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Abstract

People spend a significant amount of time in indoor spaces (e.g., office buildings, subway

systems, etc.) in their daily lives. Therefore, it is important to develop efficient indoor spa-

tial query algorithms for supporting various location-based applications. However, indoor

spaces differ from outdoor spaces because users have to follow the indoor floor plan for their

movements. In addition, positioning in indoor environments is mainly based on sensing de-

vices (e.g., RFID readers) rather than GPS devices. Consequently, we cannot apply existing

spatial query evaluation techniques devised for outdoor environments for this new challenge.

Because particle filters can be employed to estimate the state of a system that changes over

time using a sequence of noisy measurements made on the system, in this research, we pro-

pose the particle filter-based location inference method as the basis for evaluating indoor

spatial queries with noisy RFID raw data. Furthermore, two novel models, indoor walk-

ing graph model and anchor point indexing model, are created for tracking object locations

in indoor environments. Based on the inference method and tracking models, we develop

innovative indoor range and k nearest neighbor (kNN) query algorithms. We validate our

solution through extensive simulations with real-world parameters. Our experimental re-

sults show that the proposed algorithms can evaluate indoor spatial queries effectively and

efficiently.
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Chapter 1

Introduction

Today most people spend a significant portion of their time daily in indoor spaces

such as subway systems, office buildings, shopping malls, convention centers, and many

other structures. In addition, indoor spaces are becoming increasingly large and complex.

For instance, the New York City Subway has 468 stations and contains 209 miles (337

km) of routes [28]. In 2011, the subway system delivered over 1.64 billion rides, averaging

approximately 5.3 million rides on weekdays [15]. Therefore, users will have more and more

demand for launching spatial queries for finding friends or Points Of Interest (POI) in indoor

places. However, existing spatial query evaluation techniques for outdoor environments

(either based on Euclidean distance or network distance) [18, 6, 16, 19, 12] cannot be applied

in indoor spaces because these techniques assume that user locations can be acquired from

GPS signals or cellular positioning, but the assumption does not hold in covered indoor

spaces. Furthermore, indoor spaces are usually modelled differently from outdoor spaces. In

indoor environments, user movements are enabled or constrained by entities and topologies

such as doors, walls, and hallways.

Radio Frequency Identification (RFID) technologies have become increasingly popular

over the last decade with applications in areas such as supply chain management [20], health

care, and transportation. In indoor environments, RFID is mainly employed to support

track and trace applications. Generally, RFID readers are deployed in critical locations

while objects carry RFID tags. When a tag passes the detection range of a reader, the

reader recognizes the presence of the tag and generates a record in the back end database.

However, the raw data collected by RFID readers is inherently unreliable [21, 8], with false

negatives as a result of RF interference, limited detection range, tag orientation, and other
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environmental phenomena [26]. In addition, readers cannot cover all areas of interest because

of their high cost or privacy concerns [24]. Therefore, we cannot directly utilize RFID raw

data to evaluate commonly used spatial query types (e.g., range and kNN) for achieving

high accuracy results in indoor environments.

In this research, we consider the setting of an indoor environment where a number of

RFID readers are deployed in hallways. Each user is attached with an RFID tag, which can

be identified by a reader when the user is within the detection range of the reader. Given

the history of RFID raw readings from all the readers, we are in the position to design a

system that can efficiently answer indoor spatial queries.

Particle filters are sequential Monte Carlo methods based on point mass representations

of probability densities, which can be applied to any state-space model [1]. Particle filters

can be employed to estimate the state of a system that changes over time using a sequence of

noisy measurements made on the system. In this paper we propose the particle filter-based

location inference method, the indoor walking graph model, and the anchor point indexing

model for inferring object locations from noisy RFID raw data. On top of the location

inference, indoor range and kNN queries can be evaluated efficiently by our algorithms with

high accuracy. The contributions of this study are as follows:

• We design the particle filter-based location inference method as the basis for evaluating

indoor spatial queries.

• We propose two novel models, the indoor walking graph model and the anchor point

indexing model, and an RFID-based system for tracking object locations in indoor

environments.

• Indoor spatial query evaluation algorithms for range and kNN queries are developed

based on the proposed system.
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• We demonstrate the efficiency and effectiveness of our approach by comparing the per-

formance of our system with the symbolic model-based solution [30] through extensive

simulations using real-world parameters.

The rest of this paper is organized as follows. In chapter 2, we survey previous works

for indoor object monitoring and spatial queries. Background knowledge of particle filters

and the symbolic model-based location inference is provided in chapter 3. In chapter 4 we

introduce our particle filter-based indoor spatial query evaluation system. The experimental

validation of our design is presented in chapter 5. Chapter 6 proposes tentative solutions for

more complicated continuous spatial query types. And Chapter 7 concludes this paper with

a discussion of future work.
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Chapter 2

Related Work

In this section, we review previous work related to indoor spatial queries and RFID data

cleansing.

2.1 Indoor Spatial Queries

Outdoor spatial queries, e.g., range and kNN queries, have been extensively studied

both for Euclidean space [18, 6] and road networks [16, 19, 12]. However, due to the inherent

differences in spatial characteristics, indoor spatial queries need different models and cannot

directly apply mature techniques from their outdoor counterparts. Therefore, indoor spatial

queries are drawing more and more research attentions from industry and academia. For

answering continuous range queries in indoor environments, Jensen et al. [9] proposed using

the positioning device deployment graph to represent the connectivity of rooms and hallways

from the perspective of positioning devices. Basically, entities that can be accessed without

having to be detected by any positioning device are represented by one cell in the graph, and

edges connecting two cells in the graph represent the positioning device(s) which separate

them. Based on the graph, initial query results can be easily processed with the help of an

indexing scheme also proposed by the authors [29]. Query results are returned in two forms:

certain results and uncertain results. To reduce the workload of maintaining and updating

the query results, Yang et al. further proposed the concept of critical devices. Only from

the ENTER and LEAVE observations of its critical devices can a query’s results be affected.

However, the probability model utilized in Yang’s work is very simple: a moving object is

uniformly distributed over all the reachable locations constrained by its maximum speed in

a given indoor space. This simple probability model is incapable of taking advantage of the
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moving object’s previous moving patterns, such as direction and speed, which would make the

location prediction more reasonable and precise. In addition, Yang et al. [30] also addressed

the problem of kNN queries over moving objects in indoor spaces. Unlike another previous

work [14] which defines nearest neighbors by the minimal number of doors to go through,

they proposed a novel distance metric, minimum indoor walking distance, as the underlying

metric for indoor kNN queries. Moreover, Yang et al. provided the formal definition for

Indoor Probabilistic Threshold kNN Query (PTkNN) as finding a result set with k objects

which have a higher probability than the threshold probability T . Indoor distance-based

pruning and probability threshold-based pruning are proposed in Yang’s work to speed up

PTkNN query processing. Similarly, the paper employs the same simple probabilistic model

as in [29], and therefore has the same deficiencies in probability evaluation.

2.2 RFID-Based Track and Trace

RFID is a very popular electronic tagging technology that allows objects to be auto-

matically identified at a distance using an electromagnetic challenge-and-response exchange

of data [23]. An RFID-based system consists of a large number of low-cost tags that are at-

tached to objects, and readers which can identify tags without a direct line-of-sight through

RF communications. RFID technologies enable exceptional visibility to support numerous

track and trace applications in different fields [31]. However, the raw data collected by RFID

readers is inherently noisy and inconsistent [21, 8]. Therefore, middleware systems are re-

quired to correct readings and provide cleansed data [7]. In addition to the unreliable nature

of RFID data streams, another limitation is that due to the high cost of RFID readers, RFID

readers are mostly deployed such that they have disjoint activation ranges in the settings

of indoor tracking. Furthermore, privacy (i.e., readers are deployed in hallways rather than

rooms in office buildings) is also an important concern [26].
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To overcome the above limitations, RFID data cleansing is a necessary step to produce

consistent data to be utilized by high-level applications. Tran et al. [22] used a sampling-

based method called particle filtering to infer clean and precise event streams from noisy raw

data produced by mobile RFID readers. Three enhancements are proposed in their work to

make traditional particle filter techniques scalable. However, their work is mainly designed

for warehouse settings where objects remain static on shelves, which is quite different from

our setting where objects move around in a building. Therefore, Tran’s approach of adapting

and applying particle filters cannot be directly applied to our settings. Another limitation

of [22] is that they did not explore further utilization of the output event streams for high-

level applications. Chen et al. [3, 10] employed a different sampling method called Markov

Chain Monte Carlo (MCMC) to infer objects’ locations on shelves in warehouses. Their

method takes advantage of the spatial and temporal redundancy of raw RFID readings,

and also considers environmental constraints such as the capacity of shelves, to make the

sampling process more precise. Their work also focuses on warehouse settings; thus is not

suitable for our problem of general indoor settings. The works in [17, 25, 13] target settings

such as office buildings, which are similar to our problem. They use particle filters in their

preprocessing module to generate probabilistic streams, on which complex event queries

such as “Is Joe meeting with Mary in Room 203?” can be processed. However, their goal

is to answer event queries instead of spatial queries, which is different from the goal of this

research. Furthermore, a hot research topic of the robotics research community, simultaneous

localization and mapping (SLAM), also makes extensive utilization of particle filters [27, 2].
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Chapter 3

Preliminary

In this section, brief introductions to the mathematical background of particle filters,

particle filter-based location inference, and symbolic model-based location inference [29]

are provided. Particle filters are the main technique utilized in this paper to infer the

posterior probability distributions of objects’ locations. We first introduce the mathematical

derivation of particle filters. Then, we present particle filter-based location inference for

supporting indoor spatial queries. To the best of our knowledge, symbolic model-based

location inference is the only method of drawing the probability distribution of an object’s

location for the purpose of indoor spatial queries in the literature. Therefore, we describe

it here in order to compare it with our methods. Table 1 summarizes the notations used in

this paper.

3.1 Particle Filters

In this section, we describe the formal mathematical statements of the Sampling Impor-

tance Resampling (SIR) filter (the original particle filtering algorithm) [5], which provides a

technical context for later chapters.

A particle filter is a method that can be applied to nonlinear recursive Bayesian filtering

problems [1]. The system under investigation is often modeled as a state vector, which con-

tains all relevant information about the system. At least two models are critical in analyzing

and making inferences about a dynamic system: the system model and the measurement

model, which are given by Equations (3.1) and (3.2), respectively.

xk = fk(xk−1, vk−1) (3.1)
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Equation (3.1) describes how the system evolves from the state vector xk−1 at time k−1

to state vector xk at time k. fk is a possible nonlinear function, and vk−1 is an independently

identically distributed (i.i.d.) process noise sequence.

zk = hk(xk, uk) (3.2)

Equation (3.2) describes how observation zk relates to the true state xk of the system,

where hk is a possible nonlinear function and uk is an i.i.d. measurement noise sequence.

The objective of the particle filter method is to construct a discrete approximation to

the probability density function (pdf) p(xk|z1:k), that is, the probability of the system true

state at time k given previous observations from time 1 to k. Particle filters approximate

this pdf function by a set of random samples with associated weights. Simply put, every

Symbol Meaning

q An indoor query point
oi The object with ID i
C A set of candidate objects
D A set of sensing devices
G The indoor walking graph
pi A probability distribution function

for oi in terms of all possible loca-
tions

api An anchor point with ID i
Ns The total number of particles for an

object
umax The maximum walking speed of a

person
lmax The maximum walking distance of

a person during a certain period of
time

UR(oi) The uncertain region of object oi
si The minimum shortest network dis-

tance
li The maximum shortest network dis-

tance
Areai The size of a given region i

Table 3.1: Symbolic notations.
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particle represents a hypothesis (sample) of the system true state; According to whether the

hypothesis is consistent with the observation, each particle is assigned a different weight. The

weights are determined by the principle of importance sampling with the importance density

to be p(xk|xk−1) for the SIR filter [1]. Given {xi
k−1, w

i
k−1}

Ns
i=1 where {xi

k−1, i = 1, . . . , Ns} is a

set of support points (particles) with associated weights {wi
k−1, i = 1, . . . , Ns}, the support

points update formula and weight update formula for the SIR filter are:

xi
k ∼ p(xk|xi

k−1) (3.3)

wi
k ∝ wi

k−1p(zk|xi
k) (3.4)

From Equation (3.3), we can see that the particle xi
k at time k is sampled from the

conditional pdf p(xk|xi
k−1) with xi

k−1 being its parent particle from time k−1. Theoretically,

p(xk|xi
k−1) is related to and can be inferred from the system model (3.1). Equation (3.4)

means that the new weight wi
k is proportional to the old weight wi

k−1 augmented by the obser-

vation likelihood p(zk|xi
k), which can be inferred from the measurement model (3.2). Thus,

particles which are more likely to cause an observation consistent with the true observation

result zk will gain higher weights than others.

The posterior filtered density p(xk|z1:k) can be approximated as

p(xk|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k) (3.5)

Equations (3.3) and (3.4) are conceptual processes of how to iteratively calculate par-

ticles and their weights; however, in real world applications it is hard to derive analytical

forms of p(xk|xi
k−1) and p(zk|xi

k). In our application, particles update their locations accord-

ing to the object motion model employed in our work. Simply put, the object motion model

assumes objects move forward with constant speeds, and can either enter rooms or continue

9



Algorithm 1 Resampling Algorithm

1. {{xj∗k , wj
k}

Ns
j=1=RESAMPLE[{xik, wi

k}
Ns
i=1]}

2. Initialize the CDF: c1 = 0
3. for i = 2 to Ns do
4. Construct CDF: ci = ci−1 + wi

k

5. end for
6. Start at the bottom of the CDF: i = 1
7. Draw a starting point: u1 ∼

∪
[0, N−1

s ]
8. for j = 1 to Ns do
9. Move along the CDF: uj = u1 +N−1

s (j − 1)
10. while uj > ci do
11. i = i+ 1
12. end while
13. Assign sample: xj∗k = xik
14. Assign weight: wj

k = N−1
s

15. end for

to move along hallways. Once an object is inside a room, it will continue to reside in the

room with probability 0.9, or start to move out of the room with probability 0.1. Weights

of particles are updated according to the device sensing model [3] used in this research.

Resampling is a method to solve the degeneration problem in particle filters. Degen-

eration means that with more iterations only a few particles would have dominant weights

while the majority of others would have near-zero weights. The basic idea of resampling

is to eliminate low weight particles, replicate high weight particles, and generate a new set

of particles {xi∗
k }

Ns
i=1 with equal weights. In SIR filters, the resampling step is performed at

every time index. The algorithm of resampling is shown in Algorithm 1.

3.2 Particle Filter-Based Location Inference

Now we are ready to explain how we apply particle filters to the problem of RFID-based

indoor location inferences. We will use Figure 3.1 as an example.

In Figure 3.1, d1, d2 and d3 are RFID readers which partition the hallway into four

different sections labelled H1, H2, H3, and H4, respectively. Suppose from raw readings we

know that a tag is first seen at d2 at time t0, then later is seen at d3 at time t1. We want

to predict its location in a probabilistic form after the tag leaves the activation range of d3.

10



After leaving d3, the person carrying the tag is more likely to keep his/her original moving

direction and move towards H4 rather than backward to H3. By their very nature, particle

filters will produce filtered results consistent with our expectation. The rest of this section

will explain why particle filters are able to predict this trend.

We assume particle filters start running at t0. At first, particles represent samples drawn

from the initial pdf p(x0) of the person’s location. In other words, each particle represents

a hypothesis of the person’s state with its own location, moving direction, and speed. At t0

the person’s tag is detected by d2, which means that the person must be somewhere within

the detection range of d2. Initially, particles are distributed randomly within the detection

range of d2 as shown in Figure 3.1(a). Every particle randomly picks its moving direction and

speed. For simulating people’s indoor movements, we set particles’ speed to be a Gaussian

distribution of µ = 1 m/s and σ = 0.1.

After the initial distribution, particles update their locations according to their own

speeds and directions. Some particles may move right to H3 or possibly enter rooms R3

and R7; some particles may move left to H2, R2, and R6. Up to time t1, particles already

become dispersed as shown in Figure 3.1(b). At t1 a new reading is generated by d3, when

the person entered d3’s activation range. At every new observation, particle filters are going

to perform the steps of reweighting and resampling. For readings from d3, particles that

are within the detection range of d3 are assigned high weights, while particles elsewhere

are assigned a very low weight. Next in the resampling step, particles are sampled with a

probability proportional to their weights. Thus after resampling, most particles are replicates

of previous highly-weighted particles; that is, the ones within the detection range of d3. The

(a) Particles Distribution at t0 (b) Particles Distribution at t1

Figure 3.1: An example of particle filtering.
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newly generated particles maintain the moving direction of those highly weighted particles,

which is from left to right. Therefore, at this step after analyzing two devices’ readings,

particle filters already gain some knowledge of the true moving direction and speed of the

person. After the person leaves d3’s activation range but before any new observation, particle

filters are going to predict the person’s location to be more likely in H4 rather than in H3 or

H2, because most particles now are moving in the direction of the hallway from left to right.

3.3 Symbolic Model-Based Location Inference

In this section, we introduce symbolic model based location inference and the corre-

sponding range/kNN query evaluation algorithms proposed in [29] and [30]. In chapter 5,

we did extensive experiments to compare the performance of our particle filter based query

evaluation algorithms with the state-of-art symbolic model based algorithms, and the results

reveal that our algorithm can achieve a much higher accuracy.

3.3.1 Symbolic Model and Deployment Graph

Symbolic models are different from traditional geometric coordinate models, the advan-

tage of symbolic models lies in its ability to capture the semantics associated with indoor

entities [9]. In symbolic models, a base graph describes the topology of an indoor space in

which each separate partition such as a room, a staircase, or a hallway is represented as a

vertex. All the space outside of the whole indoor space is also represented as one vertex,

while edges capture the connectivity (undirected, such as a door connecting two rooms) or

accessibility (directed, such as a one way entrance/exit) between two vertices. Figure 3.2

and 3.3 show an example of a floor plan and its symbolic model: the connectivity graph or

the accessibility graph.

On the foundation of a base graph model for an indoor space, a deployment graph

can be constructed according to the deployment of a particular positioning technology [9].

Basically, entities that can be accessed without having to be detected by any device are

12



Figure 3.2: Floor plan and connectivity graph.

Figure 3.3: Accessibility graph.
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represented by one cell in the graph, and edges connecting two cells in the graph represent

the device(s) which separate them. We refer readers to [9] to see the detailed algorithm of

the RFID reader deployment graph construction. Below, an example of a possible RFID

reader deployment in an indoor space and its corresponding deployment graph is shown in

Figure 3.4.

(a) Reader deployment in an in-
door space.

(b) Reader deployment graph.

Figure 3.4: An example of the symbolic model.

In Figure 3.4(a), since one can enter the hallway in the middle from the room on the right

through door1 without being detected by any RFID reader, they are represented as Cell9

in Figure 3.4(b); the same is true for the two rooms on the top left corner of Figure 3.4(a)

as Cell4. Cell3 represents the staircase and is separated from other rooms or hallways by a

pair of RFID readers (reader1 and reader1′). All the outside space is represented by Cell10.

The work in [29] defines three types of positioning devices:

• Undirected Partitioning Device: it separates two cells but cannot differentiate the

moving directions of objects, such as reader4.

• Directed Partitioning Device: it consists of an entry/exit pair of devices, and is able to

not only partition cells but also infer the moving directions of objects by the reading

sequence. An example is reader1 and reader1′ in Figure 3.4.
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• Presence Device: it simply senses objects within its detection range, but does not par-

tition the space into different cells. For example, reader3 is such a device in Figure 3.4.

Symbolic model-based location inference assumes an object’s position is uniformly dis-

tributed over all possible locations. More specifically, we discuss several cases here to better

explain how this probability model works:

Case 1: If an object is currently being observed by an RFID reader, then its possible loca-

tion is anywhere in the detection range of the reader.

Case 2: If an object leaves a presence device, it must still be in the same cell as the presence

device. For example, in Figure 3.4, if an object leaves reader3, it must be inside cell9

before being detected by any other reader.

Case 3: If an object leaves a directed partitioning device pair, the cell the object is entering

can be inferred from the reading sequence. For example, if an object is seen at reader1′

and then reader1, it must enter cell3.

Case 4: If an object leaves an undirected partitioning device, it can be in either of the cells

that the device partitions. For example, if an object leaves reader4, it can either be in

cell4 or cell9.

Note that this inference method is very conservative in the sense that it will identify

all the possible locations an object can be, but is unable to further differentiate an object’s

location within all possible cells. Therefore, we choose to apply the more effective particle

filter-based location inference technique in our design.

3.3.2 Symbolic Model based Indoor Range Query

To effectively answer range queries with symbolic model and deployment graph, Yang

etc. [29] proposed to use an indexing scheme with several hash tables. We are going to
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introduce the indexing scheme and how to evaluate range queries with the help of the hash

tables.

DHT: A device hash table (DHT) maps a deviceID to the set of objects active in its reading

range.

CDHT: A cell deterministic hash table (CDHT) maps a cellID to the set of objects that

are known deterministically in it.

CNHT: A cell nondeterministic hash table (CNHT) maps a cellID to the set of objects that

are possibly in it.

OHT: An object hash table (OHT) maps an objectID to a tuple (STATE, t, IDset). STATE

is an enumerate type which has three values: active (the object is in the active range

of a reader), deterministic (the object is deterministically located in a cell), or nonde-

terministic (the object is possibly in a set of cells). t is the start time of the current

state, and IDset is a device ID, a cell ID, or a set of cell IDs corresponding to the

three different states.

It is very obvious that from the four cases of location inference from section 3.3.1, case

1 in which the object enters the range of a reader, should generate an entry in the DHT, case

2 and 3 in which the object leaves a presence device or directed partitioning device, should

generate an entry in CDHT, and case 4 in which the object leaves an undirected partitioning

device should generate an entry in CNHT.

To answer a snapshot range query, the evaluation algorithm first identifies cells and

readers that overlap with the query range, then look up DHT, CDHT, CNHT to get the

result set. The algorithm categorizes the results into two types: deterministic (objects that

are for sure within the query range) and nondeterministic (objects that are possibly in the

query range). Cells and devices that are fully contained in the query range contribute to

the deterministic result set from their CDHT and DHT, contribute to the nondeterministic
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result set from CNHT. Cells and devices that partially intersect with the query range can

only contribute to the nondeterministic result set. However, there is one more complication

here: If an object’s state is nondeterministic, and cells of its IDset are all fully contained in

the query range, then the object is also in the deterministic result set. Figure 3.5 shows an

example of two range queries. For query 2, if an object was last seen by device 16, it is in

nondeterministic state and its cellID is (12, 13); query 2 happen to fully cover cell 12 and

13, so this object should be in the deterministic result set.

Figure 3.5: Range query example. [29]

3.3.3 Symbolic Model based Indoor kNN Query

With uniform distribution model at its core, symbolic model based indoor kNN query

is not an easy task since there are many different combinations with different probabilities.

Yang etc [30] proposed kNN query with user specified probability threshold, which can

be used to filter out objects whose probability of being inside the result set is lower than

the threshold. By pruning the non-candidate objects, the number of possible result sets is

considerably reduced, and a large percent of the calculations can be thus saved in the final

stage of probability evaluation of possible result sets.
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First of all, a novel distance metric is proposed in Yang’s work–minimum indoor walking

distance. This new metric, as its name suggests, represents the minimum distance needed to

walk from any two points in an indoor space. A precomputed door-to-door distance graph is

used in their algorithm. The source/destination point first searches for the nearest door, and

the shortest distance between the two doors is then calculated according to the door-to-door

graph. Thus the shortest distance between source and destination points can be calculated

accordingly.

A major contribution of Yang’s work is that they proposed two effective pruning methods

of non-candidate objects: distance based pruning and probability threshold based pruning.

Distance based pruning will filter out objects whose uncertain regions are too far away from

the query point that at least k objects are for sure closer to the query point. For example,

figure 3.6 shows one kNN query with four objects currently in the indoor enviroment. Even

the shortest distance from q to object 4’s uncertain region is larger than the furthest distance

of q to the uncertain regions of objects 1, 2, and 3. Therefore, object 4 can be safely pruned

if this is a 3NN query. We borrow this idea in our system design to optimize particle

filters based kNN queries in section 4.3, which has more formal mathematical definitions of

distances. Probability threshold based pruning is one step further than the former pruning

method, which calculates the probability of an object being in the result set, and filter out

those whose probability is lower than threshold.

After pruning, probability evaluation of all different combinations of candidate objects is

performed, and low probability combinations are eliminated. Suppose there arem objects left

after initial pruning, then there are Ck
m different possible result sets needing to be evaluated.

Yang etc. approximated continuous integration of pdf functions to be the sum of many

discrete intervals. As their previous work [29], the main drawback of this approach is that

all the probability evaluations are based on the simple but inaccurate uniform distribution

assumptions. Also, the computation intensity of approximating the integration can get high

when m is large.
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Figure 3.6: Distance based pruning. [30]

19



Chapter 4

Design

In this section, we will introduce the design of an RFID-based indoor range and kNN

query evaluation system, which incorporates five modules: event-driven raw data collector,

query aware optimization module, particle filter-based preprocessing module, cache man-

agement module, and query evaluation module. In addition, we introduce the underlying

framework of two models: indoor walking graph model and anchor point indexing model. We

will elaborate the function of each module and model in the following sections.

Figure 4.1 shows the overall structure of our system design. Raw readings are first

fed into and processed by the event-driven raw data collector module, which then provides

aggregated readings for each object at every second to the query aware optimization module,

particle filter-based preprocessing module, and cache management module. The query aware

optimization module filters out non-candidate objects according to registered queries and

objects’ most recent readings, and outputs a candidate set C to the particle filter-based

preprocessing module. The particle Filter-based preprocessing module cleanses the noisy

raw data for each object in C, stores the resulting probabilistic data in a hash table, and

passes the hash table to the query evaluation module. At the same time, particle filter-

based preprocessing module and the cache management module communicates data when

necessary. The cache management module also requests data from the event-driven raw data

collector module in order to age out old entries. At last, the query evaluation module answers

registered range and kNN queries based on the hash table that contains filtered data.
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Figure 4.1: Overall system structure.

4.1 Event-Driven Raw Data Collector

In this section, we describe the event-driven raw data collector which is the front end of

the entire system. The data collector module is responsible for storing RFID raw readings in

an efficient way for the following query processing tasks. Considering the characteristics of

particle filtering, readings of one detecting device alone cannot effectively infer an object’s

moving direction and speed, while readings of two or more detecting devices can. We define

events in this context as the object either entering (ENTER event) or leaving (LEAVE event)

the reading range of an RFID reader. To minimize the storage space for every object, the

data collector module only stores readings during the most recent ENTER, LEAVE, ENTER

events, and removes earlier readings. In other words, our system only stores readings of up to

the two most recent consecutive detecting devices for every object. For example, if an object

is previously identified by di and dj, readings from di and dj are stored in the data collector.

When the object is entering the detection range of a new device dk, the data collector will

record readings from dk while removing older readings from di.

The data collector module is also responsible for aggregating the raw readings to more

concise entries with a time unit of one second. The reasons are twofold: RFID readers

usually have a high reading rate of tens of samples per second. However, particle filters

do not need such a high observation frequency. An update frequency of once per second

would provide a good enough resolution. Therefore, aggregation of the raw readings can

further save storage without compromising accuracy. Another advantage of aggregating is

to significantly mitigate the effects of missing readings. With tens of samples per second,
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as long as an object is detected at least once during a second, an entry marking that event

is inserted into the aggregated results. It is very unlikely that all the readings of an object

during one second are totally missed by a reader. Thus aggregation can greatly reduce the

detecting errors of false negatives.

It is worth noting that since this research focuses on snapshot queries launched at the

present time, the data collector module can be designed as above to save storage space. For

systems which are required to answer historical queries, the data collector module needs to

be modified accordingly to keep a longer reading history.

4.2 Indoor Walking Graph Model and Anchor Point Indexing Model

This section introduces the underlying assumptions and backbone models of our system,

which forms the basis for understanding subsequent sections. We propose two novel models

in our system, indoor walking graph model and anchor point indexing model, for tracking

object locations in indoor environments.

Indoor Walking Graph Model: we assume our system setting is a typical office

building where the width of hallways can be fully covered by the detection range of sensing

devices (which is usually true since the detection range of RFID readers can be as long as 3

meters), and RFID readers are deployed only along the hallways. In this case the hallways

can simply be modelled as lines, since from RFID reading results alone, the locations along

the width of hallways cannot be inferred. Furthermore, since no RFID readers are deployed

inside rooms, the resolution of location inferences cannot be higher than a single room.

Based on the above assumptions, we propose an indoor walking graph model. The

indoor walking graph G⟨N,E⟩ is abstracted from the regular walking patterns of people

in an indoor environment, and can represent any accessible path in the environment. The

graph G comprises a set N of nodes together with a set E of edges. By restricting object

movements and particle movements to be only on the edges E of G, we can greatly simplify

the object movement model while at the same time still preserving the inference accuracy of
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particle filters. Also, the distance metric used in this paper, e.g., in kNN query evaluations,

can simply be the shortest spatial network distance on G, which can then be calculated by

many well-known spatial network shortest path algorithms [16, 19] as shown in Figure 4.2.

Anchor Point Indexing Model: the indoor walking graph edges E are by nature

continuous. To simplify the representation of an object’s location distribution on E, we

propose an effective spatial indexing method: anchor point-based indexing. We define anchor

points as a set AP of predefined points on E with a uniform distance (such as 1 meter) to

each other. An example of anchor points is shown in Figure 4.2. In essence, the model of

anchor points is a scheme of trying to discretize objects’ locations. After particle filtering is

finished for an object oi, every particle of oi is assigned to its nearest anchor point, so that

the inferred object location can only be on discrete locations instead of anywhere on E. For

an anchor point apj with a nonzero number n of particles, pi(oi.location = apj) = n/Ns,

where pi is the probability distribution function that oi is at apj and Ns is the total number

of particles for oi.

A hash table APtoObjHT is maintained in our system with the key to be the coordi-

nates of an anchor point apj and returned value the list of each object and its probability

q

Figure 4.2: Example of filtering out kNN query non-candidate objects. Note that si(li) is
the minimum (maximum) shortest network distance from q to the uncertain region of oi.
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at the anchor point (⟨oi, pi(apj)⟩). For instance, an entry of APtoObjHT would look like:

(8.5, 6.2), {⟨o1, 0.14⟩, ⟨o3, 0.03⟩,

⟨o7, 0.37⟩}, which means at the anchor point with coordinate (8.5, 6.2), there are three pos-

sible objects (o1, o3, and o7), with probabilities of 0.14, 0.03, and 0.37, respectively. With

the help of the above anchor point indexing model, the query evaluation module can simply

refer to the hash table APtoObjHT to determine objects’ location distributions.

4.3 Query Aware Optimization Module

To answer every range query or kNN query, a naive approach is to calculate the prob-

ability distribution of every object’s location currently in the indoor setting. However, if

query ranges cover only a small fraction of the whole area, then there will be a considerable

percentage of objects who are guaranteed to be not in the result set of any query. We call

those objects that have no chance to be in any result set “non-candidate objects”. The

computational cost of running particle filters for non-candidate objects should be saved. In

this section we present two efficient methods to filter out non-candidate objects for range

query and kNN query, respectively.

Range Query: to decrease the computational cost, we employ a simple approach based

on the Euclidian distance instead of the minimum indoor walking distance [30] to filter out

non-candidate objects. An example of the optimization process is shown in Figure 4.3. For

every object oi, its most recent detecting device d and last reading time stamp tlast are first

retrieved from the data collector module. We assume the maximum walking speed of people

to be umax. Within the time period from tlast to the present time tcurrent, the maximum

walking distance of a person is lmax = umax ∗ (tcurrent− tlast). We define oi’s uncertain region

UR(oi) to be a circle centered at d with radius r = lmax+d.range. If UR(oi) does not overlap

with any query range then oi is not a candidate and should be filtered out. On the contrary,

if UR(oi) overlaps with one or more query ranges then we add oi to the result candidate
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Figure 4.3: Example of filtering out range query non-candidate objects.

set C. In Figure 4.3, the only object in the figure should be filtered out since its uncertain

region does not intersect with any range query currently evaluated in the system.

kNN Query: by employing the idea of distance-based pruning in [30], we perform

a similar distance pruning for kNN queries to identify candidate objects. We use si(li)

to denote the minimum (maximum) shortest network distance (with respect to the indoor

walking graph) from a given query point q to the uncertain region of oi:

si = min
p∈UR(oi)

dshortestpath(q, p), li = max
p∈UR(oi)

dshortestpath(q, p). (4.1)

Let f be the k-th minimum of all objects’ li values. If si of object oi is greater than

f , object oi can be safely pruned since there exist at least k objects whose entire uncertain

regions are definitely closer to q than oi’s shortest possible distance to q. Figure 4.2 is an

example pruning process for a 2NN query: There are 3 objects in total in the system. We

can see l1 < l2 < l3 and consequently f = l2 in this case; s3 is greater than f , so o3 has no

chance to be in the result set of the 2NN query. We run the distance pruning for every kNN

query and add possible candidate objects to C.

Finally, a candidate set C is produced by this module, containing objects that might be

in the result set of one or more range queries or kNN queries. C is then fed into the particle

filter preprocessing module which will be explained in the next section.
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4.4 Particle Filter-Based Preprocessing Module

We design a particle filter-based algorithm (Algorithm 2) with the prior knowledge of

the indoor walking graph G⟨N,E⟩, anchor points set AP , and the deployment information

of sensing devices D. This algorithm receives the output candidates set C from the query

aware optimization module as input, infers the probability distribution of candidate objects’

locations, and smooths out the result by assigning particles’ locations to the nearest anchor

point.

For every candidate in C, the Particle Filter algorithm first retrieves its most recent

readings detected by up to two RFID readers (this number can be adjusted by users for

supporting other query types) from the data collector module. If the object has just entered

the system and is only detected by one sensing device, the algorithm still runs, although one

device’s readings alone can hardly determine the object’s moving direction.

If the object is undetected by any device for a long time, it is highly likely that the object

stays in a room. In this case if the particle filter continues running for a while without any

observation, particles will become dispersed over a large area and the filtering result will

become unusable. Line 6 restricts the particle filter from running more than 60 seconds

beyond the last active reading.

The particle filter method consists of 3 steps: initialization, particle updating, and par-

ticle resampling. In the first step, a set of particles are generated and uniformly distributed

on the graph edges within the detection range of di, and each particle picks its own moving

direction and speed as in line 5. In our system, particles’ speeds are drawn from a Gaussian

distribution with µ = 1 m/s and σ = 0.1. In the updating step, lines 8 to 16 are particles’

location updates; at every time interval (1 second), particles move along the graph edges

according to their speed and direction. Particles pick a random direction at intersections;

if particles are inside rooms, they continue to stay inside with probability 0.9 and move

out with probability 0.1. After location updating, lines 21 to 27 update particles’ weights

according to their consistency with reading results. In other words, particles within the
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Algorithm 2 Particle Filter(C)
1. for each object oi of C do
2. retrieve oi’s aggregated readings from the data collector module
3. t0, td = the starting/ending time of the aggregated readings
4. di, dj = the second most/most recent detecting devices for oi //dj may not exist
5. generate particles for oi within di.activationRange
6. tmin = min(td + 60, tcurrent)
7. for every second tj from t0 to tmin do
8. for every particle pm of oi do
9. Let pm move along graph edges E with pm.speed and pm.direction
10. if pm meets intersection then
11. pm randomly choose a direction
12. end if
13. if pm resides in a room node of G then
14. pm moves out of room with probability 0.1
15. end if
16. end for
17. retrieve the aggregated reading entry reading of tj
18. if reading.Device=null then
19. continue
20. else
21. for every particle pm of oi do
22. if pm ∈ reading.Device.activationRange then
23. assign a high weight to pm
24. else
25. assign a low weight to pm
26. end if
27. end for
28. normalize the weights of all particles of oi
29. Resampling() // Algorithm 1
30. end if
31. end for
32. assign particles of oi to their nearest anchor points
33. for each anchor point ap with a nonzero number of particles n do
34. calculate probability pi(oi.location = ap) = n/Ns

35. update Hash Table APtoObjHT
36. end for
37. end for

detecting device’s range are assigned a high weight, while others are assigned a low weight.

In the resampling step, particles’ weights are first normalized as in line 28. We then employ

the Resampling algorithm to replicate highly weighted particles and remove lowly weighted

particles as in line 29.
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Lines 33 to 36 discretize the filtered probabilistic data and build the hash table APtoObjHT

as described in Section 4.2.

4.5 Cache Management Module

The cache management module is optional for the system functionality, but will improve

the query evaluation performance if queries are frequent and geographically adjacent to

previous queries. We design the cache management module to store the particle states of

objects from the Particle Filter algorithm. Consequently, insertion to the cache happens

every time when Algorithm 2 is done for an object oi. In case near future queries need

to determine the location distribution for the same object oi again, we do not need to run

the Particle Filter algorithm from the start; instead, previous computation is reused by

retrieving the particles of oi from the cache and resuming the Particle Filter algorithm from

the cache-stored time stamp.

We also need to design a proper life time for entries in the cache. Intuitively, we know

that moving patterns from a distant past provide little help to current location inferences.

The same is true for particle filtering. Suppose for an object oi, the cache stores its particles

due to a previous query at time tprev. In addition, assume the situation in the period from

tprev to tcurrent, oi is detected by two or more readers. According to Algorithm 2, the old

particles in the cache are useless since we only focus on readings of the most recent two readers

after tprev. Furthermore, in order to make the filtering process among objects consistent (i.e.,

the particle filtering for each object is based on the readings of the most recent two devices),

we decide to discard processed particles of oi from the cache every time oi is detected by a

new device. Otherwise the particle filtering for some objects will be based on readings of

more than two devices.

If the cache management module is implemented, the Particle Filter algorithm needs to

be slightly modified by looking up the cache first before running from t0. If there is a cache

hit, then particle filters should run from the cache-stored time stamp. After the particle
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filtering step in the Particle Filter algorithm, the object ID, particle states, and current time

stamp are inserted into the cache.

4.6 Query Evaluation

In this section we are going to discuss how to evaluate range and kNN queries efficiently

with the filtered probabilistic data in the hash table APtoObjHT. For kNN queries, without

loss of generality, the query point is approximated to the nearest edge of the indoor walking

graph for simplicity.

4.6.1 Indoor Range Query

To evaluate indoor range queries, the first thought would be to determine the anchor

points within the range, then answer the query by returning objects and their associated

probabilities indexed by those anchor points. However, with further consideration, we can

see that since anchor points are restricted to be only on graph edges, they are actually the

1D projection of 2D spaces; the loss of one dimension should be compensated in the query

evaluation process. Figure 4.4 shows an example of how the compensation is done with

respect to two different types of indoor entities: hallways and rooms.

In Figure 4.4, query q is a rectangle which intersects with both the hallway and room

R1, but does not directly contain any anchor point. We denote the left part of q which

overlaps with the hallway as qh, and the right part which overlaps with R1 as qr. We

Figure 4.4: Example of indoor range query.

29



Algorithm 3 Indoor Range Query(q)

1. resultSet=∅
2. cells=getIntersect(q)
3. for every cell in cells do
4. if cell.type=HALLWAY then
5. anchorpoints=cell.getCoveredAP(q)
6. ratio=cell.getWidthRatio(q)
7. else if cell.type=ROOM then
8. anchorpoints=cell.getInsideAP()
9. ratio=cell.getAreaRatio(q)
10. end if
11. result=∅
12. for each ap in anchorpoints do
13. result=result+APtoObjHT.get(ap)
14. end for
15. result=result*ratio
16. resultSet=resultSet+result
17. end for
18. return resultSet

first look at how to evaluate the hallway part of q. The anchor points which fall within

q’s vertical range are marked red in Figure 4.4, and should be considered for answering

qh. Since in our assumptions no differentiation along the width of hallways can be inferred

about an object’s true location, objects in hallways can be anywhere along the width of

hallways with equal probability. With this assumption, the ratio of wqh (the width of qh)

and wh (the width of hallway) will indicate the probability of objects in hallways within

the vertical range of q being in qh. For example, if an object oi is in the hallway and in

the vertical range of q with probability p1, which can be calculated by summing up the

probabilities indexed by the red anchor points, then the probability of this object being in

qh is pi(oi.location ∈ qh) = p1 ∗ wqh/wh.

Then we look at the room part of q. The anchor points within room R1 should represent

the whole 2D area of R1, and again we assume objects inside rooms are uniformly distributed.

Similar to the hallway situation, the ratio of qr’s area to R1’s area is the probability of an

object in R1 happening to be in qr. For example, if oi’s probability of being in R1 is p2, then

its probability of being in qr is pi(oi.location ∈ qr) = p2 ∗ Areaqr/AreaR1 , where p2 can be
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calculated by summing up the indexed probabilities of oi on all the anchor points inside R1

and Areai stands for the size of a given region i.

Algorithm 3 summarizes the above procedures. In line 15, we define the multiply opera-

tion for resultSet to adjust the probabilities for all objects in it by the multiplying constant.

In line 16, we define the addition operation for resultSet to be: if an object probability pair

⟨oi, p⟩ is to be added, we check whether oi already exists in resultSet. If so, we just add p to

the probability of oi in resultSet; otherwise, we insert ⟨oi, p⟩ to resultSet. For instance, sup-

pose resultSet originally contains {(o1, 0.2), (o2, 0.15)}, and result stores {(o2, 0.1), (o3, 0.05)}.

resultSet is updated to be {(o1, 0.2), (o2, 0.25), (o3, 0.05)} after the addition in line 16.

4.6.2 Indoor kNN Query

For indoor kNN queries, we present an efficient evaluation method with statistical accu-

racy. Unlike previous work [30, 4], which involves heavy computation and returns multiple

result sets for users to choose, our method is user friendly and returns a relatively small

number of candidate objects. Our method works as follows: starting from the query point

q, anchor points are searched in ascending order of their distance to q; the search expands

from q one achor point forward per iteration, until the sum of the probability of all objects

indexed by the searched anchor points is no less than k. The result set has the form of

⟨(o1, p1), (o2, p2), ...(om, pm)⟩ where
∑m

i=1 pi ≥ k. The number of returned objects will be at

least k. From the sense of statistics, the probability pi associated with object oi in the result

set is the probability of oi being in the kNN result set of q. The algorithm of the indoor

kNN query evaluation method in our work is shown in Algorithm 4.

In Algorithm 4, lines 1 and 2 are initial setups. Line 3 adds two entries to a vector

V , whose elements store the edge segments expanding out from query point q. In the

following for loop, line 5 finds the next unvisited anchor point further away from q. If all

anchor points are already searched on an edge segment e, lines 6 to 11 remove e and add all

adjacent unvisited edges of e.node to V . Line 12 updates the result set by adding ⟨object
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Algorithm 4 Indoor kNN Query(q, k)

1. resultSet=∅
2. ninj=find segment(q)
3. vector V=⟨(ni, q), (nj , q)⟩ // elements in V have the form (node, prevNode)
4. for every entry e in V do
5. anchorpoint=find nextAnchorPoint(e) // return the next unsearched anchor point from

e.prevNode to e.node
6. if anchorpoint=∅ then
7. remove e from V
8. for each unvisited adjacent node nx of e.node do
9. add (nx, e.node) to V
10. end for
11. continue
12. end if
13. resultSet=resultSet+APtoObjHT.get(anchorpoint)
14. probtotal=resultSet.getTotalProb() //calculate the probability sum of all objects in resultSet
15. if probtotal >= k then
16. break
17. end if
18. end for
19. return resultSet

ID, probability⟩ pairs indexed by the current anchor point to it. In lines 13 to 16, the

total probability of all objects in the result set is checked, and if it equals or exceeds k,

the algorithm ends and returns the result set. Note that the stopping criteria of our kNN

algorithm do not require emptying the frontier edges in V .

An example kNN query is shown in Figure 4.5, which is a snapshot of the running status

of Algorithm 4. In Figure 4.5, red arrows indicate the searching directions expanding from

q, and red anchor points indicate the points that have already been searched. Note that the

Figure 4.5: Example of indoor kNN query.
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edge segment from q to n3 is already removed from V and new edges n3n4, n3n5 are currently

in V as well as n3n2. The search process is to be continued until the total probability of a

result set is no less than k.
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Chapter 5

Experiment

In this section, we evaluate the performance of the proposed RFID and particle filter-

based indoor spatial query evaluation system using the data generated by real-world param-

eters, and compare the results with the symbolic model-based solution [30]. We implemented

the proposed algorithms and related experimental components in C++. All the experiments

were conducted on an Ubuntu Linux server equipped with an Intel Xeon 2.4GHz processor

and 16GB memory. The settings of our experiment validation include 30 rooms and 4 hall-

ways on a single floor, in which all rooms are connected to one or more hallways by doors.

A total of 19 RFID readers are deployed on hallways with uniform distance to each other.

The whole simulator consists of seven components, including true trace generator, raw

reading generator, particle filter module, symbolic model module, ground truth query evalu-

ation, top-k success module, and KL divergence module. Figure 5.1 shows the relationship of

different components in the simulation system. The true trace generator module is respon-

sible for generating the ground truth traces of moving objects and records the true location

of each object every second. We let each object randomly select a room as its destination,

and walk along the shortest path on the indoor walking graph from its current location to

the destination node. We simulate the objects’ speeds using a Gaussian distribution with

Figure 5.1: The simulator structure.
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µ = 1 m/s and σ = 0.1. At the same time, the raw reading generator module checks whether

each object is detected by a reader according to the deployment of readers and the current

location of the object. Whenever a reading occurs, the raw reading generator will feed the

reading, including detection time, tag ID, and reader ID, to the two probabilistic query eval-

uation modules (particle filter module and symbolic model module). We also implemented

the ground truth query evaluation module in order to form a basis to evaluate the accuracy

of the results returned by the two probabilistic query evaluation modules.

5.1 Simulator Implementation

The query results are evaluated by the following metrics: (1) We calculated the top-

1 and top-2 success rate of particle filters inferred objects’ locations with respect to their

true locations. The top-k success rate is a percentage of the number of objects whose

true locations match the top k predicted locations of the reconstructed distribution over

the total number of objects. Note that this metric only applies to the particle filter-based

method. (2) For range queries, we employed the metric of Kullback-Leibler (KL) divergence

to measure the accuracy of query results based on the two different probabilistic models.

KL divergence is a metric commonly used to evaluate the difference between two probability

distributions [11]. KL divergence is defined in Equation 5.1 with two probability distributions

P and Q of a discrete random variable. In the following experiments, smaller KL divergence

indicates better accuracy of the results with regard to the ground truth query results. (3) For

kNN queries, KL divergence is no longer a suitable metric since the result sets returned from

the symbolic model module do not contain object-specific probability information. Instead,

we simply count the hit rates of the results returned by the two probabilistic methods over

the ground truth result set. We only consider the maximum probability result set generated

by the symbolic model module when calculating hit rate.

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(5.1)
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Parameters Default Values

Number of particles 64

Query window size 2%

Number of moving objects 200

k 3

Activation range 2 meters

Table 5.1: Default values of parameters.

In all the following experimental result figures, we utilize PF and SM to represent the

curves of the particle filter-based method and the symbolic model-based method, respectively.

The default parameters of all the experiments are listed in Table 5.1.

5.2 Effects of Query Window Size

We first evaluate the effects of query window size on the accuracy of range queries.

The window size is measured by percentage with respect to the total area of the simulated

indoor space. 100 query windows are randomly generated as rectangles at each time stamp,

and the results are averaged over 50 different time stamps. As shown in Figure 5.2, the KL

divergence of both methods does not seem to be affected by the query window size, but the

KL divergence of the particle filter-based method is significantly below that of the symbolic

model-based method.

5.3 Effects of k

In this experiment we evaluate the accuracy of kNN query results with respect to the

value of k. We choose 30 random indoor locations as kNN query points and issue queries on
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Figure 5.2: Effects of query window size.
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these query points at 50 different time stamps. As k goes from 2 to 9, we can see in Figure 5.3

that the average hit rate of the symbolic model-based method grows slowly. As k increases,

the number of objects returned by the method increases as well, resulting in a higher chance

of hits. On the contrary, the average hit rate of the particle filter-based method is relatively

stable with respect to the value of k, and the particle filter-based method always outperforms

the symbolic model-based method in terms of the average hit rate.

5.4 Effects of Number of Particles

From the mathematical analysis of particle filters in Section 3.1, it is known that if

the number of particles is too small, the accuracy of particle filters will degenerate due to

insufficient samples. On the opposite, keeping a large number of particles is not a good choice

either since the computation cost may become overwhelming, as the accuracy improvement

is no longer obvious when the number of particles is beyond a certain threshold. In this

subsection, we conduct extensive experiments to exploit the effects of the number of particles

on query evaluation accuracy in order to determine an appropriate size of particle set for the

application of indoor spatial queries.

As shown in Figure 5.4, we can see that when the number of particles is very small,

the particle filter-based method has a larger KL divergence for range queries and a smaller

average hit rate for kNN queries than the symbolic model-based method. As the number

of particles grows beyond 8, the performance of the particle filter-based method begins to

exceed the symbolic model-based method. Another observation is that when the number

of particles is beyond 64, the top-k success rates of our solution are relatively stable. In
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Figure 5.3: Effects of k.
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Figure 5.4: The impact of the number of particles.
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Figure 5.5: The impact of the number of moving objects.
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Figure 5.6: The impact of activation range.

addition, both the KL divergence and the average hit rate change slowly when the number

of particles grows beyond 64. We conclude that in our application, the appropriate size of

particle set is around 60, which guarantees a good accuracy while not costing too much in

computation.
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5.5 Effects of Number of Moving Objects

In this subsection, we evaluate the scalability of our proposed algorithm by varying the

number of moving objects from 200 to 1000. All the result data are collected by averaging an

extensive number of queries over different query locations and time stamps. Figure 5.5 shows

a comparison of the query results from the two probabilistic methods, and also the top-k

success rates of particle filters’ inferred locations. The KL divergence of the two methods and

top-k success rates of the particle filter-based method are relatively stable, but the average

hit rate of kNN queries decreases for both methods. The decrease of kNN hit rate is due

to more objects being distributed in the same indoor space. A finer resolution algorithm is

required to accurately answer kNN queries. In all, our solution demonstrates good scalability

in terms of accuracy when the number of objects increases.

5.6 Effects of Activation Range

Finally, we evaluated the effects of reader’s activation range by varying the range from

50 cm to 250 cm. The results are reported in Figure 5.6. As the activation range increases,

the performance of the two methods gets better because uncertain regions not covered by any

reader essentially get reduced. In addition, even when the activation range is small (e.g.,

100 cm), the particle filter-based method is still able to achieve relatively high accuracy.

Therefore, the particle filter-based method is more suitable than the symbolic model-based

method when the physical constrains limit readers’ activation ranges.
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Chapter 6

Continuous Spatial Queries

This chapter presents tentative solutions to evaluate continuous indoor range query and

continuous indoor kNN query, but their accuracy and performance has not been validated

by simulation yet. Our ongoing research will conduct further simulation to compare the

performance of our proposed methods to current state-of-art methods [29, 30].

6.1 Continuous Indoor Range Query

In this section, we aim to solve the problem of continuous indoor range query on filtered

probabilistic data. We give users the option of setting a probability threshold to truncate

low probability candidate objects.

To efficiently monitor the result set, we use similar concept ”critical device” as in [29],

which can save considerable computations than constantly repeating the snapshot algorithm.

We define critical devices for a query to be the set of devices whose readings will affect the

query results. Our continuous monitoring algorithm is distinct from Yang’s work [29] in two

aspects: 1. We leverage the Indoor Walking Graph to simplify the identification process of

critical devices; 2. The probability updating process is particle filters based, which are more

accurate and very different from their approach in nature.

To identify critical devices for a range query, we propose an approach consisting of two

steps, mapping and searching. For the mapping step, we categorize two different cases and

treat them differently: case 1, the whole query range is within one room or adjacent rooms,

and we map the query range to the door(s) of the containing room(s). The reason is that

doors are the only entrances/exits of rooms. Case 2, the query range also overlaps with

hallways, and it is mapped to an edge segment of Indoor Walking Graph edges E lying along
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the hallway. For the searching step, an expansion starting from the mapped points or edge

segments is performed along E until reaching the activation range of an RFID reader or

deadend. Notice that in the second case of mapping step, we do not specially deal with the

room part of queries, since the subsequent expansion from the mapped edge segment will

eventually go through the doors of affected rooms.

Figure 6.1 shows an example of the mapping process for two queries q1 and q2. Since q1

is fully contained in room R1, it is mapped to a point at the door of R1. q2 intersects with

not only rooms but also hallway, therefore it is mapped to an edge segment along hallway

as marked red in figure 6.1;

For the initial evaluation of a query, we change the optimization algorithm in section 4.3

of the snapshot query to fully take advantage of critical devices. For an object to be in the

query range, it must be mostly recently detected by a critical device or any device that is

bounded by the critical devices. Therefore, we no longer need to calculate the maximum

bounding circle of each object to determine whether it is a candidate as in section 4.3.

Other than the difference in identifying the candidate object set, other parts of the initial

evaluation algorithm are the same as its snapshot counterparts. After initial evaluation, we

continuously monitor the candidate set by performing particle filters for them at every time

step. Note here for continuous query evaluation, particle filters algorithm should run with

cache in order to avoid repetitive calculations and thus gain higher speed.

Figure 6.1: Mapping process to identify critical devices.
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Algorithm 5 Continuous Range Query(q)

1. Dcriticaldevices = getCriticalDevices(q)
2. C = ∅
3. for every reader in or bounded by Dcriticaldevices do
4. C = C

∪
DtoObj(reader)

5. end for
6. Particle Filter with Cache(C)
7. Rinit=Indoor Range Query(q)
8. for every second from treg to tunreg do
9. for every oi detected by any reader in Dcriticaldevices do
10. if oi ∈ C then
11. C.remove(oi)
12. else
13. C.add(oi)
14. end if
15. end for
16. for every oi ∈ C do
17. if oi.particles are all outside the bounded region of Dcriticaldevices then
18. C.remove(oi)
19. end if
20. end for
21. Particle Filter with Cache(C)
22. R=Indoor Range Query(q)
23. end for

At the same time, the candidate set may change due to candidates moving out or

non candidate objects moving into the critical device bounded region. Therefore, how to

efficiently update the candidate set becomes a critical problem. Again, we rely on critical

devices to gain information about possible outgoing and incoming objects. During continuous

monitoring, if a candidate object enters the activation range of critical devices, or none of

its particles still reside in the bounded region, then we assume it is moving out and should

be removed from the candidate set. On the other hand, if a non candidate object enters

the range of critical devices, we assume it is moving into the bounded region, and should be

added to the candidate set.

Algorithm 5 summarizes our proposed continuous indoor range query algorithm. Lines

1 to 6 initializes the critical devices and candidate set for query q. In line 5 we use a new

hash table DtoObj, which maps a device to objects whose most recent readings are from
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this device. Lines 9 to 20 are updating the candidate set according to the readings of critical

devices, and also particles’ presence within the bounded region. Line 21 run Algorithm 2

with cache to update candidate objects’ location distribution probability. Line 22 calculates

the result set using Algorithm 3. Note there is no need to recompute the anchor point set

affecting query q in line 22, since it is already calculated in line 7 and remain unchanged

until the query unregisters from the system.

6.2 Continuous Indoor kNN Query

Similar to continuous indoor range query, how to update the candidate set of continuous

indoor kNN query is crucial. To reduce the overhead of computing candidate set at every

time step, we buffer certain number of extra candidates than necessary, and only recompute

the candidate set according the optimization approach in section 4.3 when the total number

of candidates is less than k.

Recalling from section 4.3, by examining the minimum/maximum shortest network dis-

tance from the query point q to an object’s maximum speed circle, the snapshot optimization

approach excludes objects whose minimum shortest network distance are larger than the kth

largest minimum shortest network distance. Note here the candidate set identified by this

method contains k + m candidates, where m >= 0. Based on this snapshot optimization

approach, we extend it to include at least k + y candidates where y is a user configurable

parameter. Obviously, y represents a compromise between the size of candidate set and the

recomputation frequency. We accomplish this by calculating the k + yth largest minimum

shortest network distance among all objects, and use this value as a threshold to cut off

non-candidate objects. In this way, the candidate set would contain k + y + m objects,

ensuring that we have at least k + y candidates.

During continuous monitoring, we need to make sure the candidate set gets updated

accordingly when a candidate object moves away or non candidate object moves towards q.

We use a similar concept of ”critical device” as in continuous indoor range query, although
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the critical devices here may change each time the candidate set is recomputed. The iden-

tification process of critical devices goes like following: after calculating the candidate set,

a search is performed from q along E to cover all the maximum speed circle of candidate

objects, until reaching readers (critical devices) or dead ends. As we can see, critical devices

form a bounded region where at least k + y candidate objects are for sure inside it.

On every new reading of critical devices, if the involved object is non candidate, we

assume it is entering the bounded region and moving towards q. Accordingly, this object

should be added to the candidate set. Otherwise, if it is a candidate object, we assume it is

moving out of the bounded region and should be removed from the candidate set. As long as

the total number of candidates is no less than k, there is no need to recompute the candidate

set or critical devices. And the query result can be calculated according to Algorithm 4 for

every time step. However, if there are more outgoing objects than incoming objects, the total

number of candidates may fall below k. In this case, we restart the optimization algorithm

in section 4.3 to get a new candidate set of at least k + y objects.
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Chapter 7

Conclusion

In this paper, we introduced an RFID and particle filter-based indoor spatial query

evaluation system. In order to evaluate indoor spatial queries with unreliable data collected

by RFID readers, we proposed the particle filter-based location inference method, the in-

door walking graph model, and the anchor point indexing model for cleansing noisy RFID

raw data. After the data cleansing process, indoor range and kNN queries can be evalu-

ated efficiently and effectively by our algorithms. Our experiments with data generated by

real-world parameters demonstrate that our solution outperforms the symbolic model-based

method significantly in query result accuracy.

For future work, we plan to conduct further analysis of our system with more perfor-

mance evaluation metrics. In addition, we intend to extend our framework to support more

spatial query types such as continuous range, continuous kNN, closest-pairs, etc.
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