
Performance Evaluation of Split Disk Cache

by

Adarsh Jain

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 4, 2013

Keywords: Disk, Cache, Metadata, Split, Disksim

Copyright 2013 by Adarsh Jain

Approved by

Sanjeev Baskiyar, Chair,
Associate Professor of Computer Science and Software Engineering

Xiao Qin, Associate Professor of Computer Science and Software Engineering
Alvim Lim, Associate Professor of Computer Science and Software Engineering

Abstract

The performance gap between the processor and the memory speeds has been ever in-

creasing. Whereas processor speeds have improved by 60% annually, secondary storage speed

has only improved by 10% annually. Although there have been many efficient techniques

introduced to minimize this speed gap, it still remains a bottleneck in various commercial

implementations. Since secondary memory technologies are much slower than the main

memory, it is challenging to match its speed to that of the processor.

Usually, hard disk drives include semiconductor disk-caches to improve their perfor-

mance. A hit in the disk-cache eliminates the mechanical seek time and rotational latency.

To further improve performance a split disk-cache, which is split between metadata and

data, was proposed earlier. In this thesis, we evaluate the performance of such a disk-cache

via extensive simulations on DiskSim. The simulations were run on standard benchmarks,

Cello and hplajw, and synthetic benchmarks using normal, Gaussian and Poisson distribu-

tions. The split point between data and metadata regions was varied to find an optimum

split point. The simulation runs for the standard and synthetic benchmarks show improve-

ment up to 6% in hit ratio when the metadata region in the disk cache is between 10-30%.

Since metadata is smaller in size, but accessed frequently, such a result seems reasonable.

Although the performance improvement is small, it is important, because of the high access

latency at the level of the disk. As such, our raw projections show that the overall response

time improvement is expected to be between 15-20%. Such performance improvement could

particularly be significant for long running processes.

ii

Acknowledgments

There are many people in Auburn who deserve my gratitude for helping me pursue

my M.S dreams. Foremost among them is Dr. Sanjeev Baskiyar, who has truly been an

amazing adviser. Without his timely inputs and continuous support, this thesis would never

have been possible. I shall forever remain indebted to him for his guidance in my research

and my career. I would also like to thank Dr. Xiao Qin and Dr. Alvin Lim for serving as

members of my advisory committee. I also owe much gratitude to Dr. Daniela Marghitu,

Dr. David Umphress, Dr. Jeff Ku and Dr. Kai Chang for shaping my graduate student

career for the better. I would also like to acknowledge the efforts of Ms. Michelle Wheeles,

Ms. Jo Lauraitis, Ms. Carol Lovvorn and Ms. Penny Christopher in helping me keep my

school and immigration paper work in order. My thanks also go out to my colleagues at

Shelby 3139 and Shelby 2113. In particular, I would like to thank the group of Swaroop

Anupindi, Chengjun Wang, Vibudh Mishra, Samuel Haque, Matthew Swann, Joseph Ledet

and Bradley Smith for suggestions and help. I am also deeply indebted to the families of

Dr. Dave Sree and Mr. Nagaraj Ejantkar for ensuring that I missed none of the festivals

celebrated back home. In addition to these families, I would also like to thank my brother

Amith Jain, my friends Sanjay Kulkarni, Abilash Kittanna, Santosh Kulkarni, Harish Rao,

Vijay Sheshadri, Harsha Banavara, Pratap Simha, Deepika Rao, Rakshith Venkatesh Prateek

Hejmady, Nitilaksh Hiremath, Ajit Chavan, Vikalp Narayan, Aditya Singh, Digvijay Gholap,

Poojita Puligundla, Kanika Grover and Swathi Dumpala, for all their support, laughs and

companionship at Auburn. I would also like to thank Abhishek Rao, Akshatha Prasad, Roohi

Sahota, Ajit Prabhu, Deep Kanwar Singh, Madhani Penathod Subair, Mahalaxmi, Vinay

Kumar, Ashwini Yathiraj, Vadiraj, Harish Sathish, Rohan Prasad, Naveen KS, Karthik

Ramesh, Sachin, Karthik Krishnan, Mithun Rajanna for their constant support.

iii

Above all, I would like to express my deepest gratitude to my family for their love,

compassion and support in my endeavor. It was the constant emotional support from my

parents Rekha Jain and Subhash Chandra Jain which motivated me and helped me immensly

in achieving this dream. Together they define my existence and it is to them that I lovingly

dedicate this work.

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . x

1 Introduction . 1

1.1 Motivation . 4

1.2 Problem Statement . 5

1.3 Contribution . 5

1.4 Report Organization . 5

2 Literature Survey and Review . 7

2.1 Disk Cache Basics . 7

2.2 Disk Cache Optimization Techniques . 9

2.2.1 Optimization Techniques at Secondary Storage (Hard Disk cache) . . 9

2.2.2 Optimization Techniques for Metadata Access 12

2.2.3 Split Disk Cache into Data and Metadata 13

2.2.4 Cache Partitioning based on processes 14

3 Optimum Split Percentage Design . 19

4 Evaluation Methodology . 24

4.1 Disksim Simulator . 24

4.2 System Charateristics . 25

4.3 Evaluation Traces and Workloads . 26

4.4 Disksim Changes . 28

4.5 Validation . 28

v

5 Results and Graphs . 30

5.1 Evaluation Graphs . 30

5.1.1 Graphs for Standard Benchmarks (hplajw and Cello) 31

5.1.2 Graphs for Synthetic Trace files and Random Access Methods 34

5.1.3 Graphs for Synthetic Trace files and Random Access Methods using

Gaussian Distribution Method and Poisson Distribution Function . . 38

5.2 Hit ratio improvement in Split Disk Cache 42

6 Conclusion and Future Work . 45

6.1 Conclusion . 45

6.2 Future Work . 45

Bibliography . 47

vi

List of Figures

1.1 Memory Hierarchy . 3

2.1 Memory Hierarchy . 8

2.2 DCD with 2 Physical Disks . 10

2.3 DCD with 2 Logical Disks . 11

2.4 Split Cache Result for different values of k and t 15

2.5 Miss Rates and Composite Derivatives for Two Processes 16

3.1 Miss Rates and Composite Derivatives for Two Processes 20

3.2 Miss Rates and Composite Derivatives for Two Processes 20

3.3 Data and Metadata Regions in Cache . 21

3.4 Data and Metadata Regions in Cache . 22

4.1 Disksim Architecture . 25

5.1 Hit Ratio with varying cache size for hplajw . 31

5.2 Hit Ratio with Varying Metadata region in Cache for hplajw 31

5.3 Hit Ratio with varying cache size for cello trace taken on 02/01/1999 32

5.4 Hit Ratio with Varying Metadata region in Cache for cello trace taken on 02/01/1999 32

vii

5.5 Hit Ratio with varying cache size for cello trace taken on 03/01/1999 33

5.6 Hit Ratio with Varying Metadata region in Cache for cello trace taken on 03/01/1999 33

5.7 Hit Ratio with Varying percentage of Read and Metadata Read 34

5.8 Hit Ratio with varying read percentage for Synthetic trace with Validate trace

format and 20% Metadata . 35

5.9 Hit Ratio with varying read percentage for Synthetic trace with Validate trace

format and 40% Metadata . 35

5.10 Hit Ratio with varying read percentage for Synthetic trace with Validate trace

format and 60% Metadata . 36

5.11 Average Hit Ratio with varying cache size for Synthetic trace with Validate trace

format and random access . 36

5.12 Average Hit Ratio with varying metadata percentage in input for Synthetic trace

with Validate trace format and random access 37

5.13 Average Hit Ratio with varying read percentage in input for Synthetic trace with

Validate trace format and random access . 37

5.14 Average Hit Ratio with varying data:metadata split in disk-cache for Synthetic

trace with Validate trace format and random access 38

5.15 Average Hit Ratio with varying Cache Size for Synthetic trace with Validate trace

format and Gaussian Distribution . 38

5.16 Average Hit Ratio with varying Metadata Percentage for Synthetic trace with

Validate trace format and Gaussian Distribution 39

viii

5.17 Average Hit Ratio with varying Read Percentage for Synthetic trace with Validate

trace format and Gaussian Distribution . 39

5.18 Average Hit Ratio with varying metadata split region for Synthetic trace with

Validate trace format and Gaussian Distribution 40

5.19 Average Hit Ratio with varying Cache Size for Synthetic trace with Validate trace

format and Poisson Random Access . 40

5.20 Average Hit Ratio with varying Metadata percentage in input trace for Synthetic

trace with Validate trace format and Poisson Random Access 41

5.21 Average Hit Ratio with varying read percentage for Synthetic trace with Validate

trace format and Poisson Random Access . 41

5.22 Average Hit Ratio with varying Split percentage for Synthetic trace with Validate

trace format and Poisson Random Access . 42

ix

List of Tables

1.1 Access Time in seconds . 2

2.1 Size relation between data and metadata . 14

4.1 System Environment . 26

4.2 Hplajw and Cello-1999 trace Charateristics . 26

4.3 Root Mean Square Error of Differences(rms) . 29

4.4 Response Time in milliseconds(ms) . 29

x

Chapter 1

Introduction

As the processor speeds continue to increase, the challenge to constantly supply data

to the processor also continues to increase. Processors grow at a rate of 60% every year

where as the memory technology grows at 10% [9]. One major bottleneck in meeting the

increased processor demand is the speed at which data and instructions are fed to the

processor from the storage devices. Although implementation of high-speed cache system

and various other techniques have improved to fill the performance gap, secondary storage

access speed is a matter of concern especially for big data. The access time for secondary

devices is considerably high compared to main memory. Table 1.1 shows typical access time

for various memory technologies. It is clear from the table that hard disk is 105 times slower

than the main memory. As the gap between memory and disk drives increases to 6 orders

of magnitude with the gap increasing up to 50% every year, ta number of optimization

techniques is required narrow this gap. A small improvement at disk cache level would

reduce the response time by a great margin [11]. Hence a minimal improvement in hit ratio

for disk cache would improve the overall response time substantially. The total access time

when the data is not present in the disk cache and the physical disk has to be accessed is

given by Hospodor [7]

taccess = toverhead + tseek + trot latency + txfer (1.1)

where,

• taccess : Total access time

1

Memory Device Access Time (seconds)
Registers 10−9

Cache 10−8

Main Memory 10−7

Disk Cache 10−5

Hard Disk Drive 10−2

Table 1.1: Access Time in seconds

• toverhead : Time required to decode the request from the processor and identify the

required data region

• tseek : Head seek time

• trot latency : Rotational delay

• txfer : Transfer time

In case of a cache hit, the total access time is,

taccess = toverhead + txfer (1.2)

For simplicity, we consider the transfer time for cache to be equal to transfer time

through the magnetic disk although the latter is much higher as it involves rotation of the

disk to read from the sectors [7]. The access time is reduced by a factor of 100 [See Table

1.1] when there is a cache hit.

Many mechanical techniques have improved the actual response time by 8% annually

over the last decade via reduction in seek time by about 8% and increase in rotational speed

by nearly 9% annually. Additionally, improvement in areal density by 40% annually has

resulted in reduction in response time by 8% every year. In total, there has been a 15%

yearly improvement from disk technology [4] [1].

Disk cache is a buffer in the disk system that holds recently accessed portions of the

disk memory. The storage system with a unified disk cache is shown Figure 1.1. In this

system, file system/database cache represents the logical cache and the disk cache represents

2

Figure 1.1: Memory Hierarchy

3

the physical cache. When the processor makes a request to the disk drive, the OS first checks

the logical cache. A miss at the logical level cache results in an I/O request to the physical

level cache. If a miss occurs at the physical level cache then the physical drive is accessed.

In this research we focus on the performance of the physical level cache.[1]

In this research, we address the disk cache of the disk drive system. Every hit to a disk

cache results in an I/O time that is substantially less (e.g., 1-4 ms) than would otherwise be

required (10-100ms) [16]. We evaluate the performance of a disk cache split into data and

metadata regions. Metadata takes only a small portion of the memory, but is accessed very

frequently [5][6][2].

1.1 Motivation

New I/O access techniques have improved the efficiency of I/O operations between the

processor and the storage devices. Some of the techniques include caching, write buffering,

prefetching, request scheduling, parallel I/O, various bus architecture optimizations etc.

These techniques have reduced the performance gap between the processor and the hard

disks, but hard disk speed still lags behind the processor speed.

Hsu and Smith [9][10] have analyzed the performance of these techniques by using the

physical I/Os from several real servers and PC workloads. Their investigations have led to the

conclusion that maximum improvement can be obtained by reducing the number of physical

I/Os through read-caching, prefetching and write buffering. Also, it has been concluded that

read caching can be more effective at the physical level, if the cache size is large enough,

typically 1% of the storage used. But commercial hard disks are not equipped with caches

of that size. For example a 320 GB hard disk has to have 1.6 GB cache when it is half full.

Such large size caches are impractical as it is very expensive. Hence in this research we split

the data region of the disk cache in to two regions namely, data and metadata regions. As

explained previously metadata takes only a small portion of the memory, but is accessed

4

very frequently [5][6][2]. Hence with the split, we try to bring the metadata region close to

1% of the space occupied by metadata in the hard disk.

1.2 Problem Statement

Hard disk operation is slower compared to the speed of the processor. As a result of this

gap in operational speed, processor has to wait for a long time when accessing the hard disk

for data. Hence it is important to reduce this gap. Hard disk cache plays an important role

closing the gap between the processor and the hard disk. Optimizations at the disk cache

level is important and provides various performance benefits.

Frequency of metadata access at the hard disk level plays an important role in improving

the performance of the overall system. Although various techniques have been developed to

optimize the metadata access, there is still some room for performance improvement.

1.3 Contribution

Secondary storage (Hard disk drives) is an essential component of a computer system

when dealing with big data sets. With the storage density bursting every year and various

break through continuing in processor technology, it is very important to optimize the per-

formance of hard disks. Through this research, we have aimed at reducing the number of

I/O operations going to physical hard disk. We try to improve the hit ratio to disk cache

buffer and hence reduce the gap between the processor and the hard disk drives. This can

be implemented in hard disk cache for an enhanced performance.

1.4 Report Organization

This report is organized as follows. Chapter 2 presents the literature review. Chapter

3 explains the split percentage design. Chapter 4 discusses about the implementation of the

5

split disk cache design and the evaluation methodology. In Chapter 5 we present the graphs

and results. In Chapter 6 we conclude the report and discuss about future work.

6

Chapter 2

Literature Survey and Review

In this chapter, we take a look at various research techniques done in the area of disk

cache. Also, since metadata and its access pattern is important for our research, we would

discuss a few optimizations done in the field of metadata access. We start with a literature

survey about disk cache and its characteristics and later introduce a few optimization tech-

niques in disk cache. We also emphasize the importance of metadata by going through a few

literature.

2.1 Disk Cache Basics

Memory hierarchy in a computer system is shown in the Figure 2.1. In this memory

hierarchy, large amounts of data are stored in secondary storage systems like tapes, disks etc

and the data which is in active usage is stored in a more expensive fast storage namely main

memory and CPU cache memory. When dealing with huge data sets, secondary storage

systems are accessed. The problem with secondary storage systems is the large access time.

This in turn may keep CPU idle for sometime and hence degrade the system performance.

Various techniques have been introduced to close this time gap but the access time is still

a bottle neck as far as secondary storage devices are concerned. In order to overcome

this bottleneck and make the processor usage more efficient, cache system is also used for

secondary storage systems. Such caches are referred to as disk cache.

Disk Cache or buffer is used to hold some data portions of actual disk. Disk cache

operation is much faster compared to the external disk and hence if disk cache can respond

to a significant fraction of I/O operations, the this would enhance the system performance

7

Figure 2.1: Memory Hierarchy

8

by a great margin. Some of the other characteristics of disk cache are that they are less

expensive and have access times and transfer rates significantly lower than that of disk.

Disk Cache produces great performance improvements as the access pattern to disk

cache is similar to on-chip cache. Disk cache also works on the principle of locality wherein

the recently accessed data is more likely to be accessed again and also the next data sets to

be accessed may be packed closer to the current data set accessed [13].

Disk Cache can be placed at any convenient location between the CPU and physical

disk along the data path. If the cache is closer to the CPU then the data access is also faster.

Along with this the same cache can be used by multiple disk as their caching system.

2.2 Disk Cache Optimization Techniques

In this section we discuss a few disk optimization techniques that are relevant to this

research.

2.2.1 Optimization Techniques at Secondary Storage (Hard Disk cache)

Qing Yang and Yiming Hu [18] present a novel disk storage technique called disk caching

disk in order to improve the I/O performance of disk cache. In this research, they use a small

log disk called cache-disk as the secondary disk cache to optimize the write performance.

This exploits the access speed difference between the normal data disk and cache disk with

the latter being faster even though both have the same physical characteristics. This speed is

because of the different data units used and also the difference in the way the data is accessed.

Data transfer rate in units of tracks is almost eight times faster than in unit of blocks [18]

and based on this observation, the log buffer is used as an extension to RAM buffer to cache

file changes and then destage this to the data disk when the system is idle. All the small

and random writes are first buffered in to the RAM cache. Later all this data is written in

one data transfer to the cache disk when it is idle. As a result, RAM buffer is cleared for

more data transfer. When the disk is idle, the destage operation between the cache to disk

9

and data disk is performed. Experiments show a performance improvement of two orders

of magnitude in response time for writes. Experimental results with three traces namely

hplajw, cello and snake, show that the DCD technique improves the write performance at

the secondary storage level by one to two order magnitude [18]. This technique involves the

use of an additional hardware element to get the performance improvement.

As shown in Figure 2.2 [18], cache disk can be a separate physical disk drive or a logical

partition that is residing on the disk drive or a group of disk drives [18] as shown in Figure

2.3 [18].

Figure 2.2: DCD with 2 Physical Disks

10

Figure 2.3: DCD with 2 Logical Disks

11

Yingwu Zhu and Yiming Hu [19] have investigated the performance of large built in

caches on response time of the file system. The conclusions from this work are:

• With a file systems size of 16MB and more, there is little performance difference with

a built in cache bigger than 512 KB.

• When disk built-in cache is used as a readahead buffer, there is considerable perfor-

mance benefits for workloads with read sequentiality but fails to provide improvements

when there are more concurrent sequential workloads than cache segments.

• It provides some improvements with some workloads when used as writing cache but

reduces the reliability.

Hence with these findings, they claim that using bigger caches does not improve the

performance and hence is a waste of power and money. With this, they conclude that disk

manufacturers can plug in smaller built-in cache for better performance.

2.2.2 Optimization Techniques for Metadata Access

In this section we discuss a few optimization techniques introduced to enhance the

handling of metadata in the secondary storage systems.

Pen Gu et al. [5] have proposed a prefetching algorithm for metadata access. Their

study is based on the fact there there are many optimizations done for data prefetching but

not for metadata access. According to this paper, the existing data prefetching algorithms

do not take group prefetching in to account and have higher computational complexity.

These techniques do not work with metadata access. Hence in this paper, they propose an

accurate and distributed metadata-oriented prefetching algorithm [5]. They present a novel

weighted-graph-based technique for prefetching. Experiments conducted with this algorithm

have shown considerable improvements for metadata access on the client side. The average

response time for metadata was reduced by 67% compared to the LRU caching algorithm

and other prefetching algorithms available.

12

Bo Hong [6] has evaluated the performance impact by using micro electromechanical

systems(MEMS) as metadata storage and disk cache. MEMS have seek times which is

10-20 times faster than hard drives, storage density 10 times higher and also lower power

consumption. When MEMS is used as dedicated metadata storage in file system, simulations

how that there is an improvement of 28-46% in system performance using a user workload

depending on how much metadata traffic counts for the whole workload. Also they have

discussed that by using MEMS as disk write buffer, the system performance can be improved

by a factor from 3.3 to 8.2. They also show that this system provides better consistency on

system performance than a disk system by a factor of 2.4 to 5.7.

Scott et al. [2] have discussed the importance of efficient metadata management in large

distributed storage systems. In this paper, they claim that subtree partitioning and pure

hashing are two common techniques used for managing metadata in such systems, but have

a bottle neck of high concurrent access rates. They present a new approach called Lazy

Hybrid(LH) technique for metadata management which combines the advantages of the two

approaches leaving behind the disadvantages.

One common conclusion in these publications is the fact that metadata is smaller in

size but is accessed very frequently. This is the basis for our design and more on the trace

formats is discussed in the next section.

2.2.3 Split Disk Cache into Data and Metadata

Baskiyar et al. [1] have discussed the split cache architecture wherein they split the

data region of the cache in to data and metadata. In this theoretical paper, analysis of

split architecture has been carried out in order to improve the read miss ratio. They have

claimed that it would reduce the interference between data and metadata. They claim that

by splitting the disk cache the effective read miss ratio can be improved by 20% and this in

turn would improve the response time by 16%.

13

Size of Metadata(block size 4KB) Size of data
128+263=391B (Direct) 0-48K

391+4K=4.38K (1-indirect) 48K-4.02M
4.00M (2-indirect) 4.02M-4G

4G (3-indirect) 4G-4TB

Table 2.1: Size relation between data and metadata

We provide a practical implementation of this paper. In this paper, they have also made

detailed analysis about data and metadata. Some of the highlights of this literature is listed

below:

• Metadata accounts for only a small portion of the data but is accessed very frequently.

• In this paper, they have used Linux EXT2 file system to calculate the size of metadata.

The size relation between data and metadata is provided in the table.

• It has been concluded that metadata account for 4.66% in an 8KB file and 3.156% in

a 12 KB file.

From this paper, the overall read miss ratio for split disk cache scenario is given by the

below equation:

f(x) = 2.10k(tx
m

+ 2.14)−1.07

+ 2.10(1 − k)[(1−t)x
1−m

+ 2.14]−1.07
(2.1)

Where

x - percentage of storage used in the cache including metadata cache and data cache

k - fraction of requests to metadata

m - fraction of file occupied by metadata

2.2.4 Cache Partitioning based on processes

Thiebaut et al. [16] have introduced an on-line algorithm to partition the cache storage

in to disjoint blocks whose sizes are determined by the locality of the processes access the

14

Figure 2.4: Split Cache Result for different values of k and t

cache. This models is a direct extension of the model presented by Stone, Wolf, and Turek

[14]. In this work [14], they have deduced that, when two processes A and B share a cache of

size C, by partitioning the cache by allocating CA lines to process A, and CB lines to process

B (CA + CB = C), maximum hit ratio can be achieved when miss rate derivative of Process

A as a function of cache size, in a cache of size CA is same as the miss-rate derivative of

process B in a cache of size CB[16]. This rule holds for both, set associative caches and for

fully associative caches. But in [16], it is being used for only fully associative cache. In [16],

they provide a practical implementation of the replacement policy of Stone, Wolf and Turek

[14] and also provide new ways to derive miss-rate derivative on-line. This model is adaptive

and it uses shadow directory for each class. The shadow directory contains only the block

addresses and no data and hence the additional space required for this is very minimal.

Figure 2.5[14][16] illustrates the partitioning model of stone, Wolf and Turek (SWT).There

are two processes A and B and a cache of size 1024 lines. The miss rate for process A is

shown above for increasing cache sizes. The miss rate of Process B is also shown in the graph

15

Figure 2.5: Miss Rates and Composite Derivatives for Two Processes

but for decreasing cache sizes. Assuming that all the lines accesses by process A is stored

on the left side of the cache and all the lines accessed by process B is stored on the right

side, the composite miss rate for these two processes can be computed very easily. A vertical

line dividing the cache in to two partitions, one for process A and the other for process B

can be drawn and the point at which they intersect the miss rate of A and B, the miss rates

can be added to get the miss rate for the composite cache. The curve for miss rate in a

composite curve is shown above the curves for A and B. Theoretically, it is always efficient

to partition the cache at a point where the composite curve hits a global minimum. The

SWT model shows that when the optimum partition is reached, the derivatives of the miss

rates of Process A and Process B with respect to cache are identical [16].

The calculation of approximate miss rate derivative to implement in the algorithm is

shown below. With a cache of size i, the miss rate of a process can be represented as the

percentage of lines that flow through the ith cell of an infinite LRU stack. Also, when there

is a miss, the new block is brought in to the most recently used position of the stack and

16

all the blocks are pushed to the right by one position. Hence in a cache of size i, the line at

position i moves to the right whenever there is a miss. The miss rate derivative represents the

incremental change in this flow as the boundary of the ith cell is moved by a small amount

δ. In this implementation δ is assumed to be equal to 1. Hence the approximate equation

[16] for the miss rate derivative for a process can be given by

Miss− rate derivative = Number of Amisses in Ci

Total number of A and B references

− Number of Amisses in Ci+1

Total number of A and B references

(2.2)

Miss− rate derivative = Number of Amisses in Ci −Number of Amisses in Ci+1

Total number of A and B references
(2.3)

Similarly, miss rate derivative is calculated for all the processes and the split is dynami-

cally varied based on the result and the access patterns. From the above equation, it is clear

that both the processes have the same denominator. Hence to obtain a partition region,

we have to identify the point at which the numerators are equal. The numerator indicated

the number of hits at index i+1 in the LRU stack. Similar principle is extended to all the

processes running and a split point is identified accordingly.

This technique partitions the cache based on processes. If there are many processes

running, then this technique creates a number of partitions in cache. This can be a overhead

as the partition keeps changing as the frequency of the processes accessing the cache changes.

Input request format is an important factor in deciding the impact of optimizations at

the storage level. Extensive work has been done to analyze the access patterns at the file

system level. The findings in [9][10][15][8][12] have studied the file system access patterns in

detail and have found optimization techniques based on the results. One of the conclusion

in these studies is that access to metadata in the form of requests to inodes, directory entry

etc. is frequent. These results were the driving force behind this research.

17

Ruemmler and Wilkes [12] conducted extensive studies on three benchmarks namely

Hplajw and Cello. They concluded that 40% of reads in Cello are for metadata and the same

is 10.7% in hplajw. Based on these studies, we evaluated our split cache implementation

using standard and synthetic benchmarks.

18

Chapter 3

Optimum Split Percentage Design

The split cache design used in this research is similar to [1]. The rationale behind this

development is explained below. From the experiment of Hsu and Smith [9][10], the cache

system can be effective when the cache size reaches 1% of the external storage space used.

For example, for a 320 GB hard disk, the disk cache has to be 1.6 GB when the hard disk

is half full. It is impractical to provide a cache which is euqal to 1% of the used external

storage. Hence we split the cache in to data and metadata regions, so that the metadata

region at least reaches 1% of the space occupied by metadata in the hard disk drive. Consider

an example where we have a cache of size 2KB as shown in Figure 3.1(a) [1]. The disk is

accessed twice to retrieve a file of data size 2KB and metadata file of size 1KB. Metadata is

first retrieved from the disk and stored in the cache as in Figure 3.1(b), and then the data is

retrieved from the disk and brought into the cache. Since data is of size 2KB, it replaces the

metadata in the cache as shown in Figure 3.1(c). When the same file is requested again, the

metadata for the file is not present in the cache and hence there is a cache miss. Metadata

is now retrieved from the hard disk drive and stored in the cache replacing 1KB data as in

Figure 3.1(c). Hence the cache now contains 1KB data and 1KB metadata resulting in a

hit for half data. But if the cache is split into data and metadata regions as shown in Fig

3.2(a), each of size 1KB, then the metadata does not get a miss in the second request. This

reduces the interference between data and metadata and increases the overall hit ratio. It

is important to identify the optimum split point at which, metadata hits exceed the loss in

data hits and then provide additional performance gain.

But in the actual scenario, it is important to determine the split region. As there is

some space taken away from the data region, the number of hits to data might go down. But

19

Figure 3.1: Miss Rates and Composite Derivatives for Two Processes

Figure 3.2: Miss Rates and Composite Derivatives for Two Processes

20

metadata is accessed more frequently [5][6][2] and hence the number of metadata accesses

results in a very high number of hits compensating for the hits lost due to data loss. But

on the other hand, metadata is small in size and hence the space for metadata has to be

allocated carefully. Allocating more space than required for metadata would reduce the

performance considerably as this space is at the expense of data region. In this thesis, we

vary the percentage of metadata and data region and evaluate the outcome.

Figure 3.3: Data and Metadata Regions in Cache

As discussed in [1], to direct the requests to appropriate regions (data request to data

region and metadata request to metadata region), the request commands are modified at

the OS level, which can send one additional bit of information. This bit can be read by the

disk controller and the request can be directed appropriately.

The motivation behind varying the split percentage is explained using the figure 3.3.

In Figure 3.3(a), the cache is split at the middle of the cache. That is 50% for data region

and 50% for metadata region. But metadata is smaller in size compared to data. Hence in

3.3(b), metadata blocks occupy only a small portion of the space allocated to it. As a result

of this, there is lot of space unassigned in the metadata region. Since this space is taken from

the data region and as a result data region also has less space for data in the cache. This

increases the hit misses for data and as a result degrade the system performance. Hence as

21

Shown in Figure 3.3(c), we vary the data and metadata regions to find the optimum point

at which the hit ratios are the maximum compared to unified cache.

Figure 3.4: Data and Metadata Regions in Cache

In order to achieve the above mentioned design, there are a few tasks to be done at

various stages along the data flow from processor to the disk. These are listed below.

• The nature of the I/O request. This involves finding out whether the request is a read

or a write request.

• Once the I/O type is identified, it is important to differentiate between a data read

and a metadata read.

22

• When the request type is completely identified, the request has to be satisfied by

searching for the block numbers in their respective regions. This means that, if it is a

data read request then we have to search for the block number in the data region of

the cache. If not, then we have to start the search at the metadata region of the cache.

The nature of the I/O request can be identified at the operating system level. When

the I/O request type is identified, the operating system can attach an additional bit along

with the request to indicate that it is a metadata request. This bit can be read at the device

controller level and then the search can be directed to the specific regions. This operation

is shown in the block diagram Figure 3.4.

23

Chapter 4

Evaluation Methodology

The split disk cache scenario explained in the previous chapters was implemented in a

well known simulator called DiskSim 4.0. This simulator is written in C language and is

a very widely accepted for storage system simulation. We implemented our idea in to this

simulator and carried out extensive experiments. We used many benchmark traces to arrive

at the result.

In this chapter, Section gives a brief introduction to Disksim 4.0. In Section we discuss

the system setup. In Section we talk about the traces files used. Metrics are presented in

section.

4.1 Disksim Simulator

The proposed idea was implemented and evaluated using Disksim 4.0. Disksim is a well

known simulator developed to support research in storage subsystems. Disksim includes

modules which simulate disks, intermediate controllers, buses, device drivers, request sched-

ulers, disk block caches and disk array data organization. DiskSim has been successfully

validated against various commercial disk drives and has produced exceptional results. [3].

The system architecture of a DiskSim simulator is shown in Figure 4.1. The device driver

has the implementation to direct the working of the underlying hardware. The Controller

is a software piece which manages the overall application of the cache system. Typically,

a controller decodes the request from the processor, checks the cache for the data, and if

not present, retrieve the data from the hard disk drive. This data is then placed in the

cache based on the replacement algorithm and is also sent to the processor. The device

driver and the controller are connected to the system bus. The controller is connected to the

24

cache through the I/O bus. The disk-cache is the component which has been modified to

incorporate a split in to data and metadata regions. Basically, disk cache is a buffer system

that is used in the simulator. The data region of the buffer is subdivided in to data and

metadata and the split region is modified to get the maximum overall hit ratio.

Figure 4.1: Disksim Architecture

4.2 System Characteristics

The system environment in which the split cache research was implemented is shown in

Table

25

Parameters Description
Hardware CPU Intel (R) Core (TM) 2 Quad Q6600 2.4 GHz

L2 Cache 4096KB
Memory 2 GB
Storage Intel SATA X25-M 80GB SSD

Software OS Ubuntu 10.10
gcc/g++ v4.4.5
bisson v2.4.1
flex v2.5.35
GNU Bash v2.1.5
perl v5.10.1
python v2.6.6
gnuplot v4.4
pdfcrop v1.2
emacs v23.1.1

Table 4.1: System Environment

4.3 Evaluation Traces and Workloads

Experiments were conducted with two benchmarks from HP-UX namely, hplajw and

cello 1999. These traces have I/O events which consider both data and metadata access [5].

In hplajw, write requests dominate for the traces selected with 67% being write requests. On

the other hand, read requests dominate in cello trace files accounting for approximately 63%

reads in both the traces [18]. Out of overall read requests, metadata read requests account

for 40% requests in cello and 10.7% in hplajw [12]. We used two full day traces of cello and

a single day trace from hplajw. We evaluated the performance of the system with split disk

cache and compared it to the results obtained through unified cache. Results for hplajw is

shown in Figure 5.1 and Figure 5.2. Results for cello is shown in Figure 5.3 - 5.6.

Trace Processor MIPS HP-UX
Version

Physical
Memory

Fixed
Storage

Read/
Write
Ratio

cello HP
9000/877

76 8.02 96 MB 10.4 GB 0.79

hplajw HP
9000/845

23 8.00 32MB 0.3 GB 0.72

Table 4.2: Hplajw and Cello-1999 trace Charateristics

26

Along with the two practical and real life benchmarks, there were various synthetic

traces generated to evaluate the behavior of split disk cache. To determine the effectiveness

of the split, there are two important factors to be considered about metadata. One is the

percentage of metadata requests and the other is the access pattern. In order to account

for these two important factors, we generated the synthetic traces of validate trace format

and assigned a few read and write events as metadata events. Since metadata is smaller

in size [5][6][2], we assign those read events which retrieve small number of blocks from the

disk as metadata read. Based on the size calculation of metadata in 2.1, the block size in

the cache and a detailed analysis in [17] about data and metadata block sizes, we randomly

mark records where access size is less than or equal to 2 blocks as metadata. For a given

cache size, the experiment is conducted with three different access patterns and the average

value is computed. Figure 5.7 show the results with varying read percentage and metadata

percentage. For example, if there are 10000 records in the trace file, then we randomly select

4000 records as metadata reads to account for 40% of metadata reads. We created trace files

with metadata content as 20%, 40% and 60%.

Experiments were conducted with nine different cache sizes from 10KB to 16MB, differ-

ent read percentages in the trace files ranging from 30-90%, different metadata percentages

in the trace files ranging from 20-60% and different metadata:data split percentages of the

disk caches ranging from 10:90 to 90:10. All the experiments were conducted thrice and the

average value was evaluated. In total, there were 9*7*3*5*3 = 2835 data points with these

different combinations. We vary the split regions between data and metadata to find an

optimum point at which we get maximum number of hits.

To account for different access patterns for metadata, three different methodologies were

used to generate the random numbers namely:

• Standard random number generator using API

• Random number generation using Gaussian Distribution

27

• Random number generation using Poisson Distribution

Initially for a particular trace file, all the block numbers with minimum number of blocks

request (two or less than two) is collected. For a particular random number, the request at

that line in the trace file is verified to see if the block number is in the list of block numbers

collected before, and if it exists then this is considered to be a metadata access. This process

is conducted thrice with the same trace files but different random numbers and different

seeds. Finally, the average hit ratio is taken. In this way, we account for both metadata

percentage in the trace file and also the different access patterns. This experiment is to

mimic the metadata access patterns similar to the various test benchmarks. The entire trace

file is spanned to obtain a particular percentage of metadata access.

4.4 Disksim Changes

A few modifications were done in disksim source code to implement the split cache

design in data region of the cache. Major code changes were done in disksim iotrace.c,

disksim disk.c, globalṁodspec, disksim cachemem.c. There were a few modifications in-

cluded in the parameter files of all the traces in order to define the split percentage.

4.5 Validation

Disksim 4.0 includes a set of validation tests used to evaluate and validate the simulator

with the physical disks. The command for this is runvalid. Runvalid used a series of vali-

dation data to validate the simulator. The validation data have been extracted from a logic

analyzer that is attached to an SCSI bus. By comparing the response time distributions of

Disksim and various hard disk drives, the simulator was validated. After introducing the

split cache design in to Disksim, it still produces same values as Disksim 4.0 for all validation

tests shown in the Table.

28

Tests Disksim 4.0 Disksim 4.0 with Split Cache
QUANTUM QM39100TD-SW 0.377952 0.377952

SEAGATE ST32171W 0.347570 0.347570
SEAGATE ST34501N 0.317972 0.317972

SEAGATE ST39102LW 0.106906 0.106906
IBM DNES-309170W 0.135884 0.135884

QUANTUM TORNADO 0.267721 0.267721
HP C2247 validate 0.089931 0.089931
HP C3323 validate 0.305653 0.305653
HP C2490 validate 0.253762 0.253762

Table 4.3: Root Mean Square Error of Differences(rms)

Tests Disksim 4.0 Disksim 4.0 with Split Cache
Open synthetic workload 10.937386ms 10.937386ms
Closed synthetic workload 87.819135ms 87.819135ms
Mixed synthetic workload 22.086628ms 22.086628ms

HP srt trace input 48.786646ms 48.786646ms
ASCII input 13.766948ms 13.766948ms

Table 4.4: Response Time in milliseconds(ms)

29

Chapter 5

Results and Graphs

The split disk cache setup was implemented and tested with various traces from HP-UX

(hplajw and cell) and synthetic trace files. As discussed, hplajw is a write intensive trace

with 67% write requests. Cello is a read intensive trace and hence we take the traces from

two days, 02/01/1999 and 03/01/1999 and check for the performance. We then generate

synthetic traces of validate format and vary the percentage of data read and metadata read

in the trace file. These trace files are then used with both split and unified cache to analyze

the performance at different metadata and read percentage. Split cache evaluation is done

with different metadata and data regions. Performance ia also evaluated with different cache

size. The cache size if varied from 10KB to 16MB. The evaluation for split cache starts with

the ratio 70:30 for data region and metadata region. Metadata region is increased gradually

for a constant cache size, metadata and data percentage from the input. As the metadata

region is increased, hit ratio is reduced. This is because the percentage of data region is

reduced and hence the hit miss for data increases. Also, metadata occupies only a small

portion of the memory and if allocated more space than required; the additional space is not

sufficiently utilized thereby reducing the performance. The percentage of read also plays a

critical role in optimizing the hit ratio. This technique provides improvement only when the

percentage of reads in the trace file is above 70%. For all the other cases, there is either very

small or no optimization. Hence split cache implementation provides improvements in hit

ratio for read intensive applications and, when the data region is above 50%.

5.1 Evaluation Graphs

This section provides the graphical representation of the split disk cache evaluation.

30

5.1.1 Graphs for Standard Benchmarks (hplajw and Cello)

Figure 5.1: Hit Ratio with varying cache size for hplajw

Figure 5.2: Hit Ratio with Varying Metadata region in Cache for hplajw

31

Figure 5.3: Hit Ratio with varying cache size for cello trace taken on 02/01/1999

Figure 5.4: Hit Ratio with Varying Metadata region in Cache for cello trace taken on
02/01/1999

32

Figure 5.5: Hit Ratio with varying cache size for cello trace taken on 03/01/1999

Figure 5.6: Hit Ratio with Varying Metadata region in Cache for cello trace taken on
03/01/1999

33

5.1.2 Graphs for Synthetic Trace files and Random Access Methods

Figure 5.7: Hit Ratio with Varying percentage of Read and Metadata Read

34

Figure 5.8: Hit Ratio with varying read percentage for Synthetic trace with Validate trace
format and 20% Metadata

Figure 5.9: Hit Ratio with varying read percentage for Synthetic trace with Validate trace
format and 40% Metadata

35

Figure 5.10: Hit Ratio with varying read percentage for Synthetic trace with Validate trace
format and 60% Metadata

Figure 5.11: Average Hit Ratio with varying cache size for Synthetic trace with Validate
trace format and random access

36

Figure 5.12: Average Hit Ratio with varying metadata percentage in input for Synthetic
trace with Validate trace format and random access

Figure 5.13: Average Hit Ratio with varying read percentage in input for Synthetic trace
with Validate trace format and random access

37

Figure 5.14: Average Hit Ratio with varying data:metadata split in disk-cache for Synthetic
trace with Validate trace format and random access

5.1.3 Graphs for Synthetic Trace files and Random Access Methods using Gaus-

sian Distribution Method and Poisson Distribution Function

Figure 5.15: Average Hit Ratio with varying Cache Size for Synthetic trace with Validate

trace format and Gaussian Distribution
38

Figure 5.16: Average Hit Ratio with varying Metadata Percentage for Synthetic trace with
Validate trace format and Gaussian Distribution

Figure 5.17: Average Hit Ratio with varying Read Percentage for Synthetic trace with
Validate trace format and Gaussian Distribution

39

Figure 5.18: Average Hit Ratio with varying metadata split region for Synthetic trace with
Validate trace format and Gaussian Distribution

Figure 5.19: Average Hit Ratio with varying Cache Size for Synthetic trace with Validate
trace format and Poisson Random Access

40

Figure 5.20: Average Hit Ratio with varying Metadata percentage in input trace for Synthetic
trace with Validate trace format and Poisson Random Access

Figure 5.21: Average Hit Ratio with varying read percentage for Synthetic trace with Vali-
date trace format and Poisson Random Access

41

Figure 5.22: Average Hit Ratio with varying Split percentage for Synthetic trace with Vali-
date trace format and Poisson Random Access

5.2 Hit ratio improvement in Split Disk Cache

Figure 5.1 and 5.2 shows result for hplajw trace which has 67% write requests. We

observe that compared to unified cache the split cache design does not give a considerable

performance improvement with increasing cache size. A maximum improvement of 1% is

obtained at 16 MB cache size. But there is no performance degradation because of the split

for a write intensive application.

Figure 5.3 - Figure 5.6 depict results for Cello-1990 traces (which have predominantly

read accesses), which are taken over two days. We observe that compared to a unified cache

the hit ratio improvement rises to 6% with increasing cache size. We note that the 6%

improvement over unified cache is observed at 16000 KB or .0153 GB, which is .17% or

1/6th of the disk size of 9.1GB. If the disk were considered half full, it is only 1/3rd of 1%

of the used space of disk. Thus, with moderate size caches the split cache performance is

beneficial and is cost-effective than a unified cache of 1%.

42

It is also evident that the hit ratio increases as the data region is increased and metadata

region is decreased. with the most benefit coming at a data: metadata region ration of 90:10.

Figure 5.7 through Figure 5.22 represent the results for synthetic traces with varying

read, metadata percentages, different split percentages and different access patterns. Figure

5.7 through Figure 5.14 represents the results obtained by using the standard random number

generator API for access pattern. Figure 5.15 through Figure 5.18 shows average hit ratios

for various combinations of read percentage, metadata percentage in the input trace, split

percentage in the disk cache and with different cache sizes. Figure 5.19 through Figure 5.22

shows results with the random numbers generated using Poisson distribution. From the

figures we observe that when the total input read requests in the trace is less than 50%,

the performance improvement is not much, whereas, when the read requests are 80% of all

accesses, the performance gain is between 4.8-6.7%. We note that many applications do have

a read to write access ratio of 80:20.

From Figure 5.14, we see that the split cache produces almost same hit ratio as the

unified cache when the data to metadata region ratio is 80:20. But when the metadata

region is further reduced, there is an improvement in overall hit ratio over the unified cache.

Similar results can be seen with Guassian distribution in Figure 5.18 and Poisson distribution

in Figure 5.22. From these figures it can be concluded that split cache design can give positive

result when the split is in the ratio 90:10 between data and metadata regions.

From Figure 5.13 we observe considerable benefits in the hit ratio of the split cache

when the input trace has read requests above 60%. Furthermore, the split cache does not

hinder performance for write intensive applications, having read percentages over 30%.

Hit ratio is also dependent on the size of the cache but up to a certain limit as the

performance growth due to cache size reaches a limit after a certain size. From Figure 5.11,

it is evident that split cache scenario is not beneficial with very small caches size but provides

benefits at moderate cache sizes.

43

Figure 5.12 shows the results for varying metadata percentages in the input trace. We

observe that the split cache design is effective when the number of metadata requests in

the input trace is high. As the number of accesses to metadata increases, the hit ratio for

metadata increases.

All the above results can be seen even with results obtained from Gaussian distribution

and Poisson distribution for different access patterns.

As the metadata region is increased, hit ratio with a given cache size reduces. This

is because the percentage of data region is reduced and hence the cache misses for data

increases. Also, metadata occupies only a small portion of the memory and if allocated more

space than required; the additional space is not sufficiently utilized thereby reducing the

performance.

Hence split cache implementation, for moderate size disk caches, with a data metadata

split region between (90:10..70:30) provides improvements in hit ratio for read intensive

applications.

At the disk cache level, small gains provide considerable improvements as the penalty

of a miss at this level is very expensive in terms of response time and system performance.

For example, consider there are 1000 requests to the disk. If the hit ratio with unified cache

is 30%, then 70% requests are sent to the disk. Hence the total time for 1000 I/O operations

is equal to 7.03 s [see Table 1]. On the other hand, the split cache with a hit ratio of 36%

would take 6.5s. Hence the access time is reduced by approximately 10%. Similarly when

the hit ratio is 60% for unified cache and 66% for split cache, the access time is reduced by

approximately 15%.

44

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Through this research we have tried to increase the hit ratios for read intensive ap-

plications. This research shows that considerable improvements can be achieved when the

percentage of reads in an application is more than 60% and metadata reads out of that is

around 40%. With this condition, we have evaluated the performance at various split per-

centages between data and metadata in data region of the cache. From the results we can

deduce that there is an optimum point at which the number of total hits in split disk cache

is more than the unified cache. This would reduce traffic to physical disk and hence gives

greater response time and higher processing speeds when external storage is involved in I/O

operations. As a result of this, the processor can be kept more busy and the bottleneck

between the processor and the secondary storage system is reduced to an extent.

Hence, with this reserahc we conclude that split in the data region of the disk cache in

to data region and metadata region can yield positive results when the split ratio is between

70:30 to 90:10. Furthermore, we would emphasize to have a split ratio of 90:10 as this would

not reduce the hit ratios to data read considerably and yet at the same time provide hihger

overall hit ratio.

6.2 Future Work

Some of the future work on this research can be as follows:

• To have a dynamic split which can vary based on the access pattern.

45

• To investigate and provide an optimum split cache scenario considering both reads and

writes.

46

Bibliography

[1] Sanjeev Baskiyar and Chengjun Wang. Split disk-cache architecture to reduce read miss
ratio. In Proceedings of the 9th IASTED International Conference, volume 676, page
249, 2010.

[2] Scott A Brandt, Ethan L Miller, Darrell DE Long, and Lan Xue. Efficient metadata
management in large distributed storage systems. In Mass Storage Systems and Tech-
nologies, 2003.(MSST 2003). Proceedings. 20th IEEE/11th NASA Goddard Conference
on, pages 290–298. IEEE, 2003.

[3] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R Ganger. The disksim
simulation environment version 4.0 reference manual (cmu-pdl-08-101). Parallel Data
Laboratory, page 26, 2008.

[4] Robert E Fontana Jr, Steven R Hetzler, and Gary Decad. Tape based magnetic record-
ing: Technology landscape comparisons with hard disk drive and flash roadmaps. di-
mension, 1:2, 2011.

[5] Peng Gu, Jun Wang, Yifeng Zhu, Hong Jiang, and Pengju Shang. A novel weighted-
graph-based grouping algorithm for metadata prefetching. Computers, IEEE Transac-
tions on, 59(1):1–15, 2010.

[6] Bo Hong. Exploring the usage of mems-based storage as metadata storage and
disk cache in storage hierarchy. Storage Systems Research Center, Jack Baskin
School of Engineering, University of California at Santa Cruz http://www. cse. ucsc.
edu/hongbo/publications/mems-metadata. pdf, 2003.

[7] Andy Hospodor. Hit ratio of caching disk buffers. In Compcon Spring’92. Thirty-
Seventh IEEE Computer Society International Conference, Digest of Papers., pages
427–432. IEEE, 1992.

[8] Windsor W Hsu and Alan Jay Smith. Characteristics of i/o traffic in personal computer
and server workloads. IBM Systems Journal, 42(2):347–372, 2003.

[9] Windsor W Hsu and Alan Jay Smith. The performance impact of i/o optimizations and
disk improvements. IBM Journal of Research and Development, 48(2):255–289, 2004.

[10] Windsor Wee Sun Hsu and Alan Jay Smith. The real effect of I/O optimizations and
disk improvements. Computer Science Division, University of California, 2003.

[11] Szymon Jankowski. Future of Disk Drives. [Online; created 2012].

47

[12] Chris Ruemmler and John Wilkes. Unix disk access patterns. In Proceedings of the
Winter 1993 USENIX Technical Conference, pages 405–420, 1993.

[13] Alan J Smith. Disk cachemiss ratio analysis and design considerations. ACM Transac-
tions on Computer Systems (TOCS), 3(3):161–203, 1985.

[14] Harold S. Stone, J. Turek, and J.L. Wolf. Optimal partitioning of cache memory.
Computers, IEEE Transactions on, 41(9):1054–1068, Sep.

[15] Andrew S Tanenbaum, Jorrit N Herder, and Herbert Bos. File size distribution on unix
systems-then and now. Operating systems review, 40(1):100, 2006.

[16] Dominique Thiébaut, Harold S. Stone, and Joel L Wolf. Improving disk cache hit-ratios
through cache partitioning. Computers, IEEE Transactions on, 41(6):665–676, 1992.

[17] IBM Developer Works. http://www.ibm.com/developerworks/wikis/display/

hpccentral/Data+and+Metadata+-+Separate+or+mixed, 2012. [Online; created
November 2012].

[18] Qing Yang and Yiming Hu. Dcd—disk caching disk: A new approach for boosting i/o
performance. In Computer Architecture, 1996 23rd Annual International Symposium
on, pages 169–169. IEEE, 1996.

[19] Yingwu Zhu and Yiming Hu. Disk built-in caches: evaluation on system performance.
In Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003.
MASCOTS 2003. 11th IEEE/ACM International Symposium on, pages 306–313, Oct.

48

