can deploy trans-
formers, transmission lines and other electrical devia#smvuch smaller capacity, which save the
captital investment in the power grid construction. Theegation cost saving is aboti; by the
proposed algorithms. Due to the tremendous amount of eéfgyk generation;% cost savings

could indeed contribute to billions of dollars.
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In Chapter 3, we investigated the problem of balancing supply demand of electric en-
ergy in microgrid (MG). We presented a novel framework forashenergy management based
on the concept ofuality-of-service in electricityQoSE). Specifically, the resident electricity de-
mand is classified into basic usage and quality usage. The bs&ge is always guaranteed by
the MG, while the quality usage is controlled based on the N&Bus. Themicrogrid control
center(MGCC) aims to minimize the MG operation cost and maintain thige probability of
quality usage, i.e., QOSE, below a target value, by schegldiectricity among DRERS, ESS's,
and macrogrid. The problem is formulated as a constrairahastic programming problem. The
Lyapunov optimization technique is then applied to deredaptive electricity scheduling algo-
rithm by introducing the QoSE virtual queues and energyagtervirtual queues. The proposed
algorithm is an online algorithm since it does not requing statistics and future knowledge of the
electricity supply, demand and price processes. We deeweral “hard” performance bounds for
the proposed algorithm. and evaluate its performance vatietdriven simulations. The proposed
electricity scheduling algorithm enables an efficientgnétion of DRERS, ESS’s, and residential
power quality management into the smart grid by plug-aray-piterfaces, and provides a promis-
ing paradigm for smart energy management systems in smarfldre simulation showed that the
MG operation cost can be saved uptyo, while keeping the power quality of the users.

In Chapter 5, we studied the problem of power allocatiobade statior{BS) for streaming
multiplevariable bit rate(VBR) videos in the downlink of a wireless cellular network kihtracell
interference. We considereddaterministic modefor VBR video traffic and finite playout buffer
at the mobile users. The objective is to derive the optimalrdimk power allocation for the VBR
video sessions, such that the video data can be deliverdahely fashion without causing playout
buffer overflow and underflow. The formulated problem is alim@ar nonconvex optimization
problem. We analyzed the convexity conditions for the fdated problem and proposed a two-
step greedy approach to solve the problem. We also devebgestributed algorithm based on the

dual decomposition technique. The proposed algorithnectefely allocated the power in BS’s
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to stream the VBR video in cellular networks, while presegvine quality of experiencéQoE)
requirement.

In Chapter 6 we further extended the problem of downlink pavestrol for streaming mul-
tiple VBR videos in a multicell wireless networks, where ddwk capacities are limited by inter-
cell interference. We adopted a deterministic model for VB&RYfit that considers video frame
sizes and playout buffers at the mobile users. The probldmfiad the optimal transmit powers
for the BS’s, such that VBR video data can be delivered to malskrs without causing play-
out buffer underflow or overflow. We formulated a nonlineancanvex optimization problem
and proved the condition for the existence of feasible gwigt We then developed a centralized
branch-and-bound algorithm incorporating the Reformatatiinearization Technique, which can
produce(1 — ¢)—optimal solutions. We also proposed a low-complexity distied algorithm with
fast convergence. Numerical results showed that the peapakyorithms is QoE performance
bounded and achieve effective usage of the BS’s power inmnsinggV/BR videos.

In Chapter 7, we addressed the energy saving for BS in wirekdidar networks with or-
thogonal channels to achieve energy efficient VBR video stneg. We took into account the
interactions among power control, fading channels, VBRwitaffic, and playout characteristics.
A constrained stochastic optimization problem was formadaiming to minimize the BS power
consumption and to avoid playout buffer overflow or underfl@ve then developed majorization-
based algorithms to achieve energy efficiency, while presgthe QoE demands, for BS downlink
VBR streaming in cellular networks. The simulation showeat the average power consumption
can achievé4% improvement and the proposed algorithms are also compativhteractive video

streaming in wireless cellular networks.

8.2 Future Work

Although there has been considerable advances in energieetfCyber-physical systems,

many problems still remain open in this interesting area. Biefly extend our discussion on
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the control and optimization in distributed smart elec&itergy management systems and low

complexity energy efficient wireless multimedia networks.

Distributed Electric Energy Management Systems

We investigated the efficient electric energy schedulinghi power delivery in previous
chapters. The proposed policies are mainly based on theatizatl control in the electric power
delivery networks and Microgrids, which were largely inkest from the control infrastructure of
legacy grid. In the evolution of smart grid, all the compasesuch as DRERSs, ESS'’s, MGs, and
users, will be deployed in an ad-hoc mode and accessed irgaapli-play fashion. Accordingly,
such distributed electric power delivery networks prefstributed intelligent electric energy man-
agement systems.

Compared to the centralized approaches, distributed maragesystems make decisions
based on local information with very limited timely inforti@n exchange, which reduce the
amount of real time information delivery in the communioatnetworks. The distributed manage-
ment systems are less susceptible to the information losgalthe impairment of the communi-
cation links and also have faster response to the grid st@hessecurity design and cryptographic
systems would also be simplified due to reduced amount afrirdon exchange. However, due to
the limitation on the accessible information, the distrdstbmanagement systems usually are not
capable of computing a globally optimal decision. Furtleralytical models and mathematical

tools would be necessary to provide the performance bouoptthal decisions locally.

Low Complexity Energy Efficient Wireless Multimedia Networks

Due to the intrinsic complexity of video sources and the ayica and uncertainty of wireless
systems, we conjecture that a holistic approach that enasses the parameter space would be
necessary and the trade-off between complexity and efigieha solution algorithm should be
carefully investigated. In particular, we list some intgieg problems that may be worth of further

investigation in the following.
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e Complexity-distortion analysis and the design of enerdicienht video codecs require ac-
curate models of video codecs. However, a video codec is &ioaton of complex func-
tional blocks, which makes accurate mathematic modelitigemely difficult. In addition,
the quality of compressed video and the power consumptidheo¥ideo codec depend on
a large number of parameters. A content-based power-aveaigrdmay encounter a large
search space for optimal solutions. It would be useful teettlgyan accurate and effective
model for video codec that can be incorporated into the nmadgiieal optimization frame-

works for both energy efficient codec design and wirelesgimatlia system design.

e Cross-layer design has been widely adopted for video netagnroblems. It has been
shown that an adaptive strategy with cooperation of selayats can achieve optimal power
efficiency for video streaming. Most prior work assume tihat wireless channel informa-
tion and network status are known apriori (e.g., by accueatanation, measurement, and
timely feedback). In practice, this assumption may not be,tbecause of channel/network
uncertainty and dynamics, and delay and congestion in theonle Thus, balancing the
achievable performance and the control overhead of theyaesistill an open problem.
Effective schemes that are robust to the channel/netwackntainties would be highly ap-

pealing.
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Appendix A
Proofs in Chapter 2

A.1 Proof of Theorem 2.2

The schedule computed by SEPS-DF*, could be a straight line or in the general case,
consist of one or more convex and concave segmenté* I6 a straight line, it is obvious that
P* < DB, for any otherD, (see Fig. 2.3) and it is smooth optimal. In the general caseneed to
showP* < P, for all k in every convex or concave segment. Then according to Leminav2
haveP* < P, for all k and it is optimal.

Let P, denote an arbitrary feasible schedule. We introduce ariayxscheduleP;, which
intersects withP* at all its power changing points in every convex segment,veiﬂniﬁk at all its
power changing points in every concave segment, as showig.if\R..

First, we prove thaP* < P;. For a convex segment ét*, because’, intersects with?* at
all the power changing points @t*, we haveP* = P, in all the convex segments. For a concave
segment ofP*, the endpoints of the concave segment should be the las} ffower changing
point of the previous (next) convex segment, whereintersects with?,. The power changing
points within the concave segment are allidh,;,,(¢), as in SEPS-DL. Thereford?, is an outer
concave curve abovE* (or, it is farther away from the straight linéin Fig. 2.3) in this segment.
From the discussion of Fig. 2.3, we hat® < P, for all the concave segments. It follows that
P < ]31 according to Lemma 2.1.

We next prove thaP;, < P,. For a convex segment &, the endpoints of the convex segment
should be the last (first) power changing point of the previ(next) concave segment, where
intersects with?,. The power changing points @ (or, of 13*) in the convex segment are all on
Winaz (t)- Therefore,ﬁk is an outer convex curve belai in this segment. From the discussion of

Fig. 2.3, it follows thatP, < P, in all the convex segments. In a concave segment, we haw eith

154



kWh4
W%uﬂh----r""

P Wointt)
f‘---k‘-|.---’ﬁ-/!---‘----

---J

) > >
J¢ Cross point of Py and P;
in a concave interval

[ ——
~

. =, >
beee 22 Cross point of P'and P; in

// ceee a convex interval
[ ]
[ ]

0 Time

Figure A.1: lllustration for the optimality proof of SEPS:algorithm

P, = P, or B, < P,, becausé’, intersects with?, at each power changing point. Thus, we obtain
P, < P, for all the concave segments, afid< P, according to Lemma 2.1.
Finally we haveP* < P, < P,. Proposition 2.1 states that problem (2.3) is Schur-coawveik

order preserving. It follows from Fact 2.1 that is optimal to problem (2.3).

A.2 Proof of Theorem 2.5

Without loss of generality, we assume the fuel cost at tinoetsis C(t) = g(P(t),0(t)),
which a nondecreasing convex function of the supplied paief [92]. This assumption is gen-
erally practical, e.g. classically, the fuel cost for theottic energy generation is usually considered
as a quadratic function of its power generation [103]. We alssume the cost(t) is affected by
the random factor8(t), which correspond to the cost uncertainty during the persodh as the

fuel market price disturbance, and etc. We assume each elém@(¢) is i.i.d over slots. Thus,
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the minimization of the expectation of the total cost over pleriodL is:

Minimize: XL:E{g(P(t),g(t))}

St Wiin(t) < W(t) < Winaa(t), Vi

d W) =2 (A.1)

Due to the convexity of the cost functigy(-) respective toP(¢), problem (A.1) is similar to
problem (2.3), except the random variaBle). Thus, we resort tgtochastic majorizatiofrather

than ordinary majorization) to solve this constraint noeér stochastic optimization problem.
Lemma A.1. The objective function of problem (A.1) is an increasingusaonvex function.

Proof. The i.i.d. random variable&(t) are exchangeable for all The objective function (A.1)

can be rewritten as

G(P)=E {ZQ(P(t),G(t))} :

t=1

where g(P(t),6(t)) is convex and increasing with respective /9t) for each fixedd(¢), and
SF  g(P(t),6(t)) is a symmetric, convex and increasing function w.ri(t). According to
Proposition 11.B.5 in [13], the expectatidﬁ(ﬁ) Is symmetric, convex and increasing. Following

Fact 2.1, the objective function (A.1) is Schur-convex argtéasing. n

By Lemma A.1, the solution of problem (A.1) is equivalent talfimg the optimal power vector
P*, which is majorized by any other feasible power vectors.sTtiue smooth optimal solutiafi*
in Table 1 is also the solution for problem (A.1). Thus, thegused SEPS-DL achieves fuel cost

optimal for energy generation.
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Appendix B
Proofs in Chapter 3

B.1 Proof of Theorem 3.1

According to the system equation (3.12), we have

Z,(1) > Z,(0) — 9y, - a0 (0) 4 1,,(0)

(B.1)
Zny(t) > Zoy(t —1) — 0y - an(t — 1) + L, (t — 1).
Summing up the inequalities in (B.1), we have
Zo(t) > Z,(0) = 0, D> on(7) + Y (7). (B.2)

Z,(0) is finite. If Z,,(t) is rate stable by a control polick,(¢), it is finite for all . We have

Zn(t)=Zn(0)

- = 0, which yieldsp,, < ¢, - A\, due to the definitions ok, and7,(t).

liInt~>oo
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B.2 Derivation of Equation (3.16)

With the drift defined as in (3.15), we have

AB(t) = }E {Z[(Xk(t +1))% = (X(1)*1 Xk ()] +

k=1

Y l(Zalt+1)) <t>>2|zn<t>]}

%ZE{ + (Ri(1))? + 2X,() (Riu(t)—
X))} + 5 ZE{

(Bncin(t))? + 2Z,(t )(I (t) Onin (1)) Zn (1)}

_ %ZE{[(Dk(t))Q + (Ri(t))?]}+

> E{Xk(t)(Ri(t) ()1 Xk(t)}

%ZE{[(l + (00)2) (@ ()® + (palt)?]}+

n=1

whereB = 1 37 (max{Dye*, Rper})2 + 13 (2 4+ 62)(ae*)? is a constant.
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B.3 Proof of Lemma 3.1

In part 1) of Lemma 3.1, if)(¢) > 0, we haveS(t) = 0 according to (3.7). The objective

function of problem (3.19) becomes

VQMC(t) + ) Xi(t)(Ri(t) — Di(t)) —
> (Zu(t) + an(t))pa(t)- (B.3)

We first prove Lemma 3.1-1a). K, (¢) > —V C(t), we assuméz,(t) > 0. Then we have

Dy(t) = 0 according to (3.4). Accordingly, the object function (B.8}iansformed to

)+ Xi( () —
i#k
Z £) + an (£))pa(t) + Xi(t) Ri(t)
> Ct)+ Y Xt () —
ik
D (Za(t) + an(®)pa(t) = V() (P(1) + Q(1)
D (Ri(t) = Di(t)) = > palt)
ik n=1
= VD (Ri(t) = Di(t)) + > _palt) — P(t)| C(1) +
ik n=1
> Xi(t)(Ri(t) ) = (Zalt) + an(t))palt).
i#k n=1

The above inequality is due f6;(t) > —V C(t) andRy.(t) = P(t)+Q(t) —>_, ., (Ri(t) — Di(t)) —
SV pa(t) > 0. The last expression shows, given the assumiigit) > 0, we may find another
feasible electricity allocation schenig(t) = Dk (Bi(t) — Di(t)) + SN pa(t) = P(t), which

can achieve a smaller objective value by choosin@) = 0 and Dy (t) = 0. This contradicts with
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the assumptior?,(t) > 0. Thus, we prove thak,(t) = 0 when X (t) > —V C(t), under the
situationQ(t) > 0, S(t) =

We then prove the second part of Lemma 3.1-1a). It follow&)(@BatRy (¢) = 0if Dy (t) > 0.
Then (B.3) becomes

C(t) + Y Xi(t)(Rilt) — Di(t)) —

ik
D (Za(t) + on(t))pa(t) — Xi(t) Di(2)
> VQ )+ > Xilt Di(t)) —

i#£k
Z(Zn(t)+an( Npa(t) +VO(t an —
Q) + Y (Ri(t) — Dy(t)))

itk
= VD (Ri(t) = Di(t)) + > _palt) — P(t)| C(t) +
ik n=1

Z Xz‘(t>(R Z + an pn<t>'
£k n=1

The above inequality is due t8;(t) < -V C(t) < 0andD;(t) = —P(t) — Q(t) + >, (Ri(t) +
Di(1)) + 32N p.(t) > 0. The last expression shows, given the assumpfipft) > 0, we may

ian(Ri(t) = Di(t)) + S0 palt) —

P(t), which can achieve a smaller objective value by choostp@f) = 0 and D, (t) = 0. This

find another electricity allocation scheme witht) = 3

contradicts with the assumptidpy (¢) > 0. We thus prove thaby(t) = 0 whenX,(t) < =V C(t),

under the situatio®)(¢) > 0, S(¢) = 0, which completes the proof of Lemma 3.1-1a).
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We next prove Lemma 3.1-1b). For the first partZif(t) > VC(t) — a,(t), we assume
0 < pu(t) < (1 —d,)an(t). Following (3.18) andb(t) = 0, we have

B+VQ(t) Z — Dy(t)) +

Z(Z () (1 = 65)a;(t) — (Z;(t) + a;(t))p; (t)) +

Jj#n

Zn(t)(1 = 0p)an(t) — (Zn(t) + an(t))pa(t)
=B+ VQ(1) +ZXk — Dy(t)) +

> (Z;(1)(1 = 8;)ay(t) —( 5(8) + a;(t)p; (1) +

Zn(t)(1 = 6p)an(t) — (Zn(t) + an(t)) (1 — 6p)an(t).

The above inequality is due 16, (t) > VC(t) — a,,(t) and the assumptian), () < (1 — 9, ), (t).
The last equality shows, given the assumpigft) < (1—0d,)a,(t), we may find another electric-
ity allocation scheme with,, (t) = (1—6,)a,(t) andQ(t) = Zle(Rk(t)—Dk(t))qLZ#n p;(t)—
P(t) + (1 — é,)a,(t), which can achieve a smaller objective value. This conttadiith the pre-

vious assumption. Thus, we hayg(t) > (1 — §,)a, ().
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For the second part of Lemma 3.1-1b), assye) > 0for 0 < Z,,(t) < VO(t) — a,(t).1t

follows (3.7) thatS(¢) = 0. The objective function (3.18) can be written as

B+VQHCH) + > Xil(t)(Rilt) — Di(t)) +

F/ﬂ
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~
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(Zn(t) + an(t))pn(?)

> B+VQH)C(t) + Y Xi(t)(R(t) — Di(t)) +

v
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_I_
=
|
g
+
[~
B
|
S
+

j#n k=1

D (Zi(O = 8))ay(t) = Y ((Z;(t) + a;())ps(8)).

J#n J#n
The first inequality is due t6 < Z,(t) < VC(t) — a,(t) and the assumptiop,(t) > 0. The
second inequality is due to the non-negativity4f(¢) anda,,(¢). The last equation shows, given
the assumptiom,,(t) > 0, we may find another electricity allocation scheme wiflit) = 0 and
Q(t) = —P(t) + Y (Ri(t) — Di(t)) + X2, p;(t), which can achieve a smaller objective
value. This contradicts with the previous assumption. Tiugshavep,,(t) = 0, which completes
the proof of Lemma 3.1-1b).

In part 2) of Lemma 3.1, i5(¢) > 0, we haveQ(¢) = 0 according to (3.7). The objective

function (3.19) becomes

K

—VSOW () + > Xi(t)(Re(t) — Di(t)) —
Z (Zn(t) + an(t))pa(t). (B.4)



We can prove part 2) with a similar approach as in the case mf3a The detailed proof is

omitted for brevity.

B.4 Proof of Lemma 3.2

Sincel < Chin < C(t) < Char andV > 0, we haveRy(t) = 0 when Xy (t) < —V iz,
and Dy (t) = 0 when X(t) > —VC,,;, according to Lemma 3.1-3.1). Similarly, sinfe<
Winin < W (t) < Winee @andV > 0, we obtainR(t) = 0 whenXy(t) < =V W40, andDy(t) = 0
whenXy(t) > —VW,,;, according to Lemma 3.1-2)

SinceChue > Winae andCiyin > Wi, We conclude that iy (t) > —VW,,;,, the optimal
solution always seled®; () = 0. If Xx(t) < —V 4z, the optimal solution always seleby, (1) =

0. The proof is completed.

B.5 Proof of Lemma 3.3

The proof directly follows Lemma 3.1 and is similar to the @irof Lemma 3.2. We omit the

details for brevity.

B.6 Proof of Theorem 3.2

From the battery virtual queue definition (3.10), the caistrEf"" < FE(t) < E/ is

equivalent to

—VCrag — D" < Xi(t) S EP™ = VCipay — D" — ™.

We assume all the batteries satisfy the battery capacitgtnt at the initial time = 0, i.e.,
Ern < EL(0) < Efe, for all k. Supposing the inequalities hold true for timeve then show
the inequalities still hold true for time+ 1.

First, we showX,(t + 1) < EJ" — VCiae — D — BP0 M —VWoin < Xi(t) <

Erae — Ve — D — EM™ then withXy (1) > —V W, = Ry (t) = 0 from Lemma 3.2, we
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haveX(t+1) = X (t)— Di(t) < X3 (t) < B —V Cppow— D7 — B A X3 (8) < =V Wonin,

then the largest value i5;(t + 1) = —VW,;, + R7**. Forany0 < V < V.., we have

E]zna:c _ cha:c _ D]::naz _ E]rcmn
Egzax _ El’;mn _ R;Cnaw _ Dznax o
Cmax - szn e
— DT — B > R > X (t+ 1).

> B — rnkin {

It follows that X (t + 1) < B — V Cpae — D® — B0,
Next, we showX(t + 1) > —V e — D, Assuming—V Cyae — D < Xi(t) <

—V Cinaz, then from Lemma 3.2, we have, (1) < —V e = Di(t) = 0. It follows that
Xi(t+1) = Xp(t) + Ri(t) > X(t) > =V Ciaw — D',
If Xx(t) > —V s, following (3.10), we have

Xe(t+1) = Xu(t) — Di(t) + Ri(t) > Xu(t) — D

Z _chaz - DZMI-

Therefore, we hav&,(t + 1) > —V .. — D', Thus the inequalities also hold true for time
t+ 1.
It follows that " < Ey(t) < E“ is satisfied under the optimal scheduling algorithm for

all &, ¢.

B.7 Proof of Theorem 3.3

(i) We first prove the upper bound™**. Initially, we haveZ,(0) = 0 < Ve + oM.
Assume that in time slatthe backlog of the QOSE virtual queue of residerdatisfies?,, (t) <
ZM = Ve + a*®. We then check the backlog at time- 1 and show the bound still holds

true.
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If Z,.(t) > Vs, following Lemma 3.3, the optimal scheduling for the qualisage of

residentr satisfieg,,(t) > (1 — d,)a,(t). From the virtual queue dynamics (3.12), we have
Zn(t +1) < [Zn(t) = pan ()] + Snan ().

If Z,(t) > dpa,(t), we haveZ,(t + 1) < Z,(t) < VCpa + a'; otherwise, it follows that
Zn(t+ 1) < 0pan(t) < VCiax + .

If Z,.(t) < VCiaz, We haveZ, (t + 1) < [Z,(t) — dpan(t)]T + il If Z,,(t) > dpaun(t), we
haveZ,(t + 1) < Z,(t) — dpan(t) + ot < VCiar + a**; otherwise, we have, (t + 1) <
Al <V Oy + 7,

Thus we haveZ, (t + 1) < ZM* = V4, + . The proof of the QOSE virtual queue
backlog bound is completed.

(i) Consider an intervalt,, t,] with length of 7" = ¢t — ¢;. Summing (3.12) from, to ¢, we
haveZ, (ty +1) > Zu(t) = n X2, anl(r) + £, [0n(7) = pa(7)] = T2, o () — pa(7)] -

T, It follows that

to

> () = pa(T)] < Z7" + Topa™.

T=t1

B.8 Proof of Theorem 3.4

From Theorem 3.2, the battery capacity constraints is meaah time slot with the adaptive

control policy. Take expectation on (3.2) and sum it overgbgod[0,¢ — 1]:

E{EL(1)} ~ E{E(0)) = S E(R(0)} ~E(D(0)]. V

SinceE"" < Ei(t) < E**, we divide both sides byand lett go to infinity, to obtain

t—o00

. 1 t—1 . 1 t—1
lim — ;E{Rk(t)} = lim — ;E{Dk(t)}, Y k. (B.5)
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Consider the following relaxed version of problem (3.9).

minimize: lim % EE{Q(T)C(T) _ S(rW(r) (B.6)

st (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (B.5)

Since the constraints in problem (B.6) are relaxed from thatroblem (3.9), the optimal solution
to problem (3.9) is also feasible for problem (B.6). The dolutof (B.6) is a stationary and
randomized policy does not depend on battery energy le¥él, [L29]. Let the optimal solution
for problem (B.6) bed\(t) = {Q(t), S(t), Ry(t), D (t), p.(t)} and the corresponding object value
ISy < yop. According to the properties of optimality of stationarydalandomized policies [115],
the optimal solution\ () satisfiesE{ R,.(t) — Dy (t)} = 0 andy = E{Q(7)C(r) — S(r)W (7)}.

We substitute solutiod (¢) into the right-hand-side of the drift-and-penalty (3.13nce our

proposed policy minimizes the right-hand-side of (3.17,vave

A(B()) + VE{Q(NC(t) — S(W (£)[6(¢)}

< B+ Y E{Z.(t)(1 = 6n)an(t)|Za(t)} +
> Xu®E{R(t) — De(t)[ Xu(1)} —
k=1
D (Zalt) + an(®)E{Pa()| Za(t)} +
VE{Q(t)C(t) — S(H)W ()|6(1)}

< B+ Y ZP(1—6,)00 " + V- yop.

n=1
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The second inequality is due to the properties of statioaad/randomized policy angl < y,,.

Taking expectation and sum up frdno 7" — 1, we obtain

ST VE{QU)C() — SW (L)}
< T BAT V- oy — B{LO(T)} + E{L(S(0))}

< T BAT V- yo+E{LEOO)}

The second inequality is due to the nonnegative propertyyapunove functions. Divide both

sides byV - T and letT go to infinity. Since the initial system sta&(0) is finite, we have

iy oo 2 00 VE{Q(HC(t) = SOW (D)} = 1" < yops + £.
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Appendix C
Proofs in Chapter 5

C.1 Proof of Lemma 5.1

If the feasible power allocatiof(t) achievesy™=(t) for all n, then all the user buffers are
full at the end of the time slot, according to (5.5). The obyecvalue (5.6) cannot be further

improved without causing buffer overflow. Thus the soluti®optimal.

C.2 Proof of Lemma 5.2

Consider a feasible power allocatidti(t) = [P(t), Py(t),--- , Pk (t)]" and) . P(t) <
P. We can construct another feasible power allocafi§ty) = [P/ (t), PY(t),--- , PX(t)]7, such
thatP’(t) = k- P.(t), foralln,ands - > _ P.(t) =5 _, P'(t) < P, wherex > 1. For the

neu - n neu - n

SINR at usemn, we have

L,G,P!t)

2 otn G LY () + 1
KLn G Py (t)

kot KGR PL(t) + 1
KkL,G,P.(t)

D kn WG (1) + K

= (P(1)).

It follows that ), log(1 + (P (1)) > > ney log(1 + Y. (P'(t))), sincelog(1 + z) is an
increasing function of:.

Choosingx = P/ >, ., P.(t), we can construct a feasible solutiéf'(¢) = « - P'(t), such
that}", ,, P'(t) = P. Then we havey, (P (t)) > v,(P'(t)) and 3 ey 2og (1 + (P (1)) >

Y ney log(1 + v.(P'(t))). That is, any feasible solution with, o P (t) < P will be dominated
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by feasible solutions witfy", _,, P"(t) = P. We conclude that the optimal solutidh(t) must

satisfy) ., Pu(t) = P.

C.3 Proof of Lemma 5.3

Taking the first and second derivatives of the objective fiong5.14) with respect t@,,, we

have
9C.(P.) Ln(P + Ay)
oP,  (P—P,+A)P+(L,—1)P, + A,] (€1
or: (P—P,+A,)2+L,P,(P—P,+ A2 '

SinceP, < P andA, > 0, both the first and second derivatives exist. Lettﬂ%% =0, we

derive the unique inflection point

L,—2  _

Pr= (P + Ay). (C.3)

" 9L, — 1)

WhenP, < P, it can be shown thd£<222) < 0; whenP, > P*, it can be shown thafz(Ex) ~

oOP,? oP,?

0.

C.4 Proof of Theorem 5.2

The reflection point is; = 552=%(P + A,). As L, — oo, we haveP; = 0.5(P + A,).
Only one link can operate in the convex region due to congt(ai17). Sinceg%: > 0, Prisan
increasing function of.,,. Whenl < L,, < oo, we haveP: < 0.5- (P + A,). Letting3P: = P,

we haveL, = (4P + 6A,,)/(P + 3A,).
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C.5 Proof of Theorem 5.3

The first part can be easily shown by the first derivative?pfwith respect toA,,, which is

S = 5»=% > 0, for L, > 2. The second part can be easily shown by evaluating (5.145)5

and (C.1).
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Appendix D
Proofs in Chapter 6

D.1 Proof of Lemma 6.1

According to the definition ofX,,(¢) in (6.3), we haveC,,(t) = [X,,(t) — X, (t —1)] /7.
From the definition o2 (t), the playout buffer is emptied at the end of time g|ate., X, () =

D,,(t). Therefore, we can derive the minimum required rate as
Cmin(t) = max {0, Dp,(t) — Xu(t — 1)} /7. (D.1)

From the feasibility condition (6.4), we havg, (t — 1) > D,,(t — 1). Substituting it into (D.1),
we have

C™in(t) < [Dp(t) — Dyt — 1)] /7 = C™(¢). (D.2)

RateC™™"(t) occurs when the playout buffer is empty at both the beginaimdjend of time slat,

but without buffer overflow during the entire time slot.

D.2 Proof of Theorem 6.1

Recall thaty”™ is the SINR corresponding to the minimum required (&fg" (¢). Lety™"(t)
be the SINR corresponding & (¢). Since (6.2) is a monotonically increasing function, weehav
0 <™ (t) < ™ ().
We now consider the power assignment that achieves 31&4t), or, the corresponding
SINRs~™"(t). From (6.7) and (6.8), the minimum SINR constraint is:
G™P,,(t)

’Ym(t) 7

— > —min ) .
S o TP i © Y " (1), Vm (D.3)
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Eqn. (D.3) is a system of linear equations of the power veét(oﬁb, which can be written in the
matrix form as:

(I-Tm™"A) P(t) = T™"7, (D.4)

wherel is the identity matrix A is anM x M matrix with

0, m==k
Ay = (D.5)

Gy /G, m# k,
™ = diag{y™™"(t), 7" (t), - - -, ¥7"(t)} is a diagonal matrix, and = [, /G, 1, /G2, - -,
/Gl
DefineI™in = diag{y™"(t), y2"(t), - - ,vmin(t)} and A = ['™in — ['™in = 0. AssumeP
is a power assignment that achievés™ (¢) for all m, which satisfies (D.4). Substituting™" =

A + ' into (D.4), we have
(I-T""A) P=T""7+ A (7+ AP).
SinceA, 7, A and P all have non-negative elements, we haye{ﬁ+ Aﬁ) >~ 0, and therefore,
(I-T™"A) P = T™"7,

That s, P can also achieve™(t) for all m and it satisfies the minimum SINR constraint in (6.8).
Once the minimum SINR constraint in (6.8) (i.e., no buffederflow) is satisfied, the max-
imum SINR constraint in (6.8) (i.e., no buffer overflow) cae satisfied since B%: can stop

transmission when the playout buffer at user,, is full.
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Appendix E
Proofs in Chapter 7

E.1 Proof of Theorem 7.1

Due to i.i.d. channel gains and noise powers, the randonaias, (¢)/G,(t)’s are ex-
changeablefor all t. Definew(g, n, ¢) = (2¢/B» — 1)n/g, which is convex and increasing with
forall g > 0 andy > 0. Lety)(C) = E[®(C)] = B[S, w(g(t),n(t), c(t))]. ®(C) is a symmet-
ric, convex and increasing function @ for each fixed andr]. According to Proposition 11.B.5
in[13], w((j) Is symmetric, convex and increasing. Following Fact 2.& abjective function (7.9)

is Schur-convex and increasing.

E.2 Proof of Corollary 7.2.3

To evaluate the smoothness of a transmission scheduthe following smoothness utility
function can be used:

Ty

U(C) = ([e(t) = &/Tn), (E.1)

t=1
wherec = ZtTgl c(t)/T, is the average rate. This is a continuous symmetric convestifon
U :R™ — R. From Fact 2.1]J is Schur-convex and order preserving. The optimal power
transmission schedulé” satisfiesC* < C for all i. Therefore, it also achieves the minimum

value forU(-).
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Appendix F

Acronyms
AMI Automated Meter Infrastructure
BS Base Station
CBR Constant Bit Rate

CDMA Code Division Multiple Access
CPS Cyber-Physical System

CSMA Carrier Sense Multiple Access

DCC Distribution Control Center

DCPC Distributed Constrained Power Control
DCT Discrete Cosine Transform

DR Demand Response

DRER Distributed Renewable Energy Resource

DUBMLC Distributed User Benefit Maximization Load Control
DVS Dynamic Voltage Scaling

ESS Energy Storage System

GSEPS General Smooth Electric Power Scheduling

FDMA Frequency-Division Multiple Access

HAN Home Area Network

ICT Information and Communications Technology
IDCT Inverse DCT

LAN Local Area Network

LB Lower Bound

LP Linear Programming
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MB
MG
MGCC
PMA
PMU
PHEV
PLC
QoE
QoS
QoSE
RLT
RTP
SEPS-DL
SINR
SG
SST
SUDP
TCP
TDMA
uUB
UDP
UMRP
V2G
VBR
VPP
VSN
WAN

Macro Block

Microgrid

MG Central Controller

Power Minimization Algorithm

Phasor Measurement Unit

Plug-in Hybrid Electric Vehicles

Power Line Communication

Quiality of Experience

Quality of Service

Quiality of Service in Electricity
Reformulation-Linearization Technique
Real-time Transport Protocol

Smooth Electric Power Scheduling for Deferrablad_o
Signal to Interference-plus-Noise Ratio
Smart Grid

Solid State Transformer

Supply Until Deadline Policy
Transmission Control Protocol
Time Division Multiple Access

Upper Bound

User Datagram Protocol

Utility Maximization Real-time Pricing
Vehicle-to Gird

Variable Bit Rate

Virtual Power Plant

Visual Sensor Networks

Wide Area Network
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