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Abstract

Since the chemicals, includir§jsphenol A(BPA), Bis(2-ethylhexyl) phthalateQdEHP),
have been reported for potential carcinogens separately and genistetomdgrauersial
chemopreventive isoflavone, animal expesimhwas designed and conducted for solving the
following questions ointerest i) Can the compounds like BPA, DEHP and their combinations
acceleratéhe carcinogenic process?lii)yes, which one has significant stronger effect? iii)
Does genistein havthemopreventive effect on thosgs?And iv) What are the patterns when

genistein was fed as a diet interacted with those treated compounds together?

Tumor latency, burden amdultiplicity, analyzed univarialg, were three issues of
interestsThe firsttwo were survival time, andiere analyzethy survivor functionsestimatedy
nonparametric methods as well as parametsigalival regression analysidonparametric
methods did not detect any difference across ten groups while Weibull fitiediebothof them
better tharProportional hazards mod@umor multiplicity was count data and analy4sd
Poisson regressionegative binomial regression and their corresponding-idflieded models
due to the problems of oveispersion and excess zerdhe zeo-inflated Poisson model
reflected the multiplicity best yet negative binomial distribution fitted the data best among the

four models.

The survival analysis and generalized linear modeling indicate@Brat DEHP and
their combinationslecreased the tinte first tumor but did not have significagffects on tumor

burden and multiplicityGenistein did not show any chemopreventive effect in this study no



matter solo or combined with other carcinogénsapplication, this study indicates ttearly
expostuie to plastic consumer products which contain BPA and DEHP megase the risk of

breast cancemwhile drinking soymilk may not help.
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Chapter 1: Introduction

This isan appliedstatistical thesis that discusgbe survival, count and discrete mixture
models for tumor latengyumor burderandtumormultiplicity for DMBA induced mammary
tumor incarcinogenesis archemoprevention resear@ince the chemicals, including
Bisphenol A(BPA), Bis(2-ethylhexyl) phthalateQdEHP), have been reported for potential
carcinogens separately and genistein isa@rtroversiachemopreventive isoflavone, animal
experiment was conducted for solving the following questiomsterfest i) Can the compounds
like BPA, DEHP and their combinations, which were orakyposedo the female offspring of
the DMBA induced rataccelerateéhe carcinogenic process?liilyes, which one has significant
stronger effect? iii) Does genistein have chemopreventive effect onrtte®aAnd iv) What are

the patterns when genistein was fed as a diet interacted with those treated compounds together?

Correspondingly, if we convert these biological questions into statistical one, o
interestegproblemswould be:i) Could the chemical treatments and genistein diet explain the
variability of thetumor latency, burden and multiplicityi) What kind of dstributions did them

follow univariately?

In order to anser these specific questionsgallection of statistical approaek were
applied to model the data and explain the variabilihe multivariate data analysis did not
developedn this studylnstead, we analyzed@umor latency, tumor bden and tumor
multiplicity separately as univariatesponseas we want to consider each carcinogenic and
chemopreventive result separatdirese three variablesood outasthe best choices for the
responsgnot only because of their popularity among researchers who ctincipogenesis and

chemoprevention, but also because they are theftiegsaluaing the procesof
1



carcinogenicityand the results athemopreventiomlthough there were various definiti®
about these three terms, in this study, we define tumor lagenthe time between the détat
the first tumor had been detected anddate of birthfor eachrat Similarly, tumor burden,
being defined as the time from birth to sacrifice gittema onset is the survival timeas wellin

this study.Tumor multiplicitywasdefined as the number of the total tumor pet

Tumor latency and burden are typical survival timth censored data so thzdn be
modeled appropriately by survival analydismor multiplicity,the number of tumors per animal
at a particular timevasexpected to follow a Poisson distributifd} so thatcan be modeled as
Poisson regressiohlowever, the negative binomial (NB) distributiavhich is well known to be
a gamma mixture of Poisson, is much more widely used in modalgrglispersed count data
[2]. In additionthe zero fraction of tumanultiplicity tended to be large according to histogram
plot anddescriptive tablén chapter 3Therefore, negative binomial regression were applied to
addres®verdispersiorissueand zereinflated count models, including zenaflated Poisson

model and zeranflated negative binomial model welfigted to balance eess zeros.

In sum, the statistical methods applied in this study aifallen into the big umbrella
of generalized linear modeihichis including survival analysis armbunt data regressioanly
except the zermnflated count modelsThey are, however, very flexible extensions for general

Poisson regression.

Thisintroductionchapterfocused orthe methodologyackground ofeneralizd linear
model,sunival analysisand zereinflated count model. It alssummarizedtatistical inferace

methodson tumor latency, tumor burden and tumor mulktip}, andillustratedthe motivation of



this studywith more detailsThroughout the papecapital letter represents random variable, and

boldface notation is used to denote matricesvaatbrsin the equations and othstatements

1.1 Generalized linear model

Poisson regression is a form of regression analysis used to model count data and
contingency tablesandExponentiakegressiorcan be used tmodelsurvivorfunction in
survival data analysi®oth of the distributions belong to the exponential families and can be
modeled by generalized linear modehefefore, drief introductionfor generalized linear

model ispresentt the beginning

1.1.1Generaoverview

Theterm‘Generalized linear mod€éGLM)’ is dueoriginally to Nelder andNVedderburn
(2972 3], who showed how linearity could be exploited to unify apparently diverse statistical
techniqueln this section the notation and approach are closely following the li&ekeralize
Linear Modelwritten by McCullagh and Nelder (1989%]. Begin by considering theormal

linear regressiomodel,
Yi=Xib+ j,E=1,...,n, (1.1)

whereY; is a dependent variabbeg,is a vector of kndependent variableb,is a kby-1 vector of
unknown parameters and therrenormally distributed random erswith zeromeanand
constant variance®. To extend to GLM, iallows for response variablesatthave other than a

normal distributiorandallows modelingsome function of the mean

All GLMs have three components]:



1) Therandom componendlentifies the response variableand assumes a probability
distribution for it. Thedistributionmaybe any probability distribution thabmes from an

exponential familyother than normal.

2) Thesystematic componesgpecifies the explanatory variables for the model.
Covariatesxs, Xz, . . . , Xp produce a linear predictorgiven byd =B &;r . Thisis the only

component thadoesnot change when éxtend to GLM.

3) Thelink functionspecifies a function dhe expected value (mean) of Which the
GLM relates to the explanatory variables through a prediction equation having linealf fa@am

write n = g (u), then theg (-) will be called the link function.

In this studyone of the responsesimor multiplicity, would be assumetb follow the
Poisson distribution instead of norndiktribution Meanwhile other tworesponss, time to first
tumor (tumor latencyyand time to deatftumor burdenyvill be assumedo follow the
exponential distribution in GLMTherefore, these two kinds of regression will be discussed with

more details in the next two sections.

1.1.2 Poisson regression
Poisson regressianodelsare generalized linear models with the logarithm adinke

function, and the Poisson distribution functidhe PMF ofPoissordistribution is given by
P X=x|A) =— x=0,12 .. 1.2

The assumptionsf Poisson regressianclude:



1. Logarithm of theesponseate changes linearly with equal increment increases in the

predictors

2. Changes in the rate from combined effects of diffgpegdictorsare multiplicative.

3. At each level of the covariates the number of cases has variance equal to the mean.

4. Obsevations are independent.

Therefore, the expected meais a loglinear function of predictors.

|Og A= Bo + leil + Binz + ...+ BkXik- (13)

Theunknownparametersan be estimated lilie maximumlikelihood estimation, which
is moreconvenienceo calculatehelog-likelihood function.Once the third assumption is
violated, which means the variance is larger than the mean, it is kne@xir@aBoisson variation
or overdispersionA common cause dhis problemis heterogeneity among subjed@®e
simple way to correct ovatispersion is correct the stand&morsand chisquaref the lack of
efficiency of conventional estimates can be simply igng8edJnder some circumstances, the
problem of overdispersion camalsobe solved byitting a negativébinomialregression model

instead 7].

The negative binomial is another distribution that is concentrated on the nonnegative
integers. Unlike the Poisson, it has an additional parameter sii¢hdhaariance caexceed the
mean.Indeed the negatiieinomial distribution is widely used to model count ddfaand the

PMF is

P X=x|r, )\):—A ,Xx=0,1,2,.. (14)



with meanA andvarianceh (1 +-) forr 0, where r is th@umber of failures until the
experiment is stoppeshd theshape parameter of the gammiing distributionas well When
the overdispersion parametgr= - goes tazerqg the second factor will converge to one, and the

third to the exponent functio . So the negative binominal distributiamorresponds tthe
Poisson distributiof8]. So it is a generatation of the Poisson model, andlaglinear function

can be written as
log Ai = Bo + BuXiz + BoXiz + ... + BeXik +€;, (1.5)

where the dependent variaMeis assumed to hawgePoisson distribution witthe expected
valueA;, conditional org;. Theexp(g;) is assumed tbhavea standard gamma distribution,
following that the unconditional of; is a negativdinomialdistribution.Equation 1.5can be

efficiently estimated by maximum likelihoas$timationmethodas well

The Poisson and negative binomial distributions are well suited for describing counts of
events that occur in some interval of tirtfehe events are counted over different lengths of time
for different individuals, there is a need &tandardizationThetime incorporated model is

given by
P (X=x |\ 1) — x=0,12 .. (1.6)

wheret is the length of the observation interval for individual, ah@ the expected valu&he

loglinear function in this case is

log E(Y;) =log (Aitj) =logti +log A =log ti + Bo + BaxXiz + BoXiz + ... + PrXik 1.7)



It implies that the logarithm of the observation time should be on thehagid side of the
equation, with a coefficient of 1.0. Therefotiee logarithm of tumor burden had been set as an

offset variable in this study.

1.1.3 Zereinflated count model

Another common problem with Poisson regression is excess Eeraxamplejf there
are two processes at work, one determining whether there are zero events or any events, and a
Poisson proess determining how many events there are, there will be more zeros than a Poisson
regression would predidin this case he zereinflatedcountcan be applied to take care of the

excess zergount data in unit timg9].

The main motivation for zermflated count models is that rdée data frequently
display overdispersion and excegsros These distributionare a mixture of two distributions, a
degenerate componethiat is zero with certainty and a second compotieitincludes zeros and
positive values (e.g., the Poisdtistribution). The general form of these distributions is

A p AAhU mh

POYN="" RO pfcs (1.8)

wherertis the probability that an observation comes from the degenerate comgoment.
commonly used zermflated distributions are theerainflated Poisson (ZIP) and zenaflated

negativebinomial (ZINB)[10].

In order todescribeZIP model explicitly, assume that the second component which
includes zeros and positive integer is Poisson distribution with mearaaadce\. Therefore,

the AMF of ZIP model is



(1.9)

wherertis the probability that an observation comes from the degenerate comgdresntean

and variance of the ZIP model is given by
E(Y) = E (E (Y[X)) = E(XN) = (1- ) A,
andvar (Y) = var (E (Y|X)) + E(var (Y|X))
=var (XA) + E(XA)
=N T(1-) + (1- ) A
=A(1-m (1T

ZINB model is a more realistic modelr application Assumethat the second component which
includes zeros angositive integer is a gamma distribution with mgeandheterogeneity
parameten. Therefore, the P of ZINB model is

P (Y=y) =

A p A — hU mh
1.10
U (1.10)

AN— — — KU piiB

wherertis the probability that an observation comes from the degenerate com@&inelairly,

themean and variance of the ZINB model is given by
E(Y) = E (E (Y[X)) = E(XN) = (1-1) b,
andvar (Y) = var (E (Y|X)) + E(var (Y|X))

=var (Xp) + E(X (u + - 1))



=W (-1 + (1- 1) (u + )

= (1- 1) (1 + p+1Tp)

Note that these two zeinflated models have the similar mezaarianceproperty as the standard
negative binomial model#t is not surprising that in some cases these models are confounded
with each other and all of them can fit the data w&#ineral the ZINB model seems to be most
flexibility and efficiency but has very limited application due to the large estimatedosadad

large AIC/BIC[11].

1.14 Exponential regression
Exponential regressiamodelsare generalized linear models with theerseas the link

function, and th&xponentiadistribution functionThe PDF for exponentiaistributionis given

by
PX=x|N)=M , x 0 (1.1

with mean 1X and variance 2. Theexponential distribution occurs naturally when describing
the lengths of the intearrival times in a homogeneous Poisson prodés=sn though it can be

used to model survival data, the goodness of fit testbaégileddue to the large deviation.

Weihull distribution is another distribution related to both the exponential and gamma
families. If X ~ exponential §), then Y =8 T has a Weibully, B) distribution[1]. It plays a
central role in survival analysis as the normal distribution dose in the standard ddalysis
More details about Weibull model wile provided at sutsection 1.2.7.under the topic of

survival analysis.



1.2 Survival analysis

Survival analysis is the phrase used to describe the analysis of data that correspond to the
time froma welldefined time origin until theccurrencef some particular event or gumint
[12]. Thismethod has been widely used in medical research aisbisalled reliability analysis
in engineeringThe typical questions that can be answered by survival analysis are: i) What is
the probability of a population which will tive past a certain time? ii) Which population is
more likely to have a longer lifespan and better prognosis, when there are several treatments
applied? iif)Can multiple causes of death or failure be taken into accéurd?v) Which kind
of cause shoulbe taken into account® this section, the notation and approach are closely
following the bookModelling survival data in medical researahitten by D.Collett (1994)

[12].

1.2.1 Special features of survival data

There are two special features that determine the differences betaagningsurvival
data and the standard dafae first one is that theurvivaldata aregenerallynot symmetrically
distributed[12]. The histogram o$urvivaltime tendgo be positively skewed, which means it

has a longer talil to the right of the median.

The second feature is that the survival data are frequently censored. Censoring occurs
when the endpoint of interest has not been observed for that individih@ actual unknown
survivaltime is larger than observed survival timéhich is also the most commonly case, it is
called right censoringd-or instant, one is still alive at the endpoint of the reseditod.
information contained by this individual is not complete diiit important.On the other hand, if
the actual unknowasurvivaltime isshorterthan observed survival time is known as left

censoring. For example, the cancer has already recurred Wigepatient is examine@he actual

1C



time for recurrence was not observed #relonly thing we know is ghorter than the
examination timeln addition, wien individuals are known to have experienced a failure within

an interval of time, it is called iaetval censoring.

1.2.2 The survier function
The survivorfunction (SVF),S (t), captures the probability thdte survival time is

greater than or equal tospecified timé. The mathematical equation for SVF is given by

S(t)=P(T t)=1-F (), (1.12)

andrepresents the probability that an individual survives from the time origin to some time
beyond tEvery SVF is monotonically decreasing function, with right continuous property.
There are seval methods to estimate surviviminction, such asite-table estimate (for nen

censoeddata), KaplarMeier estimate (for censored data), and so on.

KaplanMeier estimate of the sunav function is also known as the produicnit
estimate of the survivdunction.By defining nas the number cfuccessemcluding the number
of about to fail before timg &nd ¢ as the number of failure at timethe kM estimate is given

by,

St)=b —— ,k=1,2,..r (1.13)

for ty) <t < tys1), with S(t) = 1 for t < &) and wheret.) is taken to positivinfinite. In this study,

KaplanMeier estimate was applied in tbbapter3.

1.2.3 The hazard function
The hazard function (H2Fh (t), is another important function of central intergs the

probability that an individual dies at time t, conditional on he or she having survived to that time

11



[12]. HZF represents the instantaneous death rate for an individual surviving to Tihee t.

mathematical equation for Hids given by

hit)=1 Bb 5 . (1.14)

The relationship between SVF and HZ#&n be derived from equation 12). The
limiting value of instantaneous failure time is the derivative of F (t) with respect to t, denoted by

f(1). So
h(t) =—=-—[InS@). (1.15)

1.2.4 The median survival time

The median survival time is the preferred summary measure of the location since the
distributiontends to be positively skeweld.is straightforward to obtain once the SVF has been
estimatedThe median survival time is the B@ercentile of the distribign, and is given by the
value t (50) which is such that S {t (50)} = 0Since the nofparametric estimates of S (t) are
stepfunction, it will not usually be possible to estiméte survival time that makes the SVF
exactly equal to 0.5. Therefore, thimallest observed survival time for which the value of the
estimated SVF is less than equal td).5 is defined as the estimated median survival time.

mathematical terms,

HBO0) = min {i | iH#) 0.5}, (1.16)

wheret; is the observedurvivaltime for thei th individual,i = 1, 2,..., n[12].

12



1.2.5 Logrank test

The logrank test is a hypothesis test to compare the survival distributions of two samples
which also can be extended to do multipbenparisonsit is a nonparametric test afitithe
survival dateéby natural The test was first proposed by Nathdantel and was named the log
rank est by Richard and Julian P¢fid), 11], andcan also be viewed as a time stratified Mantel
Haenszel tesThe log+rark test is a largsample chisquareest that uses as its test criterion a
statistic thaprovides an overall comparison of thapfarMeiercurves being compared. This
(log—rank) statisticlike many other statistics used in otlerds of chisquare test makes use
of observedrersus expected cell counts over categoriesitfomes. The categories for thedog
rank statistiare defined by each of the ordered failtmees for the entire set of data being

analyzed.

Let Oy; andOy; represenbbservechumber of events group 1 and group 2, respectively.
And g; = njO; 1y, & = yO; / ny be the expectedumber of events each groupwhere g is

the total number of each group andsrthe total number for both groupo that wenave

W= — 9. (1.17)

The null hypothesis is that there is no differemcthe survival experiences in the two groups.

the value of¢ is larger than the critical value, the null hypothesis will be rejected.

1.2.6 Proportional hazards model
An approach based on statisticaddelingcan be used in order to explore the relationship
between survival timand explanatory variablesh& most commonly used model is the

proportional hazards model, which was proposed byi©€d972 and has also be known as the
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Cox regressiomodel[13]. The model is only based on proportional hazassfsimption, which
is thathazard functions are@portional over timeThere isno particular distribution is assumed

especially fobase line distributionTherefore, it is a senparametric model.

Proportional hazards model can be expressed in the form

hy (1) = W hs (1), (1.18)

wherey is a constant, known as the relative hazard or hazard ratiog@f)cahdhy (t) are the
hazards of death at time t for patients on the standard treatment and new treatment, respectively
[12]. Since the hazard ratio cannot be negatikie,general proportional hazards function can be

written as

hi (t) = exp BuXai + BoXai + ...+ BpXpi) ho (1) (1.19)

wheref3; s are the coefficients of linear componehhis is a generalized situation where the
hazard of death at a particular time depends on the explanatory vaXabtes . X, There are
two types of variable on which a hazard function may depend, namely variates and Aactors.
variate is often a continuous varialslech as height, weight, and age, which takes numerical

values A factor is a categorical varialike gendemwhichtakes a limited set of values.

The maximum likelihood estimation can be usedttthe proportional hazards model
order to estimatéhe unknown coefficientand hazard ratio3 he maximization is generally

accomplished using the Newtétaphson procedae.

1.2.7 Weibull model
The nferences based on specific distribution assumption will be more precise if the

assumption is validn practice, the assumption of a constant hazard function or equivalently of
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exponentially distributed survival times is rarely tenaBlenoregeneraform of hazard function

is such that
h (t) = Art™, (1.20)

forO<t<o, A>0, r > @hereA is the scale parametandr is the shapgarameters on which
the model dependeth particular case, whearl, it becomegxponentiadistribution.For other

r values, the HZF is a monotone functidime generalized SVF is given by

S (t) = exp {At). (1.21)
The corresponding PDF is

f (1) = At exp (ML), (1.22)
for 0<t <, with scale paramet@arand shape parameter

1.3 Literature review

In this sectionthe review wa focugdon the conceptsandstatistical inference methods
on tumor latency, tumor burden and tumor multiplicitiiesethreetopics were choseinto this
thesis not only because of their popularity among researchers who study chemoprevention, but
also becausthey are the key points to evaluate tlewelopmenbf tumor and the results of
chemopreventiorA brief review for the chemical compounitigtbe used in the study was

includedin this section as well.

1.3.1 Tumor latency

Tumor latency, or dormancy, is a wedicognized clinical phenomenon and induction or
maintenance of this state would appear to offer a novel therapeutic apprbactirig the
effects of neoplastic diseagH]. In the clinic, tumor dormancy is observed in local recurrences
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or metastases. It usuallgfers to the time after treatment that a patient is asymptomatic but still
carries locatemnantor disseminated tumor cells that do not grow into overt legitijsin
pathological it means the time that allows theesumably} malignant cells, shed from the

primary mass, increase in population széecome a detectable recurrefit§. The

mechanisms imperfectly understood and the definition is still vagaehis study, we define
tumor latency as the time between theedlaat the first tumor had been detected and theafate

birth for eachrat

There are evidences indicatititat the ancer recurrence after therapy dowlg periods
of remission is frequent. For example;28%6 of patients with breast or prostate cancer will
relapseyears or decaddater[16-18]. Tumor latency can be considered as a component of
cancer progression and can be suppressed if the chemoprevention is applied rigHtl®j time

Therefore, how to prolong the tumlatencybecomes a hot topic in oncology and pathology.

Statistically, there araonparametri@and parametric wayavailable to analyzgimor
latency.TheKaplanMeier curve isa widely used nonparametneethodto estimatethe survival
curve when the first tumarccurrences defined as the epdint even{20-22]. In addition, the
following methods are popular in addressing tumor lateA@portional hazards regression is a
semiparametric way, while the Weibull, ldggistic andother distributions for survival data are
parametric method4 2, 23]. The software tools available for implementing thessal analysis
method includehe LIFETEST and LIFEREGrocedure in Statistical Analysis Software (SAS)
They are availableo estimate theurvivor functionto run Logrank test, antb setup the

survival model for tumor latendy0, 22, 24].
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1.3.2 Tumor burden

There are many definitions for tumor burden with respect to different perspectives and
disciplines[25-27]. In general, tumor burdealso called tumor load, referringthe number of
cancer cells, the size of a tumor, or the amount of candke bodyIn this study, thenice were
designed to beacrificedwhen the burden isxceeded 10% of body weiglitence the time from
birth to sacrificegiventumor onsets defined as tumor burden in this thesmsothe words,
tumor burden is theurvival time in this studyt is worth to note thagetting the engbint as

sacrificing instead of natural deattightintroduce some bias this study.

The statistical inference methods for analyzing tumor burden or survivahtene
practicallythe samesetwith those for tumor latendyecause othesame or similar data
propertiesThe method of KaplarMeier[28] can beused to obtain survival and relagsee
survivalcurves[25]. Survival times andiseasdree survival times in distinct patient grougen
becomparedising the generalized Wilcoxon t¢28]. The proportionahazards model of Cox

canbeusedlod et ect expl anatory variabl es’” [B0Jmpact on

1.3.3 Tumor multiplicity

Tumor multiplicity (eithertotal or malignantumors only), defined byWaalkes2004,is
the number of tumors peat either of gparticular organ or inclusively at any sj&d]. In this
studywe define tmor multiplicityas the number of the total tumor pat It has been shown
that thedevelopmenof a tumoris a rare event occurring among a large population of cells at
risk [32]. Therefore, the raber of tumors per animal at a particular time after treatment might
be expected to follow a Poisson distribut|88]. One implicit assumption afsingPoisson
distribution is that the mean and variance of the number of tumors per animtigor

distribution aresupposed ot h e gHowelerusually #venn highly controlled
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experimentstheassumption of equal mean avariancedoes not hold true. Due to various
sources of variation in the stochastic process of tumor formation, the data usually exhibit
significantly bigger variance than the meamich is known asverdispersior34-37].
Thereforenegative binomiamodelmight be a better distributiao representhe databy using
two parameters-mean and exponent determili®y the interanimal homogeneity of tumor
responsd3g]. In reality the negativéinomial distributiorhas beenvidely used to model count
data[4]. When the ovedispersion paramet&rgoes td0, it corresponds tthe Poisson

distribution[§].

Dunson(1999)described that the m®inflated Poissormodelwas a method for modeling
carcinogenicity from animal studies where the data consist of counts of the number of tumors
present over timg39]. The method is applied to testing for a doskated trend in both tumor
incidence and multiplicity in carcinogenicity stud[&8]. Kim (2010) performed zermflated

negative binomial distributiofor modeling tumor multiplicity to reflect a high zero co@].

Besides mdeling, some of researchers warerested in the trend in proportion of tumor
multiplicity. CochranArmitage testnamed for William Cochran and Peter Armitages being
widely used forthis purposg22, 24, 41]. In addition others incarcinogenicityusel Tukey
Kramer tesor Dunnett's multiple comparisoims ANOVA to compare the difference of tumor

multiplicity acrossgroups[42-44).

1.4 Chemicalcompounds
Thiswas an application study whichas focus on statistical inference methods and

models but alstnvolvedseveral chemicals thatas introduced as predictorgwtlependent
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variablesn the modelTherefore, a brief introduction and review for those chemicals will

provide a better understandibackground.

7, 12-dimethylbenza) anthracene (DMBA), an orgaand site specifiprocarcinogen,
requires metabolic activation to become an ultincareinogenThe dihydrodiol epoxide
(ultimate carcinogen) and othtexxic reactive oxygen speciémed during its metabolic
activation carcause chromosomal damage by binding with adenine residues of DNA,
contributing to mutagenesis and carcinogenedis DMBA can also interact with the estrogen
receptor and partiallgnimic both the positive and negative déack actions of estradiol in

ovariectomized ratpt6].

Bisphenol A (BPA) is a synthetically produced chemical used in the manufacture of
polycarbonate plastics and epoxy resins. These prodretgilized in a plethora of commonly
used consumer goods, such as food and beverage containers, the lacquer lining of canned foods
and drinks, infant formula bottles, receipts, office water cooler tanks, laboratory and hospital
supplies, and some denssdalant$47]. BPA is reported to alter normal estrogen, androgen, and
thyroid hormone signaling in vitro. It has been shown to cause adverse effects in breast cancer
cell lines, including the induction of cell proliferation, producing oxidative steasbsaltering
cell signaling pathways involved in carcinogenesis and glucose homeostasis. Further research
has shown that BPA is capable of antagonizing the cytotoxic effects of certain

chemotherapeutics, such as doxorubicin, cisplatin, and vinbl§48he

Bis(2-ethylhexyl) phthalat¢DEHP)is an organic compourttiatis the most common of
the class of phthalate plasticizdbdi=HP has a low vapor pressure, but the temperatures for

processing PVC articles are often high, leading to release of elevated levels, raising concerns
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about health riskdt can be absorbed from food and water. Higher levels have been found in
milk and cleeseReports have been shown that DEHP m#entialendocrine disruptoit has
testicular toxicityf49], Ovarian toxicity[ 50|, developmental toxicit{51], nephrotoxicity[52]

and other toxicities.

Genistein is one of several known isoflavortgsdemiology reports indicate thatomen
consuming diet high in soy products, containiBrge amounts of phytoestrogens especially
genisteinhave a low incidence of breasince[53, 54]. Genistein (major isoflavone in soya)
has beemeported to have weak estrogenic and-astiogenigropertied55, 56], to be an
antioxidanf57]and to inhibitthe protein tyrosine kinase and topoisomerasetivity [58, 59|
and also angiogenedi8Q]. It is interesting that animals treated neonatally and prepubentahy
genistein have reduced incidence amdltiplicity of 7,12dimethylbenzanthracene (DMBA)
induced mammary adenocarcinomas, decreased nuofliersminal end buds but increased
numbers ofobular structure§61-63]. On the contrary, in aduétnimals, the effects @gfenistein
on mammaryumor development remain controversial. Erample, in adult mice, genistein

increases mammatymorigenesi$64, 65].

1.5 Motivation and goal

According to the literature vievigisphenol A(BPA), exhibiing hormonelike properties
hasraised concerns about its suitability in consumer product$oamadcontainersBis(2-
ethylhexyl) phthalate@dEHP), most commoiplasticizer is alsoreported to be a potential
endocrinedisruptor.Genistein, a potential chemopreventive isoflavone, iscsifikroversialet.
Therefore, a highlgontrolledanimal expament was designed and conducteaiderto find
more evidence for the carcinogenesis or chemopreventive effect of these chemdtds

explore more information, such that which one has stronger carcinogenic effect if they are all
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carcinogens, and whtte result would be if potential chemopreventive chemical genistein
combined with these carcinogeihs.this case, we have four specific target questions need to
answer, which are i) Can the compounds like BPA, DEHP and their combinations, which were
oraly exposedo the female offspring of the DMBA induced ratsceleratéhe carcinogenic
process? ii)f yes, which one has significant stronger effect than others? iii) Does genistein have
chemopreventive effect on thos#s?And iv) What are the pattermghen genistein was fed as a

diet interacted with those treated compounds together?

According to the natural of the dataset, two general statistical question can cover those
four biological questionslherefore, our interested problems would become: i)icCthe
chemical treatments and genistein diet explain the variability of the tumor latency, burden and

multiplicity? ii) What kind of distributions did them follow univariately?

In order to answer these specific questions, a collection of statistical approaches were
applied to model the data and explain the variabilibe multivariate data analysis did not
applied in this studylinstead, we analyzeéumor latency, tumor burden @mumor multiplicity
separately as univariatespons@s we want to consider each carcinogenic and chemopreventive
result separatelyAlthough there were various definitions about these three terms, in this study,
we define tumor latency as the time betwéhe date that the first tumor had been detected and
thedate of birthfor each ratSimilarly, tumor burden, being defined as the time from birth to
sacrifice givertumor onsetis the survival time as well in this studyumor multiplicitywas

definedas the number of the total tumor per rat.

Obviously, tumor latency and burden are typical survival time with censored data so that

can be modeled appropriately by survival analysaparametric methods as well as
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parametricabkurvival regression analyswill be applied to analyze theriumor multiplicity, the
number of tumors per animal at a particular time was expected to follow a Poisson distribution so
that can be modeled as Poisson regresslowever if the data has ovetispersion problem,

whichis a common issue for the count data, it will not be appropriate to be modeled by Poisson
any moreln this case Jte negative binomial (NB) distributias much more widely used in
modelingoverdispersed count datln addition, the excess zeros is aeotbommon issue for

count data, whiclalsopresents in our datadaey taking look at théaistogram plot and descriptive
tablefor multiplicity in chapter 3Therefore, zeranflated count models, including zenaflated

Poisson model and zemoflated negtive binomial model werétted to balance excess zeros.

Chapter 2: Experimemesignand methods

2.1 Animals

Animal care and use were conducted according to established guidelines approved by the
Institutional Animal Care and Use Committee atlthnversity of Alabama at Birmingham.
Animals were treated humanely and with regard for alleviation of suffering. All animals were
housed in a temperature controlled facility with a 12 hour light/dark dyelmale Sprague
Dawley CD rats (Charles River, R#gh, NC) were bred and observed for the presence of sperm.
Sperm positive females were separated, housed in polypropylene cages with glass water bottles

(both polycarbonate/BPA free), afetl the phytoestrogeinee AIN-93G pelleted diet.

2.2 Treatmentsdiets and groups
Beginning on postnatal day two and continuing through postnatal day 20, the lactating
dam of each litter was intragastrically gavagethyour different treatmenBPA, DEHP,

LC(low combinationof BPA and DEHIp, HC (high combinationof BPA andDEHP) andcontrol
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treatmentSO (sesame oilper day(on Mondays- Fridays only along with diet (with/without
genistein) There were 3 female offspringn eachgroup(BPA, DEHP, LC, HC, SO, SO+GEN,
BPA+GEN, DEHP+GEN, LC+GEN, and LC+GENespectively, all derived from individual
litters, expect one missing value for each of BPA+GEN and SO+@BNp Offspringwere
palpated twice weekly to monitor tumor development. Data were recorded on palpable tumor
latency, location, tumor burden, amualltiplicity. Animals underwent necropsshen tumor

burden exceeded 10% of body weight.

2.3 DMBA induced model

At 50 days postpartum, one female offspring from each litter of each treatment group was
given a single gavagof 30 mg DMBA/kg BW. This dsereaults in a low number of mammary
tumors and allows chemicals that predispose for mammary cancer to increase the number of
mammary adenocarcinomggf]. Because dam treatment for lactational exposure results in a one

exposure compartment, only one offspring from each litter was nssath experiment.

2 4 Statisticalmethods

The timeto-event data, e.gtime-to-first-tumor (latency) and timé&-sacrifice (tumor
burden), were analyzed using the LIFETEE®HREGand LIFEREG procedures in SAS (SAS
Institute Inc., Cary, NC). Surviwr functions were first estimated for each group using the
KaplanMeier method and compared acrosstéregroups using the Wilcoxon legnk test and
parametrically using survival regression analy$8. Those animals that had not developed a
tumor by the end of the study or were sacrificed were treated as censored, and the end of study or
sacrifice times were treated as censoring $indalues forlatency and burdewereexpressed as

median ananean xstandard error of the mean.
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Tumor multiplicity data were analyzed with the GENMOD (generalized linear models)
and COUNTREG (count regressigmpcedure in SAS usingoisson regressipnegative
binomial regression, zefioflated Poisson regression, and zeribated negative binomial
regressioron the tumomultiplicity [41]. Since there was a positive correlation between number
of tumors and number of days in the study, the tests on multiplicity were done after gdjurstin
the number of days each animal was on the study. Values for multipleigpresengd as

mean *standard error of the mean.

Chapter 3Results
The total sample size fone initial study was 330 ratandomlyassignedo 10 groups
(BPA, DEHP, LC, HC, SO, SO+GEN, BRGEN, DEHP+GEN, LC+GEN, and HC+GENand
each group had 33 rafBwo rats(onein the BPA+GEN ana@ne inSO+GEN respectivelyid
not enroll into the studguccessfullydue tounexpectedeasos. Thesetwo missing value were

deletedbefore the data analysiss a resultthe total sample size was 329.

3.1 Tumoratency

This sectiorpresentedelective modeling and analysesults relatetb tumor latency.

3.1.1 General description
The descriptive statistics such as censor number and percentage, median of latency, mean
+/- standarcerror,minimum’'maximumby ten groupsvere shown in table 1 as followethese
statistics that grouped by five treatments was also presenieglire 11 appendix 10bviously,
there were quit largpercentages for the censddata in the two control groups, SO and
SO+GEN.In other words, large peentages of rats in the SO and SO+GEN group did not

develop any tumor until the end of the stu@llge group that has shortest median latency is BPA

24



(110 days) followed by HC and HC+GEN (both 113 days), LC (115 days), DEHP and LC+GEN
(both 119 days), BPA+EN (112.5 days), and DEHP+GEN (124 dayd)e longest median

latency group is the control group SO and SO+GEN, which had 125 and 126 days respectively.
Diet with genistein tended to prolong ttugnorlatency from general, only except with the HC
group.Theboxplotin figure 1 gwve more visuatletails The median was much more stable than
the meanThere was no significant difference for median while the means of two control groups
were much larger than the treated and dieted grégpcially, the means of the groups in

which rats thatverefed genistein as diet did not show an increapaternthan the treatment

groups.Therefore, we expected that the genistein did not affect the tumor latency in this study.

Tablel: Descriptive Table for Tumor Laten8ored by Median

Diet Treatment N  Censor Total (Rate) Median  Mean(+/-stderr) Min/Max
Con BPA 33 4/29(12.1%) 110.0 143 (+£ 11.99) 58/300
Con HC 33  5/28(15.2%) 113.0 149 (+£ 12.9) 86/300
Gen HC 33  2/31(6.1%) 113.0 132.91 (+ 9.84) 86/300
Con LC 33 2/31(6.1%) 115.0 135.61 (+/9.64) 86/300
Con DEHP 33 3/30(9.1%) 119.0 147.94 (+/ 10.8) 87/300
Gen LC 33 3/30(9.1%) 119.0 147.39 (+/ 11.6) 93/300
Gen BPA 32  4/28(12.5%) 122.5 157.72 (+412.41) 91/300
Gen DEHP 33 3/30(9.1%) 124.0 142.36 (+/9.97) 89/300
Con SO 33  7/26(21.2%) 125.0 171.48 (+/14.47) 91/300
Gen SO 32 10/22(31.3%) 126.0 178.66 (+ 15.1) 91/300
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Figurel: Boxplot for Tumor Latency by Ten Groups
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3.1.2 Survival analysis

In thissulsection, the event fatetectingfirst tumor was the target event and sugvivor
functionwas used testimatethe probability of this event occurs during the 300 cutoff days.
Thereforethe datawill be treated as censent data if the rat hagkever developed a tumor during

the 300 study days.

The survivorfunctions were estimated by Kaptdfeier curves for each group as
presented in figure Zhe medians were exactly the same with descriptivie wince there was
no censored data before 300 dadsd the differences afurvivor functionacross temgroupwere

compared by logank testwhich was not significant witiP=0.1413However, the differences
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across five treatment was significant with £.8634 by adjusting the diethe P value for testing

diet was 0.6471, which indicated that genistein did not delay the time to first tho®ren

though the two control groups (SO and SO+GEN) seems had better performance at tumor
latency by comparing wh other groups, the differences were not statisticallyifsognt.

According to the results for strata five treatments by adjusting diet, the survival regression might
be needed tocludetreatment and diet together into the madstead of using nonpametric

way to estimate ten groups

Figure2: KaplanMeier Curves for Tumor Latency by Ten Groups
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Table2: Estimates for Tumor Laten§ored by Mediafrom LifeTest procedure

Diet  Treatment N  Censor MedianLT (95% CI) MeanLT (+/-stderr)
Con BPA 33 4/33(12.1%) 110(105,134) 138(10)
Con HC 33  5/33(15.2%) 113(104,143) 147.2(12.3)
Gen HC 33 2/33(6.1%) 113(105,126) 132.5(9.7)
Con LC 33 2/33(6.1%) 115(104,128) 132.7(8.2)
Con DEHP 33 3/33(9.1%) 119(106,145) 141.8(8.4)
Gen LC 33 3/33(9.1%) 119(110,138) 146.3(11.2)
Gen BPA 32  4/32(12.5%) 122.5(110,161) 156.8(12.1)
Gen DEHP 33 3/33(9.1%) 124(110,140) 131.8(5.5)
Con SO 33 7/33(21.2%) 125(111,161) 170.4(14.2)
Gen SO 32 10/32(31.3%)  126(115,177) 140.2(5.7)

3.1.3 Model fitting
As shown in the figure 3, the negative log of survifumrctionplots were not linear,
which suggested that the distributifam tumor latencyvas not exponential. Additionally, in
figure 4, the log of negative log stirvivorfunctions plots were not linear either, which means
the Weibull model might ndie appropriateesither. Also, the log {log (survivor)) plots were not
approximately parallekherefore that the proportional hazards model might not be appropriate to

fit.
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Figure3: Negative log of Survivor function Ploter Tumor Latency by Ten Groups
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First, he Proportional Hzards Model was fitteaind model selection was performeg
using PHREG procedure in SAEable 3 presented thketailsabout the estimates of
proportional hazards model for tumor latenikeythe proportionalhazards model, the effects of
the covariates are to act multiplicatively on the hazard of the survival time, and therefore it is a
little easier to interpret the casponding hazard ratios than the regression paramehers.
results shown thahe hazard ratio PA, DEHP, LC, and HQveresignificantlylarger than
control group SOTherefore, the treatment groups with different commus coulddecrease the
time fordeveloping first tumor, but gestiein and all the interactions did not shown any
significant effect to the modeVlore specifically, the HC group had the largest hazard ratio than
others, which means the High combination treatment decreased the tumor tatstly. It was
consisentwith the information contained in the descriptive table, where both HC and HC+GEN

had very small tumor latency.

Table3: Estimates of Final Proportional Hazards Model for Tumor Latency

Parameter DF Parameter  Standard Chi-Square  Pr>ChiSq Hazard

Estimate Error Ratio
BPA 1 0.38433 0.19620 3.8372 0.0501 1.469
DEHP 1 0.42078 0.19428 4.6910 0.0303 1.523
HC 1 0.55019 0.19505 7.9569 0.0048 1.734
LC 1 0.53093 0.19364 7.5174 0.0061 1.701

However, the proportionality testing result (P <.0001) indicated that the proportional
hazards assumption was not appropriate, same conclusion as the log of negative log of survivor

functions plots in figure 4 indicated.
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Secondlya Weibull model was figd by LIFEREG procedure in SAS and the parameter

estimates for the final model were given in tabhl&he resultssimilar with proportional hazards

model,shown that all the treatments, including BPA, DEHP, LC, and HC significantly decreased

the time fordeveloping first tumor, but gestein and all the interactions did not shown any

significant contribution to the modas well In weibull model, the shortest tumor latency was

LC group instead of HC group. At least these results indicated thednhigindions of the BPA

and DEHP had stronger carcinogenicity than single one.

Table4: Estimates of Final Weibull Model for Tumor Latency

Parameter DF Estimate Std.Error 95% Confidence Limits Chi-Square Pr > ChiSq
Intercept 1 54197 0.0694 5.2836 5.5557 6096.60 <.0001
BPA 1 -0.2413 0.0942 -0.4260 -0.0566 6.55 0.0105
DEHP 1 -0.3116 0.09% -0.4950 -0.1282 11.09 0.00®

HC 1 -0.3135 0.093 -0.4961 -0.1310 11.33 0.00(8

LC 1 -0.3381 0.0928 -0.5201 -0.1561 13.26 0.0003
SO 0 0.0000

Scale 1 0.4807  0.0213 0.4407 0.5243

Weibull Shape 1 2.0805 0.0922 1.9074 2.2692

Table5 presented the details for model selectidtthe criteriawhich included AIC,

BIC, and likelihood ratio test suggested owdyiabletreatment should be included in the final

model.Therefore, the final model for tumor latency could be written as
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Theexpected tumor latency for each treatment in Weibull model was tended to larger
than those of descriptive statistics since Weibull modeling was based on mean which was not as
robust as mediai.herefore, the prediction from weibutiodel might be pooBesides, the
fitness for Weibull might be not well since the log negative log of survivor function plot was not
linear and the proportional hazards assumption did not ibktefore, another distribution

might need to apply in the tiure research.

Table5: Model Selection for Weibull Distribution for Tumor Latency

: Log , Likelihood Critical
Model Variables DF Likelihood AlC BIC Comparison ratio test Value
0 Intercept only 2 -295.926  595.85 603.44 -- -- --
1 Treatment 6 -286.538 585.8 607.83 -Ovs1 18.776* 9.49
2 Treatment, Diet 7  -286.521 587.04 613.59 1vs?2 0.0331 3.84
Treatment,
3 Diet, 11 -284.33 590.71 63248 2vs3 4.3373 9.49
Treatment*Diet
Note: * P < .05

3.2 Tumorburden

This sectiorpresentedelective modeling and analysesults relatetb tumor burden.

3.2.1 General description
The descriptive statistics such as censor number and percentage, médiatenfimean
+/- standarcerror,minimum’maximumwere shown in tablé as followed. Thesestatistics that

grouped by five treatments was also presenté&digare 12 appendix 1Compared to tumor
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latency, there were quit large percentagestfe censaddata in each group, which means there
were quit larggpercentagenice had noteached the criteria ®acrifice after 300 daydt raised
theconcernfor the rate of the tumor developmeihhe DMBA induced model might not succeed
since somef rats had never developed a tumor while some of the rats did not have a large tumor

growth rate even it had tumor onset.

The group that has shortest median burden is LC+GEN (210 days) followed by LC (219
days) andEHP+GEN (24tays), HC+GEN (249 days)BPA (250 days),SO (273 days), HC
(279 days), and DEHP (280 day3g)he longest median burden groupsiwhe SO+GEN300
days) whichindicated that more than half of the rats in the SO+GEN groupuwaive beyond
300days As shown in the boxplofigure 5), only LC group tended tshrinkthe tumor burden

comparedvith other groups

Table6: Descriptive Table for Tumor Burde®ored by Median

Diet Treatment N  Censor for Burden Median  Mean(+/-stderr) Min/Max
Gen LC 33  10/23(30.3%) 210.0 233.48 (+9.89) 141/300
Con LC 33  11/22(33.3%) 219.0 224.61 (+/11.67) 113/300
Gen DEHP 33 12/21(36.4%) 247.0 232.03 (+/12.22) 109/300
Gen HC 33  8/25(24.2%) 249.0 232.15 (+/ 10.65) 120/300
Con BPA 33  10/23(30.3%) 250.0 236.76 (+/10.48) 113/300
Con SO 33 12/21(36.4%) 273.0 254.27 (+ 9.36) 132/300
Con HC 33 15/18(45.5%) 279.0 241.3 (+4 11.56) 128/300
Con DEHP 33 16/17(48.5%) 280.0 250.88 (+/9.57) 140/300
Gen BPA 32 16/16(50%) 297.5 253.22 (+/11.12) 130/300
Gen SO 32 17/15(53.1%) 300.0 261.44 (+/10.25) 137/300
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Figure5: Boxplot for Tumor Burden by Ten Groups

3I:II:I T | | | | | | —] | | j__
<
2504 | & o % L L
<
@ ol lo| o
© | L
c L | |
k) S
e 204 LA Y
=
m L | L
150 -
100 -
T T T T T T T T T T
8 o ¢ 4 8 8 & & ¢ 4,
A)_? @74 o o (o] Q, o (Q.%G ‘é\,g;ox G, (’%\\ B Gé\
S S, %, ¥ 2
Group

3.2.2 Survival analysis

In this subsection, the event &acrificingthe rats was the target event andgherivor
functionwas used testimatethe probability of the rats that could survive more than 300 days.
Therefore, the data will be treated as censored data if the rat had neabegcedafter the

endooint of the study.

The survivorfunctions were estimated by Kapldeier curves for each group as
presented in figuré. And the differences cfurvivor functionacross temgroups and five
treatmenby adjusting dietvere compared by letank tes, whichboth werenot significant

(P=0.2273for ten groups, P=0.2642 for five treatmgn@bviously, there werkarge amountsf
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censored datia each group, which was also reflected in the descriptive table Qgahilel

estimated table (tabl®. Note that he mean survival time and its stand error were

underestimated because the largest observation was censored and the estimation was restricted to

the largest event timé&nd the median and upper limit of BPA+GEN and SO+Gfi¢

indeterminatend represented as missing value since theremare than 50% censored data in

these two groups.herefore, all the information we knew about the median tumor burden of

these two groups by nonparametric methods were they were more than 300 days.

Table7: Estimatedgor Tumor Burden by Each Group from LifeTest

Diet  Treatment N Censor Median(95% CI) Mean (+/~Stderr)
Con BPA 33 10/33(30.3%) 250(212,286) 235.5(10.3)
Gen BPA 32 16/32(50%) .(231,)) 250.7(11)
Con DEHP 33 16/33(48.5%) 280(209,.) 241.2(8.2)
Gen DEHP 33 12/33(36.4%) 247(200,.) 227.3(11.5)
Con HC 33  15/33(45.5%) 279(195,.) 235.8(10.9)
Gen HC 33 8/33(24.2%) 249(194,274) 230.5(10.4)
Con LC 33 11/33(33.3%) 219(188,272) 215.3(10)
Gen LC 33 10/33(30.3%) 210(191,283) 232(9.6)
Con SO 33 12/33(36.4%) 273(233,) 253.9(9.4)
Gen SO 32 17/32(53.1%) .(250,.) 261.4(10.4)




Figure6: KaplanMeier Curves for Tumor Burden by Ten Groups

Product-Limit Survival Estimates
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3.2.3 Model fitting
The nonparametric method could not estimate the tumor burden explicitly due to a large
percentage of the censoriricherefore the parametnmodeling waspplied toextrapolateghe
median of the ten groupBirstly, ageneral idea abotie distribution othe data can be obtained
by reading the negative log of survifanctionplots and the log of negative log sxirvivor
functions plotsshown in the figure @nd 8.0Obviously, there were a bunch of nbnearlines in
the negative log of survivdunctionplots which suggested that the distribution for tumor

burden was not exponentiah figure § however the log of negative log @urvivorfunctions
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plots wereapproximately parallel linearly distributegthich meanshe proportional hazards

model andhe Weibull model mighbeappropriate

Figure7: Negative log of Survivor functiofor Tumor Burden by Ten Groups
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Figure8: Log of Negative Log of Survivor Functiofgr Tumor Burden by Ten Groups
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Similar to tumor latency, the proportional hazards model for tumor burden wasfided
model selection was performedthe first stefy using PHREG procedure in SAS0 matter
which model selection methodadbeen usedherewereno explanatory variablegayednto
the modehtthe .05 significance levehAdditionally, the proportionality testing result (P < .0001)
indicated that the proportional hazards assumption was not appropriate. Therefore the Weibull

model was fited in the second step.

The estimates for Weibull model was shown in table 8 and the model selection step was
given in table 90nly treatmenstayedn the model amonthe three categorical variables

(treatment, diet and the twiactor interactiongafter two steps obackwardselection. However,
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Type Il Analysis of Effectdest gave a large P val@e = 0.2246)hich indicated that the
overalltreatment was not significaimt the model, even though the LC group significantly
decreased the tumor burdem the rats comparealith other groupsTherefore, dummy
variables for each treatment group were created and fitted in the Weibull model for further
analyzing.After step by stepackwardvariableelimination the lastvariableLC along

with .0654 P value, can only stay in the maoal€).1 significance levelHence, the Weibull
model was not significant for tumor burden eitiore detailsabout model selection were

presented by table 9.

Table8: Estimates of Weibull Model for Tumor Burden

Parameter DF Estimate Std.Error 95% Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 57843 0.0544 5.6776 5.8910 11288.6 <.0001
BPA 1 -0.0627 0.0745 -0.2088 0.0833 0.71 0.3998
DEHP 1 -0.0587 0.0750 -0.2057 0.0883 0.61 0.4339
HC 1 -0.1147 0.0730 -0.2577 0.0284 2.47 0.1161
LC 1 -0.1599 0.0723 -0.3017 -0.0181 4.88 0.0271
SO 0 0.0000

Scale 1 03223 0.0200 0.2853 0.3641

Weibull Shape 1 3.1029  0.1930 2.7467 3.5052
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Table9: Model Selection for Weibull Distribution for Tumor Burden

Log Likelihood 002
Model Variables DF . 7. AlC BIC Comparison . Critical
Likelihood ratio test Value
0 Intercept only 2 -232.039 468.08 475.66 -- - -
1 LC 3 -230.431 466.87 478.25 Ovs 1 3.21 3.84
2 Treatment 6 -229.185 470.37 493.13 1vs?2 2.498 7.82
3 Treatment, Diet 7 -229.182 472.36 498.92 2vs3 0.004 3.84
Treatment,
4 Diet, 11 -225.435 472.87 51459 3vs4 7.494 9.49

Treatment*Diet

3.3 Tumomultiplicity

The tumor multiplicity was analyzed by GENMQipocedureand COUNTREG
proceduran SAS. Four different models, including Poisson, Negative Binomial -ibdiaded
Poisson, and Zermflated Negative Binomial, were fitted respectivebynce there was a
posiive correlation between number of tumors and number of days in the study, the tests on
multiplicity were done after adjusting for the number ofgdaach animal was on the stumly

set up the OFFSET option in the model.

3.3.1 General description

The descriptive statistics such as median of tumatiplicity, mean +/ standarcerror,
minimum/maximum and median of tumor rate were shown in tablad @llowed.These
statistics that grouped by five treatments was also presenféglire 13 appendix 1In general
the mean of tumor multiplicity was 5.15, wighargervariance 21.95, whictaisel over
dispersion problemn addition, the zertractionsof BPA, HC, BPA+GENand total

exceeded10%especially the SO and SO+GEN group (21.21% and 31.25%, respeciivaky),

40



mightimply that it is a mixture Poisson model with excess zdtasight have heavy tall
because of somextremelarger valuesSpecifically, the group that has smallest median
multiplicity is SO+GEN and BPA +GEN (both 2) followed Bf{eHP and DEHP+GENI{oth 3,
HC, BPA SO (all 4, LC and LC+GEN (both 5)The largest mediamultiplicity groupwas the
HC+GEN ), with 7.66% medianfdumor rate The boxplot with more details was presented in

figure 9.

Table10: DescriptiveTable for Tumor MultiplicitySored by Diet and Treatment

Diet Treatment N Median Mean(+/-stderr) Min/Max Zero Fraction
Gen BPA 32 2 3.22(+/- 0.56) 0/15 12.50 %
Gen SO 32 2 3.97 (++0.77) 0/15 31.25 %
Con DEHP 33 3 4.45 (++0.61) 0/12 9.09 %
Gen DEHP 33 3 5.09 (+/0.85) 0/21 9.09 %
Con SO 33 4 4.82 (++0.79) 0/19 21.21 %
Con BPA 33 4 5.58 (+/0.93) 0/23 1212 %
Con HC 33 4 5.58 (+F 0.92) 0/16 15.15 %
Con LC 33 5 6.21 (+£0.92) 0/22 6.06 %
Gen LC 33 5 5.73 (+/ 0.82) 0/19 9.09 %
Gen HC 33 6 6.88 (+£0.8) 0/16 6.06 %
Total - 328 4 5.15(++ 4.68) 0/23 13.11 %
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Figure9: Boxplot for Tumor Multiplicity by Ten Goups
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3.32 Poissorregression

The full Poisson regression moateas fitted with treatment, diet, and tvfactor
interactions in the first step. However, the variable chetbe dropped by rearrange dummy
variable of thanteractiongDiet = Diet * Treatment SOJPoisson regression detectiht
treatment BPA and LC increasthe multiplicitycompaed with other groupshe P value for
DEHP was close t0.5 but still not significantBesidesinteraction betweediet andBPA
decrease the tumor multiplicity whiledietinteracedwith HC increasd multiplicity, compared
with otherinteractionsTable 11 presented the details of final Poisson model for tumor

multiplicity. Likelihood ratio test fomodelselectionwere illugrated inError! Reference
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source not found.appendix 1the full model intable 11was the final model which is

significantly explained thenajority of the variability of tumor multiplicity.

Table11: Final Poisson Model for Tumor Multiplicity

Parameter DF Estimate Standard Wald 95% Confidence  Wald Chi- Pr>
Error Limits Square ChiSq
Intercept 1 -3.9660 0.0793 -4.1214 -3.8106 2500.95 <.0001
BPA 1 0.2174  0.1083 0.0052 0.4296 4.03 0.0447
DEHP 1 -0.0650 0.1144 -0.2893 0.1592 0.32 0.5698
HC 1 0.1984  0.1083 -0.0138 0.4106 3.36 0.0669
LC 1 03782 0.1057 0.1710 0.5853 12.81 0.0003
SO 0 0.0000  0.0000 0.0000 0.0000
Diet!BPA 1 -0.6167 0.1231 -0.8578 -0.3755 25.11 <.0001
Diet!DEHP 1 0.2116 0.1129 -0.0097 0.4330 351 0.0609
Diet*HC 1 0.2487  0.0992 0.0543 0.4431 6.28 0.0122
Diet*LC 1 -0.1200 0.1008 -0.3177 0.0776 1.42 0.2339
Diet*SO 1 -0.2217 0.1190 -0.4550 0.0115 3.47 0.0624
Scale 0 1.0000 0.0000 1.0000 1.0000

3.3.3 Negativebinomial regression

Negative Binomial was fitted due to the oxispersion problem in Poisson regression.
The overdispersion parameteris significanty different from zeran negative binomial
regression. That means the Poisson regressight not bevalid since the assumption of equal
variance and meanas violated. Beside, oniheinteradion betweerdietand BPAsignificantly

decrease tumor multiplicity compagdwith other interactionswhich was consisnhtwith the
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result of Poisson modebimilarly, variable diet can be dropped and be represented as the level
of interaction between diet atieeatmentSOin the full model Table 12 gave the parameter
estimates anwald test for individual variablea the modelVariableselection was performed

by likelihood ratio testor NB model inTable17 appendix las well.Nevertheless, the results

indicated that none of the variablstayedn the final model.

Table12: Negative Binomial Model for Tumor Multiplicity

Parameter DF Estimate Standard Wald 95% Confidence  Wald Chi- Pr >
Error Limits Square ChiSq
Intercept 1 -3.8064 0.1947 -4.1881 -3.4248 382.04 <.0001
BPA 1 0.2181  0.2737 -0.3182 0.7545 0.64 0.4254
DEHP 1 -0.0828 0.2761 -0.6241 0.4584 0.09 0.7642
HC 1 0.2862  0.2739 -0.2506 0.8231 1.09 0.2960
LC 1 0.3962  0.2727 -0.1383 0.9306 2.11 0.1463
SO 0 0.0000  0.0000 0.0000 0.0000
Diet*BPA 1 -0.6350 0.2822 -1.1881 -0.0819 5.06 0.0244
Diet*DEHP 1 0.2708  0.2757 -0.2696 0.8112 0.96 0.3261
Diet*HC 1 0.1099 0.2702 -0.4197 0.6394 0.17 0.6843
Diet*LC 1 -0.1853 0.2705 -0.7154 0.3448 0.47 0.4932
Diet*SO 1 -0.2268 0.2801 -0.7758 0.3223 0.66 0.4183
Scale 1 1.0295 0.0965 0.8568 1.2371

3.34 Zercinflated Poissomegression
According to the descriptiv@ablein table 1Q there were a certain amount of rats that

never developed any tumior each grougpefore the engbint of the studyThis means there
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might bea mixture Poisson model with excess zeros for tumor multiplithg histogram plot
for tumor multiplicitywas presented iRigure14 appendix 1Although the overall zerfvactions
werenot very high, thergverequite high percentages in some of the individual groups
especially two control groups SO and SO+GHENe histogams of tumor multiplicity for

individual group were omitted in this thesige to the limitation of pages

In order to solve the issue ofeess zeros in Poisson modetr&inflated Poissonmodel
was introduced Compared with control treatment groufi,the levels of treatmertiad less zeros
in thezerainflated model andweresignificanty different from each otheL.C treatment group
had smallest zero fraction followed by DEHP, HC and BM&arwhile, the DEHP and
interaction of DieandTreatment BR decreased tumor multiplicisignificantly compagdwith
othergroups, in the Poisson modelikelihood ratio test suggestéiuat thetreatment and the

interaction of treatment and digtould be includethto the final model (se€able18in

appendix 1).
Table13: ZIP Model for Tumor Multiplicity

Parameter DF Estimate Standard Wald 95% Confidence  Wald Chi- Pr>

Error Limits Square ChiSq
Intercept 1 1.8091  0.0797 1.6529 1.9654 515.00 <.0001
BPA 1 0.0366  0.1089 -0.1768 0.2500 0.11 0.7368
DEHP 1 -0.2275 0.1158 -0.4544 -0.0005 3.86 0.0495
HC 1 0.0715 0.1089 -0.1420 0.2850 0.43 0.5116
LC 1 0.0788 0.1061 -0.1292 0.2869 0.55 0.4576
SO 0 0.0000 0.0000 0.0000 0.0000
Diet*BPA 1 -0.5688 0.1267 -0.8172 -0.3204 20.14 <.0001
Diet!\DEHP 1  0.1373 0.1146 -0.0873 0.3618 1.44 0.2309
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Diet*HC 1 0.1100 0.0996 -0.0853 0.3053 1.22 0.2696

Diet*LC 1 -0.0497 0.1014 -0.2484 0.1490 0.24 0.6242
Diet*SO 1 -0.0600 0.1201 -0.2954 0.1753 0.25 0.6170
Scale 0 1.0000 0.0000 1.0000 1.0000

Inf_Intercept 1  -1.0487 0.2845 -1.6064 -0.4911 13.59 0.0002
Inf_BPA 1 -1.0315 0.5058 -2.0228 -0.0401 4.16 0.0414
Inf_DEHP 1 -1.3188 0.5363 -2.3700 -0.2676 6.05 0.0139
Inf_HC 1 -1.0943 0.4940 -2.0626 -0.1260 491 0.0268
Inf_LC 1 -1.4748 0.5536 -2.5598 -0.3899 7.10 0.0077

3.35 Zeroinflated negativebinomial regression

The last step for model fitting, zemoflated negative binomial model was fitted to solve
both theoverdispersion and excess zeros isqgeg table 1Y The overdispersion parameter
alpha is significary different from zero in the main modevhichsupported our assumption
about the ovedispersionBeside, only interaction betweealet andtreatmen BPA significantly
decrease thetumor multiplicity compagdwith other interactiomroups, which wasconsistent
with previous resultBBut no significantly contribution was from main effect treatmdiniese
results were very similar with those of negathinomial regressiomnothersimilar result with
NB regression was the variable selection in the main model. None of the three variables
(treatment, diet and twfactor interactionsgignificantlyexplained the variability aumor

multiplicity (seeTable19in appendix 1).
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Compared the zermflated model withZIP, however, there were giant standard errors
for inflatedBPA, inflatedDEHP, and inflatd-L C, which brought a further caernabout the

validity of the zereinflated model.

Table14: ZINB model for tumor multiplicity

Parameter DF Estimate Standard Wald 95% Confidence ~ Wald Chi- Pr>
Error Limits Square ChiSq
Intercept 1 -3.6526 0.2044 -4.0532 -3.2521 319.41 <.0001
BPA 1 0.0612 0.2739 -0.4756 0.5980 0.05 0.8232
DEHP 1 -0.2401 0.2764 -0.7818 0.3015 0.75 0.3849
HC 1 0.1667  0.2829 -0.3879 0.7213 0.35 0.5557
LC 1 0.2393  0.2729 -0.2955 0.7742 0.77 0.3805
SO 0 0.0000  0.0000 0.0000 0.0000
Diet*BPA 1 -0.6368 0.2681 -1.1623 -0.1114 5.64 0.0175
Diet*DEHP 1 0.2701  0.2615 -0.2425 0.7827 1.07 0.3018
Diet*HC 1 0.0900 0.2637 -0.4268 0.6069 0.12 0.7328
Diet*LC 1 -0.1843 0.2560 -0.6861 0.3174 0.52 0.4715
Diet*SO 1 -0.1481 0.2989 -0.7340 0.4378 0.25 0.6203
Dispersion 1 09041 0.0985 0.7302 1.1193
Inf_Intercept 1 -1.5951 0.4659 -2.5082 -0.6821 11.72 0.0006
Inf_BPA 1 -20.8572 56196.83 -110165 110122.9 0.00 0.9997
Inf_DEHP 1 -22.8053 59530.33 -116700  116654.5 0.00 0.9997
Inf HC 1 -2.0466 1.8719 -5.7155 1.6223 1.20 0.2743
Inf_ LC 1 -22.5430 58282.82 -114255 114209.7 0.00 0.9997
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3.3.6 Modelcomparison

Due to the natural of the dataset, the four differegtessiongave different results
about the relationship between tumor multiplicity and treatment, diet, and interattensfore,
several criteria for model comparisoncluding log likelihood, AIC, BICPeviance/DEPearson
Chi-Square/DFand the estimated was whercount equals zerovere presentenh table 18.
Generally speaking, NB and ZINB had betperformancehan Poisson and ZIP according to all
thecriteriain the tableLoglikelihood ratio test were performed between Poisson and ZIP, and
between ZBand ZINB. And the results suggested that wespecto the detective power, ZIP
was greater than Poisson, while no significantly difference between NB and Ei€B0isson
gave a big improvement in log likelihood, AIC and BRTiwrthermoreZIP modelhadpriority on
estimated value of count equals zero, considering 12.14% versus 1844&on Chi
Square/DHndicated that NB had the bd#hessfor this datalUnfortunately the global null
hypothess of NB and ZINB modelw/ere failed to rejectSamereaults could be extracted from
the model comparisons plot in figure Thviously, NB and ZINB had a better fitting
performance, whil&IP had a betteaccuracywhen the tumor number was zero, and a better

explanatiorof our dataPoisson model had the worst fitting among the fours.
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Table15: Model Comparison for Four Full Models

Models Poisson Negative binomial ZIP ZINB

DF 9 10 13 14

Log Likelihood -1401.586  -932.987 -1037.162  -929.234
AIC 2823.172 1887.973 2104.324 1890.468
BIC 2861.102 1929.696 2161.219 1951.156
Deviance/DF 5.809 1.177 - -
Pearson ChiSquare/DF 6.954 1.042 2.476 1.095
Estimated P §=0) 0.0178 0.1589 0.1214 0.1680

/ Observed P y=0) /0.1311 /0.1311 /0.1311 /0.1311

Figure10: Model Comparisons for Fitteahd Observedlodels of Tumor Multiplidty
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Chapter 4: Discussion

4.1 Interpretation

This is a comprehensivaxperimental researathich combinedtarcinogenesistudy and
chemoprevention studgpgetherIn general, the chemical compounds BPA, DEHP and their
combinations, no matter low dosage or high dosage, are all carcinQuetie other handhe
genisteindid not show any chemopreventigfectstatisticallyin this study In order to interpret
the results moreobustly the estimated median values were also presented in the thesis even
though the procedures were all calculated based on the na@anthe conclusion will be made

by considering both resultsoin the medians and the means.

First of all, there were some importaesultsthat been verifieavith respect to tumor
latency.According to théVilcox log-rank test, ltere is no significant differenad KaplanMeier
curvesacross thdéen groupgpleaseaefer to table 2 and figure Zjowever, the significance had
been detectedmondfive treatmend strataby adjusting diein the same procedu(please refer
to figure 11 in appendix 1for further analysis, proportional hazards model and Weibull model
were fitted.The same results shown that all theemicaltreatment, including BPA, DEHP, Low
combination and High combination, significantly shrank the time to first tuvharh had been
detected, meanwhiléghey all significantly differ from each other a®ll (please refer to table 3
and 4) Among thosehemical compounds, High combination group tended to have largest
hazard ratiand shortest median valuetafmor latencyaccording to the result of proportional
hazards model and the estimation of LIFETEBowever, in the Weibull model fitting
procedureLow combination group had the smallest estimatezificientthan otherswhich
shortened the tumor latency mostipr tumor latency, the proportional assumption was violated

according to proportionalitiestin PHREG procéure. Therefore, the results from proportional
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hazards model were nasreliableas the results fromlFETEST and LIFEREG procedur€he

log likelihood ratio test was conducted to select the variables due to the large Pof’abres
variables in the modeFinally, treatment with five levels and four dummy variables were stayed
in the model and could explain the model sufficierlg.shown in table 2, the medians of tumor
latency for allcounterpart groupaith genistein diet were teled to be larger than those of the
groupswithout genistein dietexpect for HC treatmenit means that the genistein tended to

delay the time to first tumdout lack of statistical significance.

Additionally, compared the resultstbie tumoratency,theseof tumor burdemwere not
exactly consitent Still, the nonparametric comparison of Kapiiteier curves and legank test
across ten groups were not significaiten the overall effect of treatment by adjusting diet was
not significant eitherAnd because there were two group$A+GEN and SO+GENjaving
more than half of censored datiae estimated medians were indeterminate by nonpararaettic
couldonly be extrapolated by parametric methddserefore, all the information we knew about
the median tumor burden of these two groups by nonparametric methods were they were more
than 300 daysAs shown in table Zhere was a big gap between LC group and others, no matter
with or without genistein @it. Same result could also be reflected from descriptive taide
boxplot, whichsuggestedhat the Low combination treatment shrank the tumor burden lalot.
order to further analysis the treatment effect, parametric methods, such as proportional hazard
regression and Weibull regression were perforradilar to the tumor latency, the
proportionality test for tumor burden had not been past, which indicated that the proportional
assumption for tumor burden was violatBesides, the model was not sigeaint, and none of
the variable could stay in the final modsh the Weibull model was conducted to obtain a better

fitness.Although thdog likelihood ratio tesindicatedthat there was no significant difference
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betweerthe full model with allcategorcal variable treatrant, diet and their interaction terms

and the reduced model with only treatmehé treatment variable could not stay in the model at
last. Therefore, neither of the two variables could explain the variability of tumor burden in this
study, even though the Low combination group indeed shrank the tumor burden significantly by
comparing with other treatments means if we only compare the difference of tumor burden
across the five treatment groups, Low combination group had the slwreeBlowever, the
overalltreatment factor did natffectthe tumor burden statisticallit. might bedue to the lage
percentage of censoring da#dso becausehe rats were sacrificed when the tumor volume
exceeded 10% of body weigltthetime to sacrifice was not as objective as time to death.
Therefore conclusios thatderivefrom tumor burdenverenot appropriate to infer to the whole

population.

Last but not least, tumor multiplicity had the most complicated analyzing results that
neead to be discussdatoroughly According to thelescriptivetable and boxplot, the smallest
median and mean adimor multiplicity was the BPA+GEN group, which was a big decrease
compared to the BPA groufimilar to tumor latencymostof the medians and eans of tumor
multiplicity for counterpart groups with genistein diet were tended to be smalleottieguial to
those of the groups without genistein diéeverthelesshe mean ofDEHP, median and mean of
HC treatment grouphad the reverse pattedbhmeans the genistein might hasféecton
reducing total tumor number, and there mighsbme problems in DEH&nd HCgrougs. In
order to determine thexplanatoryeffects of those chemical treatments and genislieinon
tumor multiplicity of the rats, general Poisson regression was conducted firstly since the count
data was expected to follow a Poisson distrib{ifibrThe backward elimination suggested that

the final model for Poisson regression should including treatment and the interaction between
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treatment and dieThe main effect diet can be represented as the interaction levehtoférg
SO interaagtdwith diet genisteinAs shown irthe table 11the LC group had the largest
coefficientamong the main effect treatment, and iH@racted with genisteinad the largest
coefficient compared to other interactions. These were consigtérthe information from
descriptive tableThe Poisson regression indicated thatBR& and Low combination groups
significantly increased the total number of tumor per rat compared to other treatffeeint
while the BPA interacted with genistein ¢dweduce the tumor multiplicity. Also, the genistein
combined with High combination group could increase the tumor anmbugatmain effect of

genistein did not show up statistically in Poisson model.

However, the ovedispersion issue can be detected in the descriptive table (table 10),
where the mean of tumor multiplicity was 5.15, with a larger variance 21.95. Therefore, the
negative binomial regression was conducted as in the most common solut@addispersion.
The parameten for overdispersiorwas significanly different from zerpwhichmeans the
negative binomial model was more appropriate for this dataRbesonmodel.Y et after fitting
this flexible model, thesignificance of the explanatory factavssgone.lt had a similar
situation of the Weibull model for tumor burden, with a significant interaction level of BPA *
genistein, but none of the overall effect of the three predictors. It gave us a generathdéa o
thetumor multiplicity of BPA* genistein group was smaller than other interaction groupigh
can be read from thaescriptivetableand consistent with the result of Poissdowever the
overall treatment, diet and thémteractionwould not afect the total number of tumor per rat.

And the whole model was not statistically significant.

From the table 10 and figure 9, we can also observe a quite large fraction of zeros,

especially in these two control groups, SO and SO+Gekb-inflated count rodels,
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corresponding to the Poisson and negdiinemial were appropriate for fitting this large
fraction of zeros in count data according to the methodology introduction in chajeo-1.
inflated Poisson (ZIP) model was fitted firdifter deducting @me excess zeros in each group,
the DEHP treatment and BPA * genistein showed significantly reducing effects on tumor
multiplicity by comparingother groupsThis wasstatisticallyreasonable because they had
relatively small means and zero fractiohberefore, when other groups were deflated after
eliminating proportional zeros, the means of these groups will be increase so that the groups that
had low meangould havesignificanty lower means compared to other deflated gro8pghe
decreasing of tmor multiplicity could be detected by fitting ZIP moddbwever, biologically,
thisresult was beyond our expectation. We did not believe genistein combined by BPA can have
a better chemopreventiegfectthan genistein itseliThere must some hidden logical reasons
that had not been revealed through the experim@ntthe other hand, the control group SO had
largest zero fraction compare tbthe other levels of treatmem thezeroinflated model and

they weresignificanty different from each dter.In the last step, the corresponding zieftated
negative binomial model was fitted to solve both the -@igpersion and excess zeros issues.
Similar to negativebinomial model, the ovedispersion parameter alpha was significant, which
indicated tlat the ZIP model might not solve the owdspersion problentHowever, same to the
NB model,only interaction betweediet andtreatmenBPA significantly decreaskthetumor
multiplicity compaedwith other interactiorgroups. But no significantly contrilation was from
main effect treatmenfAnd none of the variables could stay in the final model after conducting
model selection proceduréheoverall zereinflation model was not significant dut tiee giant
standard errors for inflateBPA, inflatedDEHP,and inflatedLC. We are not confident with the

ZINB model because of the huge standard errors and thsigiificanceof global hypothesis.
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After fitting four different models for tumor multiplicity, a best model was tentatively
selected by comparing a bunch of criteria, such as log likelihood, AIC,RNiance/DFPearson
Chi-Square/DFand the estimatgatobabilitieswhencount equals zerd\Il the criteria shown that
there was a big improvement for model fitting from Poisson to ZIP, and another improvement
from ZIP to NBand ZINB(please refer to table 1Fjurthermorebecause the NB model was
nested in the ZINB model, the likelihood ratest could be conducted for model comparison.
And the result suggested that there was no signifaiffetencewith respect to the detective
power between NB and ZINBherefoe, simple model NB was preferreather than ZINB
model Indeed, the NB distbution fitted the data best according to figure 10. However, the
whole NB model was not significant when explained by treatment and’textefore, the NB
regression cannot explain where Hagiability of tumor multiplicity came fromBesides, ver-
dispeasion can be the result of excess zeros or some other cdheedlP modeis also
appropriate for such daifthe overdispersion is due to the excess zehoghis study, the origin
of the excess zeros was still unknowiet the ZIP model did reflect the datad presented what
was going on in each group. The changes of results due to take off the excess zeros in Poisson
model were statistically reasonab@nly the interactive effect was not biologically reasonable.
Still, ZIP model explained the variability of tumor multiplicity with respect to the treatment and
diet. The reason that NBiodelcannot detect the difference might be because of the bad
experiment administration. The DMBA induced mammary tumor model failede Tere a
bunch of rats that had never developed a tumor which was not right. ZIP model as a mixture
model can reflect the data better than NB because we believe our data is a mixed data with some

hi dden variabl es IhduranaryaitieowltioerNBdistributionfited the t .
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data bestthe ZIP model reflected the data best and explained what was going on in this data

mostly.

4.2 Compare to Previous literature

The results of the carcinogenic effect for BPA was consistent with the previoug2&ork
22]. Due to themultitude of sources for potential exposure suggests BPA exposure in thal gene
population[67-71], moreattentionneeded to be paid on the contamination of BPA in the

drinking water or other food containeasd medical devises

Theresultsfor DEHP were consistent with the previous work as well. It has been shown
thatDEHP causes malignant hepatocellular tumors inaiadsmice of both sex¢g2]. The U.S.
Agency for Toxic Substances aBisease Registry has determined that DEHP “"may be
reasonably anticipated to be a carcinogen" basedioralkaata However, it was lack of
evidence for thearcinogenic effect of the combinations of BPA and DEB#®&. study report the

significant results firstly.

The potential role ofienistein one of several knowsoy isoflavonesn breast cancer
treatmemnor prevention has been extensively investigated followhegearly demonstration in
classical animal models of chemicalhduced breast cancer that dietary soy protein containing
isoflavones was chemopreven{igé, 73]. In contraststudies in the athymic mouse model of
transplanted humadCF-7 breast cancer cells found that addition of genisteindaliet led to a
rapid increase itumor growtti74]. This issue has been controversial despttaad lack of
supportive clinical eviden¢40]. In our study, genistein digbt show any chemopreventive

effectin rats.
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4.3 limitations of thestudy
Although tis study providd importantevidenceabout thesffect ofthese four kinds of
compounds on tumor latendyyrdenand multiplicity,there were stilfew limitations on

experimental design and statistical inference methods.

The first problem that could introduce bias for our study belonged to the experimental
design.The animal was not died for cancer naturally, but was sacrificed by the conductor once
thecriteriafor scarifyingmeet In this case, there would be some bias from the conductor, and
the work time since they only worked fravionday toFriday. Besides, thekeep feethg those
animals after the empaint date (300 study days) to collect more information for the sfudy.

was a violation for the principle of the experiment.

Another problem came from the DMBA induced rat mammary tumor madtehe
animalswere exposed by DMBA by lavage, which was supposéatiiece a low number of
mammarytumors Note that howeverthere were as high ase third of animal that had never
developed a tumor by the endpoint détténdicates that there might be something ngrovith
the DMBA induced rat mammary tumor modsbme of the animals might not be exposed to
enoughDMBA to develop tumorThat is why the zermflated model was introduce8incethe
zercinflated model did not fithis data better thamegativebinomid, the problem for DMBA

model had still not been solved.

There is a limitation fostatisticalmethods as welllhe mammary tumor took time to be
detectedSome of theanimals night die beforesome /all inducedtumors reach a detectable size
If it wastrue, the response in this study, latency, burden, and multiplicity could all be affected.

And hence the statistical analyssght need to badjused toaccount for uncertainty in the
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number of inducetlmors.Somemethod may correct this problem by ngispecificmethod
[75-77]. Dueto very limit research timdiowever this improvement can be done in the future.

Also the improvement for zefiaflated negative binomial model can be developed if time permit.

Chapter 5: Conclusion

5.1Implications of results

For answer the firgguestionsat the beginning of the thesa| the chemicatompounds,
including BPA, DEHP, Low combination and High combinatide¢rease the time for
developing first tumobut did nothave any significargffecton thesurvival time. We will not
jump to a conclusion that the DEHP could decrease the tumor multiplicity from the results of ZIP
model because first this data was not reliable statistically and second it was not reasonable
biologically. The combinatins of BPA and DEHBecreased tumor latenayosty, no matter
low dosage or high dosadellowed by the single chemical effeéloreoverwe areexposedo
the chemical compounds, BPA, DEHP and their combinatiaur daily life widely. So we
needto paymoreattentionto the contaminated water, plastic food container or medical devises

and the most important thing is to keep the infants away from these potential toxicities

On the other hand,emisteinandall the interactionslid not show any chemoprentive
effect on tumor latency, burdemd multiplicity in this studyTherefore, by drinking soymilk or

taking genigein complement may not help prevent the breast cancer.

5.2 Futuregesearch
According to the limitation and the unsolveebblemsof this study, aeriesof research
mayneed tdbe exploredn the futureIn order toexplore thesolve the zero inflated issue,

DMBA induced modeinay neede redondrom the very beginning and make sure that there is
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no other hidden variables affect da. If the rat modelcannotbe redone, factor analysis or
clustering analysis may need to be included to reveal the hidden vafilddesome methods

that can correct the uncertainty of the tumor occurrence can be developed in the future study.

59



Reference

[1] G. Casella and R. L. BergeStatistical inference2001.

[2] H. Joe and R. Zhu, "Generalized Poisson Distribution: the Property of Mixture of Poisson
and Comparison with Negative Binomial DistributioBjometrical Journalyol. 47, pp.
219229, 2005.

[3] J. A. Nelder and R. W. Wedderburn, "Generalized linear modidsrhal of the Royal
Statistical Society. Series A (General), 370384, 1972.

[4] P. McCullagh and J. A. Neldegeneralized linear modeisl. 37: Chapmai&

Hall/CRC, 1989.

[5] A. Agresti,An introduction to categorical data analysiSecond ed. vol. 423: Wiley
Interscience, 2007.

[6] P. D. Allison,Logistic regression using the SAS system: theory and applic&fB
Publishing, 1999.

[7] A. C. Cameron an®. K. Trivedi,Regression analysis of count datal. 30: Cambridge
University Press, 1998.

[8] M. A. Newton and D. |. Hastie, "Assessing Poisson variation of intestinal tumour
multiplicity in mice carrying a Robertsonian translocatialglirnal of the Rogl
Statistical Society: Series C (Applied Statistigs), 55, pp. 123138, 2005.

[9] W. H. Greene, "Accounting for excess zeros and sample selection in Poisson and
negative binomial regression models,” 1994.

[10] N. Mantel, "Evaluation of survival dataa two new rank order statistics arising in its
consideration,Cancer Chemotherapy Reports. Parval. 50, p. 163, 1966.

[11] R. Peto and J. Peto, "Asymptotically efficient rank invariant test proceddoesial of
the Royal Statistical Society. Sexi& (General)pp. 185207, 1972.

[12] D. Collett,Modelling survival data in medical researdtondon: Chapman & Hall, 1994.

[13] D.R. Cox, "Regression models and life tables (with discussidojyhal of the Royal
Statistical Societwol. 34, pp. 187220, 1972.

[14] I. R. Hart, "Perspective: tumour spreathe problems of latencyT'he Journal of
Pathologyvol. 187, pp. 9194, 1999.

[15] J. A. AguirreGhiso, "Models, mechanisms and clinical evidence for cancer dormancy,”
Nature Reviews Cancerol. 7,pp. 834846, 2007.

[16] T. G. Karrison, D. J. Ferguson, and P. Meier, "Dormancy of mammary carcinoma after
mastectomy, Journal of the National Cancer Institutegl. 91, pp. 8685, 1999.

[17] J. Pfitzenmaier, W. J. Ellis, E. W. Arfman, S. Hawley, P. O. Mclaughlin, P. H. Lange,
and R. L. Vessella, "Telomerase activity in disseminated prostate cancer&#ls,"
International,vol. 97, pp. 1309313, 2006.

[18] D. Weckermann, P. Muller, F. Wawidgek, R. Harzmann, G. Riethmuller, and G.
Schlimok, "Disseminated cytokeratin positive tumor cells in the bone marrow of patients
with prostate cancer: detection and prognostic vallieg" Journal of Urologyol. 166,
pp. 699704, 2001.

[19] A.S.Tsao, ES. Kim, and W. K. Hong, "Chemoprevention of canc€A' A Cancer
Journal for Cliniciansyol. 54, pp. 156180, 2009.

[20] B. Mafuvadze, |. Benakanakere, F. R. L. Péez, C. Baéatlhiford, M. R. Ellersieck, and
S. M. Hyder, "Apigenin prevents developmeh medroxyprogesterone acetate

60



accelerated 7, @imethylbenz (a) anthracemeduced mammary tumors in Sprague
Dawley rats,'Cancer Prevention Researalgl. 4, pp. 13161324, 2011.

[21] B. Singh, S. M. Mense, N. K. Bhat, S. Putty, W. A. Guthiel, F. Remotti, and H. K. Bhat,
"Dietary quercetin exacerbates the development of estiogeced breast tumors in
female ACI rats, Toxicology and Applied Pharmacologyl. 247, pp. 830, 2010.

[22] A. M. Betancourt, I. A. Eltoum, R. A. Desmond, J. Russo, and C. A. Lamartiniere, "In
utero exposure to bisphenol A shifts the window of susceptibility for mammary
carcinogenesis in the ragEhvironmental Health Perspectivesl. 118, p. 1614, 2010.

[23] A.Y.Yakovlev, A. D. Tsodikov, and B. AsselaiBtochastic models of tumor latency
and their biostatistical applicationsol. 1: World Scientific Publishing Company
Incorporated, 1996.

[24] R. Wiehle, D. Lantvit, T. Yamada, and K. Christov, "CiaB24,a progesterone receptor
modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and
inducing apoptosis,Cancer Prevention Researalgl. 4, pp. 414424, 2011.

[25] S. Jagannath, W. S. Velasquez, S. L. Tucker, L. M. Fuller, P. W. NtlliauJ. T.
Manning, L. B. North, and F. C. Cabanillas, "Tumor burden assessment and its
implication for a prognostic model in advanced diffuse largielymphoma,"Journal of
Clinical Oncologyyvol. 4, pp. 859865, 1986.

[26] R.A. Evans, "The tumor bden of locally recurrent breast cancer is a neglected
prognostic factor,The American Journal of Surgemgl. 171, pp. 445148, 1996.

[27] W. D. Stein, H. Huang, M. Menefee, M. Edgerly, H. Kotz, A. Dwyer, J. Yang, and S. E.
Bates, "Other Paradigms: GrdwiRate Constants and Tumor Burden Determined Using
Computed Tomography Data Correlate Strongly With the Overall Survival of Patients
With Renal Cell CarcinomaCancer Journalyol. 15, pp. 443447, SepOct 2009.

[28] E. L. Kaplan and P. Meier, "Nonparametestimation from incomplete observations,"
Journal of the American statistical association|. 53, pp. 457481, 1958.

[29] E. A. Gehan, "A generalized Wilcoxon test for comparing arbitrarily singhsored
samples,'Biometrika,vol. 52, pp. 203223,1965.

[30] D.R. Cox, "Regression models and4itbles,"Journal of the Royal Statistical Society.
Series B (Methodologicalpp. 187220, 1972.

[31] M. P.Waalkes, J. M. Ward, and B. A. Diwan, "Induction of tumors of the liver, lung,
ovary and adrenahiadult mice after brief maternal gestational exposure to inorganic
arsenic: promotional effects of postnatal phorbol ester exposure on hepatic and
pulmonary, but not dermal cancer€drcinogenesisyol. 25, pp. 133141, 2004.

[32] P. Emmelot and E. Schesr "Multi-hit kinetics of tumor formation, with special reference
to experimental liver and human lung carcinogenesis and some general conclusions,"
Cancer Researchvol. 37, pp. 1702708, 1977.

[33] G. Casella and R. L. Berger, "Statistical inferenpe 92, 2001.

[34] A.R. Moser, W. F. Dove, K. A. Roth, and J. I. Gordon, "The Min (multiple intestinal
neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a
modifier system,The Journal of Cell Biologyol. 116, pp 15171526, 1992.

[35] A. Moser, H. C. Pitot, and W. F. Dove, "A dominant mutation that predisposes to
multiple intestinal neoplasia in the mous8¢ience (New York, NXpl. 247, p. 322,

1990.

[36] K. A. Gould, C. Luongo, A. R. Moser, M. K. McNeley, Rorenstein, A. Shedlovsky,

W. F. Dove, K. Hong, W. F. Dietrich, and E. S. Lander, "Genetic evaluation of candidate

61



[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

genes for the Mom1 modifier of intestinal neoplasia in miGeheticsyol. 144, pp.
17771785, 1996.

H. Nagase, J. H. Mao, and A. Balin, "A subset of skin tumor modifier loci determines
survival time of tumotbearing mice,’Proceedings of the National Academy of Sciences,
vol. 96, pp. 150325037, 1999.

N. R. Drinkwater and J. H. Klotz, "Statistical methods for the analysiswdrtu
multiplicity data,"Cancer Researchvpol. 41, pp. 113119, 1981.

D. B. Dunson and J. K. Haseman, "Modeling Tumor Onset and Multiplicity Using
Transition Models with Latent Variable®ilometrics,vol. 55, pp. 96870, 1999.

N. M. Brown, C. A. Belles, S. L. Lindley, L. Zimm&techemias, D. P. Witte, MD.

Kim, and K. D. R. Setchell, "Mammary gland differentiation by early life exposure to
enantiomers of the soy isoflavone metabolite equkaddd and Chemical Toxicology,

vol. 48, pp. 30423050, 2010.

S. Jenkins, J. Wang, |. Eltoum, R. Desmond, and C. A. Lamatrtiniere, "Chronic oral
exposure to bisphenol A results in a nonmonotonic dose response in mammary
carcinogenesis and metastasis in MM&NbB2 mice,"Environmental Healt
Perspectivesyol. 119, p. 1604, 2011.

H. Witschi, 1. Espiritu, S. T. Dance, and M. S. Miller, "A mouse lung tumor model of
tobacco smoke carcinogenesisgxicological Sciencespl. 68, pp. 322330, Aug 2002.
R. P. Singh, G. Deep, M. Chitteath, M. Kaur, L. D. DwyeiNield, A. M. Malkinson,

and R. Agarwal, "Effect of silibinin on the growth and progression of primary lung
tumors in mice,'Journal of the National Cancer Institutegl. 98, pp. 84655, Jun 2006.
C. C. Conaway, C. X. Wan@, Pittman, Y. M. Yang, J. E. Schwartz, D. F. Tian, E. J.
Mcintee, S. S. Hecht, and F. L. Chung, "Phenethyl isothiocyanate and sulforaphane and
their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas
induced by tobacco carcinogeinsA/J mice,"Cancer researchyol. 65, pp. 8548557,
Sep 2005.

L. GarciaSegura, F. DioleBojda, V. Lenoir, F. Naftolin, and B. Kerdelhué "Estrogen
like effects of the mammary carcinogen 7;dighethylbenz (< i> a</i>) anthracene on
hypothalamic euronal membranesBrain research bulletinyol. 28, pp. 62528, 1992.
C. Pasqualini, A. Sarrieau, M. Dussaillant, M. Corbani, F. B@jiddez, W. Rostée, and
B. Kerdelhué "Estrogerlike effects of 7, 1alimethylbenz (a) anthracene on the female
rat hypothalamepituitary axis,"Journal of steroid biochemistrypl. 36, pp. 485191,
1990.

S. Jenkins, A. M. Betancourt, J. Wang, and C. A. Lamartiniere, "Endeacine
chemicals in mammary cancer causation and preventloarhal of Steroid

Biochemistry & Molecular Biologyol. 129, pp. 192200, 2012.

Y. B. Wetherill, B. T. Akingbemi, J. Kanno, J. A. McLachlan, A. Nadal, C.
Sonnenschein, C. S. Watson, R. T. Zoeller, and S. M. Belcher, " In vitro molecular
mechanisms of bisphenol A actioéproductive Toxicologypl. 24, pp. 178198,

2007.

J. Autan, "Toxicity and health threats of phthalate esters: review of the literature,"”
Environmental Health Perspectivesl. 4, p. 3, 1973.

B. Davis, R. Maronpot, and J. Heindel, “@ethylhexyl) phthalate suppresses estradiol
and ovulation in cyclingats," Toxicology and applied pharmacologyl. 128, pp. 216
223, 1994.

62



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

J. M. Peters, M. W. Taubeneck, C. L. Keen, and F. J. Gonzalez,-diinythexyl)

phthalate induces a functional zinc deficiency during pregnancy and teratogenesis that is
independent of peroxisome proliferatactivated receptem , Tératology,vol. 56, pp.
311-316, 1997.

J. M. Ward, J. M. Peters, C. M. Perella, and F. J. Gonzalez, "Receptor and nonreceptor
mediated orgaispecific toxicity of di (2ethylhexyl) phthalate (DEP) in peroxisome
proliferatora c t i v a t e-dull mieeg T@xicblagic Rathologwol. 26, pp. 24246,
1998.

X. O. Shu, F. Jin, Q. Dai, W. Wen, J. D. Potter, L. H. Kushi, Z. Ruan, Y. T. Gao, and W.
Zheng, "Soyfood intake during adolescence andemgient risk of breast cancer among
Chinese women,Cancer Epidemiology Biomarkers & Prevention]. 10, pp. 483488,
2001.

A. H. Wu, R. G. Ziegler, A. Nomura, D. W. West, L. N. Kolonel, P. L. HBoss, R. N.
Hoover, and M. C. Pike, "Soy intake arsk of breast cancer in Asians and Asian
Americans,"The American Journal of Clinical Nutritionpl. 68, pp. 14378.443S,

1998.

P. M. Martin, K. B. HORWITZ, D. S. RYAN, and W. L. McGUIRE, "Phytoestrogen
interaction with estrogen receptors in humagealst cancer cellsEndocrinologyyol.

103, pp. 18641867, 1978.

D. T. Zava and G. Duwe, "Estrogenic and antiproliferative properties of genistein and
other flavonoids in human breast cancer cells in vitro," 1997.

H. Wei, R. Bowen, Q. Cai, S.@nes, and Y. Wang, "Antioxidant and antipromotional
effects of the soybean isoflavone genistein Pinceedings of the Society for
Experimental Biology and Medicine. Society for Experimental Biology and Medicine
(New York, NY)1995, pp. 124.30.

T. Akiyama, J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, and
Y. Fukami, "Genistein, a specific inhibitor of tyrosispecific protein kinasesJournal

of Biological Chemistryyol. 262, pp. 5595595, 1987.

C. Wang and M. S. Kuer, "Effects of phytoestrogens on DNA synthesis in MGF
cellsin the presence of estradiol or growth factors," 1998.

T. Fotsis, M. Pepper, H. Adlercreutz, G. Fleischmann, T. Hase, R. Montesano, and L.
Schweigerer, "Genistein, a dietaatgrived inhbitor of in vitro angiogenesis,"

Proceedings of the National Academy of Scienads90, pp. 2692694, 1993.

C. A. Lamartiniere, J. B. Moore, N. M. Brown, R. Thompson, M. J. Hardin, and S.
Barnes, "Genistein suppresses mammary cancer in Catsghogenesisyol. 16, pp.
28332840, 1995.

W. B. Murrill, N. Brown, J. Zhang, P. Manzolillo, S. Barnes, and C. Lamartiniere,
"Prepubertal genistein exposure suppresses mammary cancer and enhances gland
differentiation in rats,'Carcinogenesisyol. 17,p. 1451, 1996.

L. Hilakivi-Clarke, I. Onojafe, M. Raygada, E. Cho, T. Skaatr, I. Russo, and R. Clarke,
"Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis,”
British Journal of Canceryol. 80, p. 1682, 1999.

J. K. Day,C. BeschWilliford, T. R. McMann, M. G. Hufford, D. B. Lubahn, and R. S.
MacDonald, "Dietary genistein increased DMB#duced mammary adenocarcinoma in
wild-t ype, but n oNutritoR and Cancemol. 89epp. 226232, 2001.

63



[65] P. Kijkuokool,l. S. Parhar, and S. Malaivijitnond, "Genistein enhances N
nitrosomethylureanduced rat mammary tumorigenesiSancer Lettersyol. 242, pp.
5359, 2006.

[66] N. M. Brown, P. A. Manzolillo, J. Zhang, J. Wang, and C. A. Lamartiniere, "Prenatal
TCDD and pedisposition to mammary cancer in the r&rcinogenesisyol. 19, pp.
16231629, 1998.

[67] A. M. Calafat, Z. Kuklenyik, J. A. Reidy, S. P. Caudill, J. Ekong, and L. L. Needham,
"Urinary Concentrations of Bisphenol A anedNénylphenol in a Human Referem
Population,"Environmental Health Perspectivesl. 113, pp. 394395, 2005.

[68] A. M. Calafat, J. Weuve, X. Ye, L. T. Jia, H. Hu, S. Ringer, K. Huttner, and R. Hauser,
"Exposure to bisphenol A and other phenols in neonatal intensive care unit peesmatur
infants,"Environmental Health Perspectivesl. 117, p. 639, 2009.

[69] A. M. Calafat, X. Ye, L. Y. Wong, J. A. Reidy, and L. L. Needham, "Exposure of the US
population to bisphenol A andtértiary-octylphenol: 20032004,"Environmental Health
Perspetives,vol. 116, p. 39, 2008.

[70] J.L.Carwile, H. T. Luu, L. S. Bassett, D. A. Driscoll, C. Yuan, J. Y. Chang, X. Ye, A.
M. Calafat, and K. B. Michels, "Polycarbonate bottle use and urinary bisphenol A
concentrations,Environmental Health Perspectivesl. 117, p. 1368, 2009.

[71] M. S. Wolff, S. L. Teitelbaum, G. Windham, S. M. Pinney, J. A. Britton, C. Chelimo, J.
Godbold, F. Biro, L. H. Kushi, and C. M. Pfeiffer, "Pilot study of urinary biomarkers of
phytoestrogens, phthalates, and phenols in ‘gElsyironmental Health Perspectives,
vol. 115, p. 116, 2007.

[72] W. M. Kluwe, "Overview of phthalate ester pharmacokinetics in mammalian species,”
Environmental Health Perspectivesl. 45, p. 3, 1982.

[73] C. A. Lamartiniere, M. S. Cotroneo, W. A. Fritz Wang, R. MenteMarcel, and A.
Elgavish, "Genistein chemoprevention: timing and mechanisms of action in murine
mammary and prostateThe Journal of nutritionyol. 132, pp. 552%58S, 2002.

[74] C.-Y.Hsieh, R. C. Santell, S. Z. Haslam, and W. G fétalh, "Estrogenic effects of
genistein on the growth of estrogen recejpositive human breast cancer (MC}-cells
in vitro and in vivo,"Cancer researchyol. 58, pp. 38338838, 1998.

[75] D.B. Dunson and G. E. Dinse, "Distinguishing Effects on Tumor Multiplicity and
Growth Rate in Chemoprevention ExperimenBigmetrics,vol. 56, pp. 1068.075,

2000.

[76] L.s. Freedman, D. N. Midthune, C. C. Brown, V. Steele, and G. J. Kelloff, "Statisti
analysis of animal cancer chemoprevention experimeBisthetrics,pp. 259268, 1993.

[77] S. M. Kokoska, "The analysis of cancer chemoprevention experimBras)étrics,pp.
525534, 1987.

64



Appendix1: Tables and Figures

Table16: Model Selection of Poisson Model for Tumor Multiplicity

. Log _ Likelihood ~=95
Model Variables DF 2. AlC BIC Comparison . Critical
Likelihood ratio test value
0 Interceptonly 0  -1450.81  2903.61 2907.4 -- -- --
1 Treatment 4 -1422.07 2854.b 2873.1 Ovsl 57.48*** 9.49
2 Treatment, 1401.%  2823.17 2861.1 1vs2 40.96%*  11.07
Treatment* Diet
Note: *** P < .0001
Table17: Model Selection of NB Model for Tumor Multiplicity
o P=.05
Model Variables DF L_og . AlC BIC Comparison L|k_el|hood Critical
Likelihood ratio test Value
0 Intercept only 1 -940.866 1885.73 1893.3 -- -- --
1 Treatment 5 -936.582 1885.16 1907.9 Ovs1l 8.568 9.49
2 Treatment, 10 -932.986 1887.97 1929.7 1vs2 7.192 11.07

Treatment*Diet

Table18: Variable Selection for Poisson Given in ZIP Model for Tumor Multiplicity

. P=.05
Model Variables DF L_og_ AIC BIC Comparison le_ellhood Critical
Likelihood ratio test value
0 Intercept only 4  -1062.58 2137 2160 -- -- --
1 Treatment 8 -1049.35 2119 2157 Ovsl1 26.328%** 9.49
2 Treatment, 13 -1037.16 2104 2161 1vs2 24384  11.07

Treatment*Diet

Note: *** P <.0001
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Tablel9: Variable Selection for NB Given in ZINB Model for Tumor Multiplicity

Treatment*Diet

Log Likelihood ;02
Model Variables o2 AIC BIC Comparison . Critical
Likelihood ratio test value
0 Intercept only -936.233 1886 1913 -- -
1 Treatment -932.963 1888 1930 6.540 9.49
2 Treatment, -929.234 1890 1951 7.457 11.07

Figurell: Boxplot for TumorLatency byTreatmentAdjustingDiet
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Figurel2: Boxplot for TumorBurden byTreatment AdjustingDiet
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Figurel3: Boxplot for TumorMultiplicity by TreatmentAdjustingDiet
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Figurel4: Histogram of Overall Tumor Multiplicity
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Appendix2: Partial SAS Code

proc import out =data0
datafile  =' D\ #xxexex
dbms=csv replace;
getnames:yes;

run ;

proc format ;

value ftreat 1="BPA'" 2='DEHP' 3='LC
proc format ;

value diet 1='Gen' 0='Con' ;run;
proc format ;

4="HC'

15

5='SO'

,run g

20

25

value 'tgp 1='"BPA" 2='DEHP' 3='LC' 4='HC' 5='SO' 6='SO+GEN' 7='BPA+GEN'

8='DEHP+GEN' 9='LC+GEN' 10="HC+GEN'; run ;
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data dataO; set dataO;

Treat= 1*(group in ( 1, 7))+ 2*groupin ( 2,8))+ 3*groupin ( 3, 9)+

4*(group in ( 4,10))+ 5*groupin ( 5, 6));
Diet=(group > 5);
format treat treat. group tgp. diet diet. ;
drop treatment; rename treat=Treatment;

run ;

data data300; set datacheck; cutoff day= 300; if days_on_study>= O;
array palpable_t{ 23} palpable_t1 - palpable_t23;

array tcensor{ 23}tcensorl -tcensor23;

array t{ 23}t1 -1t23;

do i=1 to 23;

tcensor{i}=(palpable_t{i} - dob >cutoff_day or palpable_t{i}= K
t{i}=min(palpable_t{i} - dob, cutoff_day);
end;

Burden=min(cutoff_day,rdays_on_study);
T2tumor=1t2 -t1;

t2censor=tcensor2 - tcensorl;
Lnb=log(Burden);

LNT1=LOG(T1);

logbw=log(body_weight);
loguw=log(uterine_weight);
censor300=(rdays_on_study > cutoff_day);

Weight_ratio=body_weight/ uterine_weight;
Multiplicity=N(OF t1 -123) - SUM(OF tcensorl - tcensor23);
Tumor_rate=Multiplicity/rdays_on_study* 300;

BPA=(treaTment= 1);
DEHP=(treaTment=2);
LC=(treaTment= 3);
HC=(treaTment= 4);
BPAGEN=BPA*DIET;
DEHPGEN=DEHP*DIET;
LCGEN=LC*DIET;
HCGEN=HC*DIET;
KEEP animal_id cage dob treatment group body_weight uterine_weight rsac_date
rdays_on_study total_tumors total_tumor_volume tumor_burden LNT1 logbw
loguw
t1 - t23 burden T2tumor t2censor Inb cutoff_day censor300 diet tcensorl
tcensor23
weight_ratio multiplicity tumor_rate Int BPA DEHP LC HC BPAGEN DEHPGEN
LCGEN HCGEN,;
run ;

PROCMEANSdata =data300 maxdec=2 N median mean stderr min max noprint ;
CLASS treatment diet group;
var burden;

OUTPUTout =meansl n=n median =median mean=mean stderr =stderr min=min

max=max;
RUN

proc sgplot data =data300;
vbox burden/ category =group;
run ;

proc freq data =data300;

70



table treatment*diet/ chisq ;
weight  Multiplicity;
run ;

proc logistic data =data300;

class treatment( ref ='SO' ) diet( ref ='"Con' )/ param=reference;
model tcensorl ( event ='1' )=treatment diet;

run ;

PROCLIFETEST data =data300 plots =(s, Is ,IIs);
STRATA treatment; TIME tl*tcensorl( 1); test diet;
title 'Lifetest for Tumor Latency in 300 Days' ;run ;
PROCLIFETEST data =data300 plots =(s, Is, lls,h);
strata  treatment; time burden*censor300( 1); test diet BPAGEN DEHPGEN ;
title 'Lifetest for Tumor Burden in 300 Days' ; run ;

PROCLIFEREG data =data300 outest =elt; CLASS treatment; MODEL
tl*tcensorl( 1)=treatment diet treatment*diet;

title ‘Lifereg for Tumor Latency in 300 Days' ;

RUN

PROCLIFEREG data =data300; CLASS treatment; MODEL
burden*censor300(  1)=treatment diet treatment*diet;

title ‘Lifereg for Tumor Burden in 300 Days' ;

RUN

proc phreg data =data300; class treatment;

model burden*censor300(  1)=treatment diet treatment*diet/ selection  =forward;
run ;

proc phreg data =data300; class treatment;
model burden*censor300( 1)= treatment x1 X2 X3 X4;
OUTPUTOUEOuUtp xbeta =xb resmart =mart resdev =dev;

x1=Inb*(treatment= 1);

x2=Inb *(treatment=  2);

x3=Inb*(treatment= 3);

x4=Inb*(treatment= 4);

proportionality _test: test x1, X2, X3, X4;
RUN

proc gplot data =Outp;

plot (mart dev)*xb / vref =0 cframe =ligr;
symboll value =circle c=blue;

run ;

PROCGENMODJata =data300 plots =all ; class treatment( ref ='SO');

model multiplicity=treatment diet treatment*diet/ offset =Inb dist =NB;
title 'Multiplicity Estemated by Treatment and Diet for Negative
Binominal'

run ;

proc countreg data =data0O0;

model multiplicity=BPA DEHP LC HC DIET BPA GEN DEHRGEN LCGEN HGGEM offset =
Inb dist =zip;

zeromodel  multiplicity~BPA DEHP LC HC DIET BPA GEN DEHRSEN LCGEN HGGEN

title 'Countreg for ZIP model' ;

run ;
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