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Wireless ad hoc and sensor networks present the next great challenge for distributed

system research. In wireless ad hoc and sensor networks, each node participates the routing

process that allows a packet to be forwarded from its source to the destination. Protocols

that support communications in such networks have to take into account the mobility of the

participants and the status of links between nodes.

In general, a distributed system is defined as a collection of autonomous components

that are interconnected through a network and distributed middleware. A distributed system

coordinates the events of components to share resources and give users the perception that

the whole system is a single and integrated computing facility. According to this definition,

wireless ad hoc and sensor networks can be considered as a special type of distributed

systems where each node in the networks serves an autonomous component. In theory, the

concepts involved in the design of distributed system should be easily adapted for wireless

ad hoc and sensor networks.
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In the design of a distributed system, the order of events plays an important role. To

manipulate the order, one of the the well-known tools is the (defer) timer. Many distributed

communication protocols have been designed using this tool.

In this dissertation, we investigated the use of the defer timer on the design of various

protocols in wireless ad hoc and sensor networks. By properly setting up the defer timers,

many difficult issues in ad hoc and sensor networks, such as the broadcast storm problem,

the construction of a virtual backbone, and dynamic cluster formation can be easily ad-

dressed with only the help of simple localized information at each node. The simulations

show the suggested timer-based protocols perform effectively in wireless ad hoc and sensor

networks.

vi



ACKNOWLEDGMENTS

This dissertation is dedicated to my parents who taught me to love learning and who

always made my education one of their top priorities.

I would like to take the opportunity to thank people who guided and supported me

during this process. Without their contributions, this research would not have been possible.

First, I would like to thank my Ph.D. advisor, Dr. Min-Te Sun. I think in the past three

years, Dr. Sun taught me how to do the research. In other words, he taught me how to

make gold out of stones. Besides this, he was always patient and helpful whenever his

guidance and assistant were needed. As an international student, I felt a certain difficulty in

technical writing. Dr. Sun also contributed much of his valuable time to help me improve

my writing skills. Therefore, I do want to show my deep appreciation to him. I am also

grateful to Dr. Chung-Wei Lee and Dr. Yu Wang for serving on my Ph.D. committee.

I really appreciate Dr. John Cochran for spending time reviewing this work and giving

valuable suggestions and comments on my work.

There were helps from people in research lab in and outside of Auburn University.

I can still remember the time that my former advisor, Dr. Kyungsan Cho Wells worked

together with me at Dankook University in Korea. He was the first one that introduced the

amazing world to me and encouraged me to explore the wonderful nature. I am also deeply

grateful to my colleague, Junmo Yang who worked with me on this dissertation from the

very beginning, and cared about it as though it were his own.

vii



Additionally, I would like to show my great appreciation to my parents and mother-in-

law for their continuous support during all these years. My brother and sisters always guide

me during my explorations up to today, using their valuable experience and successful

examples. Last, but not least, my husband, Myeongjoo Kang and my sun, Hyunkoo Kang,

also contributed much of their time and efforts to support me during my study. Without any

one of them, the work would not have been possible.

viii



Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

ix



TABLE OF CONTENTS

LIST OF FIGURES xii

1 INTRODUCTION 1

2 BACKGROUND AND GENERAL ISSUE 5
2.1 Overview of wireless ad hoc networks . . . . . . . . . . . . . . . . . . . . 5
2.2 Wireless Mesh Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Mobile Ad Hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Wireless Mobile Ad Hoc and Sensor Networks and Distributed Systems . . 14

3 THE ORDER OF EVENTS IN A DISTRIBUTED SYSTEM 16
3.1 Logical Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Lamport Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Vector Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Examples of protocols based on the use of logical clocks . . . . . . 22

3.2 Defer Timer and its application to network protocols . . . . . . . . . . . . 24
3.2.1 Inter Frame Spacing . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Back-off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Dynamic Cluster Formation in Sensor Networks . . . . . . . . . . 29

4 TIMER-BASED VIRTUAL BACKBONE CONSTRUCTION PROTOCOLS 32
4.1 Survey of Existing DS and CDS Protocols . . . . . . . . . . . . . . . . . . 35
4.2 Timer-based Dominating Set Protocol (TDS) . . . . . . . . . . . . . . . . 37

4.2.1 TDS Protocol Description . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Correctness of the TDS protocol . . . . . . . . . . . . . . . . . . . 41
4.2.3 Example of the TDS Protocol Execution . . . . . . . . . . . . . . . 43
4.2.4 Comparison of Simulation Results for the TDS Construction Pro-

tocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4.1 Simulation Setting and Parameter Consideration . . . . . 46
4.2.4.2 Simulation Results and Performance Evaluation . . . . . 47

4.3 Timer-based Connected Dominating Set Construction Protocol (TCDS) . . 51
4.3.1 The TCDS protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1.1 Initiator Election . . . . . . . . . . . . . . . . . . . . . . 52

x



4.3.1.2 Connected Dominating Set Construction . . . . . . . . . 54
4.3.2 Beacon Frame Extension . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Correctness of the TCDS Protocols . . . . . . . . . . . . . . . . . 58
4.3.4 Example of the TCDS Protocol Execution . . . . . . . . . . . . . . 60
4.3.5 Station Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.6 Implementation Considerations . . . . . . . . . . . . . . . . . . . 66
4.3.7 Comparison of Simulation Results for the TCDS Construction Pro-

tocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.7.1 Simulation Setting and Parameter Consideration . . . . . 68
4.3.7.2 Simulation Results and Performance Evaluation . . . . . 69

4.4 Time-based Energy Aware Connected Dominating Set Construction Proto-
col (TECDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 TECDS protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Consideration of Initiator Election . . . . . . . . . . . . . . . . . . 72
4.4.3 The TECDS Construction . . . . . . . . . . . . . . . . . . . . . . 73
4.4.4 Example of the TECDS Protocol Execution and Station Mobility

Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.4.1 Example of the TECDS Protocol Execution . . . . . . . 75
4.4.4.2 Example of Station Mobility . . . . . . . . . . . . . . . 79

4.4.5 Comparison of Simulation Results for the Energy Aware CDS Con-
struction Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.5.1 Simulation Setting and Parameter Consideration . . . . . 85
4.4.5.2 Simulation Results and Performance Evaluation . . . . . 86

5 CONCLUSION 96
5.1 Summary and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . . . 97

BIBLIOGRAPHY 99

APPENDICES 107

A SOURCE CODE OF THE TECDS IN THE STATIC NETWORK 108

B SOURCE CODE OF THE TECDS IN THE MOBILE NETWORK 116

xi



LIST OF FIGURES

3.1 Lamport’s logical clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Example of vector clock . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Inter Frame Spacing for medium priority transmissions . . . . . . . . . . . 26

3.4 The retransmission of B is redundant if S, A, and C transmit before B . . . 28

3.5 Number of retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Voronoi diagram for a sensor network . . . . . . . . . . . . . . . . . . . . 30

4.1 Possible states for a node and the transitions between states . . . . . . . . . 35

4.2 Extended IEEE 802.11b Beacon Format . . . . . . . . . . . . . . . . . . . 39

4.3 Initial network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Node 1 and node 2 switch to the start state . . . . . . . . . . . . . . . . . . 44

4.5 Node 1 joins the dominating set and forces its neighbors to switch to the
covered state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Network status after nodes 2, 3, 5, and 6 join the dominating set . . . . . . 46

4.7 Final network status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 The value of α vs the size of the dominating set . . . . . . . . . . . . . . . 48

4.9 The size of the dominating set for different protocols . . . . . . . . . . . . 48

4.10 The number of disconnected components for Wan’s and TDS’s dominating
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11 Beacon Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.12 Initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



4.13 Node 1 is selected as the initiator . . . . . . . . . . . . . . . . . . . . . . . 62

4.14 Nodes 2 and 3 switch to the covered state . . . . . . . . . . . . . . . . . . 62

4.15 Node 2 switches to the DS state and nodes 6, 9, 10, and 11 switch to the
covered state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.16 Node 3 switches to the DS state and nodes 4, 5, 6, and 8 switch to the
covered state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.17 The resulting network topology . . . . . . . . . . . . . . . . . . . . . . . . 64

4.18 initMax for m×m grid under various beacon success rate . . . . . . . . . 67

4.19 DS size in 4 x 4 square . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.20 DS size in 8 x 8 square . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.21 Initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.22 Nodes E is selected as an initiator . . . . . . . . . . . . . . . . . . . . . . 76

4.23 Nodes C and G switch to the covered state . . . . . . . . . . . . . . . . . . 77

4.24 Node G switches to the DS state and nodes H , I , J , and K switch to the
covered state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.25 Node C switches to the DS state and nodes A, B, D, and H switch to the
covered state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.26 The resulting network topology . . . . . . . . . . . . . . . . . . . . . . . . 79

4.27 The network after the construction of CDS . . . . . . . . . . . . . . . . . . 80

4.28 A new node W joins the network . . . . . . . . . . . . . . . . . . . . . . . 80

4.29 Node K switches to the covered state . . . . . . . . . . . . . . . . . . . . 81

4.30 Node W switches to the covered state . . . . . . . . . . . . . . . . . . . . 81

4.31 For the case where an DS node J leaves the network . . . . . . . . . . . . 82

xiii



4.32 Nodes F switches to uncovered state . . . . . . . . . . . . . . . . . . . . . 83

4.33 Node D switches to the DS state and node F switches to the covered state . 83

4.34 Node W leaves the network . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.35 Node K switches to the covered state . . . . . . . . . . . . . . . . . . . . 84

4.36 CDS size in 4 x 4 square : static network . . . . . . . . . . . . . . . . . . . 87

4.37 CDS size in 8 x 8 square : static network . . . . . . . . . . . . . . . . . . . 87

4.38 CDS Average Energy in a 4 x 4 square : static network . . . . . . . . . . . 88

4.39 CDS Average Energy in an 8 x 8 square : static network . . . . . . . . . . . 89

4.40 CDS Min Energy in a 4 x 4 square : static network . . . . . . . . . . . . . 89

4.41 CDS Min Energy in an 8 x 8 square : static network . . . . . . . . . . . . . 90

4.42 Variance of Min Energy in a 4 x 4 square : static network . . . . . . . . . . 91

4.43 Variance of Min Energy in an 8 x 8 square : static network . . . . . . . . . 91

4.44 CDS size in a 4 x 4 square : mobile network . . . . . . . . . . . . . . . . . 92

4.45 CDS size in an 8 x 8 square : mobile network . . . . . . . . . . . . . . . . 93

4.46 The number of rounds in a 4 x 4 square : mobile network . . . . . . . . . . 94

4.47 The number of rounds in an 8 x 8 square : mobile network . . . . . . . . . 94

xiv



CHAPTER 1

INTRODUCTION

A wireless ad hoc network is a collection of mobile nodes such as handheld devices,

mobile phones, and automotive telematics systems that communicate with each other by

forming a multihop radio network. In such a network, each node functions as both a host

and a router, and the control of the network is distributed among the nodes. The network

topology (i.e., the connections between mobile nodes) in an ad hoc network is generally

created and destroyed dynamically due to the departures and arrivals of mobile nodes.

The major advantage of ad hoc networks is that a fixed infrastructure is not needed

at the time of network deployment. This makes ad hoc networks the best candidate for

applications such as emergency services and disaster recovery, ad hoc meetings at business

conventions, and communications in the battlefield. In the late 1990’s, the so-called ”smart

dust” project [1, 2] at Berkeley introduced the concept of the sensor networks. As one of the

major applications of wireless ad hoc networks, sensor networks share a similar definition,

but impose more stringent resource constraints at each sensor node.

Many research issues have been raised concerning wireless ad hoc and sensor net-

works. These topics include virtual backbone construction [4, 5, 6, 7, 8], routing [9, 10, 11,

12, 13, 14], broadcast [15, 16, 17, 18], and network formation [19, 20, 21, 22, 23, 24, 25,

26]. Each requires a carefully designed protocol to address the issue, and many considera-

tions and constraints are involved in the design of such a protocol. In addition to problems
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such as wireless transmission errors, dynamic network topology, and power limitations, the

following two key constraints have made the protocol design process particularly difficult:

1. The protocol should be distributed - In wireless ad hoc and sensor networks, each

node acts both independently and collectively to accomplish the tasks. As opposed

to wired networks, no central control is available in such networks.

2. The protocol should rely on only localized information - If a protocol requires global

knowledge (e.g., the complete network topology), there will be tremendous overhead

associated with learning such knowledge. Even if it were possible, it would require a

lot of time and by the time the global knowledge had been learned, it would already

be outdated.

Therefore, wireless ad hoc and sensor networks are generally considered as a special

type of distributed systems. In theory, the concepts involved in the design of distributed

systems should be easily adopted for wireless ad hoc and sensor networks.

In the design of a distributed system [27], the order of events plays an important role.

For instance, assume that two events occur in a distributed system. If the first event needs

the result of the second as its input, then a temporal correlation is formed. If the protocol

has the second event scheduled to finish first, then these two events will never be completed.

Additionally, if a protocol assigns high priority to the second and low priority to the first,

the performance (i.e., the time needed to complete both events) is likely to be worse than if

the protocol assigns high priority to the first and low priority to the second.
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Note that although a physical clock is commonly available at each component in a

distributed system, it cannot be used to manipulate the order of events for two reasons.

First, it is difficult to align clocks between components precisely. Second, the delay caused

by exchanges of clock information is difficult to estimate. Instead, the logical clock [28,

29, 30] and (defer) timer [31, 32] are commonly used to achieve these goals in a distributed

system.

This dissertation is to investigate the use of a defer timer in the design of protocols

for a set of problems in ad hoc and sensor networks. Although a defer timer has been used

in some of existing network protocols, its power has yet to be fully utilized. Second, the

type of research problems in wireless ad hoc and sensor networks that may benefit from the

uses of a defer timer will be identified. Furthermore, several examples will be provided to

demonstrate the power of a defer timer in the design of protocols for wireless ad hoc and

sensor networks. By properly setting up the defer timers, many difficult issues in ad hoc

and sensor networks, such as the broadcast storm problem [15, 16], the construction of the

virtual backbone [4, 5, 6, 7, 8], and dynamic cluster formation [26, 33, 35] can be easily

tackled with only the help of simple localized information at each node.

The remaining chapters are organized as follows. Chapter 2 presents background and

general issues concerning current wireless networks. Chapter 3 introduces the order of

events in a distributed system. The concepts of clock synchronization, physical and logical

clocks, and defer timer are described and examples of existing defer timer based proto-

cols are discussed. In Chapter 4, our proposed timer based dominating set construction
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protocols are presented. In each section, different timer based DS/CDS protocols are dis-

cussed. A summary of the dissertation, the conclusions reached contributions to the field,

and suggestions for future research are given in Chapter 5.
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CHAPTER 2

BACKGROUND AND GENERAL ISSUE

This chapter provides an overview of wireless ad hoc networks. There are three types

of wireless ad hoc networks: mesh networks, mobile ad hoc networks, and sensor networks.

Each has important applications and supports a different degree of mobility for wireless

devices. Section 2.1 discusses the relevant background and an overview of wireless ad hoc

networks. Sections 2.2, 2.3, and 2.4 provide the definition, the standards, and research

issues for each type of ad hoc network. In Section 2.5, the relationship between wireless

ad hoc networks and distributed systems is presented.

2.1 Overview of wireless ad hoc networks

Like traditional wired networks, wireless networks are formed by routers and hosts.

Typically, the routers are responsible for forwarding packets in the network and hosts may

be sources or sinks of data flows. In a wireless network, the link between different network

components can be wireless. This allows the components in wireless networks to enjoy a

higher degree of travel freedom than those in wired networks. Wireless networks operate on

radio frequencies (RF), and different RF spectrums are used for different wireless networks.

The wireless links that operate in different parts of the spectrum demonstrate distinctly

different physical characteristics. These characteristics, such as transmission range, power

consumption, and propagation model (e.g., omnidirectional or directional), influence the

design of an appropriate wireless protocol.
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As a special types of wireless network, an ad hoc network consists of wireless devices

that form temporary links at times when they are in close proximity. Each node in an ad

hoc network acts not only as a host to generate or receive packets, but also as a router

to help forward packets toward the destination. Due to the constraints imposed by power

limitations or the implemented standards defined by various industry committees, each

node in an ad hoc network has limited transmission range. As a result, a packet in an ad

hoc network is likely to travel through several hops before it reaches its final destination.

An ad hoc network is both self-organizing and adaptive. This means that the network

can adjust itself to changes in the environment. An ad hoc network is also standalone,

which means that the operation of an ad hoc network does not depend on a pre-installed

network infrastructure. A device in an ad hoc network must have the ability to detect

the presence of other devices in order to communicate and share information and services

with them. Depending on the application, the devices in an ad hoc network can vary sig-

nificantly, from personal digital assistants (PDAs),and laptops to Internet mobile phones.

Different type of devices offer very distinct attributes, including their computation, storage,

and communications capabilities.

2.2 Wireless Mesh Network

Also referred to as community networks, wireless mesh networks are a special type of

wireless ad hoc network that consists of wireless access points within a community that are

designed to provide an alternative wireless communications infrastructure for the commu-

nity’s residents. Thanks to the widespread acceptance of the home networking concept, it
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is now common for people to install a wireless access point for several Internet appliances

(e.g., one or more personal computers, PDAs, printers, and gaming consoles) to share a

single commercial broadband connection. Wireless mesh networks interconnect the access

points across households to form a large multi-hop wireless network. This offers two ad-

vantages. First, instead of having each household subscribe to the Internet service, only

one or few broadband connections are needed for the entire community if a wireless mesh

network is in place. Second, wireless mesh networks extend the Internet coverage to areas

where the original broadband service is not available.

A wireless mesh network is generally built on top of home networks, which are typ-

ically wireless local area networks (WLANs). A WLAN provides high data rate connec-

tions in a local area to the Internet. Most WLANs operate in unlicensed bands that are free

of charge and rigorously regulated. The Institute of Electrical and Electronics Engineers

(IEEE), European Telecommunications Standards Institute (ETSI), and HomeRF Working

Group (HomeRF WG) have all been involved in developing standards for WLANs, but

the ones that dominate the market are from IEEE. Currently there are four IEEE specifi-

cations for WLAN: 802.11b, 802.11a, 802.11g, and 802.11n. The WLANs based on these

specifications are the building blocks for wireless mesh networks.

• IEEE 802.11b (also referred to as Wi-Fi)[36, 37, 38, 39] – IEEE 802.11b supports

transmission rates of up to 11 Mbps within a range of 30 to 75 meters. This is

comparable to a traditional Ethernet. IEEE 802.11b uses the unlicensed 2.4 GHz

Industrial, Scientific, and Medical (ISM) spectrum. There are two immediate con-

sequences of using an unlicensed band. First, the transmissions in a IEEE 802.11b

7



network are prone to interference from other devices utilizing the same spectrum,

such as microwave ovens and cordless phones. Second, the transmission power of a

IEEE 802.11b device has to meet certain regulation so that it will not be harmful to

other devices using the same unlicensed band. To overcome these issues, a spread

spectrum is primarily used in IEEE 802.11b. The choice of the unlicensed band for

802.11b is favorable to vendors because it greatly reduces their production costs.

• IEEE 802.11a [36, 37, 38, 40] – IEEE 802.11a supports high transmission rates of up

to 54 Mbps within a range of 25 to 50 meters. Unlike IEEE 802.11b, IEEE 802.11a

does not use a spread spectrum scheme, but rather uses an orthogonal frequency

division multiplexing (OFDM) that operates in the 5 Ghz band. Due to the choice of

the 5 GHz spectrum, IEEE 802.11a devices suffer from much less radio frequency

(RF) interference than others (e.g. IEEE 802.11b) that utilize ISM spectrum. With

high data rates and relatively less interference, IEEE 802.11a is especially suited to

supporting multimedia applications in densely populated user environments.

• IEEE 802.11g [36, 37, 38] – Developed later than IEEE either 802.11b or 802.11a,

IEEE 802.11g is an attempt benefit from the positive aspects of both the earlier stan-

dards. IEEE 802.11g supports a bandwidth of up to 54 Mbps within a range of 30

to 300 meters, and uses the 2.4 Ghz ISM spectrum. In place of the spread spectrum

scheme, IEEE 802.11g is based on the use of OFDM modulation. IEEE 802.11g is

compatible with 802.11b, meaning that 802.11g access points (AP) will also work

with 802.11b wireless network adapters and vice versa.
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• IEEE 802.11n [36, 37, 38]- IEEE 802.11n builds upon previous 802.11 standards

by incorporating multiple-input multiple-output (MIMO) technology. IEEE 802.11n

offers especially high transmission rates of 100Mbps to 200Mbps.

To improve the performance of a wireless mesh network, the access point is usually

assumed to be equip with multiple wireless interfaces built on either the same or different

WLAN technologies. The primary research issue in mesh networks is how to take advan-

tage of the availability of multiple wireless interfaces at each access point to maximize the

communication throughput [41].

2.3 Mobile Ad Hoc Networks

A mobile ad hoc network (MANET) is a wireless ad hoc network consisting of mobile

hosts. In such a network, the network topology may change frequently. MANETs offer the

most convenient tool for providing communications capability for mobile users at locations

where a fixed network infrastructure is not available, such as in disaster recovery after a

catastrophe and communications in the battlefield.

Supporting communications in a MANET is difficult due to the nature of its highly dy-

namic topology, which results in several challenges for the protocol design. First, wireless

links will be created and destroyed from time to time as nodes join and leave the network.

The connectivity between neighbors thus needs to be updated promptly for any protocol

to function. Second, the network may be disconnected into groups at times so that a des-

tination that was previously connected can become unreachable. These challenges render

9



traditional wired network protocols useless for MANETs. Three important research issues

are critical in supporting communications in MANETs:

• Broadcasts - Broadcasting is a common operation in many applications. It is also

widely used to resolve many network layer problems. For instance, in dynamic

source routing protocols [42], a source broadcasts a query to find a path to the des-

tination. In a MANET, because the network topology changes from time to time,

it is expected that broadcasts must be performed more frequently. Broadcasts may

also be used in LAN emulation [43] or serve as a last resort for providing multicast

services in networks with rapidly changing topologies.

• Virtual backbone construction - As a special type of ad hoc network, the operation

of MANETs assumes that no physical infrastructure is available, which increases the

cost of communications. To reduce this cost, the use of virtual backbone schemes

has been proposed [44]. In these schemes, the virtual backbone works in the similar

manner as a physical backbone so that the resources (e.g., bandwidth and storage

overhead) can be better utilized. Virtual backbones can be used to collect topology

information for routing, to provide a backup route, and to multicast or broadcast

messages. In general, the overhead associated with virtual backbone construction

and maintenance is proportional to the size of the virtual backbone. In order to re-

duce the overhead, the size of the virtual backbone should be as small as possible.
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Additionally, due to the functions of the virtual backbone, it is expected that the vir-

tual backbone is connected. Hence, a connected dominating set (CDS) is considered

a good candidate for use of a virtual backbone in MANETs.

• Network formation - Network formation problem is sometimes referred to as the

cluster formation problem. There are two reasons why network formation is impor-

tant in MANETs. First, some wireless standards that use frequency hopping (e.g.,

bluetooth) allow nodes to select a subset of nearby nodes as its neighbors. Hence,

the network topology is determined by not only the locations of nodes, but also the

network formation protocol. Second, a task may require the collaboration of several

nodes to complete. In such a case, a protocol is needed to assign nodes appropriately

for the incoming task.

Mobile ad hoc networks are expected to become an integral part of the future 4G ar-

chitecture [45], which aims to provide pervasive computing environments that will enable

support users to accomplish their tasks, access information, and communicate anytime,

anywhere from any device. Currently, the specifications that support mobile ad hoc net-

works include the IEEE 802.11 family, IEEE 802.16e[46], and IEEE 802.20[47].

• IEEE 802.11 family - all the IEEE 802.11 standards support ad hoc modes for nodes

in close proximity to each other. This scenario can be considered as single-hop

MANETs.

• IEEE 802.16e [46]- IEEE 802.16e supports a transmission rate of 30 Mbps within

the range of 50 km, achieving this by using Scalable OFDM (SOFDM) over the 2 to
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6 GHz licensed bands. IEEE 802.16e supports broadband wireless access (BWA) for

mobile users and is an amendment to IEEE 802.16, which is a standard defined for

wireless metropolitan area networks (MANs). Coupled with 802.16e, IEEE 802.16

aims at supporting both fixed and mobile BWA in a metropolitan area with a single

base station.

• IEEE 802.20 [47]- The IEEE 802.20 standard specifies new mobile air interfaces for

wireless broadband. This specification fills the performance gap between the high

data-rate low mobility services currently regulated by the IEEE 802.11 family and

high mobility cellular networks. IEEE 802.20 focuses primarily on long-range and

high-speed mobile connectivity and is designed to work in narrow bands that can

be scavenged from amidst the existing spectrum allocations. The network is based

on proprietary Flash-OFDM technology to deliver data to users. It operates using

licensed bands below 3.5GHz and supports a transmission rate of 1 Mbps within a

range of up to 250 km. Essentially, IEEE 802.16e supports nodes with lower mobility

(e.g., a mobile user walking around carrying a PDA or laptop) over a wide area, while

IEEE 802.20 focuses on high-speed mobility issues (e.g.,users in vehicles).

2.4 Wireless Sensor Networks

Wireless sensor networks are a special class of ad hoc networks that are used to pro-

vide a wireless communication infrastructure among sensors deployed in a specific appli-

cation domain. A sensor network is composed of a large number of sensor nodes that are
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densely populated either inside the phenomenon or very close to it. The positions of the

sensor nodes need not be engineered or predetermined, allowing random deployment in

inaccessible terrain or disaster relief operations.

Each node in a sensor network consists of three subsystems: the sensor subsystem

which senses the environment, the processing subsystem which performs local compu-

tations on the sensed data, and the communication subsystem which is responsible for

message exchanges with neighboring sensor nodes. While individual sensors have only a

limited sensing region, processing power, and energy, networking a large number of sensors

can result in a robust, reliable, and accurate sensor network covering a wide region. The

types of sensors range from small passive microsensors (e.g, ”smart dust”) to larger scale,

controllable weather-sensing platforms. At present, there are several standard and propri-

etary devices that support sensor networks. IEEE 802.15.1 (Bluetooth) and IEEE 802.15.4

(Zigbee) are the most promising standards for wireless sensor networks because Bluetooth

and Zigbee devices are generally inexpensive and consume relatively little power, but motes

[1], designed primarily by UC-Berkeley, have also been adopted by many sensor network

applications.

• IEEE 802.15.1 (Bluetooth)[48] - Initially developed by the Bluetooth special inter-

est group, Bluetooth is a wireless specification for wireless personal area networks

(WPANs), which has characteristics such as short-range, low power, and low cost.

Operating on the 2.4 GHz unlicensed ISM band, Bluetooth supports data rates up to

2.178 Mbps within distances of up to 100 m.
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• IEEE802.15.4 (Zigbee)[48] - Initially developed by the Zigbee alliance, ZigBee is

designed to support low data rate, low power consumption, and low cost wireless

communications. The primary applications of Zigbee include automation and remote

control. It supports a data rate of 250 kbps using 2.4 GHz unlicensed bands within a

range of 10 to 75 m.

• Motes [1, 2]- A mote is a small, low cost, and low power device that incorporates a

CPU, radio transmitter, and associated hardware to support its sensing capability. For

example, the MICA mote is a commercially available product that has been widely

used by researchers and developers. The MICA mote uses an Atmel ATmega 128L

processor [1, 2] operating at 4 MHz. The 128L is an 8 bit microcontroller that has

128 KB of onboard flash memory to store the mote’s program and maintain/buffer

the collection of sensor measurements.

2.5 Wireless Mobile Ad Hoc and Sensor Networks and Distributed Systems

Due to the nature of wireless mobile ad hoc and sensor networks, it is impractical to

assume the availability of a central coordinator or global view when designing a network

protocol. In such networks, each station makes decisions independently, based strictly

on localized information, in order to collectively achieve a goal for the whole network or

resolve a global issue.

In general, a distributed system is defined as a collection of autonomous components

that are interconnected through a network and distributed middleware. A distributed system
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coordinates the events of components to share resources and give users the perception that

the whole system is a single and integrated computing facility. Based on this definition,

wireless mobile ad hoc and sensor networks are clearly a special type of distributed system.

In a distributed system [27], the order of events greatly influences the performance of

the system. To manipulate the order, the best-known tools are the logical clock (for soft

synchronization) [28, 29, 30] and the (defer) timer [31, 32]and many distributed commu-

nication protocols have been designed using these tools. However, when it comes to the

field of wireless ad hoc and sensor networks, the uses of the defer timer have not yet been

fully exploited. Part of the reason seems to be because the term defer intuitively infers a

longer delay for communications, which is in general not a desirable property in the design

of a network protocol. This is, however, not necessarily the case in many applications as

will be shown in later chapters. In fact, the similarity between wireless mobile ad hoc and

sensor networks and distributed systems suggests that the tools used in the design of dis-

tributed systems, such as the defer timer, could be borrowed to improve the protocol design

of wireless ad hoc and sensor networks.
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CHAPTER 3

THE ORDER OF EVENTS IN A DISTRIBUTED SYSTEM

At first glance, it seems easy to assign an order to a list of events in a distributed

system by simply utilizing clock information. However, the situation is actually more

complicated than it appears because typically the processes that trigger the events in the

system are running on different components. While it is common for each component

(e.g., a mobile station in a wireless ad hoc network) to incorporate a physical clock, these

clocks are not necessarily synchronized; there is no global clock among the components in

a system. In fact, even a simple status update across different components can be difficult

lacking a global clock because it is hard to determine which update request is the most

recent. Even if the components in the system can somehow be synchronized at one point

in time, the global clock cannot be maintained for long because each physical clock in the

different component is running at a slightly different speed. These clocks will gradually

drift away from each other as time goes by. Even if all the components share a global

clock, unpredictable delays (e.g., switching and propagation delays) incurred during data

transmissions can still be a problem for the design of network protocols. For instance,

assume two components are requesting a common resource from the system. The request

sent earlier may arrive at the destination later due to unpredictable delays. In such cases,

regardless of whether the components share a global clock, the order of events cannot be

assigned by a simple exchanges of messages (i.e., by sending requests and expecting the

resource to be granted based on the times the requests are sent).
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3.1 Logical Clock

Without loss of generality, assume that a distributed system is composed of n com-

ponents denoted by P1, P2, . . ., Pn. For a component Pi, Ci denotes the logical clock

associated with Pi. The logical clock of a component, which is typically implemented by

a counter, ticks (i.e., increments its value) every time an event happens at the component.

The primary difference between a logical clock and its physical counterpart is that the value

held by a logical clock does not directly reflect the real physical time. In a distributed sys-

tem, discrete event is defined as either the beginning or end of a process at a component.

For instance, the execution of a procedure, the message transmission, and receiving are

all considered events. If an event e happens at Pi, the timestamp of the event, denoted by

C(e), is defined as the value of the logical clock Ci at the time the event happens. Before

a component sends a message, it puts a timestamp on the message using its own logical

clock.

The following rules, known as Lamport’s scheme [49], are commonly adopted for the

implementation of logical clocks:

• Let a and b be two successive events in Pi, then C(a) < C(b).

• Let event a be the sending of message m by component Pi and event b be the receiv-

ing of m by component Pj , then C(a) < C(b).

Logical clocks are based on artificial time rather than real-time. Instead of utilizing a

physical clock or assuming a global clock at each component, logical clocks can be used to
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determine a relative order of events. The following subsections will briefly introduce two

logical clocks that are commonly used.

3.1.1 Lamport Clock

The local time at which each event occurs at different network components cannot be

used to determine the order of events due to the absence of perfectly synchronized clocks

and global time in a distributed system. However, Lamport’s logical clock allows us to

overcome these difficulties to learn the order of events in certain scenarios.

Lamport’s logical clock is based on the idea of capturing the happened-before rela-

tionship. If event a must happens before event b, then C(a) > C(b). The benefit of the

happened-before relationship is its lack of dependence on physical clocks. A clock is con-

sidered accurate if all happened-before relationships are obeyed.

The happened-before relation captures the casual dependencies between events, i.e.,

whether two events are causally related or not. The relation, denoted by →, is defined as

follows:

• a → b, if a and b are events in the same component and a occurred before b.

• a → b, if a is the event of sending a message m by a component and b is the event of

reception of the same message m by another component.

• if a → b and b → c, then a → c, i.e., the ” → ” relation is transitive.
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Figure 3.1: Lamport’s logical clock

Using Lamport’s scheme, for any pair of events e and e′, if e → b, then C(e) < C(e′).

In addition, two events a and b are said to be concurrent if a 9 b and b 9 a. In other

words, concurrent events are not causally related to each other.

Figure 3.1 gives an example of Lamport’s logical clock. In Figure 3.1 , a and b rep-

resent events in component P1, c and d represent events in component P2, and e, f , and g

represent events in component P3. Specifically, b is the event of sending the message m1 at

P1 and c is the event of receiving m1 at P2. d is the event of sending the message m2 at P2

and g is the event of receiving m2 at P3. Assume all clock values C1, C2, C3 are initialized

as 0, and the value of the counter is incremented by 1 every time an event happens.

a and e are internal events in components P1 and P3 which cause both C1 and C3 to

be incremented to 1. b is a send event in P1. The message is assigned a timestamp of 2.

The event c corresponding to the receive event of the message m1 increments the clock C1

to 3. Similarly, d, f , and g are events in P2 and P3, resulting in clock values of 4, 2, and 5,

respectively.
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According to the definition of causal dependencies between events, a → b, c → d,

e → f , and f → g as causal dependencies reflect the order of events that happen at the

same component. Additionally, b → c and d → g because the send event and receive event

of the same message are causally related. According to the transitivity property of causal

relationships, b → d because b → c and c → d. Note that a and f are not causally related.

In other words, a and f are concurrent.

There are a few problems with Lamport’s logical clock. One of the problems is that

distinct events (e.g. a and e) can have the same Lamport timestamp, as shown in Figure 3.1.

Another problem with Lamport’s clock is that for two events e and e′, if C(e) < C(e′) it

does not necessarily follow that e → e′. For example, in Figure 3.1 C(a) < C(f), but this

pair of events are not causally related. The reason for the problems is that the clocks in each

of the different component are incremented every time an event occurs in that component.

Lamport’s logical clock fails to distinguish between increments of the clock due to events

involving a single component and those involving multiple components (e.g., sending or

receiving messages).

3.1.2 Vector Clock

Another type of logical clock, known as the vector clock, was proposed by Mattern

[50] and Fridge [51]. A vector clock in a system of N components is a vector of N integers.

Each component maintains its own vector clock (Vi for component Pi) to timestamp the

events.
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As opposed to maintaining a single counter at each component, as in Lamport’s logical

clock, a component uses N counters as its vector clock in a system of N components. The

i-th element of the vector (i.e., a counter) holds the estimated logical clock value for the

i-th component in the system. For a component Pi, the only element in its vector clock that

is guaranteed to be up-to-date is the i-th element.

At the initialization of the system, each component sets the elements of its vector clock

as 0. When an event happens at Pi, Pi increments the i-th element of its vector clock. If a

message is sent from a component, the component stamps its vector clock’s current value

to the message. When a component receives a message with a vector timestamp, it uses the

timestamp on the message to update some counters in its vector clock. For each counter in

the receiving component’s vector clock, the component compares the counter value and the

corresponding element value in the message’s timestamp, and writes the larger value back

to the counter. This ensures that the receiver has information that is at least as up-to-date

as the sender of the message.

Given two events e and e′, V (e) = V (e′) if and only if at least a pair of the correspond-

ing elements of the timestamps are different; V (e) ≤ V (e′) if and only if each element in

V(e) is less than or equal to the corresponding element in V(e’); and V (e) < V (e′) if and

only if V (e) ≤ V (e′) and V (e) 6= V (e′). Using a vector clock, the causal relation (i.e., →)

between events is now redefined as e → e′ if and only if V (e) < V (e′). Two events e and

e′ are said to be concurrent if neither V (e) ≤ V (e′) nor V (e′) ≤ V (e).

The vector clock is better able to reflect the causal relations between events. For

instance, Figure 3.2, shows how vector clocks are used for exactly the same scenario (i.e.,
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Figure 3.2: Example of vector clock

events and components) as Figure 3.1. As the figure 3.2 demonstrates, not only can the

vector clock be used to find all the causal relations Lamport’s logical clock is capable of

identifying, but it can also tell that events a and f are concurrent because neither V (a) ≤

V (f) nor V (f) ≤ V (a).

The disadvantage of vector clocks is that more storage and message overhead are

required because an entire vector rather than a single integer must be maintained.

3.1.3 Examples of protocols based on the use of logical clocks

Logical clocks have been used in the design of many distributed algorithms. For exam-

ple, frequently a distributed system has one or several resources that are shared by multiple

components. If the goal of a protocol is to grant the component that requested a resource

the earliest the access right to the resource, the logical clock can be used. In [52], the

proposed protocol first elects a coordinator among the components. If a component needs

to access a resource, it sends a request to the coordinator. Upon the reception of multiple

requests, the coordinator grants the access right to the component who sent the request
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the earliest if the resource is available. After the component has finished accessing the re-

source, it sends an acknowledgement to the coordinator allowing it to release the resource

to the next requestor. In this protocol, the logical clock can be used to determine the order

of the requests.

The logical clock is also a powerful tool for analyzing and reasoning about distributed

computations in general [53]. For instance, the global state of a distributed system [54] is

defined as the collection of all state information. The consistency of a global state means

that for every received message a corresponding send event is recorded in the global state.

This consistency is important for a global state because it is required in the evaluation of

global predicates (i.e., properties of the global state). To maintain the consistency of a

global state, vector clocks can be used to check the causal relation of send and receive

events. In [55, 56, 57], a consistent snapshot reflects a consistent global state and can

therefore be determined using vector clocks.

In some cases, it is necessary to enforce causal order among a set of events. For

instance, using a logical clock a receiver in a distributed system is able to sort the received

messages according to the order they were sent. Another application of logical clocks is

the debugging of distributed systems [58]. Using logical clocks, it is possible to show that

some events cannot be the cause of an exception event. Logical clocks can also be used

to reduce the size of the system trace as recording events with timestamps instead of raw

data is sufficient for system rollback. Since causally independent events may be executed

concurrently, logical clocks can also be used to determine the degree of parallelism of a

computation [59].
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3.2 Defer Timer and its application to network protocols

The defer time refers to the waiting time intentionally inserted between events in a

distributed system. The defer timer is a countdown timer at each component. In general,

before a defer timer expires, a component is forbidden to perform a certain set of events.

By controlling the defer timer for each component, it is thus possible to determine the order

of events.

The concept of the defer timer has been used in many network protocols. For instance,

in the end-to-end communication protocols, the (defer) timer is used to guarantee the safe

delivery of the packet and is normally set to be a constant [31]. The following subsections

provide an overview of a few network protocols that are based on the use of defer timers.

The first protocol is based on a constant defer timers, the second is based on a random defer

timer, the third is based on an adaptive defer timer, and the fourth is based on a hybrid defer

timer (i.e., both random and adaptive).

3.2.1 Inter Frame Spacing

In an IEEE 802.11b wireless LAN [39, 38, 37], a station listens to the wireless medium

and ensures the medium is available before it transmits anything. This medium access con-

trol mechanism is referred to as carrier sensing multiple access with collision avoidance

(CSMA/CA). The (waiting) time a station listens to the channel before it transmits is de-

fined as its inter frame spacing (IFS).
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There are four different IFS defined in the specification: the short interval inter frame

spacing (SIFS), DCF inter frame spacing (DIFS), point coordination inter frame spacing

(PIFS), and extended inter frame spacing (EIFS). SIFS is used before a station sends either

an ACK, CTS, or DATA frame. PIFS is used when the access point coordinates all stations

by polling. DIFS is used before a station starts a session (i.e., sending RTS or sending data

without the preceding RTS/CTS). In the case of transmission failure, EIFS, the longest IFS,

is used in place of DIFS to avoid further channel congestion due to immediate retransmis-

sions. According to the IEEE 802.11b specification, in the case of a frequency hopping

spread spectrum (FHSS), SIFS is 10 microseconds, PIFS is 30 microseconds, DIFS is 50

microseconds, and EIFS is 60 microseconds.

The reason for having four different IFSs in IEEE 802.11 is to assign different prior-

ities to different frame transmissions. The longer the IFS is, the more likely a station is

to hear another station’s transmission and postpone its own transmission. In particular, the

shortest SIFS gives the highest priority to signals (e.g., ACK) and the longest EIFS gives

the lowest priority to retransmissions after a collision. An example of the IFS is shown in

Figure 3.3.

3.2.2 Back-off Time

In IEEE 802.3 Ethernet [60] and IEEE 802.11 wireless LAN [38], defer time is used to

avoid traffic congestion. In these systems, the medium (i.e., ethernet link and air) is shared

by a set of stations. When a station encounters a packet loss (possibly due to collision), it is

likely that many stations are in need of transmission at the same time. If all stations either
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Figure 3.3: Inter Frame Spacing for medium priority transmissions

start transmitting immediately or simply wait for a constant amount of time (IFS) before

transmission, a collision will occur.

To avoid this problem, a defer time (also called a back-off time) is inserted before the

retransmission whenever a station finds a packet loss. After a station sends a packet, if it

does not get back an ACK within a predefined period, the station concludes that the packet

is lost. In such a case, the back-off time is set to be the product of the current contention

window (CW) and a random variable uniformly distributed in [0, 1). In general, the size of

the contention window is doubled every time a packet is reported lost. The back-off time

is decremented each time the channel is sensed to be idle. If the channel is sensed to be

busy before the back-off time reaches zero, the decrementing process is frozen, resuming

only when the channel is once again sensed to be idle for a predefined period. Before the

back-off time expires, the station stops injecting traffic to the network.

Basically, a packet loss triggers the exponential growth of the contention window size,

which in turn is likely to lead to a longer back-off time. The longer the back-off time a

station has, the less frequently the packet is (re)transmitted. This helps alleviate network

congestion.
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3.2.3 Broadcasting

In a broadcast, a packet generated by the source station needs to reach all the other

stations in the network. The easiest implementation of message broadcast is flooding i.e.,

each station retransmits a broadcast packet the first time it receives it. The main problem

with flooding is that when it is adopted in MANETs, it typically causes an excessive num-

ber of retransmissions. This can result in high energy consumption, packet collisions and

channel contention. This problem is referred to in the literature as the broadcast storm

problem [15, 16]. Hence, the design of an efficient broadcast protocol to provide more

reliable message broadcasts with fewer retransmissions is an important issue in MANETs.

In location-based ad hoc networks where each node equips a Global Positioning Sys-

tem [35, 62]. Assume that each station in the network knows the locations of itself and

its neighbors. In Figure 3.4, assume that node S broadcasts a message to node A, B and

C with TTL greater than zero. If nodes A and C retransmit earlier than node B, B does

not need to retransmit since it can conclude (from the locations of neighbors S, A, and C

encoded in the header of the (re)transmissions) that its coverage area (the shaded region) is

completely covered by those of nodes S, A, and C. The message will reach the same area

no matter whether node B retransmits or not. Therefore, if the order of the retransmissions

is correct, node B can derive that its retransmission is redundant.

To make sure the order of retransmissions is favorable in finding redundant retrans-

missions, intuitively the retransmissions that cover more new area should happen earlier.

Although computing the exact new coverage area for each retransmission is complicated

and requires more than just localized information, the distance between the node itself and
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Figure 3.4: The retransmission of B is redundant if S, A, and C transmit before B

the sender where it received the broadcast from is a good indication for approximating the

amount of new area. (i.e., the farther the node is away from the previous sender, the more

new area its retransmission is likely to contribute.) Based on this observation, let R be the

transmission radius, ∆D be the distance between the node itself and the neighbor who it

received the broadcast from, and ∆Tmax be the maximum value of the defer timer, the fol-

lowing simple formula can be used to set a defer timer for broadcast retransmission when

a node receives a broadcast:

∆T = Tmax · (R−∆D)

R
(3.1)

Computer simulations reveal that the order of retransmissions following this defer

timer can effectively help identify redundant retransmissions, thus reducing the number of

retransmissions significantly without the need for collecting neighbor location information.

Figures 3.5 demonstrates how much performance gain the defer timer based broadcast

protocol has achieved compared with simple flooding and the broadcasting protocols in

[63] and [64] (denoted as Ni) and [4], [5], and [6](denoted as Wu). Notice that Wu’s
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Figure 3.5: Number of retransmissions

protocol shows a low number of retransmissions because it requires 2-hop local topology

information at each node, which will introduce an extra message overhead not counted in

Figure 3.5.

3.2.4 Dynamic Cluster Formation in Sensor Networks

In a sensor network where each node is able to detect only the distance (not the direc-

tion) of the target, the sensor nodes need to collaborate in order to derive the location of the

intruder. Hence, it is natural for the nodes participating in a computation to form a cluster

(for collaboration). However, at the same time for the purpose of energy conservation, it

is desirable that only the nodes near the target be activated for the computation. To form a

cluster, the first step is to elect a cluster head. For the purpose of intruder detection, it seems

reasonable to elect the node closest to the intruder as the cluster head for this computation.

Consider a set of n distinct sensor nodes deployed on a two-dimensional plane. The

Voronoi diagram of the sensor network is the subdivision of the plane into n cells, one
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A

Figure 3.6: Voronoi diagram for a sensor network

for each node. Each cell in the Voronoi diagram represents the area closest to the sensor

node located within. Assuming a certain localization service (e.g., [33], [34], and [35]) is

available for sensor nodes at the time the network is deployed, it is possible to pre-compute

the Voronoi diagram when the sensor network is first deployed as long as the sensor nodes

are immobile.

In Figure 3.6, if node A detects the object to be outside the outer circle, it can safely

conclude that it must not be the node nearest to that object. On the other hand, if node A

detects that the object is inside the inner circle, it can also safely conclude that it must be

the one closest to the object. The problem arises when the distance to the detected object

falls in between the radii of these two circles.

To determine which node should be the cluster head, a defer timer can be used. Let

the radius of the large and small circles be R and r, respectively, and Wmax(Wmin) be the

maximum (minimum) defer time. For each node not able to make a definite choice, a defer

timer D is set up based on the following linear formula:
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D = Wmin + (Wmax −Wmin) · ((1− Pr(i|d)) + U(Wran), (3.2)

Notice this formula is a simplified version of the one in [65] and contains two parts.

The first two terms in equation 3.2 are the deterministic part that relates the estimated

distance to the back-off delay value, and the third term accounts for the random part that

prevents potential collision when the distances from the target to two or more cluster heads

are approximately the same. According to this formula, the defer time is set to near Wmax

when the distance is closet to R and Wmin when the distance is closer to r. Note that this

formula contains two parts. If no other node volunteers to become the cluster head before

a node’s defer time expires, the node declares itself as the cluster head. In cases where

more than one node declare themselves to be the cluster head, they exchange information

on their distance to the intruder and the one with the smallest distance is declared to be the

cluster head.

This simple defer timer allows the cluster head to be elected efficiently without the

need to introduce extra signals. In [65], the computer simulation results indicate that this

defer timer based protocol incurs the minimum location error, the smallest latency, and the

least amount of message exchanges.
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CHAPTER 4

TIMER-BASED VIRTUAL BACKBONE CONSTRUCTION PROTOCOLS

The Dominating set (DS) (also known as vertex cover) and connected dominating set

(CDS) have found major applications in the area of mobile ad hoc network (MANETs) in

the past few years. The ability to reach all nodes within one hop has made the DS/CDS

strong candidates for the virtual backbone [44] in MANETs. The dominating set of a graph

is a subset of nodes in the graph such that each node not in the subset has at least one direct

neighbor that belongs to the subset. If the nodes in the dominating set induce a connected

graph, the set is called a connected dominating set. This concept has been found to be

extremely useful in routing [5, 6, 7, 66], message broadcasting [67, 68, 69], and collision

avoidance [70].

Given a complete network topology, the problem of finding the minimum DS/CDS is

known to be NP-hard [71, 72]. In addition, due to the nature of MANETs, it is impractical

to assume that a node in a MANET has a complete network topology. As a result, a practical

DS/CDS construction protocol for MANETs needs to be fully distributed and the DS/CDS

correctly constructed based on localized information. In addition, it should possess the

following properties.

• The resulting DS/CDS should be as small as possible – The impact of the size of the

DS/CDS is two fold. First, when the network topology changes due to nodal move-

ments, a smaller DS/CDS is easier to maintain. Second, the size of the DS/CDS is
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closely related to the size of the routing table at each node. The smaller the DS/CDS

is, the smaller the routing table that each node has and thus the more efficiently the

message communications can be achieved.

• The protocol should avoid introducing extra messages – Bandwidth is a precious

resource in wireless networks, and introducing any extra messages may degrade the

performance of the system significantly. If possible, the protocol should be carefully

designed so that the necessary local information can be collected solely via beacons.

• The protocol should adapt to station mobility – The protocol should maintain and in-

crementally adjust the DS/CDS under changes of network topology caused by nodes

either leaving or joining the network after the construction of DS/CDS.

• The DS/CDS protocol should take into account the energy level at each node – In

addition to nodal mobility, the energy level of nodes in a DS/CDS is an important

factor in determining the lifespan of the DS/CDS. Since the process of constructing a

DS/CDS is in general costly and time-consuming, in the case of a static network it is

desirable to prolong the lifespan of the DS/CDS in order to avoid the need to recon-

struct the DS/CDS frequently. Moreover, in the above routing and collision avoid-

ance protocols, nodes in the DS/CDS are commonly used to forward more packets

and participate in traffic management for the network, so they are likely to consume

more energy than nodes not in the DS/CDS. In cases where nodal mobility frequently

renders the existing DS/CDS obsolete, the DS/CDS protocol should act as a key that
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evenly distributes the energy consumption to all the nodes in the network, thus al-

lowing the network to remain operational for longer periods of time.

This dissertation presents three timer-based protocols, namely timer-based DS (TDS),

timer-based CDS (TCDS), and timer-based energy aware CDS (TECDS). In these proposed

timer based protocols, each node adaptively sets up a defer timer based on the number of

uncovered neighbors and determines whether or not to join the DS/CDS when the timer

expires.

In this dissertation, a mobile ad hoc network (MANET) is represented as an undirected

graph G = (V, E), where V is the set of all stations in the MANET and E is the edge set

with (u, v) ∈ E if and only if u and v are within each other’s transmission range.

If G is connected, a set DS ⊂ V is called a dominating set if for every vertex v ∈

V − DS, there exists a vertex w ∈ DS such that (v, w) ∈ E. A dominating set is said to be

connected if its induced graph in G is connected.

A node u ∈ V is said to be in the state of inDS, covered (by DS), or uncovered (by

DS) according to the following:

• inDS: if u ∈ DS;

• covered: if u /∈ DS and there is an edge (u, v) ∈ E for some v ∈ DS;

• uncovered: if u /∈ DS and there is no edge joining u to any node in DS;

The state transition diagram is shown in Figure 4.1. There are four possible state for a

node, namely init/uncovered, start/initiator, covered/marked/dominatee, and DS/dominator.
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Figure 4.1: Possible states for a node and the transitions between states

4.1 Survey of Existing DS and CDS Protocols

Computing the minimum dominating set and the minimum connected dominating set

are considered fundamental problems in computer science and these problem are known to

be NP-hard [71, 72]. In [72, 73, 74, 75], several nondeterministic protocols were proposed

to compute the minimum DS or CDS at a lower time complexity in a centralized manner.

These protocols require a station to have the topology of the whole network prior to the

computation. Hence they are not suitable for MANETs.

In the CEDAR routing protocol [76], the core extraction phase is basically a distrib-

uted generic dominating set construction protocol. In this protocol, each node exchanges

its dominator, the number of neighbors, and the number of neighbors that use it as its dom-

inator with all its neighbors via beacons and switches to become a dominator if some of its

neighbors chose it as their dominator. The protocol in [76] offers two major advantages.

First, they obtain the dominating set without introducing any extra messages. All the nec-

essary information can be acquired through the beacons. Second, the size of the resulting
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dominating set is very competitive. However, since in CEDAR each node joins the domi-

nating set independently, the dominating set may contain many disconnected components.

All nodes in the DS constructed by the CEDAR protocol are not guaranteed to fully connect

the topology in a network. In other words, the dominating set constructed by this protocol

is not routing friendly when it is used as virtual backbone in ad hoc networks.

The protocols in [77] [78] construct the CDS by expending the maximal independent

set. The construction has two phases. In the first phase, if a node finds its unique MAC ad-

dress is minimum among its neighbors, it adds itself into a set and removes all its neighbors

from the consideration of the set members. This process is repeated until the resulting set

becomes the maximal independent set, which is also a (non-connected) dominating set. In

the second phase, the nodes in the set use local topology information for up to 3 hops to add

gateway nodes to the set until the set becomes a CDS. Because in these protocols the node

needs to collect local topology information within three hops, extra messages need to be

introduced. However, the key advantage of these protocols is that the size of the resulting

CDS is bounded by a constant times the size of the minimum CDS.

The CDS construction protocol proposed in [4, 5, 6] provides the CDS by eliminating

nodes from the network. These protocols also have two phases. In the first phase, a node

exchanges the neighbor list with its neighbors. If a node finds that all its neighbors are pair-

wise connected, it removes itself from the consideration of the CDS. In the second phase,

some heuristic rules are applied to further reduce the size of the set. The protocols are sim-

ple, distributed, and most of time compute a CDS with a very competitive size. However,

they also introduce extra messages between immediate neighbors (to exchange neighbor
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list). Additionally, when the topology changes, the protocols do not have a mechanism to

maintain the CDS.

Since energy (i.e., battery power) is a limited resource for nodes in MANETs and sen-

sor networks, the energy-aware protocols for MANETs and sensor networks [79, 80, 81]

have always received special attention. In general, nodes in the CDS forward more pack-

ets and participate network management, so they tend to consume more energy than those

outside of the CDS. However, none of the above CDS protocols takes nodal energy into

consideration when constructing the CDS. In [82, 83], Wu et al proposed an extended

marking process that constructs an energy-aware CDS for MANETs. This extended mark-

ing process is aimed at both reducing the size of CDS and evenly distributing the energy

consumption to all nodes in the network. In [82, 83], the simulation results show that Wu’s

energy aware CDS protocol allows the network to go through more of CDS reconstruction

steps, an indication that the protocol prolongs the operation of the network. However, sim-

ilar to [4, 5, 6], this protocol also requires exchanges of extra messages between immediate

neighbors.

4.2 Timer-based Dominating Set Protocol (TDS)

This section presents the new Timer-based Dominating Set (TDS) protocol.

4.2.1 TDS Protocol Description

This protocol is based on a very simple greedy strategy. That is, in order to obtain

a smaller dominating set, a node with more neighbors should have a higher chance to be
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included in the dominating set than a node with fewer neighbors. While this strategy is

simple and valid, the question is how to design a distributed protocol to automate such a

process.

To achieve this goal, the idea of the distance defer transmission broadcast protocol

proposed in [68] could be borrowed. This broadcast protocol intentionally inserts a defer

timer for nodes to defer message retransmission. Nodes receiving the broadcast message

farther away from the sender defer the retransmission less. By doing this, the nodes cov-

ering more new area are more likely to retransmit the broadcast message. This strategy

greatly reduces the number of retransmissions for a broadcast without affecting its reach-

ability. If the same idea of deferring can be used to differentiate the nodes with more

neighbors and the nodes with fewer neighbors, a simple and robust distributed protocol can

be constructed to efficiently compute the dominating set.

Similar to every existing wireless system, including IEEE 802.11 [61] and Bluetooth

[84], assume each node has an unique value or identifier in the network, such as its MAC

address. The following refers to a node’s unique identifier as its id. A node transmits a

beacon at every fixed time interval. Before a node transmits its beacon, it encodes its own

id, dominator, and current state in the header of the beacon. By doing this, each node

learns its neighbors, the dominator and the state of the neighbors without introducing extra

messages. Since normally the beacon already includes a node’s id, the only extra fields are

its current state (3 bits to represent 6 possible states) and its dominator’s id (32 bits if it is

MAC address). Using IEEE 802.11b as an example, Figure 4.2 shows the extension of the

IEEE 802.11b beacon format.
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Time Stamp Original Beacon Content Status Dominator  IDNode  ID

~ 550 bits 3 bits 48 bits

Figure 4.2: Extended IEEE 802.11b Beacon Format

Every node starts from the init state. After waiting for a fixed time interval (to collect

information from its neighbors’ beacons), if an init node finds its id is the minimum among

its neighbors, it switches to start state. If not, the node switches to the uncovered state and

waits for further signals from its neighbors to wake it up. Note that there may be several

start nodes in the networks. A start node calculates the ∆T according to the following

formula and then switches to the covered state. In contrast, an uncovered node waits until

one of its neighbors turns DS before it calculates the ∆T using the same formula and then

switches to the covered state.

∆T = Tmax · 1

(number of uncovered neighbors)α
(4.1)

Clearly nodes with more neighbors result in shorter defer times compared with nodes

with fewer neighbors as long as α > 0 in Equation 4.3.

A covered node waits for its ∆T to expire and then checks if all of its neighbors are

covered. If this is the case, the covered node switches to the covered state and uses the

dominator neighbor that triggered it to switch from the uncovered to covered state earlier

as its own dominator. If not, the covered node joins the dominating set by switching to the

dominator state and, consequently, uses itself as its own dominator.
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If nodal movements cause a covered node to lost its own dominator, it simply switches

to init state and restarts the protocol again. Similarly, if nodal movements cause a dominator

to lose all its covered nodes, it switches to the covered state to reduce the size of the

dominating set providing one of its neighbors is in the dominator state.

The pseudo code of the above Timer-based Dominating Set Construction Protocol is

given in the following.

/* node x in wireless ad hoc network executes the following

procedure until x has a dominator */

while ( x has no dominator )

init state :

on receiving a signal from neighbors

if ( x.id is smallest among its neighbors )

then state ¡= start

else state = uncovered

start state :

start ∆T

state = covered

uncovered state :

on receiving a beacon from a dominator neighbor

start ∆T

state = covered
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covered state :

if ( x has an uncovered neighbor )

then state = dominator

else state = covered

covered state :

if ( x’s dominator is no longer a neighbor of x)

then state = init

dominator state :

if ( none of x’s neighbors use x as its dominator) and

(a neighbor of x, y, is a dominator)

then x’s dominator = y and state = covered

Timer-based Dominating Set Construction Protocol

4.2.2 Correctness of the TDS protocol

This subsection tests whether the new TDS protocol successfully computes the domi-

nating set for the whole network.

Theorem 4.1 If the network topology remains stable for a period of time, the collection of

all nodes in the dominator state that result from the TDS protocol forms a dominating set

for the entire network.
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Proof.

First, if the network topology is unchanged eventually all nodes the will end up re-

maining in either the dominator or covered state stably.

Notice that although in Figure 4.1 there are two outgoing links from the dominator

and covered states, the only case where a node would leave the dominator or covered state

is when the network topology is changed. In other words, to prove that all nodes in the

network end up being in either the dominator or covered state, it is only necessary to show

that every init node will eventually visit either the dominator or covered state.

According to the TDS protocol, a init node has to switch to either start or uncovered

after a fixed period of time. The start node goes through covered and then visits either the

dominator or covered state after its ∆T expires. The uncovered node, however, needs to

wait until one of its neighbors becomes a dominator before it can move on to the covered

state and, later, the dominator or covered state. It is necessary to show that, after a certain

amount of time, one of the uncovered node’s neighbors must become a dominator.

Notice that the criteria for becoming a start node (i.e., a local minimum id) guarantees

that there must be at least one start node in the network. Now it is necessary to show that an

uncovered node will eventually turn covered by performing an induction over the number

of hops an uncovered node is away from the closest start node.

When an uncovered node is one hop away from a start node, as described earlier,

the start node will eventually switch to the dominator state after its ∆T expires. Once

the original start node becomes a dominator, its beacon will force the uncovered nodes to

switch to covered.
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Assuming any uncovered node less than n hops away from the closest start node will

eventually become covered, it seems reasonable to suggest that an uncovered node p that

is n hops away from the closest start node will also become covered. Let the set S be

the subset of p’s neighbors that are n − 1 hops away from the start node. According to

the induction hypothesis, nodes in S will eventually become either dominators or covered.

However, according to the TDS protocol, if p stays uncovered, this implies that all nodes

in S are covered. This cannot be the case, since if when the first node in S ends its defer

timer ∆T it has at least one uncovered neighbor, p, that will force it to switch to dominator

state. In other words, p will also switch to covered as well. This shows that any uncovered

node, no matter how far away it is from the start node, will become covered. Notice that

this induction is valid even when there are multiple start nodes.

Based on the above arguments, all the nodes in the network will eventually stay in ei-

ther the dominator or covered state stably if the network topology remains unchanged. The

covered node has at least one dominator neighbor as its dominator. Hence, the collection

of all dominator nodes forms the dominator set for the entire network. Q.E.D.

4.2.3 Example of the TDS Protocol Execution

To better understand the TDS protocol, an example is provided in this subsection to

demonstrate how it functions. Figure 4.3 shows the network topology. The top of Figure 4.3

illustrates the patterns used to represent various node states.
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Figure 4.3: Initial network topology
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Figure 4.4: Node 1 and node 2 switch to the start state

In Figure 4.3, the number for each node represents the id for the node. At the begin-

ning of the process, all the nodes are in the initial state. According to the TDS protocol,

after a period of time node 1 and node 2 soon discover that their id is the local minimum

among their neighbors and thus switch to the start state. All the other nodes switch to the

unmarked state. This is shown in Figure 4.4.

After nodes 1 and 2 compute their ∆T , they again switch to the marked state and wait

for their timer ∆T to expire. Obviously, node 2 will defer longer than node 1 since node 1

44



1

9 5

7

3

4

6
8

2

10

Figure 4.5: Node 1 joins the dominating set and forces its neighbors to switch to the covered
state

has more unmarked neighbors than node 2. When node 1’s ∆T expires, it switches to the

dominator state and then causes its neighbors, nodes 3, 5, 6, and 9, to compute their ∆T

and switch from the unmarked to the marked state. This occurs when node 2 is still in the

marked state. The result of the network is shown in Figure 4.5. Notice that the ∆T of nodes

3, 5, and 6 will be shorter than that of node 9 since they have more unmarked neighbors.

Now let the ∆T of node 2 expire, after which it switches to the dominator state because

nodes 8 and 10 are not yet covered. This again forces nodes 8 and 10 to switch from the

unmarked to the marked state. Notice that even though nodes 8 and 10 have different

numbers of neighbors, their ∆T will be the same since both have no unmarked neighbors.

Additionally, let the ∆T of nodes 3, 5 and 6 expire, after they then switch to the dominator

state and force nodes 4 and 7 to switch to the marked state. The state of the network is now

shown in Figure 4.6. Notice that node 8 is already a marked node and thus will ignore the

beacons received from node 6 after node 6 becomes a dominator.

After the ∆T of the rest of the marked nodes expire, they will find that all their neigh-

bors are in either the dominator or dominatee state and thus will switch to the dominatee
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Figure 4.6: Network status after nodes 2, 3, 5, and 6 join the dominating set
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Figure 4.7: Final network status

state. The resulting network status is shown in Figure 4.7. If the network topology is not

changed, the dominating set obtained by the TDS protocol is the collection of nodes in the

dominator state, which is the set {1, 2, 3, 5, 6}. Nodes 4, 7, 8, 9, and 10 are dominatees.

4.2.4 Comparison of Simulation Results for the TDS Construction Protocols

4.2.4.1 Simulation Setting and Parameter Consideration

Table 1 shows a list of the parameters used in the simulations, if not specified other-

wise.
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Nodes are generated randomly on a 4 by 4 square plane. The plane is wrapped verti-

cally and horizontally to eliminate the effects of the edge. Each node has the same range

of transmission. If the generated network is partitioned into pieces, it is discarded and a

new network topology is generated to ensure the connectivity of the whole network. The

value Tmax is chosen to be 100 time units. The last parameter to be determined in the TDS

protocol is the value of α in Equation 4.3. In order to select a good value for α, computer

simulations were carried out. The results of these simulations are shown in Figure 4.8.

Table 1: Simulation Parameters

Parameter Value

Space 4 by 4 (in unit)

Transmission Radius 1

Number of Nodes 50

Tmax 100

In Figure 4.8, the x-axis is the value of α and the y-axis is the size of the dominating

set for 50 nodes. Since the standard deviation of the size of the resulting dominating set is

only 0.17 when α is in the range between 1 and 5, it seems likely that the value of α does

not have a significantly impact on the performance of the protocol. Hence, a value of 1 for

was used for α for the remaining simulations of the TDS protocol.

4.2.4.2 Simulation Results and Performance Evaluation

In addition to the TDS protocol, three other dominating set protocols were imple-

mented, namely Wu’s protocol [4], CEDAR’s protocol [76], and the first phase of Wan’s
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Figure 4.8: The value of α vs the size of the dominating set
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Figure 4.9: The size of the dominating set for different protocols

protocol [77] [78] (the second phase of Wan’s protocol is not needed since it is for con-

nected dominating sets). The optimal dominating set was computed using brute force to

show how far the results of each protocol departed from the ideal. All simulations were

executed under the same parameters and network topology. The sizes of the resulting dom-

inating sets for networks with a size between 30 and 100 nodes were used to test the per-

formance of the new TDS protocol. The simulation results are shown in Figure 4.9.

48



In Figure 4.9, the x-axis is the size of the network and the y-axis is the size of the

resulting dominating set for the different protocols. Clearly, the size of the connected

dominating set obtained by the Wu’s is at least twice as large as the size of any dominating

set obtained by other generic dominating set construction protocols, regardless of the size

of the network. Notice that Wu’s protocol assumes that each node knows the local network

topology 2 hops away from itself. Even with such a strong assumption, the size of the

connected dominating set is still too big. This shows that it is not always true that the

connected dominating set is always better than the generic dominating set, since the bigger

connected dominating set clearly will require much more overhead to maintain it.

In addition, Figure 4.9 shows that the dominating sets obtained by Wan’s and the TDS

protocols are very close to the minimum dominating set. The size of the dominating set

obtained by the CEDAR’s protocol is considerably larger than that of Wu’s and ours by

approximately 10% to 45%. The difference becomes more and more obvious as the size of

the network increases. This suggests that the Wan’s and TDS protocols are more scalable

than CEDAR’s. Although the result of Wan’s protocol is slightly ahead of TDS in terms of

the size of the dominating set, the difference is marginal (i.e., less than 1 node in most of

the cases).

As described earlier, if the dominating set is more connected, it would be more friendly

to the routing protocols. Now consider the connectivity nature of the dominating set ob-

tained by Wan’s and the TDS protocol. In Figure 4.10, the x-axis represents the size of the

network and the y-axis is the number of disconnected components for the dominating set.

It is obvious that the dominating set obtained by the TDS protocol is more connected than
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Figure 4.10: The number of disconnected components for Wan’s and TDS’s dominating set

the dominating set obtained by Wan’s. The connectivity difference increases from 30% to

70% as the size of the network increases from 30 to 100. The reason for this is simple.

The dominating set obtained by Wan’s protocol is the maximal independent set, where all

nodes in the set are isolated. In contrast, the dominating set obtained by the TDS proto-

col contains just few disconnected trees rooted at the start nodes. The simulations reveal

that the number of start nodes is insensitive to the size of the network. This suggests that

the connectivity of the dominating set obtained by the TDS protocol is scalable. In other

words, the dominating set obtained by the TDS protocol is more routing friendly than the

dominating set obtained by Wan’s.

The only disadvantage of the TDS protocol is that it introduces a delay for dominating

set construction. If the ad hoc network has a diameter of n, the worst case for TDS to

obtain the dominating set is bounded by n · Tmax. However, since Tmax is at most the time

for a few rounds of beacons (i.e., a fraction of a second in IEEE 802.11b wireless networks
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[61]), such delays should not be a major concern even when the nodes are vehicles moving

at highway speed.

In summary, the new TDS protocol is a simple and efficient protocol capable of han-

dling nodal mobility. When the size of the network is large, the TDS protocol generates

a considerably smaller dominating set compared with CEDAR’s. The dominating set ob-

tained by TDS is more connected compared with the dominating set obtained by Wan’s and

is therefore routing-friendlier.

4.3 Timer-based Connected Dominating Set Construction Protocol (TCDS)

This section presents the new Timer-based Connected Dominating Set Construction

Protocol. Like many other CDS protocols, the distributed Timer-based Connected Domi-

nating Set Construction protocol (TCDS) also has two phases. The first phase is to elect an

initiator in the MANET; the second phase is to construct a CDS from the initiator.

Like many other CDS protocols, the distributed Timer-based Connected Dominating

Set Construction protocol (TCDS) proposed here also has two phases. The first phase is to

elect an initiator in the MANET; the second phase is to construct a CDS from the initiator.

4.3.1 The TCDS protocol

Similar to the TDS protocol, the TCDS protocol is also based on a simple greedy

strategy. That is, in order to to obtain a smaller connected dominating set, a node with

more uncovered neighbors should have better chance to be included in the dominating set

than a node with fewer uncovered neighbors. The protocol basically works as follows.
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Starting from an initiator as the first node in the CDS, the direct neighbors are covered as

covered nodes. For each covered node, a timer is set based on the number of uncovered

neighbors. Nodes with more uncovered neighbors are given a smaller timer value, and

hence will expire earlier. When the timer expires, a node enters the CDS if it still has

uncovered neighbors.

According to IEEE 802.11 wireless LAN specification [61], a node periodically broad-

casts its beacon. The timers used in this protocol have an initial value of -1. A positive in-

teger is assigned when a timer is started. The timer value will go down each beacon period.

When the value reaches 0, the timer expires and the value stops at 0.

4.3.1.1 Initiator Election

The initiator election selects one unique initiator. Here the node ID (for example,

the MAC address) is used as the metric to select the node with smallest ID as the initia-

tor. Other metrics can be used as long as they are unique. The initiator will send out an

ANNOUNCE message every initMax beacon periods, and it will refresh the InitT imer

of other stations which expire after 2 ∗ initMax beacon periods. It is a soft state protocol,

and the expiration of InitTimer for stations other than the initiator implies that the initiator

leaves the MANET. The nodes will wait 2 ∗ initMax to make sure all the InitT imers

expire, the initiator election process starts again.

The following is the pseudo code for the initiator election phase of the TCDS protocol.

/* node i in MANET executes the following: */

Initialization :
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initiator(i) ← MAXINIT

status(i) ← uncovered

color(i) ← 0

DSTimer(i) ← −1

ODSTimer(i) ← −1

InitT imer(i) ← initMax, start InitTimer

InitTimer expires

if initiator(i) = MAXINIT then /* initial announcement */

initiator(i) ← i

announce(i, i, color(i))

InitT imer(i) ← 2 ∗ initMax, start InitTimer

else if initiator(i) = i then /* initiator is selected */

color(i) ← color(i) + 1

announce(initiator(i), i, color(i))

InitT imer(i) ← initMax, start InitTimer

/* refresh message*/

else if initiator(i) 6= i then /* re-elect initiator */

status(i) ← uncovered

initiator(i) ← MAXINIT

color(i) ← 0

wait for 2 ∗ initMax

initiator(i) ← i
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announce(initiator(i), i, color(i))

InitT imer(i) ← 2 ∗ initMax, start InitTimer

Node i receiving announce(j, k, c) /* i 6= j */

if initiator(i) > j or

initiator(i) = j and color(i) 6= c then

initiator(i) ← j

color(i) ← c

announce(j, i, c)

InitT imer(i) ← 2 ∗ initMax, start InitTimer

Initiator Election Protocol

4.3.1.2 Connected Dominating Set Construction

After the initiator is detected, the initiator first enters DS, broadcasting to its neighbor

about its inDS status. A neighboring uncovered node becomes covered after receiving the

message. Then the covered node calculates the ∆T according to the following formula if it

still has uncovered neighbors and start its DSTimer.

∆T = Tmax · 1

(number of uncovered neighbors)α
(4.2)

It is clear that nodes with more uncovered neighbors result in shorter defer times com-

pared with nodes with fewer uncovered neighbors as long as α > 0 in Equation 4.3.
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When the DSTimer expires, the node enters DS and broadcasts to its neighbors about

its inDS status.

The following is the pseudo code for the second phase of the TCDS protocol after the

unique initiator has been identified.

/* node i executes the following */

Node i detects itself as initiator :

status(i) ← inDS

color(i) ← color(i) + 1

broadDS(i, color(i))

Receiving broadDS(j,c) :

if color(i) < c then

color(i) ← c

if status(i) = uncovered then

status(i) ← covered

start CoveredTimer with δt

Node i in covered state :

if ( i hears from two neighbors with large color difference )

status(i) ← inDS

broadDS(i)

if ( i does not have any uncovered neighbor )
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DSTimer(i) = -1

else if ODSTimer(i) = −1 then

DSTimer(i) ← ∆T , start DSTimer

ODSTimer(i) ← ∆T

else if ODSTimer < ∆T then

DSTimer(i) ← ∆T , start DSTimer

ODSTimer(i) ← ∆T

Node i in inDS state :

if ( i does not have any covered neighbor ) and

(i has at least one inDS neighbor) then

status(i) ← covered

DSTimer expires :

status(i) ← inDS

broadDS(i)

CoveredTimer expires :

status(i) ← uncovered

Timer-based Connected Dominating Set Construction Protocol
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Figure 4.11: Beacon Frame Format

4.3.2 Beacon Frame Extension

Note that there is no need for any new control messages with the TCDS protocol. All

the messages mentioned in the pseudo code are in fact beacon frames with slight extensions.

The extended beacon frame format is shown in Figure 4.11.

In the extended beacon format, a total of 58 bits are needed for the node to collect

necessary information from its neighbors. The status bits are always present, and allow the

neighbor nodes to know the status of each other. The value “01” means uncovered, “10”

means covered and “11” means inDS.

A broadDS(i, c) message is simply a beacon with status value “11” and color value

c where i is the source address (SA). Because it is already part of the beacon, it does not

need to be included in the extension.

An announce(initiator, sender, color) is a beacon with all the extensions. The sender

is the SA, so only initiator and color must be added, along with the status. Since the

announce message is sent out every initMax BPs, the overhead of the beacon extension

is not significant.
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4.3.3 Correctness of the TCDS Protocols

This subsection tests that the TCDS protocol generates a CDS as long as the network

topology remains connected and stable for a period of time.

Lemma 1 A unique initiator will be selected by the initiator election protocol within bounded

beacon periods if the network topology remains connected and stable.

Proof.

It is necessary to prove that the node with the smallest ID (say, node i) will be se-

lected as the initiator. Initially each node sets its initiator to MAXINIT , which means

no initiator has yet been elected. When the InitT imer expires, it will identify itself as the

initiator and announce this fact. If a neighbor has a larger initiator, it will accept the new

initiator value and forward the message further. Looking at the node i, each of i’s neighbors

will set its initiator to i. The initiator value will stay as i because i is the smallest. This

process repeats until it reaches all the nodes in the network. Since the network is connected

and stable, each node will receive the announcement and set its initiator as i. If initMax

is set large enough to ensure that the announcement of the initiator from i reaches every

other node in the network, the whole network will agree that i is the initiator. When the

initT imer of node i expires and finds that its initiator is itself, node i knows the initiator

is elected. The next phase of the protocol (dominating set construction) can then start.
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Lemma 2 A new initiator will be selected by the initiator election protocol within bounded

beacon periods if the original initiator crashes or leaves the network, assuming that the

network remains connected and stable otherwise.

Proof.

The initiator election protocol specifies that the original initiator will send out an

ANNOUNCE message every initMax BPs. Other nodes only forwards an ANNOUNCE

message if its initiator is bigger than the initiator in the message or the color value is differ-

ent. If the original initiator is active, its color value will change every initMax BPs, and

the refreshed ANNOUNCE will keep the InitT imer of other nodes from expiring.

When the original initiator crashes or leaves the network, all the other nodes agree on

the initiator and the color value of these nodes will also be the same. Their initT imer will

expire since no more refreshed ANNOUNCE messages are coming. After the expiration,

all the state information will be reset to their initial values and the initiator election will kick

in again. According to Lemma 1, a unique initiator will be selected.

It is also necessary to prove that the TCDS protocol successfully determines the con-

nected dominating set for the whole network.

Theorem 4.2 If the network topology remains stable for a period of time, the collection of

all inDS nodes that results from the TCDS protocol forms a connected dominating set for

the entire network.

Proof.
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If the network topology is unchanged, eventually all the inDS nodes will form a dom-

inating set and the induced graph is connected.

Proving this by induction for a number of stations n.

Induction base: when n = 1, the only station is the initiator. The initiator enters inDS

after election which is a connected dominating set. The above claim is therefore true.

Induction hypothesis: assume the CDS covers up to k − 1 nodes and the graph with

k − 1 nodes can be denoted as G(k − 1).

Induction step: assume a new station (node k) joins the network. If one of its neighbors

is an inDS node, then the CDS covering G(k − 1) will cover G(k) and is still a CDS.

If none of its neighbor is an inDS node, all the neighbors of k are covered nodes

due to the existence of CDS in G(k − 1). According to the protocol, one or more of k’s

neighbors will have its DSTimer expire and enter DS. After their access, there will be no

more uncovered nodes and a dominating set results. Since the newest inDS node enters DS

from the covered status, it must have an inDS neighbor. (A node enters covered status only

after it receives a broadDS message from an inDS node) The CDS covering G(k− 1) plus

the new inDS node will therefore be a CDS covering G(k) and the DS is connected.

4.3.4 Example of the TCDS Protocol Execution

To better understand the TCDS protocol, an example is provided in this subsection to

demonstrate how it functions. Figure 4.12 shows the initial network topology. The left side

of Figure illustrates the patterns used to represent various node states. In the figure, the
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Figure 4.12: Initial state

number for each node represents the id for the node. At the beginning of the process, all

the nodes are in the initial state. Based on the initiator election phrase, after a period of

time node 1 discovers that its id is the smallest among all the nodes in the network. It is

thus selected to serve as the initiator and switches to the DS state in Figure 4.13.

As shown in Figure 4.14, nodes 2 and 3 then switch to the covered state. At this stage,

all the remaining nodes are still in the uncovered state.

After nodes 2 and 3 have computed their ∆T , they wait for their timer ∆T to expire.

Nodes 2 and 3 have the same ∆T since nodes 2 and 3 have the same number of uncovered

neighbors. When ∆T for nodes 2 and 3’s expires, node 2 switches to the DS state first

because of its node ID. At the same time, nodes 6, 9, 10, and 11 switch from the uncovered

to the covered state and then compute their ∆T , as shown in Figure 4.15.

Figure 4.16 depicts how node 3 switches to the DS state, causing its neighbors, nodes

4, 5, 6, and 8, to compute their ∆T and switch from the uncovered to the covered state.
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Figure 4.13: Node 1 is selected as the initiator

Figure 4.14: Nodes 2 and 3 switch to the covered state
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Figure 4.15: Node 2 switches to the DS state and nodes 6, 9, 10, and 11 switch to the
covered state

Figure 4.16: Node 3 switches to the DS state and nodes 4, 5, 6, and 8 switch to the covered
state
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Figure 4.17: The resulting network topology

Once the ∆T of node 9 expires, it switches to the DS state and forces node 7 to

switch to the covered state. Notice that even though node 4 and 9 have the same number

of uncovered neighbors, node 7 is covered by node 9 because the ∆T of node 9 expires

earlier than that of node 4. Additionally, even though nodes 6, 10 and 11 have different

numbers of neighbors, their ∆T will be the same since none have no uncovered neighbors.

After the ∆T of the remaining covered nodes expires, These three nodes will find that all

their neighbors are in either the DS state or covered state and thus will switch to the covered

state. The resulting network status is shown in Figure 4.17. If the network topology remains

unchanged, the connected dominating set obtained by the TCDS protocol is the collection

of nodes in the DS state, namely the set {1, 2, 3, 9}. Nodes 4, 5, 6, 7, 8, and 10 are covered

nodes.
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4.3.5 Station Mobility

Next it is necessary to show that the TCDS protocol can adapt to accommodate station

mobility. This is done by showing that the protocol successfully maintains a CDS under

changes of network topology and include the following four cases:

1. The initiator leaves the network.

2. A new node joins the network after the construction of the CDS.

3. A redundant inDS node can change its status while still retaining the dominating set

connection.

4. An inDS node in the CDS leaves the network

Case 1 is proved in Lemma 2, and Case 2 is the exact situation in Theorem 4.2. From

the protocol, if a node has only inDS neighbors, it will change its status to covered. The

total number of inDS nodes is thus reduced. This can happen if several inDS nodes move-

ment.

Case 4 is handled by the color scheme. From the protocol, we can see that a node

changes its color only after receiving a larger color value from an inDS node. Since the

initiator keeps increasing its color value, if the CDS is intact, the color difference of neigh-

boring nodes should be very small. If the CDS is broken into several segments, the segment

that contains the initiator will keep increasing its color value while other segments will have

their color value unchanged. When a node sees two neighbors with a large color difference,
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it can consider itself a border node between the disconnected segments and enters inDS.

This process will continue until a CDS has been re-constructed.

4.3.6 Implementation Considerations

There are two implementation issues to consider in our protocol: The first is identify-

ing a suitable value for initMax in the initiator election phase; the second is the trade-off

between the size of the beacon and the size of the dominating set.

The value of initMax plays an important role in the initiator election and it has to be big

enough to allow minimum id information to propagate throughout the network. Intuitively,

if the node with minimum id is at the boundary of the network, the value of initMax has to

be at least the diameter of the network for the protocol to come up with a single initiator.

If the size of initMax is too small, the first phase will end up with multiple initiators and

thus cannot guarantee that the dominating set obtained at the end of the second phase is

still connected. On the other hand, if initMax is set too big, it is likely that the protocol

(especially the first phase of it) will take too much time. Additionally, in case of topology

changes due to nodal mobility, a protocol with a large initMax value may take some time

to converge. In theory, the value of initMax should be proportional to the diameter of the

network. However, since it is too costly for each node to learn the size of the network, it is

not practical to determine the value of initMax at run time.

Although this issue indicates that our protocol may not be scalable, in reality, this

is not a serious problem even for a relatively large ad hoc network, as the because IEEE

802.11 beacon period is only 0.1 seconds. When the node with minimum id transmits
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Figure 4.18: initMax for m×m grid under various beacon success rate

its beacon, its id information basically floods network. In other words, even though the

beacon transmissions are not reliable, the minimum id information will reach other nodes

through all possible routes and thus will not be affected significantly by unreliable beacon

transmissions. For instance, for an ad hoc network with 1000 stations uniformly distributed

in a 15 × 15 grid, setting initMax to 3 seconds (i.e., 30 beacon periods) almost guarantees

that the minimum information will reach all other nodes in time even when the beacon’s

success rate is as low as 0.3. This is shown in Figure 4.18.

Another issue is the trade-off between the size of the beacon and the size of the dom-

inating set when the topology changes. When the network topology changes due to nodal

mobility, as described in Section 4.4.4.2, our protocol is still able to come up with a con-

nected dominating set. In a few cases a non-dominator will switch to the dominating state
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(e.g., a new station enters the network or some covered stations become uncovered due to

movement and their covered neighbors may switch to the dominating state). However, the

only case where a node in the dominating set will switch to the covered state is when all its

neighbors are in the dominating set. It seems that as time goes by, when network topology

changes occur, the size of the CDS may grow bigger and bigger.

The reason some nodes in the CDS cannot be removed from the set is actually due to

a lack of information. For instance, assuming each node randomly selects one dominator

neighbor and includes that neighbor’s id in the beacon, a dominator can safely switch to

the covered state when the following statements hold.

• The beacons it received from all its neighbors have a different dominators.

• It has at least one dominator neighbor.

Although this approach does not introduce any new messages, it certainly increases

the size of each beacon by 48 bits and thus may not be justifiable. Of course, another easy

resolution to this issue is to simply set a timer at each node when running this protocol.

When this timer expires, the protocol executes from scratch again to ensure the resulting

CDS remains a competitive size.

4.3.7 Comparison of Simulation Results for the TCDS Construction Protocols

4.3.7.1 Simulation Setting and Parameter Consideration

The MANET used in the simulation consisted of n stations randomly distributed over

a m × m area. The transmission range of a single station was normalized to 1 unit of
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distance. The simulations were run on both 4 and 8× 8 grids. Our protocol was compared

with Wu’s [5] and Wan’s [78] protocols. Let Tmax = 100, initMax = δt = 20, α = 1.

4.3.7.2 Simulation Results and Performance Evaluation

For a 4 grid, TCDS’s DS size ranged between 11 to 13, Wan’s protocol ranged between

13 to 22 and Wu’s protocol ranged between 16 to 55. TCDS thus easily outperformed the

other two protocols.

Two characteristics of the TCDS are worth elaboration. First, TCDS is not overly sen-

sitive to the number of stations. The curve is very flat, which implies very good scalability.

Secondly, the DS size is even smaller when n = 256 than for n = 128, which is counter

intuitive. A careful examination of the simulation reveal that the favorable location of the

initiator in the 256-node network was the reason for the slight difference. Overall TCDS

is very scalable, and while the location of initiator has some impact, this impact is quite

minor if the nodes are randomly distributed and the number of stations is large.

For the 8 × 8 grid, TCDS’s DS size ranged between 44 to 49, Wan’s protocol ranged

between 61 to 75 and Wu’s protocol ranged between 72 to 132, following the same perfor-

mance pattern.

On average, MTDS’s DS size is about 65% of that of Wan’s protocol and about 40%

of Wu’s protocol.
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4.4 Time-based Energy Aware Connected Dominating Set Construction Protocol

(TECDS)

This section presents two Timer-based Energy-aware Connected Dominating Set Pro-

tocolswhich extend the Timer-based Connected Dominating Set protocol (TCDS) so that

the energy level at each node is taken into account when constructing the CDS. Simulation

results have shown that our protocols effectively construct an energy-aware CDS with a

very competitive size and prolong the network operation under different levels of nodal

mobility.

4.4.1 TECDS protocol

Like TCDS, the Timer-based Energy aware Connected Dominating Set protocols (TECDS)

use the same notations and definition is as those given in Section ??. The TECDS protocols

also have two phases: initiator election and CDS construction. In the first phase, an unique

initiator is elected; in the second phase, the CDS is constructed rooted from the initiator.

The major difference between TCDS and our TECDS protocols is that the energy level at

each node is taken into consideration in both phases.

Assume that each node in the network has the same transmission range. As with every

wireless network system, each node periodically broadcasts a beacon signal. Two types of

beacon signals are used in the protocols: the regular beacon and the announce beacon. In

the regular beacon, a node’s MAC address, status (i.e., uncovered, covered, or inDS), and

color value (used to detect if the initiator is still active) are included in the header of the
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beacon. In the ”announce” beacon, a node encodes those included in the regular beacon as

well as the energy level and number of neighbors for its initiator (for the possible election

of a new initiator) in the header of the beacon. Notice that a broadDS message is actually a

regular beacon encoded with inDS status. The reason for introducing two different beacon

formats is to reduce the overhead required by the protocols. Since the announce beacon

carries more information, it is larger than the regular beacon. The protocols are carefully

designed so that the announce beacon is sent every initMax regular beacon period.

4.4.2 Consideration of Initiator Election

The TECDS protocols are based on a similar greedy strategy to that used in TDS and

TCDS protocols. In TCDS, the node with the minimum MAC address is picked as the

initiator. In TECDS, however, the objective is to create a CDS with a smaller size that

contains nodes with a higher energy level, so two new criteria are used when the protocol

picks the initiator: the number of neighbors and the energy level. Depending on the order

of consideration for these two criteria, two different versions of TECDS, namely TECDS1

and TECDS2, are introduced. In TECDS1, the node with the most energy is picked as

the initiator. In cases where multiple nodes have the same energy level, the one with the

most neighbors is picked as the initiator. In TECDS2, the node with the most neighbors is

picked as the initiator. When multiple nodes are found to have the same most neighbors,

the one with the highest energy level is then elected as the initiator. In both protocols,

when multiple nodes have the same number of neighbors and the same energy level, the

node with the minimum MAC address is picked as the initiator to break the tie.
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The following is the simplified version of the initiator election phase for the TECDS1

protocol. The protocol is similar to the initiator election phase for the TCDS given in

Section 4.3.1.1. Differences between the TECDS protocols and TCDS’s are highlighted.

/* node i in MANET executes the following: */

On initialization:

All variables in TCDS are initialized the same way as in

TCDS. In addition, node i initializes energy(i) as its own

energy level and nbrNum(i) as the number of its neighbors.

On InitTimer expiration:

Other than initiator(i), i’s id, and color(i), the announcement

message now also includes energy(i) and nbrNum(i).

On receiving announce(j, k, c, e, r):

Node i compares the energy(j), numNBR(j), and MAC id

received from all its neighbors to elect a initiator.

Initiator Election Phase

4.4.3 The TECDS Construction

After the initiator is selected, the initiator enters DS first. It broadcasts to its neighbors

information about its inDS status. A neighboring uncovered node becomes covered after

receiving the message. The covered node then calculates ∆T according to the following

formula if it still has uncovered neighbors and starts its DSTimer.
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∆T = Tmax · 1

Nuncovered

· 1

E
(4.3)

In Equation 4.3, the term Nuncovered represents the number of uncovered neighbors

and E is the energy level. This equation uses both the number of uncovered neighbors and

the energy level at each node to compute ∆T . It is obvious that nodes with more uncovered

neighbors or higher energy levels result in shorter defer times compared with nodes with

fewer uncovered neighbors and lower energy levels. This is the major difference between

TCDS and our TECDS protocols in the CDS construction phase.

Other than Equation 4.3, the pseudo code of the CDS construction phase for the

TECDS protocols is exactly the same as that for TCDS.

As long as the network topology remains stable for a period of time, it can be shown

that both TECDS1 and TECDS2 always generate the CDS for any connected MANET. In

addition, it can be proved that both TECDS1 and TECDS2 are capable of incrementally

maintaining the CDS under changes of network topology by utilizing the color value, state

of neighbors, and timers such as InitTimer. All four of the following different topology

changes are well supported by our protocols:

1. The initiator leaves the network.

2. A new node joins the network after the construction of the CDS.

3. A redundant inDS node can change its status while still preserving the dominating

set connection.
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Figure 4.21: Initial state

4. The inDS node in the CDS leaves the network

Since both TECDS1 and TECDS2 are extension from TCDS, the proof of mobility

support for both TECDS protocols is essentially identical to that given for TCDS. Several

examples of the station mobility handing will be presented in 4.4.4.2.

4.4.4 Example of the TECDS Protocol Execution and Station Mobility Handling

4.4.4.1 Example of the TECDS Protocol Execution

In TECDS, two criteria are used when the protocol picks the initiator as explained

in 4.4, namely the number of neighbors and the energy level. An example of TECDS1

is provided to demonstrate how the protocol functions. Figure 4.21 shows the network

topology. The left side of Figure 4.21 illustrates the patterns used to represent various node

states.
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Figure 4.22: Nodes E is selected as an initiator

In Figure 4.22, the number and alphabet for each node represents the energylevel and

the id of the node, respectively. At the beginning of the process, all nodes are in the initial

state. According to the TECDS protocol, after a specified period of time node E discovers

that it has the highest energy level and thus becomes the initiator, switching to the DS state

while all the other nodes switch to the uncovered state. This is shown in Figure 4.22.

In Figure 4.23, nodes C and G have switched to the covered state. All the other nodes

are still in the uncovered state.

After nodes C and G compute their ∆T , they wait for their timer ∆T to expire. Ob-

viously, node C will defer longer than node G since node C has a higher energy level than

node G. When nodes G’s ∆T expires, node G switches to the DS state and causes its

neighboring nodes H , I , J , and K to compute their ∆T and switch from the uncovered

to the covered state. This occurs when node C is still in the covered state. The resulting

network is shown in Figure 4.24.
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Figure 4.23: Nodes C and G switch to the covered state

Figure 4.24: Node G switches to the DS state and nodes H , I , J , and K switch to the
covered state
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Figure 4.25: Node C switches to the DS state and nodes A, B, D, and H switch to the
covered state

In Figure 4.25, node C switches to the DS state, causing its neighbors, nodes A, B,

D, and H , to compute their ∆T and switch from the uncovered to the covered state.

Once the ∆T of node J expires, it switches to the DS state and forces node F to switch

to the covered state. Notice that even though nodes J and D have the same number of

uncovered neighbor nodes, node F is covered by node J because the ∆T of node J expires

earlier than that of node D. Additionally, even though nodes H , I and K have different

numbers of neighbors, their ∆T will be the same since none have uncovered neighbors.

After the ∆T of the remaining covered nodes expires, they will find that all their neighbors

are in either the DS state or the covered state and thus will switch to the covered state. The

resulting network status is shown in Figure 4.26. If the network topology is not changed,

the connected dominating set obtained by the TECDS protocol is the collection of nodes in

the DS state, namely the set {E, C, G, J}. Nodes A, B, D, F , H , and I are covered nodes.
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Figure 4.26: The resulting network topology

4.4.4.2 Example of Station Mobility

Figure 4.27 is the resulting network status as from the example outlined in 4.4.4.1

after the construction of CDS is completed.

Figure 4.28 shows the Case 2 in 4.4.3, when a new node W joins the network after

the construction of CDS.

After node W joins the network, the node K calculates the ∆T and then switches to

the DS state because it has an uncovered neighbor node W , as shown in Figure 4.29.

Once the ∆T of node K expires, it switches to the DS state and forces node W to

switch to the covered state as shown in Figure 4.30.

Figure 4.31 shows Case 3 in 4.4.3, when an DS node in the CDS leaves the network.

Here, the node F switches from the covered to the uncovered state because its dominator

node J has left the network as shown in Figure 4.32. The node D calculates the ∆T and
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Figure 4.27: The network after the construction of CDS

Figure 4.28: A new node W joins the network
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Figure 4.29: Node K switches to the covered state

Figure 4.30: Node W switches to the covered state
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Figure 4.31: For the case where an DS node J leaves the network

then switches to the DS state, forcing node F to switch to the covered state, as shown in

Figure 4.33.

After the node W leaves the network, Figure 4.34 and Figure 4.35 show Case 4 in 4.4.3

when a redundant DS node can change its status while keeping the dominating set con-

nected. In the case, node K switches from the DS status to the covered state, as shown in

Figure 4.35.

4.4.5 Comparison of Simulation Results for the Energy Aware CDS Construction

Protocols

In addition to the two new TECDS protocols(i.e., TECDS1 and TECDS2), three other

CDS protocols, namely TCDS [7], Wu’s original connected dominating set protocol [5]

(referred as Wu1 hence after), and Wu’s extended protocol [82] (referred as Wu2 hence

after). Wu et al actually proposed two sets of extended rules based on the node’s energy
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Figure 4.32: Nodes F switches to uncovered state

Figure 4.33: Node D switches to the DS state and node F switches to the covered state
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Figure 4.34: Node W leaves the network

Figure 4.35: Node K switches to the covered state

84



levels in [82]. Both sets of extended rules were implemented and found to show almost

the same results in terms of the metrics used for performance comparisons (e.g., the size

of CDS, the average energy level of nodes in the CDS, etc). Hence, only the results of

applying Wu’s first set of extended rules are shown here.

4.4.5.1 Simulation Setting and Parameter Consideration

It is possible to assume a link between two nodes only if their geometric distance is

less than the wireless transmission range. In this simulation, the transmission range of

a single station was normalized to 1 unit of distance. Random network topologies were

generated by randomly placing nodes in 4× 4 and 8× 8 square grids of a two-dimensional

simulation area. The values of the x and y coordinates were uniformly distributed. The

value of Tmax, initMax, and δt were chosen to be 100, 20, and 4 time units respectively.

Two scenarios were considered and simulated differently as follows:

1. Static Networks

static network or network with low mobility - 20 different network topologies were

randomly generated. The energy level at each node was generated in a normal

distribution, with an average 7.0 and a variance of 2.0. The performance of the

protocols was assessed by the average size of CDS, the average energy level

of the nodes in the CDS, the minimum energy level of the node in the CDS,

and the variance of the minimum energy level of the nodes in the CDS for both

4×4 and 8×8 grids with various nodal densities. Notice that when the network
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topology was static, the minimum and average energy level of the nodes in the

CDS could be considered an indication of the lifespan of the CDS.

2. Mobility Networks

when nodes are mobile - the simulation started by initializing each node with the

same energy level of 100 units. The nodes in the CDS were subtracted by 2.0

and the nodes not in the CDS were subtracted by 0.1 each time the CDS was

reconstructed due to nodal movement. The reconstruction continued until a

node reached energy level 0 and the number of rounds is counted. This number

can be used to indicate how long the network remained operational after a series

of CDS reconstructions. The performance of the protocols was assessed by

comparing the average sizes of CDS and the number of rounds under random

network topologies.

4.4.5.2 Simulation Results and Performance Evaluation

1. Static Networks

In Figures 4.36 and 4.37, the x−axis represents the size of the network and the

y−axis shows the size of the resulting CDS from the five different protocols. It

is clear that TCDS consistently generates the smallest CDS and Wu1 consistently

generates the largest CDS among all the protocols for both the 4 × 4 and 8 × 8

grids. The sizes of the CDS generated by TECDS1 and TECDS2 are very close

(mostly within 10%) to those generated by TCDS. When the scale of the network
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Figure 4.36: CDS size in 4 x 4 square : static network
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Figure 4.37: CDS size in 8 x 8 square : static network
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Figure 4.38: CDS Average Energy in a 4 x 4 square : static network

increases from the 4×4 to the 8×8 grid, the performance difference between TCDS

and the energy-aware TECDS1 and TECDS2 becomes less covered. Although Wu2

significantly reduces the size of the CDS compared to Wu1, its CDS size is still 40

to 50% larger than the CDS generated by TECDS1 and TECDS2.

In Figures 4.38 and 4.39, the x−axis represents the size of network and the y−axis

shows the average energy level of the nodes in the resulting CDS from the five differ-

ent protocols. Hence, TECDS1 and TECDS2 are able to achieve an approximately

20% higher average energy level of nodes in CDS than the others for both the 4× 4

and 8 × 8 grids by slightly increasing the CDS size from TCDS. In contrast, Wu1

and TCDS have the lowest average energy level among all the protocols for both the

4 × 4 and 8 × 8 grids. It is surprising to find that even though Wu2 considers the

energy level at each node, it does not significantly improve the average energy level,

as shown in Figures 4.38 and 4.39, where it is a mere 5% better than Wu1.
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Figure 4.39: CDS Average Energy in an 8 x 8 square : static network
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Figure 4.40: CDS Min Energy in a 4 x 4 square : static network
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Figure 4.41: CDS Min Energy in an 8 x 8 square : static network

In Figures 4.40 and 4.41, the x−axis shows the size of the network and the y−axis

is the minimum energy level of the nodes in the resulting CDS from five different

protocols. From these figures, the energy-aware TECDS1 and TECDS2 protocols

select the nodes with higher minimum energy levels than any of the others, while

Wu1 selects the nodes having the lowest minimum energy level. These figures in-

dicate that the CDS created by the energy-aware TECDS1 and TECDS2 protocols

live longer than any other protocols under a static network. In the 4 × 4 grid, the

minimum energy level of the nodes in the CDS generated by TECDS2 and Wu1 are

about 5.1 and 2.6, respectively. This means the minimum energy level of the nodes

in the CDS generated by TECDS2 is around 50% higher than that generated by the

Wu1 protocol. For the 8 × 8 grid, the performance of the minimum energy level for

different protocols shows a similar trend.
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Figure 4.42: Variance of Min Energy in a 4 x 4 square : static network
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Figure 4.43: Variance of Min Energy in an 8 x 8 square : static network
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Figure 4.44: CDS size in a 4 x 4 square : mobile network

In Figures 4.42 and 4.43, the x−axis is once again the size of the network and the

y−axis shows the variance of the minimum energy level of the nodes in the resulting

CDS from the five different protocols. In these figures, TECDS1 shows a smaller

variance than the other protocols when the network size is small. This implies that

the performance of TECDS1 is more stable than that of other protocols when the

network size is small. However, when the network size is bigger than 100 nodes,

both TECDS1 and TECDS2 both demonstrate relatively smaller variances than the

other protocols. It is interesting to see that the variances of Wu2 fluctuate and, in

general, are slightly bigger than those of TECDS1 and TECDS2 regardless of the

size of the network.

2. Networks with High Mobility

In Figures 4.44 and 4.45, the x−axis shows the size of the network and the y−axis

is the size of the resulting CDS from five different protocols. For a 4 × 4 grid, the
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Figure 4.45: CDS size in an 8 x 8 square : mobile network

size of the CDS obtained by Wu1 is at least twice as large as the size of the CDS

generated by TCDS, regardless of the size of the network. While the size of the CDS

generated by TECDS1 and TECDS2 is approximately 20 to 40% larger than that

generated by TCDS, it is always at least 20% smaller than that generated by Wu2.

The same performance pattern for these protocols is shown in the case of the 8 × 8

grid.

In Figures 4.46 and 4.47, the x−axis represents the size of the network and the

y−axis shows the number of rounds from the five CDS protocols. Here, the number

of rounds can be thought of as the lifespan of the network when the network topology

changes frequently. In both figures, it is obvious that the number of rounds obtained

by the energy-aware TECDS1 and TECDS2 protocols are both 40 to 50% higher

than that obtained by Wu2 for both the 4 × 4 grid and 8 × 8 grid scenarios. TCDS

and Wu1 do not consider energy levels when they construct the CDS, so both can
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Figure 4.46: The number of rounds in a 4 x 4 square : mobile network
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Figure 4.47: The number of rounds in an 8 x 8 square : mobile network
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only sustain approximately 50 rounds regardless of the size of the network. There

are two reasons why the TECDS1 and TECDS2 protocols produce a higher number

of rounds. First, since the size of the CDS generated by TECDS1 and TECDS2 is

always smaller than that generated by Wu1 and Wu2 (as shown in Figures 4.44 and

4.45), the energy consumption of the network per unit time is considerably less if

our protocols are used. Second, our protocols successfully distribute the CDS load

to every node in the network, so that the lifespan of the whole network is improved.

The results show that the proposed energy-aware TECDS1 and TECDS2 protocols

produce a better CDS in terms of both the average/minimum energy levels of nodes in the

CDS and the number of rounds that represent the lifespan of the CDS and the network.

In addition, the size of the CDS generated by both TECDS1 and TECDS2 is consistently

smaller than that generated by either Wu1 or Wu2.
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CHAPTER 5

CONCLUSION

This chapter summarizes the research and highlights its contributions to the field of

mobile ad hoc and sensor networks, and discusses future research direction.

5.1 Summary and Contribution

As a special type of distributed systems, wireless ad hoc and sensor networks accom-

plish tasks using various distributed protocols. In these protocols, the order of events has

a significant impact on the performance. To obtain and manipulate the order of events in a

distributed system, both the logical clock and defer timer are commonly used.

In this dissertation, the uses of the defer timer were reviewed along with its effect on

the design of various protocols in ad hoc and sensor networks. Based on these observations,

the concept of the defer timer was extended to the construction of the virtual backbone

for wireless ad hoc and sensor networks. Specifically, three timer based protocols were

proposed: TDS for dominating set construction, TCDS for connected dominating set con-

struction, and TECDS for energy aware CDS construction. In these protocols, each node

adaptively sets up a defer timer based on the number of uncovered neighbors and deter-

mines whether or not to join the DS/CDS when the timer expires. The proposed protocols

possess all the desired properties for an ideal DS/CDS construction protocol. Using the de-

fer timer, it was possible to design a set of DS/CDS protocols that are simple, distributed,

inexpensive (i.e., introduce no extra messages on need for computation), and adaptive to
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nodal mobility. In addition, the TECDS protocols take into account the energy level at each

station. The simulation results showed that the dominating set and connected dominating

set constructed by the timer-based protocols are very competitive in terms of size and other

properties.

In general, the protocols based on the defer timer can easily accommodate a mixed

set of considerations as long as each consideration can be measured quantitatively. For

instance, in this dissertation, with minimum modifications from TCDS, TECDS was able

to take each node’s energy level into consideration. This is one of the most important

advantages of timer-based protocols.

5.2 Future Research Direction

As pointed out in Section 2.2, wireless mesh networks have received increasing re-

search attention in recent years due to its ability to provide broadband networking in-

frastructure for large business enterprizes and Internet access to residence in rural areas.

The virtual backbone construction is one of the important research issues in wireless mesh

networks [87]. Our CDS construction protocols for wireless networks is fully distributed,

based on localized information, and is known to generate very competitive size of CDS. If

the gateway in a wireless mesh network is selected as a initiator for constructing a CDS, our

timer-based DS and CDS construction protocols can be the best candidates for the virtual

backbone construction for wireless mesh networks. However, as indicated in [88], each

mesh router in a mesh network may be equipped with multiple radio interfaces and each

radio interface may have different transmission radius. This suggests that a mesh router in
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a mesh network may have different sets of neighbors depending on what types of the radio

interfaces it has. How to properly define the DS and CDS under such an environment and

how to modify our timer-based protocols for such a multi-radio mesh network can be an

interesting future direction of this research.

Research on Media Access Control (MAC) in wireless networks is a another chal-

lenging field due to the difficulties caused by transmission errors, collisions, and hidden

nodes. These difficulties become even more severe when support is provided for multicast

communication in wireless networks. Such support is necessary for delivering acceptable

quality of service in many applications of wireless communications, such as emergency

reporting and video conferencing. For these applications, the MAC protocol should have

the ability to avoid interference and collisions, and at the same time provide a reliable mul-

ticast service. The proposed multicast MAC protocols in [89, 90] are unreliable in that

when a multicast is done, the sender does not know whether every intended receiver has re-

ceived the data successfully. To achieve our goals, the concept of defer timer can be used to

provide a simple coordination mechanism between multicast receipents at the MAC layer.
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