
Dictionary-Less Defect Diagnosis as Real or Surrogate Single Stuck-At Faults

by

Chidambaram Alagappan

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 5, 2013

Keywords: Dictionary-less fault diagnosis, fault simulation, combinational circuits,
stuck-at-faults, surrogate faults

Copyright 2013 by Chidambaram Alagappan

Approved by

Vishwani D. Agrawal, Chair, James J.Danaher Professor of Electrical Engineering
Charles E. Stroud, Professor of Electrical and Computer Engineering
Victor P. Nelson, Professor of Electrical and Computer Engineering

Abstract

With Moore’s law prediction already reaching its final stages, the number of transistors

present in a chip has already touched more than a billion. At this stage, if a chip fails during

manufacturing testing, it is becoming highly difficult to diagnose the root cause of the failure

with precision. The other major contributing factor to this problem is that the actual defects

are always not the same as the modeled defects considered during diagnosis. A diagnostic

procedure should be able to give the possible locations where the defect could be present,

given the failing occurrences of a chip. In this thesis, we propose a diagnostic algorithm that

identifies classic single stuck-at faults as surrogate fault suspects for non-classical faults like

multiple faults by analyzing failing circuits.

Several diagnostic procedures have been proposed previously, but not many of them

could directly associate the diagnosis results to the actual fault present in the circuit, the

reason being, the diagnosis procedure is aimed at diagnosing pre-modeled defects. Few

diagnostic procedures that somewhat try to associate with the actual defect are extremely

complex. Hence, in this thesis no specific type of defects are assumed. Complexity is kept

under control by considering only single stuck-at faults, which are highly analyzable. The

single stuck-at faults are identified not as real suspects but as surrogates for actual defects.

The diagnostic algorithm, therefore, works with the possibility that the observed behavior

of the defective circuit may not exactly match with that produced by the surrogate single

stuck-at faults.

The algorithm is based on effect-cause analysis and proves to be less complex than

existing methods. This diagnostic procedure involves adding or removing faults from a set

of suspected faults based on the observed circuit outputs and minimal fault simulation to

finally obtain a small set of candidate faults. Since the proposed algorithm does not require

ii

a fault dictionary, it is memory efficient. Only a single fault simulator is required and is

run just a few times. Hence it proves to be CPU time efficient too. The procedure makes

use of information from both passing and failing patterns as observed at both erroneous and

error-free primary outputs to arrive at the final set of candidate faults.

The proposed procedure was evaluated by conducting experiments on ISCAS85 bench-

mark circuits using various test pattern sets and was found to be effective. A commercial

fault simulation tool Mentor Graphics FASTSCAN was used for automatic test pattern gen-

eration and fault simulation purposes. The entire algorithm was implemented using Python

programming language and Visual Basic Macros were used for bit manipulation in the test

pattern set. The results obtained prove that the proposed diagnostic procedure works as

expected and demonstrate its ability to provide real or surrogate faults related to the actual

defect present in the circuit.

iii

Acknowledgments

Every treasurable moment of my graduate school career has been shared with many

people. It has been a great privilege to spend the last couple of years in the Department

of Electrical and Computer Engineering at Auburn University, and its members will always

remain dear to me.

My first debt of gratitude must go to my advisor, Dr. Vishwani D. Agrawal. He patiently

provided the vision, encouragement and advice necessary for me to proceed through my

Master’s program and complete my thesis. Being a strong and supportive advisor, he has

always given me great freedom to pursue independent work.

Special thanks to my committee, Dr. Charles E. Stroud and Dr. Victor P. Nelson for

their support, guidance and valuable suggestions. Their guidance has served me well and I

owe them my heartfelt appreciation.

I am deeply grateful to Mr. Charles Ellis, for providing me with an opportunity to work

in the AMSTC laboratory. I should also mention Dr. Adit D. Singh for his enlightening

class talks.

My friends in US, India and other parts of the world were sources of joy and support.

Special thanks to Rucha Gurjar, Suraj Sindia, Yu Zhang, Karthick Alagarsamy and Lixing

Zhao.

I wish to thank my parents Alagappan Chidambaram and Nachal Alagappan and my

sister Sivagami Swaminathan. Their love provided me inspiration and was a driving force. I

owe them everything and wish I could show them just how much I love and appreciate them.

I dedicate this work to them and hope it makes them proud.

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . vii

List of Tables . ix

List of Abbreviations . x

1 Introduction . 1

1.1 Problem Statement . 2

1.2 Thesis Contributions . 2

1.3 Organization of Thesis . 3

2 Fault Diagnosis - Background and Overview . 4

2.1 Digital Circuits . 4

2.2 Detection of failures . 6

2.3 Automatic Test Pattern Generation . 7

2.4 Fault Simulation . 8

2.5 Fault Models . 9

2.5.1 Stuck-at fault model . 9

2.5.2 Bridging fault model . 11

2.5.3 Transistor level stuck fault model . 13

2.5.4 Delay fault model . 14

2.6 Fault Diagnosis . 15

3 Previous Contributions in Fault Diagnosis . 17

4 The Diagnosis Algorithm . 25

4.1 Motivation . 25

v

4.2 Output Selection - A preliminary setup . 26

4.3 The Diagnosis Algorithm . 28

5 Analysis of the Algorithm . 36

5.1 Fault Ranking . 45

6 Experimental Results . 47

7 Conclusion . 54

Bibliography . 56

vi

List of Figures

2.1 Combinational Logic circuit. 5

2.2 Sequential Logic circuit. 5

2.3 Stuck-at-0 fault model. 10

2.4 Stuck-at-1 fault model. 10

2.5 Bridging fault model. 11

2.6 Wired-AND bridging fault model. 12

2.7 Wired-OR bridging fault model. 12

2.8 Dominant bridging fault model - A Dom B. 13

2.9 Dominant bridging fault model - B Dom A. 13

2.10 Transistor level stuck fault models. 14

2.11 Gate delay fault model. 15

3.1 Diagnostic tree. 20

4.1 C17 benchmark circuit. 27

4.2 C17 benchmark circuit with output selection. 29

4.3 Flowchart of diagnosis procedure. 32

vii

4.4 Opposite polarity fault masking. 34

5.1 Simulation effort comparison with dictionary method applied to c432. 37

5.2 Single stuck-at fault case. 42

5.3 Multiple stuck-at fault case where both faults are diagnosed. 43

5.4 Multiple stuck-at fault case where both faults are diagnosed. 44

6.1 Fault masking (interference) in XOR gate. 50

viii

List of Tables

3.1 Pass/fail dictionary. 18

3.2 Full response dictionary. 18

5.1 A fault dictionary. 37

5.2 C17 fault dictionary. 42

6.1 Single fault diagnosis with 1-detect tests. 48

6.2 Single fault diagnosis with 2-detect tests. 48

6.3 Multiple fault diagnosis with 1-detect tests. 49

6.4 Multiple (two) fault diagnosis with 2-detect tests. 52

6.5 Single fault diagnosis with diagnostic patterns. 52

6.6 Multiple fault diagnosis with diagnostic patterns. 53

ix

List of Abbreviations

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generation

BIP Binary Integer Programming

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CUD Circuit Under Diagnosis

CUT Circuit Under Test

DFT Design For Test

DUD Device Under Diagnosis

DUT Device Under Test

FWHM Full Width at Half Maximum

IC Integrated Circuit

ILP Integer Linear Programming

LUT Look Up Table

NFET N-MOS Field Effect Transistor

PFET P-MOS Field Effect Transistor

PICA Picosecond Imaging Circuit Analysis

x

QBF Quantified Boolean Formula

RU Replaceable Unit

SA0 Stuck-At-0

SA1 Stuck-At-1

SAT Boolean Satisfiability

SSBDD Structurally Synthesized Binary Decision Diagrams

xi

Chapter 1

Introduction

With scaling down of device features in the semiconductor fabrication process, to an

extent that feature sizes can be expressed in two digit number of nanometers, the humongous

amount of effort and money to fabricate them and put them into a single IC will all be wasted

if they fail to work as expected. This would even more hurt the manufacturer if these faulty

chips are sent out to the market by mistake, because it causes a fortune to recall the faulty

chips from the market, after being sold. To compensate for the cost of manufacturing these

failing chips, the manufacturer adds these to the cost of the good chips that are being sold.

So not only does the consumer pay more, the discarded failing chips contribute to electronic

waste.

To reduce the occurrences of manufacturing a faulty chip, all the chips are thoroughly

tested at the end of each stage of the manufacturing process. The faulty chips identified at

each stage are stopped being put through the next stage of manufacturing, to avoid wastage

of resources. Even after thorough testing, few faulty chips escape and are manufactured. The

faulty chips are the ones which affect the yield of the process. Every manufacturing firm,

strives to achieve 100% yield. But the truth is that none of them have achieved it to date.

It is difficult to achieve, because of the many factors, which include process variation, die

area and number of process steps. Since the size of the transistors keeps reducing drastically,

various sources of failure which did not affect the bigger transistors, now become prominent.

To discover the faulty chips and to ramp up the yield, failure analysis is a vital procedure.

An ideal fault diagnosis algorithm or procedure should be able to report the true fail-

ures with highest accuracy, i.e., the Resolution (the number of true failures reported among

1

the total number of faults reported) and Diagnosability (the percentage of correctly identi-

fied failures) of a fault diagnosis technique should be high [12]. Various research works on

fault diagnosis procedures fight to achieve this optimum trade-off between the resolution,

diagnosability and CPU time.

The actual defects present in the circuit can be anything. To aid in diagnosing, there

are several pre-modeled defects known as Fault Models. These fault models have been built

and improved over time to try and relate as close as possible to the actual defect present in

the circuit. Since all the actual faults cannot be perfectly modeled, it is highly impossible

to expect test pattern generators to target actual faults and fault simulators to be able to

simulate them. Hence the success of a diagnostic procedure is in how close it relates the

actual fault to the reported fault. In this thesis, we present a diagnosis procedure which will

diagnose the actual fault, if it is a classic single stuck-at fault, and will provide surrogate

faults if the actual fault is a non-classical fault.

Fault diagnosis procedures are usually complex and employ heuristics. But in this thesis,

we propose a procedure which is very less complex and does not use any heuristics. Simple

single stuck-at fault simulations are used to decide the final set of candidate faults.

1.1 Problem Statement

The goal of this research work is to give potential fault(s) or surrogates of the potential

fault(s) causing a circuit to fail when given the test vector set, failing responses and good

circuit netlist.

1.2 Thesis Contributions

The contribution of the work described in this thesis is to provide a basic core algorithm

which will diagnose failing circuits with the help of single stuck-at fault simulation informa-

tion. If the circuit fails because of a classic single stuck-at fault, the algorithm will be able

to identify the actual single stuck-at fault. If the circuit fails because of a non-classical fault,

2

the algorithm will be able to provide surrogate single stuck-at faults which will have at least

a few, if not all of the characteristics of the actual non-classical fault.

The diagnosis method is based on effect-cause analysis and requires significantly less

memory, since it does not have to store a full response dictionary, a pass/fail dictionary or

any other information. Also, it does not involve re-running simulations to move faults to

and from the final candidate list. The procedure works with very minimal fault simulations

and proves to be efficient. This work is also documented in [7] and [8].

1.3 Organization of Thesis

Chapter 2 will introduce the reader to basic concepts of VLSI fault diagnosis in order

to understand the significance of the problem solved by the proposed work. Chapter 3

discusses the previous contributions in the field of fault diagnosis. The diagnosis algorithm

is explained in Chapter 4 and the analysis of the same is done in Chapter 5. The experimental

results obtained during the implementation of the proposed algorithm on different benchmark

circuits is explained in Chapter 6. Chapter 7 concludes the thesis.

3

Chapter 2

Fault Diagnosis - Background and Overview

Electronic circuits have evolved in leaps and bounds from a start where discrete compo-

nents were connected by individual pieces of wire. The current technological advancements

allow the components and interconnections to be formed on a same substrate, typically a

semiconductor [21].

Any electronic circuit can be basically classified as an Analog circuit or Digital circuit or

a Mixed Signal circuit. Analog circuits operate on continuous valued signals, i.e., the current

or voltage may vary continuously with respect to time, corresponding to the information

being presented. These circuits are mostly custom made and lack flexibility. Digital circuits

operate on signals that exist only at two levels - 0‘’s and 1‘’s. The signals take either of these

values to represent logic and numerical values. Designing digital circuits involves minimum

human interaction and they are highly flexible. Mixed signal circuits are a combination of

both analog and digital circuits. Most radio and communications circuitry use mixed signal

circuits.

Even though digital circuit design can be automated and is highly flexible, the effec-

tiveness of the design automation needs to be verified. Fault verification is the key here.

2.1 Digital Circuits

Digital circuits are widely used because of their advantage over analog circuits being

that the signals represented digitally can be transmitted without degradation due to noise.

Digital circuits can be sub-classified into Combinational logic circuits and Sequential logic

circuits.

4

Figure 2.1: Combinational Logic circuit.

Figure 2.2: Sequential Logic circuit.

A combinational logic circuit implements a Boolean function that maps an input bit

string onto an output bit string. As shown in Figure 2.1, the output of such a circuit is

purely dependent only on the inputs to the circuits. Because of this reason, they are also

known as time-independent logic circuits.

A sequential logic circuit, as shown in Figure 2.2, has inputs and outputs like any

combinational circuit. But it also has a clock signal and memory elements, usually flip-flops

which are updated whenever the clock signal is triggered. The outputs of sequential circuits

are not only dependent on the present value of the inputs, but also on the past history of

the inputs.

5

Testing any circuit involves applying a few selected inputs and observing the outputs

for verification of the circuit functionality. This is very evidently easier to perform on any

combinational circuit. The sequential circuits, as they involve memory elements, look to

be difficult to test. But ever since the advent of the scan based design technique [12], a

DFT structure, it has become easy. This technique, for a full-scan-based design, has all the

memory elements connected in a chain fashion, known as a scan chain. The contents of these

memory elements can be scanned in or out via the scan chain. Hence we will be able to

verify the circuit after every test input application, thereby making the testing of sequential

circuits easy and exactly same as testing a combinational circuit. For this reason, this thesis

deals with fault diagnosis on combinational circuits alone.

2.2 Detection of failures

As explained in the previous section, every circuit is tested after manufacturing with

a set of selected inputs. Ideally, all the possible inputs to a circuit should be applied and

outputs should be verified. But with the circuits having a large number of inputs, this

becomes highly impossible. Hence a small set of inputs are chosen in such a way that the

maximum possible faults, if not all of the possible faults in the circuits will be exercised.

This set of inputs are known as test vectors, test patterns or a test set. There are

ATPG programs which will produce the test pattern set when provided with a circuit netlist.

The problem here is that these test patterns will only let you know if the circuit is working

as expected or not. If the circuit is not working as expected, they do not actually give you

the cause of the failure. Fault Diagnosis is the process of finding the actual cause of the

failure when a circuit fails.

The test patterns are driven into the circuit and the outputs are monitored by a tester

machine which is popularly known as ATE . The ATE makes use of a test program which

has the set of instructions that the ATE should follow while the testing procedure is done.

The ATE also stores the test pattern set and the expected and the observed output responses.

6

Whenever the expected output response is not the same as the observed output response,

the ATE flags it as an error. The patterns in a test pattern set which produce an error are

known as failing patterns. The patterns in a test pattern set which produce an observed

output response which is the same as the expected, are known as passing patterns.

2.3 Automatic Test Pattern Generation

Automatic test pattern generation is the process of generating patterns to test a circuit,

which is described strictly with a logic level netlist or schematic. These algorithms usually

operate with a fault generator program, which creates the minimal collapsed fault list, so

that the designer need not be concerned with fault generation.

An ATPG algorithm will inject every possible fault, one after another, in the good

circuit schematic and will try to activate the fault and propagate the fault effect to one or

more of the primary outputs. This way, the observed output response will differ from the

expected output response. So the fault is said to be detected. The fault is activated when

the fault site holds a value which is opposite to the actual value because of the fault. To

propagate this fault effect through an input of a logic gate, the other input(s) of the logic

gate are set to a non-controlling value, i.e., the output of the gate does not depend on

these inputs because of the value on them. The non-controlling value for a AND/NAND

gate is ‘1’ and for a OR/NOR gate is ‘0’ and for a XOR/XNOR gate is input.

In certain sense, ATPG algorithms are multi-purpose, in that they can generate circuit

test patterns, they can find redundant or unnecessary circuit logic and they can prove whether

one circuit implementation matches another circuit implementation [12].

To test for the faults present in a circuit, three types of test sets can be used.

• Exhaustive Test Set - Apply every possible input combination to a DUT. It is guar-

anteed to detect all detectable faults, but it is not practical due to the number of test

patterns required.

7

• Functional Test Set - Exercise every functional node with every possible data set. If

the test pattern set is complete, this will also detect every detectable fault. But it takes

too much time to find test patterns that ensure that the test pattern set is complete.

• Fault Model Derived Test Set - Find a test pattern for every Modeled Fault.

As seen, the most efficient method for test pattern set generation is to develop a model

of the physical defects that can occur in a fabricated device at a higher level of abstraction,

typically the logic level and then develop test patterns to detect these modeled faults [25].

2.4 Fault Simulation

Fault simulation is almost a reverse process of ATPG. The main difference here is that

the test pattern set and a fault list are the inputs to a fault simulation program. A fault

simulator is used to detect the faults that can be detected by a given test pattern.

The fault simulator will inject a fault (or a set of faults) and drive all the input test

patterns. It then compares the expected output response and observed output response.

If there is a mismatch, then the injected fault is said to be detected. If there are no

mismatches, the fault is said to be undetected. Usually most fault simulators, as soon as a

fault is detected, stop simulating the fault and input another fault (or a set of faults) and

start the simulation from the first test pattern again. This is also known as fault dropping.

Once the fault simulation has been performed for all the faults, fault coverage of the

test pattern set can be calculated. It is a quantitative measure of the effectiveness of the

test pattern set in detecting faults [36]. It is given as

FC =
Number of detected faults

Total number of faults in fault list
=

D

T
(2.1)

To be ideal, Fault coverage should be 100%, but it is highly impractical. Hence a fault

coverage above 95% is acceptable. But this also depends on the intended application. To

improve the fault coverage, the faults that are undetected are given to the ATPG program

8

to generate test patterns that will detect the fault. Hence the ATPG and fault simulator

work in tandem to produce a higher fault coverage, thereby improving the quality of testing.

2.5 Fault Models

As previously discussed in chapter 1, the actual defect present in a circuit can be any-

thing. So we seek the help of fault models to develop test patterns to detect the actual

defect. Depending on the quality of the fault model, a test set developed in this manner will

most often cover a large percentage of the actual physical defects.

Fault models are used to emulate actual defects, in order to evaluate the effectiveness of

a test pattern set. It is very important that they be computationally efficient with respect

to the fault simulation environment. The most widely used fault models include gate-level

faults, transistor-level faults, bridging faults, and delay faults. All of these fault models can

be emulated in a simulation environment and, for the most part, they closely approximate

the behavior of actual defects and faults that can occur during the manufacturing process

and system operation [36].

A circuit may fail because of a defect present, which either affects the logical function

of the circuit or the timing of the circuit. Hence various fault models were developed to

represent both the logical function incorrectness and also timing incorrectness. Some of

them are explained as follows.

2.5.1 Stuck-at fault model

The Stuck-at fault model is a gate-level fault model. It represents gate inputs or outputs

fixed (stuck) at a particular logic value, irrespective of the signals applied to them. Since we

are dealing with digital circuits, the gate inputs or outputs are stuck at ‘0’ or ‘1’ which are

represented as Stuck-at-0 or Stuck-at-1, respectively.

9

Figure 2.3: Stuck-at-0 fault model.

Figure 2.4: Stuck-at-1 fault model.

Stuck-at faults are modeled by disconnecting the input or output from the rest of the

circuit and connecting it to the Vcc or Gnd for stuck-at-1 and stuck-at-0, respectively, as

shown in Figure 2.3 and Figure 2.4.

Stuck-at fault models are sub-classified into two categories.

• Single stuck-at fault

The most widely used fault model and is known as the classical stuck-at fault model.

The major assumption here is that there is at most one faulty line in the circuit, which

is either stuck-at-0 or stuck-at-1. That is, the effect of the fault is as if the faulty input

or output node is tied to either Vcc or Gnd. The fault is considered to be permanent

as opposed to transient. Also, the point to be noted here is that the function of the

gates is unaltered by the fault. The fault only affects the faulty node and not any of

the gates.

This fault model type can be applied at the logic or even module level. It is technology

and design style independent. For a circuit with ‘n’ nodes, the number of possible faults

10

Figure 2.5: Bridging fault model.

is ‘2n’. Hence complexity is less. Research indicates that the single stuck-at fault model

covers 90% of possible physical manufacturing defects in CMOS circuits [19]. Also,

other fault models like stuck-open and bridging faults can be mapped into sequences

of stuck-at faults. However, the single stuck-at fault model cannot cover all possible

CMOS defects.

• Multiple stuck-at fault

The biggest draw back of single stuck-at fault is that it assumes there is only one fault

in the circuit at a time, which is not true all the time. Hence the multiple stuck-at

fault model was introduced. It assumes there can be two or more stuck-at faults in the

circuit, at a time. But the trade-off here is that the complexity is high. For a circuit

with ‘n’ nodes, the number of possible faults is ‘3n - 1’. Because of the possibility

of multiple stuck-at fault combinations, this model does not significantly increase the

defect coverage enough to offset the complexity introduced.

2.5.2 Bridging fault model

Due to under etching during the VLSI fabrication process, common defects like short

between two wire segments occur. These defects produce a low resistance short (hard short)

between the two wire segments as shown in Figure 2.5. Such defects can be modeled as

bridging faults. It is more applicable as spacing between lines gets smaller, since there is

a higher probability of two lines getting shorted. Three classes are typically considered for

bridging faults - Bridging within the logic element (transistor gate, source or drain shorted

11

Figure 2.6: Wired-AND bridging fault model.

Figure 2.7: Wired-OR bridging fault model.

together), bridging between logic nodes (input or output of logic elements) without feedback

and bridging between logic nodes with feedback. Bridging of non-logical nodes between logic

elements (transistor shorts across logic elements) is not considered. The most commonly

considered is bridging between logic nodes. The other two are not considered here because

of the fact that a more complex model is required and they are also covered most often by

other fault models, like the stuck-at fault model. There are two major types of bridging fault

models, wired-AND/ wired-OR bridging fault model and dominant bridging fault model [36].

Testing bridging faults require setting the two bridged nodes to opposite values and requires

a lower level circuit description for faults within the logic elements.

• Wired-AND/wired-OR bridging fault model

This fault model represents the fault when the end of the shorted wires receive the

logical AND of the values on the independent wires before they were shorted, as shown

in Figure 2.6. It is also known as 0-dominant bridging fault since a logic ‘0’ on either

of the shorted wires will result in a ‘0’ on both the wires. The wired-OR fault model

is the same as the wired-AND, but with the logical OR as shown in Figure 2.7.

12

Figure 2.8: Dominant bridging fault model - A Dom B.

Figure 2.9: Dominant bridging fault model - B Dom A.

• Dominant bridging fault model

The dominant bridging fault model represents faults where the logic value at the end

is determined by the source gate with the strongest drive capability, as shown in Fig-

ure 2.8 and Figure 2.9.

2.5.3 Transistor level stuck fault model

The transistor level stuck fault model has been very helpful in getting defect coverage

higher in CMOS circuits and requires a lower level circuit description. The transistors can

either be stuck-on/stuck-short or stuck-off/stuck-open. Figure 2.10a shows the fault free

transistor level NOT gate.

Figure 2.10b shows the NOT gate with the NFET stuck-open. The assumption with

the stuck open fault model is that a single physical line in the circuit is broken. But the

resulting unconnected node is not tied to either Vcc or Gnd as in a stuck-at fault model.

The broken line retains the previous value it held for some undetermined discharge time.

13

(a) Not gate. (b) Stuck-open fault. (c) Stuck-short fault.

Figure 2.10: Transistor level stuck fault models.

This creates a memory-effect. Hence to test these kind of faults, we can use a sequence of

stuck-at fault tests. Because of this, larger number of tests are required and algorithms for

ATPG and fault simulation become more complex and are less well developed.

Figure 2.10c shows the NOT gate with the PFET stuck-short. This fault represents the

source and drain of a transistor being shorted. Hence it is switched ON and conducting all

the time. For certain inputs, the circuit with stuck short fault will produce a conducting path

from the source to ground through the output node during steady state. Hence the voltage

at the output will be the function of the voltage divider formed by the channel resistance of

the conducting transistors. There are specialized testing techniques like IDDQ testing to

test for these faults.

2.5.4 Delay fault model

All defects need not affect the function of a circuit. Even if the timing of a circuit is

affected by a defect, it has to be modeled. Some physical defects such as process variations

makes some delays in the CUT greater than some defined acceptable bounds. The two delay

fault models are gate delay fault model and path delay fault model.

14

Figure 2.11: Gate delay fault model.

Gate delay fault model represents the defect that delays either a falling transition (slow-

to-fall) or a rising transition (slow-to-rise) on a specific line. If the delay fault is large enough,

it can be modeled as a temporary stuck-at fault. Again, two patterns are required. One for

initialization and other for transition detection.

Consider the input transition shown in figure 2.11 to be a slow-to-rise transition fault.

A delay is produced because of the transition fault, while the internal nodes of the circuit

settle to their final values. Also, the minimum delay fault size that can be detected is difficult

to determine.

Path delay fault model represents timing failures when the total delay in a path from

inputs to outputs exceeds some fixed acceptable value. This includes the fact that the delay

of a faulty gate can be compensated by gates in the propagation path that have faster than

typical delays.

There are several other fault models. But the ones discussed above are most widely

used.

2.6 Fault Diagnosis

A CUT is said to be failing when its observed behavior is different from its expected

behavior for the test patterns applied. Diagnosis is the procedure of locating the fault in

15

the circuit using the information available. In case of an IC, repairing it is not economical.

But in other cases, repairing a failing CUT will involve substituting the identified faulty

Replaceable unit (RU) with a new one. In cases where the diagnostic procedure comes

up with two indistinguishable RUs, one RU is replaced first and the testing procedure is

followed. If the circuit functions correct, then the replaced RU was the faulty one, else the

other RU is the one which is faulty. This procedure is called Sequential Diagnosis.

The cost of testing and repairing a circuit increases with the stage of fabrication of the

circuit. If it costs $1 to test an IC, the cost of testing for the same faulty IC after mounting

it on a board will be $10. If the defective board is put into a system, then locating the fault

will cost $100. This is called the Rule of 10. Hence the quicker we diagnose the fault, the

lesser amount of resources we spend.

There are several methods for fault diagnosis and various methods employ different

techniques to identify the faults. The next chapter discusses the various researches done in

fault diagnosis procedures.

16

Chapter 3

Previous Contributions in Fault Diagnosis

VLSI fault diagnosis plays a major role in ramping up the yield. Hence there has been

a lot of research effort to develop the ideal fault diagnosis procedure. This thesis focuses

mainly on classic stuck-at fault and multiple stuck-at fault diagnosis. It is assumed that,

bridging fault diagnosis can be done using stuck-at faults. Hence in this chapter we will see

previous contributions made in the diagnosis of above mentioned faults.

Fault diagnostic procedures are based on a number of concepts. Any fault diagnostic

procedure can be classified into one of the following two categories. (i) cause-effect based

analysis and (ii) effect-cause based analysis.

Cause-effect based analysis has a stored simulated response database of modeled faults.

This database is often known as a ‘dictionary’. The faulty circuit response is compared

against this database to find out which fault might have caused the failure [5, 10, 28, 40].

Fault dictionaries are of two types - ‘Pass/Fail Dictionary’ and ‘Full Response

Dictionary’. An example of pass/fail dictionary is shown in Table 3.1. All the possible

single stuck-at faults are injected into the circuit one at a time and fault simulation is

performed on the faulty circuit. If a test pattern fails, a ‘1’ is placed in the corresponding

column for the respective injected fault. If a test pattern does not fail, a ‘0’ is placed in the

corresponding column for the respective injected fault. The bits in the row corresponding

to each fault are known as a Signature. For example, the signature of fault F1 is ‘101’.

Now that the information of which fault will fail on which test patterns and pass on which

test patterns of the test set is known, comparing this with the test results of the actual

faulty CUT will let us know which fault is present in the CUT, if it is a single stuck-at

fault [32, 34, 14].

17

Table 3.1: Pass/fail dictionary.

Test Patterns
Faults T1 T2 T3

F1 1 0 1
F2 1 1 0
F3 0 0 1
F4 0 0 1

Table 3.2: Full response dictionary.

Test Patterns
Faults T1 T2 T3

OP1 OP2 OP1 OP2 OP1 OP2

F1 1 0 0 0 1 0
F2 1 1 0 1 0 0
F3 0 0 0 0 0 1
F4 0 0 0 0 1 0

It is quite possible that two faults have the same signature in a Pass/Fail dictionary,

since we do not have the complete information recorded. In table 3.1, faults F3 and F4 have

the same signature. Hence we are not able to distinguish between them. To overcome this,

the Full Response Dictionary is used. Here, we record the entire information of a failing

pattern along with the output on which a pattern fails. Table 3.2 shows the full response

dictionary for the same example. Even though both the faults F3 and F4 fail only on the test

pattern T3, with the full response dictionary, we are able to see that they fail on different

primary outputs. Hence we will be able to distinguish between them. Even with a full

response dictionary, two or more faults can be indistinguishable. Then the test pattern set

should be increased with another test pattern which can distinguish between them. If there

exists no such test pattern, those faults are indistinguishable or equivalent faults.

Since the dictionary method uses a stored simulated response database, it requires

a large amount of memory and becomes impractical for large circuits. To overcome this

memory constraint, several techniques like dictionary indexing or fault dropping are followed

to get a compact dictionary. Fault dropping technique does not simulate a fault after it has

18

been detected by a test pattern, instead it moves on to the next fault in the list. Therefore

every fault will be detected exactly only once. Dictionary indexing technique involves storing

a index for a particular signature, instead of storing the whole signature. This saves some

memory. Dictionaries frequently contain unwanted information and can usually be made

smaller. Some techniques do this by limiting fault simulation, reducing size and cost but

sacrificing resolution [29].

However, dictionary based fault diagnosis holds good only for single stuck-at faults. For

multiple stuck-at faults or other non classical faults, the dictionary method is impractical

because of the number of combinations of faults that can be present, which increases the

complexity.

In [32] a diagnostic dictionary is built and the expected and failing responses are com-

pared to detect the actual fault. There is a counting procedure used here which adds two

counts to a fault every time the simulated response and the good circuit response differs. If

the observed response is not known a count of one is added. There is no change to the count

in other cases. Finally the faults with the highest count are reported as suspects.

An improved work in [33] utilizes a test pattern set with 100% fault coverage to test

the circuit and the fault simulation is performed on the failing patterns to get the common

faults. Then a dynamic dictionary is formulated by using a larger test set to continue with

the fault diagnosis as stated in [32]. This proves to be lot more memory efficient because

of the dynamic dictionary. However, there is a trade-off in terms of simulation time due to

increased number of times the faulty circuits are analyzed.

The other famous alternative to fault dictionary is the Diagnostic Tree approach [12].

Every step of the diagnostic tree provides partial diagnosis. The test patterns are applied

one at a time and the depth of the tree depends on the number of test patterns in the test

set. The order of the application of the test patterns is chose based on the previous test’s

results. As shown in Figure 3.1, if a test pattern passes, the diagnosis will follow a particular

route and if the test pattern fails, the diagnosis will follow a different route. At the leaf

19

Figure 3.1: Diagnostic tree.

nodes of the diagnostic tree, we will arrive at the suspected fault. If the leaf nodes have

more than one fault, those are equivalent faults or indistinguishable faults.

In effect-cause based analysis, as the name suggests, depending on the failing effect

produced, the search for the cause of failure is performed [3, 4, 15]. It does not use any

stored database. The search for the cause of failure is done by various methods which trace

back the error propagation path from the failing primary outputs and consider faults which

might have produced the particular failure. Fault location by structural analysis is one of the

effect-cause based techniques. If the fault present in the CUT is assumed to be a single fault,

then there should exist a path from the site of the fault to each of the outputs where errors

have been detected. Therefore it makes sense to state that the fault is most likely present

in the intersection of the logic cones which lead to the erroneous outputs. Also, techniques

like backward implication and forward propagation are used to detect the fault [15]. These

types of diagnosis methods take up reduced or no memory space and can handle any size

circuit with just time increasing linearly with the complexity.

20

The authors in [16] propose X-simulation which uses three value logic simulation - ‘1’, ‘0’

and ‘X’. A set of nodes are chosen to have unknown value X on them. The signal propagation

is done along with the X values, to the primary outputs. If the X values successfully reach the

faulty primary outputs alone, then the nodes with the X value are reported to be suspects.

If the X value is lost in mid-way through the circuit or does not reach the actual failing

outputs, then the selected set of nodes are relieved from suspicion. This work served as a

base for the procedure proposed in [11]. The authors suggest breaking the entire circuit down

into small regions and three value logic simulation be performed. After the logic simulation,

each block is ranked. The rank will be increased for the region if the ‘X’ value can propagate

to the erroneous output. If a contradictory value is put on the primary output, the regions

selected are dropped.

An improved work [35] partitions the circuits into several small blocks which have just

a couple of gates and then the three value logic simulation is performed. At the output

of each block, when all except one output is observed to have a ‘X’ value, the value on

the remaining outputs is flipped. After continuing with the logic simulation, if the primary

outputs contain atleast one erroneous output or an additional erroneous output, then the

block is to be abandoned. But these works with three value simulation based on a small

region provide very poor resolution.

Fault diagnosis by CUT reduction is also a diagnostic procedure that has been available

for a long time now. Here the failing CUT is partitioned into two and separately tested.

If there is only a single fault, only one of the partitions will fail. So the failing partition

is again divided into two parts and the same procedure is followed. It goes on in the same

fashion as a binary search algorithm. But this procedure is again time consuming and is

nearly impossible for large circuits.

In reality, failures may not be exactly the classical single stuck-at-fault. But the single

fault assumption has worked out very well in practice because diagnostic algorithms are

developed, keeping in mind that the success of a diagnostic procedure is in how close it

21

relates to the actual fault. Researches state, most of the multiple faults are covered by testing

for single faults [19]. Also, testing for all multiple faults is not an economical procedure.

However, due to the current fabrication levels, we need to consider multiple fault analysis

too. Works on multiple fault analysis have been around for quite some time now. Instead of

testing for all possible multiple faults, if tests are developed for combinations of faults that

are constructed from the resulting suspected fault list of single fault tests, the diagnostic

resolution can be highly improved [24].

Multiple faults in a combinational or sequential circuit are corrected using a single error

correction scheme in iterations, as proposed in [30]. A heuristic measure is used to guide the

selection of single, local circuit modifications that reduce the distance between the incorrect

implementation and the specification. The distance is measured by the size of a correction

hardware.

The authors in [23] put forward a procedure which utilizes fault dropping for multiple

fault detection. Fault collapsing is performed initially to reduce the number of faults by

eliminating the equivalent faults. The analysis procedure then involves considering frontier

faults among the collapsed faults, which are then used to show that they are equivalent

to the set of multiple faults. After fault simulation, a fault dropping procedure is used to

eliminate faulty conditions on lines that are either absent or may be masked by other faulty

conditions, to arrive at the suspected faults.

Using test groups instead of test pairs for detecting multiple stuck-at faults with presence

of fault masking (a phenomenon where a test for a fault fails to detect it because of the

presence of another fault) was introduced in [38]. Mutual masking of multiple faults were

modeled with the use of structurally synthesized binary decision diagrams. The goal of this

work was to verify the correctness of a selected part of the circuit instead of targeting the

fault sites as test objectives.

A more recent work utilizing fault dropping for multiple fault diagnosis is proposed

in [37]. The procedure makes use of both single and multiple fault simulation information

22

to add or drop faults to or from a suspected fault list. Repeated simulations are performed

to come up with the final set of candidates. A heuristic procedure is used to rank the

candidates and the top rank candidates are reported as possible suspects. Even though it is

very complex and requires a lot of time, the results lack resolution for bigger circuits.

Electron beam probing is also used for fault diagnosis. Guided probe testing extends

edge pin testing by monitoring internal signals in the CUT via a moving probe which is

usually guided by the test equipment. The principle behind this procedure is to backtrace

an error from the failing primary output. It is carried out step-by-step and in each step, an

internal signal is probed and compared to the expected value. The next probing depends on

the result of the previous step. But it is highly time consuming and very difficult. Hence

most of these fault diagnostic procedures are performed as a pre-processing step for electron

beam probing. It proves to be very efficient when there are very few suspected nets to be

probed. So, the higher the resolution of the fault diagnosis procedure, higher will be the

efficiency of electron beam probing.

IBM researchers have demonstrated the ability to measure optical emission of normally

biased CMOS logic gates, which occurs only in a short period during the switching tran-

sient. The time response of the measuring system is less than 100 psec (FWHM) . Device

characterization through the analysis of dynamic light emission can be performed on the IC,

which provides the timing resolution needed to diagnose faults. One such diagnosis method

known as Picosecond Imaging Circuit Analysis (PICA) is described in [26].

Even methods involving Boolean satisfiability problems, which involve satisfying a Boolean

expression or equation, has also been used in fault diagnosis [39]. In [22] a novel approach of

adding partial programmability in the CUT by replacing some gates with LUTs for aiding

in diagnosis has been explained. The configuration of these LUTs is found using boolean

SAT solvers instead of using a QBF solver.

Integer linear programming techniques have also been used in fault diagnosis. In [13],

a three stage ILP based diagnosis is performed to diagnose byzantine open-segment defects.

23

The first stage generates a list of net candidates as defect locations based on path tracing

on failing patterns. The second stage reports the combinations of the net candidates that

can explain all the erroneous primary outputs. By encoding the candidate nets as a binary

integer programming, an ILP solver is used to find the net combinations. The final stage

verifies and expands the final net fault candidates.

To overcome the problem of fault model dependent diagnosis, a novel approach to adap-

tive diagnosis was proposed in [18]. It combines a new effect-cause pattern analysis algorithm

with high-resolution ATPG and uses stuck-at faults as a basis for diagnosis. Deviations in

defect behavior from the behavior of stuck-at faults are accommodated by using scoring al-

gorithms that estimate the likelihood of a defect being associated with the site of a stuck-at

fault given the observed response of the failing circuit.

Reference [45] suggests a procedure of diagnosis using stuck-at and transition fault

models. Development of test vectors that improve the diagnostic coverage of faults of various

types [42, 43, 44] and application of SLAT patterns, which detect only one fault at a time,

to perform the diagnosis of failure responses caused by multiple faults [9] are also being

considered. Diagnosis using SLAT patterns work on two assumptions. Any defect behaves

as some set of stuck-at faults on application of a pattern that detects it. The stuck-at faults

will vary for different patterns that detect it. The second assumption is that there will

be some detecting patterns that causes the defect to act as a single stuck-at fault. These

assumptions reduce the diagnosis problem back to stuck-at fault diagnosis [20].

There are plenty of other fault diagnosis procedures which work on the trade-offs between

the complexity, time and resolution. But the basic concept is more or less the same as

discussed in the above methods.

24

Chapter 4

The Diagnosis Algorithm

This chapter explains the algorithm proposed in this thesis. The diagnostic procedure

involves fault simulation using fault dropping to result in set of candidate faults to be sus-

pected. Since this procedure is purely simulation based, it does not use any fault dictionary

and thereby proves to be memory efficient. Unlike other fault simulation diagnosis algo-

rithms, this proposed procedure is very simple and does not use any heuristic to rank order

the faults. Also, the diagnostic time is drastically reduced, because our algorithm does not

involve re-running simulations with the same patterns after ranking or repeated switching

of faults from and to the suspected fault list.

4.1 Motivation

As seen in Chapter 3, there are various fault diagnostic procedures which perform di-

agnosis with either dictionaries or diagnostic trees or some other technique. But diagnosing

multiple faults has not been mastered to satisfaction yet. This is mainly due to the huge

combination of possible faults, which blows up the initial fault candidate set. If this initial

fault candidate set is reduced, most of the fault diagnosis will be made simpler and effective.

The other problem is that almost all of the fault diagnosis procedures are based on one

or a couple of fault models. That is, they aim at detecting only selected fault models. This

is because different fault simulators and different ATPG programs are required to target

different fault models. These ATPG programs and fault simulators are not able to achieve

perfection yet. As discussed in chapter 2, just because single stuck-at faults cover maximum

of the physical defects that can be present in a circuit, all the diagnosis procedures based

on just single stuck-at fault model, work as expected. But this is not the case always. With

25

devices shrinking fast, various defects are seen becoming prominent. All these defects cannot

be tested okay by testing with a single stuck-at fault model.

In this thesis we propose an algorithm which is able to diagnose non-classical faults. It

works with available fault simulation tools and hence it is based on classical single stuck-at

faults. The diagnosed fault set reported by the algorithm contains only the classical stuck-at

faults. However, they are classified as either real or surrogate. If we determine the identified

fault to be a single stuck-at fault it is called real. Otherwise, the identified faults are called

surrogate, meaning that they have some, but not all, characteristics of the actual defect in

the circuit. The term surrogate fault has been used before in the literature [17, 31, 41].

These surrogate faults are used to represent the non-classical faults based on the correlation

with location or functional equivalence to the real fault. The proposed diagnosis algorithm

makes only one assumption, that there is no circular fault masking in the circuit under test.

Circular fault masking is the situation where two or more faults can mask each other from

being detected.

4.2 Output Selection - A preliminary setup

A circuit is said to be faulty when its output response for a test pattern set does not

match the expected good circuit response. Before starting to apply the fault diagnosis

algorithm there is some initial setup required to help us obtain a high resolution diagnosis.

For explaining the complete diagnosis procedure, we will be using the ISCAS’85 benchmark

circuit C17, as shown in Figure 4.1, throughout this thesis.

When a test pattern is reported as failing, the circuit has failed to match the good circuit

output response on at least one of the primary output pins. From the failing responses of

the output we get to know which test pattern fails on which primary output pin. This

information is very vital as it provides information about the fault location. For instance, if

a test pattern fails on all the primary outputs, the fault is most likely to be located closer to

the primary inputs. In other words, the fault location is actually present in the intersection

26

Figure 4.1: C17 benchmark circuit.

of the cones of the failing primary outputs. But if the test pattern fails only on one primary

output, the fault must be located close to that primary output or must be present on a

line which can affect only this primary output, i.e., the fault which is propagated to other

outputs is overwritten by other logic values or the fault does not have a path to propagate

to other outputs.

The proposed diagnosis procedure involves single fault simulations with both the failing

and passing patterns. During fault simulation with the failing pattern, the fault simulator

program will report all the faults that the pattern will be able to detect on all the primary

outputs. But considering all these faults when only one or few of the primary outputs are

failing will result in waste of resources and precious diagnostic time. Hence, to overcome this

difficulty, we use a technique known as ‘Output Selection’. Logic AND gates are added at

each primary output and the other input of the AND gate becomes another primary input.

Now the failing test pattern can be duplicated as many times as the number of primary

outputs with just activating only one primary output at a time, i.e., the primary inputs that

directly go to the added AND gates should all be forced to 0 except for one AND gate at a

time, to activate that particular primary output.

Consider the C17 benchmark circuit shown in Figure 4.1. The test pattern is “10100”,

whose good circuit response is “10”. Assume this circuit fails on this pattern only on the

27

second output. The pattern’s fault simulation will produce faults that can be detected at

both the outputs. After implementing output selection as shown in Figure 4.2, the test

pattern will be duplicated as “1010010” and “1010001”. Since the original circuit passed

on the first primary output, test pattern “1010010” will pass too, and will be considered as

a passing pattern. Now if we simulate the failing pattern “1010001”, we will end up with

faults that can be detected only on the second primary output. Hence the faults detected

on the first primary output can be absolved of being the suspected faults. This way, we

split a single failing test pattern into two, a failing pattern and a passing pattern. The

same technique can be implemented by using OR gates instead of AND gates and the forced

primary outputs to be ‘0’ instead of ‘1’. On a large circuit with many primary outputs, this

will prove to improve diagnostic resolution and diagnostic time. But this comes with a cost,

since all the test patterns are multiplied by the number of primary outputs. This technique

was mainly implemented because the fault simulator program used, was not able to provide

the information about which faults will be detected on which primary outputs for each test

pattern, while performing on-the-fly simulations. There are other fault simulator programs

in the market, which can provide this information. Using them, will eliminate the need for

‘output selection’ implementation.

4.3 The Diagnosis Algorithm

Now that we have the information of failing patterns and output selection setup ready,

we can proceed with the algorithm. The algorithm is aimed to be simple and effective.

Hence, there is no heuristic or ranking involved. There is also no need for re-simulations

with added or removed faults from the suspected fault list. The algorithm uses the most

basic concept that a test pattern fails because a fault that it can detect is present in the

circuit and a test pattern passes because none of the faults that it can detect are present in

the circuit. For this algorithm to be effective, the only assumption we make is that there is

no circular fault masking present in the circuit under diagnosis.

28

Figure 4.2: C17 benchmark circuit with output selection.

The following nomenclature is used in the diagnosis algorithm:

passing set - Set of passing test patterns

failing set - Set of failing test patterns

sus flts - Suspected fault list

set1 can flts - Set of prime suspect faults

set2 can flts - Set of surrogate faults

The proposed diagnosis algorithm works in four phases:

Phase 1:

Step1-1 : If failing set is empty, then restore failing set to initial stage and go to Phase

2. Else select and remove a failing test pattern from failing set.

Step1-2 : Perform fault simulation for the selected failing test pattern to identify the

faults detected by the test pattern.

29

Step1-3 : Add all the faults detected by the pattern to the sus flts set and go to step1-1.

Phase 2:

Step2-1 : If passing set is empty, go to Phase 3. Else select and remove a passing test

pattern from passing set.

Step2-2 : Perform fault simulation for the selected passing test pattern to identify the

faults detected by the test pattern.

Step2-3 : If the detected faults are present in the sus flts set, remove them and go to

step2-1.

Phase 3:

Step3-1 : Copy faults from sus flts set to set1 can flts set and set2 can flts set.

Step3-2 : If failing set is empty, go to Step3-5. Else select and remove a failing test

pattern from failing set.

Step3-3 : Perform fault simulation for the selected failing test pattern, to identify the

faults not detected by the test pattern among the set1 can flts set of faults.

Step3-4 : Update set1 can flts set by deleting the faults that are not detected by the

pattern. Go to step3-2.

Step3-5 : If faults present in the set1 can flts set, are present in set2 can flts set, delete

them from the set2 can flts set and Go to Phase 4.

Phase 4:

Step4-1 : If there is no unselected fault in set1 can flts set, repeat Phase 4 for set2 can flts

set and then STOP. Else select a fault and uncollapse it to obtain its corresponding equiva-

lent set of faults.

Step4-2 : Add the equivalent set of faults to set1 can flts set.

Step4-3 : Add the opposite polarity fault for the selected fault and its equivalent set of

30

faults to set1 can flts set.

Figure 4.3, shows the flowchart of the entire diagnosis procedure. The initial phase

of the algorithm, Phase 1, involves performing fault simulation on each one of the failing

patterns present in the failing set and adding all the faults that could be detected by the

failing patterns to the sus flts set. This is nothing but taking the union of all the faults

that are detected by all the failing patterns. The actual fault should be present in this vast

set. But since this set is huge, we need a criterion to reduce the number of suspected faults.

Hence, in the second phase, fault simulation of each one of the passing patterns present in

the passing set is performed. Since these patterns are passing, the faults detected by these

patterns can be absolved of being suspect faults. So these faults are deleted from the sus flts

set, if present. This phase is nothing but taking the union of all the faults that are detected

by the passing patterns and subtracting it from the union of all the faults that are detected

by the failing patterns. The Phase 1 and Phase 2 of the algorithm are interchangeable in

order, i.e., it does not really matter, if simulation of failing patterns is performed first or the

simulation of passing patterns. Generally, starting with the simulation of failing patterns,

will result in working with fewer faults, when the passing patterns are more than 50% of the

total test pattern set. Phase 3 of the algorithm is all about setting up a prime suspect fault

candidate list. This helps in achieving a higher diagnostic resolution. In this phase, fault

simulation of each one of the failing patterns present in the failing set is performed again.

But this time the faults that are commonly detected by all the failing patterns are stored

in set1 can flts set. This is equivalent to taking the intersection of all the faults detected

by the failing pattern set. The resulting faults are considered to be ‘Prime Suspects’. The

remaining fault suspects present in sus flts set are moved to set2 can flts set. These faults

are of low priority, but there is a chance that they can be a surrogate of the actual fault or

one of the actual faults.

31

Figure 4.3: Flowchart of diagnosis procedure.

If the actual fault present is a classical single stuck-at-fault, the algorithm would have

identified it by the end of Phase 2. But in practice, the actual fault present is not always a

32

classic single stuck-at-fault. To detect non-classical faults using a test pattern set that was

generated to detect classic single stuck-at-fault will yield an inaccurate diagnosis.

Hence in order to help in detection of non-classical faults like multiple stuck-at-faults,

the algorithm provides a list of surrogate faults which might represent the actual fault or

the actual fault’s behavior, when it is not a single stuck-at fault. The use of surrogate faults

to model faults that do not belong to the fault model for which the test pattern set was

generated was utilized in [31] and [41].

We proceed further into the algorithm to the final phase, Phase 4. The faults that

are present in the set1 can flts set and set2 can flts set are extracted and uncollapsed, i.e.,

equivalent faults of the set of suspected faults are also brought into the suspects list. When

dealing with multiple stuck-at-faults, fault masking is a phenomenon of concern. Many

diagnostic procedures proposed are put forth with the assumption of fault masking not

present. Even though fault masking is a rare phenomenon in practice, in large circuits, one

can never completely be sure that fault masking is not present.

In order to achieve diagnosability when considering non-classical faults to be present

in the circuit, we perform the final step to produce surrogate faults that might represent

the non-classical multiple stuck-at-faults. We add the opposite polarity faults of the faults

that are present in the set1 can flts set and set2 can flts set, to get the final candidate fault

list sets. i.e., if the set1 can flts set contains ‘a’ s-a-0(stuck-at-0), ‘b’ s-a-1(stuck-at-1) and

‘c’ s-a-1, the final set1 can flts candidate fault list will have ‘a’ s-a-0, ‘a’ s-a-1, ‘b’ s-a-0, ‘b’

s-a-1, ‘c’ s-a-0 and ‘c’ s-a-1. A similar procedure is followed for set2 can flts set.

To reinforce the point that opposite polarity of the suspected faults should be included

to cover fault masking, let us take a look at some basic examples of fault masking.

Two faults of a Boolean circuit are called equivalent if and only if they transform the

circuit such that the two faulty circuits have identical output functions. They are also

called indistinguishable and have exactly the same set of tests [6]. When multiple faults are

equivalent, there is no way to distinguish those faults, because the tests for the equivalent

33

Figure 4.4: Opposite polarity fault masking.

faults are the same. Hence they will react as one single fault. To take this into account, the

first part of Phase 4 of the algorithm adds all equivalent faults of the detected faults. This

way, even if the detected fault is not the actual fault, but one of its equivalent faults is the real

fault, we will be able to diagnose it. For an AND gate, all stuck-at-0 faults are equivalent.

In Figure 4.4, input1 of an AND gate is stuck-at-1 and the output is stuck-at-0 . To activate

the fault on the input1 line, a ‘0’ must be supplied to input1 and a ‘1’ must be supplied to

input2, to propagate it. This will produce a Dbar (which denotes the good circuit value to be

‘0’ and bad circuit value to be ‘1’) on input1 and it will be propagated to the output of the

AND gate. But it will be stopped from being propagated to the primary output because of

the output stuck-at-0 fault masking it. Since the output fault is masking the input fault, the

diagnosis procedure will come up with the output stuck-at-0 as a suspected fault. Because

of this, stuck-at-0s on both the inputs are also included as suspects. But here, the case is

that the input1 is stuck-at-1. Similar is the case with the NOR gate shown in Figure 4.4,

where input1 and output are stuck-at-0. This will be the same for any such case of opposite

polarity fault masking. So the second part of Phase 4, where including the opposite polarity

of equivalent faults is performed, will cover for these cases of masking in a circuit.

34

Even though the fault diagnosis procedure will produce surrogate faults that will be

able to accommodate most cases of fault masking, it will fail to represent the masked fault

when it is situated far away from the masking fault. To try and cover this aspect of fault

masking, will result in very poor and unacceptable diagnostic resolution. But fault masking

is a very rare case. With circuit sizes getting larger, the probability of fault masking reduces.

Even if a pessimistic approach is taken and fault masking is assumed in 50% of the failing

circuit cases, out of which 25% are cases where the masking faults and masked faults are far

apart, the diagnostic procedure will come up with the surrogate faults that represent 75%

of the failing circuit cases.

Theorem 1. If there is only a single stuck-at-fault present in the circuit under diagnosis

(CUD), the diagnosis algorithm will always diagnose the fault, irrespective of the detection

or diagnostic coverage of the test pattern set.

Proof. Let us assume that there is a single stuck-at-fault in the CUD. It causes N − k test

patterns out of an N -pattern test set to fail, where k is the number of passing patterns

in the test set. Considering the fact that a fault free circuit will not have any failing test

patterns, the failing test patterns on the CUD are due to the presence of failure s. In other

words, a test pattern can only fail because a fault that it detects is present. Hence all N − k

patterns detect the fault s and the remaining k patterns do not detect the fault s. If all

N − k patterns detect some fault present in the circuit, it has to be the same fault that all

the N − k patterns detect, because there is no more than one fault present in the circuit

according to our assumption in the beginning. Moving forward with this revelation, Phase 3

will always come up with the actual fault, i.e., the intersection of the faults detected by all

the failing patterns will be the actual single stuck-at-fault present in the circuit.

35

Chapter 5

Analysis of the Algorithm

In a short story, The Murders in the Rue Morgue, the author Edgar Allan Poe, says

“The analytical power should not be confounded with simple ingenuity; for while the analyst

is necessarily ingenious, the ingenious man is often remarkably incapable of analysis.” The

story revolves around a murder case of two ladies which puzzles everyone. But the murderer

actually turns out to be an orangutan.

The diagnosis problem here can also be compared to a murder case investigation. Let

us assume the actual fault is the murderer and the test patterns in the test vector set are the

witnesses. The failing test patterns are supposed to have some knowledge about the crime

scene and the passing test patterns are supposed to have no knowledge about the crime.

Hence the failing patterns give information about faults which are the suspects, i.e., the

failing pattern witnesses state that they saw the suspects at the crime scene. The passing

test patterns give information on which faults are not the suspects, i.e., the passing pattern

witnesses state that they saw the suspect somewhere else other than the crime scene, during

the time frame the crime took place. They basically give an alibi for the suspect. Based on

this alibi the diagnosis procedure, absolves the suspect of the crime and the next suspect

is considered. Fault masking and Fault interference can be compared to cases where the

witnesses are either lying or do not know the truth.

The Figure 5.1 shows the comparison of simulation effort between the proposed diagnosis

procedure and traditional fault dictionary diagnosis method. It was plotted for a multiple

(two) stuck-at fault failure case in C432 ISCAS85 benchmark ciruit. Circuit C432 has a

total of 1078 single stuck-at faults in the fault list. The test vector set with 100% diagnostic

coverage for this circuit contains 462 test vectors (with output selection implemented). The

36

Figure 5.1: Simulation effort comparison with dictionary method applied to c432.

Table 5.1: A fault dictionary.

t0 t1 t2 t3 t4
F1: 1 1 1 0 0
F2: 1 0 1 0 0

dictionary method involves simulating all the faults for all the test vectors. Hence the entire

area under the straight black line denotes the simulation effort of the fault dictionary method.

The considered failure case produced 31 failing vectors (431 passing vectors). The proposed

fault diagnosis procedure performs fault simulation with the failing test vectors first, which

is denoted by the solid red line. This line drops down steep because, as and when the faults

are detected, they are dropped. Hence we get to work with fewer faults as we proceed with

the simulation. Next, the fault simulation of passing patterns is performed, which is denoted

by the dotted blue line. It is to be noted that the faults that were detected and dropped

during failing pattern simulation are the ones that are used for passing pattern simulation.

In this case too, faults are dropped as and when they are detected by the passing patterns,

which explains the drop in the line. Hence once again the number of faults to be simulated

37

keeps reducing throughout the simulation. Beyond a certain point, not many of the faults

remaining are detected by the passing patterns, which makes the curve almost steady and

flat. After simulating all the passing patterns, the faults that are remaining become the

suspects and the surrogates. The area enclosed by both the lines (solid red and dotted blue)

denote the simulation effort of the proposed diagnostic procedure which is far less than the

traditional fault dictionary method.

For analyzing the effectiveness of each phase in the proposed diagnostic procedure,

consider the dictionary entries or syndromes shown in Table 5.1.

The test pattern set in this example consists of 5 patterns (t0, t1, t2, t3 and t4). The

faults possible in the circuits are F1 and F2. As explained previously in chapter 3, the

syndromes or signatures for the faults are formed by finding out which test pattern will be

able to detect which of the faults. For example, if a test pattern is able to detect single fault

F1, then a ‘1’ is placed in the corresponding column for the fault F1. If test pattern is not

able to detect single fault F1, then a ‘0’ is placed in the corresponding column for the fault

F1. For the purpose of simplifying the analysis let us assume there are no equivalent faults

in the circuit.

Case 1: single fault F1

Let us consider that single fault F1 is the actual fault present in the circuit. So the

output response of the faulty circuit will match the syndrome of F1 (11100), as in the

dictionary. Hence the test vectors t0, t1 and t2 are the failing vectors and test vectors t3 and

t4 are the passing vectors. So Phase 1 of the proposed algorithm will produce the union of

faults detected by all failing patterns. Since test patterns t0 and t2 detect both F1 and F2,

the result of Phase 1 will be F1 and F2 in sus flts set. Phase 2 of the algorithm will produce

the union of the faults detected by the passing patterns and will remove these faults from the

sus flts set. In this case, Phase 2 will yield no faults. Phase 3 will produce the intersection

of faults detected by all failing patterns and store it in set1 can flts set. So here, it will come

up with fault F1. The remaining faults from sus flts set will be moved to set2 can flts set,

38

i.e., fault F2 will be moved to set2 can flts set. Phase 4 will add the equivalent and opposite

polarity faults for faults present in each set. But here, since there are no equivalent faults,

only opposite polarity of the faults F1 and F2 will be added to the corresponding fault sets.

Hence the correct diagnosis is achieved in this case.

Case 2: single fault F2

The actual fault in this case is single fault F2. Hence the syndrome entry of the dictio-

nary for fault F2 (10100) will match the output response of the faulty circuit. Phase 1 will

produce F1 and F2 faults. Phase 2 will remove fault F1 from sus flts set because the test

vector t1 passes and it can detect fault F1. Now Phase 3 will produce F2, because there is

only one fault in the sus flts list. It is to be noted that if Phase 3 was performed ahead of

Phase 1, it would have resulted in producing faults F1 and F2. That would have resulted

in poor diagnostic resolution. Phase 4 will add the opposite polarity fault of F2. Hence we

achieved perfect diagnosis in this case too.

From the above two cases, it can be inferred that Theorem1 is true. For a single fault

situation, set1 can flts set will always include the actual fault.

Case 3: multiple faults F1 and F2 (No Masking)

Consider faults F1 and F2 are present and they do not mask each other. The circuit

will fail on all the patterns, on all the outputs where F1 or F2 can be detected. Hence

the output response of the faulty circuit will be the OR-operation of the syndromes of both

the faults F1 and F2, i.e., 11100. Now Phase 1 produces F1 and F2. Phase 2 produces

no fault. So F1 and F2 are retained in sus flts set. Phase 3 will produce fault F1. Hence

the set1 can flts set will have fault F1 and set2 can flts set will have fault F2. Phase 4 will

add the opposite polarity faults to the corresponding sets. Once again we achieve perfect

diagnosis with the surrogate faults referring to the actual multiple faults. It is to be noted

that fault F1 is reported as a prime suspect and F2 as a surrogate fault. So both the actual

faults are detected.

39

Case 4: multiple faults F1 masking F2

If faults F1 and F2 are present and F1 masks F2, i.e., presence of fault F1 does not

allow the effect of fault F2 to propagate to the output, and hence preventing it from being

identified. This is because during fault propagation the effect of fault F2 will be overwritten

by fault F1. Hence we end up with the syndrome of fault F1, 11100, which is the same as

in case3. So set1 can flts set will have fault F1 and set2 can flts set will have fault F2, thus

helping us to achieve perfect diagnosis.

Case 5: multiple faults F2 masking F1

When faults F2 and F1 are present and F2 masks F1, the syndrome will be 10100, which

is the same as in case 2. But the result of this will be that only fault F2 will be identified and

fault F1 will be removed from suspicion. In this case, we do not achieve a perfect multiple

fault diagnosis the first time the algorithm is run. But once the single fault F2 is identified,

it can be electron beam probed and rectified when found faulty. Now the case will be that

the single fault F1 alone will be present in the circuit, which can be easily identified by the

algorithm. The shortcoming of this is that the testing of the faulty chip and the algorithm

have to be run more than once to detect both the faults in such cases.

Case 6: multiple faults F1 interfering with F2 (0 to 1)

Consider both faults F1 and F2 are present and F1 interferes with fault F2, i.e., the

presence of F1 causes a passing test pattern of fault F2 to fail or a failing test pattern of

F2 to pass. Thus changing a ‘0’ in the syndrome of fault F2 to ‘1’ or vice-versa. Let us

assume that the passing test pattern t3 for fault F2, fails, due to the presence of fault F1.

Now the output response of the failing circuit will be 11110. Working with this information,

the Phase 1 will produce, faults F1 and F2. Phase 2 will produce no faults, thereby sus flts

set retaining F1 and F2. Phase 3 will also produce no results, since there is no fault that

will be detected commonly by all the failing test patterns. Now set1 can flts will contain no

faults and set2 can flts will contain both faults F1 and F2, thereby aiding to achieve perfect

diagnosis.

40

Since, from Theorem1, we already know that, for a single fault situation, set1 can flts

will always contain the actual single fault, we can be sure that any case which produces no

faults in set1 can flts will be a multiple fault situation.

Case 7: multiple faults F2 interfering with F1 (1 to 0)

If presence of fault F2 interferes with the syndrome of fault F1 and causes the failing

test pattern t0 of fault F1 to pass, then the resulting fault circuit response will be 11100,

which is the same as in case1. Hence the diagnosis procedure will come up with fault F1 and

its opposite polarity fault in set1 can flts set and fault F2 and its opposite polarity fault in

set2 can flts set. Here too, we achieve perfect diagnosis.

The seven cases above include all possibilities of two-fault combinations, including mask-

ing and interference. The very same analysis can be extended to any number of multiple

fault combinations and the diagnosis procedure will be able to come up with the actual

faults or surrogate faults that might represent the actual faulty behavior. The reason for

considering only 2 fault combinations is explained in chapter 6.

To understand the working of each phase of the diagnosis procedure let us consider a

couple of failure cases in the C17 benchmark circuit. The C17 circuit has a total of only 22

single stuck-at faults and hence we can get 100% detection coverage with just 5 test vectors -

01111, 10101, 10011, 10000 and 01000. These vectors are each duplicated into two vectors for

output selection. Hence the test vector set will contain 0111110 (t0), 0111101 (t1), 1010110

(t2), 1010101 (t3), 1001110 (t4), 1001101 (t5), 1000010 (t6), 1000001 (t7), 0100010 (t8) and

0100001 (t9).

The fault dictionary with collapsed fault list for circuit C17 is shown in table 5.2. The

first column shows collapsed faults with their polarities. For example, ‘1 /NAND2 1/OUT’

represents the output of gate ‘Nand2 1’ stuck-at-0.

Consider the single stuck-at fault shown in figure 5.2. The output of gate ‘Nand2 1’ is

stuck-at-1. The observed syndrome for this defective circuit is 0010000000. This says that

only test pattern t2 produces a failing response. In phase 1 of the diagnosis procedure, we

41

Table 5.2: C17 fault dictionary.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
1 /NAND2 1/OUT: 0 0 1 0 0 0 0 0 0 0

1 /N1 : 1 0 0 0 0 0 0 0 0 0
1 /NAND2 3/OUT: 0 0 0 0 0 0 0 0 1 1

1 /N2 : 0 0 0 0 1 0 1 1 0 0
0 /N3 : 1 1 1 0 0 0 0 0 0 0
1 /N3 : 0 0 0 0 1 1 1 0 0 0

1 /NAND2 2/OUT: 1 1 0 0 0 0 0 0 0 0
1 /N6 : 0 0 1 0 0 0 0 0 0 0

1 /NAND2 4/OUT: 0 0 0 1 0 1 0 0 0 0
1 /N7 : 0 0 0 0 0 0 0 1 0 0

1 /AND2 7/IN0 : 1 0 0 0 1 0 1 0 0 0
1 /NAND2 1/IN1: 0 0 0 0 1 0 1 0 0 0

0 /NAND2 2/OUT: 0 0 0 1 0 1 0 0 1 1
1 /NAND2 2/IN0: 0 0 0 0 0 1 0 0 0 0
1 /AND2 8/IN0 : 0 1 0 0 0 0 0 1 0 0
1 /NAND2 4/IN0: 0 1 0 0 0 0 0 0 0 0

0 /NAND2 3/OUT: 1 1 0 0 1 0 1 1 0 0
1 /NAND2 3/IN1: 1 1 0 0 0 0 0 0 0 0
0 /AND2 8/IN0 : 0 0 0 1 0 1 0 0 0 1
1 /NAND2 6/IN0: 0 0 0 0 0 0 0 0 0 1
0 /AND2 7/IN0 : 0 0 1 0 0 0 0 0 1 0
1 /NAND2 5/IN1: 0 0 0 0 0 0 0 0 1 0

Figure 5.2: Single stuck-at fault case.

perform fault simulation of failing pattern t2 (1010110) and put all the faults that it can

detect in sus flts set. In phase 2, we perform fault simulation of all the passing patterns and

42

Figure 5.3: Multiple stuck-at fault case where both faults are diagnosed.

remove any faults that can be detected, from the sus flts set. There is no need for phase 3,

since there is only one failing pattern. Hence all the faults remaining in the sus flts set is

moved to set1 can flts set and are called prime suspects. There are no set2 can flts in

this case. Phase 4 adds the equivalent faults and opposite polarity faults. It is noticed that

only test pattern t2 can detect the actual fault. Rest of the nine test patterns in the test

set are not able to detect the fault. If any other test pattern was able to detect the fault, it

could not have been a passing test pattern. Hence the actual fault is diagnosed.

Now let us consider the multiple (two) stuck-at faults case shown in figure 5.3. The

output of gate ‘Nand2 1’ is stuck-at-1 and the second input of gate ‘Nand2 5’ is stuck-at-1.

The observed syndrome for this defective circuit is 0010000010. This says that only test pat-

terns t2 and t8 produce a failing response. In phase 1 of the diagnosis procedure, we perform

fault simulation of failing patterns t2 (1010110) and t8 (0100010) and put all the faults that

they can detect in sus flts set. In phase 2, we perform fault simulation of all the passing

patterns and remove any faults that can be detected, from the sus flts set. In phase 3, we

perform fault simulation of failing patterns t2 and t8 and get the faults (0 /AND2 7/IN0)

that are commonly detected. These common faults are moved to set1 can flts set and

are called prime suspects. The remaining faults in sus flts set moved to set2 can flts

43

Figure 5.4: Multiple stuck-at fault case where both faults are diagnosed.

and are called surrogate faults. Phase 4 adds the equivalent faults and opposite polarity

faults. Here both the actual faults are reported as surrogates and hence the actual fault is

diagnosed.

One other multiple (two) stuck-at faults case is shown in figure 5.4. The second input of

gate ‘Nand2 3’ is stuck-at-1 and the first input of gate ‘And2 8’ is stuck-at-0. The observed

syndrome for this defective circuit is 1001010001. This says that test patterns t0, t3, t5

and t9 produce a failing response. In phase 1 of the diagnosis procedure, we perform fault

simulation of failing patterns t0(0111110), t3(1010101), t5(1001101) and t9(0100001) and put

all the faults that they can detect in sus flts set. In phase 2, we perform fault simulation

of all the passing patterns and remove any faults that can be detected, from the sus flts

set. In phase 3, we perform fault simulation of all the failing patterns and find that there

are no faults that are commonly detected. Hence set1 can flts set is left empty and there

are no prime suspects. All the faults in sus flts set are moved to set2 can flts and are

called surrogate faults. Phase 4 adds the equivalent faults and opposite polarity faults. Here

only one of the actual faults (0 AND2 8/IN0) is reported by surrogates and the other fault

or its surrogates are not reported in the final candidate list. This is because the fault (1

/NAND2 3/IN1) is detected by tests t0 and t1. But the syndrome of the defective circuit

44

says t1 is a passing pattern and hence this fault is removed from suspicion. This is because

of the presence of fault masking (similar to case 5). Here we achieve only partial diagnosis

in this case.

5.1 Fault Ranking

There is a very small probability that the diagnosis procedure will come up with no

results, i.e., will have zero faults in both SET1 and SET2. That will happen during the

case where multiple faults with masking and interference are present in the circuit and they

together, produce a faulty output response which will allow a few of the test patterns which

will detect them to pass and other test patterns which will detect them to fail or vice-versa.

But this is a very rare phenomenon. In such cases a ranking procedure is followed to come

up with the surrogate faults.

After Phase 1 of the diagnostic procedure is performed, we have the short listed faults

in sus flts. But while performing Phase 1, we also keep track of the number of failing

patterns that detect every fault. This number for each fault is added to the weight of the

corresponding fault, i.e., if a fault F1 is detected by three failing patterns, then the weight

of fault F1 at the end of Phase 1 is assigned to be three. Similarly, while performing Phase 2

of the diagnostic procedure, we keep track of the number of passing patterns that detect

every fault. This number for each fault is subtracted from the weight of the fault, which

was originally obtained at the end of Phase 1. At the end of Phase 2 we get the final weight

of every fault. The faults with the highest weight are reported to be prime suspect (SET1)

faults and the faults with the second highest weight are reported to be the surrogate (SET2)

faults.

It is to be noted that the final weights can also be negative. This will happen when

a fault causes more passing patterns and fewer failing patterns. Even in this case, the top

two highest weights are considered to be the fault suspects. Also, there can be cases where

45

the final weight is zero. This will happen when the fault is detected by the same number of

passing and failing patterns.

The diagnostic procedure returning with zero faults is a very rare possibility. Out of

550 tests performed on the benchmark circuits, the algorithm came up with zero results only

twice. But this fault ranking system guards the algorithm even against such cases as well.

46

Chapter 6

Experimental Results

The algorithm was tested by performing experiments on ISCAS’85 benchmark circuits

using various test pattern sets. The circuit modeling and the entire algorithm was im-

plemented in Python programming language [2] which internally invokes ATPG and Fault

Simulator of Mentor Graphics FASTSCAN [1]. VBA Macros [27] were used to duplicate the

test patterns for output selection. The tests were conducted on a personal computer (PC)

with Intel Core-2 duo 3.06GHz processor and 4GB memory.

Results for every circuit were obtained by calculating the average values obtained from

two separate runs of experiments, each containing 50 different random failure cases (except

for circuit C17, which has only 22 faults).

The results of single fault diagnosis using a 1-detect pattern set are shown in Table 6.1.

The first column states the circuit name, the second column contains the number of primary

outputs the circuit has. The third column shows the number of patterns (with output

selection implemented) used for diagnosis. So the actual number of patterns in the 1-detect

pattern set for any circuit will be the number of patterns shown in the third column divided

by the number of primary outputs (shown in column 2) of the table.

Diagnostic Coverage of the test pattern set based on single stuck-at-faults, excluding

redundant faults, is stated in column 4. From [43], diagnostic coverage (DC) is defined as

DC =
Number of detected fault groups

Total number of faults
=

n

N
(6.1)

Column 5 shows the percentage of cases the single fault was diagnosed. For single stuck-

at-faults, the algorithm always comes up with the actual fault (100% diagnosis), even if the

diagnostic coverage of the pattern set is not as high. Simulation time in seconds is stated

47

Table 6.1: Single fault diagnosis with 1-detect tests.

Circuit No. of No. of DC Diagnosis CPU* Fault ratio
name outputs patterns % % s SET1 SET2

C17 2 10 95.454 100 0.067 1.100 1.780
C432 7 462 94.038 100 0.189 1.025 6.675
C499 32 2080 98.000 100 0.588 1.029 16.722
C880 26 1664 94.161 100 0.503 1.069 2.248
C1908 25 3625 85.187 100 1.294 1.379 28.290
C2670 140 13300 85.437 100 6.455 1.320 8.207
C3540 22 3520 89.091 100 1.333 1.229 5.200
C5315 123 13899 91.192 100 6.847 1.054 4.204
C6288 32 1056 85.616 100 0.764 1.138 8.255
C7552 108 17064 86.507 100 10.123 1.281 10.765

∗ PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

Table 6.2: Single fault diagnosis with 2-detect tests.

Circuit No. of No. of DC Diagnosis CPU* Fault ratio
name outputs patterns % % s SET1 SET2

C499 32 3872 98.400 100 1.025 1.029 7.970
C1908 25 6425 86.203 100 2.242 1.379 14.798
C7552 108 27756 86.750 100 16.076 1.281 8.023

∗ PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

in column 6. The ratio of number of candidate faults in SET1 and SET2 are reported in

columns 7 and 8, respectively. This ratio is nothing but the ratio of the total number of faults

reported in each set to the number of faults expected in that set. The expected number of

faults to be reported for an actual fault includes the actual fault, its equivalent faults and

the opposite polarity faults for all equivalent faults, including the actual fault. This ratio

denotes the diagnostic resolution of the procedure. The closer the fault ratio is to 1.0, the

better the resolution. For single stuck-at-faults, the ratio of SET1 faults is almost 1.0 in

all the cases. Hence, when the faults suggested in SET1 are probed (by electron beam or

other procedures), one would identify the actual fault and it will not be necessary to probe

the faults suggested in SET2. But since we do not know whether the actual fault is a single

stuck-at fault or a multiple stuck-at fault, the SET2 surrogate faults cannot be completely

neglected.

48

Table 6.3: Multiple fault diagnosis with 1-detect tests.

Circuit No. of DC Both faults One fault not Both faults not CPU* Fault ratio

name Patterns % diagnosed (%) diagnosed (%) diagnosed (%) s SET1 SET2

C17 10 95.454 80.950 19.040 0.000 0.067 0.500 2.091

C432 462 94.038 90.566 7.547 1.886 0.135 0.563 3.516

C499 2080 98.000 49.056 20.754 30.188 0.613 0.371 17.589

C880 1664 94.161 86.792 9.433 3.773 0.502 0.900 3.205

C1908 3625 85.187 90.566 0.000 9.433 0.928 0.488 12.764

C2670 13300 85.437 88.679 3.773 7.547 4.720 0.564 7.046

C3540 3520 89.091 86.792 3.773 9.433 1.547 0.488 5.177

C5315 13899 91.192 98.113 1.886 0.000 7.065 0.422 3.886

C6288 1056 85.616 83.018 0.000 16.981 0.888 0.589 5.536

C7552 17064 86.507 96.226 1.886 1.886 7.539 0.358 7.104

∗ PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

For circuits C499, C1908 and C7552, the ratio of faults in SET2 is high. This is due

to the fact that the diagnostic coverage of the test pattern set is not enough. To prove that

improving diagnostic coverage of the test pattern set will improve the diagnostic resolution,

2-detect test patterns were used to diagnose the above mentioned three circuits. The results

are shown in Table 6.2.

It can be noticed that the use of 2-detect patterns for diagnosis has increased the diag-

nostic coverage of the patterns by 1.016% maximum, for circuit C1908. But the resolution

has improved almost by 50%. So for patterns with even higher diagnostic coverage, the

resolution will be improved more. So the utmost efficiency of the diagnosis algorithm can

be obtained by using a higher diagnostic capability test pattern set than just the detection

test pattern set.

To test the relevance of reported surrogate faults to the actual non-classical faults,

similar tests were conducted for multiple stuck-at-faults by introducing two stuck-at-faults

simultaneously and considering 50 such different failure cases for each circuit. The two

stuck-at-faults were chosen in such a way that, they are close to each other in the circuit.

Also, the reason for considering only two faults to be present in the circuit simultaneously

is that the probability of fault masking is maximum only when there are just two faults in

49

Figure 6.1: Fault masking (interference) in XOR gate.

the circuit and the probability keeps reducing when the number of faults present, increases.

This is done to increase the chances of fault masking, to create a pessimistic environment

for the algorithm to perform. The experiment was run twice and the average of the results

was taken. Table 6.3 shows the multiple fault diagnosis performed with 1-detect test pattern

set.

Since we are using the same 1-detect test pattern set as the one used for single fault

diagnosis, there is no change in the number of patterns in the test pattern set or the diagnostic

coverage. Column 4 of Table 6.3 shows the percentage of cases where both faults were

diagnosed. Column 5 shows the percentage of cases where only one of the actual faults

present was diagnosed. The sum of these two percentages subtracted from 100% gives the

percentage of cases where both faults were not diagnosed, as shown in column 6. As the

results in the table indicate, except for the circuit C499, all other circuits have, at least

in 80% cases, a perfect diagnosis of both faults. A point to be noted is that the proposed

diagnosis procedure does not assume that fault masking is not present and the reported

percentage of diagnosis includes the possible fault masking and interference cases.

The reason for Circuit C499 (32-bit Single-Error-Correcting circuit) producing poor

multiple fault diagnosis (resulting in irrelevant surrogate faults) even with a test pattern set

having very high diagnostic coverage (based on single stuck-at-faults) must be examined. We

found the presence of circular fault masking in many of the fault cases considered. The circuit

has an XOR tree consisting of 104 two-input XOR gates. XOR logic gates are not considered

50

to be elementary logic gates since they are generally constructed from multiple Boolean gates,

such that the set of faults depends on its construction. Yet, all four test patterns are needed

to completely test a 2-input XOR gate, regardless of its construction [36]. Consider the XOR

gate shown in Figure 6.1. The input 1 has a stuck-at-1 fault and input 2 has a stuck-at-0

fault. To propagate a single fault through XOR gate, the other input must be unchanged.

But since this is a multiple fault situation, two faults are trying to propagate through the

same XOR gate at the same time. So a ‘0’ on input 1 is required to activate the stuck-at-1

fault and a ‘1’ on input 2 is required to activate the stuck-at-0 fault. But since both the

inputs are changed, the faults mask each other. This phenomenon is called circular masking.

Hence the output is ‘1’ which is the same as the good circuit output. Due to this circular

masking, the algorithm will not be able to produce the relevant surrogate faults as the actual

faults are dropped, since the pattern which should have failed, passes. This is not only for

the case where both faults are present on the inputs of the XOR gate, but also for any

case where both the actual faults are being propagated through the same XOR gate. The

situation will improve while considering more than two faults to be present in the circuit

because the probability of a complete circular masking decreases with the increase in the

number of faults. In circuit C499, the presence of this huge XOR tree increases the circular

masking and thereby deteriorates the performance of the algorithm. But as discussed before,

the algorithm is able to produce such results even in a highly pessimistic environment, where

choices (close neighborhood faults selected) are made in such a way that the probability of

masking is high. One other ISCAS’85 benchmark circuit, which has (2-input) XOR gates

present, is circuit C432. But it has only 18 XOR gates, which do not form a tree and hence

the diagnostic percentage is not hurt significantly.

The ratio of faults present in SET1 is less than 1 because in most cases, faults reported

in SET1 include one of the actual faults, its equivalent faults and the opposite polarity faults.

The other actual fault, its equivalent faults and opposite polarity faults are present in SET2.

51

Table 6.4: Multiple (two) fault diagnosis with 2-detect tests.

Circuit No. of DC Faults diagnosed (%) CPU* Fault ratio
name patterns (%) Both One None s SET1 SET2

C499 3872 98.400 49.056 20.754 30.188 0.696 0.371 11.555
C1908 6425 86.203 90.566 0.000 9.433 2.314 0.488 7.232
C7552 27756 86.750 96.226 1.886 1.886 17.291 0.358 5.905

∗ PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

Table 6.5: Single fault diagnosis with diagnostic patterns.

Circuit No. of No. of DC Diagnosis CPU* Fault ratio
name outputs patterns % % s SET1 SET2

C17 2 12 100 100 0.067 1.000 1.780

∗ PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

Hence, the resolution of SET1 faults is always closer to 0.5 than being 1 while considering

two faults.

The same three circuits show a comparatively poorer SET2 resolution. Hence, 2-detect

patterns are used to show that the diagnostic resolution improves on improving the diagnostic

coverage of the test pattern set. The results of this experiment are shown in Table 6.4.

Once again it is seen that, for small increase in diagnostic coverage of the patterns by

1.016% (maximum) for circuit C1908 the resolution is improved by almost 40%. Other two

circuits show a similar trend.

The last experiment was to try the diagnosis procedure on a 100% diagnostic test pattern

set. The circuit C17 reports 95.454% of diagnostic coverage (DC) with as few as 5 patterns

that have 100% detection coverage. The total number of faults in the circuit is 22. There was

only one fault pair that was not distinguished. Adding one more pattern that distinguishes

the fault pair yielded 100% diagnostic coverage as expected. The diagnostic algorithm was

then run using this test pattern set to yield the results shown in Tables 6.5 and 6.6.

The single fault diagnosis with 100% diagnostic coverage vector set, produced perfect

diagnostic resolution ‘1.0’ as expected in SET1, and a slightly improved resolution in SET2.

52

Table 6.6: Multiple fault diagnosis with diagnostic patterns.

Circuit No. of DC Both faults One fault not Both faults not CPU* Fault ratio

name patterns % diagnosed (%) diagnosed (%) diagnosed (%) (s) SET1 SET2

C17 12 100 80.952 19.047 0.000 0.067 0.489 2.102

∗ PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

The multiple fault diagnosis with this test pattern set improved the resolution in SET1 by

a very small amount and decreased the resolution of SET2 by the very same amount.

Also, the diagnostic coverage was improved by a very small percentage. Since the 1-

Detect test pattern set already had a diagnostic coverage of 95.454, there was very little left

to improve.

To sum up, the proposed diagnostic procedure, given a failing vector, if the cause is a

single stuck-at-fault, will always come up with the actual fault, irrespective of the detection

or diagnostic coverage of the test pattern set. If the detection coverage of the test pattern is

higher, higher will be the resolution of the faults reported. Provided with 100% diagnostic

coverage, the maximum resolution can be achieved. If the actual fault is a multiple stuck-at-

fault without circular fault masking, the diagnostic procedure will come up with surrogate

faults that represent the actual faults or the behavior of the actual faults, with higher

resolution as the diagnostic coverage of the pattern set increases.

53

Chapter 7

Conclusion

Physical defects are not always classical single stuck-at faults. Even though most of the

physical defects can be modeled by single stuck-at faults, it is becoming more difficult due

to the shrinking of device features. Hence this work puts forward a diagnostic algorithm to

diagnose non-classical faults with the single stuck-at fault simulation information.

The proposed diagnostic algorithm is of lower complexity and works efficiently even when

fault masking or fault interference is present. It has higher diagnosability and resolution for

single stuck-at-faults, even if provided with a test pattern set having nominal detection

coverage. The same trend will be exhibited for the surrogate faults produced to represent

multiple stuck-at-faults without circularly masking each other, when the diagnostic coverage

of the test pattern set is increased. The algorithm is memory efficient, since it does not

require a dictionary and also has reduced diagnostic effort (CPU time), since it works on

relatively smaller number of fault suspects and does not require re-running simulations after

frequently moving faults to and from the suspected fault list based on heuristics.

The cases where the diagnostic procedure came up with candidate faults or surrogates

which were no way related to the actual fault, need to be inspected closely. This happened

because the reported faults or surrogates were able to produce the same function as the

actual faults present. Hence this is valuable information and must be investigated.

Considering that fault simulation tools will always be limited to a few fault models (e.g.,

single stuck-at or transition faults), we should explore the relationships between non-classical

faults (bridging, stuck-open, coupling, delay, etc.) and the corresponding surrogate classical

representatives. For example, some non-classical faults like stuck-open or bridging require

an initialization pattern to precede a stuck-at test pattern. Thus, the test result for the

54

non-classical fault agrees with a single stuck-at fault only on a subset of patterns. Further

analysis can establish better correlation between actual faults and their surrogates.

55

Bibliography

[1] ATPG and Failure Diagnosis Tools. Mentor Graphics Corp., Wilsonville, OR, 2009.

[2] Python Tutorial Release 2.6.3. docs@python.org. Python Software Foundation, 2009.

[3] M. Abramovici and M. A. Breuer, “Fault Diagnosis Based on Effect-Cause Analysis: An
Introduction,” in Proc. 17th Design Automation Conf., June 1980, pp. 69–76.

[4] M. Abramovici and M. A. Breuer, “Multiple Fault Diagnosis in Combinational Circuits Based
on an Effect-Cause Analysis,” IEEE Transactions on Computers, vol. C-29, no. 6, pp. 451–460,
June 1980.

[5] V. D. Agrawal, D. H. Baik, Y. C. Kim, and K. K. Saluja, “Exclusive Test and Its Applications
to Fault Diagnosis,” in Proc. 16th International Conf. VLSI Design, Jan. 2003, pp. 143–148.

[6] V. D. Agrawal, A. V. S. S. Prasad, and M. V. Atre, “Fault Collapsing Via Functional Domi-
nance,” in Proc. International Test Conf., Oct. 2003, pp. 274–280.

[7] C. Alagappan and V. D. Agrawal, “Dictionary-Less Defect Diagnosis as Real or Surrogate
Single Stuck-At Faults,” in Proc. International Test Conf., 2013. Submitted.

[8] C. Alagappan and V. D. Agrawal, “Dictionary-Less Defect Diagnosis as Surrogate Single
Stuck-At Faults,” in Proc. 22nd North Atlantic Test Workshop, 2013.

[9] T. Bartenstein, D. Heaberlin, L. Huisman, and D. Sliwinski, “Diagnosing Combinational Logic
Designs Using the Single Location at-a-Time (SLAT) Paradigm,” in Proc. International Test
Conf., 2001, pp. 287–296.

[10] M. Beckler and R. D. (Shawn) Blanton, “On-Chip Diagnosis for Early-Life and Wear-Out
Failures,” in Proc. International Test Conf., Nov. 2012, pp. 1–10.

[11] V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and P. Bollineni, “Multiple Error Diagnosis
Based on Xlists,” in Proc. 36th Design Automation Conference, 1999, pp. 660–665.

[12] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits. Boston: Springer, 2000.

[13] C.-Y. Cao, C.-H. Liao, and C. H.-P. Wen, “Diagnosing Multiple Byzantine Open-Segment
Defects Using Integer Linear Programming,” J. Electronic Testing: Theory and Applications,
vol. 27, no. 6, pp. 723–739, Dec. 2011.

[14] H. Y. Chang, E. Manning, and G. Metze, Fault Diagnosis of Digital Systems. Florida: R. E.
Krieger Publishing Company, 1974.

[15] H. Cox and J. Rajski, “A Method of Fault Analysis for Test Generation and Fault Diagnosis,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 7, no. 7, pp.
813–833, July 1988.

56

[16] A. L. D’Souza and M. S. Hsiao, “Error Diagnosis of Sequential Circuits Using Region-Based
Model,” in Proc. 14th International Conference on VLSI Design, 2001, pp. 103–108.

[17] M. R. Grimaila, S. Lee, J. Dworak, K. M. Butler, B. Stewart, B. Houchins, V. Mathur, J. Park,
L.-C. Wang, and M. R. Mercer, “REDO - Random Excitation and Deterministic Observation -
First Commercial Experiment,” in Proc. 17th IEEE VLSI Test Symp., Apr. 1999, pp. 268–274.

[18] S. Holst and H.-J. Wunderlich, “Adaptive Debug and Diagnosis Without Fault Dictionaries,”
J. Electronic Testing: Theory and Applications, vol. 25, no. 4, pp. 259–268, Aug. 2009.

[19] J. L. A. Hughes, “Multiple Fault Detection Using Single Fault Test Sets,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 7, no. 1, pp. 100–108, Jan.
1988.

[20] L. M. Huisman, Data Mining and Diagnosing IC Fails. NewYork: Springer, 2005.

[21] R. C. Jaeger and T. N. Blalock, Microelectronic Circuit Design, 4th Edition. Ohio: McGraw
Hill Higher, 2010.

[22] S. Jo, T. Matsumoto, and M. Fujita, “SAT-Based Automatic Rectification and Debugging
of Combinational Circuits with LUT Insertions,” in Proc. 21st IEEE Asian Test Symposium,
Nov. 2012, pp. 19–24.

[23] Y. Karkouri, E. M. Aboulhamid, E. Cerny, and A. Verreault, “Use of Fault Dropping for
Multiple Fault Analysis,” IEEE Transactions on Computers, vol. 43, no. 1, pp. 98–103, Jan.
1994.

[24] Y. C. Kim, V. D. Agrawal, and K. K. Saluja, “Multiple Faults: Modeling, Simulation and
Test,” in Proc. 15th International Conf. VLSI Design and Proc. 7th Asia and South Pacific
Design Automation Conf., Jan. 2002, pp. 592–597.

[25] B. Klenke, “Test Technology Overview Module 43.” http://ares.cedcc.psu.edu/ee497i/

rassp_43/sld010.htm, 1998. [Online; accessed 12-March-2013].

[26] D. Knebel, P. Sanda, M. McManus, J. A. Kash, J. C. Tsang, D. Vallett, L. Huisman, P. Nigh,
R. Rizzolo, P. Song, and F. Motika, “Diagnosis and Characterization of Timing-Related De-
fects by Time-Dependent Light Emission,” in Proc. International Test Conference, Oct. 1998,
pp. 733–739.

[27] M. Kofler, Definitive Guide to Excel VBA. New York: Apress, 2000.

[28] S. D. Millman, E. J. McCluskey, and J. M. Acken, “Diagnosing CMOS Bridging Faults With
Stuck-At Fault Dictionaries,” in Proc. International Test Conf., Sept. 1990, pp. 860–870.

[29] I. Pomeranz and S. M. Reddy, “On the Generation of Small Dictionaries for Fault Location,”
in Proc. IEEE/ACM International Conference on Computer-Aided Design, Nov. 1992, pp.
272–279.

[30] I. Pomeranz and S. M. Reddy, “On Correction of Multiple Design Errors,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 2, pp. 255–264,
Feb. 1995.

[31] S. M. Reddy, I. Pomeranz, and S. Kajihara, “On the Effects of Test Compaction on Defect
Coverage,” in Proc. 14th IEEE VLSI Test Symp., Apr. 1996, pp. 430–435.

[32] E. M. Rudnick, W. K. Fuchs, and J. H. Patel, “Diagnostic Fault Simulation of Sequential
Circuits,” in Proc. International Test Conference, Sept. 1992, pp. 178–186.

57

[33] P. G. Ryan, S. Rawat, and W. K. Fuchs, “Two-Stage Fault Location,” in Proc. International
Test Conference, Oct. 1991, pp. 963–.

[34] J. W. Sheppard and W. R. Simpson, Research Perspectives and Case Studies in System Test
and Diagnosis. Boston: Springer, 1998.

[35] N. Sridhar and M. S. Hsiao, “On Efficient Error Diagnosis of Digital Circuits,” in Proc.
International Test Conference, 2001, pp. 678–687.

[36] C. E. Stroud, A Designer’s Guide to Built-in Self-Test. Boston: Springer, 2002.

[37] H. Takahashi, K. O. Boateng, K. K. Saluja, and Y. Takamatsu, “On Diagnosing Multiple
Stuck-At Faults Using Multiple and Single Fault Simulation in Combinational Circuits,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 3, pp. 362–368,
Mar. 2002.

[38] R. Ubar, S. Kostin, and J. Raik, “Multiple Stuck-at Fault Detection Theorem,” in Proc.
IEEE 15th International Symp. Design and Diagnostics of Electronic Circuits and Systems,
Apr. 2012, pp. 236–241.

[39] A. Veneris, “Fault Diagnosis and Logic Debugging Using Boolean Satisfiability,” in Proc. 4th
International Workshop on Microprocessor Test and Verification, May 2003, pp. 60–65.

[40] S. Venkataraman and S. B. Drummonds, “POIROT: A Logic Fault Diagnosis Tool and Its
Applications,” in Proc. International Test Conf., 2000, pp. 253–262.

[41] L. C. Wang, T. W. Williams, and M. R. Mercer, “On Efficiently and Reliably Achieving Low
Defective Part Levels,” in Proc. International Test Conf., Oct. 1995, pp. 616–625.

[42] Y. Zhang and V. D. Agrawal, “A Diagnostic Test Generation System,” in Proc. International
Test Conf., Nov. 2010. Paper 12.3.

[43] Y. Zhang and V. D. Agrawal, “An Algorithm for Diagnostic Fault Simulation,” in Proc. 11th
Latin-American Test Workshop (LATW), Mar. 2010, pp. 1–5.

[44] Y. Zhang and V. D. Agrawal, “Reduced Complexity Test Generation Algorithms for Transition
Fault Diagnosis,” in Proc. International Conf. Computer Design, Oct. 2011, pp. 96–101.

[45] L. Zhao and V. D. Agrawal, “Net Diagnosis Using Stuck-At and Transition Fault Models,” in
Proc. 30th IEEE VLSI Test Symp., Apr. 2012, pp. 221–226.

58

