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As the domain of computing and communication systems grows, heterogeneity

among computers and subnetworks employed for a task also increases. It is important

to understand how heterogeneity affects performance of computing and communica-

tion tasks in order to optimally utilize heterogeneous resources. However, the effects

of heterogeneity in heterogeneous computing and communication systems were either

not taken into account explicitly or not thoroughly analyzed in the previous research

work in this field.

In this dissertation, effects of heterogeneity are analyzed, and heterogeneity-

aware approaches are proposed for both computing and communication systems.

In the computing system context, temporal heterogeneity refers to variation,

along the time dimension, of computing power available for a task on a computer,
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and spatial heterogeneity represents the variation among computers. Effects of het-

erogeneity on the performance of a target task have been analyzed in terms of the

mean and standard deviation of parallel execution time. The results reveal that, in

minimizing the average parallel execution time of a target task on a spatially het-

erogeneous computing system, it is not optimal to distribute the target task linearly

proportional to the average computing powers available on computers. Based on the

analysis results, an approach to load balancing for minimizing the average parallel

execution time of a target task is described. The proposed approach, of which validity

has been verified through simulation, considers temporal and spatial heterogeneities

in addition to the average computing power of each computer.

In the communication system context, the concept of temporal and spatial het-

erogeneity in the available communication resource is applicable to various levels of

a communication network. Effects of heterogeneity on the performance of individual

messages in a heterogeneous communication systems are analyzed. A heterogeneity-

aware approach to source rate control is proposed, which utilizes the heterogeneity

information on the available bandwidth in a UDP-based protocol, to improve through-

put, dropping rate, end-to-end delay, and real-time performance. Two main compo-

nents of the heterogeneity aware source rate control scheme are a receiver side feature

extractor and a sender-side adaptive rate controller. The feature extractor captures

the dynamic features in the bandwidth heterogeneity, and the source rate controller

utilizes the extracted features in the rate control. Performance of the proposed source

rate control scheme has been analyzed in detail through an extensive simulation for

the single and multiple path media streaming, and multiple HAA and/or TCP flows.
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Chapter 1

Introduction

1.1 Problem Formulation

1.1.1 Computing Systems

A cluster of computers is commonly used for high performance computing these

days [1][2]. Such a system is often shared by multiple users and computers in the

system may not be “identical.” One of the most distinct characteristics of such an

environment compared to a dedicated multiprocessor system is its heterogeneity [3].

Heterogeneity of such shared systems has been addressed from various viewpoints of

high performance computing, but much of the research has been devoted to scheduling

a stream of tasks (i.e. from the system’s viewpoint) [4][5][6].

A measure of available computing power may be used to quantify the CPU share

allocated for a given task, which represents the percentage of CPU cycles (or time

slots) per unit time that the task can utilize at a given moment. This measure usually

varies with both time and space. Therefore, the heterogeneity in computing systems

can be classified into two types: temporal heterogeneity and spatial heterogeneity. The

former refers to the variation of available resources with time on a computer, and the

latter represents the variation of available resources among computers.
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1.1.2 Communication Systems

A communication network, whether wired or wireless, is normally shared by mul-

tiple users who submit their requests at any time. Heterogeneity in communication

systems can also be classified into two types: (1) the communication resources avail-

able on a channel for a request (or traffic, messages) varies with time, i.e., a channel

is temporally heterogeneous, and (2) different channels would have different charac-

teristics in terms of the communication resources available to them, i.e., channels in

a network are spatially heterogeneous.

The concept of temporal and spatial heterogeneity in the available communi-

cation resources is applicable to various levels of a communication network. For

example, temporal heterogeneity may be considered within individual sub-networks

and spatial heterogeneity among sub-networks. These two types of heterogeneity can

have a significant effect on the Quality of Service (QoS) of an individual request,

such as delay and transfer time, and also network-wide performance measures such

as utilization, system throughput, and queue length.

It is much more difficult to quantify the available resources in communication

systems than in computing systems. There are various sources of heterogeneity on

the Internet, and they can be divided into the following three main categories [7]:

• The topology of the Internet is constantly changing and the types of link (slow

modems, fiber optic links, copper or glass wires, radio, infrared, etc.) span a

wide range and are generally unknown to an end-user. Also, multi-path and

dynamic routing introduce extra complexities.
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• There are many protocols coexisting in the Internet, and each protocol has

been implemented by multiple communities. For example, the widely used

Transmission Control Protocol (TCP) has many different implementations, for

example, Tahoe, Reno, NewReno, Sack, etc. Also, different applications ask for

different features.

• Background competing traffic varies constantly in an unpredictable way.

Each individual heterogeneity is either not directly observable or cannot be mea-

sured accurately. For the protocol heterogeneity, a session is only able to know its

own protocol, and it is almost impossible to have knowledge of other sessions’ proto-

cols. The heterogeneity due to background competing traffic is also hard to model in

detail. Since it is either impossible or unnecessary to describe different components

of heterogeneity individually, “available bandwidth” is used as a measure to quantify

the “net” or aggregated effect of all the sources of heterogeneity in this dissertation.

1.2 Related Work

1.2.1 Heterogeneous Computing Systems

One of the important issues is how to utilize a heterogeneous computing system to

optimize performance of a target task. This issue involves modelling the heterogeneity

of the system [8][9], performance estimation [10][11][12][13], reliability [14], scheduling

and load balancing [15], etc.

The concepts of “machine heterogeneity” and “task heterogeneity” are employed

in an effort to model task execution time on heterogeneous computing systems [8][9].

The machine heterogeneity refers to the degree to which the machine execution times
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vary for a given task and the task heterogeneity refers to the degree to which the

task execution times vary for a given machine. The main objective was to simulate

different heterogeneous computing environments in evaluating the behavior of the

task mapping heuristics.

A performance estimation model for heterogeneous parallel applications is pro-

posed in [10]. They addressed the heterogeneity among the varying platforms and

operating environments used and the possibility of having multiple tasks of the par-

allel application on each machine.

In [11], a model that calculates the slowdown imposed on applications in time-

shared multi-user clusters is defined. Three kinds of “slowdown” are identified and

the effects of slowdown on application performance are verified with emulated loads.

In [12], the issue of predicting parallel execution time of non-deterministic bulk

synchronous computations, where computation time on each computer is modelled

as a random variable, is considered. A tighter bound of the average parallel execu-

tion time has been derived. Though the randomness of computation time does not

originate from heterogeneity of the computing system in their model, the results may

be applicable to estimating parallel execution time on a heterogeneous computing

system with minor modification.

In [13], the issue of modelling and characterizing parallel computing performance

of heterogeneous Network Of Workstations (NOW) is considered, and the effects of

heterogeneity on efficiency and scalability are investigated. The computing power

(speed) “weight” is used to quantify the spatial heterogeneity among workstations,

but the temporal heterogeneity of computing power on each workstation is not con-

sidered.
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In [14], the probability of application failure is defined to quantify the reliability

of a heterogeneous computing system. Minimizing execution time usually conflicts

with improving reliability, and algorithms capable of trading off execution time for

reliability are proposed.

In [15], a “stochastic scheduling” strategy, where the performance variability is

considered in partitioning a data parallel application to be executed on a heteroge-

neous computing platform, is described. The mean and standard deviation of the

predicted completion time of a task are used in scheduling, along with a “tuning

factor” which specifies how “conservative” the scheduling is to be.

1.2.2 Heterogeneous Communication Systems

Realization of an overlay network involves mapping its topology onto the base

(physical) network [16][17][18][19]. This mapping requires finding a “path” in the base

network for each “edge” in the overlay network. Here, a path may consist of one or

more channels or links. The path is to be selected such that it satisfies requirements

(for example, bandwidth) of the corresponding edge. Also, multiple paths may be

employed for an edge when a single path cannot meet the requirements of the edge.

Heterogeneity must be considered in mapping of an overlay network and scheduling

of messages in the network, in order to optimize its performance.

In an effort to minimize communication overhead in high performance computing,

multiple communication paths between computing nodes were employed [20]. The

main issues are how to choose one path over the others and how to partition a large

size of data (message) among multiple paths. They considered “characteristics” of

paths, such as latency, in path selection and aggregation. However, only spatial
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heterogeneity in terms of the average characteristics has been considered. That is,

temporal variation of the characteristics was not taken into account.

The idea of utilizing multiple paths was also employed for video streaming in

the “path diversity” framework [21]. Here, the objectives are to minimize packet

loss caused by congestion due to time-varying bandwidth and to provide sufficient

bandwidth for media streaming, by using more than one path simultaneously from

a source to a destination. A quantitative measure of temporal heterogeneity in the

bandwidth was not considered in their algorithms.

In order to quantify (temporal) heterogeneity in the channel bandwidth, one may

consider a second order measure of the bandwidth in addition to its mean. Earlier,

heterogeneity in the available computing powers of computing nodes on a cluster or

Grid was studied in terms of load balancing [22][23], and it has been shown that

average parallel execution time of a task can be substantially reduced by taking the

standard deviation of available computing power on each node into account when

partitioning the task over multiple nodes.

Most of the previous work on communication bandwidth management utilized

either the average or instant bandwidth. Nevertheless, there have been some re-

search efforts on scheduling and allocation problems under varying channel conditions

[24][25][26]. Basically, heuristic approaches are taken to compensate for variations in

the channel conditions in order to satisfy certain QoS requirements. Another load-

aware routing protocol [27] also considers only the average load at intermediate nodes.

However, heterogeneity was not explicitly taken into account. More specifically, the

second order moment of available channel bandwidth was not quantitatively utilized

to optimize network performance.
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1.2.3 Network Measurement

Measurement of the bottleneck bandwidth over a network path may be performed

on either the sender (source) or receiver (sink) side. Sender side measurement avoids

the need for modification of software on the receiver end, and therefore a new protocol

is easier to deploy. However, the measurement delay for a sender side scheme is about

twice that of a receiver side scheme. Depending on the requirement of a specific

application, where to perform the measurement needs to be determined.

Several schemes for probing the link states based on “packet pairs” were proposed

in [28][29][30]. The sender transmits probing packets in the form of back-to-back pairs,

and estimates the bottleneck service rate from the spacing of the acknowledgements

(ACK). However, this approach relies on several unrealistic assumptions which may

lead to inaccurate measurements. In order to improve the accuracy, an intersection

filtering method with a multi-phase variable packet size was used in estimating the

bandwidth [31]. The main problem with this scheme is that it is difficult to properly

set the bin width and boundary of the histogram without knowing the shape of the

distribution in advance. To overcome this difficulty, a packet pair scheme combined

with bandwidth filtering using a kernel density estimator algorithm was proposed

[32][33]. Note that the post-measurement processing/filtering steps in [31][32][33] are

performed off-line, therefore, they would not be appropriate for applications where

the real-time requirement is critical.

1.2.4 Source Rate Control

TCP uses explicit rate/congestion control. All implementations of TCP employ

the so-called Additive Increase and Multiplicative Decrease (AIMD) algorithm first
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proposed by Jacobson in 1986 [34][35]. The main problems of this algorithm are

its slow convergence speed and large rate oscillation [36]. Also, its multiplicative

decrease scheme, which cuts its sending rate in half in response to each indication

of link congestion, may unnecessarily waste the available network bandwidth. For

a smoother and more gradual rate adaptation, many TCP-friendly congestion/rate

control schemes have been proposed [37]. For example, a Loss-Delay based Adaption

algorithm (LDA+) [38] is a variant of AIMD congestion control scheme, which adjusts

the source rate dynamically based on the current network situation (using an estimate

of the bottleneck bandwidth obtained by a packet pair approach). The bandwidth

share of a flow is determined using the TCP model during loss situations, and can

be increased by a value that does not exceed the increase of the bandwidth share of

a TCP connection for the case of no loss. Because AIMD-like control mechanisms

mostly focus on fairness among competing TCP traffic flows and usually lead to

bursty traffic, they are not preferred by many real-time applications, when one is

more interested in per-flow performances such as throughput, end-to-end delay, and

inter-packet arrival time (less jitter).

A TCP-friendly solution has been proposed to evenly space TCP packets injected

into the network over an entire round-trip time, so that data is not sent in a burst

[39]. However, this approach often leads to significantly worse throughput than the

regular TCP because it is susceptible to synchronization losses and delays congestion

signals [40].

A feedback mechanism has been introduced for packet-spacing techniques [41][42],

which enables UDP-based applications to perform well while being adaptive and self-

regulating. This damped Packet-Spacing Protocol (PSP) transmits data at a near
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optimal rate by using a simple feedback mechanism that reports packet loss every

round-trip time. However, the only congestion indicator used in PSP is packet loss,

which may not be sufficient for optimizing QoS on a network with a high degree of

heterogeneity in bandwidth.

1.3 Motivation

In most of the previous work, (i) not all types of heterogeneity were taken into

account, (ii) heterogeneity was often considered only implicitly, and (iii) effects of

heterogeneity were not thoroughly analyzed.

The heterogeneity in both computing and communication systems needs to be

quantitatively represented. It’s also necessary to have a clear understanding of how

heterogeneity affects the performance of a given task, and show how the proposed

approach can be applied to various application scenarios.

1.4 Research Objectives

The effects of various types of heterogeneity are to be analyzed to show the possi-

bility of improving performance of tasks by considering the information of heterogene-

ity. Heterogeneity-aware approaches (HAA) are proposed to improve performance of

both computing and communication systems.

1.4.1 Computing Systems

Effects of spatial and temporal heterogeneity on the performance of a target task

are first analyzed in detail. It is shown that, it is not optimal to partition a task
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over computers linearly proportional to their average computing powers in order to

minimize the average parallel execution time.

A heterogeneity-aware approach (HAA) to load balancing, designed to minimize

the average parallel execution time of a target task in a spatially heterogeneous com-

puting environment, is then proposed in order to provide a theoretical foundation

for developing a practical load balancing scheme. The proposed approach explicitly

takes into account the standard deviation of available computing power in addition

to the average computing power available on each computer. It has been shown that

the average parallel execution time of a target task can be significantly reduced by

the approach.

1.4.2 Communication Systems

The TCP/AIMD-like source rate control schemes usually lead to bursty traffic

and therefore are not preferred by many real-time applications. The use of feedback

based packet-spacing approaches [41][42] improves real-time QoS in some situations.

However, “packet loss” by itself may not be sufficient for describing the dynamic

features of rapidly varying bandwidth. A bandwidth measurement technique could

be used to provide some additional information to the source rate controller (as in

[38]), but previous researchers have only used the first order feature of bandwidth

samples. In order to extract useful features from the measurement, some types of

post-measurement technique needs to be used. In a real network, however, a rate

control scheme cannot afford a time-consuming filtering algorithm [31][32][33].

In this dissertation, a heterogeneity-aware approach to source rate control is

proposed, which is adaptive to time-varying available (bottleneck) bandwidth. The
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proposed scheme extracts the second-order moment (standard deviation) as well as

the first-order moment (mean) of the available bandwidth and explicitly takes them

into account in determining the source rate dynamically. A simple feature extractor

implemented at the receiving end measures the features, including the mean and

standard deviation, using a packet-pair approach and sends them to the source. For

the feature measurement, data packets are used instead of inserting control packets

and, therefore, no extra traffic is generated.

Applications of the HAA rate control scheme to the path selection problems on

an overlay network, and a multi-path media streaming framework are also considered.
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Chapter 2

Effects of Heterogeneity on A Target Computing Task

2.1 System Model

The high performance computing system to be employed in this study consists of

N heterogeneous computers interconnected via a communication network. The speed

of processor, speed and capacity of memory (including cache), and bandwidth of I/O

system, etc. may not be the same on all computers. Different software, including the

OS, may be available on each of the computers.

All these hardware and software components collectively affect the effective com-

puting power available for applications on each computer. It is the available com-

puting power for a target task that eventually determines execution time of the task.

Hence, in this dissertation, “availability” of computing power and communication

bandwidth is employed in defining heterogeneity.

2.1.1 Availability

Let the maximum computing power of computer Ci be denoted by αi for a

target task for i = 1, . . . , N , where N is the number of computers. The computing

power available for the task at time t may be expressed by αiAi(t) where Ai(t) is the

“availability” of Ci for the task at time t and 0 ≤ Ai(t) ≤ 1. The mean and standard

deviation of Ai(t) are denoted by ai and σAi
, respectively.
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In the steady state, ai and σAi
are assumed to be fixed and do not vary with

time while Ai(t) varies with time. In the time-varying state, not only Ai(t) but also

ai and/or σAi
vary with time, i.e., one needs to use the notations ai(t) and σAi

(t).

The time-varying state is not considered in this dissertation.

Availability of communication bandwidth can be defined similarly with notations

βi, Bi(t), bi, and σBi
for the maximum, instantaneous, mean and standard deviation

of bandwidth, respectively. To avoid redundancy, they are not defined separately.

One difference is that Bi(t) tends to decrease as N increases due to the contention

on the shared media, while Ai(t) is independent of N , especially for data parallel

applications.

2.1.2 Heterogeneity

When a set of heterogeneous computers is shared by multiple independent users,

workload on each computer would vary with time and computer. Therefore, workload

coupled with the heterogeneous hardware and software components makes availabil-

ity (computing power) vary spatially and temporally. Temporal heterogeneity refers

to variation of availability along the time dimension on a computer while spatial

heterogeneity refers to that among computers as illustrated in Figure 2.1.

With the notations given in the definition of availability above, a computer (Ci)

exhibits temporal heterogeneity when Ai(t) is a non-uniform function of time. A

system consisting of multiple computers shows spatial heterogeneity when ai 6= aj

and/or σAi
6= σAj

for some i, j where i 6= j. These two types of heterogeneity will be

quantified in Section 2.3.5.
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Figure 2.1: Temporal and spatial heterogeneity. Ai(t) is the availability of computing
power on Ci for a target task, where i = 1, . . . , N .

The temporal heterogeneity is due to the fact that users submit their tasks at any

time and the size of a task is variable, i.e., the task arrival and size are random. There

are two sources of the spatial heterogeneity. One is system-related: hardware and

software components are not the same for all computers. Also, the interconnection

network may not be “symmetric.” The other is task-related: the task (workload)

characteristics (arrival time and size) may vary with computer.

An interconnection network or networks are usually shared by computers. As a

result, the spatial heterogeneity of communication bandwidth tends to be lower than

that of computing power.
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2.2 Task Model

Two task models are employed in this dissertation: the base and augmented task

models. In the base task model, a target task is assumed to be linearly partitionable

over N computers, i.e., the sum of computational loads of subtasks is equal to that

of the target task. In order to focus on effects of heterogeneous computing power on

the performance of a target task, communication is not considered in the base model.

Many data-parallel applications such as low-level image processing, (Monte Carlo)

simulations, matrix computation, etc. would fit to this model well.

However, in many other applications, as a task is partitioned, communication

among subtasks is unavoidable for sharing data and results, collecting local results,

etc. The augmented task model is derived by incorporating “periodic” communica-

tion phases into the base task model. That is, execution of a target task consists of a

sequence of alternating computation and communication phases. Hence, a communi-

cation phase can be considered as a synchronization point at which all N computers

are required to be synchronized for data communication before proceeding to the next

(computation) phase. There are many applications which can be represented by this

model, e.g., iterative optimization, simulation of a physical or chemical phenomenon,

medical image reconstruction, etc. The number of synchronization points is denoted

by Ns.

2.3 Performance Measures

Performance of a target task on a heterogeneous computing system may be mea-

sured in a few different ways. One popular metric is to use the execution time of the
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target task, of which minimization is the main objective of high performance comput-

ing. In a heterogeneous computing environment, execution time varies significantly

due to the temporal and spatial heterogeneity and, therefore, the average execution

time may be employed as a performance measure. From the stability point of view,

one may want to minimize variation of the execution time, in which case the stan-

dard deviation of execution time can be used. Another way to quantify stability is to

specify the probability that the execution time longer than a certain threshold is ob-

tained. In this section, the performance measures to be employed in this dissertation

are derived.

Let’s denote the size of a target task by X and the portion of the target task

assigned to the computer Ci by Xi. The execution time of Xi on Ci is referred to as

Ti, which is a random variable, and its mean and standard deviation are denoted by

ti and σTi
, respectively. In this dissertation, the same notation is used for a random

variable and its observation in order to minimize the number of variables.

2.3.1 Mean and Standard Deviation of Execution Time

Referring to the definition of availability, the relationship between Xi and Ti may

be expressed as follows:

∫ Ti

0
αiAi(t) dt = Xi

By taking the expectation on both sides,

ti =
Xi

αiai

(2.1)
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Assuming the uncorrelatedness between Ai(t) and Ai(t
′), the standard deviation,

σXi
, of the work completed during ti can be shown to be σXi

=
√

tiαiσAi
. Then, the

standard deviation of Ti may be given by

σTi
=

√
ti

σAi

ai

(2.2)

The parallel execution time of X in a run, denoted by T , which is also a random

variable, is given by T = maxi { Ti } where the notation { } refers to a set. The

mean (τ) and standard deviation (σT ) of parallel execution time of X are computed

as follows:

τ = E[ T ]

σT =
√

E[ (T − τ)2 ]

where E[ ] is the expectation operator.

2.3.2 Spatially Homogeneous Environment

When all N computers have the same distribution of execution time (T ′) and

the corresponding cdf (cumulative distribution function) is a monotonically increasing

function, τ may be expressed as follows (note that the subscript i is not used in this

subsection since all computers are identical and that Ti = T ′ and Xi = X ′ for all i):

τ =
∫

NT ′F (T ′)N−1f(T ′) dT ′ (2.3)

where F (T ′) and f(T ′) are the cdf and pdf (probability density function) of T ′, re-

spectively.
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It is possible to derive τ in the following form [12][43], referring to Equations 2.1

and 2.2:

τ = t + K(N) σT ′

= t + K(N)
√

t
σA

a

=
X ′

αa
+ K(N)

√
X ′

αa

σA

a
(2.4)

where K(N) is an increasing function of N and K(1) = 0.

Notice that the average parallel execution time of a target task consists of two

components, one depending on the mean of availability and the other on the standard

deviation of availability, i.e., temporal heterogeneity. It is to be noted that temporal

heterogeneity makes the average parallel execution time increase beyond the average

(sequential) execution time on each computer. The increase is larger when the number

of computers employed is greater. Also, as will be shown later, a higher spatial

heterogeneity leads to a longer average parallel execution time.

2.3.3 Synchronization

When the communication phase in the augmented task model does not include

data communication, it can be considered as a synchronization point. That is, at each

synchronization point, all computers need to wait for the “slowest” computer before

they proceed to next computation phase. Suppose that there are Ns synchronization

points in a target task, such that the amount of work to be done between two succes-

sive synchronization points is X′
Ns

. In order to extract effects of synchronization only,
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let’s assume that no data communication is actually carried out at each synchroniza-

tion point. Referring to Equation 2.4, the mean parallel execution time in the jth

phase, τ (j), can be expressed as X′
αaNs

+ K(N)
√

X′
αaNs

σA

a
for j = 1, . . . , Ns. Then, the

average parallel execution time τ is Nsτ
(j). Hence,

τ =
X ′

αa
+ K(N)

√
X ′Ns

αa

σA

a
(2.5)

It can be seen that τ increases as Ns increases even though no synchronization

overhead (e.g., communication overhead for synchronization) is taken into account.

2.3.4 Stability of Performance

Variation of T may be quantified by its standard deviation, σT , which is to

be minimized when one wants to achieve a stable performance. Also, one may be

interested in knowing the probability, to be referred to as “risk factor,” that T is

longer than a certain desirable threshold, τd. The risk factor, denoted by RF , is

given by Prob[ T > τd ].

2.3.5 Temporal and Spatial Heterogeneity

In this section, temporal heterogeneity and spatial heterogeneity are quantified

for computing power only, since the definitions would be identical for communication

bandwidth. A difference is that spatial heterogeneity would generally be lower for

communication bandwidth than for computing power. This is mainly because the

communication paths are usually shared by computers.
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2.3.5.1 Temporal Heterogeneity

Temporal heterogeneity is defined on an individual computer, which indicates

variability of computing power available for a task along the time dimension. There-

fore, the standard deviation of the availability may be used to quantify temporal

heterogeneity on each computer. Noting that the average availability may vary with

computer (and also time) and that τ depends on the ratio of σAi
to ai (refer to Equa-

tion 2.4), temporal heterogeneity, to be denoted by THi, on Ci is defined to be the

normalized standard deviation of availability.

THi
4
= σ̄Ai

=
σAi

ai

(2.6)

The notation TH will be used when THi is the same for all i (computers), i.e.,

spatially homogeneous, or, when the mean of THi among all computers is to be

referred to.

2.3.5.2 Spatial Heterogeneity

Spatial heterogeneity is defined for a group of computers to be employed to exe-

cute a target task. It represents variability of computing power among the computers.

Let’s denote the mean and maximum of σ̄Ai
among Ci by σ̄mean

A and σ̄max
A , re-

spectively, i.e., σ̄mean
A = 1

N

∑N
i=1 σ̄Ai

= THmean and σ̄max
A = maxi{σ̄Ai

}. Spatial

heterogeneity denoted by SH for a set of computers {Ci} is defined as

SH
4
= σ̄max

A − σ̄mean
A . (2.7)
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That is, SH quantifies variation of temporal heterogeneity among computers.

2.4 Simulation Results and Discussion

2.4.1 Simulation Setup

Availability is assumed to have a uniform distribution (it was observed that

other distributions such as a “truncated” Gaussian distribution resulted in similar

trends). Then, the distribution of execution time on each computer looks similar to

a Gaussian or Gamma distribution which was adopted also in another study [8]. The

average availability ai (or average computing power αiai) may vary with computer

(Ci). However, ai (or αiai) can be effectively normalized in task partitioning, i.e.,

load balancing for the average availability (or average computing power) varying

with computer can be done easily by assigning Xi, proportional to ai (or αiai), to Ci.

Hence, ai is set to 0.5 with αi = 1.0 for all i in the simulation in order to focus on

the effects of heterogeneity in the availability (instead of the average availability or

computing power) and to maximize the range of variation of σAi
(note that 0 ≤ ai ≤

1.0). Then, the maximum σAi
(σ̄Ai

) is 1
2
√

3
( 1√

3
). The computing power αi of Ci is set

to 1.0 also for normalization purpose.

The notion of “interval” is adopted to quantify the time duration in which avail-

ability (Ai(t)) remains constant. The interval is mostly affected by other tasks (dis-

tributions of their arrival time and size) and the local scheduler on Ci and is to be

modelled by a random variable. Note that decreasing the interval given a fixed task

size is equivalent to increasing the task size with the interval fixed, and vice versa.

A larger interval (for a given task size) leads to a higher chance for load imbalance
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among computers. The interval is generated from a uniform distribution of which

range is [0,20] except when it is varied.

Simulation was repeated 1000 times for each case and results were averaged for

the graphs in the following sections.

2.4.2 Effects of Heterogeneity on a Target Task

In this section, some of the simulation results are presented to discuss effects of

temporal and spatial heterogeneity on the performance of a target computing task.

In the graphs where variation of the parallel execution time (T ) is analyzed, the

standard deviation of T normalized by τ is used, i.e., σT

τ

4
= σ̄T . The results without

communication overhead (but with synchronization in some cases) are provided in

Figures 2.2 - 2.11, and those with communication overhead are in Figures 2.12 and

2.13.

2.4.2.1 Spatially Homogeneous and Temporally Heterogeneous

In Figure 2.2, τ and σ̄T are plotted when N = 1. As can be seen in the figure,

it is clear that the average sequential execution time is not affected by σ̄A, but its

variation increases proportional to σ̄A, as shown in Equations 2.1 and 2.2.

In Figure 2.3, effects of σ̄A on τ and σ̄T are shown for different values of N .

As predicted in Equation 2.4, τ and σ̄T increase almost linearly proportional to σ̄A

(which is TH) when multiple computers are employed. When more computers are

employed (a larger N), the effect of σ̄A on τ is larger, as shown in Figure 2.3-(a). The

effect of σ̄A on σT is also larger. However, since τ increases faster than σT does, the

effect of σ̄A on σ̄T is smaller for a larger N , as shown in Figure 2.3-(b).
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Figure 2.2: (a) Average execution time and (b) normalized standard deviation of
execution time on a single computer where X = 100.
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Figure 2.3: (a) Average parallel execution time and (b) normalized standard deviation
of parallel execution time on N computers where Xi = 100 for i = 1, . . . , N .

2.4.2.2 Spatially and Temporally Heterogeneous

In Figure 2.4, dependency of τ and σ̄T on SH and TH is shown when N is

fixed to 8. In this graph, when SH is zero (i.e., on the TH axis), σ̄A, which is THi,

is the same for all computers. When SH is greater than zero, distribution of σ̄Ai

among computers is linear such that σ̄Ai
= σ̄mean

A + 2( i−1
N−1

− 0.5)(σ̄max
A − σ̄mean

A ) for

i = 1, . . . , N . That is, TH = σ̄mean
A in these graphs. As SH increases, τ increases
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significantly, especially when σ̄mean
A also increases (going diagonally from the origin

on the SH − TH plane).
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Figure 2.4: (a) Average execution time and (b) normalized standard deviation of
execution time when SH and TH are varied with N fixed at 8 where Xi = 100 for
i = 1, . . . , 8.

Now, suppose that the size of a target task, X, is fixed independent of N and it

is uniformly distributed over N computers. The larger the set of computers employed

for the target task is, the larger heterogeneity (SH) among computers becomes in

general. Two cases are considered: (i) when σ̄mean
A is fixed while SH increases and

(ii) when both of SH and σ̄mean
A increase. In both cases, three different situations,

in terms of how σ̄max
A is increased, are considered: proportional to

√
N , N , and

N2. Simulation results for cases (i) and (ii) are provided in Figures 2.5 and 2.6,

respectively.

As N increases, τ decreases almost inversely proportional to N and then starts

to increase beyond a certain N especially when SH increases rapidly. In contrast, σ̄T

monotonically increases as N increases. It increases sharply after a certain value of

N in the case that SH increases proportional to N2.
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Figure 2.5: (a) Average execution time and (b) normalized standard deviation of
execution time. Xi = X

N
for i = 1, . . . , N and X = 100. As N increases, σ̄mean

A

remains fixed.
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Figure 2.6: (a) Average execution time and (b) normalized standard deviation of
execution time. Xi = X

N
for i = 1, . . . , N and X = 100. As N increases, σ̄mean

A

increases.

Speed-up is shown for the cases of (i) and (ii) in Figure 2.7-(a) and Figure 2.7-

(b), respectively. The reason why the three curves meet when N = 50 is that the

simulation was set up such that the distribution of σ̄A among computers becomes

identical in all three situations when N is increased to 50. Hence, what is to be

observed in these graphs is the “shape” (trend) of each curve. It is clear that spatial
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heterogeneity SH alone keeps one from employing more than a certain number of

computers even for an embarrassingly parallel task. Also, it can be induced that the

complexity of the function K(N) in Equation 2.4 is at least O(
√

N).
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Figure 2.7: Speed-up when (a) σ̄mean
A remains fixed and (b) σ̄mean

A increases as N
increases. Xi = X

N
for i = 1, . . . , N . X = 100.

2.4.2.3 Synchronization

The number of synchronization points, Ns, is varied for different σ̄Ai
, to observe

its effects on τ and σ̄T when SH = 0 in Figure 2.8 and when SH > 0 in Figure 2.9.

In Figure 2.8, it is seen that as Ns increases τ increases since the idle time due to

synchronization increases. However, σ̄T decreases. This can be explained as follows.

The increased Ti (or ti) due to a larger Ns leads to the increased σT (refer to Equation

2.2). However, Ti increases faster than σT , causing σ̄T to decrease. The increase rate

in τ is larger for a larger σ̄A (TH) and a higher SH, as shown in Figure 2.9.
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Figure 2.8: (a) Average execution time and (b) normalized standard deviation of
execution time as functions of Ns. X = 1000, N = 10, and Xi = X
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Figure 2.9: (a) Average parallel execution time and (b) normalized standard deviation
of parallel execution time as functions of SH and Ns. X = 1000, N = 10, Xi = X

N
=

100, and σ̄mean
A = 0.28.

2.4.2.4 Granularity of Availability

When the size of a target task (in terms of its execution time) is much larger

than an interval (the duration when availability remains constant, refer to Section

2.4.1) (equivalently, the interval is much smaller than the target task size), effects of

heterogeneity (temporal or spatial) are reduced since the probability of load imbalance
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decreases. Dependency on interval is shown when SH = 0 in Figure 2.10 and when

SH > 0 in Figure 2.11. As the interval increases (i.e., availability varies more slowly

with time) for a given target task, effects of TH and SH become larger making τ

and σ̄T larger. Equivalently, a smaller task would be more sensitive to heterogeneity.
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Figure 2.10: (a) Average execution time and (b) normalized standard deviation of
execution time as functions of interval. X = 1000, N = 10, and Xi = X
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Figure 2.11: (a) Average parallel execution time and (b) normalized standard devia-
tion of parallel execution time as functions of SH and interval. X = 1000, N = 10,
Xi = X

N
= 100, and σ̄mean

A = 0.28.
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2.4.2.5 Communication Overhead

Simulation results when the augmented task model is adopted are provided in

Figures 2.12 and 2.13. In these graphs, τ includes both computation and communi-

cation times. In Figure 2.12, SHcomp and SHcomm represent the spatial heterogeneity

of availability in computing power and communication bandwidth, respectively. As

expected for the simulation model, SHcomp and SHcomm have the similar effect on τ

and σ̄T (refer to Section 2.4.2.2). In this simulation, the ratio of computation time

to communication overhead is set to 6. That is why τ increases more slowly along

SHcomm than SHcomp.
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Figure 2.12: (a) Average execution time (computation and communication times)
and (b) normalized standard deviation of execution time as functions of SHcomm and
SHcomp. N = 20, X = 2000, Ns = 10, Xi = X

N
= 100, and σ̄mean

A = σ̄mean
B = 0.28.

In Figure 2.13, SH is the same for both the computing power availability and

bandwidth availability. As N increases, τ decreases initially and then turns around to

increase after a certain value of N . This is mainly because communication overhead

becomes dominant as N increases. It is also observed that the trend is more visible

when the bandwidth availability (and computing power availability) shows a higher
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Figure 2.13: Average execution time: (a) when communication overhead is indepen-
dent of N and X = 400, and (b) when communication overhead increases linearly
proportional to N and X = 2000. Ns = 10 and σ̄mean

A = σ̄mean
B = 0.28.

spatial heterogeneity (SH). For example, in Figure 2.13-(a), it is seen that τ turns

around to increase when SH is relatively high while it monotonically decreases when

SH = 0.

2.4.2.6 Load Distribution and Stability (Risk Factor)

So far, only the cases where a target task is uniformly distributed among com-

puters have been discussed. Let’s examine the effect of distribution of the target task

with SH varied. In Figure 2.14, τ and σ̄T are plotted as functions of dX with N = 2

where dX = X1−X2

2
and ∆σ̄A = σ̄A1 − σ̄A2 . In Figure 2.15, the risk factor defined in

Section 2.3.4 is shown as a function of dX. The same set of results are provided when

N = 10 in Figures 2.16 and 2.17. In these simulations, σ̄Ai
is increased linearly with

i among 10 computers as before (refer to Figure 2.4). Xi is also varied linearly with

respect to i, i.e., Xi = X0 + SlopeXi
(i − 1) for i = 1, . . . , N . Therefore, a negative

slope means that a computer with a smaller σ̄Ai
is assigned a larger fraction of X (a

larger Xi).
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Figure 2.14: (a) Average execution time and (b) normalized standard deviation of
execution time on two computers where X1 = X

2
− dX, X2 = X

2
+ dX, and X = 100.
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Figure 2.15: Risk factor on two computers where X1 = X
2
− dX, X2 = X

2
+ dX, and

X = 200. τd = 221. ∆σ̄A = σ̄A2 − σ̄A1 .

It may be observed from these results that, by assigning more work (a larger

fraction of target task) to a computer with a smaller variation of availability, (a) a

shorter (minimum) τ is obtained, (b) σ̄T is sharply decreased, and (c) the risk factor

is quickly reduced. These trends are more explicit for a larger N and a higher SH. It

is also seen that the amount of work to be assigned to each computer to minimize τ ,

σ̄T , and RF depends on SH (and the distribution of σ̄Ai
). That is, for achieving the

minimum execution time on a spatially heterogeneous computing system, it is not
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Figure 2.16: (a) Average execution time and (b) normalized standard deviation of
execution time on 10 computers. X = 100 and Xi = X0 + SlopeXi

(i − 1) for i =
1, . . . , 10.
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Figure 2.17: Risk factor on 10 computers (a) τd = 40 and (b) τd = 28. X = 100 and
Xi = X0 + SlopeXi

(i− 1) for i = 1, . . . , 10.

optimal to distribute a target task linearly proportional to the mean availabilities of

computers.
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Chapter 3

Load Balancing on a Heterogeneous Computing System

The results in Chapter 2 reveal that, for achieving the minimum average parallel

execution time on a spatially heterogeneous computing system, it is not optimal to

distribute a target task linearly proportional to the average availabilities (or average

computing powers) of computers. This observation has motivated the development

of an efficient load balancing scheme for heterogeneous cluster and grid computing

environments, which is described in this chapter.

3.1 Two-Step Heuristic Approach

Let’s denote the computing power (speed) of Ci at t by Si(t) which has the mean

si and the standard deviation σSi
. Then, noting that Si(t) = αiAi(t), si = αiai and

σSi
= αiσAi

. When σSi
= 0 for all i, a target task is to be partitioned proportional

to si, in order to achieve the minimum τ . However, such partitioning does not lead

to the minimum τ in general when σSi
6= 0 for some i.

Let’s consider cases where σSi
6= 0 for some i. Suppose that X is partitioned

such that Xi is linearly proportional to si. Then, ti (the average execution time on

Ci) would be the same for all i, but σTi
(the standard deviation of execution time on

Ci) would not be. It is to be pointed out that σTi
is linearly proportional to σ̄Ai

(or

THi). Noting that τ is given by E[maxi{Ti}] rather than maxi{Ti} or maxi{ti}, it is
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possible to further reduce τ by taking {σTi
} into account. Therefore, load balancing

may be carried out in two steps as follows:

(1) X is partitioned over {Ci} such that Xi is proportional to si,

(2) {Xi} is further adjusted considering {σTi
} and {si}.

In the following, this two-step load balancing approach is elaborated for different

cases.

3.1.1 When si = sj for all i, j:

Consider the case of N = 2 (two computers). In Step (1) of the two-step load

balancing approach, X is divided equally between C1 and C2 since s1 = s2. That is,

after Step (1), X1 = X2 = X
2

and t1 = t2. Suppose that σT1 > σT2 after Step (1).

Then, it is possible to reduce τ further by transferring a certain amount of work

(∆X ≥ 0) from C1 to C2 in Step (2), i.e., X ′
1 = X1−∆X and X ′

2 = X2 + ∆X, where

X ′
i is Xi after Step (2). Then,

t′1 = t1 − ∆X

s1

4
= t1 −∆t1 and t′2 = t2 +

∆X

s2

4
= t2 + ∆t2 (3.1)

where t′i is ti after Step (2).

Note that ∆t1 = ∆t2 since s1 = s2. Also, from Equation 2.2, it can be shown

that

σ′T1
= σT1

√
1− ∆X

s1t1
and σ′T2

= σT2

√
1 +

∆X

s2t2
(3.2)

where σ′Ti
is σTi

after Step (2).
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A heuristic scheme, to be referred to as equalization scheme, that can be employed

in Step (2) equalizes the sum of the mean and standard deviation of execution time

between two computers. That is, it determines ∆X such that

t′1 + σ′T1
= t′2 + σ′T2

(3.3)

where ti and σ′Ti
are given by Equations 3.1 and 3.2, respectively.

The equalization scheme is illustrated in Figure 3.1. The scheme attempts to

reduce the probability that the parallel execution time of a target task, T = maxi{Ti},

is large, in order to minimize its average parallel execution time. This heuristic can

be generalized for cases where N > 2, i.e., Xi is determined such that t′i + σ′Ti
is the

same for all i.

t1

t 2

σT1

σT2

C1

C2

(a)

σ’T1

σ’T2

t’1

t’2

C1

C2

(b)

Figure 3.1: Equalization scheme: (a) after Step (1) where a target task is partitioned
such that the average execution time is the same on all computers and (b) after Step
(2) where the partitioning is adjusted such that t′i +σ′Ti

is equalized for all computers.
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3.1.2 When si 6= sj for some i, j:

Again, consider the case of N = 2, and suppose that s1 < s2. After Step (1),

X1 = s1X
s1+s2

and X2 = s2X
s1+s2

. What is to be done in Step (2) to further reduce

τ depends on {σTi
} and {si}, as discussed below, and can be generalized for cases

where N > 2.

(a) σT1 > σT2 : In this case, ∆X is to be moved from C1 to C2 and the equalization

scheme may be employed in determining ∆X. One difference is that ∆t1 > ∆t2.

In other words, the same increase in t2 (by moving ∆X from C1 to C2) results

in a larger decrease in t1, leading to a larger reduction in τ , compared to the

case where s1 = s2.

(b) σT1 < σT2 and s1 ¿ s2: It is still possible to reduce τ by transferring ∆X from

C1 to C2 though the equalization scheme may not be used since the condition,

t′1 + σ′T1
= t′2 + σ′T2

, cannot be satisfied. Reduction in τ would be smaller than

that in (a).

(c) σT1 < σT2 and s1 ' s2: In this case, ∆X is to be moved from C2 to C1 and the

equalization scheme can be used. Reduction in τ would be smaller than that in

(a) or (b).

It should be clear that transferring ∆X in the other direction than specified

above would result in a longer τ . The above discussion on reduction in τ for different

cases is summarized in Table 3.1.
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s1 = s2 s1 < s2

σT1 > σT2 σT1 > σT2 σT1 < σT2 (s1 << s2) σT1 < σT2 (s1 ' s2)
Direction of ∆X C1 → C2 C1 → C2 C1 → C2 C1 ← C2

Reduction in τ Smallest Largest Small Small

Table 3.1: Possible reduction in τ

3.2 Simulation Results and Discussion

Let’s first consider a case where the average computing speed is the same for all

computers, i.e., si = sj for all i, j. First, Xi = Xj for all i, j in Step (1) of the two-step

load balancing approach described in Section 3.1. It is assumed that ti = 100 and

σTi
= i−1

N−1
σmax, for i = 1, . . . , N , after Step (1). In Step (2), Xi is adjusted such that

t′i = ti + SlopeT (i− N−1
2

) for i = 1, . . . , N . SlopeT = 0 corresponds to the case where

X ′
i is proportional to si (the average computing speed or power), i.e., Step (1) only.

A negative SlopeT indicates that a computer with a larger σTi
is assigned a larger

∆Xi (refer to Section 3.1) in Step (2) in addition to Xi allocated in Step (1).

In Figure 3.2, τ and percentage standard deviation of (t′i + σ′Ti
) are shown as

functions of SlopeT which specifies how a target task is distributed over N computers.

The percentage standard deviation of (t′i +σ′Ti
) is a measure which reflects the degree

of equalization, and is defined as:

% standard deviation of (t′i + σ′Ti
) =

σ(t′+σ′T )

(t′ + σ′T )
× 100% (3.4)
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where (t′ + σ′T ) and σ(t′+σ′T ) are average and standard deviation of (t′i + σ′Ti
) over N

computers:

(t′ + σ′T ) =

∑N
i=1 (t′i + σ′Ti

)

N
(3.5)

σ(t′+σ′T ) =

√∑N
i=1(t

′
i + σ′Ti

− t′ + σ′T )2

N
(3.6)

First of all, it is to be noted from Figure 3.2 that it is not optimal to distribute

a target task linearly proportional to the average computing power of computers. In

Figure 3.2-(a), it is clear that the performance improvement (reduction in τ) achieved

by Step (2) (more precisely, Step (1) + Step (2)) over Step (1) is significant, and is

larger for a larger ∆σT (equivalently, a higher spatial heterogeneity). Comparing

Figures 3.2-(a) and (b), it can be seen that the equalization scheme employed in Step

(2) works well, i.e., the distribution of X minimizing τ closely matches with that

minimizing variation in ti + σTi
.
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Figure 3.2: (a) Average parallel execution time and (b) Percentage standard deviation
of t′i + σ′Ti

after Step (2) in the load balancing, when the number of computers, N ,
is 10. After Step (1), ti = 100 and ∆σT = σTN

− σT1 where σTi
= i−1

N−1
σTmax, where

i = 1, . . . , 10.
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In Figure 3.3, a system of two computers where s1 < s2 is considered. In these

graphs, τ is plotted as a function of ∆X. Again, ∆X = 0 corresponds to the cases

where X is divided between two computers proportional to their average computing

powers (s1 and s2). It can be observed that reduction in τ , which can be achieved by

Step (2), is larger for a larger s or a larger ∆σT . Let’s define the percentage error (ε)

of the equalization scheme as ∆τmax−∆τ
∆τmax

× 100 where ∆τmax and ∆τ are the maximum

possible and achieved (by the heuristic) reductions in τ , respectively. In this set of

results, the average ε was 5.1%.
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Figure 3.3: Average parallel execution time on two computers (a) with a fixed ∆σT =
σT1 − σT2 = 50 (σT2 = 10) and (b) with a fixed s = 4, where s = s2

s1
(s1 = 1) and

∆σT = σT1 − σT2 (σT2 = 0).

In Figure 3.4, percentage reduction in τ , which is achieved by Step (2), is analyzed

with the number of computers (N) varied. In this simulation, si increases and σTi

decreases linearly proportional to i, i.e., a faster computer has a smaller variation of

execution time. The percentage reduction in τ is defined to be
τ(1)−τ(2)

τ(1)
× 100 where

τ(1) and τ(2) are τ achieved by Steps (1) and (2), respectively. It can be seen that the

percentage reduction increases as N increases. That is, the performance improvement
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Figure 3.4: Percentage reduction in average parallel execution time as a function of
the number of computers (a) with a fixed ∆σT = σT1 − σTN

= 60 (σTN
= 0) and (b)

with a fixed s = 5, where s = sN

s1
(s1 = 1) and ∆σT = σT1 − σTN

(σTN
= 0). After

Step (1), ti = 100 for all i.

by Step (2) becomes greater when a larger number of computers are employed. In

Figure 3.4-(a), ∆σT is fixed independent of N . However, in reality, ∆σT would usually

increase as N increases. Therefore, in such a case, one may expect a larger reduction

in τ . Note that a larger ∆σT leads to a greater reduction in τ as shown in Figure

3.4-(b).
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Chapter 4

Effects of Heterogeneity on an Individual Network Traffic

In this chapter, how heterogeneity in channel bandwidth affects the performance

of an individual message is analyzed. Also, application of the analysis results to path

selection and multi-path data transfer are considered.

4.1 Network Model

4.1.1 Topology

In this dissertation, a communication network is represented by a graph where

a node may be a user, a switch, a router, etc. and an edge is a wired or wireless

channel or link. Bandwidth of a channel refers to the bandwidth that is available for

or can be allocated to an individual message (request) on the channel. A path is a

set of consecutive edges (links) from one node to another. Two types of paths are of

interest, serial path and parallel path.

A serial path consists of N serially connected links from a source node to a

destination node through N − 1 intermediate nodes (routers) as illustrated in Figure

4.1-(a). The bandwidth Bi(t) of link i (li in the figure), specified in terms of packets-

per-second (pps), is assumed to be randomly distributed between Bmin
i and Bmax

i with

the mean of bi and the standard deviation of σBi
, where 1 ≤ i ≤ N . Bi(t) remains
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Figure 4.1: Illustration of (a) a serial path and (b) a parallel path where Np = 2.

constant over a period of time, referred to as an interval, Tinterval, as illustrated in

Figure 4.2. Also, the normalized standard deviation,
σBi

bi
, is denoted by σ̄Bi

.

A parallel path is composed of Np serial paths which are independent of each

other, as illustrated in Figure 4.1-(b). Path j of a parallel path consists of Nj links

where 1 ≤ j ≤ Np. Link i on path j may be denoted by lij along with the associated

bandwidth parameters Bij(t), Bmax
ij , Bmin

ij , bij, and σBij
. For a parallel path where

all links on each path are identical, bj, σBj
, and σ̄Bj

will be used to denote the mean,

standard deviation, and normalized standard deviation of bandwidth of all links on

path j, respectively.

Transmission rate at the source node follows the bandwidth of the bottleneck link

(the link with the minimum bandwidth) in the path. Note that a higher transmission

rate would lead to a higher throughput, but at the expense of a longer (queueing)

delay. The source node is informed of any change in Bi(t) with a delay of Tfeedback,

and updates its transmission rate at an interval of Tupdate. Practically, the value of
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Tupdate should not be shorter than the average one-way-trip-time from the destination

node to the source node.

t
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Figure 4.2: Temporal bandwidth heterogeneity on each channel and spatial bandwidth
heterogeneity among channels.

Temporal heterogeneity of the bandwidth is defined for each channel or link i and

is quantified by σ̄Bi
. This indicates the temporal fluctuation of bandwidth (available

for a message) about its mean. Spatial heterogeneity is defined for a group of channels

or links and may be quantified by a measure of variation among the members in the

set {σ̄Bi
}, such as the difference between the maximum and minimum.

There are other factors in addition to channel bandwidth, which can be consid-

ered in a network model. However, the main focus of this chapter is on analyzing

effects of temporal and spatial variations in the bandwidth allocated to a message on
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QoS’s. Therefore, those factors are not explicitly considered in the model. Equiva-

lently, the model takes only their combined “net” effect on the allocated bandwidth

into account.

4.1.2 Performance Measures

Some communication performance measures used in this dissertation are defined

below.

Throughput (THR) is defined to be the size of data that a path (or multi-

path) is able to transfer in a unit time, in terms of packets-per-second (pps) when the

protocol has a uniform packet size, or bits-per-second (bps). This measure reflects

the effective bandwidth of the network path. This is a long-term measure, which is

evaluated on the destination node.

End-to-End-Delay (Tee) is defined to be the time it takes to transmit a packet

from the source to the destination. This can be decomposed into 4 components,

i.e., propagation delay (Tp), transmission delay (Ttr), queueing delay (Tq), and other

overhead (To). To represents the overhead including system processing time, packet

assembling or disassembling time; Tp is related to the physical property of the network

which is determined by the speed of the electro-magnetic wave on a certain media

(copper, fiber, etc.); Tq is the waiting time that a packet spends in queueing into and

dequeuing from the buffers of routers on the path, and reflects the mismatching of

bandwidth between two successive links; and Ttr can be expressed in terms of the

transmission rate (r(t)) as follows:

Ttr(t) = 1/r(t) (4.1)
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Note that there is a trade-off between Ttr and Tq: when increasing the source rate

r(t), Ttr decreases since it is inversely proportional to r(t) and Tq tends to increase

when r(t) gets faster, if there are some packets buffered. This dissertation mainly

focuses on Ttr and Tq because they are the two main components of Tee while the

other two components are also included in the simulation model.

Dropping Rate (DR) is defined to be the ratio of the number of dropped

packets to the total number of packets sent. When the available bandwidth drops

below the source rate, packets are queued. Packet dropping occurs when packets are

sent with a rate higher than the current available bandwidth of an outgoing link over

a long enough period of time so that the buffer overflows. Therefore, a good source

rate control scheme should at least follow and not go above the average available link

(a long term measure) bandwidth for a long period of time.

Transfer Time (Ttrans) is the time it takes to send a given size of data from a

source to a destination.

4.2 Effects of Heterogeneity

In this section, effects of heterogeneity on QoS’s of an individual message are an-

alyzed by computer simulations. The bandwidth of each channel, Bi(t), is assumed

to be independently and uniformly distributed between Bmin
i and Bmax

i . Other distri-

butions such as a truncated Gaussian distribution have been considered, but lead to

qualitatively similar results. Therefore, the results for the uniform distribution only

are provided in this dissertation.
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4.2.1 Feedback Latency

In Figure 4.3, where the notation Tinterval = [X, Y ] indicates that Tinterval is

uniformly distributed between X and Y , effects of Tfeedback on throughput and end-

to-end delay are analyzed for a serial path of 4 links. It is seen that throughput is

almost independent of Tfeedback while it decreases as σ̄B increases (refer to Figures

4.3-(a)). This is because throughput is mainly determined by the average bandwidth

of the path as will be discussed later on. However, Tfeedback has a significant effect on

the end-to-end delay as can be seen in Figure 4.3-(b). The longer the feedback latency

is, the longer the end-to-end delay results. When the feedback latency is longer, the

duration of mismatch between the source rate and the bandwidth of the bottleneck

link is longer leading to a longer end-to-end delay per packet due to longer queues

along the path.
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Figure 4.3: Effects of Tfeedback on (a) throughput and (b) end-to-end delay.
Tinterval=[0.01,5.00]s, Tupdate=0.01s, N = 4, bi=1000 pps, and σ̄Bi

= σ̄B for all i.
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4.2.2 Temporally Heterogeneous and Spatially Homogeneous

4.2.2.1 Serial Path

For a serial path of a single link, it is not difficult to show that the average

transfer time, ttrans, and the normalized standard deviation of transfer time, σ̄ttrans ,

can be derived as ttrans = S
b

and σ̄ttrans =
σttrans

ttrans
= σ̄B

√
b√

S
, respectively, where S is

the size of data. Now, consider a serial path of N links where bi = b and σBi
= σB

for all i. The source rate follows the bandwidth of the bottleneck link along the

path in the simulation. Therefore, effective bandwidth, Beffective, of the serial path

can be approximated as that of the bottleneck link. The average effective bandwidth,

beffective, which is equivalent to throughput, can be derived as follows (for the uniform

distribution).

beffective = E[Beffective] = E[mini{Bi}]

= b− N − 1

N + 1
(
Bmax −Bmin

2
)

= b(1− N − 1

N + 1

√
3σ̄B) (4.2)

From Equation 4.2, one can see that the average effective bandwidth decreases as

σ̄B (temporal heterogeneity) increases, and the decrease is larger (as large as
√

3σ̄B)

for a longer path (a larger N). The more links are involved in a path, the higher the

probability that min{Bi} will be smaller. This is verified by the simulation results in

Figure 4.4-(a), where it is clear that the simulation results show a good match with

the theoretical predictions.
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Figure 4.4: (a) Throughput and (b) end-to-end delay on a temporally heterogeneous
serial path of N links. S = 106 packets. bi = 1000 pps and σ̄Bi

= σ̄B for i = 1, . . . , N .

The end-to-end delay is the sum of delays on N links. The delay on an individual

link includes the transmission and queueing delays (refer to Section 4.1.2). The

queueing delay increases as σ̄B increases since the probability and degree of bandwidth

mismatch between adjacent links increase leading to longer queues. Therefore, the

end-to-end delay increases as σb and/or N increase as shown in Figure 4.4-(b).

4.2.2.2 Parallel Path

In Figure 4.5, the transfer time and throughput achieved on a parallel path are

plotted. In this parallel path, each path is composed of a single link. Sj = 105 packets

for j = 1, . . . , Np where Sj is the size of data transferred over path j, i.e., the total

size of data is 105Np packets transferred over Np paths. It can be seen in Figure

4.5-(a) that transfer time increases up to 16% as σ̄B increases when Np > 1. The

increase in transfer time is larger for a larger Np. In Figure 4.5-(b), the aggregated

throughput over Np paths is plotted as a function of Np. Ideally, it is to increase

linearly proportional to Np. However, throughput is degraded from the ideal one as
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Np increases, with a larger degradation for a larger σ̄B (up to more than 40 % when

Np = 19 and σ̄B=0.4).

Note that the results in Figure 4.5 are for the cases where each path consists of

a single link. By referring to Figure 4.4, it should not be difficult to see that effects

of σ̄B and/or Np are larger on a parallel path when the number of links per path is

greater than one as verified in the simulation.

4.2.3 Temporally and Spatially Heterogeneous

In addition to temporal heterogeneity on each link, different links may exhibit

different characteristics, i.e., bi 6= bj and/or σ̄Bi
6= σ̄Bj

for i 6= j. In this section, only

the results for cases where bi = b for all i, but σ̄Bi
6= σ̄Bj

for i 6= j, are presented.

However, in practice, even when bi 6= bj, it is often the case that the allocated average

bandwidth is the same for all links. For instance, it would not be optimal to allocate

different average bandwidths on different links along a serial path since the overall
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Figure 4.5: (a) Transfer time and (b) throughput on a temporally heterogeneous
parallel path consisting of Np paths with one link per path. Sj=105 packets and
bj=1000 pps for j = 1, . . . , Np.
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effective bandwidth of the path mainly depends on the bottleneck link, i.e., the link

with the lowest (average) bandwidth. Note that a link with a large σ̄B may become

a bottleneck link even though its average bandwidth is not the lowest. Nevertheless,

cases where bi 6= bj are considered for the application examples in Section 4.3.

4.2.3.1 Serial Path

In Figure 4.6, bi = 1000 pps for all i and σ̄B1 is varied with σ̄Bi
fixed for i =

2, . . . , N .

In Figures 4.6-(a) and (b), σ̄Bi
is fixed at 0.1 for i = 2, . . . , N , and σ̄B1 is varied

from 0 to 0.52. It is clear that throughput is degraded significantly (close to 20%)

due to spatial heterogeneity in {σ̄Bi
} as σ̄B1 increases. The relative degradation in

end-to-end delay is larger as shown in Figure 4.6-(b). As spatial heterogeneity among

links increases, the probability and degree of bandwidth mismatch between adjacent

links increase, which causes a longer end-to-end delay for each packet as discussed

in Section 4.2.2.1. When σ̄Bi
for i = 2, . . . , N is fixed at 0.52, the change of spatial

heterogeneity in {σ̄Bi
} is smaller as σ̄B1 increases from 0 to 0.52. Therefore, the

relative degradation in throughput and end-to-end delay, as σ̄B1 increases, is less as

can be seen in Figures 4.6-(c) and (d).

4.2.3.2 Parallel Path

In Figure 4.7, the average bandwidth is the same for all links, but σ̄Bj
is dis-

tributed linearly among Np paths such that its mean among the paths is unchanged.

In quantifying spatial heterogeneity, ∆σ̄B=σ̄B1-σ̄BNp
is adopted. Over each of the Np
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paths, the same amount of data (Sj = 105 packets for all j) is transmitted, and the

transfer time is determined by the “slowest” path.

The results show that the transfer time increases substantially as ∆σ̄B gets larger.

The increase in transfer time is larger when each path becomes longer. This is because

the temporal (effective) bandwidth heterogeneity of each path increases as the path

length increases.
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Figure 4.6: Throughput and end-to-end delay on a temporally and spatially hetero-
geneous serial path with bi=1000 pps for i = 1, . . . , N . (a) & (b): σ̄Bi

= 0.1 for
i = 2, . . . , N ; (c) & (d): σ̄Bi

= 0.52 for i = 2, . . . , N .
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Figure 4.7: Transfer time on a temporally and spatially heterogeneous parallel path:
(a) each path is a single link, and (b) each path consists of 2 links where ∆σ̄B = σ̄B1-
σ̄BNp

. bj = 1000 pps and Sj = 105 packets for j = 1, . . . , Np. σ̄Bj
is varied linearly

over Np paths for j = 1, . . . , Np such that its mean is fixed at 0.26.

It is also seen that transfer time is longer for a larger Np. As more paths are

involved in a parallel path, the probability that the variation of effective bandwidth

among the paths is larger increases, which makes the (average) transfer time longer.

Note that transfer time of a message transmitted over multiple paths depends on the

“slowest” path, i.e., the path which finishes its transfer last.

4.3 Applications

In this section, two examples where effects of heterogeneity in channel bandwidth

may be taken into account in order to improve (optimize) certain QoS’s are considered.

4.3.1 Path Selection

In Figure 4.8-(a), a parallel path is shown, where each path consists of 4 links.

Note that the average bandwidth of the links on path 3 is higher than those on paths
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Figure 4.8: (a) A parallel path where the number of links is the same for all paths,
and (b) a parallel path where the number of links varies with path. The number pair
in brackets over each link represents bi and σ̄Bi

of the link.

1 and 2, but σ̄Bj
(heterogeneity) is also larger for the links on path 3 than those on

paths 1 and 2. σ̄Bj
is constant for all links on path 1 while it is linearly distributed

over the links on path 2. Note that the mean of σ̄Bi
for all links on each path is the

same for both paths 1 and 2. In Figure 4.9, the three paths are compared in terms of

end-to-end delay and transfer time. First, it is seen that path 3 performs worst among

the three in both QoS’s though its average bandwidth is higher than that on the other

paths. This is due to its high temporal heterogeneity in bandwidth. Comparing paths

1 and 2 which have the identical bj, one can see that path 1 performs slightly better

than path 2 since spatial heterogeneity (among links) is higher on path 2 than on

path 1. Therefore, one should consider {σ̄Bi
} in addition to {bi} in selecting a path,

in order to optimize the QoS’s.

Figure 4.8-(b) shows another example of a parallel path where the number of

links varies with path, in this case, 2, 3, and 4 links on paths 1, 2, and 3, respectively,

is considered. All links have the same average bandwidth, but σ̄Bj
is largest on path

1 and smallest on path 3. In Figure 4.10, the same QoS’s, end-to-end delay and
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Figure 4.9: Comparison of the three paths in Figure 4.8-(a) in terms of (a) end-to-end
delay and (b) transfer time.

transfer time, are used to compare the three paths. The smallest delay and transfer

time are achieved on path 3 which is the “longest” (the largest number of links) among

the three paths. Path 1 performs worst due to its highest (temporal) heterogeneity

though it is the “shortest.” Therefore, one should not simply select the shortest path

even when the average bandwidth is the same on all links.
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Figure 4.10: Comparison of the three paths in Figure 4.8-(b) in terms of (a) end-to-
end delay and (b) transfer time.
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Implementation

Two cases may be considered: (i) the source has the information on the behavior

(bi, σ̄Bi
) of each link, and (ii) the source does not have this information. In the case

(i), an analytic formula or look-up table which relates a given QoS to the set {bi, σ̄Bi
}

characterizing a path is to be derived. If a path is temporally heterogeneous but

spatially homogeneous, an analytic formula may be obtained for certain distributions

as shown in Section 4.2.2.1 for the QoS of throughput which is proportional to the

effective bandwidth of a path. However, for a temporally and spatially heterogeneous

path, it is much more challenging. With such an analytic formula or table available,

a source refers to it in order to select a path when there are more than one possible

path.

In case (ii), the source needs to estimate a given QoS by measuring it for each

possible path before the selection process.

4.3.2 Multi-Path Data Transfer

Consider cases where multiple paths (or a parallel path) are available for trans-

ferring a large size of data. That is, the data is partitioned for simultaneous transfers

over multiple paths. In order to minimize the overall transfer time, it is necessary to

determine how much data is to be transferred over each path (or equivalently trans-

mission rate for each path), considering bandwidth heterogeneity on the multiple

paths. Let’s define percentage reduction in transfer time as
ttrans−t′trans

ttrans
× 100 where

ttrans is the transfer time achieved when the partitioning is done considering only
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the mean of each link’s bandwidth, and t′trans is the transfer time obtained by con-

sidering the normalized standard deviations (heterogeneity) of link bandwidths also.

Similarly, percentage reduction in end-to-end delay may be defined as tee−t′ee

tee
× 100.

Recall that S denotes the total size of data and Sj the size of data to be trans-

ferred over path j, i.e., S =
∑

j Sj. In Figure 4.11, cases where 2 paths are employed

for data transfer and all links have the same average bandwidth (b = 1000 pps) are

considered. Note that one would normally partition S so that S1 = S2 since b1 = b2.

However, that does not lead to the optimal performance. In Figure 4.11-(a), both

paths have the same number of links (N). It can be seen that a significant reduction

of up to 28% in transfer time is achieved by assigning more data to the path with

lower temporal heterogeneity, path 1 in this example. Also, the reduction becomes

larger when there is a larger difference (spatial heterogeneity) between σ̄B1 and σ̄B2

and when each path is longer (a larger N). In Figure 4.11-(b), cases when each path

has different number of links (N1 6= N2) are considered. The similar observations can

be made in this result. However, the reduction is larger since N1 6= N2 leads to higher

spatial heterogeneity (between the two paths).

It is also shown in Figure 4.11 that the simulation results provide a good match

with the theoretical ones (optimum).

The results for cases where b1 6= b2, i.e., two paths have different average link

bandwidths, are shown in Figure 4.12. Sj is the size of data to be transferred over

path j when only the mean of link bandwidth {bj, j = 1, 2} is taken into account,

i.e., Sj is linearly proportional to bj.

Let S ′j denote the size of data to be transferred over path j when considering

{σ̄Bj
, j = 1, 2} in addition to {bj, j = 1, 2}. In Figures 4.12-(a) and (b), it can be seen
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Figure 4.11: Reduction in transfer time on a parallel path (Np = 2). bj = 1000 pps
for j = 1, 2. S=S1 + S2=2× 106 packets.

that the minimum transfer time (maximum reduction) is achieved by assigning a size

of data larger than S1 to path 1 on which temporal heterogeneity (σ̄B1) is lower than

on path 2. The larger the difference in temporal heterogeneity between the two paths

(i.e., the larger the spatial heterogeneity), the larger the reduction. Also, a larger

reduction is possible when the path with lower temporal heterogeneity (path 1) has

a higher average bandwidth. In addition, there exists an optimal point at which the

reduction is maximized, and the value of
S′1−S1

S
for the optimal point depends on b1

and b2.

In Figures 4.12-(c) and (d), the reduction in the end-to-end delay shows a mono-

tonic behavior, i.e., always increasing as
S′1−S1

S
increases. This is the case since the

per-packet delay is reduced as a larger fraction of message is transmitted over the

path with lower temporal heterogeneity, path 1 in this case (σ̄B1 < σ̄B2). Therefore,

one is to select a proper value of
S′1−S1

S
depending on which QoS is to be optimized.

Note that the heterogeneity among paths is likely to increase as Np increases,

and this would lead to an even larger maximum reduction in the transfer time.

57



0 2 4 6 8 10 12
−5

0

5

10

15

(S’
1
−S

1
)/S (%)

R
ed

uc
tio

n 
in

 t tr
an

s (
%

)

b
1
=b

2
b

1
=b

2
/2

b
1
=b

2
/3

0 2 4 6 8 10 12
0

5

10

15

20

(S’
1
−S

1
)/S (%)

R
ed

uc
tio

n 
in

 t tr
an

s (
%

)

b
1
=b

2
b

1
=2b

2
b

1
=3b

2

(a) b1 ≤ b2 (b) b1 ≥ b2

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

(S’
1
−S

1
)/S (%)

R
ed

uc
tio

n 
in

 td  (
%

)

b
1
=b

2
b

1
=b

2
/2

b
1
=b

2
/3

0 2 4 6 8 10 12
0

5

10

15

20

(S’
1
−S

1
)/S (%)

R
ed

uc
tio

n 
in

 td  (
%

)

b
1
=b

2
b

1
=2b

2
b

1
=3b

2

(c) b1 ≤ b2 (d) b1 ≥ b2

Figure 4.12: Reduction in transfer time ((a), (b)) and end-to-end delay ((c), (d)) on
a parallel path with Np = 2. Nj = 2 for j = 1, 2. S = S1 + S2 = S ′1 + S ′2 = 2 × 106

packets, σ̄B1=0.06, σ̄B2=0.46, and b1 + b2 = 2000 pps.

Implementation

The main issue in multi-path data transfer is how to divide a given large size of

message over multiple paths to be utilized simultaneously for the message, given the

effective bandwidth and its variation (bj, σ̄Bj
) for each path j. Consider the QoS of

transfer time of a message. How the message is to be divided to minimize its overall

transfer time is equivalent to dividing a computational task over multiple temporally

heterogeneous computers for minimizing the parallel execution time. In Chapter 3,
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an effective load balancing strategy was described along with its performance analysis

results. This strategy consists of two steps where a task is partitioned proportional to

the average computing power available on the computing nodes in the first step and

the partitioning is adjusted by considering the standard deviations of the available

computing powers in the second step. A similar scheme can be employed for balancing

communication load over temporally heterogeneous paths.
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Chapter 5

Source Rate Control for Heterogeneous Communication Systems

Based on the analysis results in Chapter 4, the issue of controlling source rate

in order to optimize performance of a communication task is considered, and a het-

erogeneity aware approach to source rate control is described along with simulation

results in this chapter.

5.1 Temporal Heterogeneity under Different Time Scales

Temporal heterogeneity of the available bandwidth on a communication path

depends on the activity patterns of different network applications and protocols and

can be decomposed into two components, long-term and short-term, in the time do-

main. Long-term heterogeneity is caused by the initiation and termination of long

sessions, such as large file transfers, real time video and audio streaming, and other

bandwidth reservation applications. These types of applications “dominate” the vari-

ation of available network resources (bandwidth, buffer, etc), and exhibit slow-varying

characteristics.

Short-term heterogeneity is due to short-duration network traffic, such as the

overhead in packet processing, buffering, and forwarding, and other sporadic net-

work activities. Examples include Internet Control Messages (ICMP, RSVP), user

inputs/outputs of a terminal session (telnet), browsing (small) web pages (http),

messenger services (msn/yahoo messenger, icq) most of which are based on UDP,
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and short email messages (smtp, pop3). Dynamic behaviors of some transport layer

protocols, like AIMD in TCP, also cause some short-term variation. This type of

heterogeneity is relatively unpredictable.
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Figure 5.1: Illustration of long-term and short-term temporal heterogeneity of the
available bandwidth sensed by one flow (flow0) on a path.

A simplified illustration of long-term and short-term temporal heterogeneity,

where multiple flows share a bottleneck link with a capacity of 1 Mbps, is given in

Figure 5.1. The available bandwidth sensed by a certain long-duration flow (say

flow0) over time is plotted in this figure. The queueing scheme is assumed to work

in a fairly weighted round-robin fashion, i.e. the ideal effective bandwidth shared by

flow0 is 1Mbps/nf , when there are nf co-existing long-duration flows. The “contour”

of the available bandwidth (marked by the dotted lines) represents the ideal share for

flow0, and could be modelled by 1 Mbps/nf . Starting from time A, there are 3 co-

existing long-duration flows, so the available bandwidth for flow0 is approximately

1Mbps/3. At time B, one of the long-duration flows is closed, and the available

bandwidth increases to about 1Mbps/2. When one more flow is dropped at time C,
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all bandwidth of the link (1Mbps) is allocated solely to flow0, but after another flow

is introduced at time D, the available bandwidth drops back to about 1Mbps/2.

Compared to the short term temporal heterogeneity (“spurs” in Figure 5.1), the

long-term heterogeneity has a longer time duration and is much easier to track. For

example, when the long-term sessions have a duration significantly longer than the

synchronization interval of a rate control scheme, the source rate could be adjusted

so that it can follow the shape of the available bandwidth contour. However, it is

neither possible nor necessary to follow the short term spurs, because they usually

vary much faster than the rate control scheme can handle.

5.2 HAA Source Rate Control

5.2.1 Overview of the HAA Source Rate Control Scheme

The main idea of HAA source rate control scheme is to have the source rate follow

the long term variation in the available bandwidth, and at the same time to adjust

it by means of a “penalty factor” which is derived from the short-term heterogeneity

(refer to Section 5.2.5). A finite-size feature extractor is used to collect statistical

information on those short term spurs, which is used in the source rate controller.

Figure 5.2 shows the general abstract architecture of the HAA source rate control

scheme which consists of four components: Available Resource Measurement, Feature

Extractor, Source Rate Allocator, and Source Rate Controller.

Figure 5.2: The abstract architecture of the HAA source rate control scheme.
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The Available Resource Measurement component is responsible for measuring

the available resources of interest, which include the available bottleneck bandwidth

(ABBW ) of a network path and available buffer size on each router. The proposed

scheme only measures ABBW . ABBW (t) refers to the minimum bandwidth of all

inter-router links at time t, i.e., ABBW (t) = minN
i=1{Bi(t)} where i is the link id

and Bi(t) is the available bandwidth of link i. Later in this dissertation, the notation

ABBWl will be used to represent ABBW measurement samples, where l is the sample

index.

The Feature Extractor extracts quantified heterogeneity information (features)

from the measurement samples of the available resources. Typical features are the first

order moment (mean), the second order moment (deviation), minimum, maximum,

and median of measurement samples for a certain time duration. Currently, only the

mean, deviation, minimum, and maximum are used in the proposed scheme.

The Source Rate Allocator is responsible for computing the appropriate source

rate for the corresponding communication session based on the extracted features,

and the Source Rate Controller is the one which actually controls the source rate.

Figure 5.3: Illustration of the proposed HAA communication model.

The schematic diagram of the proposed HAA source rate control communication

model is shown in Figure 5.3. The receiver is responsible for measuring the bottleneck
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bandwidth, and extracting the features from the bandwidth measurement samples.

It then periodically (by default one round-trip-time) sends control packets, which

contain the information on the allocated rate, to the sender. Upon receiving each

control packet, the sender tries to adapt the allocated source rate.

5.2.2 Bottleneck Bandwidth Measurement

The bottleneck bandwidth is measured with a packet pair [28][29][30] based ap-

proach in the current implementation. The source sends out data in the form of

back-to-back packets, and measurement of ABBW (t) is performed on the receiver

side. An up-link (from receiver to sender) carries control packets and a down-link

(from sender to receiver) transmits data. The latter has a much heavier load and

experiences higher heterogeneity than the former. As a result, the receiver side mea-

surement can get more accurate and timely information on the network load.

Figure 5.4 shows the transmission of packets along a network path. In order

to avoid errors due to lost or out of order packets, ABBW is measured only for

“valid packet pairs” received. A valid packet pair consists of two packets received

successively where the first packet with an even sequence number, 2l, is followed by

the other with the sequence number of 2l + 1.

ABBW measured by the lth valid packet pair (ABBWl) is

ABBWl =
1

T2l+1 − T2l

(5.1)
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Figure 5.4: Illustration of packet-pair based bandwidth measurement. The horizontal
dimension is time, and from top to bottom along the vertical dimension are the sender,
intermediate links, and the receiver. Numbers in small boxes are the packet sequence
numbers.

where T2l and T2l+1 are the receiving times of two packets received consecutively.

The time difference ∆Tl = T2l+1−T2l is dependent on the available bandwidth of the

bottleneck link.

5.2.3 Feature Extractor

The features that may be used in the proposed scheme include the mean (abbw),

standard deviation (σABBW ), minimum (ABBWmin), and maximum (ABBWmax) of

available bottleneck bandwidth measurement samples (ABBWl) within an interval,

as shown in Figure 5.5. All features are calculated over a sliding window of size

L (in terms of the number of packet pairs), which has a longer time duration than

the sampling interval. A feature extractor is designed to extract the features for

the measurement samples of the last L packet-pairs (from ABBWl−L+1 to ABBWl),

where L is the size of the feature extractor and l is the packet-pair index (or sample

index). The feature interval is defined to be the time interval over which the L packet

pairs are spread.
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Figure 5.5: Feature extractor.

In order to reduce the computing and storage complexity, two accumulators

(A1, A2) are employed for the sums of ABBWl and ABBW 2
l , and two other memory

variables (ABBWmax and ABBWmin) are used to record the maximum and minimum

values for the last L samples. The initialization code is executed immediately after

the first valid packet pair is received and the corresponding ABBW0 is obtained (reset

A1 and A2 to L × ABBW0 and L × ABBW 2
0 , respectively); the iteration code is to

calculate the sum of the last L ABBWl and ABBW 2
l after each valid packet pair l is

received; and the extraction code is performed at every control interval, which will

be described in Section 5.2.5. These codes are shown in Figure 5.6.

5.2.4 Simple Source Rate Allocation Approaches

Three simple source rate control schemes are described for comparison with the

proposed scheme (HAA):

Mean-Only Scheme: The source rate may be controlled to follow abbw, the

mean of measured ABBW . This scheme is easy to implement and the throughput is
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/*initialization code*/
A1 = L× ABBW0, A2 = L× ABBW 2

0

/*iteration code*/
A1 = A1 + ABBWl − ABBWl−L

A2 = A2 + ABBW 2
l − ABBW 2

l−L

/*extraction code*/
abbw = A1/L

σABBW =
√

1
L−1

A2 − L
L−1

abbw2

ABBWmax = max(ABBWj, l − L + 1 ≤ j ≤ l)
ABBWmin = min(ABBWj, l − L + 1 ≤ j ≤ l)

Figure 5.6: Initialization, iteration, and extraction codes for the feature extractor.

close to the bottleneck link’s capacity. However, it causes a high dropping rate and a

long end-to-end delay due to the limited packet buffer size.

Scaling Scheme: A scaling factor, α (0 < α < 1), may be employed to make

the system work under a lighter load, thus lowering the dropping rate and end-to-end

delay [29][30]. The main problem with this scheme is that it sacrifices throughput

unnecessarily when the variation of ABBW is small. For example, when α is chosen

to be 0.9, there will always be 10 percent of bandwidth being wasted, even if the

bandwidth variation is very small (or no variation). The situation is even worse when

the bandwidth variation is large and α is not small enough.

Minimum-Bandwidth Scheme: The source rate may be set to the ABBWmin

at each synchronization interval. However, this is an overly conservative scheme,

especially when the ABBW variation is large. For example, when there is a deep

valley (ABBWmin), in a feature interval as shown in Figure 5.5, there would be a

lot of bandwidth wasted, since in most of time the available bandwidth is above this

value.
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5.2.5 Heterogeneity Aware Approach

Synchronization

In order to alleviate the network load, control packets are sent to the sender

at every synchronization interval. The synchronization interval determines how

frequently control packets are sent to the sender, therefore, the shorter the synchro-

nization interval is, the faster the sender can adapt the source rate to the variation

of available bandwidth, although more of the up-link bandwidth will be consumed.

Usually, it should not be shorter than one round-trip time.

The synchronization interval in the proposed scheme is a function of time, Tsync(t),

which is set to be smaller when a larger long-term variation is detected, so that the

source rate can adapt to the actual ABBW faster. The effect of Tsync is discussed in

the next section.

HAA Source Rate Function

The main idea of the proposed scheme is to derive the desired source rate rs at

every synchronization interval, based on the set, EFk, of extracted features including

abbwk, σ̄ABBWk
, ABBWmin

k , ABBWmax
k . where k is the synchronization interval

index. A general form of HAA source rate function f(ABBWk, EFk, t) is shown in

Equation 5.2.

rs(k) = f(ABBWk, EFk, t) (5.2)
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An implementation of the source rate function is shown in Equation 5.3, which

can detect and utilize both long-term and short-term heterogeneity.

rs(k) =





max[ABBWmin
k , abbwk(1− βσ̄ABBWk

)] for σ̄ABBWk
≤ σ̄threshold;

ABBWk for σ̄ABBWk
> σ̄threshold;

(5.3)

where σ̄threshold is selected such that σ̄ABBWk
exceeds it when there is a clear large

scale edge (rising or falling) in ABBW . A significant transition is most likely due

to the release or injection of a long-term competing flow, and the magnitude of the

corresponding rise or fall in ABBW is assumed to be significantly larger than the

variation due to the short-term heterogeneity.

When σ̄ABBWk
is less than σ̄threshold, rs(k) is penalized by β× σ̄ABBWk

, but is set

no lower than ABBWmin
k . β is a penalty factor which controls how much the source

rate should be penalized for the heterogeneity. The rationale is that the source rate

gets a less penalty when σ̄ABBWk
(short-term heterogeneity) is small, and a larger

penalty when σ̄ABBWk
is large.

When σ̄ABBWk
becomes greater than σ̄threshold, i.e., a clear rising or falling edge,

rs(k) is set to the most recent ABBWk in order to obtain a more accurate estimation

of the long-term variation in the current implementation. Also, in order to get a

faster response, Tsync is made much smaller (thus faster) than the other operation

mode.

Due to the delay from the ABBW to abbw, the source rate is over-estimated on

the falling transitions and under-estimated on the rising transitions. Some more so-

phisticated predictive scheme could be developed to further improve the performance.
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Adaptive Penalty (β)

The main issue in the proposed HAA approach to source rate control is how

to select a proper value of the penalty factor (β). In many cases, the users specify

QoS requirements that their applications should meet. A typical specification of QoS

requirements is given below:

QoS requirements





Throughput : thr ≥ THRmin

End-to-End Delay : tee ≤ Teemax

Dropping Rate : dr ≤ DRmax

(5.4)

The means (averages) of throughput (THR), end-to-end delay (Tee), and drop-

ping rate (DR) are denoted by thr, tee, and dr, respectively. THRmin is the minimum

throughput requirement, and Teemax, and DRmax are the upper bounds of the end-

to-end delay, and dropping rate, respectively. These are all user-specified parameters,

and are given during the session admission control stage.
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Figure 5.7: QoS requirements and valid range of β.
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The proposed scheme determines the valid range of β so that all the QoS require-

ments can be met by adaptively adjusting β. This is based on the fact that each QoS

measure mentioned above is a monotonic function of β, and hence the upper/lower

bounds of β for each QoS measure QoSi can be found via a simple heuristic search.





Throughput : βthr ≤ βthr
max

End-to-End Delay : βtee ≥ βtee
min

Dropping Rate : βdr ≥ βdr
min

(5.5)

where βthr
max, βthr

min, and βdr
min are the upper/lower bounds of β that satisfy the re-

quirement of throughput, end-to-end delay, and dropping rate, respectively, as shown

in Figure 5.7.

And the valid range of β which satisfies all the QoS requirements is

max(βtee
min, β

dr
min) ≤ βvalid ≤ βthr

max (5.6)

If max(βtee
min, β

dr
min) > βthr

max, no β can be found to meet all the QoS requirements,

and the admission control thus rejects the flow.

A “Slowly-Decreasing-Fast-Increasing” (SDFI) scheme is proposed to adaptively

determine a near optimal β. It goes through a 3-stage cycle when a QoS requirement

violation is detected. Let ∆βslow denote the “slowly decreasing step” (0.1 by default),

∆βfast the “fast increasing step” (0.6 by default) of β, and β0 the initial value in the

cycle. To reduce the oscillation in the adaptation, a margin is introduced for each
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QoS measure (QoSmargin), and then the adjusted QoS measures are





THR′
min = THRmin + QoSthr

margin

Tee′max = Teemax −QoStee
margin

DR′
max = DRmax −QoSdr

margin

(5.7)

The margin for each QoS measure depends on the tolerance requirements of

applications. It is either provided by the user as a part of QoS requirements, or set

by the SDFI scheme via experiments. The adjusted QoS measures are “tighter” than

those given in the QoS specification, and are used during the Slowly Decreasing stage.

The complete pseudo-code of the SDFI scheme is shown in Figure 5.8.

while (true)
{

//Fixed stage
while (tee < Teemax && dr < DRmax && thr > THRmin);
//Fast Increase stage
β = β + ∆βfast;
//Slowly Decrease stage
while (tee < Tee′max && dr < DR′

max && β ≥ ∆βslow)
{

β = β −∆βslow;
}
β = β + ∆βslow;
if(thr < THR′

min) exit(); //can not meet all requirements
}

Figure 5.8: Pseudo-code of the proposed SDFI scheme.

(1) Fixed stage: the receiver keeps checking all the QoS measures, and β remains

unchanged until any of them violates the requirement.

(2) Fast Increasing stage: β is incremented by ∆βfast.
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(3) Slowly Decreasing stage: β is decremented by ∆βslow in each step until the

QoS measure exceeds QoS,
max. β is incremented by ∆βslow, i.e., it returns to the last

valid value.

The operation of the SDFI scheme is illustrated in the time domain in Figure

5.9.
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Figure 5.9: Operation of the SDFI scheme.
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Chapter 6

Performance of the Source Rate Control Scheme

6.1 Simulation Setup

An extensive simulation has been carried out using a widely-used network simu-

lator (ns2 [44]). The performance of a single HAA flow is first studied. The packet

size in all the results in this chapter is 1000 bytes. The size of buffer on each router is

set to be 20 packets by default, and the queuing scheme is the drop-tail round-robin.

The default length (L) of the feature extractor is 15 samples. The default synchro-

nization interval is set to be one round-trip-time, except when a significant transition

in ABBW is detected.

Topology

S

Source Node

RnNn1 n2

Sink  Node

5M, 3ms B , 10ms1 5M, 3msB , 10msNB , 10ms2

nN-1

B , 10msN-1

Figure 6.1: Simulation testbench topology for a single path.

The topology of a single path employed in the simulation is shown in Figure 6.1.

The link capacity and propagation delay for local connection links (thick lines) are

5Mbps and 3ms, respectively. For each inter-router link i, the propagation delay is

10ms and the available bandwidth Bi(t) is a random variable whose the upper limit
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is 5Mbps.

Queue Management

A round-robin like queue management is assumed for the network routers in the

simulation since it offers several advantages over the first-in-first-out (FIFO) packet

schedulers for bursty data traffic. In particular, the round-robin queue management

automatically enforces a min-max fair allocation of resources [45], and ensures that

the “well-behaving” users are protected from the “ill-behaving” ones, which is desir-

able in public data networks [30][46].

Traffic Generation

Instead of directly simulating the background traffic, the available bandwidth on

each link is changed dynamically in the simulation script. This approach enables easy

control of the link bandwidth to simulate the heterogeneity under different scenarios,

and also saves simulation time.

The varying bandwidth is simulated in two dimensions: magnitude and time.

The magnitude variation on a link is independent of those on others and follows a

certain distribution. Several different distributions have been tried, including the

uniform distribution and truncated normal distribution, which all lead to similar

results. Therefore, all simulation results provided in this section assume a uniform

distribution. The magnitude of bandwidth on link i follows a uniform distribution

with the mean of bi and normalized standard deviation of σ̄Bi
. In the time dimension,

each random magnitude of bandwidth remains unchanged over a random interval

(Tinterval) which follows an exponential distribution with a mean of tinterval.
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6.2 Single Flow

6.2.1 Adaptation to Long-Term Bandwidth Variation
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Figure 6.2: Comparison of three source rate control schemes on a path of an inter-
router link whose available bandwidth (ABBW ) varies with time. The penalty factor
(β) is set to be 0.7 for HAA.

Figure 6.2 shows how the three different source rate control schemes adapt the

source rate to the available bottleneck bandwidth (ABBW ). ABBW is generated

by a “slow” square wave (with a period of 5 seconds and a magnitude of 1 to 3Mbps)

plus a high-frequency variation. The average interval of the high-frequency component

is 50ms and the magnitude is no greater than 500Kbps. It is shown that all three

schemes can follow ABBW on a large time scale, but the minimum-bandwidth scheme

is too conservative to utilize the available bandwidth efficiently, and the mean-only

scheme is too greedy, as the allocated bandwidth is higher than ABBW for about half

of the period, and thus leads to a large dropping rate. The proposed scheme (HAA)

tends to adopt a rate between those by the mean-only and minimum-bandwidth
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schemes in an effort to optimize the performance such as throughput and dropping

rate.

6.2.2 Feature Extractor Size and Average Bandwidth Updating Interval
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Figure 6.3: Effects of feature extractor size (L) and tinterval. N=4, σ̄Bi
=0.17 for all 4

links.

In Figure 6.3, effects of the feature extractor size (L) and average bandwidth

updating period (tinterval) on the dropping rate and end-to-end delay are analyzed.

Comparing β = 0 and β > 0 (HAA), it is seen that the improvement by HAA is

more significant when the bandwidth varies more rapidly (tinterval=0.5, dashed lines

in the figure). Also, the results indicate that the feature extractor size L should not

be too small. The performance (in terms of the dropping rate and end-to-end delay)

for L=15 or 30 is better than that for L=5, while the improvement by L=30 over

L=15 is not very large, therefore, L=15 is used in most cases of the simulation.
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6.2.3 HAA Compared with Packet Spacing Protocol (PSP)

HAA essentially uses a packet spacing approach to adjust the source rate at

the sender. It is compared with the Packet Spacing Protocol (PSP) [41][42], which

is another packet spacing based rate control scheme. The comparison results are

provided in Figure 6.4.

The penalty factor β is set to 0 in this simulation, i.e., non-adaptive and with no

heterogeneity penalty. It can be seen that the source rate variation of the proposed

scheme is much smaller than that of PSP (Figure 6.4-(a)). The effective throughput

(Figure 6.4-(b)) of HAA is about 25% better than that of PSP, and the improvement

becomes even larger when the heterogeneity (σ̄B) increases. The dropping rate is also

decreased significantly, especially when σ̄B is small, from 0.004 to almost 0. The only

measure that is worse for the proposed scheme than for PSP is the end-to-end delay.

However, it should be noted that PSP drops more packets which are not counted

toward the end-to-end delay, and HAA achieves a significantly higher throughput.

6.2.4 HAA versus Mean-Only and Minimum-Bandwidth Schemes

In Figure 6.5, the effect of β on the performance of HAA is analyzed and HAA is

also compared with two other fixed rate control schemes (mean-only and minimum-

bandwidth) under two different bandwidth varying scenarios: tinterval = 0.05s (fast)

and tinterval = 0.5s (slow).

In each scenario, three sets of results are obtained for three different levels of

heterogeneity (σ̄Bi
= 0.06, 0.17, and 0.29, respectively) with β varied. The results for
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Figure 6.4: Comparison of HAA (β = 0) with PSP.

HAA are shown in the solid curves and the corresponding results for the minimum-

bandwidth scheme in the dotted curves. Note that the results for the mean-only

scheme correspond to the y-intercepts of the solid curves (β=0).

It can be seen that, there is a trade-off between the throughput and end-to-end

delay/dropping rate. As β increases, the end-to-end delay and dropping rate decrease,

but the effective throughput also decreases. It is the adaptive algorithm’s task to find

a proper value of β (refer to Section 5.2.5). Also, the effect of β becomes more

significant for higher heterogeneity (σ̄Bi
=0.29, open circles in the figures), especially

for the dropping rate and throughput.
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Figure 6.5: N = 4, each link’s bottom link bandwidth (Bi(t)) follows a uniform
distribution, with deviation σ̄Bi

. “(min)” in the legend stands for the ”minimum-
bandwidth” scheme.

By utilizing the information on heterogeneity, the end-to-end delay (Figure 6.5-

(a) and (b)) and the dropping rate (Figure 6.5-(c) and (d)) can be reduced signifi-

cantly compared to the mean-only scheme (when β=0). The end-to-end delay and
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dropping rate in the case of a more rapidly varying bandwidth (tinterval=0.05 in Figure

6.5-(a), (c), and (e)) decrease even faster when the penalty factor (β) is increased,

compared to the case of a slowly varying bandwidth (tinterval=0.5 in Figure 6.5-(b),

(d), and (f )). However, the throughput also drops more for a more rapidly varying

bandwidth. This is because when tinterval is large (slowly varying bandwidth) and the

extractor size (L) remains the same, the measured bandwidth deviation (σ̄B) would

be less than the steady state (theoretical) deviation which is defined for a very long

time duration, therefore, the throughput is degraded less.

And as expected, the minimum-bandwidth scheme matches HAA when β is close

to 1.5. The reason is that when the bandwidth variation follows a uniform distribu-

tion, the minimum value of the distribution is around mean−dev∗√3, and
√

3 ≈ 1.7.

Nevertheless, there is still a room for performance optimization. For example, when β

is set to 1.0 for tinterval=0.05, performance of HAA is similar to that of the minimum-

bandwidth scheme in terms of the end-to-end delay and dropping rate, although its

throughput is significantly (at least 10%) higher than that of the minimum-bandwidth

scheme.

It can also be seen that all the performance measures vary monotonically with

β. Therefore, with the adaptive rate control scheme one could start from a conserva-

tive value of β, such as 2.0, which is slightly more conservative than the minimum-

bandwidth scheme, and decrease β by a step size of ∆β, until any of the requirements

is violated (refer to Section 5.2.5).
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6.2.5 Effects of Spatial Heterogeneity

The effects of different spatial distributions of mean bandwidth (bi) on each link

i are studied and the results are shown in Figure 6.6. Four different scenarios are

simulated on a path consisting of 1 to 9 links.

• scenario “one bottleneck”: bi is set to 2Mbps for the middle link and to 5Mbps

for all the other links.

• scenario “increasing bi”: bi linearly increases along the path from 2Mbps to

5Mbps (set to 2Mbps if there is only one link).

• scenario “decreasing bi”: bi linearly decreases along the path from 5Mbps to

2Mbps (set to 2Mbps if there is only one link).

• scenario “uniform bi”: bi is set to 2Mbps for all links.
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Figure 6.6: Effects of path length. All σ̄Bi
are set to 0.17.

Figure 6.6 shows that, the “uniform bi” scenario has the worst performance in

terms of throughput, because it does not have a fixed bottleneck, i.e., every link has
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the opportunity to be the bottleneck. According to the previous results (Equation

4.2) on effective bandwidth of a network path consisting of links with identical mean

bandwidth, and the fact that the throughput can be no more than the effective

bandwidth (beffective) of the path, the throughput decreases when increasing the path

length.

In the “one bottleneck” scenario, the throughput is almost independent of the

path length. This is because the network path has only one bottleneck in a fixed

position. All the other links’ bandwidths are much larger than the bottleneck band-

width in the first scenario, therefore, the range of the bandwidth variation of other

links (from 3.5 to 6.5 Mbps ) does not overlap with that of bottleneck link (from 1.4

to 2.6Mbps).

The “increasing bi” and “decreasing bi” scenarios fall between the two scenarios

discussed earlier. It can be seen that, the throughput of the “increasing bi” scenario

is less and decreases more than that of the “decreasing bi” scenario. This is because,

when the links closer to the source node are slower, the faster links which are closer

to the receiver node will be under-utilized. This effect becomes more significant when

the path length increases.

Figure 6.7 shows how different spatial distributions of temporal heterogeneity

along the path affect the performance of the proposed scheme. Three different sce-

narios are simulated for a path of four links. Note that the average of σ̄Bi
along

the path is the same in all cases. The first scenario (cross marks) has the smallest

spatial heterogeneity in terms of link bandwidth variation (0.18 0.18 0.18 0.18) along

the path, and the third scenario (circle marks) has the largest (0.0 0.12 0.24 0.36).

It can be seen that the scenario with the largest spatial heterogeneity leads to the
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worst performance, with the lowest throughput and the largest dropping rate and

end-to-end delay.

0 0.5 1 1.5
60

70

80

90

100

110

120

130

β

E
nd

−
to

−
E

nd
 D

el
ay

 (
m

s)
σ̄ Bi

=0.18 0.18 0.18 0.18

σ̄ Bi
=0.06 0.06 0.30 0.30

σ̄ Bi
=0.00 0.12 0.24 0.36

0 0.5 1 1.5
75

80

85

90

95

100

105

110

β

E
nd

−
to

−
E

nd
 D

el
ay

 (
m

s)

σ̄ Bi
=0.18 0.18 0.18 0.18

σ̄ Bi
=0.06 0.06 0.30 0.30

σ̄ Bi
=0.00 0.12 0.24 0.36

(a) end-to-end delay, tinterval = 0.05 (b) end-to-end delay, tinterval = 0.5

0 0.5 1 1.5
0

1

2

3

4

5

β

D
ro

pp
in

g 
R

at
e 

(%
)

σ̄ Bi
=0.18 0.18 0.18 0.18

σ̄ Bi
=0.06 0.06 0.30 0.30

σ̄ Bi
=0.00 0.12 0.24 0.36

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

β

D
ro

pp
in

g 
R

at
e 

(%
)

σ̄ Bi
=0.18 0.18 0.18 0.18

σ̄ Bi
=0.06 0.06 0.30 0.30

σ̄ Bi
=0.00 0.12 0.24 0.36

(c) Dropping Rate, tinterval = 0.05 (d) Dropping Rate, tinterval = 0.5

0 0.5 1 1.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

6

β

T
hr

ou
gp

ut
 (

bp
s)

σ̄ Bi
=0.18 0.18 0.18 0.18

σ̄ Bi
=0.06 0.06 0.30 0.30

σ̄ Bi
=0.00 0.12 0.24 0.36

0 0.5 1 1.5
1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

6

β

T
hr

ou
gp

ut
 (

bp
s)

σ̄ Bi
=0.18 0.18 0.18 0.18

σ̄ Bi
=0.06 0.06 0.30 0.30

σ̄ Bi
=0.00 0.12 0.24 0.36

(e) Throughput, tinterval = 0.05 (f) Throughput, tinterval = 0.5

Figure 6.7: N = 4, heterogeneous links, all links have the same mean
ABBWi=2Mbps. Distributions of σ̄Bi

are as shown in the legends.
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6.2.6 Packet Inter-arrival Time

The packet inter-arrival time (∆T ) is an important performance measure for

a real-time media (video or audio) streaming application. A large variation of ∆T

usually indicates a notable discontinuity or jitter on the receiver side. To provide a

stable stream, ∆T should be as even as possible (assuming a fixed packet size). The

histograms of ∆T for TCP and HAA flows are shown in Figure 6.8. It can be seen

that ∆T has a much sharper histogram (i.e., a smaller variation of ∆) and a smaller

mean (i.e., a higher average rate) for HAA than TCP. Also, note that there are some

components located at much larger values than the main components (around 40ms

for 4 links and 240ms for 12 links) in the TCP histograms. This is due to the bursty

nature of TCP traffic.

Figure 6.9 provides a qualitative comparison of TCP and HAA in the normalized

deviation of ∆T (σ̄∆T ), and it shows that σ̄∆T of HAA is much smaller and less

sensitive to (almost independent of) the path length than that of TCP.

6.2.7 Adaptive Penalty

Figure 6.10 shows how the proposed adaptive scheme behaves when the upper-

bound of end-to-end delay (Teemax) is set to a specific value (0.07 seconds in this

example). It is seen that β decreases from a conservative initial value of 1.9 until the

QoS requirement for the end-to-end delay is violated (at around 25 seconds), and β

converges to around 1.0, with the end-to-end delay close to 0.07.
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6.2.8 Path Selection

Because the source rate (rs), which is calculated on the receiver (refer to Equation

5.3), should be almost the same as the effective throughput of the network path

when the dropping rate is very low, the solution to the path selection problem is

straightforward.

An example network scenario consisting of 3 paths is shown in Figure 6.11. Note

that both path 1 and path 2 have only one bottleneck link, while path 3 has two

bottleneck links. However, the bottleneck bandwidth variation of path 3 is less than

that of paths 1 and 2. Set the penalty factor (β) to 1.0 for all 3 paths so that the

dropping rate is very low. The simulation results are shown in Figure 6.12.

It can be seen that even though path 3 has the lowest average bottleneck band-

width (abbw) and the longest path length, it produces the highest effective through-

put. This result reveals that abbw should not be the only measure used in the path

selection problem, and that information on the bandwidth variation (σ̄ABBW ) has to

be considered. As can be seen in Figure 6.12, the source rate rs matches the effective
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Figure 6.11: A parallel path where the number of links varies with path. The number
pair in brackets over each link represents bi and σ̄Bi

of the link.
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Figure 6.12: Throughput and End-to-End Delay when the penalty factor (β) is set
to 1.0.

throughput quite well, therefore, it could be used as a good estimate of throughput

when selecting the best path.

6.2.9 Multi-Path Media Streaming

The application of multi-path media streaming with inter-path synchronization

is considered. The topology of the multi-sender (mirror) parallel data transmission

system used in the simulation is shown in Figure 6.13, which is based on the framework

developed in [47]. If all paths are synchronized “perfectly” and all connections are
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reliable, there will be no media packet missed or transmitted more than once. Note

that due to heterogeneity, this perfect synchronization can never be achieved in a

real network. In addition to the performance measures discussed in the previous

sections (throughput, dropping rate, end-to-end delay), which are defined on the

lower network layers, it is necessary to consider performance measures related to the

degree of mis-synchronization on the application layer, missing rate and duplicate

rate.

The missing rate is defined to be the ratio of “blank segments” to the whole length

of the streams received. These blank segments are caused by both mis-synchronization

on the application layer and packet dropping on the lower network layers. The du-

plicate rate is defined to be the ratio of duplicated (those received more than once)

segments to the whole length of the stream received. Both are application-level mea-

sures and are calculated on the receiver side. To simplify the simulation, the segment

size is set to be the same as the packet size.
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Figure 6.13: Simulation testbench topology for multi-path media streaming.

Simulation Results

Figures 6.14 and 6.15 show the simulation results for media streaming over a

network with 2 parallel paths, each with 4 inter-router links. All links have the same
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average available bandwidth (b=2Mbps) and the links on path i have the deviation

σ̄Bi
for i = 1, 2. It is seen that a higher source rate is allocated to path 1 which has a

lower temporal heterogeneity (σ̄B1=0.06), although the average available bandwidth

is the same on both paths, as shown in Figure 6.14-(a) and (b).

0 0.5 1 1.5
150

200

250

300

350

400

450

β

T
hr

ou
gh

pu
t (

pp
s)

Path 1
Path 2
Aggregated

0 0.5 1 1.5
100

150

200

250

300

350

400

450

β

T
hr

ou
gh

pu
t (

pp
s)

Path 1
Path 2
Aggregated

(a) σ̄B1 = 0.06, σ̄B2 = 0.17 (b) σ̄B1 = 0.06, σ̄B2 = 0.29

Figure 6.14: 2 paths, each with 4 links, and all links have the same bi=2Mbps, but
different deviation σ̄Bi
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Figure 6.15: Application level measures for the scenario in Figure 6.14.

From Figure 6.15, it is interesting to see that both the missing and duplicate

rates decrease significantly. When the penalty factor (β) increases from 0 to 1.5, the
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percentage reduction is up to 70% in the duplicate rate and 80% in the missing rate,

while the throughput only decreases by 11% for the case of lower spatial heterogeneity

(σ̄B1 = 0.05, σ̄B2 = 0.17) and 18% for the case of higher spatial heterogeneity (σ̄B1 =

0.05, σ̄B2 = 0.29) (Figure 6.14-(a) and (b)). This implies that the real-time QoS

(missing and duplicate rates) can be improved without significantly degrading the

effective throughput.
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Figure 6.16: Adaptive rate control on a multi-path network.

Figure 6.16 shows how the proposed adaptive scheme works on a two-path net-

work when the upper-bound of end-to-end delay (Teemax) is set to 0.07 seconds. Note

that β on each path varies independently and converges to a different value (about

0.3 on path 1 and about 1.0 on path 2). That is, it is shown that the proposed scheme

is also able to handle this type of multi-path communication.

Performance Comparison with TCP

The proposed HAA scheme is compared with TCP on a 2-path network with

each path consisting of 4 links. The results are shown in Figure 6.17. As expected,

the aggregated throughput for HAA is much higher than that for TCP. However, the
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Figure 6.17: Comparison with TCP implementation for 2 paths, each consisting of 4
links.

end-to-end delay is also larger than that for TCP because more packets tend to be

buffered under a higher transmission rate. By adjusting the penalty factor to 1.0,

the End-to-End delay could be reduced significantly and the throughput can still be

maintained at a much higher value than that by TCP.

Figure 6.18 compares HAA and TCP when the penalty factor (β) is fixed to 1.0.

Two network paths are employed and the length of each path varies from 2 to 12.

Note that the throughput achieved by TCP drops dramatically (more than 75%) as
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Figure 6.18: Comparison with TCP implementation (2 paths, β is fixed to 1.0).

the path length increases up to 12 links, but that by HAA only decreases by less than

15%.

Dependency of the missing and duplicate rates of HAA on the path length is

shown in Figure 6.19. Both rates increase slightly when the network paths become

longer, but are still at a reasonable level; the duplicate rate is around 2.3% and the

missing rate is a little larger than 1.0% when the path length is 12.
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Figure 6.19: Application level measures (2 paths, β is fixed to 1.0).

6.3 Multiple Flows

All the results discussed above assume that the variation of the available bot-

tleneck bandwidth (ABBW ) is independent of the HAA source rate control, i.e., the

introduction of HAA flows does not affect other background traffic. However, this

may not be the case in real networks. Here, each flow is a part of background traffic

of other flows and the dynamics of its source rate control can change the available

bandwidth and behavior of other flows and, in turn, change its own available band-

width.

In this section, multiple flows sharing a network path with varying bandwidth

are studied. Figure 6.20 illustrates Nf flows sharing a network path consisting of

N links. Each flow fi is connected by a separate pair of sender (Si) and receiver

(Ri). Assuming that there is no coordination among the flows, i.e., the source rate

of each flow is controlled independently by its sender and receiver pair. The queue

management in this study adopts a basic “Drop-Tail-Round-Robin” scheme to ensure

that all flows on the path have the same level of priority.
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Figure 6.20: Topology of the testing network: multiple flows sharing a network path.

As a comparison reference, the bandwidth utilization of multiple TCP flows

is first analyzed. Next, the performance of multiple HAA flows (with continuous

and periodical On-Off traffic) in terms of aggregated throughput, average end-to-end

delay, dropping rate, and fairness is investigated and compared with that of multiple

TCP flows. Finally, TCP friendliness is verified to see if HAA flows can friendly share

the network bandwidth with TCP flows.

6.3.1 Multiple TCP Flows

The aggregated throughput of multiple TCP flows is first investigated. According

to the approximation model of TCP throughput from [48]

TH1TCP (p) = min(
Wmax

RTT
,

1

RTT
√

2bp
3

+ T0min(1, 3
√

3bp
8

)p(1 + 32p2)
) (6.1)

where Wmax is the maximum window size, RTT is the round-trip time, T0 is the

timeout value, b is the number of packets of transmitted data that are acknowledged

by one ACK from the receiver, and p is the loss ratio. It is not difficult to see that a
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single TCP flow throughput is no more than

TH1TCP ≤ Wmax

RTT
(6.2)

And when there are Nf TCP flows, the aggregated throughput has an upper-bound

of

THNTCP ≤
Nf∑

i=1

Wmaxi

RTTi

(6.3)

From Equation 6.3, it can be seen that, when the maximum window size and Nf are

fixed, a longer path length results in a larger RTT , and subsequently decreases the

maximum possible throughput. This is verified by the simulation, and the results are

shown in Figure 6.21. Both the measured (solid curves) and the estimated maximum

utilization (dotted curves) are plotted, which are defined to be

Measured Utilization =
THNTCP

C
(6.4)

Estimated Maximum Utilization = min(1,
Nf ∗Wmax

C ∗RTT
) (6.5)

where C is the capacity of the bottleneck link and it is set to 2Mbps in this simulation.

It can be seen from Figure 6.21 that the utilization becomes higher as more

TCP flows are introduced, especially when the path is short. For example, on a path

consisting of less than 9 links with no variation in ABBW , four TCP flows can achieve

almost 100% utilization in the given scenario (Figure 6.21-(e)). However, as analyzed

earlier, the bandwidth utilization drops significantly as the path length (number of

links) increases, and it reduces even more when there is a larger available bandwidth

variation (σ̄B).
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Figure 6.21: Aggregated bandwidth utilization of multiple TCP flows. Wmax=15.
(note that some measured utilization curves overlap the estimated max ones)

To further illustrate how TCP bandwidth utilization is affected by the number

of flows and path length, the trace plots of packet arrival times for multiple (Nf=1,2,

and 4) TCP flows are provided in Figure 6.22. The simulation is conducted on a

network path consisting of two different numbers of links (N=4 links, and N=12

links). The result shows how the effective aggregated throughput varies as the path

length increases. The FlowID (from 1 to Nf ) of each packet is plotted as a function of

time, and each mark indicates a packet arrival event for the corresponding FlowID.

The duration of each transition on FlowID represents the time when no packet is

being received, i.e., the idle time of the shared path.

It can be easily seen that multiple TCP flows are received by the receiver in a

bursty and multiplexed manner. When there is only one TCP flow, the “duty cycle”

is about 60% for a short path consisting of 4 links.

A larger number of flows increases the “duty cycle” significantly, for example,

four TCP flows can achieve an almost full utilization on the 4-link path. However, it

can also be clearly seen that the duty cycle (hence bandwidth utilization) shrinks as
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Figure 6.22: Arrival time of multi-flow TCP packets.

the path length increases. For example, when there is only one TCP flow, the duty

cycle is only less than 20% on a 12-link path.

98



6.3.2 Multiple HAA Flows

6.3.2.1 Overall Performance
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Figure 6.23: Multiple HAA flows sharing a network path consisting of 4 links, all
links have the same bi=2Mbps and σ̄Bi

=0.17.

Figure 6.23 shows the simulation results of Nf HAA flows sharing a varying avail-

able bandwidth on a network path consisting of 4 links. Each flow is sent continuously

by the allocated source rate. It can be seen from Figure 6.23 that as the total number

of HAA flows (Nf ) increases, the aggregated throughput does not change very much
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(when β is fixed). This result shows that multiple HAA flows can still maintain the

overall bandwidth utilization at almost the same level as that for a single HAA flow.

It should also be noted that, when introducing more flows, the dropping rate

increases due to the interaction among multiple HAA flows and the limited buffer

space available. By adjusting the penalty factor (β) to a larger value, the dropping

rate can be reduced significantly. For example, when β is set to 1.5, the dropping

rate is reduced to about 1.1%, but the aggregated throughput is degraded by no more

than 12%.
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Figure 6.24: Aggregated bandwidth utilization of multiple HAA flows.

Figure 6.24 shows the dependency of the bandwidth utilization by multiple HAA

flows on the path length and the number of flows. When there is no variation in

ABBW (σ̄Bi
=0.00), multiple HAA flows can achieve almost 100% utilization and

the utilization is almost independent of the path length. In the case with a larger

bandwidth variation (σ̄Bi
=0.29), the utilization decreases as the path length increases,

but the effect of path length is much less significant than that in TCP. The comparison

result will be shown in Section 6.3.3.
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6.3.2.2 Dynamic Performance

To see if the HAA source rate control scheme produces any “exclusive flow”

which permanently uses up all available bandwidth and refuses the injection of other

flows, a scenario with On-Off flow patterns (“scenario On-Off”) is designed. Instead

of continuously sending out packets (“scenario Continuous”), each flow is toggled with

a period of Tswitch seconds. The duty cycle is set to be
2Nf−1

2Nf
, i.e., in each period, the

flow is turned off for Toff = Tswitch

2Nf
seconds, and turned back on for Ton =

Tswitch(2Nf−1)

2Nf

seconds. The switching time of each flow is evenly spaced out by Tswitch/Nf so that

at any time there is at least one flow active (unless Nf=1). A case with two On-Off

flows is illustrated in Figure 6.25.
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Figure 6.25: Two On-Off flows with Tswitch=6.

When Nf > 1, the ideal aggregated throughput should be close to that in the

scenario Continuous, because every time one flow is turned off, other active (enabled)

flows are supposed to take over the bandwidth released by the closed flow.

Multiple On-Off flows are considered on a shared path consisting of 4 links in

order to study the effects of bandwidth heterogeneity on the aggregated throughput.
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Figure 6.26: Dynamic performance of multiple On-Off flows. N=4, bi=2Mbps for all
links, and β=1.0 for all flows.

The aggregated throughputs of 2 and 4 On-Off HAA flows are compared to the

throughput of a single continuous flow for the same background traffic setup, and the

results are shown in Figure 6.26-(a). It can be seen that the aggregated throughput

of the scenario On-Off is close to the throughput of the scenario Continuous and even

slightly better when there is a higher bandwidth heterogeneity (σ̄Bi
> 0.1). This

indicates that the active flows can, in a timely manner, take over the bandwidth

released by the inactive flows. The normalized standard deviation of throughput

among HAA flows in the scenario On-Off is plotted as an index of fairness in Figure

6.26-(b). It is seen that the throughput variation among the flows is very small (less

than 2 percent), which means that there is no “irresponsible” flow.
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6.3.3 Comparison with Multiple TCP Flows

6.3.3.1 Aggregated Bandwidth Utilization

The aggregated bandwidth utilization of multiple HAA flows is compared with

that of multiple TCP flows. The improvement in bandwidth utilization is defined to

be

Improvement (%) =
UtHAA − UtTCP

UtTCP

(6.6)

where UtHAA and UtTCP are the bandwidth utilizations of Nf HAA flows and Nf

TCP flows, respectively. The penalty factor (β) of HAA flows is set to 1.0, and the

maximum window size (Wmax) of TCP is set to 15. The results are shown in Figure

6.27.
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Figure 6.27: Improvement in aggregated bandwidth utilization.
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The improvement in utilization becomes larger when the path length increases.

Also, the improvement is more significant when network links have a smaller band-

width variation (σ̄Bi
=0.00). However, the improvement becomes smaller as the num-

ber of flows increases. For example, on the path of 4 links, the improvement by HAA

over TCP is above 40% when there is only 1 flow, but there is almost no improvement

when there are 4 flows.

6.3.3.2 Inter-flow Fairness
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Figure 6.28: Fairness comparison with TCP.

Figure 6.28 compares throughput variation σ̄thri
, an index of inter-flow fairness,

among multiple flows in both homogeneous (σ̄Bi
=0.0) and heterogeneous (σ̄Bi

=0.29)

cases. It can be seen that in both cases the throughput variation among HAA flows

is much smaller than that among TCP flows, i.e., the inter-flow fairness of HAA is

better. Also, σ̄thri
is heavily dependent on the path length (or round-trip time) for

TCP, but it is almost independent of the path length for HAA.
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Figure 6.29: Multiple HAA and TCP flows.

6.3.4 TCP Friendliness

Figure 6.29 shows the simulation results for multiple HAA flows sharing the

available bandwidth with TCP flows on a network path of 4 links. In Figure 6.29-(a),

(b) and (c), three sets of aggregated throughput are compared: (1) m HAA flows and

m TCP flows (2) 2m HAA flows, and (3) 2m TCP flows, where m=1, 2 or 4. It can

be seen that the throughput achieved by one TCP flow and one HAA flow together

is slightly lower than that by two TCP flows when β is large (greater than 0.4), and
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is quite close to that by two HAA flows. However, when the number of flows is larger

(4 or 8 flows), the mixed flow (HAA and TCP) achieves the highest throughput.

To prevent HAA flows from aggressively taking too large a share of the available

bandwidth, β needs to be properly adjusted. Figure 6.29-(d) shows how to ensure

that TCP flows get a “fairer” share by adjusting β. It can be seen that setting β to 1

usually achieves a fairly good bandwidth sharing between TCP and HAA flows, with

a throughput ratio of between 1.0 and 1.5.
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Chapter 7

Conclusion and Future Work

In this dissertation, two types of heterogeneity are defined for heterogeneous com-

puting and communication systems. Temporal heterogeneity (TH) refers to variation

in computing power or communication bandwidth available for a task along the time

dimension on an individual computer or channel, while spatial heterogeneity (SH)

refers to variation of the available computing power or communication bandwidth

among computers.

Effects of TH and SH on computing and communication systems are first an-

alyzed to show the possibility of improving the task performance by taking the het-

erogeneity information into account. In addition to the first order moment (mean),

the second order moment (deviation) of resources availability is quantified and explic-

itly utilized to improve performance of computing and communication tasks in the

heterogeneity aware approaches (HAA).

7.1 Computing Systems

The effects of heterogeneity are first studied in terms of average parallel execution

time and standard deviation of parallel execution time on heterogeneous computing

systems (Chapter 2). The results revealed that both TH and SH in computing power

can have a significant effect on the parallel computing performance. To achieve the

minimum τ on a spatially heterogeneous computing system, it is not optimal to
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distribute a target task linearly proportional to the average computing powers of

computers.

If the computational load is perfectly balanced among computers in terms of the

average computing power available, τ significantly increases as one or both types of

heterogeneity (TH and SH) increase, while the average sequential execution time on

a single computer is not affected by TH. As SH increases, τ increases more when the

average TH (among computers) increases than when it remains fixed. As the number

of computers employed for a target task increases, τ decreases initially and then may

increase especially when SH increases fast. More frequent synchronization amplifies

effects of heterogeneity and degrades performance of a target task more for a higher

TH and/or SH. Performance degradation due to heterogeneity becomes even larger

when the interval is longer (coarser granularity). The risk factor and variation of

parallel execution time is quickly reduced as the fraction of a target task assigned to

computers with smaller TH increases.

A two-step heuristic approach to partitioning a target task for minimizing its

average parallel execution time (τ) is described with a theoretical model (Chapter 3).

The proposed approach achieves a shorter τ by assigning a fraction of target task,

which is larger than the fraction determined proportional to the average computing

power, to a computer with a smaller TH or a higher average computing power.

The reduction in τ by the proposed approach is greater when (i) variation of the

average computing power among computers is larger; (ii) variation of the standard

deviation of computing power among computers is larger; or (iii) the number of

computers employed is greater.
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7.2 Communication Systems

The effects of TH on the QoS’s such as throughput, end-to-end delay, and transfer

time on a heterogeneous network are studied in Chapter 4. The effects become even

larger when there also exists SH among links or paths. For the two applications,

path selection and multi-path data transfer, it has been demonstrated that significant

improvements in the end-to-end delay and transfer time are possible by considering

the standard deviation as well as the mean of available bandwidth on each link.

A heterogeneity aware approach (HAA) to improving performance of commu-

nication tasks by utilizing the information on variation of available communication

resources is proposed (Chapter 5). The proposed HAA source rate control scheme

dynamically controls the source rate such that the rate is “penalized” more for a

higher level of heterogeneity.

The performance of HAA source rate control has been analyzed in detail through

simulation, and results may be summarized as follows:

• HAA can significantly increase the effective throughput and decrease the packet

dropping rate, compared to the typical network measurement based approaches

(the mean-only and minimum-bandwidth schemes) which do not utilize the

heterogeneity information.

• Compared to TCP, the bandwidth utilization of HAA is much less sensitive to

the path length (or round-trip time), and the aggregated throughput is even

better than that of TCP when the path length is long. The inter-flow fairness

of HAA is shown to be better. Also, HAA has a much less variation in inter-

packet arrival time, i.e., it can produce a much more stable stream with less

109



jitter than TCP. This is especially desirable in jitter-sensitive media streaming

applications.

• The results from the multi-path media streaming application show that HAA

can improve the real-time performance measures (missing and duplicate rates)

without degrading the effective throughput substantially.

• It has been verified that the proposed scheme can be properly tuned to achieve

fair sharing of bandwidth with other flows (HAA or TCP) on a network path

and produce “responsible” traffic.

The proposed HAA source rate control scheme is very promising in various ap-

plications, especially where the real-time QoS’s are concerned. By quantifying TH

and SH in communication resources, it can produce a more comprehensive picture of

resource variation and distribution, and provide a direct control of data transmission

in a more predictable manner.

7.3 Future Work

Further improvements can be made for each component in the proposed schemes.

For example, 1) more sophisticated resource measurement techniques can be designed

to improve the accuracy of measurements; 2) the features (heterogeneity) of other

network resources such as the packet buffer size can be utilized to further improve the

performance; 3) the source rate function can be customized for different applications

or services.

Also, applications to the following areas well deserve investigation:
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7.3.1 Data-Intensive Computing Systems

So far, the HAA has been considered in computing and communication indi-

vidually. However, in many applications, such as data-intensive high performance

computing, both computing and communication are to be considered. It would be

worthwhile to investigate interaction between them in application of the HAA to such

tasks.

7.3.2 Application to Overlay Networks

Overlay networks have received a great deal of attention recently, and it can pro-

vide another framework for applying HAA without worrying about technical details

on lower layers of the network (physical, data link layers, etc.) Resilient Overlay

Network (RON) [49][50], Multicast Backbone (M-Bone)[51], and X-Bone [17][18][19]

are three well-known overlay frameworks. Specifically, HAA can be applied to the

path selection and dynamic routing problems of an overlay network.
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