
 
 
 
 
 
 

 
 

DISCRETE EVENT ROLE PLAYING SIMULATION OF SMALL 
 

TEAM SOFTWARE ENGINEERING PROJECTS 
 
 
 
 

Except where reference is made to the work of others, the work described in this 
dissertation is my own or was done in collaboration with my advisory committee.  This 

dissertation does not include any proprietary or classified information. 
 
 
 
 

_______________________________________ 
Neal L Rogers 

 
 
 
 
 
 
Certificate of Approval: 
 
 
____________________________   ____________________________ 
Richard Chapman     David Umphress, Chair 
Associate Professor     Associate Professor 
Computer Science and Software   Computer Science and Software  
Engineering      Engineering 
 
 
____________________________   ____________________________ 
Dean Hendrix      Stephen McFarland 
Associate Professor     Dean 
Computer Science and Software    Graduate School 
Engineering  



 
 
 
 
 
 

DISCRETE EVENT ROLL PLAYING SIMULATION OF SMALL 
 

TEAM SOFTWARE ENGINEERING PROJECTS 
 
 

Neal L Rogers 
 
 
 
 
 
 
 
 
 

A Dissertation 
 

Submitted to 
 

the Graduate Faculty of 
 

Auburn University 
 

in Partial Fulfillment of the 
 

Requirements for the 
 

Degree of 
 

Doctor of Philosophy 
 
 
 
 
 

Auburn, Alabama 
August 7, 2006 

 
 
 



 iii

 
 
 
 
 
 

DISCRETE EVENT ROLE PLAYING SIMULATION OF SMALL 
 

TEAM SOFTWARE ENGINEERING PROJECTS 
 
 
 
 

Neal L Rogers 
 
 
 
 

Permission is granted to Auburn University to make copies of this dissertation at its 
discretion, upon request of individuals or institutions and at their expense.  The author 

reserves all publication rights. 
 
 
 
 

   _____________________________________ 
      Signature of Author 

 
 

_____________________________________ 
      Date of Graduation 



 iv

 
 
 
 
 
 

DISSERTATION ABSTRACT 
 

DISCRETE EVENT ROLE PLAYING SIMULATION OF SMALL 
 

TEAM SOFTWARE ENGINEERING PROJECTS 
 
 

Neal L Rogers 
 

Doctor of Philosophy, August 7, 2006 
(M.S. Columbus State University, 1998) 
(B.S. Columbus State University, 1972) 

 
57 Typed Pages 

 
Directed by David Umphress 

 
 

 A dissertation presented on the simulation of small team software engineering 

projects.  Each individual acts as a team leader for a software project that is scheduled to 

last from 5 to 52 weeks.  A team of four or five ‘software engineers’ is simulated by the 

system.  Metrics obtained from the Personal Software Process (PSP) exercises are 

included with each team member.  Next, task assignments for each team member are 

entered for each weekly time period.  The system then simulates each team member’s 

activities and presents the results to the team leader.  The team leader can modify 

assignments for the next period and the system continues to simulate all team activity.  

 The system simulates possible problems and defects that a team could face in an 

actual project.  The team leader can use the system to practice team leadership skills and 

build experience in directing a team to complete a project on time and within budget.  



 v

The simulator was validated statistically by analyzing simulated results and actual project 

results. 



 vi

 
 
 
 
 
 
Style manual:  Software Engineering 

 

Software used:  Microsoft Word 2003 SP2 

 



 vii

 
 
 
 
 
 

TABLE OF CONTENTS 
 

LIST OF TABLES AND FIGURES ..................................................................viii 

INTRODUCTION.....................................................................................................1 

LITERATURE REVIEW..........................................................................................3 

RESEARCH DESCRIPTION ...............................................................................10 

APPLIED RESULTS ...............................................................................................17 

RESEARCH VALIDATION.................................................................................21 

CONCLUSIONS.......................................................................................................27 

FUTURE WORK......................................................................................................28 

REFERENCES..........................................................................................................29 

APPENDICES...........................................................................................................33 

APPENDIX A - TSPISIM INSTRUCTION SUMMARY.......................34 

APPENDIX B - SCREEN SHOTS AND DESCRIPTIONS.................37 

APPENDIX C - FPM NEED STATEMENT............................................45 

 
 
 
 



 viii

 
 
 
 
 
 

LIST OF TABLES AND FIGURES 
 
 

TABLE 1 – ERAU TSP DATA SUMMARY .....................................................22

TABLE 2 – SIMULATOR TSP DATA SUMMARY........................................23

TABLE 3 – STATISTICAL SUMMARY.............................................................24

FIGURE 1 – SCATTER PLOT OF LOC AND HOURS...............................26

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1

 
 
 
 
 
 

INTRODUCTION 
 
 
 Although much progress has been made in representing and simulating software 

development processes, significant work remains. The majority of research to date has 

been directed in simulating processes from the top down using Systems Dynamics as well 

as Monte Carlo techniques, thus providing decision makers with information about the 

strategic effects of processes. With exceptions noted later, relatively little effort has been 

expended in bottom up, role-playing simulations that provide workers with insight as to 

how processes work and can be managed. 

 This research describes the development of a prototype tool for simulating small-

team software processes from a role-playing perspective. A user of the simulation tool is 

placed in the role of lead software developer in a computer-simulated project. Using a 

game-playing paradigm, a user guides a simulated software project from start to 

completion. In so doing, a user gains hands-on experience with instantiating, 

manipulating, and observing software processes. 

 A user interested in learning about the role of a software engineering team leader 

provides the simulator with the planned tasks and team member schedule with assistance 

from the tool.  She also decides how many developers to include in the simulated project 

together with their performance data, such as productivity, defect rates, etc. Additionally, 

she provides information on the scope and size of the software to be "built" during the 



 2

simulation. The project is simulated based on values randomly generated along 

distributions defined by the programmer performance data.  Planned versus actual metrics 

along with results of developers are displayed to the user. The user has the opportunity to 

alter resources, modify tasks, or make other changes to the project and observe the 

consequences of those changes. 

 The research was validated by comparing the simulation results to actual project 

data.  The Team Support Process (TSP) [Humphrey 2000] was used as the base for the 

model.  TSP offers several advantages as a concrete process model to use for the 

purposes of validation. First it was designed for small teams such as might be found in an 

industrial training or educational environment. Second, it is explicitly defined. Third, it is 

in use in industry and is, therefore, not strictly academic. Fourth, it has both a managerial 

and a technical component: TSP is the umbrella process that orchestrates technical 

subprocesses articulated through the Personal Software Process [Humphrey 1995], or 

PSP. This approach allows a user to assume a management role by working at the TSP 

level. Finally, lessons learned from using TSP in industry can be incorporated as 

heuristics in providing assistance to the user of the simulation. 



 3

 
 
 
 
 
 

LITERATURE REVIEW 
 
 
 Existing work falls into two major areas: simulation and software processes.  

Below is a synopsis of the present state of knowledge in each area.  This work will 

concentrate on identifying the process elements required for a realistic simulation. 

 

Simulation 

 The major roots of simulation specific to software projects began in the late 1970s 

with Thayer [Thayer 1979] providing a static model of managerial processes common to 

software projects. While the model was qualitative and not designed to be exercised 

dynamically in a simulation, it provided a critical glimpse into identifying activities that 

take place during any software development project. McFarlan [McFarlan 1974] provided 

a complimentary model by explaining the degree to which managerial processes affect 

the software development effort. His model was based on project characteristics such as 

size, complexity, and formality. McKeen's research [McKeen 1981] provided increasing 

specificity by modeling and examining the managerial and technical differences among 

lifecycle activities within a project. As with Thayer, McFarlan and McKeen were 

concerned with static models that identified process activities. Their efforts resulted in 

models that were not detailed enough to simulate a project directly; however, they 

provided foundational research for subsequent behavioral models. 



 4

 Abdel-Hamid and Madnick [Abdel-Hamid et al 1991] produced the first 

recognized approach to simulation of software management processes. Their work is 

considered seminal to the process simulation community. They identified processes to 

simulate from Thayer, McFarland, and McKeen, as well as by their own research. They 

expressed the behavioral aspect of their processes using the complex system dynamic 

approach developed by Forester [Forester 1961]. The result was software that, when 

executed, mimicked the human resource management, controlling, planning, and 

software production facets of a software development project during design, coding, and 

testing activities. From this they were able to draw general conclusions about the 

influence of software estimation, the economics of quality assurance actions, and the 

validity of previously anecdotal staffing wisdom. Since the 1991 milestone, Arizona State 

University (e.g., [Merrill and Collofello 1997]) has been active in expanding the Abdel-

Hamid and Madnick's work to include a chapter in the book: “Simulation-based Software 

Process Modeling and Evaluation”.  [Ros et al 2004]  Other relevant contributions 

include those of Schneider [Deininger and Schneider 1994], who reports on using general 

simulation models to teach software project management, and Tausworthe and Lyu 

[Tausworthe and Lyu 1996], who predict the reliability of a software product based on 

the quantification of software project characteristics. 

 Abdel-Hamid and Madnick's work remains the most comprehensive to date. 

Indeed, emerging from it has been a significant process simulation community. Process 

simulation workshops (e.g., ProSim '98 through ProSim 2005) have yielded significant 

work.  Emergent themes within the community include simulating processes to facilitate 

strategic decision making, to improve performance, examine return on investment, and 



 5

developing rapidly deployable software process models. [Raffo 2003].  The Portland 

State University group has been especially prodigious in applying both system dynamics 

methods as well as discrete-event hybrids in mining simulated processes as much as 

possible for bottlenecks, resource tradeoffs, and quality assurance flaws. Their work, 

together with the Software Engineering Institute's examination of process modeling (e.g., 

[Burke 1997] and [Christie 1999]), has subsumed the most relevant work of the large 

software process conferences, such as the International Software Process Workshop, the 

International Conference on Software Process, and the International Conference on 

Software Engineering. 

 The bulk of the process simulation efforts have been directed toward top-down 

repetitive execution of processes. The simulation technique of choice is that developed by 

Forester's System Dynamics method. This technique allows for a "big picture" view of a 

system by defining information flow, flow rates, and causal loops. The technique is also 

implemented in a number of languages, including the highly graphical iThink system. 

The disadvantage of the technique is in its coarse granularity. System dynamics models 

represent systems as a collection of activities with interconnecting flows; the model is 

simulated by flowing information between activities in much the same way as water 

flowing from one container to another over an interconnecting pipe. Mechanisms exist to 

restrict the flow of information; measurement probes reveal to the user of the simulation 

the rate of flow and thereby give an insight into the operation of the system. Similar 

activities are generally represented as abstract collections. For instance, in software 

development project simulation, the programmers would be considered as a group of 

anonymous entities possessing a single statistical characteristic expressing, say, code 



 6

productivity. Simulations using this technique are, by nature, designed to reflect broad 

trends and overall statistical performance. 

 The complement to system dynamics is discrete-event simulation (see [Robinson 

2005]).  In contrast to the analog nature of system dynamics, discrete-event offers control 

over distinct elements within a system. In other words, rather than viewing the model 

from the flow within the system, the model can be viewed from the perspective of each 

individual entity being simulated. Such an approach could be used to model configuration 

items (such as requirements, code modules, bug reports, documentation, etc.) more 

intuitively for training purposes. Moreover, the researchers believe the discrete-event 

approach can more accurately reflect a specific development project's circumstances 

(e.g., Sally has a particular code defect rate, Joe has another - each measure can be 

tailored to the individual's real-life characteristics). 

 While both system dynamics and discrete-event simulations have been used for 

instructional purposes (see [Martin and Raffo 2000]), the number of times a process has 

to be performed to obtain statistically valid results necessitates a top-down perspective, 

one that discourages interaction. These methods are excellent for analyzing and 

expressing theoretical flow of information through a system and assume that all flows are 

carried out in the real system; however, in actual development efforts, processes are 

circumvented and activities are omitted. The University of Stuttgart's Institute of 

Computer Science is at the forefront of instructional use of process modeling by 

incorporating interaction into process simulation through role playing (see [Drappa and 

Ludewig 2000]). Their system, SESAM, relies on a "player" to intercede as the model is 

being exercised from one discrete time unit to another. While limited to a text-based 



 7

interface, SESAM provides a modeling paradigm based on rules and activity as well as a 

model executor that generates performance statistics of virtual software developers. 

 Other instructional offerings include “Problems and Programmers” an educational 

software engineering card game [Baker et al 2003] where two teams attempt to complete 

a project with limited time and resources.  Various problems occur when your opponent 

plays cards that can restrict your options or remove previously completed work.   

 SimSE is a graphical simulation [Navarro 2005] that shows a team of engineers, 

each with various levels of proficiency at gathering requirements, design, coding and 

testing.  Some have personal quirks, like ‘not working well with others’, or ‘only enjoys 

testing’.  The user assigns tasks to engineers and can also set the time limit to stop and 

review assignments.  Several options to view what each engineer has accomplished, 

number of discovered defects, how much of the resources have been consumed, etc. are 

available to the user.  A percentage ‘score’ is issued at the completion of the simulation. 

 

Software Processes 

 The principle that software could be built in a deliberate fashion was first 

formalized by Royce [Royce 1970], where he identified all projects as having a lifecycle, 

or collection of common technical software development activities. Throughout the next 

two decades, numerous lifecycle processes were proposed, such as the spiral model 

[Boehm 1988], the object-oriented life model [Henderson-Sellers 1990], and the 

synchronize-and-stabilize model [Cusamano and Selby 1997]. The strength of all of these 

approaches is that they advocate a disciplined approach to the technical aspects of 

building software. Their weakness is that they do not adequately address managerial 



 8

functions nor do they speak to the ancillary obligations of configuration management, 

quality assurance, training, and similar issues. 

 The realization that software development consists of more than technical 

activities came as a result of the lifecycle model research as well as the manufacturing 

process improvement work of Deming [Deming 1986], Juran [Juran 1988], and Crosby 

[Crosby 1979]. The marriage of these areas resulted in published process standards that 

advocate using a combination of technology, management, and process to build software. 

IEEE 1074 [IEEE 1997] is one such an example of a published process standard. Because 

the standards are prescriptive in nature, projects within the same organization using 

different process standards cannot readily benefit from each other's personnel, training, 

and lessons learned. This led to development of descriptive process models, i.e., models 

that describe desirable technical and managerial activities but do not prescribe when or 

how those activities take place. The ISO 9000 series [ISO 2000] and the Capability 

Maturity Model Integration [CMMI 2002] are two such descriptive models that help 

organizations assess their ability to build software based on the quality of their defined 

software development processes. 

 The process models advocated throughout the 1990's have led to a recent backlash 

among smaller development organizations. Laitinen [Laitinen et al 2000] suggests that 

the software developers, feeling encumbered by the bureaucratic requirements of 

software processes, are seeking to trim down processes to manageable levels. Fowler 

[Fowler 2000] concurs by noting that software firms are adopting so-called lightweight 

models that adapt to their particular circumstances. Lightweight process models such as 

Extreme Programming [Beck 2000], Crystal [Cockburn 2000], Feature Driven 



 9

Development [Coad 1999], and Scrum [Schwaber 2000] reflect this cultural evolution by 

focusing on adaptation rather than prediction, which is the focus of heavyweight models. 

 Lightweight models rely on rules and philosophies to impart process to their 

adherents. This makes them particularly difficult to simulate because of the lack of 

structure in the processes. Humphrey's umbrella managerial Team Software Process 

(TSP) [Humphrey 2000] and technical Personal Software Process (PSP) [Humphrey 

1995] and PSP, A Self-Improvement Process for Software Engineers [Humphrey 2005], 

on the other hand, provide a notable exception. TSP and PSP have structural process 

scripts that describe explicitly at a particular level of abstraction what actions participants 

of the process should be doing, thus making them suitable for simulation. Moreover, 

because TSP and PSP are used in both academic and industrial settings, they have 

empirical usage data. (see also [Humphrey 1998], [Hilburn 1999], Borstler et al 2002], 

and [Umphress et al 2002]) 



 10

 
 
 
 
 
 

RESEARCH DESCRIPTION 
 
 
 Software engineering students need a method to practice their newly learned skills 

in project management.   The method should be one that is current and is actually used in 

both academia and industry.  PSP [Humphrey 1995] and [Humphrey 2005] and TSP 

[Humphrey 2000] are processes for personal and team use respectively and are used for 

instruction and also used regularly in industry. [Umphress et al 1995].  PSP, or Personal 

Software Process, is intended for individual use and will result in determining personal 

metrics such as: lines of code produced per hour, errors per thousand lines of code, 

percent of time spent in each phase of the life cycle, etc.  Some of these metrics are used 

in simulating the activities of the team members.  The TSP, or Team Support Process, 

was designed for small teams and is the process that is used to coordinate the activities of 

the team. 

 The primary objectives of this research were: 

• To ascertain the type and specificity of knowledge about small-team software 

processes required to conduct meaningful and valid simulations. Although TSP 

will be the specific process model used, information that can be generalized to 

other process models will be produced from this research.  

• To develop a means by which to exhibit process interaction and performance. 

Predominant process simulations systems to date interact with the user by 



 11

displaying a symbolic portrayal of the system being simulated accompanied 

by widgets such as meters or graphs that portray process metrics [Abdel-

Hamid and Madnick 1991].  Text-based interfaces seem to prevail for role-

based simulations [Drappa and Ludewig 2000].  This research takes a 

different approach and portrays the process as it is simulated by animating the 

virtual people involved in the process. This approach, similar to Maxis The 

Sims, gives a novel perspective on process learning; and, although we propose 

to only prototype the interface, we feel the approach will lend new insight into 

instructional tools. 

 The ultimate aim of this research was to produce a software tool that simulates a 

software development project.  The tool was validated by comparing actual results from a 

project completed by several teams with an identical number of simulated results.  This 

work offers significant contributions to the current state of software process research in 

the following ways: 

 The simulator itself will serve as a means by which software developers can learn 

about processes, specifically the Team Support Process.  The TSP assigns roles to the 

team members.  The roles consist of: Team Leader, Development Manager, Planning 

Manager, Quality/Process Manager, and Support Manager.  Each role has specific 

functions to perform for the duration of the project.  Forms to assist with the planning, 

scheduling, and tracking of the project are provided with TSP.  A project workbook (The 

TSP tool) is also provided.  It is an Excel workbook with sheets that contain many of the 

forms needed and is designed to minimize the manual effort required for planning and 

tracking the project.  Use of the simulator will give students valuable practice using and 



 12

understanding the TSP tool and the underlying processes.  In particular, the tool will help 

users understand what information must be supplied to a process to make it successful.  

For example, they will learn that if they do not assign enough time for review and 

inspections, numerous defects will be left in their product.  The tool will also allow users 

to conduct ‘what if’ scenarios regarding process issues.  Finally, by using PSP and TSP, 

tool users will be engaged in simulating processes using their actual performance data, 

not data that was manufactured for simulation purposes. 

 Using the Team Support Process as a baseline allows us to explore in a simulated 

environment the shortfalls and assumptions of the process and apply those lessons to the 

industrial practice. TSP, and its more-detailed companion PSP, would be validated as being 

suitable for simulation. 

 Many approaches to simulation of team results have been implemented, but not 

many have attempted to simulate each individual and then assemble the results for the 

entire team.  This work simulates each individual using his/her production metrics obtained 

from the PSP process, and combines them to determine the team results. 

 A major problem with teaching software engineering is that most students never get 

a chance to see what could happen as a result of different choices made during a project.  

This work allows a student to act in the role of a project manager and get experience in 

making decisions and seeing the results rapidly.  Since TSP is used as a basis for this work, 

a student who has taken (or currently taking) a TSP course will have the information 

required to execute the simulation.  The current simulator implementation consists of 

several Excel worksheets added to the TSP workbook, which the PSP/TSP students will be 

familiar with as they are used in both PSP and TSP instruction. 



 13

 Four metrics are entered for each engineer:  Lines of Code (LOC) per hour, Errors 

per Thousand LOC, Pages per hour, and Errors per page.  These metrics are entered with 

each engineer on the Candidates sheet and are transferred to the task sheet to assist with the 

task planning.  The metrics were chosen because they are results of the PSP course ‘final 

report’. [Humphrey 2005]  TSP assists the user in developing a task list which consists of 

the tasks needed to complete the project and the planned hours for each engineer for that 

task.  The metrics from PSP help determine the plan time for each engineer’s tasks.  Once 

the plan tasks are entered, the team hours planned per week are entered into the schedule. 

 The model is ready to execute when the team is selected, roles are assigned, and the 

plan (tasks and times per engineer), and weekly schedule have been entered.  Once the 

team leader determines that the plan is how she wants it, she will go to the Simulator sheet 

and click ‘Simulate next week activities’.  The simulator will then simulate tasks for each 

engineer in the sequence presented. 

 A random function is used for most of the ‘actual’ calculations.  It is designed to 

allow the instructor to ‘throttle’ the allowable range of the results.  The Ranges sheet has 

several categories of activities that the instructor can enter a minimum and maximum 

percent value with 100% resulting in the normal value. For example, if the instructor 

entered 50% as the minimum and 150% as the maximum, an activity could range from 

50% below to 50% above its nominal range.   For each task for the current week (and 

including the next week, if there is extra time) the simulator will process the following 

pseudocode until each engineer’s time is expended, or the project is completed. 



 14

     '  Executed for all tasks (thru current week number + 1) until each engr time used 

     '   Simulate 'actual' hours to complete each task for the simulated week 
     ‘   i  is the task index, e is the engineer index 
         Do While ‘incomplete tasks are left’ 
             If  Task(i) ‘not completed’ 
                 e = findEngr(i)                           ' Set e to index of current engr 
                 taskHrs = taskTime(i, Week)     ' Get time spent on task this week 
                 If taskHrs >= 0.1 Then               ' Only if task worked on this week 
                     Post taskHrs to the task and reduce engr hours left 
                     Post to Actual Metrics for engr 'e' 
                     Accum metrics 
                     Accum defects 
                 End If 
             End If 
             i = i + 1 
         Loop 
 
 Basically, the next task is selected, the engineer is determined, and the plan time is 

multiplied by a random factor to determine the actual time expended on the task.  If the 

engineer has enough time left for the current week, the task is completed, otherwise the 

time is posted to the task, but the task is not marked as completed.  The time is charged to 

the engineer and posted to the phase of the task.  Last, the defects introduced (or removed) 

are determined and posted by executing the following pseudocode task: 

     Select Case Range(task phase)                                      ‘ Select current task 

           Case ‘Phases that usually adds to defects – Documentation type’ 
              If (Size measure = "Page") Then                        ‘Check for Page size 
                  defAdd = engr error per page * number of pages _ 
                    * Randy(minRange, maxRange) 
              Else                                                                    ‘not Page, use Time 
                defAdd = engr pages per hour * engr errors per page _ 
                  * actual hours * Randy(minRange, maxRange) 
              End If 



 15

           Case ‘Phases that usually adds to defects – Coding type’ 
               If (Size measure = "LOC") Then                        ‘Check for LO’ size 
                   defAdd = engr err/KLOC * LOC / 1000 * actual time _ 
                     * Randy(minRange, maxRange) 
               Else                                                                    ‘not LOC, use Time’ 
                 defAdd = engr LOC/hr / 1000 * engr err/KLOC _ 
                   * actual time * Randy(minRange, maxRange) 
               End If 
 
           Case ‘Phases that usually reduces defects’ 
               defRem = Task actual hours * Errors corrected per hour _ 
                   * Randy(minRange, maxRange)) 
 
           Case ‘Phases that usually has no effect on defects’ 
             No effect on defects 
     End Select 
 
     ‘post defects to all defect tracking areas  
     defPost = defPhasePost(defPhase, defNdx, defAdd, defRem, i) 
 
 The actual results are posted to the simulator sheet showing the time spent by each 

engineer and any defects introduced or removed with a running total of defects left.  

Several summaries are presented on the simulator sheet that the project manager can 

analyze and use to make changes to the plan.  First, there is the ‘team member planned 

phase totals’ that lists each engineers planned time broken into seventeen categories 

defined by the TSP.  This summary is available before any simulation is completed so the 

project manager can adjust tasks between team members and phases until she is satisfied 

with them.  Once the simulation is started, five other summaries are presented to the team 

leader.  The ‘actual phase totals’ show the time spent in each of seventeen phases along 

with the percent of total time.  The ‘project summary’ shows weekly defects added and 

removed with a total at the top.  The ‘team ratio’ summary shows the goal, plan and actual 

times for three ratios defined by TSP: Design as a percent of code, code review as a percent 

of code, and design review as a percent of design.  TSP suggests 100%, 50% and 50% 



 16

respectively as goals.  The ‘defect by phase’ shows defects injected, removed, and 

remaining, broken into five phases: planning/requirements, high level design, detail level 

design, code and test.  The ‘plan and actual time in phase’ shows the time and percent of 

total time in six phases: Management and analysis, planning, requirements, design, 

implementation and testing. 

 Simulation continues until all tasks are completed, or there is no more time left.  If 

the instructor allows, additional weeks can be added to the schedule if needed so the project 

can be completed. 

 There are also several graphs on the project sheet that can help the student visualize 

exactly what is happening and why.  The Quality Profile shows how closely the plan 

follows the quality guidelines by showing a pentagon with five ratios with values between 

zero and one whose products give the process quality index.  [Humphrey 2005 – pp150-

153]  A few other charts that are very helpful in visualizing the progress are: Earned value 

per Week, Cumulative Plan vs. Actual Hours, and Cumulative Earned Value.  The charts 

can be viewed at anytime during the projects duration. 



 17

 
 
 
 
 
 

APPLIED RESULTS 
 
 
 To use the simulator, several pieces of information need to be entered.  First the 

instructor enters a list of team member candidates that include certain metrics that were 

obtained from their PSP assignments.  Then the instructor enters the ranges that the team 

members may deviate from their normal production results.  Watts Humphrey recommends 

that about 50% of the student’s PSP production results should be used for most projects.  

The instructor can use her own experience in determining the factors.  Most of these ranges 

are expressed in percentages from the expected results.  There are also a few ranges 

expressed in units per hour, and probability of completion.  The instructor could also set a 

limit for the defects remaining after a project is completed, and have the student make 

another run using the information learned.  Each team member would then gain insight into 

the decisions required of a team leader / manager and learn management skills during the 

process.  The instructor can also enter error messages that would be unique to the particular 

project. 

 The student, or candidate team leader, enters the project information on the Project 

sheet.  The project name, team name, start date, instructor, and cycle are entered and the 

‘Use Defect Log’ is checked.  The ‘Use Time Log’ is unchecked.  She then selects a team 

of five engineers from the Candidates sheet and assigns each a standard TSPi role on the 

Roles sheet.  The standard TSPi ‘SUMS’ worksheet data is then entered.  This usually 



 18

consists of entries for the System Requirements Specifications (SRS), High Level Design 

(HLD), and major components of the system.  These entries include estimates of size, 

usually either in Pages or Lines of Code (LOC).  It is highly recommended that only major 

components be entered on the SUMS sheet because each entry will generate several detail 

lines on the Task sheet.   

 She then clicks on the ‘Generate Task List’ button on the Task sheet.  Several tasks 

will be generated for each major component listed on the SUMS sheet.  Estimates of time, 

estimated size, and size measure (Page or LOC) are entered next for each engineer on each 

task.  The tasks should be rearranged into the order they should be completed, if necessary, 

and the workload should be balanced between the team members.  If multiple team 

members are to work on a given task, enter the time for each in the appropriate Role 

column, and the total estimated size.  A future step will create individual tasks and divide 

the estimated size equally between team members.  If the size should not be distributed 

evenly between the team members, a separate line can be entered for each member, or the 

size can be adjusted for each engineer. 

 The planned hours for the entire team for each week are now entered on the 

Schedule sheet.  The times for each week do not need to be the same, but it is usually easier 

if they are initially.  Now return to the Task sheet and click on the ‘Split Plan Time’ button.  

This selection will generate individual tasks for each engineer, and generate the proposed 

schedule.  She will get an error message if there was not enough time entered on the 

Schedule sheet.  If an error is shown, return to the Schedule sheet and add more time.  She 

can extend the project by a week or more if that is an option, or simply add more time for 

each week.  If any entries on the Task or Schedule sheet are changed or moved, the ‘Split 



 19

Plan Time’ button must be clicked again.  The ‘Split Plan Time’ function also updates the 

planned times on the Simulator sheet.  She can now modify and rearrange any of the tasks 

on the Task sheet to better balance the workload.  It is best to have tasks that can be 

completed in a week, as no progress is shown until a task is completed.  For example, she 

can split a programming task of six hours, to two tasks of three hours each.  Be sure to 

change the estimated sizes.  Also, run the ‘Split Plan Time’ after completing the changes.  

Once she is satisfied with the proposed schedule, she is ready to begin the simulation. 

 Go to the Simulator page and click on the ‘Simulate next week activities’ button.  

The week will be simulated and the results posted to the project.  The ‘Actual phase totals 

(so far)’ on the Simulator page will be updated with the hours expended by phase and LOC 

generated (if any).  The Task sheet will also be updated with the Actual Hours and the 

Actual Date (if the task was completed.)  The Project sheet graphs will also be updated.  

Any defects removed will be logged to the LOGD sheet.  The defects remaining will show 

in the Project Summary area of the Simulator sheet.  It is normal for the defects remaining 

to approach 100 or more during a simulation.  Future tasks should detect and remove them 

if she has assigned enough review or test time to them.  After each weekly simulation, you 

can adjust task assignments for any task that has not been completed.  Be sure to rerun the 

‘Split Plan Time’ if any changes are made before simulating the next week.  Continue 

making adjustments and simulating weeks until you get the ‘Simulation Complete!’ 

message.  If you run out of time or attempt to simulate a week which you have not assigned 

any time, you will get an error message.  Return to the Schedule sheet, add more time and 

rerun ‘Split Plan Time’.  You may also see messages that are displayed in the ‘Message 



 20

Area’ of the Simulator sheet during the progress of the project.  They are informational 

only and are determined by the number of currently outstanding defects. 



 21

 
 
 
 
 
 

RESEARCH VALIDATION 
 
 
 The simulator validation was accomplished by comparing the simulator results to 

the results of an actual project that was completed by 22 student teams at Embry Riddle 

Aeronautical University (ERAU) over a three year period.  The project consisted of a Flight 

Planning and Management (FPM) system that maintained minimum separation of aircraft 

in a variable size “en-route” sector of airspace.  The sector is a three dimensional airspace 

region bounded vertically on the bottom by flight level 180 (FL180 or 18,000 feet), and on 

the top by flight level 600 (FL600 or 60,000 feet) and horizontally by a rectangle that can 

vary in size from 50 nautical miles to 150 nautical miles on each side.  For more details, see 

the FPM Needs Statement in the Appendix.  Results for the 22 student teams were 

averaged and standard deviations and other statistics calculated.  The metrics used and their 

units are: Plan Effort (hours), Actual Effort (hours), Plan New and Changed Lines of Code 

(LOC), Actual New and Changed LOC (LOC), and Defects found and removed (Count).  

The task schedule was used as input to the simulator, keeping the phase effort distribution 

and means the same as the ERAU.  The simulator was then run 22 times and the results 

compared to the actual project results.  The results of both the ERAU and the simulator are 

shown in Table 1 and Table 2 respectively. 



 22

 

ERAU TSP Data - Summary - 1999 - 2001 
 Plan Actual Plan Actual    

Team Effort Effort N&C N&C Total Def / LOC /
 (hrs) (hrs) LOC LOC Defects KLOC Hour

1 209 217 800 612 43 70 2.8
2 178 137 70 269 18 67 2.0
3 125 91 400 1112 59 53 12.2
4 101 69 200 472 55 117 6.8
5 177 163 330 870 50 57 5.3
6 165 128 200 380 35 92 3.0
7 207 228 322 1015 54 53 4.5
1 118 72 450 224 37 165 3.1
2 131 59 580 724 32 44 12.3
3 181 88 700 578 41 71 6.6
4 163 77 550 446 62 139 5.8
5 211 103 1600 850 100 118 8.3
6 179 128 420 356 78 219 2.8
7 190 112 465 865 44 51 7.7
1 315 268 235 418 89 213 1.6
2 288 233 260 540 26 48 2.3
3 123 136 160 240 30 125 1.8
4 204 144 175 661 40 61 4.6
5 177 150 390 911 94 103 6.1
6 134 162 207 325 45 138 2.0
7 213 132 320 438 20 46 3.3
8 189 84 207 325 35 108 3.9

                
avg 181 136 411 574 49 98 4.9

std dev 51 58 323 266 23 52 3.1
Min 101 59 70 224 18 44 2
Max 315 268 1600 1112 100 219 12

 

TABLE 1 



 23

 

Simulator TSP Data – Summary – 2005 
 Plan Actual Plan Actual    

Team Effort Effort N&C N&C Total Def / LOC/ 
 (hrs) (hrs) LOC LOC Defects KLOC Hour

1 181 154 411 923 58 63 6.0
2 181 184 411 1034 68 66 5.6
3 181 148 411 298 58 195 2.0
4 181 121 411 252 45 179 2.1
5 181 204 411 949 72 76 4.7
6 181 163 411 408 67 164 2.5
7 181 63 411 248 31 125 3.9
8 181 216 411 672 69 103 3.1
9 181 147 411 344 53 154 2.3

10 181 90 411 224 30 134 2.5
11 181 196 411 1050 60 57 5.4
12 181 250 411 779 69 89 3.1
13 181 126 411 268 46 172 2.1
14 181 201 411 554 63 114 2.8
15 181 114 411 554 39 70 4.9
16 181 175 411 821 50 61 4.7
17 181 102 411 390 29 74 3.8
18 181 133 411 504 35 69 3.8
19 181 201 411 1275 54 42 6.3
20 181 87 411 637 27 42 7.3
21 181 221 411 676 56 83 3.1
22 181 170 411 677 51 75 4.0

                
avg 181 158 411 615 51 100 3.9

std dev N/A 49 N/A 302 14 47 1.5
Min 181 63 411 224 27 42 2.0
Max 181 250 411 1275 72 195 7.3

 

TABLE 2 



 24

 A summary of the statistical results from the above two tables follows: 

 

                                                   Statistical Summary Table 

Variable 

Unit 

Statistics ERAU 

(N=22) 

Simulator 

(N=22) 

Actual Effort 

Hrs 

Mean 

StdDev 

136 

58 

158 

49 

Actual Effort 

Hrs 

Min 

Max 

59 

268 

63 

250 

Actual N&C 

LOC 

Mean 

StdDev 

574 

266 

615 

302 

Actual N&C 

LOC 

Min 

Max 

224 

1112 

224 

1275 

Defects 

Count 

Mean 

StdDev 

49 

23 

51 

14 

Defects 

Count 

Min 

Max 

18 

100 

27 

72 

 

TABLE 3 



 25

 There are several statistical tests available for analyzing groups of data.  Each test 

has a set of conditions that must be true for the test to be appropriate.  The non-pooled t-test 

was selected because all of the conditions for its use were met. [Weiss 2005, p.555]  Each 

statistical test has an associated null hypothesis.  The null hypothesis for this research states 

that there is no statistical difference between the means of the ERAU group and the 

simulator group.  There are two approaches available for the t-test; the P-value approach 

and the critical-value approach.  Both are used in this analysis.  The P-value is a statistical 

measure of the probability of getting a value of the test statistic as extreme or more extreme 

than that observed by chance alone assuming that the null hypothesis is true.  A typical 

significance level used in industry for comparison with the P-value is 0.05.  Values less 

than 0.05 would indicate strong evidence that the null hypothesis should be rejected. 

 The t-test uses a measure of sample size called ‘Degrees of Freedom’ (DF) which 

equals the sum of the sample sizes minus two (22 + 22 – 2) = 42.  The DF is used to 

determine the critical value used in the ‘critical-value’ approach.  The t-test can be 1-tailed 

or 2-tailed depending on how the hypothesis is stated.  If the hypothesis uses ‘less than’ or 

‘greater than’, then the 1-tailed test would be performed.  If the hypothesis uses ‘equal’ or 

‘not equal’, then the 2-tailed t-test is done.  The critical-value is the threshold that the t-

statistic is compared with to determine if the null hypothesis should be rejected.   The 

critical-value for a two tailed t-test with 42 degrees of freedom and at the 0.05 significance 

level is 2.02.  If the t-statistic exceeds the 2.02 value the null hypothesis is rejected.  The t-

statistic comparing the actual effort from the ERAU group and the simulator group is 1.36.  

The t-statistic indicates that no statistical difference was found between the means.  

Comparing the actual LOC from ERAU and the simulator, the t-statistic is 0.48.  The t-



statistic again shows that the means of the two groups are not statistically different.  The P-

value for the actual effort is 0.18 and the P-value for the actual LOC is 0.63.  These p-

values are considered quite large (greater than 0.05) and indicate strong statistical evidence 

for the null hypothesis that the means are not statistically different.  It can be concluded 

from both approaches that the means of the actual effort and LOC from the ERAU group 

and the simulator group are not statistically different. 

  A scatter plot shows the range and distribution for the variables LOC and actual 

effort.  The colors (shading) show the results of actual LOC and effort plotted for both the 

ERAU and Simulator on the same chart.   The scatter plot is another way of showing that 

the data ranges of the ERAU and simulator data overlap considerably and are similar. 

 
 

 
                               FIGURE 1 

 26



 27

 
 
 
 
 
 

CONCLUSIONS 
 
 

• This research showed that it is possible to create a validated model of the TSPi 

process that can be used for interactive role playing.  Using the metrics available 

from a simple PSP course, students are able to simulate a project and obtain 

reasonable and realistic results. 

• The planned schedule used by TSPi is sufficient input to a simulator for conducting 

a realistic simulation. 

• The defect insertion and correction rates obtained from Humphrey are accurate 

enough to model educational projects. 

• A PSP course gathers enough data that can be analyzed to produce sufficient 

information to simulate a TSPi based process. 

• This research additionally showed that a realistic model can be prototyped using a 

spreadsheet. 



 28

 
 
 
 
 
 

FUTURE WORK 
 
 

• This prototype version is calibrated for student use.  By using experience factors, 

similar to the ones used by COCOMO, the metrics could be adjusted to take more 

experienced team members production into account. 

• Evaluate the tool in an actual classroom setting to determine if student process 

performance is improved. 

• Add cost factors so the total cost of a project could be estimated. 

• Modify the simulator to generate a sample initial task schedule given only the 

means of planned effort and planned new and changed LOC.  The system could use 

the industry phase percentages in the calculations. 

• The TSPi process has risk assessment features that were not utilized in this 

simulation.  Add risk assessment components to the simulator. 

• Modify the simulator so each team member could simulate their own activities each 

week and then combine them into the team workbook just like the TSPi workbook. 

• Verify that the results presented by the simulator are useful to the team leader in 

learning about process and making changes to improve the schedule. 

• Conversion of the simulator to the Access based version when it becomes available.  

• Allow other processes to be entered into the simulator replacing TSP. 

• Validation of the simulator in an industrial setting. 



 29

 
 
 
 
 
 

REFERENCES 
 
 
[Abdel-Hamid et al 1991] Abdel-Hamid, T., and S. Madnick. 1991. Software 

Project Dynamics: An Integrated Approach. Prentice 
Hall. 

 
[Baker et al 2003] Alex Baker, Emily Oh Navarro and Andre van der 

Hoek, 2003.  Problems and Programmers: An 
Educational Software Engineering Card Game. 

 
[Beck 2000] Beck, K. 2000. eXtreme Programming Explained. 

Addison Wesley. 
 
[Boehm 1988] Boehm, B. 1988. A Spiral Model of Software 

Development and Enhancement. IEEE Computer, May, 
61-72. 

 
[Borstler et al 2002] Borstler, J., Carrington, Hislop, Lisack, Olson, 

Williams, Teaching PSP: Challenges and Lessons 
Learned.  IEEE Software Sep/Oct 2002      pp 42-48. 

 
[Burke 1997] Burke, S. 1997. Radical Improvements Require Radical 

Actions: Simulating a High-Maturity Software 
Organization. Technical Report SEI-96-TR-023. 
Software Engineering Institute, Carnegie Mellon 
University, Pittsburgh, PA. 

 
[Christie 1999] Christie, A. 1999. Simulation -- an enabling technology 

in software engineering. 
http://www.sei.cmu.edu/publications/articles /christieapr 
1999/christie-apr1999 .html

 
[CMMI 2002] Software Engineering Institute (SEI), Capability 

Maturity Model Integration, Addison Wesley 2002. 
 
[Coad 1999] Coad, P. 1999. Java Modeling Color with UML: 

Enterprise Components and Process. Prentice Hall. 
 
[Cockburn 2000] Cockburn, A. 2000. Crystal Clear: A Human-Powered 

Methodology for Small Teams. 
http://members.aol.com/humansandt/crystal/clear. 

http://www.sei.cmu.edu/publications/articles%20/christie%1Fapr%201999/christie-apr1999%20.html
http://www.sei.cmu.edu/publications/articles%20/christie%1Fapr%201999/christie-apr1999%20.html


 30

 
[Crosby 1979] Crosby, P. 1979. Quality Is Free: The Art of Making 

Quality Certain. McGraw-Hill. 
 
[Cusamano and Selby 1997] Cusamano, M, and R. Selby. 1990. How Microsoft 

Builds Software Communications of the ACM, June, 
53-61. 

 
[Deininger and Schneider 1994] Deininger, M., and K. Schneider. 1994. Teaching 

Software Project Management by Simulation: 
Experiences with a Comprehensive Model. Proceedings 
of the 7th Conference on Software Engineering 
Education. San Antonio TX. pp 227-235. 

 
[Deming 1986] Deming, W. 1986. Out of the Crisis. MIT Center for 

Advanced Engineering Study, Cambridge MA. 
 
[Drappa and Ludewig 2000] Drappa, A; Ludewig, J.: Simulation in Software 

Engineering Training. Proceedings of the 22nd 
International Conference on Software Engineering 
(ICSE 2000). Limerick, Ireland. pp. 199-208 

 
[Forester 1961] Forester, J. 1961. Industrial Dynamics. MIT Press. 
 
[Fowler 2000] Fowler, M. 2000. Put your process on a diet. Software 

Development, 8,12. pp. 32-36. 
 
[Henderson-Sellers 1990] Henderson-Sellers, B. and J. Edwards 1990. The 

Object-oriented systems life cycle. Communications of 
the ACM, September, 142-59. 

[Hilburn 1999] Hilburn, T. 1999. PSP metrics in support of software 
engineering education. Proceedings of the 12th 
Conference on Software Engineering Education and 
Training. New Orleans, LA pp. 135-140. 

[HPS 1999] HPS.1999. Process Improvement. High Performance 
Systems, Inc.Hanover, NH. 

 
[Humphrey 1995] Humphrey, W. 1995. A Discipline for Software 

Engineering. Addison Wesley. 
 
[Humphrey 1998] Humphrey, W. 1998. Why don't they practice what we 

preach? Annals of Software Engineering 6. pp. 201-222 
 
[Humphrey 2000] Humphrey, W. 2000. Introduction to the Team Software 

Process. Addison Wesley. 
 
[Humphrey 2005] Humphrey, W. 2005, PSP, A Self-Improvement Process 

for Software Engineers. Addison Wesley. 



 31

 
[IEEE 1997] IEEE. 1991. IEEE Standard for Developing Software 

Life Cycle Processes. Std 1074-1991. Institute of 
Electrical and Electronics Engineers, New York NY. 

 
[ISO 2001] ISO. 2001. Guidelines for the Application of ISO 9001 

to the Development, Supply, and Maintenance of 
Software. 

 
[Juran 1988] Juran, J. Juran on Planning for Quality. Macmillan. 
 
[Laitinen et al 2000] Laitinen, M, M. Fayad, and R. Ward. 2000. Software 

Engineering in the small. IEEE Software. 
September/October pp. 75.77. 

 
[McFarlan 1974] McFarlan, F. 1974. Effective EDP Project Management. 

Managing the Data Resource Function. R. Nolan, Ed. 
West Publishing Co. 

 
[McKeen 1981] McKeen, J. 1981. An Empirical Investigation of the 

Process and Product of Application System 
Development. PhD Dissertation. University of 
Minnesota MN. 

 
[Merrill and Collofello 1997] Merril, D., and J. Collofello. 1997. Improving Software 

Project Management Skills Using a Software Project 
Simulator. Proceedings of the Frontiers in Education 
Conference. Pittsburgh PA, Session SC3. URL: 
http://www.engrng.pitt.edu/~fie97

 
[Navarro 2005] Navarro, E., 2005 A Survey of Software Engineering 

Educational Delivery Methods and Associated 
Learning Theories, Institute for Software Research, 
University of California, Irvine. 

 
[Navarro et al 2005] Navarro, E., Andre van der Hoek, Software Process 

Modeling for an Educational Software Engineering 
Simulation Game, Software Process Improvement and 
Practice, upcoming issue (to appear) 
http://www.ics.uci.edu/~emilyo/ 

 
[Paulk et al 1993] Paul, M., C. Weber, S. Garcia, M. Chrisis, M. Bush. 

1993. Key Practices of the Capability Model, Version 
1.1. Report CMU/SEI-93TR-25. Software Engineering 
Institute, Carnegie Mellon University, Pittsburgh P A. 

 
[Raffo 2003] Raffo, David, 2002-2003, Developing Rapidly 

Deployable Software Process Models, National Science 
Foundation. 

http://www.engrng.pitt.edu/%7Efie97


 32

 
[Robinson 2005] Robinson, S.  Discrete-event Simulation: from the 

pioneers to the present, what next?  Journal of the 
Operational Research Society, 2005, 56 pp619-629. 

 
[Royce 1970] Royce, W. 1970. Managing the Development of Large 

Software Systems: Concepts and Techniques. 1970 
WESCON Technical papers. Western Electric Show 
and Convention, Los Angeles CA. pp A/1-1A1/9. 

 
[Ros et al 2004]   Simulation-based Software Process Modeling and 

Evaluation, Islana Rus, et al. 
 
[Schwaber 2000] Schwaber, K. 2000 Scrum.  

http://www.controlchaos.com/ 
 
[Tausworth and Lyu 1996] Tausworth, R and M. Lyu, 1996 A Generalized 

Technique for Simulating Software reliability.  IEEE 
Software, March, 77-88. 

 
[Thayer 1979] Thayer, R. 1979. Modeling a Software Engineering 

Project Management System. PhD Dissertation, 
University of California, Santa Barbara CA. 

 
[Umphress et al 1995] Umphress, D., Helbing, J. Russell, and C. Keen. 1995 

Software process maturation. Information Systems 
Management 12, 2. pp. 32-42. 

 
[Umphress et al 2002] Umphress, D., Hendrix, Cross, Software Process in the 

Classroom: The Capstone Project Experience.  IEEE 
Software Sep/Oct 2002,       pp 78-85. 

 
[Weiss 2005] Weiss, Neil A., 2005, Introductory Statistics, Seventh 

Edition, Addison Wesley. 
 



 33

 
 
 
 
 
 

APPENDICES 

 



 34

 
APPENDIX A - TSPISIM INSTRUCTION SUMMARY 

 
 

General Information 
 
 Most worksheets are in the ‘Protected’ mode.  To ‘Unprotect’ a Worksheet, click 
on the ‘Tools’ main menu item, then ‘Protection’, then ‘Unprotect sheet…’.  No 
password will be needed.  Do not ‘Protect’ the sheet with a password! 
 
 There is a ‘ResetSim’ button on the ‘Task’ page to the right of the ‘Split Plan 
Time’ button.  Click on it and a message box will verify that you want to ‘Reset’ the 
simulator.  You must enter ‘Yes’ or no action will be taken.  This button clears all the 
‘Actual’ times on the Task sheet and the ‘Planned’ times on the Schedule sheet.  The 
Planned tasks are not deleted.  A message box will verify if the Simulator was reset. 
 

Instructor’s Section 
 
 Enter list of candidate engineer’s on the ‘Candidates’ page.  You will need: 
Name, initials (must be unique for entire candidate list!), Phone/contact number, eMail 
address, preferred programming language and the following data from a PSP course: 
LOC/Hr, Err/KLOC, Pages/Hr, Err/Pg. 
 
 Next, update (if desired) the minimum/maximum ranges for the random number 
calculations on the ‘Ranges’ page.  The min/max are expressed in percentages, so if a 
task were estimated to take 4 hours, and the min/max percentages were 80/120, then the 
task could range from 3.2 to 4.8 hours. 
 
 Then, update the probability of completion in estimated time and the incremental 
percent to add if the task is not completed.  Example:  if the completion probability is 75 
and the increment is 10, 75 percent of tasks are completed in the estimated time within 
the Min/Max range.  The rest have 10% added and are tested again.  This continues until 
the task is completed. 
 
 Last, update the ‘system messages’ on the ‘Ranges’ page to more accurately 
reflect defects that could occur in the specific project.  This step is optional.  If you do not 
want messages to be shown, set the ‘Message Frequency’ on the Range sheet to a number 
greater that the project duration. 



 35

 
Student’s Section 

 
 Fill in the following items on the ‘Project’ page: Name, Project, Team, Start Date 
(Note:  The Start Date should be a Monday and must be far enough in the past so the 
project can be completed before the actual current date.  The system will not do certain 
functions using a date in the future!), Instructor, and Cycle. 
 
 Select four or five team member’s from the ‘Candidates’ page by entering an ‘X’ 
in the Select column.  Press the ‘Select Team’ button and verify that your team members 
have been correctly transferred to the Team page. 
 
 Go to the ‘Roles’ page and assign team members to their roles by selecting their 
initials from the drop down box.  Verify that each role has been assigned to a valid team 
member’s initials. 
 
 Go to the ‘SUMS’ page and enter the components of the system along with 
estimated ‘Planned Size’.  The ‘Size Measure’ should be ‘LOC’.  The Base, Deleted, 
Modified, and Added should be entered.  The ‘Base’ can be zero unless the project is 
starting with a previous project or ‘skeleton’ code that is being enhanced.  If ‘Base’ is 
zero, then all items except ‘Added’ should be zero.  ‘Reused’ will usually be zero unless 
there is a Reuse library available for the project. 
 
 Go to the ‘Task’ page and click on the ‘Generate Task List’ button.  Click ‘OK’ 
only if you are sure you want to generate a new task list.  This will generate a standard 
default list of tasks for the project.   
 
 Assign ‘Plan Hours by Role’ and Estimated Size and Size Measure.  Enter the 
hours for each team member on the same row under the appropriate role column. Then 
enter the total size in Pages or LOC for the current task row.  Valid Size Measures are: 
‘LOC’ and ‘Page’.  ‘LOC’ should be used for Coding tasks only! (Includes Code 
Reviews and Compile.)  All other items should use ‘Page’.  The task size measure may be 
left blank if no written output is expected.  (Like: Management or PM)  You should add, 
rearrange, or delete task lines as needed during the simulation.  Be sure to 
add/rearrange/delete full rows when making changes.  DO NOT delete any columns!
 
 After verifying that the assignments are evenly distributed by looking at the totals 
for each engineer shown above each engineer’s column, go to the ‘Schedule’ page and 
enter the ‘Planned Hour’ column with weekly team hours.  The ‘Difference’ cell will 
indicate additional hours needed. 
 
  Return to the ‘Task’ page and Click the ‘Update Task and Schedule Plan’ button.  
If you have scheduled enough hours, the last four columns of the ‘Task’ page will be 
filled out and the dates will indicate the week each task is scheduled to be completed.  An 
error message will be shown if you have not entered enough hours. 



 36

 
 Now click the ‘Split Plan Time’ button.  The ‘Task’ page will be split so each row 
represents a single task for an engineer.  The ‘Estimated Size’ will be divided by the 
number of active engineers assigned to that task row.  The ‘Rate’ and ‘Estimated Hours’ 
columns will also be filled in using the team member’s individual metrics. Verify that the 
proper amount of time has been allocated for each task by comparing ‘Plan Hours’ 
against ‘Estimated Hours’.  Go to the ‘Simulator’ page and look at the ‘Team Member 
Phase Totals’.  Verify that the work load is evenly distributed.  You can modify the 
assignments to better distribute the work.  Note the ‘Team Ratios’ section on the bottom, 
left of the ‘Simulator’ page.  If the ratios are not close enough to the desired Goals, 
modify tasks as needed and click the ‘Split Plan Time’ button again.  You can repeat the 
process of making adjustments and clicking ‘Split Plan Time’ button as needed.  Clicking 
the ‘Split Plan Time’ button also updates the ‘Team Member Phase Totals’ on the 
‘Simulator’ page and recalculates the Schedule. 
 
 You can verify that you have a balanced plan by looking at the Quality Profile 
graph on the Team sheet.  Any category that is below 0.8 should be verified.  If there is 
not enough time allocated to the review categories, a substantial number of defects could 
remain in your project at the completion.  
 
 You are now ready to begin the simulation!  Click the ‘Simulate the Next Week’s 
Activities’ button on the ‘Simulator’ page.  You should see the first weekly Defect 
Summary appear.  You can also look at the ‘Task’ or the ‘Week’ pages to see what tasks 
were completed and how much time they actually took.  You can make adjustments to 
any task that has not been completed, then click the ‘Split Plan Time’ button, and verify 
the modified phase totals on the ‘Simulator’ page.  Then click the ‘Simulate the Next 
Week’s Activities’ button and see the next week’s results.  Roughly every two weeks (or 
interval determined by your instructor), a message could appear on the top right of the 
‘Simulator’ page indicating possible problems that needs to be addressed. 
 
 Continue simulating each week until you get a message that says the Simulation is 
Complete!  If you get a message stating that no time was assigned for the week, it means 
that the project did not complete in the weeks allocated.  Go to the Schedule sheet and 
add hours to the next week.  Then return to the Simulator page.  Good luck. 



 
APPENDIX B - SCREEN SHOTS AND DESCRIPTIONS 

 
 
 The first worksheet that needs to be completed is the Candidates worksheet.  It 
lists the available engineers and their metrics from PSP.  The instructor can populate this 
sheet, or allow the team members to enter their own data.  The metrics are copied to the 
Task sheet to assist with the task planning. 
 

 

Candidates Worksheet 
 
 After the team assignments are completed following the normal TSP procedures, 
the next sheet to be filled in is SUMS.  The major components of the project are entered 
along with their planned quantities.  For a new project, only the ‘Added’ column is 
entered.   The SPS and HLD is used for documentation only and have no effect on the 
project.  Only major components should be entered for small projects as several tasks are 
created for each entry. 
 

 
 

SUMS Worksheet 
 
 The Task worksheet is initially generated by clicking the Generate Task List 
button.  Several tasks are generated for each entry in the SUMS sheet except for the SRS 
and HLD documents.  The team leader enters each engineer’s assignments for each task 
by entering the planned time.  For tasks that have a deliverable, the unit of measure for 
the deliverable (Page or LOC) is also entered along with the planned size.  If both the 

 37



Unit of Measure and Planned Size is entered, the Estimated Hours is calculated to help 
with the planning.  The simulator uses the greater of the Estimated Hours and the Plan 
Hours. 
 

 
 

Task Worksheet (After Split Plan Time’ clicked) 
 
 Next the Team Leader enters the team schedule on the Schedule worksheet.  Total 
time for the team is entered for each active week of the project.  The total hours must be 
as least equal to the Task Plan hours or the schedule will not be created.   After the 
Schedule entries are completed, the Team Leader returns to the Task worksheet and 
clicks on the Split Plan Time button.  The schedule is created and then separate task rows 
are created for each engineer for each task.  The team leader can now rearrange the tasks 
in the order that she wants them completed.  After the team leader is satisfied with the 
plan, the simulation is ready to begin.  There are summaries of the plan on the Simulator 
sheet giving helpful information like hours per phase and percent of time in phase.  The 
Team Leader can continue to make changes until she is satisfied with the plan.  After any 
changes, the Split Plan Time is run to update the Plan data on the simulator sheet. 

 38



 
 

Schedule Worksheet (After schedule generated) 
 
 This is the Simulator after the first week has been run.  Note the plan data on the 
left and the ‘Actual’ results in the center.  The right side is weekly defect summary.  
There are currently 18 undiscovered defects. 
 

 
 

Simulator Sheet (After Week 1) 
 
 This is the simulator after week 3 has been run.  Note that the actual time has 
progressed and 18 defects (out of 58 inserted) were found and removed. 

 39



 
 

Simulator (After Week 3) 
 
 The 18 defects are logged to the LOGD worksheet along with the phase each was 
injected and removed. 
 

 
 

LOGD Worksheet 
 
 From the following worksheet, we can see that some tasks are not being 
completed in the desired sequence because some team members are a bit behind.  The 
Team Leader could reassign some tasks to help the team members catch up. 
 

 40
 



 
 

Task Worksheet (After Week 6) 
 
 As the project progresses, the schedule worksheet shows the earned value, and the 
actual time expended for each week. 
 

 
 

Schedule Worksheet (After project completed) 
 
 The Simulator shows summaries of time per phase for each engineer, weekly 
defect summary, team ratios, defects by phase and consolidated phase summaries. 
 
 

 41



 
 

Simulator (After project completed) 
 

 
 

Simulator Ratios, Defects by Phase, and Consolidated Phase Summary 
 

 42

 The Ranges worksheet is used by the instructor to establish the ranges for the 
random number function.  In the below examples for Documentation, Coding, and 
Hourly Tasks, the simulator will stay between 50% and 150% of the expected values.  
For the Defect Factors, the first one is for defects added and the second one is for defects 
removed.  Both are currently set to 50% of their expected values.  The Probability of 



Completion is used to determine if a task was completed in the calculated time.  
Currently, 60% of the time a task will be completed.  If a task is not completed, the 
incremental amount is added (10%) and the task is tested again.  This process continues 
until the task is marked as complete.  The overtime field will allow team members to 
work extra time each week if needed to complete their assigned tasks. 
 

 
 

Ranges Worksheet (Activity Parameters) 
 
 The values in the Errors Fixed per Hour section determine minimums and 
maximums team parameters that are not available for individual team members.  The 
High Level Design values are for minimum, maximum and average production values.  A 
team can productively review from 3.1 to 5 pages of the high level design document per 
hour.  They can effectively review from 100 to 200 LOC per hour, and can review from 
0.8 to 2.0 pages of requirements or low level design documents per hour.  These values 
came from Watts Humphrey’s books. 
 
 The first two project level parameters, Effort and LOC, contain the minimum, 
maximum, average, and standard deviation of the expected project values.  The next 
three, Design as percent of code, Code review as percent of code, Design review as 
percent of design are not currently used, but could be used in future work to determine 
allowable ranges for the plan and issue extra defects if the plan varies too far from the 
allowed ranges.  Similar parameters on the Quality Profile Parameter sheet are used by 
the Quality Profile graph on the Project worksheet. 
 
 The message frequency is used to determine how many weeks pass before issuing 
a message.  A value of seven indicates that a message will be issued every 7 weeks.  A 
value of 1 would result in a message every week.  The message depends on the number of 
defects left in the project.  There are three levels of messages that the instructor can 
customize for a project, Minor, Intermediate, and Severe, each with 10 messages.  Each 
level has a maximum number of defects that determine which level message is issued.  
Currently, if there are six or fewer defects, a minor message is issued.  Up to 15 defects 
cause an intermediate message and more than 15 cause a severe message 

 43



 
 The Cost Factor is used to increase the cost (in time) to correct a defect.  For each 
phase that has passed before a defect is found, the cost is multiplied by the factor.  The 
phases used for this calculation are the ones shown in the Plan and Actual Time in Phase 
Summary shown on the Simulator worksheet. 
 

 
 

Ranges Worksheet (Project Parameters) 
 

 44



 45

 
APPENDIX C - FPM NEED STATEMENT 

 
 
 The FPM system provides for automating flight planning and management for 
aircraft that fly within a single “en-route’ control sector. 
 
Functional Needs 
 
1. AN FPM “en-route” sector is a three-dimensional airspace region with the 

following characteristics: 
 

a. The sector is bounded vertically by flight levels FL180 (18,000 feet) and 
FL600 (60,000 feet.) 

 
b. The sector is bound horizontally by a rectangle where the vertices and the 

points inside and outside the polygon are designated with an (x, y) 
coordinate system.  The coordinates x and y  are positive real numbers in 
units of nautical miles.  Each side of the rectangle must be at least 50 
nautical miles in length and not more that 150 nautical miles in length. 

 
2. The FPM system will allow a maximum of 100 aircraft within a sector at any 

given time. 
 
3. An aircraft must maintain the same altitude (between FL180 and FL600) from 

sector entry to sector exit. 
 
4. Five aircraft, at most, can be flying at the same altitude at any given time. 
 
5. All aircraft must, at all times, maintain a minimum separation of at least 0.5 

nautical miles. (~3,000 feet ‘straight line’ distance between each pair.)  
 
6. Each aircraft in the system must have an approved flight plan for flying through 

the sector.  The flight plan consists of the following: 
 
 a. an aircraft ID number 
 
 b. the pilot’s name 
 
 c. the amount of fuel on board (in minutes flying time) 
 
 d. an air route that is a straight line path consisting of: 
 
  i) a start point (x, y) and a start time 
 
  ii) a cruising altitude 



 46

 
  iii) a cruising speed 
 
  iv) a true course 
 
  v) an end point and an end time 
 
7. The start point and end point of the path must be points on a sector boundary. 
 
8. Prior to entering the sector an aircraft must submit a flight plan to the sector 

controller and have it approved.  A flight plan for an aircraft will not be approved 
unless constraints on sector traffic and aircraft separation are satisfied, and all the 
flight plan data is consistent and correct. 

 
9. The FPM must have a text-based user interface that allows a user to carry out the 

following operations: 
 

a. INITIALIZE_SECTOR 
 Input the sector characteristics and initialize the sector. 

 
b. SUBMIT_FP 
 Input a flight plan; check the plan for correctness and consistency  with 

currently approved plans.  If there are no problems, output an acceptance 
confirmation message; otherwise, output a message that describes the 
reason(s) for non-acceptance. 

 
c. SUBMIT_SET_FP 
 Submit a set of flight plans via a text file.  The order of the flight plans in 

the text file will be treated as a sequential, chronological submission of 
flight plans. 

  The text file will have the following format: 
 
Line Number Contents 
1 Aircraft ID number, Pilot’s name 
2 Amount of fuel on board (minutes) 
3 Start point, start time, cruising altitude, cruising speed, true course, end 

point, end time 
 



 47

 An example file:  
 for sector with vertices (10,20), (100,20), (10,100), (100,100): 
 
Line Number Contents 
1 DAL111, J Doolittle 
2 60 
3 10.00, 40.00, 1410, 220, 300.00, 39.80, 60.00, 100.00, 1425 
4 AF237, N Rogers 
5 90 
6 80.00, 20.00, 1410, 220, 400.00, 36.30, 20.00, 100.00, 1426 
  
 

d. DELETE_FP 
 Input an aircraft ID and delete the flight plan from the FPM system. 
 
e. GET_FP 
 Input an aircraft ID and output the flight plan for the aircraft. 
 
f. GET_SEC_FP 
 Input a time, and output the ID’s for those aircraft whose flight plans 

indicate they will be inside the sector at the given time. 
 
g. GET_ALT_FP 
 Input a time and altitude, and output the ID’s for the aircraft whose flight 

plans indicate they will be in the sector at the given altitude and given 
time. 

 
h. CHANGE_ALTITUDE 
 Input an aircraft ID and change the altitude on the flight plan for the 

aircraft. (Must be changed BEFORE activation of plan!) 
 
i. SEPARATION 
 Input two aircraft ID’s.  Output the minimum straight line distance  (SLD) 

between the aircraft and the time(s) when it will occur. 
 
j. SMALL_SEPARATION 
 Input a distance and output the ID’s for those pairs of aircraft whose flight 

plans indicate the straight line distance (SLD) between them will be less 
than or equal to the distance entered. 



 
Note: ‘Straight Line Distance’ (SLD) is defined as the square root of the  sum of the 

squares of the differences of the x, y, and z coordinates in feet. 
 
  SLD = SQRT( (X2-X1)2 + (Y2-Y1)2 + (Z2-Z1)2  
 
Additional Characteristics / Constraints 
 
10. The following are additional characteristics of the FPM system: 
 
 a. The system will be easy to use.  A user will not be required to 

 possess special computer knowledge or in-depth familiarity with 
 aviation terminology. 

 
 b. Clock time will be in 24 hour format.  Elapsed time will be measured 

 in minutes.  Computed times must be accurate to within one minute. 
 
 c. Direction will be measured in degrees, relative to “true north” (0 to 

 359.9 degrees).  Computations must be accurate to 0.1 degrees) 
 
 d. Horizontal distances, and the x and y coordinates of a position will  be 

 measures in nautical miles.  Computations must be accurate to within 0.1 
 nautical miles. 

 
 e. Altitude will be measured in feet, and the flight plan altitudes will be 

 represented in units of hundreds of feet (e.g. FL220 is 22,000 ft.) 
 
 f. All FPM operations should incorporate appropriate exception handling 

 so that the system responds with a clear, descriptive message when 
 an error or exception condition occurs. 

 
 
Notes: 
 A nautical mile is 1852 meters or about 6076 feet.  For our purposes, we will use 

3000 feet as approximately equal to 0.5 nautical miles for separation calculations. 
 
 A ‘US’ mile is 5280 feet or 8 furlongs 
 A furlong is 40 rods, a rod is 16 ½ feet, a foot is 12 inches. 
 

 48



 49

Non-Functional Needs 
 
11. The following are some non-functional needs of the FPM system: 
 
 a. The system must be developed using the TSPi process. 
 
 b. The system must have a user/reference manual. 
 
 c. The implementation programming language must be a version of a 

 language available in the CSU labs. (JAVA, C++, or C#) 
 
 d. The system must be easily portable to a variety of platforms. 
 
 e. The system must be easy to maintain. (Object or highly modular!) 
 
Special notes: 
 
 For the purpose of this project, you may assume that the FPM system is not a 

“real-time” application.  That is, you may assume that all flight plans are 
submitted (along with any changes) at times before they go into effect. 

 
 The customer for this project is Neal Rogers.  He may be consulted concerning 

clarifications, alterations, or additions to the FPM requirements. 
 
 
 
 
 


	INTRODUCTION
	LITERATURE REVIEW
	RESEARCH DESCRIPTION
	APPLIED RESULTS
	RESEARCH VALIDATION
	CONCLUSIONS
	FUTURE WORK
	APPENDICES
	APPENDIX A - TSPISIM INSTRUCTION SUMMARY
	Instructor’s Section

	 
	APPENDIX B - SCREEN SHOTS AND DESCRIPTIONS
	 
	APPENDIX C - FPM NEED STATEMENT

