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The focus of this dissertation is the first-principles calculation of lattice thermal

conductivity, a non-equilibrium thermal transport property, for a wide range of solid

materials including both ideal crystals and iron (Fe)-bearing mineral solid solutions at

high temperatures and pressures. Our computational technique combines first-principles

density functional theory (DFT), quantum scattering theory, and the Peirls-Boltzmann

transport theory (PBTT) within the single mode excitation approximation (SMEA).

Lifetimes of individual phonon modes have been directly evaluated over a wide range

of temperature-pressure conditions, including those relevant to the Earth’s deep interior,

without any empirical extrapolation. Our first-principles calculated lattice thermal

conductivity is directly derived from the lifetimes, group velocities, and heat capacities of

individual phonon modes.

An important input of our computational technique is the DFT-predicted microscopic

inter-atomic potentials. In this study, inter-atomic potentials of solid materials were

calculated up to third order using an efficient real-space super cell finite displacement

(RSSFD) algorithm that we developed recently. This computational technique has predictive
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capability over the range of validity of the DFT calculated atomic energy and forces. The

robustness of the predicted density dependence of harmonic force constants and third order

lattice anharmonicity tensors governs the reliability of the derived pressure dependence

of phonon lifetimes, group velocities and heat capacities. To study iron-bearing mineral

solid solutions, the vibrational virtual crystal approximation (vVCA) was implemented to

calculate the configurationally averaged harmonic force constant matrices.

The most computationally intensive step of our calculation involves the evaluation of

phonon scattering rates due to third order lattice anharmonicity. We have optimized our

algorithm for speed, efficiency and massive parallelization on supercomputers. Our algorithm

has been successfully tested on our PRISM computer cluster, the dense memory cluster

(DMC) of the Alabama super computer authority (ASA) and the Ranger super computer

at the Texas super computer center. Based on group symmetry theory, we only directly

evaluate the phonon scattering rates at the irreducible q-points in the first Brillouin zone

and rest are reconstructed from symmetry. For now our computational technique can handle

systems as large as 20-atoms per unit cell.

Our newly developed computational techniques have been successfully adopted to study

the two most abundant lower mantle minerals: silicate perovskite Mg(1−x)FexSiO3 (20-atoms

per orthorhombic unit cell) with x = 0 and x = 12.50%, and ferropericlase Mg(1−x)FexO

(2-atoms per face centered cubic unit cell) with x = 0 and x = 12.50%, as well as corundum

structured Al2O3 (10-atoms per rhomohedral unit cell).

Our calculation shows that the low frequency acoustic modes are more effective carriers

of heat compared to the optical phonon modes. In MgO and Mg(1−x)FexO the acoustic

phonon modes are seen to account for nearly 95% of the overall lattice thermal conductivity.

The effect of Fe-substitution on the thermal conductivity of Fe-free periclase has been

discussed. Fe is observed to lower the thermal conductivity of ferropericlase by significantly

reducing the phonon lifetimes of of the effective heat carrying phonon modes. The behavior
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of κMgO and κMgSiO3
have been studied. Both follow a T−1 dependence typical of insulating

materials however, the pressure increase of κMgSiO3
is substantially weaker than κMgO. For

example, the normalized thermal conductivity κ
κ0

at 300 K from 0 to 135 GPa is seen to

increase from 1 to 3 for MgSiO3, while the same value goes from 1 to 8 for MgO. Implications

for heat flow in the Earth’s lower mantle have been discussed.
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5.6 Mode Grüneisein parameters in PV-MgSiO3. Blue circles represent the
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jj = (ja− 1) ∗Ns + jdir. Where (ia, ja)= 1 to 128 and Ns=3 . . . . . . . . 123

C.1 Third-order BM-EOS parameters for α−Al2O3 . . . . . . . . . . . . . . . . . 124
C.2 Gibbs Free energy (F0), Volume per unit cell(V0), Bulk modulus (B0 ) and

derivative of bulk modulus (B′

0) at 0 GPa . . . . . . . . . . . . . . . . . . . . 124

D.1 Static EOS parameters of MgSiO3 PV and PPV fitted to 3rd order BM EOS
at ambient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.2 LDA calculated thermal EOS parameters for PV-MgSiO3 at 0 GPa. Values in
parentheses are from Tsuchiya et al. (2005) . . . . . . . . . . . . . . . . . . 129

xvii



E.1 Simulation cell volumes and corresponding pressures for PV-MgSiO3 at 300 K. 134

xviii



List of Abbreviations

BM Birch-Murnaghan

BZ Brillouin zone

CMB Core-mantle boundary

cond Conduction

conv Convection

CPU Central processing unit

DFT Density functional theory

e.m electromagnetic

EOS Equation of State

f.c.c. face centered cubic

GGA Generalized gradient approximation

H-F Hellmann-Feynman

IFC Inter-atomic Force Constants

IIIP Interpolation of Irreducible Inter-atomic Potentials

IPAD Irreducible paired atom displacement

ISAD Irreducible single atom displacement

xix



LD lattice dynamics

LDA Local density approximation

LM Lower mantle

LO-TO Longitudinal Optic-Transverse Optic

LTC Lattice Thermal Conductivity

MD molecular dynamics

NEMD Non-equilibrium molecular dynamics

PAW Plane augmented waves

PBTT Peirels-Boltzmann Transport Theory

QHA Quasi-harmonic approximation

rad radiation, radiative

RSSFD Real space supercell finite displacement

RT Relaxation time

RTA Relaxation time approximation

SMEA Single mode excitation approximation

TC Thermal Conductivity

TCBL Thermo-chemical boundary layer

VASP Vienna ab initio simulation package

vVCA vibrational Virtual Crystal Approximation

xx



List of Acronyms

α thermal expansivity

ω phonon frequency

ωi phonon frequencies

∆ atomic displacement

τ phonon lifetime
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Chapter 1

INTRODUCTION

1.1 Lower Mantle Heat Flow

The Earth has a layered internal structure1. Right beneath the surface, is the crust

(about 200-300 km thick), usually categorized into continental and oceanic crust. Under the

crust, is Earth’s mantle which is conventionally divided into three regions associated with the

phase transitions of mantle minerals revealed by the seismic discontinuity. The upper mantle

is mainly made of olivine (Mg,Fe)2SiO4 , pyroxenes (Mg,Fe)SiO3 and garnet (Al-bearing

silicates). The transition zone is mainly made of spinel (MgFeAl2O4) and majorite

(Mg3(Fe,Al,Si)2(SiO4)3) minerals. The lower mantle consists of perovkite (Mg,Fe)SiO3 and

ferropericlase ((Mg,Fe)O). Between the lower mantle and the Earth’s core (innermost layer),

is the D′′ layer. This layer is thought to contain the recently discovered post-perovskite2

phase of (Mg,Fe)SiO3. The core has two sub-layers, the liquid outer core made of iron-nickel

alloy, and the solid inner core made of iron. The layers, chemical composition and depth are

summarized3 in table 1.1

Table 1.1: Layered structure of the Earth and composition

Layer Depth (Km) Chemical Composition T(K) P(GPa)
crust 0-10 low density crystalline rocks 300 0

Upper mantle 10-410 olivine + pyroxene + garnet 600 0-13
Transition 410-660 spinels + majorite 13-23

Lower mantle 660-2600 perovskite + ferropericlase 1200 23-125
D′′ layer 2600-2900 post-perovskite + ferropericlase 2200 125-135

Outer core 2900-5100 liquid iron alloy 4000 330
Inner core 5100-6400 solid iron 5000 364
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Both temperature and pressure increase with the depth. At the surface, the Earth’s

pressure is 1 atm and 300 K. It is currently estimated that the pressure and temperature

reach to 364 GPa and 5000 K respectively at the center of core. Governed by the second law of

thermodynamics, heat spontaneously flows from Earth’s hot core to its cool surface, through

radiation, convection, and conduction. The total heat loss at the Earths surface is relatively

well-constrained (about 46 Terawatts)4. However, because the rates of radiogenic heat

generation and secular cooling remain poorly constrained for the mantle region, independent

evaluations of the amount of heat flowing from the core into the lower mantle are much

needed to understand the global heat balance. The lower mantle heat flow is one of most

important geophysical processes, because of its close relevance to the outer core convection5

and the generation of the Earths magnetic field6. The knowledge of this process is essential

to our understanding of the origin, evolution, and present-day state of the Earths physical

system.

The amount of heat from the core is largely regulated by thermal conduction at

the thermo-chemical boundary layer (TCBL) above the core-mantle boundary (CMB). As

defined by Fouriers law of heat conduction,

J = κ∇T (1.1)

determination of the CMB heat flow relies on knowledge of both the temperature profile

around the CMB and thermal conductivity (κ) of the lowermost mantle. thermal

conductivity (κ ) also plays a crucial role in mantle dynamics. For example, κ dictates

the amount of heat absorbed by the cold subducted slabs from the hot surrounding mantle.

As κ appears in the Rayleigh number (Ra, equation 1.2), a measurement of the convective

vigor of a system, the associated effect of lower mantle viscosity controls the structure,
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thickness and dynamics of CMB7, the style and structure of mantle convection8.

Ra =
g0α∆Td3

κv
(1.2)

Here g is acceleration due to gravity, α is the thermal expansion coefficient, ∆T is the

temperature difference between the reference mantle temperature and the Core mantle

boundary, v is the kinematic viscosity, κ is the thermal conductivity. Although the effect

of strongly varying viscosity is paramount, recent geodynamic simulations have clearly

demonstrated that (1) the value of assumed average lower mantle conductivity is of close

relevance to the strength of mantle upwellings9, and (2) moreover the temperature derivatives

of thermal conductivity impact even more significantly the development of lower mantle

plumes10,11. Gubbins and willis et al.6 have shown that lower mantle thermal conductivity

is correlated to Earth’s magnetic field generation.

Determination of thermal conductivity of Earth minerals at relevant high pressure and

temperature conditions is clearly a subject of solid state physics research. The output of the

solid state physics study will help earth scientists to develop interlocked deep-Earth evolution

models. For example, the current estimates of QCMB are widely scattered, ranging from 5

to 15 terawatts (TW)5. The lower-bound-estimates suggest that additional sources of heat

in the mantle such as enhanced internal heating or an additional thermal boundary layer

are required to accommodate the observed budget of 47 ± 3 terawatts from the surface of

the Earth1,5. The upper-bound-estimates suggest a recent evolution of the inner core/outer

core system and high internal temperatures for early Earth conditions12.

1.2 Lower Mantle Minerals

The Earth’s lower mantle is composed predominantly of magnesium oxides and silicates.

Understanding and predicting the behavior of these compounds is key to understanding
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the behavior and evolution of the Earth’s lower mantle. The most abundant mineral in

the Earth’s lower mantle is magnesium silicate MgSiO3, comprising more than 70% of the

lower mantle volume13. Fe2+ and/or Fe3+ distributed in these phases1 however the exact

oxidation and spin state of Fe are subject of current scientific debate. The distribution of

Fe is believed to be around 10%. Perovskite PV-MgSiO3 is the stable phase of magnesium

silicate (MgSiO3). Above 120GPa, PV-MgSiO3 transforms into a post-perovskite phase.

PPV-MgSiO3 The PV → PPV transition is thought to explain seismic discontinuities in the

Earth’s D” layer.

Ferropericlase-(Mg,Fe)O is known to be the second most abundant mineral in the

Earth’s lower mantle constituting about 20% of lower mantle volume. It is the result of

substitution of Mg in Fe-free MgO by Fe2+. Understanding the behaviour of (Mg,Fe)O is

key to understanding the dynamics of the Earth’s lower mantle. Moreover the high-spin to

low-spin transition in (Mg,Fe)O, has been the focus of recent studies14–16.

1.3 Lattice Thermal Conductivity of Lower Mantle Minerals

Heat is a nonmechanical means of energy transfer between a system and its environment.

In the presence of a temperature difference, heat flows spontaneously from high to low

temperature regions. The heat flux J , defines the rate of heat energy transfer through

a given surface. Heat is transmitted via three mechanisms: conduction(cond), convection

(conv) and radiation (rad). As a result, the total heat flux J , has three components as shown

in equation 1.3, and heat transfer via these three mechanisms often occurs simultaneously.

J = J conv + J rad + J cond (1.3)

Convective heat transfer is important in all situations where there is bulk flow of matter,

carrying heat along with the mass flow. Thus J conv is the dominant heat transfer mechanism
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in liquid media. The Earth’s lower mantle is not liquid, therefore J conv is not important in

this region.

Heat transfer by radiation is ballistic in nature and it occurs via electromagnetic (e.m)

waves and does not require a material medium. According to the Stefan-Boltzmann law for

black body radiation,

J rad ∝ T 4 (1.4)

Due to this T 4 dependence, the ballistic Jrad is a very important component of the

total heat flux in all high temperature laboratory experiments that have steep temperature

gradients and involve direct (or boundary-to-boundary or ballistic) radiative transfer wherein

light from the source warms the thermocouple with little to no participation of the medium.

Corruption of measurements intended to probe Jcond by spurious radiative transfer and mis-

interpretation of this process as diffusive has led to incorrect forms for the diffusive thermal

conductivity. Hofmeister also suggests that radiative transfer exists at lower T because (1)

direct radiative transfer increases gradually with T, i.e., no abrupt onset exists, (2) a small

radiative component is clearly seen by 350 K in laser flash analysis (LFA) experiments,

even when samples are coated with metal and/or graphite. A small amount of radiative

transfer at 298 K probably exists in most experiments17–20 Hofmeister also argues that

the ballistic radiative transfer may be large in DAC experiments21 because thermal losses

at sample interfaces provide an error in the opposite direction. In contrast, it is widely

assumed that the ballistic radiative heat transfer is not important inside Earths mantle

because mantle minerals are grainy22. The temperature gradient inside the Earth is only

about several kelvins over a kilometer. It is reasonable to approximate that minerals reach

thermal equilibrium within its grains, and radiative heat will be absorbed and randomly

scattered from grain-to-grain. At the geological length scale, the radiative heat transfer

contributes to an effective diffusive thermal conductivity. This indirect/diffusive thermal

conductivity due to radiative photons can not be directly measured in laboratory. Instead
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they are modeled based on the optical properties of minerals, equation 1.5 The Rosseland

mean approximation for an optically thick medium conducting heat by radiative transport

is:

Qrad = −16σn2T 3

3βR

∇T = −κrad∇T (1.5)

with n2

<βR>
= π

4σT 3

∞
∫

0

n2
λ

βλ

dIb,λ
dT

dλ.

Here n is the index of refraction, σ is the Stefan-Boltzmann constant, βR is the Rosseland

mean extinction coefficient, λ is wavelength, nλ is the spectral index of refraction, βλ is the

spectral extinction coefficient, and Ib,λ is the Planck black body intensity function.

Heat transfer by conduction is diffusive in nature, without a bulk flow of matter and is

usually driven by a temperature gradient. J cond is the dominant mechanism of heat transfer

in solids and is achieved via electrons, phonons (lattice vibrations) and other thermal

excitations (quasi-particles). In metallic solids, heat is conducted mainly by electrons.

According to Wiedemann-Franz (W-F) law equation 1.6 the ratio of thermal conductivity

to the electrical conductivity of a metal is proportional to the temperature(T).

κ

σ
= LT (1.6)

Where κ is the thermal conductivity, and σ is the electrical conductivity. L is the Lorentz

number23. We can see fromW-F law that as temperature increases, the thermal conductivity

increases while the electrical conductivity decreases.

In non-metallic solids the dominant mechanism of heat transfer is via lattice vibrations

(phonons). The conduction of heat via the propagation of vibrations in a solid in response

to a temperature gradient is often referred to as lattice thermal conductivity (LTC). At low

temperatures and in grainy(optically thick) and insulating media, the dominant mechanism

of heat transfer is conduction by phonons. In such media, lattice thermal conductivity lattice

thermal conductivity (κlatt ), is the fundamental property that regulates the flow of heat in
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response to a temperature difference. According to Fourier’s law κ relates the heat flux J ,

through a material to the temperature gradient ∇T according to equation 1.1 Even though

heat transfer is often associated with macroscopic objects, the physical properties that

constrain the flow of heat in a material are ultimately tied to the microscopic constituents

of the material. Inside crystal solids, phonons can be scattered by crystalline defects, grain

boundaries and lattice anharmonicity. The phonon lifetime (τ), which characterizes the

the length of time that elapses before a phonon mode is scattered, is key to determining

the thermal conductivity of a material. Other factors necessary to determine the thermal

conductivity of a material include the phonon mode group velocities, and heat capacities.

While temperature is known to strongly affect the phonon lifetime (τ ) and heat capacity,

high pressures significantly alter the elastic constants, phonon group velocities and densities

of states. As a result, first-principles study of temperature and pressure dependence of

thermal conductivity can advance our understanding of thermal transport in solid media.

The work presented in this thesis is focused on the conduction of heat in non metallic

crystal solids and Earth minerals via lattice waves (phonons). Detail treatment of the

other mechanisms of heat conduction can be found elsewhere24–29. The study of thermal

conductivity is of great technological interest because of the importance of both very high and

low thermal conductivity materials in various heat management technologies. High thermal

conductivity materials have potential applications in heat management in electronics30–32.

Low thermal conductivity materials on the other hand are the focus of recent studies in

the search for high efficient thermoelectric materials33–38 and materials for thermal-barier

coating applications39–42. The study of thermal conductivity provides useful guidelines to

the design of novel materials with unique applications in heat management.

LTC of the lower mantle κLM regulates the heat flux across the core mantle boundary

(CMB) and impacts convection throughout the mantle. κLM is crucial in determining the

total heat budget of the Earth. Despite its importance, κLM is poorly constrained due to the
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challenges in carrying out measurements at temperature and pressure conditions relevant

the Earths interior.

Understanding and constraining the thermal conductivity of a material, is an example

of a material science problem with importance in Earth science and at the heart of solid state

physics. First-principles calculations offer us new insights to material properties at extreme

conditions, yet are very challenging.

1.4 Challenges of Measuring κ at High Temperatures and Pressures

Conventional measurements of thermal conductivity (κ), involve determining a

temperature gradient across a sample subjected to steady heat flow43–46. Other approaches

involve transient heating of the sample and then a study of the temperature evolution with

time. These techniques measure the thermal diffusivity (D), which is related to the κ by

equation 1.7:

D =
κ

ρCp

(1.7)

Where ρ is the density and Cp is the isobaric heat capacity. Over recent years, various

new techniques have been developed and used to measure κ or D. Contact methods like

Ångström’s method47,48, Transient hot-wire technique49, and contact-free techniques like

laser flash analysis (LFA)19, Optical thermal grating technique50–52, Optical pulse transient

heating method53–56, and time-domain thermoreflectance (TDTR)57 have been developed

and used with great success to measure κ at various T,P conditions. Contrary to contact

methods where the sample is in direct contact with the heating source or the thermocouple

used to determine heat flow the sample has no direct contact in the contact-free techniques.

Measurements from contact methods are known to include systematic errors arising from

thermal contact resistance and differential thermal expansion, leading to underestimation

of κlatt. Contact-free techniques like the LFA avoid these problems but are limited by
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requirement of very large sample size. A comprehensive review of the strengths and

weakness of these techniques is reported elsewhere19. Other challenges faced in accurately

constraining κ or D in experiment include the instability of some samples at ambient

conditions, dealing with unwanted direct radiative transfer in optically thin or partially

transparent samples, and eliminating errors associated with surface roughness and presence

of materials with P-T dependent thermophysical properties43. All these challenges often

limit the pressure range for which κ can be accurately determined in the laboratory. For

instance, the lattice thermal conductivity of ferropericlase-Mg(1−x)FexO and Fe-bearing

silicate perovskite-Mg(1−x)FexSiO3 has not been measured at lower mantle temperatures

and pressures58. Despite the success achieved in measuring equilibrium thermodynamic

properties of solids, certain temperature and pressure (T-P) conditions relevant to studies of

the Earth’s deep interior, remain inaccessible to experiments. Current geophysical estimates

are based on long extrapolations from low-pressure data11,17,43.

1.5 First-principles Calculations of Lattice Thermal Conductivity: Motivations

and Recent Progress

First-principles calculations offer an invaluable alternative approach to experimental

techniques. The terminology of first-principles or ab initio simulations is referred to

simulations that are based on quantum and statistical mechanical theory to predict the

behavior of matter at the atomistic scale and how it affects the macroscopic behavior of the

material, without any inputs and/or fitting of experimental data. A fundamental challenge of

material theory and simulation is the fact that each piece of solid material consists of around

1023 strongly interacting positively charged ions and negatively charged valence electrons.

Due to their small masses and rapid speeds, electrons inside a solid have to be described

with quantum mechanics, instead of classical Newtonian mechanics.
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The density-functional theory (DFT) developed by Hohenberg, Kohn and Sham59,60 in

the 1960s has profound influence in materials science and engineering. This theory adopts

a series of systematical approximations to map a complicated many-electron problem into

a relatively simple independent electron problem. More importantly, this formalism allows

theorists to take advantage of fast computers and large storage space to calculate a wide range

of complex quantum electronic structures (i.e. chemical bonding) using numerical methods,

and then to predict atomic structures and atomic vibration from first-principles, i.e. without

any a priori experimental knowledge. In the past twenty years, many efficient software

packages like VASP61,62, ABINIT63,64, QUANTUM EXPRESSO65 have been developed and

widely adapted to study atomic structure and equilibrium thermodynamic properties of

crystals66.

These first-principles methods have been used to study a wide range of important

material properties such as melting67 electronic structure66,68,69, phase transitions70–79,

elasticity80–84, vibrational phonon spectra85,86, structural stability87–89, Raman spectra90,91

and thermal equation of state29,92–98. Recent advances in parallel computing technologies

and declining cost of hardware and storage have made it possible to apply density

functional theory (DFT) based first-principles methods99 to study more complex material

systems over a wide range of temperature and pressure conditions. Some advantages of

predictive first-principles theoretical models include the selection of materials for important

technological applications, the design of novel materials with promising properties100 and

understanding behavior of materials key to constraining heat flow in the Earth’s deep interior.

Despite the successes recorded in the prediction of equilibrium thermal properties,

first-principles calculations of non-equilibrium properties, such as lattice thermal

conductivity or viscosity are limited due to significant increase in computational intensity.

There are no software packages available and calculations rely on time -consuming in-house

methodology development. To better constrain the heat flow in the Earth’s deep interior,
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robust theoretical models with predictive capability are much needed. The motivation of

this work is to predict lattice thermal conductivity (κlatt ) for a wide range of materials at

high temperatures and pressures relevant to the Earth’s lower mantle. Starting from simple

cubic 2-atom MgO, our goal is to study more complex mineral compositions like 10-atom

trigonal Al2O3, 20-atom orthorhombic MgSiO3, and iron-bearing mineral solid solutions like

(Mg,Fe)O.

In the last five years, several theoretical approaches58,101–108 for predicting lattice

thermal conductivity reported in literature109. These methods can be categorized into

three types: (1)Green-kubo method110,111 based on the fluctuation-dissipation theorem

and molecular dynamics simulations, (2) Non-equilibrium molecular dynamics(NEMD), (3)

Peierls-Boltzmann transport theory.

The Green-Kubo method relates the lattice thermal conductivity of a system to the time

required for temperature induced fluctuations in the instantaneous heat flux to dissipate

equation 1.8.

κij =
V

kBT 2

∫

∞

0

〈Ji(t)Jj(0)〉 dt (1.8)

where i, j are components of lattice thermal conductivity tensor, V is the volume of the

system, kB is the Boltzmann constant, T is the temperature, Ji(t) is the instantaneous heat

flux in the ith direction at time t. One major advantage of the Green-Kubo formalism is that

one can determine the entire lattice thermal conductivity tensor from one simulation. This

is particularly important in calculations of non-isotropic materials. A serious limitation to

this method is that it often requires a long time for the heat flux correlation to decay to zero

and the need to identify the self energy terms of atoms108.

Non-equilibrium molecular dynamics (NEMD) simulations impose a fixed temperature

gradient on a supercell and the heat flux required to maintain it is calculated. NEMD
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simulations require very large simulation cells and contain noticeable finite size effects, which

sometimes are corrected with unreliable empirical models58.

Peierls-Boltzmann transport theory describes thermal conductivity in terms of specific

heat capacity (Cv), group velocities (Vg), and lifetimes τ of all the phonon modes: κ =

1
3

∑

Cvvg
2τ . Both Cv and Vg are calculated based on harmonic lattice dynamics, while the

phonon lifetime τ is estimated either using equilibrium molecular dynamics simulations106,

or quantum scattering theory101.
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Figure 1.1: Isobaric κlatt of MgO derived based on our LDA calculated thermal equation of
state. Discrete symbols represent experimental measurements. Inset: Normalized κlatt v.s.
pressure. For the seven isotherms (300K, 500K, 1000K, 1500K, 2000K, 2500K, 3000K), κ0 is
the lattice thermal conductivity at 0 GPa. Our new calculation shows a slight improvement
over the previously published results thanks to the optimization of our computational
technique, for speed and accuracy.
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All the first-principles calculations reported in this dissertation are based on our

newly developed computational method that combines Peierls-Boltzmann transport theory,

quantum scattering theory, and firs-principles DFT methods101,112. Figure 1.1 shows our

first-principles predicted thermal conductivity of MgO over a wide temperature-pressure

range. Our predicted values at 0 GPa are in excellent agreement with available

measurements. Our techniques are ideal for massive parallelization. During the course of my

Ph.D study, we have significantly improved the numerical efficiency of our techniques and

adopted them to study of lattice thermal conductivity, for the following minerals: α−Al2O3

(10-atoms/unit cell), MgSiO3 (20-atoms/unit cell) and ferropericlase-(Mg,Fe)O.

1.6 Outline of Dissertation

The rest of this dissertation is organized as follows: Chapter 2 covers the theory of

lattice vibrations. Chapter 3 presents the Peierls-Boltzmann Transport Theory, in chapter 4

we report the lattice thermal conductivity of corundum structured Al2O3 crystal. In chapter

5, the lattice thermal conductivity of silicate perovskite is reported. Chapter 6 presents the

vibrational virtual crystal approximation of lattice dynamics and lattice thermal conductivity

in ferropericlase Mg(1−x)FexO with x=12.5%. In chapter 7, the implications for heat flow

across the Core-Mantle Boundary (CMB) are discussed. Chapter 8 presents a summary of

the dissertation, and recommendations for future work.
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Chapter 2

FIRST-PRINCIPLES CALCULATION OF HARMONIC AND ANHARMONIC

LATTICE DYNAMICS

2.1 Interatomic Potentials

In solids, the chemical bonds, which hold constituent atoms together, are strong yet not

100% rigid. Consequently the atoms oscillate about their equilibrium positions. When the

amplitudes of these vibrations are small compared to the interatomic spacing, the interaction

potential energy between atoms can be expanded as a function of the atomic displacements

from their equilibrium positions. Under this assumption, the total interatomic potential

energy of the crystal lattice can be expressed as follows:

V = Vstatic +
∑

ℓ,i,α

(

∂V

∂xα,i (ℓ)

)

0

xα,i (ℓ)

+
1

2

∑

ℓ,i,α

∑

ℓ′,j,β

(

∂2V

∂xα,i (ℓ) ∂xβ,j (ℓ′)

)

0

xα,i (ℓ) xβ,j (ℓ
′)

+
1

6

∑

ℓ,i,α

∑

ℓ′,j,β

∑

ℓ′′,k,γ

(

∂3V

∂xα,i (ℓ) ∂xβ,j (ℓ′) ∂xγ,k (ℓ′′)

)

0

xα,i (ℓ)xβ,j (ℓ
′)xγ,k (ℓ

′′)

+
1

24

∑

ℓ,i,α

∑

ℓ′,j,β

∑

ℓ′′,k,γ

∑

ℓ′′′,k,λ

(

∂4V

∂xα,i (ℓ) ∂xβ,j (ℓ′) ∂xγ,k (ℓ′′) ∂xλ,l (ℓ′′′)

)

0

xα,i (ℓ)xβ,j (ℓ
′)xγ,k (ℓ

′′) xλ,l (ℓ
′′′)

+ · · · (2.1)

14



Here V represents the total interatomic potential energy, V0 is the binding energy of the

crystal when all the atoms are at their equilibrium positions. xα,i (ℓ) denotes the α cartesian

component of the displacement of the ith atom in the ℓth unit cell. The subscript 0 indicates

that the derivatives are evaluated with atoms at the equilibrium positions. Consequently, the

first order derivatives
(

∂V
∂xα,i(ℓ)

)

0
, which represent the net forces on the atom Fi,at equilibrium

vanish and the second term in equation 2.1 is zero. The second order derivatives of the

total inter-atomic potential energy ϕαi,βj (ℓ, ℓ
′) =

(

∂2V
∂xα,i(ℓ)∂xβ,j(ℓ′)

)

0
can be interpreted as

harmonic spring force constants. The elements of the harmonic force constants matrix have

the translational symmetry:

ϕαi,βj (ℓ, ℓ
′) = ϕαi,βj (0, ℓ− ℓ′) = ϕαi,βj (ℓ− ℓ′, 0) (2.2)

Equation 2.1 can be re-written as follows:

V = V0 +
1

2

∑

ℓ,i,α

∑

ℓ′,j,β

ϕαi,βj (ℓ, ℓ
′)xα,i (ℓ)xβ,j (ℓ

′)

+
1

6

∑

ℓ,i,α

∑

ℓ′,j,β

∑

ℓ′′,k,γ

Aαi,βj,γk (ℓ, ℓ
′, ℓ′′) xα,i (ℓ)xβ,j (ℓ

′)xγ,k (ℓ
′′)

+
1

24

∑

ℓ,i,α

∑

ℓ′,j,β

∑

ℓ′′,k,γ

∑

ℓ′′′,k,λ

Bαi,βj,γk,λl (ℓ, ℓ
′, ℓ′′, ℓ′′′)xα,i (ℓ) xβ,j (ℓ

′) xγ,k (ℓ
′′)xλ,l (ℓ

′′′)

+ · · · (2.3)

Where:

ϕαi,βj (ℓ, ℓ
′) =

(

∂2V

∂xα,i (ℓ) ∂xβ,j (ℓ′)

)

0

Aαi,βj,γk (ℓ, ℓ
′, ℓ′′) =

(

∂3V

∂xα,i (ℓ) ∂xβ,j (ℓ′) ∂xγ,k (ℓ′′)

)

0

Bαi,βj,γk,λl (ℓ, ℓ
′, ℓ′′, ℓ′′′) =

(

∂4V

∂xα,i (ℓ) ∂xβ,j (ℓ′) ∂xγ,k (ℓ′′) ∂xλ,l (ℓ′′′)

)

0

(2.4a)
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2.2 Harmonic Lattice Dynamics

2.2.1 Harmonic Approximation

Within the harmonic approximation, third and higher order lattice anharmonicity are

neglected, and the Hamiltonian of a vibrating lattice can be expressed as:

H = V0 +KE + Vharmonic (2.5)

Where KE is the kinetic energy defined as:

KE =
∑

ℓ,i,α

p2α,i (ℓ)

2mi

(2.6)

and

Vharmonic =
1

2

∑

ℓ,i,α

∑

ℓ′,j,β

ϕαi,βj (ℓ, ℓ
′) xα,i (ℓ)xβ,j (ℓ

′) (2.7)

Here pα,i (ℓ) and mi are the α cartesian component of the momentum and mass of the ith

atom in the ℓth unit cell respectively. ϕαi,βj (ℓ, ℓ
′) is defined above.

Solving the Hamiltonian of an infinitely large periodic lattice in real space is not trivial.

However, we can take advantage of the translational symmetry of the crystal and rewrite

the Hamiltonian in the reciprocal (
⇀
q) space using Fourier transformations:

Xα,i (q) =
1√
N

∑

ℓ

xα,i (ℓ) e
−iq·ℓ (2.8)

Pα,i (q) =
1√
N

∑

ℓ

pα,i (ℓ) e
iq·ℓ

where α = 1, 2, · · · , 3Na that labels the index of branch and Na is the number of atoms in a

primitive unit cell. N is the number of unit cells in the supercell model of the crystal, q is
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the wave vector in the reciprocal space.

Note that Xα,i (q) and Pα,i (q) also have translational symmetry in reciprocal space:

Xα,i (q + g) = Xα,i (q)

Pα,i (q + g) = Pα,i (q)

(2.9)

Here g is a reciprocal lattice point and eiq·ℓ = 1. Since xα,i (l) and pα,i (l) are real, we can

show that X∗

α (q) = Xα (−q) and P ∗

α (q) = Pα (−q)

Conversely, in real space,

xα,i (ℓ) =
1√
N

∑

q

Xα,i (q) e
iq·ℓ (2.10)

pα,i (ℓ) =
1√
N

∑

q

Pα,i (q) e
−iq·ℓ

With these transformations, the equation 2.6 becomes:

KE =
1

2

∑

q,q′,i,α

1

mi

Pα,i (q)Pα,i (q
′)

1

N

∑

ℓ

e−i(q+q′)·ℓ

=
1

2

∑

q,q′,i,α

1

mi

Pα,i (q)Pα,i (q
′) δq+q′,0

=
1

2

∑

q,i,α

1

mi

Pα,i (q)Pα,i (−q)

=
1

2

∑

q,i,α

1

mi

Pα,i (q)P
∗

α,i (q)

=
1

2

∑

q,i,α

|Pα,i (q) |2
mi
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Letting h = ℓ− ℓ′ i.e ℓ = ℓ′ + h

Equation 2.7 becomes

Vharmonic =
1

2

∑

i,α

∑

j,β

∑

h

ϕαi,βj (h, 0)
∑

q,q′

Xα,i (q)Xβ,j (q
′) eiq·h

1

N

∑

ℓ′

ei(q+q′)·ℓ′

=
1

2

∑

i,α

∑

j,β

∑

q

∑

h

ϕαi,βj (h, 0)Xα,i (q)Xβ,j (−q) eiq·h (2.11)

We define

ϕαi,βj (q) =
∑

h

ϕαi,βj (h, 0) e
iq·h

Note that,

ϕ∗

αi,βj (q) = ϕαi,βj (−q) = ϕβj,αi (q) (2.12)

So the equation 2.11 becomes

Vharmonic =
1

2

∑

i,α

∑

j,β

∑

q

ϕαi,βj (q)Xα,i (q)Xβ,j (−q) (2.13)

The Hamiltonian can now be expressed as:

H = V0 +
∑

q

H (q) (2.14)

Where

H (q) =
1

2

|Pα,i (q) |2
mi

+
1

2

∑

j,β

ϕαi,βj (q)Xα,i (q)Xβ,j (−q)

(2.15)
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We can solve the equation of motion of lattice vibration using the canonical equations:

∂H

∂Xα,i (q)
= −Ṗα,i (q)

∂H

∂Pα,i (q)
= Ẋα,i (q) (2.16)

Now,

∂H

∂Xα,i (q)
=

1

2

∑

j,β

ϕαi,βj (q)X
∗

β,j (q) +
1

2

∑

j,β

ϕβj,αi (−q)X∗

β,j (q)

(2.17)

Using equation 2.12, the first canonical equation becomes:

∂H

∂Xα,i (q)
=

∑

j,β

ϕαi,βj (q)X
∗

β,j (q) = −Ṗα,i (q) (2.18)

Similarly, the second canonical equation becomes:

∂H

∂Pα,i (q)
=

P ∗

α,i (q)

mα

= Ẋα,i (q) (2.19)

Using equation 2.12 we obtain,

Ẍα,i (q) +
1

mα

∑

j,β

ϕ∗

αi,βj (q)Xβ,j (q) = 0 (2.20)

Let

Xαi (q) =
1√
mα

eiω(q)têαi (q) (2.21)
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equation 2.20 becomes

−ω2

√
mα

êα,i (q) +
1

mα

∑

j,β

ϕ∗

αi,βj (q)
1

√
mβ

êβ,j = 0 (2.22)

ie
∑

j,β

[

ϕ∗

αi,βj (q)√
mαmβ

− ω2δαβ

]

êβ,j = 0 (2.23)

Where êαi (q) and ω (q) are the eigenvectors and eigenfrequencies of the dynamic matrix

D (q) which is defined as:

Dαi,βj (q) =
ϕ∗

αi,βj (q)√
mαmβ

=
∑

h

ϕαi,βj (h, 0)√
mαmβ

e−iq·h (2.24)

For each q-point, a D(q) matrix has 3Na eigenvalues/eigenvectors. The eigenvalues

represent the frequencies (ω) of normal modes of vibrations. The dependence of the vibration

frequencies on the wave vectors is often referred to as phonon dispersion relation and the

slope of a dispersion curve (∇qω (q)) represents the velocity of propagation of the phonon

through the crystal lattice also known as the phonon group velocity Vg (q). Of the 3Na

modes, three are usually the acoustic modes while the remaining 3Na− 3 are optical modes.

2.2.2 Second Quantization

I now introduce normal mode coordinates,

Qλ (q) =
∑

i,α

√
mie

∗

α,i (q, λ) ·Xα,i (q) (2.25)

Pλ (q) =
∑

i,α

1√
mi

eα,i (q, λ) · Pα,i (q)
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Conversely,

Xα (q) =
∑

i,λ

1√
mi

eα,i (q, λ) ·Qλ (q) (2.26)

Pα (q) =
∑

i,λ

√
mie

∗

α,i (q, λ) · Pλ (q)

Note that Q∗

i (q) = Qi (−q) and P ∗

i (q) = Pi (−q).

eα,i (q, λ) is an eigenvector with the following property:

∑

i,α

eα,i (q,λ) · e∗α,i (q, ǫ) = δλǫ

After some derivation it can be shown that within the harmonic approximation, the

Hamiltonian takes the form:

H (q) =
1

2

∑

λ

(

|Pλ (q) |2 + ω2
λ (q) |Qλ (q) |2

)

(2.27)

Under the second quantization, the creation and annihilation operators are defined in terms

of the normal coordinates as follows:

âλ (q) =
1√

2~ωλ (q)

(

ωλ (q) Q̂λ (q) + iP̂λ (−q)
)

(2.28)

â+λ (q) =
1√

2~ωλ (q)

(

ωλ (q) Q̂λ (−q)− iP̂λ (q)
)

(2.29)

Conversely

Q̂λ (q) =
~√

2~ωλ (q)

(

â+λ (−q) + âλ (q)
)

P̂λ (q) = i

√
~ωλ (q)

2

(

â+λ (q)− âλ (−q)
)

(2.30)
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Here

[

Q̂λ (q) , P̂ǫ (q)
]

= i~ · δλǫδqq′
[

âλ (q) , â
+
ǫ (q)

]

= δλǫδqq′ (2.31)

In terms of âλ (q) and â+λ (q) the Hamiltonian takes the form:

Ĥ (q) =
∑

λ

~ωλ (q)

(

â+λ (q) âλ (q) +
1

2

)

(2.32)

=
∑

λ

~ωλ (q)

(

n̂λ (q) +
1

2

)

(2.33)

n̂λ (q) is the population of phonons with wave vector q in the λth mode.

2.3 Third Order Lattice Anharmonicity

From the expansion of the total interatomic potential energy of a crystal in terms of

atomic displacements, all terms of order 3 or higher are associated with the anharmonicity

of the lattice. The third order lattice anharmonicity is the leading term that causes a

perturbation to the harmonic lattice vibrations and anharmonicity induced phonon-phonon

scattering.

Recall from 2.3 that we defined the third order lattice anharmonicity tensor as:

Aαi,βj,γk (ℓ, ℓ
′, ℓ′′) =

(

∂3V

∂xα,i (ℓ) ∂xβ,j (ℓ′) ∂xγ,k (ℓ′′)

)

(2.34)
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In reciprocal space the third term in equation 2.3 becomes

H
(3)
anh =

1

6

∑

ℓ,i,α

∑

ℓ′,j,β

∑

ℓ′′,k,γ

Aαi,βj,γk (ℓ, ℓ
′, ℓ′′) xα,i (ℓ)xβ,j (ℓ

′) xγ,k (ℓ
′′)

=
1

6

∑

q,i,α

∑

q′,j,β

∑

q′′,k,γ

Aαi,βj,γk (ℓ, ℓ
′, ℓ′′)Xα,i (q)Xβ,j (q

′)Xγ,k (q
′′) ei(q·ℓ+q′·ℓ′+q′′·ℓ′′)

(2.35)

Let h = ℓ − ℓ′′ ie ℓ = ℓ′′ + h

and h′ = ℓ′ − ℓ′′ ie ℓ′ = ℓ′′ + h′

H
(3)
anh =

1

6

∑

q,i,α

∑

q′,j,β

∑

q′′,k,γ

∑

ℓ′′

Aαi,βj,γk (q, q
′)Xα,i (q)Xβ,j (q

′)Xγ,k (q
′′) ei(q+q′+q′′)·ℓ′′

=
1

6

∑

q,i,α

∑

q′,j,β

∑

q′′,k,γ

Aαi,βj,γk (q, q
′)Xα,i (q)Xβ,j (q

′)Xγ,k (q
′′) δq+q′+q′′,g

(2.36)

Where

Aαi,βj,γk (q, q
′) =

∑

h,h′

Aαi,βj,γk (h, h
′, 0) ei(q·h+q′

·h′) (2.37)

We have Xα (q)Xβ (q
′)Xγ (q

′′)

=
1

√
mαmβmγ

∑

λ,ǫ,η

Qλ (q)Qǫ (q
′)Qη (q

′′) eα,λ (q) · eβ,ǫ (q′) · eγ,η (q′′)

=
1

√
mαmβmγ

(

~

2

) 3
2 ∑

λ,ǫ,η

eα,λ (q) · eβ,ǫ (q′) · eγ,η (q′′)
√

ω (q)ω (q′)ω (q′′)
Yλǫη (q, q

′, q′′)

(2.38)

23



Here

Yλǫη =
(

â+λ (−q) + âλ (q)
) (

â+ǫ (−q′) + âǫ (q
′)
) (

â+η (−q′′) + âη (q
′′)
)

(2.39)

Using equations 2.38 and 2.39, we have implemented an algorithm to calculate the

phonon-phonon scattering rates due to lattice anharmonicity within the single mode

excitation approximation (SMEA). The details of the SMEA are reported in chapter 3.

2.4 Real Space Super Cell Calculation of Lattice Dynamics

We developed a real space supercell finite displacement ( RSSFD) method to evaluate

interatomic potentials up to third order from first-principles. In the RSSFD approach, we

displace atoms in a real space super cell by a series of finite displacements and then evaluate

harmonic force constants and third order lattice anharmonicity tensor elements from forces

obtained via the Hellmann-Feynman (H-F) theorem.

Fα,i (ℓ) = − ∂E

∂uα,i (ℓ)
= −

〈

Ψ

∣

∣

∣

∣

∂H

∂uα,i (ℓ)

∣

∣

∣

∣

Ψ

〉

(2.40)

where α, i is the component of the force and atom index respectively, ℓ is the unit cell index,

H is the DFT hamiltonian and Ψ is the electronic ground-state wavefunction.

This technique has been successfully used to predict the full phonon spectrum of many

materials78,79,85,101,112–117. The computational cost of the RSSFC method depends on the

size of supercell and the range of of interatomic force constants. For ionic solids, the effect

of induced Born effective charges due to lattice vibrations is often added as a correction to

the phonon spectrum. Also referred to as LO-TO splitting, this often requires a separate

calculation following a method proposed by Kunc and Martin118.
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Our RSSFD technique involves two types displacement schemes: The first scheme which

we call irreducible single atom displacement (ISAD) involves displacement of single atoms

based on crystal symmetry, to determine the H-F forces needed to derive the harmonic

force constants. The second algorithm called irreducible paired atom displacement (IPAD)

involves the displacement of atoms in pairs, to determine the H-F forces needed to evaluate

the third order lattice anharmonicity tensors. The details of the ISAD are reported here119.

In this section I will describe the IPAD algorithm for the calculation of the third order lattice

anharmonicity tensor Aαi,βj,γk (ℓ, ℓ
′, ℓ′′).

In our IPAD scheme, we displace a a pair of atoms simultaneously by a finite amount ∆

which is much smaller than the interatomic distance. For example if we displace the jth atom

in β direction and the kth atom in γ direction by (∆,∆), (∆,−∆), (−∆,∆), and (−∆,−∆),

25



respectively. The α component of the H-F forces on the ith atom are:

F++
α,i (ℓ) = − (ϕαi,βj (ℓ, ℓ

′) + ϕαi,γk (ℓ, ℓ
′′)) ·∆

−1

2
(Aαi,βj,βj (ℓ, ℓ

′, ℓ′) + Aαi,γk,γk (ℓ, ℓ
′′, ℓ′′) + 2Aαi,βj,γk (ℓ, ℓ

′, ℓ′′)) ·∆2

−1

6







Bαi,βj,βj,βj (ℓ, ℓ
′, ℓ′, ℓ′) +Bαi,γk,γk,γk (ℓ, ℓ

′′, ℓ′′, ℓ′′)

+2Bαi,βj,βj,γk (ℓ, ℓ
′, ℓ′′, ℓ′′′) + 2Bαi,βj,γk,γk (ℓ, ℓ

′, ℓ′′, ℓ′′′)






·∆3

(2.41a)

F+−

α,i (ℓ) = − (ϕαi,βj (ℓ, ℓ
′)− ϕαi,γk (ℓ, ℓ

′′)) ·∆

−1

2
(Aαi,βj,βj (ℓ, ℓ

′, ℓ′) + Aαi,γk,γk (ℓ, ℓ
′′, ℓ′′)− 2Aαi,βj,γk (ℓ, ℓ

′, ℓ′′)) ·∆2

−1

6







Bαi,βj,βj,βj (ℓ, ℓ
′, ℓ′, ℓ′)− Bαi,γk,γk,γk (ℓ, ℓ

′′, ℓ′′, ℓ′′)

−2Bαi,βj,βj,γk (ℓ, ℓ
′, ℓ′′, ℓ′′′) + 2Bαi,βj,γk,γk (ℓ, ℓ

′, ℓ′′, ℓ′′′)






·∆3

(2.41b)

F−+
α,i (ℓ) = − (−ϕαi,βj (ℓ, ℓ

′) + ϕαi,γk (ℓ, ℓ
′′)) ·∆

−1

2
(Aαi,βj,βj (ℓ, ℓ

′, ℓ′) + Aαi,γk,γk (ℓ, ℓ
′′, ℓ′′)− 2Aαi,βj,γk (ℓ, ℓ

′, ℓ′′)) ·∆2

−1

6







−Bαi,βj,βj,βj (ℓ, ℓ
′, ℓ′, ℓ′) +Bαi,γk,γk,γk (ℓ, ℓ

′′, ℓ′′, ℓ′′)

+2Bαi,βj,βj,γk (ℓ, ℓ
′, ℓ′′, ℓ′′′)− 2Bαi,βj,γk,γk (ℓ, ℓ

′, ℓ′′, ℓ′′′)






·∆3

(2.41c)

F−−

α,i (ℓ) = + (ϕαi,βj (ℓ, ℓ
′) + ϕαi,γk (ℓ, ℓ

′′)) ·∆

−1

2
(Aαi,βj,βj (ℓ, ℓ

′, ℓ′) + Aαi,γk,γk (ℓ, ℓ
′′, ℓ′′) + 2Aαi,βj,γk (ℓ, ℓ

′, ℓ′′)) ·∆2

+
1

6







Bαi,βj,βj,βj (ℓ, ℓ
′, ℓ′, ℓ′) +Bαi,γk,γk,γk (ℓ, ℓ

′′, ℓ′′, ℓ′′)

+2Bαi,βj,βj,γk (ℓ, ℓ
′, ℓ′′, ℓ′′′) + 2Bαi,βj,γk,γk (ℓ, ℓ

′, ℓ′′, ℓ′′′)






·∆3

(2.41d)

From equation 2.41, simple derivation yields

Aαi,βj,γk (ℓ, ℓ
′, ℓ′′) =

−F++
α,i (ℓ) + F+−

α,i (ℓ)− F−+
α,i (ℓ) + F−−

α,i (ℓ)

4∆2
(2.42)
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2.5 Quasi-harmonic Approximation (QHA) and Mode Grüneisen Parameter

Within the harmonic approximation, lattice vibrations are treated as a collection of

independent harmonic oscillators. Phonons are quasi-particles that represent the quantized

thermal excitations of harmonic lattice vibrations. According to this approximation, phonons

do not interact with each other, and they have infinitely large lifetimes. Also, phonon

frequencies do not depend on vibration amplitudes and unit cell volumes. i.e. they are

temperature and pressure independent. This approximation however, cannot explain several

material properties associated with lattice anharmonicity such as small yet finite thermal

expansion and finite phonon lifetimes. When anharmonic contributions to the interatomic

potentials is small, anharmonic effects in a crystal be evaluated within the framework of the

quasi-harmonic approximation(QHA), which still describes inter-atomic potentials within

the harmonic approximation, but at the same time, force constant matrices are treated as

volume dependent. Consequently, phonon frequencies are volume dependent. The volume

dependence of the vibrational frequencies is described by a parameter known as the mode

Grüneisen parameter (γ ). From QHA theory, γ is defined as follows:

γi
(

⇀
q
)

= −dlnωi

(

⇀
q
)

dlnV
= − V

ωi

(

⇀
q
)

dωi

(

⇀
q
)

dV
(2.43)

By invoking Hellman-Feynman theorem, γ can be expressed in terms of the logarithmic

volume derivative of the dynamical matrix

γi
(

⇀
q
)

= − V

2ωi

(

⇀
q
)2

〈

ei(
⇀
q)
∣

∣

dD
(

⇀
q
)

dV

∣

∣ei(
⇀
q)
〉

(2.44)

Where the dynamical matrix D(~q) is defined in equation 2.24

This expression can be rewritten as follows:
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γi
(

⇀
q
)

= − 1

2ωi

(

⇀
q
)2

∑

αβ

∑

kk′

dDαβ(
⇀
q)

d lnV

e∗αki (
⇀
q)eβk

′

i (
⇀
q)√

MkMk′
(2.45)

The mode Grüneisen parameters (γ) are used to quantify the degree of lattice

anharmonicity in a crystal because they are determined by the volume dependence of

the dynamical matrix D(~q) in reciprocal space or force constants matrix ϕ(0,~h) in real

space. According to perturbation theory120,121, the logarithmic volume derivative of the

force constants matrix ϕ(0,~h) is directly associated with third order lattice anharmonicity

according to equation 2.46

(

dϕ(0,~h)

d lnV

)

αβ

=
1

3

∑

δ

∑

l′l
′′

Aαβδ(0, h, h
′)rδ(h

′

) (2.46)

By combining equations 2.46, 2.45 and 2.24, it is straight forward to show that the mode

Grüneisen parameter can be derived from the third order lattice anharmonicity tensors

according to equation 2.47

γi
(

⇀
q
)

= − 1

6ωi
2
(
⇀
q)
∑

k

∑

k′h

∑

k′′h′

∑

αβδ

Aαk0,βk′h,δk′′h′(0, h, h′)
e∗αki (

⇀
q)eβk

′

i (
⇀
q)√

mkmk′
ei

⇀
q ·

⇀
h rδk′′h′ (2.47)

In our first-principle calculation of interatomic potential energy of solids, γ serves as an

important internal check on the robustness of our calculated third order lattice anharmonicity

tensor (Aijk ). This is because unlike phonon frequencies and group velocities which have

experimental measurements against which our calculated values can be compared, the third

order lattice anharmonicity tensor do not have experimentally measured counterparts. To

independently test the reliability of our calculated Aijk data, we evaluate γ first from the

calculated dynamic matrices which have been verified to be accurate by comparing with

previous measurements and calculations where these exist. Next we evaluate γi via the
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calculated third order lattice anharmonicity. By comparing γ independently evaluated from

the two methods, we can establish the reliability of our Aijk data. This is illustrated in

Figure 2.1. Here γ from ϕij and Aijk for MgO are plotted on the same axes. It is observed

that the two γ capture the same features. Generally, the quality of the agreement in the two

sets of γ reflects the reliability of the calculated third order lattice anharmonicity tensors.
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Figure 2.1: Mode Grüneisen Parameter(γi) derived from harmonic force constant matrix and
third order lattice anharmonicity tensor in MgO compared. Blue circles represent γ from
Aijk , orange circles represent γ from ϕij . Both γ s follow the same trend, showing that
our calculated Aijk are indeed reliable.

2.6 Vibrational Virtual Crystal Approximation(vVCA)

Lower mantle minerals are not pristine crystals but solid solutions that contain

compositional disorder. For example, about 10% of Fe2+ or Fe3+ exist in perovskite and

ferropericlase. Figure 2.2 shows a sketch of differences between 1-dimensional crystals (AO

and BO) and 1-dimensional pseudo binary solid solutions, (A1−x, Bx)O where both A and

B atoms are randomly distributed at the cation sites. In Figure 2.2, ϕAO
ij and ϕBO

ij represent

the harmonic force constants in perfect crystals of AO and BO respectively. ϕ
(SS)
ij represents
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the force constants in the disordered mineral solid solution containing a random substitution

of cation-A with cation-B. Both ϕAO
ij and ϕBO

ij have translational symmetry. But the A/B

substitution disorder breaks the ϕ
(SS)
ij translational symmetry.

Unit Cell

(a) Periodic Perfect Crystal AO, ϕ
(AO)
ij

(b) Periodic Perfect Crystal BO, ϕ
(BO)
ij

(c) Non-periodic Solid Solution (A,B)O, Compositional Disorder, ϕ
(SS)
ij

(d) Periodic Virtual Crystal XO, Ensemble Average: ϕ
(XO)
ij ≈ 〈ϕ(SS)

ij 〉

Figure 2.2: Vibrational Virtual Crystal Approximation (vVCA)

An exact solution for the lattice dynamics of mineral solid solutions requires large

supercell models. As an approximation, we implemented a vibrational virtual crystal

approximation (vVCA). Within the vVCA, we first generate a supercell model with a

specific A/B substitution configuration ϕ
(ss−1)
ij Then we generate all the symmetrically

equivalent substitution configurations, and derive their force constant matrices with group

theory. ϕ
(ss−2)
ij , ϕ

(ss−3)
ij , ϕ

(ss−4)
ij · · · are derived with ϕ

(A,B)O
ij = ϕ

(A(1−δ)Bδ)O
ij . We perform a

configurational average which represents the force constants in the virtual crystal of XO.

Notice that crystalline periodicity is restored in 〈ϕss
ij 〉vV CA. It is worth pointing out that

〈ϕss
ij 〉vV CA is not simply the arithmetic average: (1−x)ϕAO

ij +xϕBO
ij . It includes a much more

realistic description of A/B substitution.

This substitution is known to modify the interatomic forces especially in the vicinity of

the substitution. In this study we find that the bond modification leads to a softening of

phonon frequencies and group velocities, details reported in chapter 6.
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Chapter 3

PEIRLS-BOLTZMANN TRANSPORT THEORY

3.1 Peierls-Boltzmann Transport Theory (PBTT)

All thermally excitable particles/quasi-particles contribute to heat conduction. In

optically thick and electrically insulating solids, the main carriers of heat are phonons, i.e.

the quasi-particles that represent quantization of lattice vibrations. At the microscopic level,

the kinetic particle theory describes the heat flux according equation 3.1

~J =
1

N⇀
q

∑

⇀
q ,i

n(
⇀
q , i)~ω(

⇀
q, i)~vg(

⇀
q , i) (3.1)

Here, n(~q, i) represents the phonon occupation (distribution) function of mode (~q, i), ~vg(~q, i)

is the group velocity and ω(~q, i) is the phonon frequency. At thermal equilibrium, n = n0,

where no is the well-known Bose-Einstein equilibrium occupation (distribution) function for

phonons:

no =
1

e~ω/kBT − 1
(3.2)

The net heat flux at thermal equilibrium ~J0 is zero:

~J0 =
1

N⇀
q

∑

⇀
q ,i

n0(
⇀
q, i)~ω(

⇀
q, i)~vg(

⇀
q , i) = 0 (3.3)
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According to the Peierls-Boltzmann thermal transport theory, the variation of the

phonon distribution function with time can be expressed as:

(

dn

dt

)

=

(

dn

dt

)

scattering

(3.4)

The total derivative
(

dn
dt

)

contains three terms:

(

dn

dt

)

=
∂n

∂t
+

(

dn

dt

)

diffusion

+

(

dn

dt

)

field

(3.5)

For heat conduction, an external field is absent, i.e. we have (dn
dt
)field = 0.

At steady state conditions, ∂n
∂t

= 0. Therefore,

(

dn

dt

)

diffusion

=

(

dn

dt

)

scattering

(3.6)

The diffusion term can be expressed as:

(
dn

dt
)diffusion = ~vg · ~∇n (~r, ~q, t)

≈
(

~vg · ~∇T
) ∂n0

∂T

=
Cv

~ω

(

~vg · ~∇T
)

(3.7)

where Cv =
∂ε
∂T

= ∂
∂T

(

n0 + 1
2

)

~ω = ~ω
(

∂n0

∂T

)

is the phonon mode heat capacity.

Within the relaxation time approximation (RTA), the scattering term in equation 3.6

can be approximated by equation 3.8

(

dn

dt

)

scattering

≈ −
(

n− no

τ

)

= −∆n

τ
(3.8)
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Consequently we have,

∆n(~q, i)

τ(~q, i)
= −Cv(~q, i)

~ω(~q, i)

(

~vg(~q, i) · ~∇T
)

(3.9)

The heat flux in equation 3.1 can be rewritten as:

~J =
1

N~q

∑

~q,i

(

n0(~q, i) + ∆n(~q, i)
)

~ω(~q, i)~vg(~q, i) (3.10)

Using equation 3.3, (where ~J0 = 0) in conjunction with equation 3.9, we can further simplify

equation 3.10:

~J =
1

N~q

∑

~q,i

(

−τ(~q, i)
Cv(~q, i)

~ω(~q, i)

(

~vg(~q, i) · ~∇T
)

)

~ω(~q, i)~vg(~q, i)

= − 1

N~q

∑

~q,i

Cv(~q, i)τ(~q, i)
(

~vg(~q, i) · ~∇T
)

~vg(~q, i)

(3.11)

The thermal conductivity tensor κ of a single crystal is defined as:

~J = −κ~∇T (3.12)

Comparing equation 3.12 with equation 3.10, we can clearly see that:

καβ =
1

N~q

∑

⇀
q ,i

Cv(
⇀
q , i)vg

α(
⇀
q, i)vg

β(
⇀
q , i)τ(

⇀
q , i) (3.13)

33



We can show that the non-diagonal terms καβ = 0 for α 6= β.

The averaged thermal conductivity in a randomly oriented polycrystal is defined as:

κ =
1

3
(κ11 + κ22 + κ33) =

1

3N~q

∑

~q,i

Cv(~q, i) ~Vg(~q, i)
2τ(~q, i) (3.14)

The heat capacity and group velocity are both determined from the phonon spectrum

and vibrational density of states of the solid. The challenge in determining κ lies with the

evaluation of τ(~q, i) from first-principles.

3.2 Phonon Lifetime (τ): Fermi’s Golden Rule, Single Mode Excitation

Approximation (SMEA), and Scattering Rates Due to Mass Disorder

Phonon relaxation time (RT) is a quantity associated with non-equilibrium transport

process. However, in practice, RT is often considered as equivalent to the phonon lifetime

which is an equilibrium quantity, because both quantities are related to the rate of phonon

scattering. In this dissertation,the phrases “phonon lifetime” and “phonon relaxation time”

are used interchangeably.

Inside an insulating crystal, phonons can be scattered by crystalline defects

(compositional disorder), grain boundaries or lattice anharmonicity. In the work reported in

this dissertation, we considered two types of perturbations to the harmonic lattice dynamics

namely: mass disorder (either isotope or Fe/Mg substitution) and intrinsic third order lattice

anharmonicity. We neglect phonon scattering due to grain boundary since its contribution is

comparably small at room temperature and above. The overall phonon lifetime is obtained

from the sum of the scattering rates due to the individual scattering processes according to

Matthiessen’s rule.
(

τ−1
)

eff
=
(

τ−1
)

3−phonon
+
(

τ−1
)

mass
(3.15)
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According to Fermi’s golden rule based on quantum time dependent perturbation theory,

the transition rate (Γf
i ) from an initial quantum state to the final state |f〉, under a

perturbation ∆H is defined by equation 3.16.

Γf
i =

2π

~
|〈f | ∆H| i〉|2δ(εf − εi) (3.16)

|i〉 and |f〉 are the initial and final quantum states with energies εi and εf respectively. In

the case of third order lattice anharmonicity induced phonon scattering, ∆H is the same as

H
(3)
anh defined in equation 2.36 Considering only scattering due to 3-phonon processes, we

can rewrite scattering rate equation as follows

∆ni(
⇀
q)

τi(
⇀
q)

= −
(

dni(
⇀
q)

dt

)

3−phonon

(3.17)

Phonon-phonon scatterings due to third order lattice anharmonicity involves 2 phonons

combining into one phonon or one phonon splitting up into two phonons as depicted in

figure 3.1. These are commonly referred to as 3-phonon processes.

q

q′′

q′

q

q′′

q′

~ω = ~ω′ + ~ω′′

q +G = q′ + q′′
~ω + ~ω′ = ~ω′′

q +G+ q′ = q′′

Figure 3.1: Energy and momentum conservation for 3-phonon processes
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Based on equation 3.16, 2.36, 2.37, 2.38 and 2.39, we can derive that:

(

dni(
⇀
q )

dt

)

3−phonon
=

∑

⇀
q
′

∑

⇀
q
′′











[

(

ni(
⇀
q) + 1

)

(

nj(
⇀
q
′

) + 1
)(

nk(
⇀
q
′′

)
)

−
(

ni(
⇀
q)
)

(

nj(
⇀
q
′

)
)(

nk(
⇀
q
′′

) + 1
)]

S
⇀
q
′′

⇀
q ,

⇀
q
′+

1
2

[

(

ni(
⇀
q) + 1

)

(

nj(
⇀
q
′

)
)(

nk(
⇀
q
′′

)
)

−
(

ni(
⇀
q)
)

(

nj(
⇀
q
′

) + 1
)(

nk(
⇀
q
′′

) + 1
)]

S
⇀
q
′

,
⇀
q
′′

⇀
q











(3.18)

Where S
⇀
q
′′

⇀
q ,

⇀
q
′ and S

⇀
q
′

,
⇀
q
′′

⇀
q

relate the scattering rates to lattice anharmonicity and phonon

spectrum, also enforcing the conservation of energy and momentum.

S
⇀
q
′

,
⇀
q
′′

⇀
q

=
h2

242πNω(
⇀
q , i)ω(

⇀
q
′

, j)ω(
⇀
q
′′

, k)

∣

∣

∣

∣

∣

∑

αβγ

Aαβγ(
⇀
q ,

⇀
q
′

)eiα(q)e
j
β(

⇀
q
′

)ekγ(
⇀
q
′′

)

(mαmβmγ)
1/2

∣

∣

∣

∣

∣

2

· δ[~ω(⇀q, i)− ~ω(
⇀
q
′

, j)− ~ω(
⇀
q
′′

, k)]δ⇀
q−

⇀
q
′

−
⇀
q
′′

,
⇀
g

(3.19)

S
⇀
q
′

,
⇀
q
′′

⇀
q

=
h2

242πNω(
⇀
q , i)ω(

⇀
q
′

, j)ω(
⇀
q
′′

, k)

∣

∣

∣

∣

∣

∑

αβγ

Aαβγ(
⇀
q ,

⇀
q
′

)eiα(q)e
j
β(

⇀
q
′

)ekγ(
⇀
q
′′

)

(mαmβmγ)
1/2

∣

∣

∣

∣

∣

2

· δ(~ω(⇀q, i) + ~ω(
⇀
q
′

, j)− ~ω(
⇀
q
′′

, k))δ⇀
q+

⇀
q
′

−
⇀
q
′′

,
⇀
g

(3.20)

The single mode excitation approximation (SMEA) assumes that only one phonon mode

is displaced out of equilibrium and its phonon occupation number relaxes back to equilibrium

while phonon occupation numbers of all other modes maintain their equilibrium value. In

terms of the phonon distribution functions, this can be illustrated by equation 3.21

ni(
⇀
q) = ni

o(
⇀
q) + ∆ni(

⇀
q)

nj(
⇀
q
′

) ≈ nj
o(

⇀
q
′

)

nk(
⇀
q
′′

) ≈ nk
o(

⇀
q
′′

)

(3.21)

36



After enforcing energy conservation and neglecting terms of order 2 and higher, equation

3.17 can be expressed as:

(

dni(
⇀
q )

dt

)

3−phonon
=

∆ni(
⇀
q) ·

∑

⇀
q
′

∑

⇀
q
′′

{(

nk
o(

⇀
q
′′

)− nj
o(

⇀
q
′

)
)

S
⇀
q
′′

⇀
q ,

⇀
q
′ − 1

2

(

nj
o(

⇀
q
′

) + nk
o(

⇀
q
′′

) + 1
)

S
⇀
q
′

,
⇀
q
′′

⇀
q

} (3.22)

The scattering rate (the inverse of phonon lifetime) associated with third order lattice

anharmonicity can be expressed as:

1

τanh(
⇀
q , i)

= −
∑

⇀
q
′

∑

⇀
q
′′

{

(

nk
o(

⇀
q
′′

)− nj
o(

⇀
q
′

)
)

S
⇀
q
′′

⇀
q ,

⇀
q
′ −

1

2

(

nj
o(

⇀
q
′

) + nk
o(

⇀
q
′′

) + 1
)

S
⇀
q
′

,
⇀
q
′′

⇀
q

}

(3.23)

The temperature independent phonon scattering rate due to mass disorder is given by

equation 3.24

Γ(
⇀
q , i)mass =

2π
~

(

~ω(
⇀
q ,i)
2

)

V0

8π3

3N
∑

i=1

∫

BZ
d

⇀
q
′

.

[

δ
{

~ω(
⇀
q, i)− ~ω(

⇀
q
′

, i′)
}

∑

α

gα|e∗α(
⇀
q , i).eα(

⇀
q
′

, i′)|2
] (3.24)

Here gα =
∑

k

fk(α)[1−mk(α)/m̄(α)]2, fk(α) is the fraction of kth isotope of atom α

that has mass mk(α), and m̄(α) is the average mass of atom with index α. eα(
⇀
q , i) and

ω(
⇀
q
′

, i′) are respectively the eigenvector and frequency of the phonon mode (
⇀
q , i).

3.3 Numerical Recipe for τanh Calculation

We outline here the steps for calculating the phonon lifetimes (τanh) associated with

anharmonicity induced phonon scattering. The first step in the calculation of τanh is

the calculation of the harmonic force constants matrix (ϕij ) and third order lattice
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anharmonicity tensor (Aijk ). This is achieved via our recently developed RSSFD algorithm

described in section 2.4. The harmonic force constants matrix is needed to determine

the phonon frequencies which are necessary inputs together with the third order lattice

anharmonicity tensor for the calculation of the 3-phonon coupling (TPC) terms (S
⇀
q
′′

⇀
q ,

⇀
q
′

and S
⇀
q
′

,
⇀
q
′′

⇀
q

) equations 3.19 and 3.20. A fine sampling grid for the calculation of the

phonon spectrum and TPC terms is adopted based on numerically converged results. Group

symmetry analysis is next performed to determine which of the
⇀
q -points in the sampling

grid are irreducible. We save this in a file called Q− list. The number of irreducible q-points

based on 16×16×16 and 8×8×6 sampling grids for MgO and PV-MgSiO−3 calculation are

145 and 100 respectively. The phonon lifetime is then directly evaluated at these
⇀
q -points.

To take advantage of parallel computing technology, we have divided our calculation of τanh

into two steps that are embarrassingly parallel. First we calculate the TPC terms at the

irreducible
⇀
q -points in the sampling grid are irreducible. We save this in a file called Qlist.

The phonon lifetime is then directly evaluated at these
⇀
q -points, using our SMEA based

code TPC.f90. The inputs to this code are:

• List of the irreducible
⇀
q -points in the sampling grid.

• third order lattice anharmonicity tensor

• phonon frequencies (ωi )

• masses of constituent atoms

The next step is to read the precalculated TPC terms and evaluate the scattering rates

at given temperatures, enforcing the conservation of energy and momentum over a finer

sampling grid. This is accomplished by using a code named TauSMEA.f90. The inputs to

this code are:

• List of the irreducible
⇀
q -points in the sampling grid.
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• The number of temperature points

• The dimensions of the sampling grid adopted in TPC calculation

• The phonon frequencies calculated over the fine grid

• A finer grid parameter for enforcing energy and momentum conservations

• A file containing the temperature points

The phonon scattering rates in the whole Brillouin zone are then reconstructed using group

theory based on the crystal symmetry. We combine this with the temperature independent

scattering rates from mass disorder to obtain the overall phonon scattering rate.
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Chapter 4

Lattice Thermal Conductivity of α−Al2O3 Crystal

4.1 Introduction

Alumina (Al2O3) is a well-known ceramic material with a wide range of technological

applications due to its outstanding mechanical and optical properties. Alumina constitutes

nearly 15% of minerals in the Earth’s crust and is thus a material of geophysical interest.

Its unique blend of low thermal expansion and high compressive strength makes it

suitable for use in thermal shock applications. Few chemicals attack alumina making it

a good candidate for chemical barrier coatings Alumina shows good electrical insulation at

high temperatures, good wear resistance and is very hard At ambient conditions, Al2O3

crystallizes in the corundum structure (α−Al2O3, space group R3̄C). Experimental88,122–124

and theoretical71,73,76,125,126 studies show that α−Al2O3 is stable up to 90 GPa. The space

group, formula units per primitive unit cell Z and Wyckoff sites of α−Al2O3 are summarized

in table 4.1.

Table 4.1: Space groups, formula units per primitive unit cell Z and Wyckoff sites of
α−Al2O3:

Phase Space group Z Species Wyckoff site
α R3̄c 2 O 6e

Al 4c

Thermal conductivity of Corundum-structured Al2O3 has been studied

experimentally127–129 however experimental and theoretical data on the pressure and

dependence of phonon lifetimes are lacking. We have developed a first-principles

computational technique to calculate the lattice thermal conductivity of solids at extreme
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pressure and temperature conditions. Our technique has been successfully adopted to

study two-atom cubic MgO101,112. We present here our first-principles calculation of lattice

thermal conductivity of the trigonal corundum phase of Alumina (Al2O3) (Ten atoms per

unit cell). We directly evaluated the phonon-phonon scattering rates using our calculated

third order lattice anharmonicity tensors, within the framework of quantum scattering

theory. Combining this with our calculated vibrational phonon frequencies and group

velocities, within the framework of the Boltzmann transport theory we predict the lattice

thermal conductivity of α− Al2O3 at six different densities and ten temperature points

ranging from 300K- 2500K, corresponding to a total of 60 T-P configurations without

any empirical fitting. The motivation of the current work is to test the applicability of

our newly developed computational technique on a more complex material system like

α-Al2O3 with 10 atoms per unit cell. To our knowledge this is the first ab initio study of

the volume/density dependence of individual phonon mode lifetimes, mode group velocity

and mode heat capacity. By combining this with the calculated thermal EOS of α-Al2O3,

we derive the pressure dependence of lattice thermal conductivity in α-Al2O3 depicted in

figures 4.12 and 4.13.

4.2 Lattice Dynamics and Equilibrium Thermal Properties

4.2.1 Symmetry Analysis and First-principles Calculation of Total Energies

Symmetry Analysis and Computational Time

To calculate the harmonic force constants and third order lattice anharmonicity tensors,

10-atom unit cells of volumes ranging from 75 -90 Å3 were first relaxed to their ground state.

The independent interatomic force constants (Φij) and third order lattice anharmonicity

tensors (Aijk) for 120-atom supercells were then determined based on group symmetry

41



analysis. The results of the symmetry analysis to determine the independent terms is

summarised in the table 4.2.

Table 4.2: Irreducible atomic displacements (number of total energy calculations required),
Independent and dependent Φij and Aijk terms from crystal symmetry.

Irreducible moves Independent terms Dependent terms ∆

Φij 18 (ISAD) 1,441 63,348 0.06 Å
Aijk 5,568 (IPAD) 163,267 7,668,135 0.06 Å

After performing group symmetry analysis, we find that a total of 18 irreducible single

atom displacements (ISAD) and 5568 irreducible paired-atom displacement (IPAD) are

needed to determine the Hellmann-Feynman (HF) forces required to extract Φij and Aijk

based on 120-atom periodic supercells. These numbers translate directly into number of

VASP114,130 calculations to be executed per atom. As you can see, computing the HF forces

for the extraction of third order lattice anharmonicity is a formidable task, demanding a

total of 5, 568N (N = number of atoms in per supercell) calculations, with N computations

requiring ∼ 2, 623s. This is equivalent to 4, 058 computational hours or 169 days (5months)

if these computations were to be performed in series one after the other. Fortunately, this

step is highly parallelised. As a result, depending on the number of available compute nodes,

several computations can be performed concurrently. These computations were performed on

the Auburn University physics department’s PRISM research cluster, a distributed memory

computer system (Beowulf cluster). This cluster is comprised of 128 AMD Athlon MP CPUs.

With 128 CPUs running in parallel, the 5568 computations can be distributed across the

cluster with 44 computations assigned per CPU. This dramatically reduces the computational

time from 5 months to 31 computer hours (∼ 1.5 days) and makes the task feasible. HF

forces were computed using the RSSFD method described in section 2.4.
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Total Energy Calculations

Total energy calculations were performed within the framework of density functional

theory (DFT) with a plane wave basis set and plane augmented waves (PAW) method which

has been implemented in the VASP code114,131. We adopted the local density approximation

(LDA) to handle the exchange and correlation functional. Plane wave basis functions with

energies up to 400.00 eV were used for the PAWmethod. A total energy convergence criterion

of 10−9 eV was specified, for self-consistent iterations. Monkhorst-Park K-point sampling

grids of 6 × 6 × 4 were used for Brillouin zone integrations. The calculated static energy

at various unit cell volumes was fitted to 3rd order Birch-Murnaghan EOS. The static EOS

parameters are presented in table C.1 in appendix C, together with previous calculations

and experimental data for comparison.

Harmonic and Anharmonic Inter-atomic Potentials

Both harmonic and anharmonic inter-atomic potentials were obtained based on the HF

forces that were computed for all the irreducible distorted 120-atom supercell models using

a single Brillouin zone center q-point sampling grid. We next interpolated the calculated

independent Φij and Aijk over the calculation volumes. Figures 4.1 and 4.3 show the

irreducible LDA calculated density dependent harmonic and anharmonic lattice dynamics of

Al2O3 based on a 120-atom super cell model. Harmonic force constants are obtained using

a irreducible single-atom displacement(ISAD) algorithm. Third order lattice anharmonicity

tensors are extracted using a irreducible paired-atom displacement (IPAD) scheme described

in section 2.4. Both results suggest a nearly linear density dependence of harmonic force

constants and third order lattice anharmonicity tensors. The volume dependence of the

inter-atomic potentials enables us to predict the inter-atomic potentials for any arbitrary

volume within our calculation range without the need to perform a separate VASP calculation

as explained in appendix B.
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4.2.2 Quasi-harmonic Phonons

Phonon frequencies are obtained by solving equation 2.23. To account for the correction

to the dynamical matrix resulting from LO-TO splitting, we performed a separate calculation

according to Kunc and Martin’s method118. In a purely harmonic system, the inter-atomic

potentials are volume independent as well as the phonon frequencies. Figure 4.1 showing our

LDA calculated 2nd order inter-atomic force constants, clearly reveals a volume dependence.

in the limit of small deviations from the equilibrium volume, this anharmonic behavior

can be approximated via the quasi-harmonic approximation (QHA). Within the QHA, the

crystal is considered harmonic at fixed volumes, while the phonon frequencies become volume

dependent. This volume dependence is described via the mode Grüneisen parameter (γ )

defined by equation 2.43 in section 2.5. In this calculation, the static energy was fitted to the

3rd-order Birch-Murnaghan equation of state (BM-EOS) and the thermal free energy was

fitted to the 2nd-order BM-EOS. F (T, V ) = Estatic (V ) + Fvib (T, V ). Our calculated zero

pressure thermal expansion coefficient (TEC) of α-Al2O3 as a function of temperature using

PAW method are compared with former measurements in figure C.2.

Figure 4.2 shows our calculated vibrational phonon frequencies, density of states and

group velocities at 0 GPa and 300K. Experimental data (discrete symbols) is included

for comparison. The overall agreements between our LDA + PAW calculated vibrational

phonon frequencies and experiment, are good and within the typical accuracy of ab initio

calculations. Among the calculated 30 phonon branches, the low-frequency (acoustic) ones

have steeper slopes implying larger phonon mode group velocities (Vg =
dω
dK

). This suggests

that acoustic phonon modes are more effective carriers of heat compared with the flat optical

modes.

We believe that our LDA calculated phonon dispersions are reliable based on the

excellent agreement with measurements from experiment as shown in figure 4.2. The

calculated lattice anharmonicity tensors on the other hand are not known to have measured
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Figure 4.1: LDA calculated density dependent harmonic force constants of Al2O3 based on
a 120-atom super cell model. A total of 1441 independent Φij were extracted from the HF
forces from VASP calculation. Majority of the Φij terms are small and insensitive to volume
change. Less than 20 inter-atomic force constants have magnitudes exceeding 5 eV/Å2 and
show an almost linearly increasing pressure dependence with increasing pressure.
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Figure 4.2: Vibrational phonon frequencies and density of states. Our LDA calculated
phonon spectrum (solid lines) agree well with measurements from experiment (discrete
symbols). Low frequency(acoustic) phonon modes have steeper slopes (group volicities)
compared to the high frequency (optical) modes which are mostly flat.
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Figure 4.3: Pressure dependence of anharmonicity tensor elements (Aijk). Aijk elements are
observed to vary linearly with volume/density. From 0 GPa (∼ 84 Å3) to 50 GPa ( ∼ 75
Å3), Aijk increases linearly from 40 eV/Å3 to 60 eV/Å3, representing a 50% increase, ∼ 1%
per GPa.

counterparts. To verify their robustness, we evaluate mode Grüneisen parameters using the

extracted lattice anharmonicity and compared with the ones evaluated from the already

verified harmonic force constants. The comparison of the mode Grüneisen parameters is

shown in figure 4.4. Both mode Grüneisen dispersion plots capture the same features,

showing that our calculated lattice anharmonicity tensors are indeed reliable. The process

of extracting the mode Grüneisen parameters from Φij and Aijk is described in section 2.5
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Figure 4.5: Volume dependence of mode heat capacity. Lines represent the heat capacity of
individual phonon modes at the sampled at the irreducible K-points in Brillouin zone at 6
different densities/unit cell volumes.
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4.3 Phonon Lifetimes

Phonon lifetimes are evaluated based on an 8×8×8 k-point grid for a total of 512

k-points, 150 of which are irreducible. Using a 10-atom unit cell, the life times of the 30

phonon modes are evaluated at each k-point using Fermis golden rule (equation 3.16). The

full life times are obtained using the symmetry relations between the irreducible k-points

and the dependent ones. Figure 4.7 shows the lifetimes of the phonon modes at all the 150

irreducible k-points in Brillouin zone.
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Figure 4.7: Density Dependence of phonon lifetimes in α-Al2O3 the at 300K (a) & (b)
Transverse acoustic modes (c) Longitudinal acoustic phonon mode; (d)Optical phonon
modes. Lifetimes of optical phonon modes are almost pressure insensitive. Acoustic modes
increase almost linearly with decreasing volume (increasing pressure). The optical phonon
mode with the longest lifetime is only about half the lifetime of the longest acoustic mode.
This singles out acoustic phonons as the dominant carriers of heat in α-Al2O3.
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4.4 Lattice Thermal Conductivity κ

The inverse of thermal conductivity of Al2O3 scales linearly with temperature at

constant density, figure 4.10. The thermal conductivity shown, includes the contributions

from anharmonicity induced phonon scattering and isotope-induced phonon scattering up to

lower mantle temperatures. Our calculated κ(T) at ambient pressure figure 4.12, is in good

agreement with measurements from experiment127–129. At 0 GPa and 300 K we predict κ

as ∼ 23 Wm−1K−1 at and 56 Wm−1K−1 at 50 GPa and 300 K, representing a factor of 2.4

increase in κ per GPa
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Figure 4.8: Density dependence of mode-κ from acoustic phonon modes at T= 300K.
Acoustic modes thermal conductivity follows a volume dependence identical to that of the
acoustic modes phonon lifetimes shown in figure 4.7 a, b & c. This is expected as the other
determining variables in the thermal conductivity equation Cv and V2

g, figures 4.5 and 4.6
are almost flat(volume insensitive)
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Figure 4.9: Density dependence of mode- thermal conductivity from optical phonon modes
at T= 300K. κoptical is almost pressure insensitive, consistent with the pressure dependence
of τoptical, figure 4.7 d, and Cv and V2

g, (figures 4.5 and 4.6)
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Figure 4.10: Density dependence of κ−1. We have directly calculated the lattice thermal
conductivity of α−Al2O3 at six densities ranging from 3.98 gcc−1 to 4.51 gcc−1 and at 10
different temperature points from 300K to 2500K. κ−1 shows a linear temperature dependence
at constant density. At constant temperature κ−1 increases almost linearly with increasing
density.
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Figure 4.11: Pressure dependence of isothermal κ. Based on the V(T,T) dependence from our
LDA calculated thermal EOS we have derived the pressure dependence of κ. The numbers 1-6
represent the six unit cell volumes (densities) for which κ was calculated. κ isotherms show a
linear pressure dependence. From this pressure dependence, we can derive the temperature
dependence of isobaric κ shown in figure 4.12. From the labels 1-6 one can preview the
temperature dependence of κ at conditions of constant pressure.
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Figure 4.12: Isobaric κ of α-Al2O3 at 0 GPa and 50 GPa. We show a comparison between
our calculated thermal conductivity and experiment at 0GPa. Discrete symbols denote
experiment data while solid continuous line represent our first-principles calculation.
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%/GPa increase in κ at 300 K and 2500K respectively.

Table 4.3: Calculated lattice thermal conductivity fitted to second order in pressure at 10
different temperatures: κ = a0+ a1P + a2P

2. The parameters a0, a1, a2 are then used
in conjunction with the calculated thermal EOS to predict the isobaric lattice thermal
conductivity at different temperatures as shown in figure 4.12

T a0 (Wm−1K−1) a1 (Wm−1K−1GPa−1) a2 (Wm−1K−1GPa−2)
300K 22.544 0.74449 0.00004956
500K 12.372 0.40730 0.00034499
750K 7.6949 0.27119 0.00041005
1000K 5.4235 0.20468 0.00035945
1250K 4.0608 0.16568 0.00032107
1500K 3.1491 0.13990 0.00028940
1750K 2.4901 0.12191 0.00026943
2000K 1.9958 0.10818 0.00024826
2250K 1.6059 0.097737 0.00023343
2500K 1.2890 0.089519 0.00022246
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4.5 Conclusion

The density dependent harmonic and anharmonic inter-atomic potentials in α-Al2O3

are calculated using our supercell finite-displacement algorithm. Phonon frequencies and

the thermal equation of state derived from the harmonic force constants are in excellent

agreement with experiment. Our LDA calculated 3rd order lattice anharmonicity has been

independently tested to be reliable via the mode Grüneisen parameters. Phonon life times

for individual phonon modes are directly evaluated based on quantum phonon scattering

theory. Acoustic phonon modes are found to have noticeably longer lifetimes compared to

the optical modes. Moreover the lifetimes of the acoustic modes increase almost linearly with

pressure while the optical modes are almost insensitive to pressure change. In α-Al2O3 the

acoustic phonon modes contribute about 60% of the total thermal conductivity at ambient

conditions. Lattice thermal conductivity of 60 T-P conditions are derived without any

empirical extrapolation for a material with 10-atoms per unit cell. Our predicted κ at

ambient conditions is about 23 Wm−1K−1 , in good agreement with available experiment.

dlnκ
dP

, the pressure dependence of κ is around 3 and 5% per GPa at 0GPa for 300K and 2500K

respectively.
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Chapter 5

LATTICE THERMAL CONDUCTIVITY OF PV-MgSiO3 AT LOWER

MANTLE CONDITIONS

5.1 Introduction

MgSiO3 is known to exist in two phases, the perovskite(PV) and post-perovskite (PPV)

phases. The PV → PPV transition is reported to occur at 125GPa and 2500K132. The

study of MgSiO3 has attracted much attention since the discovery of the PV → PPV

transition which is believed to explain the seismic discontinuities observed in the Earth’s D′′

layer72. The raman spectrum of PV and PPV-MgSiO3 has been studied theoretically132 and

experimentally133. PV-MgSiO3 has an orthorhombic structure with the symmetry group

#62 Pnma and is believed to be thermodynamically stable up to 110 GPa at 0K72,132.

PPV-MgSiO3 the high pressure phase of MgSiO3 belongs to the Cmcm symmetry group and

has 2 formula units per unit cell. The Space groups, formula units per primitive unit cell Z

and Wyckoff sites for the two phases are summarised in table 5.1

Table 5.1: Space groups, formula units per primitive unit cell Z and Wyckoff sites of 2
polymorphs of MgSiO3: perovskite and post-perovskite.

Phase Space group Z Species Wyckoff site
Perovskite Pnma 4 Mg 4a

Si 4c
O 4c, 8d

Post-perovskite Cmcm 2 Mg 4a
Si 4c
O 4c, 8f
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Table 5.2: Irreducible representation of the mode symmetries at Γ-point for the 2 polymorphs
of MgSiO3: perovskite and post-perovskite.

Phase Raman active IR active Silent
Perovskite 7Ag + 5B1g + 7B2g + 5B3g 10B1u + 8B2u + 10B3u 8Au

Post-perovskite 4Ag + 3B1g + 1B2g 6B1u + 6B2u + 4B3u 2Au

Based on group symmetry, the sixty (3 acoustic + 57 optical) in PV and 30 (3+27)

phonon modes have the following irreducible representation at the Γ- point summarised in

table 5.2.

The Earths lower mantle is mostly composed of magnesium silicate in the perovskite

structure (PV-MgSiO3. A recently published measurement of the thermal conductivity of

MgSiO3 perovskite134 disagrees significantly with the only other existent measurement107

and the measured pressure dependence implies values of 9-12 W/m/K when extrapolated

to the core/mantle boundary. The disagreement between the two measured values and the

uncertainty in the long extrapolations required to estimate the value of silicate perovskite’s

thermal conductivity at the pressure and temperature conditions of the lower mantle

motivates our first-principles calculations of the phonon behavior of perovskite which governs

this materials thermal conductivity at the conditions of the lower mantle. The value of

lower mantle thermal conductivity is important to to modeling the total budget inside the

earth. Large uncertainties exist in our current estimates of lower mantle thermal conductivity

because of the long extrapolations in both temperature (T) and pressure (P) of laboratory

measured thermal conductivity of lower mantle minerals at relatively low temperatures and

pressures.
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5.2 First-principles Calculation of Total Energies, Vibrational Properties and

Phonon Lifetimes

The VASP software package114,130 was used to calculate the relaxed equilibrium atomic

structures, total energies, force constants, and 3rd order lattice anharmonicity tensors using

Blöch’s projector augmented wave (PAW) pseudopotential135,136 and a plane-wave (PW)

basis set within the local density approximation (LDA) to the density functional theory

(DFT). The details of LDA-PW calculations are as follows: For the PV-MgSiO3 phase,

structures of 20-atom (10-atom for PPV phase) unit cells of different volumes were first

relaxed to their ground state. Independent force constants for 160-atom periodic supercells

were then identified by the crystal symmetry. Both harmonic and anharmonic force constants

were obtained based on the atomic forces that were computed for all the irreducible distorted

supercells using a single Brillouin zone (BZ) center q-point sampling grid. Next, for the PV

phase only, the lifetime of each phonon mode was calculated based on the Fermis golden rule

equation 3.16. This is the most computational intensive step because all the configurations

of three-phonon scattering need to be properly counted. All the phonon modes, acoustic or

optic, are calculated using the same numerical approach. No empirical approximations of

the frequency or q-point dependence are assumed. In the current study of PV-MgSiO3, the

BZ integration was approximated by a summation over a discrete 8 × 8×6 q-grid. A finer

64 × 64 × 48 q-grid was used to interpolate the phonon energies (frequencies) based on the

chosen 8 × 8 × 6 q-grid to accurately account for the energy and momentum conservation.

The lattice symmetry of the crystals was analyzed, and only the phonon lifetimes of an

irreducible set of phonon modes are calculated directly and the rest are reconstructed using

the group theory.
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5.3 Results

5.3.1 Lattice Dynamics and Related Thermal Properties

Both harmonic and anharmonic force constants were obtained based on the HF forces

that were computed for all the irreducible distorted supercells using a single Brillouin zone

(BZ) centered q-point sampling grid. show the independent inter-atomic force constants in

PV and PPV respectively. Independent force constants shown in figures 5.1 and D.4 for

160-atom periodic supercells were identified by the crystal symmetry and obtained based on

the Hellmann-Feynman forces that were computed for all the irreducible distorted supercells

using a single Brillouin zone (BZ) centered q-point sampling grid. An atomic displacement

of ∆ = 0.06 Å was adopted in our ISAD scheme

Table 5.3: Simulation cell volumes and corresponding pressures for PV-MgSiO3 calculation
T=300 K.

V0 (Å3) 122 127 137 147 157
P (GPa) 119.684 95.264 57.100 29.45 9.211
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Figure 5.1: Density dependence of harmonic force constants in PV-MgSiO3. Independent
force constants shown for 160-atom periodic supercells of PV.
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Figure 5.3: LDA calculated phonon mode frequencies in PV-MgSiO3 at 120 GPa

60



0

2

4

6

8

10

12

14

16

Z X S R Y

  
G

ro
up

 V
el

oc
ity

 (K
m

/s
)

 
0

2

4

6

8

10

12

14

16

 

  
G

ro
up

 V
el

oc
ity

 (K
m

/s
)

 

0

2

4

6

8

10

12

14

16

Z X S R YZ X S R Y

Z X S R Y
 

  
G

ro
up

 V
el

oc
ity

 (K
m

/s
)

 
0

2

4

6

8

10

12

14

16

d)  = 4.141 g/cm3
 

  
G

ro
up

 V
el

oc
ity

 (K
m

/s
)

 

a)  = 5.465 g/cm3 b)  = 4.867 g/cm3

c)  = 4.536 g/cm3

Figure 5.4: LDA calculated phonon mode group velocities in PV-MgSiO3 at four different
densities shown. Group velocities measured along the Z-direction are more sensitive to
pressure. From a density of 5.465 g/cm3 (∼ 120 GPa) to 4.141g/cm3 (∼ 0 GPa)the phonon
group velocity in the Γ−Z direction decreases from around 15 km/s to 11 Km/s. Velocities
measured in the other high symmetry directions X and Y are almost insensitive to pressure.
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Figure 5.5: Density dependence of 3rd order lattice anharmonicity tensor (Aijk) elements
in PV-MgSiO3. Most Aijk elements vary nearly linearly with volume/density. Most of the
elements are very small.
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5.3.2 Phonon Lifetimes

The lifetime of each phonon mode was calculated based on the Fermis golden rule

equation 3.16. All the phonon modes, acoustic or optic, are calculated using the same

numerical approach described in section 5.2. No empirical approximations of the frequency

or q-point dependence are assumed. Figures 5.7 show the volume/density dependence of

phonon lifetimes of all 60 phonon modes in PV-MgSiO3 sampled at three high symmetry

points of the Brillouin Zone: X (π
a
, 0, 0), Y (0, π

b
, 0) and Z (0, 0, π

c
). The volume dependence

of the 60 modes at all the 100 irreducible directions (K-points) of the BZ is reported in

appendix E in figures E.1 to E.17. Our calculation reveals a weak pressure dependence of

phonon lifetimes. We also observe an almost linear volume dependence.

125 130 135 140 145 150 155
0

2

4

6

8

10

12

14

16

18

20 Z  Point: (0,0, c) X  Point: ( a,0,0)

a)   

 

 

(p
s)

b) 

125 130 135 140 145 150 155
0

2

4

6

8

10

12

14

16

18

20

Volume/Unit Cell (Å3)

 

 

Figure 5.7: Volume/density dependence of phonon lifetimes in PV-MgSiO3 all 60 modes at
two high symmetry points: X (π

a
, 0, 0) and Z (0, 0, π

c
) in the Brillouin Zone
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5.3.3 Pressure Dependence of Thermal Conductivity

To predict κLattice from ambient condition to the pressure-temperature conditions of

CMB without extrapolation, we repeated our calculations for 4 density configurations from

(5.465 gcm−3 to 4.141 gcm−3) at 9 temperature conditions(from 300K to 4000K). The

pressures of the studied 36 density-temperature configurations (as listed in Table below are

then derived based on the thermal equations of state (EOS) predicted from the first-principles

quasi-harmonic theory (QHA)117. Our calculated κPV at ambient conditions (300K, 0GPa),

are 5.70 Wm−1K−1and 5.46 Wm−1K−1 respectively for isotopically pure crystals and natural

crystals that contain isotope mass disorder, and are in close agreement with the measurement

of 5.1 Wm−1K−1 by Osako134.
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Figure 5.8: Temperature dependence of κ−1 in PV-MgSiO3. κ is calculated at 4 distinct
densities corresponding to unit cell volumes shown on the figure, at 9 different temperatures
ranging from 300 K to 4000K, for a total of 36 density-temperature configurations. κ is seen
to follow the T−1 dependence typical of lattice thermal conductivity in insulating materials.

At the bottom of the mantle close to the core/mantle boundary, a phase transformation

from the PV to the PPV structure may occur137–139 . To assess whether this transformation
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Figure 5.9: Pressure dependence of κ−1 in PV-MgSiO3 at isothermal conditions. This is
derived based on the P-V-T relations obtained from our LDA calculated thermal EOS.

may influence thermal conductivity in the core/mantle boundary layer, we performed a single

calculation of thermal conductivity of a PPV-structured MgSiO3 at T=3000 K, P =130 GPa,

which yields similar values to the MgSiO3 perovskite structure. Based on our calculations

and the materials shared low symmetries, we expect that the difference in the intrinsic κlatt

of PV and PPV will be negligible.
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Figure 5.10: Main: Temperature dependence of isobaric κ in PV-MgSiO3. Inset: Pressure
variation of normalized lattice thermal conductivity. Using the coefficients from κ = a0 +
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5.4 Discussion

5.4.1 Comparison of the Behavior of κMgO and κMgSiO3

Both κMgO and κMgSiO3 follow a T−1 dependence at the isochoric condition as expected

for insulator thermal conductivity, but the pressure increase of κMgSiO3 is substantially

weaker than that of κMgO . For example, dln(κ)
dP

at 300 K is 0.25 %GPa−1 for PV, while

the same value is ∼ 4 % GPa−1 for MgO. This weak pressure-dependence has a strong

effect at core/mantle conditions (3000 K, 135 GPa) where κMgSiO3 is calculated to be ∼

1.64 W/m/K, an order of magnitude smaller than most previous estimates for MgSiO3
140,

and smaller than the calculated value for lattice thermal conductivity of MgO at similar

conditions, ∼ 40 W/m/K101. The very different lattice thermal conductivities calculated

for MgO and MgSiO3 and their different pressure-dependencies can be understood based

on their contrasting phonon behavior interpreted in the context of the kinetic transport

theory. According to the Peierls-Boltzmann equation, the bulk lattice thermal conductivity

is proportional to the phonon heat capacity, group velocity and lifetime. Of these, the

heat capacity plays a lesser role, especially at high temperatures where the heat capacity

of each phonon approaches the Dulong-Petit limit 3kB, making little contribution to the

differences between thermal conductivity of the two systems. The phonon dispersion curves

for the two crystals are also plotted in Figure 5.2. Note that 3 out every 6 phonon modes

(50%) are acoustic modes in MgO, while only 3 out of 60 modes (5%) are acoustic modes

in PV-MgSiO3. Acoustic phonon modes, especially those of q-points near the BZ center,

behave like classical elastic waves and they usually have large phonon group velocities. In

contrast, optic phonon modes can not be approximated with the classical elastic waves

and they usually show a much flatter dispersion. In both crystals, low-frequency acoustic

phonons (e.g. less than 200 cm−1) are effective heat carriers, while high-frequency optic

phonons (e.g. above 700 cm−1) are poor heat carriers. The drastic difference in κlatt of the
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two crystals is due to the distinct behaviors of mid-frequency (200 to 700 cm−1) phonons,

which are slow optic phonons in PV-MgSiO3, but much faster acoustic phonons in MgO. The

flatter dispersions in PV-MgSiO3 also likely increase the phonon scattering rates even when

the lattice anharmonicity coupling strength remains the same, since more phonon-triplets

can simultaneously satisfy the energy and momentum conservation conditions of phonon

scattering. As a result, the PV-MgSiO3 modes have lifetimes nearly one order of magnitude

shorter than those in MgO. It is worthy to note that in PV-MgSiO3, phonon Grüneisen ratios,

a parameter that is commonly adopted to quantify lattice anharmonicity, are less than 30%

lower than those in MgO; Yet the comparison of the phonon lifetimes shows that the lifetimes

of most phonon modes of PV-MgSiO3 are at least one order magnitude shorter than those

of MgO. This result indicates that any empirical models that correlate the Grüneisen ratios

and phonon lifetimes are only qualitative at best. Realistic evaluation of phonon lifetimes of

individual modes requires an accurate assessment of the number of the conservation-allowed

phonon triplets, the anharmonic coupling strengths, and the frequencies of the phonons.

5.5 Conclusions

In summary, we have calculated the harmonic and anharmonic lattice dynamics of

PV-MgSiO3 based on 20-atom unit cells. The density dependence of inter-atomic force

constants, phonon group velocities and phonon lifetimes has been studied. Our study

reveals a week pressure dependence of mode group velocities, and the phonon lifetimes of

optical modes. Our calculations further demonstrate that the pressure dependence of κlatt is

clearly material-dependent, and simple elastic theories are likely insufficient. Many phonon

group velocities increase with increasing pressure in both crystals, contributing positively

to the pressure dependence of the lattice thermal conductivity. However, acoustic and

optic phonons have different pressure dependencies. While the group velocities of acoustic

phonon scale approximately as the square root of bulk modulus, there is no simple relation
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between elastic properties and the group velocities of optic phonons. Group velocities of some

mid-frequency optic modes in PV-MgSiO3 are found to decrease with increase of pressure,

leading to a much complicated pressure dependence of the averaged phonon group velocity.

Unlike the high-frequency optic phonons, the mid-frequency optic phonons in PV-MgSiO3

still have noticeable contribution to the bulk lattice thermal conductivity, and they are

largely responsible for the distinct difference in the pressure dependencies of lattice thermal

conductivity in the two crystals.
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Chapter 6

LATTICE THERMAL CONDUCTIVITY OF FERROPERICLASE

6.1 Introduction

Ferropericlase (fp)-Mg(1−x)FexO is thought to be the second most abundant lower mantle

(LM) mineral with nearly 20% of the volume fraction141,142. Its thermal conductivity is

important to our understanding of the heat flow across the core-mantle boundary (CMB).

Yet, it remains poorly constrained due to the challenges in carrying out measurements at

LM conditions. We report here, a direct calculation of the lattice thermal conductivity of

fp-Mg(1−x)FexO at lower mantle conditions without any empirical extrapolation. Using our

calculated lattice thermal conductivity of Fe-free MgO crystal101 as the starting point, we

have evaluated the iron effects on lattice thermal conductivity of fp by calculating the phonon

scattering rates due to lattice anharmonicity and Mg/Fe mass disorder within the vibrational

virtual crystal approximation (vVCA). We find that phonon scattering due to Fe/Mg mass

disorder is significant. Our study based on an iron content of 12.5% shows a significant

lowering of lattice thermal conductivity of fp even at the high temperature conditions of the

LM. At 3000K and 135GPa we predict the κ of fp to be 11Wm−1K−1 which is nearly 20%

of the κMgO.

6.2 Static Equation of State

The pressurevolume relation was derived using static equation of state (EOS) calculated

using the LDA+U technique. Using a unit cell 8 times the size of the 2-atom f.c.c.

MgO unit cell, one of the eight Mg atoms was substituted with Fe. The Brillouin zone
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integration for electronic energy was calculated using the tetrahedron method over a 8×8×8

Monkhorst-Pack grid. The calculated energy v.s. volume data shown in figure 6.1 were fitted

with a 3rd order BirchMurnaghan EOS. Our calculated EOS parameters are summarised in

table 6.1

Our calculated static equation of state agrees well with experiment.

Table 6.1: Static Equation of state of fp-Mg(1−x)FexO

V0 (Å3 per atom) B0(GPa) B’0
XFe=0.00 (This work: LDA) 9.05 172.7 4.2

XFe=0.125 (This work: LDA+U) 8.85 187.5 4.12
XFe=0.17(Experiment)143 8.92 186 4.6

XFe=0.25(Theory GGA+U)144 9.37 170 4.1
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Figure 6.1: Static EOS of ferropericlase fitted to 3rd order BM EOS
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6.3 Vibrational Virtual Crystal Approximation of Lattice Dynamics of

Ferropericlase

The harmonic and anharmonic lattice dynamics were calculated using our recently

developed finite displacement supercell technique112 based on a 128-atom supercell. Atomic

forces are derived using the first-principles LDA+U method. The equivalent B1-structured

force constants matrices were reconstructed using the vVCA approach described in section

2.6. The cation mass was replaced by the average mass of Fe and Mg in the phonon

calculations. We assume that 3rd order lattice anharmonicity tensors are not sensitive to

the Fe-content in the dilute limit. Figure 6.2 shows the phonon mode frequencies and

group velocities of Fe-free MgO compared to ferropericlase (fp) with 12.5% Fe content

calculated based on 128-atom supercell. The black line/symbols shows the result obtained

by replacing the mass of Mg in the MgO calculation by the weighted mass Mg0.875Fe0.125.

The blue lines/symbols show the result obtained from the vVCA approach. The overall

trend consistently shows softening of phonon mode frequencies and group velocities with

increasing Fe content. Based on the similar harmonic lattice dynamics, we assume that

the lattice anharmonicity are similar, so we use the Fe-free MgO lattice anharmonicity to

evaluate anharmonicity induced scattering rates for fp
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Figure 6.2: Phonon dispersion relations and mode group velocities in Mg0.875Fe0.125O The
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6.4 Phonon Lifetimes
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Figure 6.4: Volume/density dependence of phonon lifetimes of acoustic and optical phonon
modes in fp as predicted by vVCA compared to corresponding modes in MgO. Panels under
a) show the density dependence of the lifetimes for acoustic modes and b) shows the lifetimes
of optical modes. The longest optical lifetime is nearly a factor of 10 lower than the longest
acoustic mode, confirming the notion that acoustic modes are more effective heat transporters
than the optical modes.

The phonon lifetimes are evaluated based on an 16×16×16 k-point grid for a total

of 4096 k-points, 145 of which are irreducible. The phonon-phonon scattering rates are

directly evaluated from for all the irreducible k-points in the Brillouin zone and life times

in the whole Brillouin Zone (BZ) are obtained using the symmetry relations between the

irreducible k-points and the dependent ones. Figure 6.4 shows the density dependence of all

the acoustic and optical phonon modes at the 145 irreducible k-points in the Brillouin zone
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for MgO and fp respectively. Quantitatively, we our study reveals that the lower frequency

(acoustic) modes account for nearly 95% of the total conductivity in MgO and fp. It is

observed that the phonon lifetimes of the accoustic modes in fp are almost factor of two

lower than those in MgO. In both cases, the modes having longer lifetimes show increasing

liftimes with increasing density (decreasing volume). The short lived modes are almost

insensitive to pressure. Most of the modes have lifetimes that vary almost linearly with

volume/density.

6.5 Lattice Thermal Conductivity of fp-Mg(1−x)FexO

Figure 6.5 shows that the lattice thermal conductivities associated with anharmonicity

scattering are comparable in MgO and fp (see the orange and blue dashed lines). Including

scattering due to mass disorder results in a reduction in thermal conductivity by a factor of

4-10
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Figure 6.5: Thermal conductivity associated with anharmonicity

75



Figure 6.7 presents the thermal conductivity of fp for xFe = 0.125 in the LS. κ was

directly calculated at 5 density points and from 300K to 3000K without any empirical

extrapolation. κ(T, P ) is then derived using our first-principles calculated thermal EOS

V(T,P).
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Figure 6.6: Temperature dependence of κ−1 in MgO. κ was calculated at 5 distinct densities
corresponding to unit cell volumes shown on the figure, at 12 different temperatures ranging
from 300 K to 3000K. Our calculated κ follows a T−1 dependence.
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6.6 Conclusions

Substituting Mg with Fe lowers lattice thermal conductivity through two mechanisms:

(1) adding additional disorder that scatters phonons and therefore further reduces phonon

lifetimes, and (2) lowering phonon group velocities because of weaker chemical bonds and

larger Fe mass. As a first step to quantitatively estimate the factor of reduction due to Fe

substitution, we neglect the changes due to chemical difference of Mg and Fe, and focus only

on the effects of mass difference, i.e. approximating the iron-bearing mineral solid solution

systems with the same force constants and lattice anharmonicity, but with additional Mg/Fe

mass disorder and heavier average mass (Mg1−xFex). Our approximation provides the upper

limits of κlatt in the solid solution systems, and it is valid for the Mg-rich system. We

also carried out a test based on more computationally intensive vibrational virtual crystal

approximation (vVCA) method for Fe-bearing Mg1−xFexO model containing 12.5% low-spin

ferrous Fe2+. We confirmed that the mass effects are significantly larger than those due to

the change of force constants at the high temperatures.
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Chapter 7

Implications for Heat Flow Across the Core-Mantle Boundary (CMB)

Parts of this Chapter 7 have been submitted for publication in Nature Geoscience by

Tang, Ntam, Dong, Rainey, and Kavner.

7.1 Introduction

The core/mantle boundary (CMB) is the major thermal boundary layer in the Earth’s

deep interior, and the heat flux cross the CMB (JCMB ) governs the thermochemical

trajectory of the Earth. Yet, estimates of JCMB are widely scattered, ranging from 5 to 15

terawatts5. The lower-bound-estimates suggest that additional sources of heat in the mantle

such as enhanced internal heating or an additional thermal boundary layer are required to

accommodate the observed budget of 47 ± 3 terawatts from the surface of the Earth1,5.

The upper-bound-estimates suggest a recent evolution of the inner core/outer core system

and high internal temperatures for early Earth conditions12. To constrain these interlocked

deep-Earth evolution models, we provide a comprehensive evaluation of lower mantle (LM)

thermal conductivity κLM , anchored on our first-principles calculations of the pressure- and

temperature-dependent lattice contribution to the heat transport in the most abundant

lower mantle mineral (Mg,Fe)SiO3 perovskite, which demonstrate a heretofore unrecognized

shallow pressure dependence. Including a re-evaluation of conflicting data sets constraining

the radiative contribution to overall κ, we show that values for κLM are much lower than

previously thought, and approximately constant throughout the lower mantle, with little

sensitivity to lateral variations in temperature.
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The thermal conductivity κ, a material property relating the heat flux J to the

temperature gradient ∇T, via Fouriers law, J =κ∇T, is notoriously difficult to measure,

especially at the extreme conditions relevant to Earth and planetary interiors. Discrepancies

exist among measured and calculated κ values for the important deep Earth materials

magnesium silicate perovskite (PV-MgSiO3 Osako et al134, Manthilake et al107 and periclase

(MgO)48,58,101,106, due to large uncertainties arising from differing models used to extrapolate

those values to high pressures and high temperatures19,112,145,146, and confusion regarding the

relative importance of contributions to overall thermal conductivity from lattice phonons

(κlatt) versus photon (κrad)
147,148. The goal of this multidisciplinary study is to address all of

these issues resulting in a robust determination of lower mantle thermal conductivity (κLM)

and its dependence on pressure (P), temperature (T), and composition. A major challenge

to constrain κLM is the lack of reliable physical models for κlatt of complex minerals at

extreme P-T conditions. Based on the density functional theory (DFT) and the kinetic

Peierls-Boltzmann transport theory, we implemented a first-principles method to directly

predict κlatt of pure crystals without any empirical P-T extrapolations details reported in

chapter 5. This method has been recently used to calculate κlatt for MgO101 giving good

agreement with independent experiments48 and theory58. However, it is significantly more

challenging to accurately compute all the phonon-phonon scattering rates in the 20-atom

orthorhombic unit-cell of PV-MgSiO3 crystals than in the 2-atom cubic unit-cell of MgO

crystals. In this study, we further improved the numerical efficiency of our algorithm and

used more than 2 million CPU hours at massive parallelized computer clusters to calculate

κlatt of PV-MgSiO3 at 36 P-T conditions, ranging from that of ambient to that at the CMB.

Our calculated value for iron-free PV-MgSiO3 at ambient conditions (gray lines in Figure

7.2) is in good agreement with one set of measurements under corresponding conditions134,

but noticeably lower than a recent set107. Two important outcomes of our calculations

are the significant reduction of κlatt of PV-MgSiO3 in comparison with MgO, and the
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much lower pressure-dependence of the thermal conductivity of PV-MgSiO3 than that of

MgO. These unexpected results arise from the detailed differences in the phonon behavior

between the high-symmetry, 2-atom unit cell MgO and the lower symmetry, 20-atom unit

cell PV-MgSiO3, and are at the root of our estimate of low thermal conductivity and weak

pressure dependence. Our theoretical method provides a series of testable hypotheses about

how crystalline symmetry, structure, and pressure affect thermal conductivity of mineral

insulators

7.2 Results

The calculated phonon spectra of the iron-bearing solid solutions are shown in Figure

7.1. The scattering rates due to Mg/Fe mass disorder are evaluated using the Fermis

golden rule equation 3.16 based on Fe-bearing phonon spectra. In the dilute limit, the

total phonon scattering rates in the Fe-bearing solid solution systems are approximated as

sum of scattering rates due to both lattice anharmonicity and the Mg/Fe mass disorder.

Considering the predominant effect of Mg/Fe mass disorder in the current calculation, we

assume that lattice anharmonicity induced phonon scattering rates in the mineral solid

solutions are the same as those in the iron-free crystal. Iron (Fe) content affects the κlatt

of lower mantle minerals. However, it is difficult to untangle its contribution from that of

lattice anharmonicity in experimental measurements. In this study, we analyzed the Mg/Fe

mass disorder induced phonon scattering of substituting 12.5% of the Mg for Fe in both the

perovskite and oxide. Including iron further lowers κlatt , although the reduction at high

pressures and temperatures is not as significant as it is closer to ambient conditions (Fig1).

While the expected T−1 dependence of κlatt for iron-free PV-MgSiO3 at constant density is

observed, the calculation for PV-MgSiO3 down a typical lower mantle geotherm shows κlatt

is slightly below ∼1 Wm−1K−1 and approximately constant as a function of depth (Fig2),

in contrast to the much higher-valued κlatt and steeper depth dependence for (Mg,Fe)O101.
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Figure 7.1: Vibrational phonon frequencies of (Mg1−xFex)O (a) and
(Mg1−xFex)SiO3-perovskite (b) with iron concentration x= 12.5% at deep mantle pressure
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Earth’s mantle is optically thick, and localized radiative heat transport may contribute to

the overall diffusive heat transport. For this case, the photon radiative contribution to κ

can be estimated using the Rosseland mean approximation149,150. We provide two estimates

based on a consistent analysis of the two sets of measured absorption spectra for Fe-bearing

perovskite at high pressures147,148. Choosing between these two estimates is beyond the scope

of this work, but we were comforted to note that the two spectra showed a similar spectral

structure and pressure dependence. The resulting estimates of radiative contribution to heat

flow differ by a factor of 2 to 3; however we note that this is a significant improvement of

the order-of-magnitude difference claimed in the original studies. This partial reconciliation

of two disparate data sets arises from treating the optical absorption data consistently in

the Rosseland calculation of κrad. Generally the calculated κrad is affected by scattering

(e.g. grain boundary scattering) as well as absorption. Here we neglect a possible scattering

component due to the short absorption length scales (∼ 100 m) compared with the expected

grain sizes of the lower mantle (∼ 1 mm). The presence of additional scattering will only

serve to lower the overall radiative thermal conductivity; thus we consider our estimates

for κrad to be upper bounds. The two dashed red lines in Figures 7.3 and correspond to

calculations incorporating the two estimates for κrad at constant pressure as a function of

temperature (Fig.2), and down a lower mantle geotherm (Figure 7.4). Our two calculations

for the κrad of perovskite are similar in magnitude to the computed κlatt, but with a strong

positive temperature dependence (Figure 7.3) such that at low temperatures the lattice

values dominate and at high temperatures the radiative values dominate. Total thermal

conductivity is the sum of the lattice phonon and radiative contributions. Our resulting two

estimates of total κ are approximately constant with temperature (Figure 7.3) and depth in

the lower mantle (Figure 7.4). This temperature- and pressure- stability of the perovskite

thermal conductivity is a robust result of our analysis. Modest temperature perturbations

about the geotherm will increase the radiative contribution to κ while attenuating the lattice
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contribution. Changes in iron content or other impurities will likely have the same effect

on both radiative and lattice contributions; for example an increase in iron content will

decrease the value of both components. Finally, we determine the total κLM based on the

Maxwell-Garnett model, which is an effective medium approximation for examining the total

conductivity of a composite where a minor phase exists as random inclusions within a matrix

phase151,152. As a first-order representation of the lower mantle, we consider a composite

material consisting of a matrix of iron-bearing perovskite with ∼ 20% iron-bearing oxide

existing as isolated inclusions. Because the length scales for both phonon scattering (∼ nm)

and typical optical depth for photon scattering (∼ 10-100 m) are both likely to be less than

the average grain size of individual perovskite and oxide grains (∼ 1 mm), we perform the

calculation by first summing the lattice and radiative contributions to κ for each phase, and

then combining the two phases in the Maxwell Garnett composite model Figure 3 shows

Figure 7.2: Calculated lattice thermal conductivity for MgSiO3 perovskite as a function of
pressure and temperature. Calculations are shown for Fe-free crystal (translucent symbols
and lines) and mineral solid solution including 12.5% Fe (bold color symbols and lines). Also
plotted are experimental data from Osaka & Ito, 1991 on MgSiO3 and from Manthilake et
al., 2011 on (Mg,Fe)SiO3 at temperatures from 473 to 1073 K.
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Figure 7.3: Isobaric thermal conductivity as a function of temperature. Computed lattice
conductivity (solid purple line) and calculated contribution from radiative heat flow (red
dashed and dotted lines, from optical absorption values provided by Goncharov et al., 2008
and Keppler et al., 2008 respectively, as a function of temperature at constant mid-mantle
pressure of 80 GPa. The total thermal conductivity of perovskite is given by the sum of
κrad+κlatt (purple dotted and dashed lines, corresponding to the two estimates for radiative
contributions to the thermal conductivity)
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Figure 7.4: Thermal conductivity calculated down a sample lower mantle geotherm (Jeanloz
) and thermal boundary layer. Lattice thermal conductivity calculated from first principles
estimates for MgO (solid blue line, Tang & Dong, 2010), and MgSiO3 perovskite (solid
purple line, this study). Thin red lines show calculated radiative contribution to thermal
conductivity from two optical absorption estimates (dashed line: Goncharov et al., 2008;
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Figure 7.5: A plot summarizing the observational tradeoffs used to determine the total heat
flow across the core-mantle boundary (contoured, labels in terawatts). Commonly assumed
values from Lay et al., 2008 for the thermal boundary thickness, the temperature at the
bottom of the mantle, and the temperature at the top of the core are shown on the right
axis. Vertical solid green lines delineate our newly-determined range of estimates for lower
mantle thermal conductivity.
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two estimates for total κLM down a calculated mantle temperature profile153, including the

effect of a ∼ 200 km-thick thermal boundary layer between the convecting lower mantle

and the outer core. Our calculations suggest that thermal conductivity will increase across

the steep temperature gradient of the thermal boundary layer, mostly due to increased

radiative transfer. The thermal conductivity is lower if lower temperatures are assumed

at the base of the convecting mantle, but the thermal boundary temperature dependence

likely becomes steeper due to an increased gradient across the core/mantle boundary. When

the uncertainties in the temperatures at the bottom of the convecting lower mantle and

the top of the outer core5 are mapped onto an uncertainty in the thermal conductivity, we

obtain values of values of 3.5 to 5.5 at the bottom of the convecting lower mantle. The

thermal conductivity values rise across the thermal boundary layer if there is an increase

in the radiative contribution to total heat flow in the lowermost boundary layer, which

would occur in the absence of major phase and/or chemistry changes within the thermal

boundary. These values represent a significant adjustment of the κLM downward from the

typically used value of 10 Wm−1K−1. Models of thermal evolution of the mantle and the

core are coupled via the κLM . Figure 4 illustrates how tradeoffs in the assumed values for

thickness of the lower mantle thermal boundary, temperature at the top of the outer core,

and temperature at the foot of the convecting mantle influence estimates of the total heat

crossing the core mantle boundary. The contours in Figure 4 show the calculated total heat

flow across the CMB given estimates of the thermal boundary layer conductivity (X-axis) and

the temperature gradient across the boundary layer (left Y-axis). The temperature gradient

across the boundary layer depends on estimates of the temperature in the outer core, the

temperature of the bottom of the convecting mantle, and the thickness of the boundary layer;

all of these parameters have some uncertainty. Often-used values (temperature of 2800 K

at the bottom of the convecting mantle, 3800 K at the top of the core5, and a thermal

boundary layer thickness that varies from 100 km to 200 km154 are shown as a dashed
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horizontal line. Using these values, the total heat flow across the core mantle boundary

inferred from our new thermal conductivity estimates is calculated to be in the range of

3.5 to 5 TW, much lower than previous estimates of ∼ 10 TW. Our new estimates of heat

flux across the core/mantle boundary relax some of the constraints on timing of inner core

growth12, but pose difficulties (but not insurmountable ones) in accounting for the global

heat balance of the mantle5,155. Our new thermal conductivity values permit a heat flux

larger than 5 TW across the core/mantle boundary, but require a steeper temperature

gradient to do this. For example, a 10 TW heat flux across the core/mantle boundary

can be most easily accomplished by assuming a much thinner thermal boundary layer, equal

to 75 to 100 km. This is permissible within observational constraints, and is consistent with

seismic observations of the boundary layer width above the core/mantle boundary156). If

the seismological constraints are taken as indicative of the thermal boundary layer thickness,

then one must consider a laterally varying thickness of the thermal boundary layer. Our

results suggest that variations of the thermal conductivity as a result of lateral variations in

temperature or pressure will not be significant. However, local changes in modal abundance

of minerals, chemistry such as iron content, presence of melt, and/or mechanical texturing

may all serve to significantly perturb the value of the thermal conductivity. Therefore, our

results suggest that any nonlinear influence that thermal conductivity has in geodynamical

models11 arises not from pressure- or temperature- dependence, but is solely a function of

compositional heterogeneity at the base of the lowermost mantle.

7.3 Discussion

The thermal evolution of the whole Earth is poorly constrained, as laid out in a review

by Lay et al5. As pointed out in that review, one of the keys to resolving that uncertainty is a

better constraint of the material property of thermal conductivity relevant to the Earths lower

mantle. For ∼ 20 years, a value of ∼ 10 W/m/K has been used, and this value was based on

91



a 1991 measurement at ambient conditions, with a long extrapolations in both pressure and

temperature. The uncertainties in that extrapolated value are large (over a factor of two)

and therefore our understanding of Earths thermal-mechanical-chemical evolution of both

the mantle and the core systems are uncertain. The previously used pressure extrapolations

of perovskite were based on models of the pressure-dependent behavior of phonons in simple

high-symmetry iron-free crystals. These new show that previous pressure-dependent models

are insufficient in complex materials systems, where contribution from optic phonons are

non-negligible. Combining the evaluation of Mg/Fe mass disorder effects and our prediction

of lattice thermal conductivity of (Mg,Fe)SiO3 results in a lower estimate for thermal

conductivity throughout the Earths deep mantle. Besides the first-principles calculations

themselves, we provide a synthesis of the bottom line contribution for two issues that

contribute to understanding heat flow in the deep Earth: a radiative contribution and the

composite effect, drawing on an extensive multidisciplinary literature that quantitatively

describes these effects. Particularly, the radiative contribution to the overall heat transport

has caused a great deal of uncertainty in the literature, with two papers published in Nature

and Science in 2008 making opposite claims based on similar measurements. As part of this

study, we return to the optical absorption data sets as originally published, and treat them

both in a self-consistent and physically correct manner. The result is a partial reconciliation

of the two estimates, with predictions for radiative conductivity in the lower mantle that

differ by a factor of 2-3, rather than the order-of-magnitude disagreement originally cited in

the literature.

7.4 Conclusions

The end result is a new estimate of the lower mantle thermal conductivity throughout

the lower mantle. The number is still uncertain, mostly due to lingering uncertainties in

the radiative component of thermal conductivity and the composite effect of combining
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oxide which has much higher thermal conductivity with perovskite, which has much lower.

Even with this uncertainty, two results of our study are extremely robust. First, our study

requires that much lower values of thermal conductivity, ∼ 3.55.5 W/m/K rather than

previous estimate of 5-15 W/m/K be adopted in our Earths thermal evolution models. This

new range of values has the advantage of relaxing some of the constraints on timing of

the inner core growth, and allowing for a more reasonable initial temperature profile at

the origin of whole Earth evolution. The second robust result is our finding that thermal

conductivity is likely single-valued as a function of depth throughout the lower mantle and

insensitive to local variations in temperature. This arises because the lattice component and

radiative component of thermal conductivities have approximately similar magnitudes, but

with opposite temperature and weak pressure dependencies. This means that geodynamical

models can rest soundly on the assumption of a constant value of thermal conductivity

throughout the convecting lower mantle. This simplifies calculations significantly, and lessens

the likelihood of nonlinearities due to temperature-dependent thermal conductivity.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In summary, I have presented here the results of our recent first-principles calculations

of lattice thermal conductivities of Earth forming minerals using our recently developed

computational techniques based on first-principles DFT. Under methodology development,

we have optimized our recently developed reals space supercell finite displacement algorithm

to extract the harmonic and anharmonic inter-atomic potentials for complex material

systems up to 20-atoms per unit cell and also implemented the vibrational virtual crystal

approximation for the study of mineral solid-solutions.

Using the extracted third order lattice anharmonicity I have evaluated the phonon

scattering rates of individual phonon modes based on quantum mechanical scattering theory

at high temperature and pressure conditions relevant to the Earth’s lower mantle, without

any empirical fitting. Our calculation of phonon-phonon scattering rates was within the

framework of the single mode excitation approximation (SMEA). To better understand the

pressure dependence of thermal conductivity, I have studied the volume/density dependence

of the group velocities and phonon lifetimes of individual phonon modes. My study reveals

that phonon scattering rates for optical modes are almost insensitive to pressure. The

pressure dependence of the lattice thermal conductivity appears to be largely determined by

the pressure behavior of the scattering rates of acoustic phonon modes. Acoustic phonon

modes are found to be the effective carriers of heat in MgO, (Mg,Fe)O (3 acoustic + 3 optic)

and α−Al2O3 (3-acoustic +27 optic) , while the optical modes account for most of the heat

transport in PV-MgSiO3 (3 acoustic + 57 optic). Table 8.1 summarizes the contribution to

the overall lattice thermal conductivity at ambient conditions:
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Table 8.1: Contributions to overall κlatt from acoustic and optical phonon modes in MgO,
α−Al2O3 and PV-MgSiO3

System κacc (Wm−1K−1) κopt(Wm−1K−1) κlatt (Wm−1K−1)
MgO 46.30 8.45 54.75

α−Al2O3 16.59 9.70 26.29
PV-MgSiO3 1.63 3.08 4.71

We have successfully predicted the lattice thermal conductivity of PV-MgSiO3 at lower

mantle conditions. While discrepancies remain between our predicted values at ambient

conditions and measurements from experiment, we do observe unusual behavior in existing

experimental data. We are currently repeating our calculation to systematically test for:

different Brillouin zone K-point sampling grids, third order lattice anharmonicity cut-offs

and the GGA formalism.

Using our recent implementation of the vibrational virtual crystal approximation we

have studied the effect of Fe on the thermodynamic and thermal transport properties of

ferropericlase (Mg,Fe)O based on and Fe content of 12.5%. Fe is observed to lower the

thermal conductivity of ferropericlase. We have also estimated the effect of Fe on the thermal

conductivity of (Mg,Fe)SiO3 in the dilute limit, assuming same harmonic and anharmonic

lattice dynamics as Fe-free PV-MgSiO3, and discussed the implications for heat flow in the

Earth’s lower mantle.

Lifetimes of phonon modes in MgO are observed to follow the τ ∝ ω−2 behavior

consistent with Klemens’ formular157–159(equation 8.1) while MgSiO3 phonon lifetimes do

not follow this rule.

1

τ⇀
q ,i

= γ2
⇀
q ,i

2KBT

Mv2⇀
q ,i

ω2
⇀
q ,i

ωmax
i

(8.1)

Here τ is the phonon lifetime, γ, Vg and ω are the mode Grüneisen parameter, mode group

velocity and phonon frequency of a phonon mode (
⇀
q , i); ωmax

i is the largest frequency in the

ith branch. According to Klemens’ rule, low-frequency phonons will have longer lifetimes

and thus contribute more to the thermal conductivity.
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Future Work

The behavior of phonon mode lifetimes in PV-MgSiO3 deserves further investigation. All

DFT calculations reported here were performed within the LDA framework; It is necessary

to repeat these calculations within the generalized gradient approximation (GGA), and test

the convergence of calculated lattice thermal conductivity on the q-point sampling grid for

the Brillouin Zone. The thermal conductivity calculations reported in this dissertation were

performed within the Peierls-Boltzmann transport theory (PBTT ) also known as the phonon

gas model. Using a 2-D lattice model, Sun and Allen160 claim that the phonon gas model

breaks down at high temperatures. How this applies to real complex mineral systems is

not yet well known. In future, it would be desirable to investigate the high temperature

behavior of PV-MgSiO3 using the Green-Kubo formalism. Immediate extensions of the

the work presented in this dissertation would be a self consistent solution of the Boltzmann

transport equation, and a careful investigation the effect of different Fe concentrations on the

thermodynamic and thermal transport properties of (Mg,Fe)O and (Mg,Fe)SiO3 by directly

calculating the harmonic and anharmonic lattice dynamics, taking into account the effect of

spin polarization in Fe.
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16. J. Lin, G. Vankó, S. Jacobsen, V. Iota, V. Struzhkin, V. Prakapenka, A. Kuznetsov,

and C. Yoo, Science 317, 1740 (2007).

17. A. M. Hofmeister, Physics of the Earth and Planetary Interiors 170, 201 (2008).

18. A. Hofmeister, Physics and chemistry of minerals 33, 45 (2006).

19. A. Hofmeister, Proceedings of the National Academy of Sciences 104, 9192 (2007).

20. M. Pertermann and A. Hofmeister, American Mineralogist 91, 1747 (2006).

21. A. M. Hofmeister, Physics of the Earth and Planetary Interiors 180, 138 (2010).

22. V. Solomatov and C. Reese, J. Geophys. Res 113, B07408 (2008).

23. L. lorenz, Ann. Phys. 13, 422 (1881).

24. A. van den Berg, D. Yuen, G. Beebe, and M. Christiansen, Physics of the Earth and

Planetary Interiors 178, 136 (2010).

25. Y. Touloukian, R. Powell, C. Ho, and P. Klemens (1970).

26. M. Graf, S. Yip, J. Sauls, and D. Rainer, Physical Review B 53, 15147 (1996).

27. F. Blatt, Physics of electronic conduction in solids, vol. 191 (McGraw-Hill New York,

1968).

28. K. Ohta, K. Hirose, M. Ichiki, K. Shimizu, N. Sata, and Y. Ohishi, Earth and Planetary

Science Letters 289, 497 (2010).

98



29. A. Oganov, J. Brodholt, and G. Price, Earth and Planetary Science Letters 184, 555

(2001).

30. K. Watari and S. Shinde, MRS Bulletin 26, 440 (2001).
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113. W. Frank, C. Elsässer, and M. Fähnle, Phys. Rev. Lett. 74, 1791 (1995).

114. G. Kresse, J. Furthmüller, and J. Hafner, Europhys. Lett 32, 729 (1995).
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Appendix A

Finite Difference Method For Harmonic Force Constants

A.1 Symmetry Analysis

In crystal solid models, many of the atomic displacements are identical. As a result,

computational time can be greatly reduced by carrying out first principle calculations only

for the truly independent atomic displacements (irreducible moves). After making a choice

of the sizes of the unit and super cell models, a group symmetry analysis is then performed to

determine the atomic displacements that are truly independent. This information is stored in

a file called IrreducibleMoveList. The symmetry analysis also determines the dependency

relations between the dependent partial forces and the independent ones and also reveals

which terms are zero. The symmetry analysis information is stored in the following files:

Phielement depNZ.dat, Phielement indNZ.dat and Phielement zeroes.dat, which contain

the dependency information, indices of independent elements , and the zero terms in the force

constants matrix, respectively(NZ stands for ”non-zero”). The MgO calculation reported in

this thesis, was based on 2-atom face centered cubic (f.c.c.) unit cell and 128-atom cubic

super cell models. After the group symmetry analysis, we find that out of the 128 atoms in

the super cell only 2 are truly independent, the rest are mirror images of these two under

group symmetry operations. According to our finite displacement algorithm, we need to

displace each of the independent atoms by a small but finite amount(∆) in two directions

(+∆,−∆). This results in a total of four-independent moves i.e. we need to perform four

total energy calculations to obtain one full dynamic matrix as opposed to 256 calculations

if we had to displace all the 128 atoms in the supercell. Consequently, our computational
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time is reduced by a factor of 64 due to crystal symmetry alone. The symmetry analysis also

reveals that force constants matrix of MgO has 52 non-zero independent elements, 48524

non-zero elements that are linearly dependent on the independent elements and a total of

25344 elements which are zeroes. We do not need to spend any computational time on the

zero terms. Before performing a symmetry analysis to determine which atoms we need to

displace, it is necessary to relax the ionic positions in the supercell to their ground state

values. In the MgO calculation the relaxation was performed using VASP code with the

following parameters:

• NSW = 999

• ISIF = 2

• IBRION = 2

• EDIFF = 1E-9

• LREAL=.TRUE.

• ISMEAR = 0

For a 128-atom cubic MgO supercell, it takes about one hour to complete the relaxation

step. After relaxation, the One advantage of this step is that the 4 computations can be

done concurrently if there are enough compute nodes, in which case it takes about one hour

to complete the relaxation of the displaced calculate the partial forces on all the atoms due

to the 4 displacements.

A.2 Calculation of Harmonic Force Constants

The next step is to calculate the partial forces resulting from the displacement of the

unique atoms in the super cell according to the information in the IrreducibleMoveList
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file. We use a code called displacePair.x to displace the desired atoms in the super cell. For

total energy calculations, we use the VASP code130,161. The VASP code requires the following

inputs for a total energy calculation: POTCAR (wave functions, basis set) INCAR (Energy

minimization parameters), POSCAR (displaced super cell) and KPOINTS (for Brillouin

Zone sampling). One distinct advantage of this step is that it is highly parallelised, making

it possible to perform all four total energy calculations concurrently if there are enough

free compute nodes. For more complex systems with a large number of unique atomic

displacements, sometimes we do not have enough compute nodes to run all computations

concurrently. In such situations we submit several computations (jobs) per node and let

them run one after the other. we use the portable batch system (PBS) queue software to

manage job submission deletion from the computing cluster. The H-F forces are determined

from the calculated total energies according to the Hellmann-Feynman theorem (equation

2.40) and used to evaluate the harmonic force constants. The algorithm for calculating the

partial forces and force constants matrix elements when a single atom is displaced by a small,

yet finite displacement (∆) is described here162
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Appendix B

Interpolation of Irreducible Inter-atomic Potentials (IIIP)

B.1 Introduction

We propose a new algorithm to interpolate the calculated irreducible inter-atomic

force constants over the volumes of the simulation unit cells. This technique has several

potential advantages. First, the interpolation of the irreducible harmonic force constants

over the densities/volumes can serve as a useful guide in choosing the optimal value of

atomic displacement (delta) in our real space super cell finite displacement algorithm. A

too small value will lead to higher numerical error while very large delta would lead to more

anharmonicity. Secondly the interpolation could potentially reveal the level of numerical

uncertainties associated with our first-principles calculation thereby helping us control the

quality of our data. We describe the IIIP technique next: The first step is to perform

a first-principles total energy calculation to obtain the forces on different atoms based on

different values of atomic displacement (∆). Next, the set of inter-atomic force constants

for each ∆ are interpolated over the volumes of the simulation unit cells used in the total

energy calculations. By comparing the smoothness of the inter-atomic force constant curves,

it is easy to establish which choice of ∆ is optimal or converged. Additionally, numerical

uncertainties can be eliminated by fitting the calculated inter-atomic potentials up to 3rd

order Birch-Murnaghan EOS. One distinct benefit of this BM EOS fitting approach is the

predictive capability it has over the entire range of validity of the original calculation.

This process is described in section B.3. Once we establish the trend of volume/density

dependence of the calculated harmonic force constants, we can use this dependence to derive
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harmonic force constants for any arbitrary density/volume within the range of validity of the

original first principles calculation without the need to perform new total energy calculations.

The interpolation process is described fully in the next section below with MgO as a case

study.

B.2 Interpolation of Independent Force Constants

After extracting the independent elements of the force constants matrix at several unit

cell volumes, we perform an interpolation of the elements over the volumes. In our MgO

study, we extracted the independent force constants matrix elements at 20 different unit cell

volumes between 10 Å3 and 20 Å3 using 4 different atomic displacements: (0.02, 0.04, 0.06,

0.08) Å. Figure B.1 below sows an interpolation of the O−2-O−2 interatomic force constant

from calculations based on four different finite displacements (∆). The results show that

an atomic displacement of 0.02 Å or less would be too small as reflected by the irregular

behavior of the force constant with volume, a clear deviation from the trend. It can be seen

from this figure that we have a converged result for atomic displacements 0.04 , 0.06 & 0.08

Å. For our real space super cell displacement calculations for MgO, we adopt an atomic

displacement value of 0.04 Å.
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Figure B.1: Volume dependence of one inter-atomic Force constant calculated using different
finite atomic displacements (∆ = 0.02, 0.04, 0.06, 0.08)Å

B.3 Volume Dependence of Harmonic Force Constants Φij

From our study of MgO, SrO and CaO, α-Al2O3 we have established that the interatomic

force constants show a robust volume dependence according to Birch-Murnaghan equation

of state up to third order as shown in equation B.1

Φ (V )ij = a+ bx + cx2 + dx3 (B.1)

Where x = V−
2
3 , V is the unit cell volume; a, b, c and d are parameters to be determined

by fitting the calculated harmonic force constants to the unit cell volumes. For second order

BM EOS fitting, d=0. These coefficients can be used to predict Φij for any arbitrary volume

within the range of the calculation from which the parameters were determined.
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From this robust volume dependence of Φij we observe that besides determining which

atomic displacement (∆) is appropriate for our RSSFD method, the interpolation of Φij

over the unit cell volumes has three distinct advantages. The first distinct advantage is

that by establishing a robust volume dependence of the harmonic force constants, one can

predict the independent force constants for other intermediate unit cell volumes without

need for a new VASP calculation. This is particularly advantageous for systems with lower

crystal symmetry, requiring longer computational times, to completely determine the H-F

forces needed to extract the harmonic force constants for the full dynamic matrix. In such

cases one can perform total energy calculations for a few unit cell volume sizes and then

use the established volume dependence of the force constants (equation B.1) to generate the

independent force constants for any arbitrary intermediate unit cell volumes within the range

of validity of original the first principle calculation. This hypothesis was tested in our MgO

study, by performing total energy calculations to directly determine the force constants for

unit cell volumes 10 Å- 20 Å at steps of 2 Å. From the volume dependence, we predicted the

force constants for the other unit cell volumes 11, 13, 15, 17 and 19 Å. We then performed

total energy calculations to determine the force constants of MgO at these same unit cell

volumes from first principles. The two results are almost indistinguishable. In figure B.2

we show the results of directly calculated independent force constants compared with those

predicted from the volume dependence. Table B.1 shows the fitting parameters for the

52 independent harmonic force constants for our MgO calculation obtained by fitting our

directly calculated force constants at five unit cell volumes (12 Å to 20 Å) to equation B.1.

The calculation was done using a finite displacement of ∆ = 0.04Å. The first and second

columns represent the indices of the atom pairs (including direction of displacement: x, y or

z) corresponding to the independent interatomic force constants having fitting parameters

a0, a1, a2, a3 (columns 3-6). One can use these fitting parameters in equation B.1 to generate

Φii,jj for any arbitrary volume between 12 Å and 20 Å. According to our notation, the 128
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atoms in our supercell are indexed from 1-128 with 1-64 being O−2 and 65-128 being Mg2+.

Atoms can be displaced in the directions (±x,±y,±z). we label these directions idir and

jdir taking values 1, 2, 3. ii and jj in table B.1 are related to the atom index ia, ja (1-128)

as shown in equation B.2.

ii = (ia− 1) ∗Ns + idir (B.2)

jj = (ja− 1) ∗Ns + jdir (B.3)

Ns is the number of degrees of freedom (Ns=3 in our MgO calculation) The second advantage

of this volume/density interpolation of harmonic force constants is that from the volume

dependence of the force constants one can directly evaluate the Mode Grüneisen parameter

(γi) via the analytic logarithmic volume derivative of the force constant elements without

requiring two different force constant matrices to evaluate (γi) via finite difference.

γ⇀
q ,i

≡ −d lnω(
⇀
q, i)

d lnV
= − 1

2ω2(
⇀
q , i)

〈

ei(
⇀
q)
∣

∣

dD(
⇀
q)

d lnV

∣

∣ei(
⇀
q)
〉

(B.4)

d (D(~q))

d lnV
=
∑

l

(

d (Φij)

d lnV

) · exp[−i~q · (~Rjl − ~Ri0)]√
mimj

(B.5)

The term
d(Φij(V ))

dlnV
can be obtained by performing a logarithmic volume derivative of

equation B.1 as follows:
d(Φij(V ))

dlnV
= V

d(Φij(V ))

dV
= −2

3
(bx+ 2cx2 + 3dx3), where x = V−

2
3 .

In our previous approach namely the finite difference approach (FDA) for γ , two force

constant matrices corresponding to two different unit cell volumes, were necessary to evaluate

(γi) for any given unit cell volume as illustrated in equation B.6.

γi(V ) = − V

ω2
i

∑

αβ

(

D2 −D1

V2 − V1

)

αβ

ê∗
i
(α) êi (β) (B.6)
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Here V1 < V < V 2. Additionally, (γi) obtained this way involves taking the ratios of two

differences. When the difference in the unit cell volumes is very small compared to the

difference in the force constant matrices, this leads to divergence of (γi) which is difficult to

distinguish from numerical error. This problem is does not exist in our new approach, as

we compute γ by directly evaluating the logarithmic derivative of the analytic form of the

inter-atomic force constants. Details of the derivation of (γi) from the third order lattice

anharmonicity are reported in section 2.5.

The third distinct advantage of our interpolation method is that one can use the volume

dependence in equation B.1 to weed out numerical errors from calculated harmonic force

constants. The volume/density dependence of all the irreducible force constants of three

B1-structured ionic oxides: MgO, CaO and SrO is shown in the figures B.3, B.4 and B.5.

In table B.1, we present the fitting parameters a0, a1anda2 for all the 52 IFCs obtained

by fitting our calculated MgO IFCs to third order BM EOS. One can use these parameters

to predict IFCs for any arbitrary unit cell volume as follows: Φ (V )ij = a + bx + cx2 + dx3

with x = V−
2
3 , V being the unit cell volume in Å3.
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Figure B.3: Main: The dominant irreducible harmonic force constants corresponding
to inter-atomic forces ΦCa+2

−Ca+2 ,ΦO−2
−Ca+2 ,ΦO−2

−O−2. Inset: Minor inter-atomic force
constants (IFC). The major inter-atomic force constants are clearly volume dependent
implying that the associated phonon frequencies are volume dependent. The mode Grüneisen
parameter gives the volume dependence according to QHA theory. Most minor IFCs are
volume independent.
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Figure B.4: Volume dependence of Force constants in SrO. Discrete symbols in the main
graph are force constants between Sr-Sr, O-Sr and O-O. The inset shows the density
dependence of the remaining IFCs
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Figure B.5: Volume dependence of Force constants in MgO. Main: IFCs between Mg-Mg,
O-Mg and O-O. Inset: Rest of the IFCs.
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Table B.1: Fitting parameters a0, a1, a2, a3 for the 52 independent harmonic force constants
of MgO fitted to third order according to equation B.1. The original LDA calculated
harmonic force constants were extracted based on a 128-atom supercell and a finite atomic
displacement ∆ =0.04 Å. ii = (ia− 1) ∗Ns + idir,
jj = (ja− 1) ∗Ns+ jdir. Where (ia, ja)= 1 to 128 and Ns=3

ii jj a0 (eVÅ−2) a1 (eV) a2 (eVÅ2) a3 (eVÅ4)
1 1 92.47391711 - 1718.68492426 9513.01862554 - 10341.25717161
1 4 - 0.40482956 6.49643673 - 50.47378240 - 35.91076121
1 5 - 0.17783410 0.30949676 - 36.67019948 - 43.94750904
1 7 0.53994533 - 10.76994845 53.72063476 - 107.40040433
1 8 0.37080575 - 7.53578988 31.35209757 - 65.40606807
1 16 0.01730697 - 0.49509185 - 7.81719061 21.56255900
1 17 0.13912270 - 2.51110079 6.74094948 - 7.21171552
1 19 - 0.05807758 0.98499042 - 5.47536188 10.67920890
1 21 - 0.05531149 1.11998260 - 2.78379867 2.45922988
1 22 - 1.22095350 22.96027588 - 113.37737647 231.52908879
1 31 0.34524746 - 6.20819702 39.39422950 - 77.29218029
1 64 0.16080048 - 3.04080758 14.23910972 - 24.40120860
1 70 0.99249115 - 17.84161631 114.09655148 - 220.87478657
1 79 - 0.50588086 9.02857233 - 51.75492914 95.66906824
1 82 0.28496069 - 5.23341210 26.09410055 - 48.12514085
1 84 0.14895321 - 2.70672078 11.64119048 - 20.46924927
1 94 1.51639353 - 28.53442043 152.16348598 - 300.70442071
1 127 0.68312471 - 12.33400267 68.40260069 - 125.81115843
1 193 0.00193383 - 0.79754313 7.08808208 - 21.91981947
1 194 - 0.45313432 8.47513272 - 25.01964235 27.05598007
1 196 - 0.11916618 1.87574547 - 4.71566224 6.88718954
1 197 - 0.19734462 3.83688393 - 12.86162054 19.16890443
1 202 0.40561829 - 4.47310995 - 180.15834192 848.42384002
1 208 - 0.06743555 1.10193891 - 6.02138866 10.28276693
1 211 0.17313127 - 3.08862312 13.15758171 - 24.99260162
1 214 - 0.37560994 6.78677966 - 42.39902043 85.27290586
1 216 - 0.33670298 8.30745970 - 33.05358760 52.30120608
1 223 - 0.00007024 0.14532545 3.24479382 - 8.87989198
1 224 - 0.06653759 1.38235819 - 4.92958327 7.32881241
1 226 - 0.61500325 11.89659663 - 50.50666734 85.62592642
1 228 - 0.30876852 5.72822889 - 24.97879821 48.41965778
1 238 - 43.18835776 804.52823771 - 4054.14648323 3410.42072467
1 259 - 0.23835309 4.51025336 - 23.89790863 41.51155741
1 271 - 0.60784654 11.47865189 - 58.30196984 103.42874279

193 193 77.71621195 - 1443.35035960 7783.51846977 - 6646.35810740
193 196 1.28008731 - 21.86394086 124.70053340 - 420.54143451
193 197 1.95716047 - 38.57045061 144.07149558 - 360.73823814
193 199 0.30112093 - 4.43579562 20.44040415 - 42.14864279
193 200 0.23494728 - 5.86283241 21.43306968 - 35.01362786
193 208 0.20159417 - 3.13639796 6.76555682 - 11.54059049
193 209 0.20895303 - 4.18091948 14.54034306 - 21.96807984
193 211 - 0.00253489 0.06808854 0.05610270 - 1.69263644
193 213 - 0.04190171 0.39104627 - 2.42241567 7.81401863
193 214 - 0.72810237 11.62803953 - 34.78894406 103.15658186
193 223 0.00514154 - 0.12667549 4.87967830 - 9.53843389
193 256 0.08221283 - 1.33803224 3.58785005 - 7.55114810
193 262 0.56285035 - 11.29421051 67.71731699 - 112.13662209
193 271 - 0.08423031 1.07591453 - 7.55637038 16.43573280
193 274 0.29945488 - 6.19568117 29.59797576 - 51.39155161
193 276 0.15848508 - 2.79811492 11.14573352 - 18.49262242
193 286 0.18605395 - 16.68427019 120.61658739 - 359.72292314
193 319 0.40464050 - 7.95578245 41.07855666 - 72.20951864
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Appendix C

Thermal Equation of State of Al2O3

Static EOS

The present calculation is a repeat of previous calculation done by Bin Xu a former

member of our research group119. The previous calculation by Bin, is well reproduced to

within 3 % and our new data is consistent with previous calculations and experiments.

Table C.1: Third-order BM-EOS parameters for α−Al2O3

Source V0 (Å3/atom) K (GPa) K ′

Static calculation
LDA+PAW (this work) 8.354 256.5 4.200
Calculation71 8.441 258.9 4.01
Calculation126 8.10 248 4.13
Calculation73 8.486 252.6 4.237
300 K (QHA)
LDA+PAW (this work) 8.526 235.06 4.000
Calculation163 8.498 251.0 4.04
Experiment164 8.484 254.4 4.275

Thermal EOS

Table C.2: Gibbs Free energy (F0), Volume per unit cell(V0), Bulk modulus (B0 ) and
derivative of bulk modulus (B′

0) at 0 GPa

T(K) F0(eV/atom) V0(Å
3) B0 (GPa) B′

0

300 -8.18302100 85.2618400 235.06238000 4.00336200
500 -8.21569000 85.6318600 228.98451400 4.09717000
1000 -8.36735800 86.8357200 211.67306800 4.35688500
1500 -8.58576600 88.2734500 192.45940900 4.64781800
2000 -8.85050700 89.9599700 171.34529700 4.98039700
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Figure C.2 shows our LDA claculated thermal EOS derived within the quasi-harmonic

approximation (QHA), together with measurements from experiments165–169 at 0 GPa and

300 K
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Figure C.1: Main: Volume-pressure relationship in α−Alumina at five temperature points:
300K, 500K, 100K, 1500K, 2000K. Inset: Static EOS fitted to 3rd order Birch Murnaghan
EOS
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compared with measurements. Discreet symbols represent measurements done by Wachtman
et al., 1962; Schauer, 1965; Amatuni et al., 1976; Adelber & Traverse, 1984; Fiquet et al.,
1999 and White & Roberts, 1983. Red solid line represents a reproduction of LDA+PAW
calculation previously done by Bin Xu, 2009(former member of our research team)
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Appendix D

Equations of State (EOS) PV-MgSiO3 and Lattice Dynamics of PPV-MgSiO3

D.1 Static Equation of State

Total energies at fixed unit cell volumes ranging from 122 Å3 to 160 Å3 were calculated

using the VASP package with PAW method. An 8×8×6 Monkhorst-Park k-points grid was

used to smaple the first brillouin zone. The following energy cutoff parameters were used in

the INCAR file.

• System = PV INCAR static

• NSW = 999

• ISIF = 4

• ENCUT = 600.00

• EDIFF = 1E-9

• LWAVE= .FALSE.

• LCHARG= .FALSE.
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Table D.1: Static EOS parameters of MgSiO3 PV and PPV fitted to 3rd order BM EOS at
ambient conditions

V0 (cm3 per mol) B0(GPa) B’0
PV(This work: LDA) 24.15 248.56 3.84
PPV(This work: LDA) 24.08 227.75 4.0
PV(Theory92:LDA) 24.71 246.1 4.0

PPV(Theory92: LDA) 24.66 215 4.41
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Figure D.1: Main: Static EOS of MgSiO3 fitted to 3rd order Birch-Murnaghan EOS. Inset:
Difference in enthalpies of PV and PPV phases plotted as a function of pressure. Our
calculation predicts that at ambient temperature, the PV→PPV transition occurs at 101
GPa which is consistent other theoretical predictions for example Tsuchiya et al. (2004).
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D.2 Thermal EOS of PV-MgSiO3

Table D.2: LDA calculated thermal EOS parameters for PV-MgSiO3 at 0 GPa. Values in
parentheses are from Tsuchiya et al. (2005)

T(K) V0(cm
3/mol K0(GPa) K′

0

1.00 24.31 249.36317700 3.92435100
300.00 24.38 (24.71) 243.63925300 (246.1) 3.97535500(4.00)
1000.00 24.95 216.84633000 4.14579900
1500.00 25.46 196.36412500 4.27543300
2000.00 26.03 175.07605500 4.41773400
2500.00 26.76 152.94810800 4.57829400
3000.00 27.60 129.90054500 4.76629500
3500.00 28.68 105.80279200 4.99892500

Figure D.2 shows our LDA calculated P-V-T relations together with previous

calculations and experiment for comparison. Our results agree well with previous

calculations. In our calculation of lattice thermal conductivity, we need the pressure

dependence of simulation cell volumes, to be able convert our calculated isochoric thermal

conductivity to isobaric conditions for comparison with experiments, since experiments are

usually carried out under isobaric conditions. Figure D.3 presents our calculated thermal

expansivity together with previous calculations and experiment. Our LDA calculated

thermal EOS is consistent with both previous calculations and experiment.
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D.3 Lattice Dynamics of PPV-MgSiO3

Using standard first-principles total energy and force calculations we have calculated

the harmonic force constant matrices and third order lattice anharmonicity tensors of

PPV-MgSiO3 using an efficient real space super-cell finite-difference algorithm. Phonon

spectra derived from the force constant matrices agree well with experiment and previous

calculations.
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Figure D.4: Density dependence of harmonic force constants (eV/Å2) in PPV-MgSiO3.
Independent force constants shown for 160-atom periodic supercells of PPV.
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Figure D.5: LDA calculated phonon mode frequencies in PPV-MgSiO3 at 118 GPa
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Figure D.6: LDA calculated phonon mode group velocities in PPV-MgSiO3 at 118GPa. Mode
group velocities in PPV are of the same order of magnitude as those in PV at corresponding
pressure.
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Appendix E

Density Dependence of Phonon Lifetimes in PV-MgSiO3

The volume dependence of the lifetimes of the 60 phonon modes at all the 100 irreducible

directions (K-points) of the BZ are shown in figures E.1 to E.17. To our knowledge this

is the first explicit ab initio calculation of density dependence of anharmonicity induced

phonon scattering rates. Different modes are observed to have different density/pressure

dependencies. Lifetimes of most phonon modes are seen to increase with decreasing volume

(increasing pressure). Overall our calculation reveals a weak pressure dependence of phonon

lifetimes. The variation of the phonon mode lifetimes with volume is almost linear. Table

E.1 shows the Volumes and thermal EOS-derived pressures at 300 K for which we directly

calculated the phonon lifetimes.

Table E.1: Simulation cell volumes and corresponding pressures for PV-MgSiO3 at 300 K.

V0 (Å3) 122 127 137 147 157
P (GPa) 119.68 95.26 57.10 29.45 9.21
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Figure E.1: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #1-6 in BZ

135



120 130 140 150
Unit Cell Volume

0

2

4

6

8

P
ho

no
n 

L
if

et
im

es
(p

s)

Kpoint #7

120 130 140 150
Unit Cell Volume

0

2

4

6

8

P
ho

no
n 

L
if

et
im

es
(p

s)

Kpoint #8

120 130 140 150
Unit Cell Volume

0

2

4

6

8

P
ho

no
n 

L
if

et
im

es
(p

s)

Kpoint #9

120 130 140 150
Unit Cell Volume

0

2

4

6

8

P
ho

no
n 

L
if

et
im

es
(p

s)

Kpoint #10

120 130 140 150
Unit Cell Volume

0

2

4

6

8

P
ho

no
n 

L
if

et
im

es
(p

s)

Kpoint #11

120 130 140 150
Unit Cell Volume

0

2

4

6

8

P
ho

no
n 

L
if

et
im

es
(p

s)

Kpoint #12

Figure E.2: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #7-12 in BZ
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Figure E.3: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #13-18 in BZ
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Figure E.4: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #19-24 in BZ
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Figure E.5: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #25-30 in BZ
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Figure E.6: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #31-36 in BZ
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Figure E.7: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #37-42 in BZ
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Figure E.8: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #43-48 in BZ
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Figure E.9: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #49-54 in BZ
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Figure E.10: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #55-60 in BZ
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Figure E.11: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #61-66 in BZ
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Figure E.12: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #67-72 in BZ
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Figure E.13: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #73-78 in BZ
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Figure E.14: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #79-84 in BZ
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Figure E.15: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #85-90 in BZ
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Figure E.16: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #91-96 in BZ
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Figure E.17: Density dependence of phonon lifetimes for 60 phonon modes at irreducible
K-points #97-100 in BZ
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