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Abstract 

 

 

Since the chemicals, including Bisphenol A (BPA), Bis(2-ethylhexyl) phthalate (DEHP), 

have been reported for potential carcinogens separately and genistein is an controversial 

chemopreventive isoflavone, animal experiment was designed and conducted for solving the 

following questions of interest: i) Can the compounds like BPA, DEHP and their combinations 

accelerate the carcinogenic process? ii) If  yes, which one has significant stronger effect? iii) 

Does genistein have chemopreventive effect on those rats? And iv) What are the patterns when 

genistein was fed as a diet interacted with those treated compounds together?  

Tumor latency, burden and multiplicity, analyzed univariately, were three issues of 

interests. The first two were survival time, and were analyzed by survivor functions estimated by 

nonparametric methods as well as parametrical survival regression analysis. Nonparametric 

methods did not detect any difference across ten groups while Weibull model fitted both of them 

better than Proportional hazards model. Tumor multiplicity was count data and analyzed by 

Poisson regression, negative binomial regression and their corresponding Zero-inflated models 

due to the problems of over-dispersion and excess zeros. The zero-inflated Poisson model 

reflected the multiplicity best yet negative binomial distribution fitted the data best among the 

four models. 

The survival analysis and generalized linear modeling indicated that BPA, DEHP and 

their combinations decreased the time to first tumor but did not have significant effects on tumor 

burden and multiplicity. Genistein did not show any chemopreventive effect in this study no 
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matter solo or combined with other carcinogens. In application, this study indicates that early 

exposure to plastic consumer products which contain BPA and DEHP may increase the risk of 

breast cancer, while drinking soymilk may not help. 
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Chapter 1: Introduction 

This is an applied statistical thesis that discusses the survival, count and discrete mixture 

models for tumor latency, tumor burden and tumor multiplicity for DMBA induced mammary 

tumor in carcinogenesis and chemoprevention research. Since the chemicals, including 

Bisphenol A (BPA), Bis(2-ethylhexyl) phthalate (DEHP), have been reported for potential 

carcinogens separately and genistein is an controversial chemopreventive isoflavone, animal 

experiment was conducted for solving the following questions of interest: i) Can the compounds 

like BPA, DEHP and their combinations, which were orally exposed to the female offspring of 

the DMBA induced rats accelerate the carcinogenic process? ii) If  yes, which one has significant 

stronger effect? iii) Does genistein have chemopreventive effect on those rats? And iv) What are 

the patterns when genistein was fed as a diet interacted with those treated compounds together? 

Correspondingly, if we convert these biological questions into statistical one, our 

interested problems would be: i) Could the chemical treatments and genistein diet explain the 

variability of the tumor latency, burden and multiplicity? ii) What kind of distributions did them 

follow univariately?  

In order to answer these specific questions, a collection of statistical approaches were 

applied to model the data and explain the variability. The multivariate data analysis did not 

developed in this study. Instead, we analyzed Tumor latency, tumor burden and tumor 

multiplicity separately as univariate response as we want to consider each carcinogenic and 

chemopreventive result separately. These three variables stood out as the best choices for the 

responses not only because of their popularity among researchers who study carcinogenesis and 

chemoprevention, but also because they are the keys for evaluating the process of 
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carcinogenicity and the results of chemoprevention. Although there were various definitions 

about these three terms, in this study, we define tumor latency as the time between the date that 

the first tumor had been detected and the date of birth for each rat. Similarly, tumor burden, 

being defined as the time from birth to sacrifice given tumor onset, is the survival time as well in 

this study. Tumor multiplicity was defined as the number of the total tumor per rat.  

Tumor latency and burden are typical survival time with censored data so that can be 

modeled appropriately by survival analysis. Tumor multiplicity, the number of tumors per animal 

at a particular time was expected to follow a Poisson distribution [1] so that can be modeled as 

Poisson regression. However, the negative binomial (NB) distribution, which is well known to be 

a gamma mixture of Poisson, is much more widely used in modeling over-dispersed count data 

[2]. In addition, the zero fraction of tumor multiplicity tended to be large according to histogram 

plot and descriptive table in chapter 3. Therefore, negative binomial regression were applied to 

address over-dispersion issue and zero-inflated count models, including zero-inflated Poisson 

model and zero-inflated negative binomial model were fit ted to balance excess zeros.  

In sum, the statistical methods applied in this study were all fallen into the big umbrella 

of generalized linear model, which is including survival analysis and count data regression, only 

except the zero-inflated count models. They are, however, very flexible extensions for general 

Poisson regression.  

This introduction chapter focused on the methodology background of generalized linear 

model, survival analysis, and zero-inflated count model. It also summarized statistical inference 

methods on tumor latency, tumor burden and tumor multiplicity, and illustrated the motivation of 
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this study with more details. Throughout the paper, capital letter represents random variable, and 

boldface notation is used to denote matrices and vectors in the equations and other statements. 

1.1 Generalized linear model 

 Poisson regression is a form of regression analysis used to model count data and 

contingency tables, and Exponential regression can be used to model survivor function in 

survival data analysis. Both of the distributions belong to the exponential families and can be 

modeled by generalized linear model. Therefore, a brief introduction for generalized linear 

model is present at the beginning. 

1.1.1 General overview 

 The term ‘Generalized linear model (GLM)’ is due originally to Nelder and Wedderburn 

(1972)[3], who showed how linearity could be exploited to unify apparently diverse statistical 

technique. In this section, the notation and approach are closely following the book Generalize 

Linear Model written by McCullagh and Nelder (1989) [4]. Begin by considering the normal 

linear regression model,  

Y i = X iɓ + εi, i = 1, . . . , n,     (1.1) 

where Y i is a dependent variable, xi is a vector of k independent variables, ɓ is a k-by-1 vector of 

unknown parameters and the εi are normally distributed random errors with zero-mean and 

constant variance σ
2
. To extend to GLM, it allows for response variables that have other than a 

normal distribution and allows modeling some function of the mean. 

All GLMs have three components [5]:  
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1) The random component identifies the response variable Y and assumes a probability 

distribution for it. The distribution may be any probability distribution that comes from an 

exponential family other than normal. 

2) The systematic component specifies the explanatory variables for the model. 

Covariates x1, x2, . . . , xp produce a linear predictor ɖ given by ɖ = В  ὀἲɼ. This is the only 

component that does not change when it extends to GLM. 

3) The link function specifies a function of the expected value (mean) of Y, which the 

GLM relates to the explanatory variables through a prediction equation having linear form. If we 

write η = g (μ), then the g (∙) will be called the link function. 

 In this study, one of the responses, tumor multiplicity, would be assumed to follow the 

Poisson distribution instead of normal distribution. Meanwhile, other two responses, time to first 

tumor (tumor latency) and time to death (tumor burden) will be assumed to follow the 

exponential distribution in GLM. Therefore, these two kinds of regression will be discussed with 

more details in the next two sections. 

1.1.2 Poisson regression 

 Poisson regression models are generalized linear models with the logarithm as the link 

function, and the Poisson distribution function. The PMF of Poisson distribution is given by 

P (X=x | λ) =
Ȧ

,  x= 0, 1, 2 …    (1.2) 

The assumptions of Poisson regression include: 
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1. Logarithm of the response rate changes linearly with equal increment increases in the 

predictors. 

2. Changes in the rate from combined effects of different predictors are multiplicative. 

3. At each level of the covariates the number of cases has variance equal to the mean. 

4. Observations are independent. 

 Therefore, the expected mean λ is a loglinear function of predictors. 

log λi = β0 + β1xi1 + β2xi2 + … + βkxik.   (1.3) 

The unknown parameters can be estimated by the maximum likelihood estimation, which 

is more convenience to calculate the log-likelihood function. Once the third assumption is 

violated, which means the variance is larger than the mean, it is known as extra-Poisson variation, 

or over-dispersion. A common cause of this problem is heterogeneity among subjects. One 

simple way to correct over-dispersion is correct the standard errors and chi-square if the lack of 

efficiency of conventional estimates can be simply ignored [6]. Under some circumstances, the 

problem of over-dispersion can also be solved by fitting a negative binomial regression model 

instead [7].  

 The negative binomial is another distribution that is concentrated on the nonnegative 

integers. Unlike the Poisson, it has an additional parameter such that the variance can exceed the 

mean. Indeed the negative binomial distribution is widely used to model count data [4] and the 

PMF is  

P (X=x | r, λ) = 
Ȧ
  , x = 0, 1, 2, ...   (1.4) 
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with mean λ and variance λ (1 + ) for r  0, where r is the number of failures until the 

experiment is stopped and the shape parameter of the gamma mixing distribution as well. When 

the over-dispersion parameter ɻ =  goes to zero, the second factor will converge to one, and the 

third to the exponent function Ὡ . So the negative binominal distribution corresponds to the 

Poisson distribution [8]. So it is a generalization of the Poisson model, and its loglinear function 

can be written as  

log λi = β0 + β1xi1 + β2xi2 + … + βkxik + εi,   (1.5) 

where the dependent variable Y i is assumed to have a Poisson distribution with the expected 

value λi, conditional on εi. The exp (εi) is assumed to have a standard gamma distribution, 

following that the unconditional of Y i is a negative binomial distribution. Equation 1.5 can be 

efficiently estimated by maximum likelihood estimation method as well.  

 The Poisson and negative binomial distributions are well suited for describing counts of 

events that occur in some interval of time. If the events are counted over different lengths of time 

for different individuals, there is a need for standardization. The time incorporated model is 

given by 

P (X=x | λ, t) =
Ȧ

,  x= 0, 1, 2 …   (1.6) 

where t is the length of the observation interval for individual, and λt is the expected value. The 

loglinear function in this case is 

log E(Y i) = log (λiti) = log ti + log λi = log ti + β0 + β1xi1 + β2xi2 + … + βkxik  (1.7) 
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It implies that the logarithm of the observation time should be on the right-hand side of the 

equation, with a coefficient of 1.0. Therefore, the logarithm of tumor burden had been set as an 

offset variable in this study. 

1.1.3 Zero-inflated count model 

 Another common problem with Poisson regression is excess zeros. For example, if there 

are two processes at work, one determining whether there are zero events or any events, and a 

Poisson process determining how many events there are, there will be more zeros than a Poisson 

regression would predict. In this case, the zero-inflated count can be applied to take care of the 

excess zero-count data in unit time [9].  

 The main motivation for zero-inflated count models is that real-life data frequently 

display over-dispersion and excess zeros. These distributions are a mixture of two distributions, a 

degenerate component that is zero with certainty and a second component that includes zeros and 

positive values (e.g., the Poisson distribution). The general form of these distributions is 

P (Y=y) = 
ʌ ρ ʌÆπȟÙ πȟ

ρ ʌÆÙȟÙ ρȟςȟȣ
    (1.8) 

where π is the probability that an observation comes from the degenerate component. Two 

commonly used zero-inflated distributions are the zero-inflated Poisson (ZIP) and zero-inflated 

negative binomial (ZINB) [10]. 

 In order to describe ZIP model explicitly, assume that the second component which 

includes zeros and positive integer is Poisson distribution with mean and variance λ. Therefore, 

the PMF of ZIP model is  
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P (Y=y) = 
ʌ ρ ʌὩ ȟÙ πȟ

ρ ʌὩ
Ȧ
ȟÙ ρȟςȟȣ

    (1.9) 

where π is the probability that an observation comes from the degenerate component. The mean 

and variance of the ZIP model is given by 

E(Y) = E (E (Y|X)) = E(X λ) = (1- π) λ, 

and var (Y) = var (E (Y|X)) + E(var (Y|X)) 

=var (X λ) + E(X λ) 

=λ
2
 π (1-π) + (1- π) λ 

= λ (1- π) (1+λ π) 

ZINB model is a more realistic model for application. Assume that the second component which 

includes zeros and positive integer is a gamma distribution with mean μ and heterogeneity 

parameter α. Therefore, the PMF of ZINB model is  

P (Y=y) = 

ʌ ρ ʌ ȟÙ πȟ

ρ ʌ ȟÙ ρȟςȟȣ
   (1.10) 

where π is the probability that an observation comes from the degenerate component. Similarly, 

the mean and variance of the ZINB model is given by 

E(Y) = E (E (Y|X)) = E(X λ) = (1-π) μ, 

and var (Y) = var (E (Y|X)) + E(var (Y|X)) 

=var (X μ) + E(X (μ +  μ
2
)) 
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=μ
2
 π (1-π) + (1- π) (μ + μ

2
)) 

= μ (1- π) (1 +  μ +π μ) 

Note that these two zero-inflated models have the similar mean variance property as the standard 

negative binomial models. It is not surprising that in some cases these models are confounded 

with each other and all of them can fit the data well. General, the ZINB model seems to be most 

flexibility  and efficiency but has very limited application due to the large estimated variance and 

large AIC/BIC [11]. 

1.1.4 Exponential regression 

 Exponential regression models are generalized linear models with the inverse as the link 

function, and the Exponential distribution function. The PDF for exponential distribution is given 

by  

P (X=x | λ) = λÅ ,   x  0     (1.11) 

with mean 1/λ and variance 1/λ
2
. The exponential distribution occurs naturally when describing 

the lengths of the inter-arrival times in a homogeneous Poisson process. Even though it can be 

used to model survival data, the goodness of fit test may be failed due to the large deviation.  

 Weibull distribution is another distribution related to both the exponential and gamma 

families. If X ~ exponential (β), then Y = 8Ⱦ  has a Weibull (γ, β) distribution [1]. It plays a 

central role in survival analysis as the normal distribution dose in the standard analysis [12]. 

More details about Weibull model will be provided at subsection 1.2.7., under the topic of 

survival analysis. 
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1.2 Survival analysis 

Survival analysis is the phrase used to describe the analysis of data that correspond to the 

time from a well-defined time origin until the occurrence of some particular event or endpoint 

[12]. This method has been widely used in medical research and is also called reliability analysis 

in engineering. The typical questions that can be answered by survival analysis are: i) What is 

the probability of a population which will survive past a certain time? ii) Which population is 

more likely to have a longer lifespan and better prognosis, when there are several treatments 

applied? iii) Can multiple causes of death or failure be taken into account? And iv) Which kind 

of cause should be taken into account? In this section, the notation and approach are closely 

following the book Modelling survival data in medical research written by D. Collett (1994) 

[12]. 

1.2.1 Special features of survival data 

There are two special features that determine the differences between analyzing survival 

data and the standard data. The first one is that the survival data are generally not symmetrically 

distributed [12]. The histogram of survival time tends to be positively skewed, which means it 

has a longer tail to the right of the median.  

The second feature is that the survival data are frequently censored. Censoring occurs 

when the endpoint of interest has not been observed for that individual. If the actual unknown 

survival time is larger than observed survival time, which is also the most commonly case, it is 

called right censoring. For instant, one is still alive at the endpoint of the research. The 

information contained by this individual is not complete but still important. On the other hand, if 

the actual unknown survival time is shorter than observed survival time, it is known as left 

censoring. For example, the cancer has already recurred when the patient is examined. The actual 
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time for recurrence was not observed and the only thing we know is it shorter than the 

examination time. In addition, when individuals are known to have experienced a failure within 

an interval of time, it is called interval censoring. 

1.2.2 The survivor function 

The survivor function (SVF), S (t), captures the probability that the survival time is 

greater than or equal to a specified time t. The mathematical equation for SVF is given by 

S (t) = P (T t) = 1 – F (t),     (1.12) 

and represents the probability that an individual survives from the time origin to some time 

beyond t. Every SVF is monotonically decreasing function, with right continuous property. 

There are several methods to estimate survivor function, such as Life-table estimate (for non-

censored data), Kaplan-Meier estimate (for censored data), and so on.  

Kaplan-Meier estimate of the survivor function is also known as the product-limit 

estimate of the survivor function. By defining nj as the number of successes including the number 

of about to fail before time tj and dj as the number of failure at time tj, the K-M estimate is given 

by, 

S (t) = Б , k=1, 2,…r                                          (1.13) 

for t(k) ≤ t < t(k+1), with S(t) = 1 for t < t(1) and where t(r+1) is taken to positive infinite. In this study, 

Kaplan-Meier estimate was applied in the chapter 3. 

1.2.3 The hazard function 

The hazard function (HZF), h (t), is another important function of central interest. It is the 

probability that an individual dies at time t, conditional on he or she having survived to that time 
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[12]. HZF represents the instantaneous death rate for an individual surviving to time t. The 

mathematical equation for HZF is given by 

h (t) = ÌÉÍЎᴼ
Ў ȿ 

Ў
.    (1.14) 

The relationship between SVF and HZF can be derived from equation (1.12). The 

limiting value of instantaneous failure time is the derivative of F (t) with respect to t, denoted by 

f (t). So 

h (t) =  = -  [ln S(t)].     (1.15) 

1.2.4 The median survival time 

The median survival time is the preferred summary measure of the location since the 

distribution tends to be positively skewed. It is straightforward to obtain once the SVF has been 

estimated. The median survival time is the 50
th
 percentile of the distribution, and is given by the 

value t (50) which is such that S {t (50)} = 0.5. Since the non-parametric estimates of S (t) are 

step-function, it will not usually be possible to estimate the survival time that makes the SVF 

exactly equal to 0.5. Therefore, the smallest observed survival time for which the value of the 

estimated SVF is less than or equal to 0.5 is defined as the estimated median survival time. In 

mathematical terms, 

ὸǶ (50) = min {ti | ίǶ (ti)  0.5},     (1.16) 

where ti is the observed survival time for the i’th individual, i = 1, 2, …, n [12]. 
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1.2.5 Log-rank test 

 The log-rank test is a hypothesis test to compare the survival distributions of two samples, 

which also can be extended to do multiple comparisons. It is a nonparametric test and fit the 

survival data by natural. The test was first proposed by Nathan Mantel and was named the log-

rank test by Richard and Julian Peto.[10, 11], and can also be viewed as a time stratified Mantel–

Haenszel test. The log–rank test is a large-sample chi-square test that uses as its test criterion a 

statistic that provides an overall comparison of the Kaplan-Meier curves being compared. This 

(log–rank) statistic, like many other statistics used in other kinds of chi-square tests, makes use 

of observed versus expected cell counts over categories of outcomes. The categories for the log–

rank statistic are defined by each of the ordered failure times for the entire set of data being 

analyzed. 

Let O1j and O2j represent observed number of events in group 1 and group 2, respectively. 

And e1j = n1jOj / nj, e2j = n2jOj / nj be the expected number of events in each group, where nij is 

the total number of each group and nj is the total number for both group. So that we have  

χ
2
 = 

В

 В

 
~ʔ.    (1.17) 

The null hypothesis is that there is no difference in the survival experiences in the two groups. If 

the value of χ
2
 is larger than the critical value, the null hypothesis will be rejected. 

1.2.6 Proportional hazards model 

An approach based on statistical modeling can be used in order to explore the relationship 

between survival time and explanatory variables. The most commonly used model is the 

proportional hazards model, which was proposed by Cox in 1972 and has also be known as the 
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Cox regression model [13]. The model is only based on proportional hazards assumption, which 

is that hazard functions are proportional over time. There is no particular distribution is assumed, 

especially for base line distribution. Therefore, it is a semi-parametric model. 

Proportional hazards model can be expressed in the form  

hN (t) = ψ hS (t),      (1.18) 

where ψ is a constant, known as the relative hazard or hazard ratio, and hS (t) and hN (t) are the 

hazards of death at time t for patients on the standard treatment and new treatment, respectively 

[12]. Since the hazard ratio cannot be negative, the general proportional hazards function can be 

written as  

hi (t) = exp (β1x1i + β2x2i + ...+ βpxpi) h0 (t)    (1.19) 

where βi s are the coefficients of linear component. This is a generalized situation where the 

hazard of death at a particular time depends on the explanatory variables X1, X2,  … Xp. There are 

two types of variable on which a hazard function may depend, namely variates and factors. A 

variate is often a continuous variable such as height, weight, and age, which takes numerical 

values. A factor is a categorical variable like gender which takes a limited set of values. 

 The maximum likelihood estimation can be used to fit the proportional hazards model in 

order to estimate the unknown coefficients and hazard ratios. The maximization is generally 

accomplished using the Newton-Raphson procedure. 

1.2.7 Weibull model 

 The inferences based on specific distribution assumption will be more precise if the 

assumption is valid. In practice, the assumption of a constant hazard function or equivalently of 
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exponentially distributed survival times is rarely tenable. A more general form of hazard function 

is such that 

h (t) = λrt
r-1

,      (1.20) 

for 0 ≤ t < ∞, λ > 0, r > 0where λ is the scale parameter and r is the shape parameters on which 

the model depended. In particular case, when r=1, it becomes exponential distribution. For other 

r values, the HZF is a monotone function. The generalized SVF is given by 

S (t) = exp (-λt
r
).     (1.21) 

The corresponding PDF is  

f (t) = λrt
r-1

 exp (-λt
r
),     (1.22) 

for 0 ≤ t < ∞, with scale parameter λ and shape parameter r. 

1.3 Literature review 

 In this section, the review was focused on the concepts and statistical inference methods 

on tumor latency, tumor burden and tumor multiplicity. These three topics were chosen into this 

thesis, not only because of their popularity among researchers who study chemoprevention, but 

also because they are the key points to evaluate the development of tumor and the results of 

chemoprevention. A brief review for the chemical compounds that be used in the study was 

included in this section as well. 

1.3.1 Tumor latency  

 Tumor latency, or dormancy, is a well-recognized clinical phenomenon and induction or 

maintenance of this state would appear to offer a novel therapeutic approach to limiting the 

effects of neoplastic disease [14]. In the clinic, tumor dormancy is observed in local recurrences 
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or metastases. It usually refers to the time after treatment that a patient is asymptomatic but still 

carries local remnant or disseminated tumor cells that do not grow into overt lesions [15]. In 

pathological, it means the time that allows the presumably malignant cells, shed from the 

primary mass, increase in population size to become a detectable recurrence [14]. The 

mechanism is imperfectly understood and the definition is still vague. In this study, we define 

tumor latency as the time between the date that the first tumor had been detected and the date of 

birth for each rat.  

 There are evidences indicating that the cancer recurrence after therapy and long periods 

of remission is frequent. For example, 20-45% of patients with breast or prostate cancer will 

relapse years or decades later [16-18]. Tumor latency can be considered as a component of 

cancer progression and can be suppressed if the chemoprevention is applied right in time [19]. 

Therefore, how to prolong the tumor latency becomes a hot topic in oncology and pathology.  

 Statistically, there are nonparametric and parametric ways available to analyze tumor 

latency. The Kaplan-Meier curve is a widely used nonparametric method to estimate the survival 

curve when the first tumor occurrence is defined as the endpoint event [20-22]. In addition, the 

following methods are popular in addressing tumor latency. Proportional hazards regression is a 

semi-parametric way, while the Weibull, log-logistic and other distributions for survival data are 

parametric methods [12, 23]. The software tools available for implementing the survival analysis 

method include the LIFETEST and LIFEREG procedure in Statistical Analysis Software (SAS). 

They are available to estimate the survivor function, to run Log-rank test, and to setup the 

survival model for tumor latency [20, 22, 24]. 
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1.3.2 Tumor burden 

 There are many definitions for tumor burden with respect to different perspectives and 

disciplines [25-27]. In general, tumor burden also called tumor load, referring to the number of 

cancer cells, the size of a tumor, or the amount of cancer in the body. In this study, the mice were 

designed to be sacrificed when the burden is exceeded 10% of body weight. Hence the time from 

birth to sacrifice given tumor onset is defined as tumor burden in this thesis. In other words, 

tumor burden is the survival time in this study. It is worth to note that setting the endpoint as 

sacrificing instead of natural death might introduce some bias to this study. 

 The statistical inference methods for analyzing tumor burden or survival time are 

practically the same set with those for tumor latency because of the same or similar data 

properties. The method of Kaplan -Meier [28] can be used to obtain survival and relapse-free 

survival curves [25]. Survival times and disease-free survival times in distinct patient groups can 

be compared using the generalized Wilcoxon test [29]. The proportional hazards model of Cox 

can be used to detect explanatory variables’ impact on tumor latency and tumor burden [30]. 

1.3.3 Tumor multiplicity 

Tumor multiplicity (either total or malignant tumors only) , defined by Waalkes 2004, is 

the number of tumors per rat either of a particular organ or inclusively at any site [31]. In this 

study we define tumor multiplicity as the number of the total tumor per rat. It has been shown 

that the development of a tumor is a rare event occurring among a large population of cells at 

risk [32]. Therefore, the number of tumors per animal at a particular time after treatment might 

be expected to follow a Poisson distribution [33]. One implicit assumption of using Poisson 

distribution is that, the mean and variance of the number of tumors per animal for this 

distribution are supposed both equal to λ. However, usually even in highly controlled 



 18 

experiments, the assumption of equal mean and variance does not hold true. Due to various 

sources of variation in the stochastic process of tumor formation, the data usually exhibit 

significantly bigger variance than the mean, which is known as over-dispersion [34-37]. 

Therefore, negative binomial model might be a better distribution to represent the data by using 

two parameters—mean and exponent determined by the interanimal homogeneity of tumor 

response [38]. In reality the negative binomial distribution has been widely used to model count 

data [4]. When the over-dispersion parameter k goes to 0, it corresponds to the Poisson 

distribution [8].  

Dunson (1999) described that the zero-inflated Poisson model was a method for modeling 

carcinogenicity from animal studies where the data consist of counts of the number of tumors 

present over time [39]. The method is applied to testing for a dose-related trend in both tumor 

incidence and multiplicity in carcinogenicity studies [39]. Kim (2010) performed zero-inflated 

negative binomial distribution for modeling tumor multiplicity to reflect a high zero count [40]. 

Besides modeling, some of researchers were interested in the trend in proportion of tumor 

multiplicity. Cochran-Armitage test, named for William Cochran and Peter Armitage, was being 

widely used for this purpose [22, 24, 41]. In addition, others in carcinogenicity used Tukey-

Kramer test or Dunnett's multiple comparisons in ANOVA to compare the difference of tumor 

multiplicity across groups [42-44]. 

1.4 Chemical compounds 

 This was an application study which was focus on statistical inference methods and 

models but also involved several chemicals that was introduced as predictors / independent 
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variables in the model. Therefore, a brief introduction and review for those chemicals will 

provide a better understanding background. 

 7, 12-dimethylbenz (a) anthracene (DMBA), an organ- and site specific procarcinogen, 

requires metabolic activation to become an ultimate carcinogen. The dihydrodiol epoxide 

(ultimate carcinogen) and other toxic reactive oxygen species formed during its metabolic 

activation can cause chromosomal damage by binding with adenine residues of DNA, 

contributing to mutagenesis and carcinogenesis [45]. DMBA can also interact with the estrogen 

receptor and partially mimic both the positive and negative feedback actions of estradiol in 

ovariectomized rats [46]. 

Bisphenol A (BPA) is a synthetically produced chemical used in the manufacture of 

polycarbonate plastics and epoxy resins. These products are utilized in a plethora of commonly 

used consumer goods, such as food and beverage containers, the lacquer lining of canned foods 

and drinks, infant formula bottles, receipts, office water cooler tanks, laboratory and hospital 

supplies, and some dental sealants [47]. BPA is reported to alter normal estrogen, androgen, and 

thyroid hormone signaling in vitro. It has been shown to cause adverse effects in breast cancer 

cell lines, including the induction of cell proliferation, producing oxidative stress, and altering 

cell signaling pathways involved in carcinogenesis and glucose homeostasis. Further research 

has shown that BPA is capable of antagonizing the cytotoxic effects of certain 

chemotherapeutics, such as doxorubicin, cisplatin, and vinblastine [48]. 

 Bis(2-ethylhexyl) phthalate (DEHP) is an organic compound that is the most common of 

the class of phthalate plasticizers. DEHP has a low vapor pressure, but the temperatures for 

processing PVC articles are often high, leading to release of elevated levels, raising concerns 
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about health risks. It can be absorbed from food and water. Higher levels have been found in 

milk and cheese. Reports have been shown that DEHP is a potential endocrine disruptor. It has 

testicular toxicity [49], Ovarian toxicity [50], developmental toxicity [51], nephrotoxicity [52] 

and other toxicities. 

 Genistein is one of several known isoflavones. Epidemiology reports indicate that women 

consuming diet high in soy products, containing large amounts of phytoestrogens especially 

genistein, have a low incidence of breast cancer [53, 54]. Genistein (major isoflavone in soya) 

has been reported to have weak estrogenic and anti-estrogenic properties [55, 56], to be an 

antioxidant [57]and to inhibit the protein tyrosine kinase and topoisomerase II activity [58, 59] 

and also angiogenesis [60]. It is interesting that animals treated neonatally and prepubertally with 

genistein have reduced incidence and multiplicity of 7,12-dimethylbenzanthracene (DMBA)-

induced mammary adenocarcinomas, decreased numbers of terminal end buds but increased 

numbers of lobular structures [61-63]. On the contrary, in adult animals, the effects of genistein 

on mammary tumor development remain controversial. For example, in adult mice, genistein 

increases mammary tumorigenesis [64, 65]. 

1.5 Motivation and goal 

 According to the literature view, Bisphenol A (BPA), exhibiting hormone-like properties, 

has raised concerns about its suitability in consumer products and food containers. Bis(2-

ethylhexyl) phthalate (DEHP), most common plasticizer, is also reported to be a potential 

endocrine disruptor. Genistein, a potential chemopreventive isoflavone, is still controversial yet. 

Therefore, a highly controlled animal experiment was designed and conducted in order to find 

more evidence for the carcinogenesis or chemopreventive effect of these chemicals, and to 

explore more information, such that which one has stronger carcinogenic effect if they are all 



 21 

carcinogens, and what the result would be if potential chemopreventive chemical genistein 

combined with these carcinogens. In this case, we have four specific target questions need to 

answer, which are i) Can the compounds like BPA, DEHP and their combinations, which were 

orally exposed to the female offspring of the DMBA induced rats accelerate the carcinogenic 

process? ii) If  yes, which one has significant stronger effect than others? iii) Does genistein have 

chemopreventive effect on those rats? And iv) What are the patterns when genistein was fed as a 

diet interacted with those treated compounds together?  

According to the natural of the dataset, two general statistical question can cover those 

four biological questions. Therefore, our interested problems would become: i) Could the 

chemical treatments and genistein diet explain the variability of the tumor latency, burden and 

multiplicity? ii) What kind of distributions did them follow univariately?  

In order to answer these specific questions, a collection of statistical approaches were 

applied to model the data and explain the variability. The multivariate data analysis did not 

applied in this study. Instead, we analyzed Tumor latency, tumor burden and tumor multiplicity 

separately as univariate response as we want to consider each carcinogenic and chemopreventive 

result separately. Although there were various definitions about these three terms, in this study, 

we define tumor latency as the time between the date that the first tumor had been detected and 

the date of birth for each rat. Similarly, tumor burden, being defined as the time from birth to 

sacrifice given tumor onset, is the survival time as well in this study. Tumor multiplicity was 

defined as the number of the total tumor per rat.  

Obviously, tumor latency and burden are typical survival time with censored data so that 

can be modeled appropriately by survival analysis. Nonparametric methods as well as 
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parametrical survival regression analysis will be applied to analyze them. Tumor multiplicity, the 

number of tumors per animal at a particular time was expected to follow a Poisson distribution so 

that can be modeled as Poisson regression. However, if the data has over-dispersion problem, 

which is a common issue for the count data, it will not be appropriate to be modeled by Poisson 

any more. In this case, the negative binomial (NB) distribution is much more widely used in 

modeling over-dispersed count data. In addition, the excess zeros is another common issue for 

count data, which also presents in our dataset by taking look at the histogram plot and descriptive 

table for multiplicity in chapter 3. Therefore, zero-inflated count models, including zero-inflated 

Poisson model and zero-inflated negative binomial model were fit ted to balance excess zeros.  

Chapter 2: Experiment design and methods 

2.1 Animals 

 Animal care and use were conducted according to established guidelines approved by the 

Institutional Animal Care and Use Committee at the University of Alabama at Birmingham. 

Animals were treated humanely and with regard for alleviation of suffering. All animals were 

housed in a temperature controlled facility with a 12 hour light/dark cycle. Female Sprague 

Dawley CD rats (Charles River, Raleigh, NC) were bred and observed for the presence of sperm. 

Sperm positive females were separated, housed in polypropylene cages with glass water bottles 

(both polycarbonate/BPA free), and fed the phytoestrogen-free AIN-93G pelleted diet. 

2.2 Treatments, diets and groups 

Beginning on postnatal day two and continuing through postnatal day 20, the lactating 

dam of each litter was intragastrically gavaged with four different treatment, BPA, DEHP, 

LC(low combination of BPA and DEHP), HC (high combination of BPA and DEHP) and control 
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treatment SO (sesame oil) per day (on Mondays – Fridays only) along with diet (with/without 

genistein). There were 33 female offspring in each group (BPA, DEHP, LC, HC, SO, SO+GEN, 

BPA+GEN, DEHP+GEN, LC+GEN, and LC+GEN) respectively, all derived from individual 

litters, expect one missing value for each of BPA+GEN and SO+GEN group. Offspring were 

palpated twice weekly to monitor tumor development. Data were recorded on palpable tumor 

latency, location, tumor burden, and multiplicity. Animals underwent necropsy when tumor 

burden exceeded 10% of body weight. 

2.3 DMBA induced model 

At 50 days postpartum, one female offspring from each litter of each treatment group was 

given a single gavage of 30 mg DMBA/kg BW. This dose results in a low number of mammary 

tumors and allows chemicals that predispose for mammary cancer to increase the number of 

mammary adenocarcinomas [66]. Because dam treatment for lactational exposure results in a one 

exposure compartment, only one offspring from each litter was used in each experiment.  

2.4 Statistical methods 

The time-to-event data, e.g., time-to-first-tumor (latency) and time-to-sacrifice (tumor 

burden), were analyzed using the LIFETEST, PHREG and LIFEREG procedures in SAS (SAS 

Institute Inc., Cary, NC). Survivor functions were first estimated for each group using the 

Kaplan-Meier method and compared across the ten groups using the Wilcoxon log-rank test and 

parametrically using survival regression analysis [12]. Those animals that had not developed a 

tumor by the end of the study or were sacrificed were treated as censored, and the end of study or 

sacrifice times were treated as censoring times. Values for latency and burden were expressed as 

median and mean ± standard error of the mean. 
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Tumor multiplicity data were analyzed with the GENMOD (generalized linear models) 

and COUNTREG (count regression) procedure in SAS using Poisson regression, negative 

binomial regression, zero-inflated Poisson regression, and zero-inflated negative binomial 

regression on the tumor multiplicity [41]. Since there was a positive correlation between number 

of tumors and number of days in the study, the tests on multiplicity were done after adjusting for 

the number of days each animal was on the study. Values for multiplicity were presented as 

mean ± standard error of the mean. 

Chapter 3: Results 

 The total sample size for the initial study was 330 rats randomly assigned to 10 groups 

(BPA, DEHP, LC, HC, SO, SO+GEN, BPA+GEN, DEHP+GEN, LC+GEN, and HC+GEN), and 

each group had 33 rats. Two rats (one in the BPA+GEN and one in SO+GEN respectively) did 

not enroll into the study successfully due to unexpected reasons. These two missing value were 

deleted before the data analysis. As a result, the total sample size was 329. 

3.1 Tumor latency 

 This section presented selective modeling and analysis results related to tumor latency. 

3.1.1 General description 

 The descriptive statistics such as censor number and percentage, median of latency, mean 

+/- standard error, minimum/maximum by ten groups were shown in table 1 as followed. These 

statistics that grouped by five treatments was also presented in Figure 11 appendix 1. Obviously, 

there were quit large percentages for the censored data in the two control groups, SO and 

SO+GEN. In other words, large percentages of rats in the SO and SO+GEN group did not 

develop any tumor until the end of the study. The group that has shortest median latency is BPA 
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(110 days) followed by HC and HC+GEN (both 113 days), LC (115 days), DEHP and LC+GEN 

(both 119 days), BPA+GEN (112.5 days), and DEHP+GEN (124 days). The longest median 

latency group is the control group SO and SO+GEN, which had 125 and 126 days respectively. 

Diet with genistein tended to prolong the tumor latency from general, only except with the HC 

group. The boxplot in figure 1 gave more visual details. The median was much more stable than 

the mean. There was no significant difference for median while the means of two control groups 

were much larger than the treated and dieted groups. Especially, the means of the groups in 

which rats that were fed genistein as diet did not show an increasing pattern than the treatment 

groups. Therefore, we expected that the genistein did not affect the tumor latency in this study. 

Table 1: Descriptive Table for Tumor Latency Sored by Median 

Diet Treatment N Censor/ Total (Rate) Median Mean(+/-stderr) Min/Max  

Con BPA  33 4/29(12.1%) 110.0 143 (+/- 11.99) 58/300 

Con HC  33 5/28(15.2%) 113.0 149 (+/- 12.9) 86/300 

Gen HC  33 2/31(6.1%) 113.0 132.91 (+/- 9.84) 86/300 

Con LC  33 2/31(6.1%) 115.0 135.61 (+/- 9.64) 86/300 

Con DEHP 33 3/30(9.1%) 119.0 147.94 (+/- 10.8) 87/300 

Gen LC  33 3/30(9.1%) 119.0 147.39 (+/- 11.6) 93/300 

Gen BPA  32 4/28(12.5%) 122.5 157.72 (+/- 12.41) 91/300 

Gen DEHP 33 3/30(9.1%) 124.0 142.36 (+/- 9.97) 89/300 

Con SO  33 7/26(21.2%) 125.0 171.48 (+/- 14.47) 91/300 

Gen SO  32 10/22(31.3%) 126.0 178.66 (+/- 15.1) 91/300 
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Figure 1: Boxplot for Tumor Latency by Ten Groups 

 

3.1.2 Survival analysis 

 In this subsection, the event for detecting first tumor was the target event and the survivor 

function was used to estimate the probability of this event occurs during the 300 cutoff days. 

Therefore, the data will be treated as censored data if the rat had never developed a tumor during 

the 300 study days.  

The survivor functions were estimated by Kaplan-Meier curves for each group as 

presented in figure 2. The medians were exactly the same with descriptive table since there was 

no censored data before 300 days. And the differences of survivor function across ten group were 

compared by log-rank test, which was not significant with P=0.1413. However, the differences 
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across five treatment was significant with p = 0.034 by adjusting the diet. The P value for testing 

diet was 0.6471, which indicated that genistein did not delay the time to first tumor. So even 

though the two control groups (SO and SO+GEN) seems had better performance at tumor 

latency by comparing with other groups, the differences were not statistically significant. 

According to the results for strata five treatments by adjusting diet, the survival regression might 

be needed to include treatment and diet together into the model instead of using nonparametric 

way to estimate ten groups. 

Figure 2: Kaplan-Meier Curves for Tumor Latency by Ten Groups 
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Table 2: Estimates for Tumor Latency Sored by Median from LifeTest procedure 

Diet Treatment N Censor MedianLT (95% CI)  MeanLT (+/-stderr) 

Con BPA  33 4/33(12.1%) 110(105,134) 138(10) 

Con HC  33 5/33(15.2%) 113(104,143) 147.2(12.3) 

Gen HC  33 2/33(6.1%) 113(105,126) 132.5(9.7) 

Con LC  33 2/33(6.1%) 115(104,128) 132.7(8.2) 

Con DEHP 33 3/33(9.1%) 119(106,145) 141.8(8.4) 

Gen LC  33 3/33(9.1%) 119(110,138) 146.3(11.2) 

Gen BPA  32 4/32(12.5%) 122.5(110,161) 156.8(12.1) 

Gen DEHP 33 3/33(9.1%) 124(110,140) 131.8(5.5) 

Con SO  33 7/33(21.2%) 125(111,161) 170.4(14.2) 

Gen SO  32 10/32(31.3%) 126(115,177) 140.2(5.7) 

 

3.1.3 Model fitting 

As shown in the figure 3, the negative log of survivor function plots were not linear, 

which suggested that the distribution for tumor latency was not exponential. Additionally, in 

figure 4, the log of negative log of survivor functions plots were not linear either, which means 

the Weibull model might not be appropriate either. Also, the log (-log (survivor)) plots were not 

approximately parallel, therefore that the proportional hazards model might not be appropriate to 

fit.  
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Figure 3: Negative log of Survivor function Plots for Tumor Latency by Ten Groups 

 

Figure 4: Log of Negative Log of Survivor Functions Plots for Tumor Latency by Ten Groups 
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First, the Proportional Hazards Model was fitted and model selection was performed by 

using PHREG procedure in SAS. Table 3 presented the details about the estimates of 

proportional hazards model for tumor latency. In the proportional hazards model, the effects of 

the covariates are to act multiplicatively on the hazard of the survival time, and therefore it is a 

little easier to interpret the corresponding hazard ratios than the regression parameters. The 

results shown that the hazard ratio of BPA, DEHP, LC, and HC were significantly larger than 

control group SO. Therefore, the treatment groups with different compounds could decrease the 

time for developing first tumor, but genistein and all the interactions did not shown any 

significant effect to the model. More specifically, the HC group had the largest hazard ratio than 

others, which means the High combination treatment decreased the tumor latency mostly. It was 

consistent with the information contained in the descriptive table, where both HC and HC+GEN 

had very small tumor latency. 

Table 3: Estimates of Final Proportional Hazards Model for Tumor Latency 

Parameter DF Parameter 

Estimate 

Standard 

Error  

Chi-Square Pr > ChiSq Hazard 

Ratio 

BPA 1 0.38433 0.19620 3.8372 0.0501 1.469 

DEHP 1 0.42078 0.19428 4.6910 0.0303 1.523 

HC 1 0.55019 0.19505 7.9569 0.0048 1.734 

LC 1 0.53093 0.19364 7.5174 0.0061 1.701 

 

 However, the proportionality testing result (P < .0001) indicated that the proportional 

hazards assumption was not appropriate, same conclusion as the log of negative log of survivor 

functions plots in figure 4 indicated.  
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Secondly, a Weibull model was fitted by LIFEREG procedure in SAS and the parameter 

estimates for the final model were given in table 4. The results, similar with proportional hazards 

model, shown that all the treatments, including BPA, DEHP, LC, and HC significantly decreased 

the time for developing first tumor, but genistein and all the interactions did not shown any 

significant contribution to the model as well. In weibull model, the shortest tumor latency was 

LC group instead of HC group. At least these results indicated that the combinations of the BPA 

and DEHP had stronger carcinogenicity than single one. 

Table 4: Estimates of Final Weibull Model for Tumor Latency 

Parameter DF Estimate Std. Error  95% Confidence Limits Chi-Square Pr > ChiSq 

Intercept 1 5.4197 0.0694 5.2836 5.5557 6096.60 <.0001 

BPA 1 -0.2413 0.0942 -0.4260 -0.0566 6.55 0.0105 

DEHP 1 -0.3116 0.0936 -0.4950 -0.1282 11.09 0.0009 

HC 1 -0.3135 0.0931 -0.4961 -0.1310 11.33 0.0008 

LC 1 -0.3381 0.0928 -0.5201 -0.1561 13.26 0.0003 

SO 0 0.0000 . . . . . 

Scale 1 0.4807 0.0213 0.4407 0.5243   

Weibull Shape 1 2.0805 0.0922 1.9074 2.2692   

 

Table 5 presented the details for model selection. All the criteria which included AIC, 

BIC, and likelihood ratio test suggested only variable treatment should be included in the final 

model. Therefore, the final model for tumor latency could be written as  
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Log (Tumor latency) = 
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 The expected tumor latency for each treatment in Weibull model was tended to larger 

than those of descriptive statistics since Weibull modeling was based on mean which was not as 

robust as median. Therefore, the prediction from weibull model might be poor. Besides, the 

fitness for Weibull might be not well since the log negative log of survivor function plot was not 

linear and the proportional hazards assumption did not hold. Therefore, another distribution 

might need to apply in the future research. 

Table 5: Model Selection for Weibull Distribution for Tumor Latency 

Model Variables DF 
Log 

Likelihood 
AIC  BIC Comparison 

L ikelihood 

ratio test 

Critical 

Value 

0 Intercept only 2 -295.926 595.85 603.44 -- -- -- 

1 Treatment 6 -286.538 585.08 607.83 -0 vs 1 18.776* 9.49 

2 Treatment, Diet 7 -286.521 587.04 613.59 1 vs 2 0.0331 3.84 

3 

Treatment, 

Diet, 

Treatment*Diet  

11 -284.353 590.71 632.43 2 vs 3 4.3373 9.49 

Note: * P < .05. 

3.2 Tumor burden 

This section presented selective modeling and analysis results related to tumor burden. 

3.2.1 General description 

The descriptive statistics such as censor number and percentage, median of burden, mean 

+/- standard error, minimum/maximum were shown in table 6 as followed . These statistics that 

grouped by five treatments was also presented in Figure 12 appendix 1. Compared to tumor 
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latency, there were quit large percentages for the censored data in each group, which means there 

were quit large percentage mice had not reached the criteria to sacrifice after 300 days. It raised 

the concern for the rate of the tumor development. The DMBA induced model might not succeed 

since some of rats had never developed a tumor while some of the rats did not have a large tumor 

growth rate even it had tumor onset.  

The group that has shortest median burden is LC+GEN (210 days) followed by LC (219 

days) and DEHP+GEN (247 days),  HC+GEN (249 days), BPA (250 days), SO (273 days), HC 

(279 days), and DEHP (280 days) . The longest median burden group was the SO+GEN (300 

days), which indicated that more than half of the rats in the SO+GEN group can survive beyond 

300 days. As shown in the boxplot (figure 5), only LC group tended to shrink the tumor burden 

compared with other groups. 

Table 6: Descriptive Table for Tumor Burden Sored by Median 

Diet Treatment N Censor for Burden Median Mean(+/-stderr) Min/Max  

Gen LC  33 10/23(30.3%) 210.0 233.48 (+/- 9.89) 141/300 

Con LC  33 11/22(33.3%) 219.0 224.61 (+/- 11.67) 113/300 

Gen DEHP 33 12/21(36.4%) 247.0 232.03 (+/- 12.22) 109/300 

Gen HC  33 8/25(24.2%) 249.0 232.15 (+/- 10.65) 120/300 

Con BPA  33 10/23(30.3%) 250.0 236.76 (+/- 10.48) 113/300 

Con SO  33 12/21(36.4%) 273.0 254.27 (+/- 9.36) 132/300 

Con HC  33 15/18(45.5%) 279.0 241.3 (+/- 11.56) 128/300 

Con DEHP 33 16/17(48.5%) 280.0 250.88 (+/- 9.57) 140/300 

Gen BPA  32 16/16(50%) 297.5 253.22 (+/- 11.12) 130/300 

Gen SO  32 17/15(53.1%) 300.0 261.44 (+/- 10.25) 137/300 
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Figure 5: Boxplot for Tumor Burden by Ten Groups 

 

3.2.2 Survival analysis 

In this subsection, the event for sacrificing the rats was the target event and the survivor 

function was used to estimate the probability of the rats that could survive more than 300 days. 

Therefore, the data will be treated as censored data if the rat had not been sacrificed after the 

endpoint of the study. 

The survivor functions were estimated by Kaplan-Meier curves for each group as 

presented in figure 6. And the differences of survivor function across ten groups and five 

treatment by adjusting diet were compared by log-rank test, which both were not significant 

(P=0.2273 for ten groups, P=0.2642 for five treatments). Obviously, there were large amounts of 
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censored data in each group, which was also reflected in the descriptive table (table 6) and 

estimated table (table 7). Note that the mean survival time and its standard error were 

underestimated because the largest observation was censored and the estimation was restricted to 

the largest event time. And the median and upper limit of BPA+GEN and SO+GEN was 

indeterminate and represented as missing value since there were more than 50% censored data in 

these two groups. Therefore, all the information we knew about the median tumor burden of 

these two groups by nonparametric methods were they were more than 300 days. 

Table 7: Estimates for Tumor Burden by Each Group from LifeTest 

Diet Treatment N Censor Median(95% CI) Mean (+/-Stderr)  

Con BPA 33 10/33(30.3%) 250(212,286) 235.5(10.3) 

Gen BPA 32 16/32(50%) . (231, .) 250.7(11) 

Con DEHP 33 16/33(48.5%) 280(209, .) 241.2(8.2) 

Gen DEHP 33 12/33(36.4%) 247(200, .) 227.3(11.5) 

Con HC 33 15/33(45.5%) 279(195, .) 235.8(10.9) 

Gen HC 33 8/33(24.2%) 249(194,274) 230.5(10.4) 

Con LC 33 11/33(33.3%) 219(188,272) 215.3(10) 

Gen LC 33 10/33(30.3%) 210(191,283) 232(9.6) 

Con SO 33 12/33(36.4%) 273(233, .) 253.9(9.4) 

Gen SO 32 17/32(53.1%)  .(250,.) 261.4(10.4) 
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Figure 6: Kaplan-Meier Curves for Tumor Burden by Ten Groups 

 

3.2.3 Model fitting 

The nonparametric method could not estimate the tumor burden explicitly due to a large 

percentage of the censoring. Therefore the parametric modeling was applied to extrapolate the 

median of the ten groups. Firstly, a general idea about the distribution of the data can be obtained 

by reading the negative log of survivor function plots and the log of negative log of survivor 

functions plots shown in the figure 7 and 8. Obviously, there were a bunch of non-linear lines in 

the negative log of survivor function plots, which suggested that the distribution for tumor 

burden was not exponential. In figure 8, however, the log of negative log of survivor functions 
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plots were approximately parallel linearly distributed, which means the proportional hazards 

model and the Weibull model might be appropriate.  

Figure 7: Negative log of Survivor function for Tumor Burden by Ten Groups 
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Figure 8: Log of Negative Log of Survivor Functions for Tumor Burden by Ten Groups 

 

Similar to tumor latency, the proportional hazards model for tumor burden was fitted and 

model selection was performed in the first step by using PHREG procedure in SAS.  No matter 

which model selection methods had been used, there were no explanatory variables stayed into 

the model at the .05 significance level. Additionally, the proportionality testing result (P < .0001) 

indicated that the proportional hazards assumption was not appropriate. Therefore the Weibull 

model was fitted in the second step. 

The estimates for Weibull model was shown in table 8 and the model selection step was 

given in table 9. Only treatment stayed in the model among the three categorical variables 

(treatment, diet and the two-factor interactions) after two steps of backward selection. However, 
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Type III Analysis of Effects test gave a large P value (P = 0.2246) which indicated that the 

overall treatment was not significant in the model, even though the LC group significantly 

decreased the tumor burden for the rats compared with other groups. Therefore, dummy 

variables for each treatment group were created and fitted in the Weibull model for further 

analyzing. After step by step backward variable elimination, the last variable LC along 

with .0654 P value, can only stay in the model at 0.1 significance level. Hence, the Weibull 

model was not significant for tumor burden either. More details about model selection were 

presented by table 9. 

Table 8: Estimates of Weibull Model for Tumor Burden 

Parameter DF Estimate Std. Error  95% Confidence Limits Chi-Square Pr > ChiSq 

Intercept 1 5.7843 0.0544 5.6776 5.8910 11288.6 <.0001 

BPA 1 -0.0627 0.0745 -0.2088 0.0833 0.71 0.3998 

DEHP 1 -0.0587 0.0750 -0.2057 0.0883 0.61 0.4339 

HC 1 -0.1147 0.0730 -0.2577 0.0284 2.47 0.1161 

LC 1 -0.1599 0.0723 -0.3017 -0.0181 4.88 0.0271 

SO 0 0.0000 . . . . . 

Scale 1 0.3223 0.0200 0.2853 0.3641   

Weibull Shape 1 3.1029 0.1930 2.7467 3.5052   
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Table 9: Model Selection for Weibull Distribution for Tumor Burden 

Model Variables DF 
Log 

Likelihood 
AIC  BIC Comparison 

Likelihood 

ratio test 

P=.05 

Critical 

Value 

0 Intercept only 2 -232.039 468.08 475.66 -- -- -- 

1 LC 3 -230.434 466.87 478.25 0 vs 1 3.21 3.84 

2 Treatment 6 -229.185 470.37 493.13 1 vs 2 2.498 7.82 

3 Treatment, Diet 7 -229.182 472.36 498.92 2 vs 3 0.004 3.84 

4 

Treatment, 

Diet, 

Treatment*Diet  

11 -225.435 472.87 514.59 3 vs 4 7.494 9.49 

 

3.3 Tumor multiplicity 

 The tumor multiplicity was analyzed by GENMOD procedure and COUNTREG 

procedure in SAS. Four different models, including Poisson, Negative Binomial, Zero-inflated 

Poisson, and Zero-inflated Negative Binomial, were fitted respectively. Since there was a 

positive correlation between number of tumors and number of days in the study, the tests on 

multiplicity were done after adjusting for the number of days each animal was on the study by 

set up the OFFSET option in the model. 

3.3.1 General description 

The descriptive statistics such as median of tumor multiplicity, mean +/- standard error, 

minimum/maximum, and median of tumor rate were shown in table 10 as followed. These 

statistics that grouped by five treatments was also presented in Figure 13 appendix 1. In general, 

the mean of tumor multiplicity was 5.15, with a larger variance 21.95, which raised over-

dispersion problem. In addition, the zero fractions of BPA, HC, BPA+GEN and total 

exceeded10%, especially the SO and SO+GEN group (21.21% and 31.25%, respectively), which 
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might imply that it is a mixture Poisson model with excess zeros. It might have heavy tail 

because of some extreme larger values. Specifically, the group that has smallest median 

multiplicity is SO+GEN and BPA +GEN (both 2) followed by DEHP and DEHP+GEN (both 3), 

HC, BPA, SO (all 4), LC and LC+GEN (both 5). The largest median multiplicity group was the 

HC+GEN (6), with 7.66% median of tumor rate. The boxplot with more details was presented in 

figure 9. 

Table 10: Descriptive Table for Tumor Multiplicity Sored by Diet and Treatment 

Diet Treatment N Median Mean(+/-stderr) Min/Max  Zero Fraction 

Gen BPA  32 2 3.22 (+/- 0.56) 0/15 12.50 % 

Gen SO  32 2 3.97 (+/- 0.77) 0/15 31.25 % 

Con DEHP 33 3 4.45 (+/- 0.61) 0/12 9.09 % 

Gen DEHP 33 3 5.09 (+/- 0.85) 0/21 9.09 % 

Con SO  33 4 4.82 (+/- 0.79) 0/19 21.21 % 

Con BPA  33 4 5.58 (+/- 0.93) 0/23 12.12 % 

Con HC  33 4 5.58 (+/- 0.92) 0/16 15.15 % 

Con LC  33 5 6.21 (+/- 0.92) 0/22 6.06 % 

Gen LC  33 5 5.73 (+/- 0.82) 0/19 9.09 % 

Gen HC  33 6 6.88 (+/- 0.8) 0/16 6.06 % 

Total - 328 4 5.15(+/- 4.68) 0/23 13.11 % 
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Figure 9: Boxplot for Tumor Multiplicity by Ten Groups 

 

3.3.2 Poisson regression 

 The full Poisson regression model was fitted with treatment, diet, and two-factor 

interactions in the first step. However, the variable diet can be dropped by rearrange dummy 

variable of the interactions (Diet = Diet * Treatment SO). Poisson regression detected that 

treatment BPA and LC increased the multiplicity compared with other groups. The P value for 

DEHP was close to 0.5 but still not significant. Besides, interaction between diet and BPA 

decreased the tumor multiplicity while diet interacted with HC increased multiplicity, compared 

with other interactions. Table 11 presented the details of final Poisson model for tumor 

multiplicity. Likelihood ratio test for model selection were illustrated in Error! Reference 



 43 

source not found. appendix 1, the full model in table 11 was the final model which is 

significantly explained the majority of the variability of tumor multiplicity. 

Table 11: Final Poisson Model for Tumor Multiplicity 

Parameter DF Estimate Standard 

Error  

Wald 95% Confidence 

Limits  

Wald Chi-

Square 

Pr > 

ChiSq 

Intercept 1 -3.9660 0.0793 -4.1214 -3.8106 2500.95 <.0001 

BPA 1 0.2174 0.1083 0.0052 0.4296 4.03 0.0447 

DEHP 1 -0.0650 0.1144 -0.2893 0.1592 0.32 0.5698 

HC 1 0.1984 0.1083 -0.0138 0.4106 3.36 0.0669 

LC 1 0.3782 0.1057 0.1710 0.5853 12.81 0.0003 

SO 0 0.0000 0.0000 0.0000 0.0000 . . 

Diet*BPA 1 -0.6167 0.1231 -0.8578 -0.3755 25.11 <.0001 

Diet*DEHP 1 0.2116 0.1129 -0.0097 0.4330 3.51 0.0609 

Diet*HC 1 0.2487 0.0992 0.0543 0.4431 6.28 0.0122 

Diet*LC 1 -0.1200 0.1008 -0.3177 0.0776 1.42 0.2339 

Diet*SO 1 -0.2217 0.1190 -0.4550 0.0115 3.47 0.0624 

Scale 0 1.0000 0.0000 1.0000 1.0000   

 

3.3.3 Negative binomial regression 

 Negative Binomial was fitted due to the over-dispersion problem in Poisson regression. 

The over-dispersion parameter α is significantly different from zero in negative binomial 

regression. That means the Poisson regression might not be valid since the assumption of equal 

variance and mean was violated. Beside, only the interaction between diet and BPA significantly 

decreased tumor multiplicity compared with other interactions, which was consistent with the 
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result of Poisson model. Similarly, variable diet can be dropped and be represented as the level 

of interaction between diet and treatment SO in the full model. Table 12 gave the parameter 

estimates and Wald test for individual variables in the model. Variable selection was performed 

by likelihood ratio test for NB model in Table 17 appendix 1 as well. Nevertheless, the results 

indicated that none of the variables stayed in the final model. 

Table 12: Negative Binomial Model for Tumor Multiplicity 

Parameter DF Estimate Standard 

Error  

Wald 95% Confidence 

Limits  

Wald Chi-

Square 

Pr > 

ChiSq 

Intercept 1 -3.8064 0.1947 -4.1881 -3.4248 382.04 <.0001 

BPA 1 0.2181 0.2737 -0.3182 0.7545 0.64 0.4254 

DEHP 1 -0.0828 0.2761 -0.6241 0.4584 0.09 0.7642 

HC 1 0.2862 0.2739 -0.2506 0.8231 1.09 0.2960 

LC 1 0.3962 0.2727 -0.1383 0.9306 2.11 0.1463 

SO 0 0.0000 0.0000 0.0000 0.0000 . . 

Diet*BPA 1 -0.6350 0.2822 -1.1881 -0.0819 5.06 0.0244 

Diet*DEHP 1 0.2708 0.2757 -0.2696 0.8112 0.96 0.3261 

Diet*HC 1 0.1099 0.2702 -0.4197 0.6394 0.17 0.6843 

Diet*LC 1 -0.1853 0.2705 -0.7154 0.3448 0.47 0.4932 

Diet*SO 1 -0.2268 0.2801 -0.7758 0.3223 0.66 0.4183 

Scale 1 1.0295 0.0965 0.8568 1.2371   

 

3.3.4 Zero-inflated Poisson regression 

 According to the descriptive table in table 10, there were a certain amount of rats that 

never developed any tumor in each group before the endpoint of the study. This means there 



 45 

might be a mixture Poisson model with excess zeros for tumor multiplicity. The histogram plot 

for tumor multiplicity was presented in Figure 14 appendix 1. Although the overall zero fractions 

were not very high, there were quite high percentages in some of the individual groups, 

especially two control groups SO and SO+GEN. The histograms of tumor multiplicity for 

individual group were omitted in this thesis due to the limitation of pages. 

 In order to solve the issue of excess zeros in Poisson model, Zero-inflated Poisson model 

was introduced. Compared with control treatment group, all the levels of treatment had less zeros 

in the zero-inflated model, and were significantly different from each other. LC treatment group 

had smallest zero fraction followed by DEHP, HC and BPA. Meanwhile, the DEHP and 

interaction of Diet and Treatment BPA decreased tumor multiplicity significantly compared with 

other groups, in the Poisson model. Likelihood ratio test suggested that the treatment and the 

interaction of treatment and diet should be included into the final model (see Table 18 in 

appendix 1). 

Table 13: ZIP Model for Tumor Multiplicity 

Parameter DF Estimate Standard 

Error  

Wald 95% Confidence 

Limits  

Wald Chi-

Square 

Pr > 

ChiSq 

Intercept 1 1.8091 0.0797 1.6529 1.9654 515.00 <.0001 

BPA 1 0.0366 0.1089 -0.1768 0.2500 0.11 0.7368 

DEHP 1 -0.2275 0.1158 -0.4544 -0.0005 3.86 0.0495 

HC 1 0.0715 0.1089 -0.1420 0.2850 0.43 0.5116 

LC 1 0.0788 0.1061 -0.1292 0.2869 0.55 0.4576 

SO 0 0.0000 0.0000 0.0000 0.0000 . . 

Diet*BPA 1 -0.5688 0.1267 -0.8172 -0.3204 20.14 <.0001 

Diet*DEHP 1 0.1373 0.1146 -0.0873 0.3618 1.44 0.2309 
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Diet*HC 1 0.1100 0.0996 -0.0853 0.3053 1.22 0.2696 

Diet*LC 1 -0.0497 0.1014 -0.2484 0.1490 0.24 0.6242 

Diet*SO 1 -0.0600 0.1201 -0.2954 0.1753 0.25 0.6170 

Scale 0 1.0000 0.0000 1.0000 1.0000   

Inf_ Intercept 1 -1.0487 0.2845 -1.6064 -0.4911 13.59 0.0002 

Inf_BPA 1 -1.0315 0.5058 -2.0228 -0.0401 4.16 0.0414 

Inf_DEHP 1 -1.3188 0.5363 -2.3700 -0.2676 6.05 0.0139 

Inf_HC  1 -1.0943 0.4940 -2.0626 -0.1260 4.91 0.0268 

Inf_LC  1 -1.4748 0.5536 -2.5598 -0.3899 7.10 0.0077 

 

3.3.5 Zero-inflated negative binomial regression 

 The last step for model fitting, zero-inflated negative binomial model was fitted to solve 

both the over-dispersion and excess zeros issues (see table 14). The over-dispersion parameter 

alpha is significantly different from zero in the main model, which supported our assumption 

about the over-dispersion. Beside, only interaction between diet and treatment BPA significantly 

decreased the tumor multiplicity compared with other interaction groups, which was consistent 

with previous results. But no significantly contribution was from main effect treatment. These 

results were very similar with those of negative binomial regression. Another similar result with 

NB regression was the variable selection in the main model. None of the three variables 

(treatment, diet and two-factor interactions) significantly explained the variability of tumor 

multiplicity (see Table 19 in appendix 1). 
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Compared the zero-inflated model with ZIP, however, there were giant standard errors 

for inflated-BPA, inflated-DEHP, and inflated-LC, which brought a further concern about the 

validity of the zero-inflated model. 

Table 14: ZINB model for tumor multiplicity 

Parameter DF Estimate Standard 

Error  

Wald 95% Confidence 

Limits  

Wald Chi-

Square 

Pr > 

ChiSq 

Intercept 1 -3.6526 0.2044 -4.0532 -3.2521 319.41 <.0001 

BPA 1 0.0612 0.2739 -0.4756 0.5980 0.05 0.8232 

DEHP 1 -0.2401 0.2764 -0.7818 0.3015 0.75 0.3849 

HC 1 0.1667 0.2829 -0.3879 0.7213 0.35 0.5557 

LC 1 0.2393 0.2729 -0.2955 0.7742 0.77 0.3805 

SO 0 0.0000 0.0000 0.0000 0.0000 . . 

Diet*BPA 1 -0.6368 0.2681 -1.1623 -0.1114 5.64 0.0175 

Diet*DEHP 1 0.2701 0.2615 -0.2425 0.7827 1.07 0.3018 

Diet*HC 1 0.0900 0.2637 -0.4268 0.6069 0.12 0.7328 

Diet*LC 1 -0.1843 0.2560 -0.6861 0.3174 0.52 0.4715 

Diet*SO 1 -0.1481 0.2989 -0.7340 0.4378 0.25 0.6203 

Dispersion 1 0.9041 0.0985 0.7302 1.1193   

Inf_ Intercept 1 -1.5951 0.4659 -2.5082 -0.6821 11.72 0.0006 

Inf_BPA 1 -20.8572 56196.83 -110165 110122.9 0.00 0.9997 

Inf_DEHP 1 -22.8053 59530.33 -116700 116654.5 0.00 0.9997 

Inf_HC  1 -2.0466 1.8719 -5.7155 1.6223 1.20 0.2743 

Inf_LC  1 -22.5430 58282.82 -114255 114209.7 0.00 0.9997 
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3.3.6 Model comparison 

 Due to the natural of the dataset, the four different regressions gave different results 

about the relationship between tumor multiplicity and treatment, diet, and interactions. Therefore, 

several criteria for model comparison, including log likelihood, AIC, BIC, Deviance/DF, Pearson 

Chi-Square/DF, and the estimated values when count equals zero were presented in table 18. 

Generally speaking, NB and ZINB had better performance than Poisson and ZIP according to all 

the criteria in the table. Log-likelihood ratio test were performed between Poisson and ZIP, and 

between ZB and ZINB. And the results suggested that with respect to the detective power, ZIP 

was greater than Poisson, while no significantly difference between NB and ZINB. The Poisson 

gave a big improvement in log likelihood, AIC and BIC. Furthermore, ZIP model had priority on 

estimated value of count equals zero, considering 12.14% versus 13.11%. Pearson Chi-

Square/DF indicated that NB had the best fitness for this data. Unfortunately, the global null 

hypotheses of NB and ZINB models were failed to reject. Same results could be extracted from 

the model comparisons plot in figure 10. Obviously, NB and ZINB had a better fitting 

performance, while ZIP had a better accuracy when the tumor number was zero, and a better 

explanation of our data. Poisson model had the worst fitting among the fours. 
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Table 15: Model Comparison for Four Full Models 

Models Poisson Negative binomial ZIP  ZINB  

DF 9 10 13 14 

Log Likelihood -1401.586 -932.987 -1037.162 -929.234 

AIC  2823.172 1887.973 2104.324 1890.468 

BIC 2861.102 1929.696 2161.219 1951.156 

Deviance/DF 5.809 1.177 -- -- 

Pearson Chi-Square/DF 6.954 1.042 2.476 1.095 

Estimated P (ἧ=0)  

/ Observed P (y=0) 

0.0178 

 / 0.1311 

0.1589  

/ 0.1311 

0.1214 

/ 0.1311 

0.1680 

/ 0.1311 

 

Figure 10: Model Comparisons for Fitted and Observed Models of Tumor Multiplicity 
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Chapter 4: Discussion 

4.1 Interpretation 

 This is a comprehensive experimental research which combined carcinogenesis study and 

chemoprevention study together. In general, the chemical compounds BPA, DEHP and their 

combinations, no matter low dosage or high dosage, are all carcinogens. On the other hand, the 

genistein did not show any chemopreventive effect statistically in this study. In order to interpret 

the results more robustly, the estimated median values were also presented in the thesis even 

though the procedures were all calculated based on the means, and the conclusion will be made 

by considering both results from the medians and the means. 

 First of all, there were some important results that been verified with respect to tumor 

latency. According to the Wilcox log-rank test, there is no significant difference of Kaplan-Meier 

curves across the ten groups (please refer to table 2 and figure 2). However, the significance had 

been detected among five treatments strata by adjusting diet in the same procedure (please refer 

to figure 11 in appendix 1). For further analysis, proportional hazards model and Weibull model 

were fitted. The same results shown that all the chemical treatment, including BPA, DEHP, Low 

combination and High combination, significantly shrank the time to first tumor which had been 

detected, meanwhile, they all significantly differ from each other as well (please refer to table 3 

and 4). Among those chemical compounds, High combination group tended to have largest 

hazard ratio and shortest median value of tumor latency according to the result of proportional 

hazards model and the estimation of LIFETEST. However, in the Weibull model fitting 

procedure, Low combination group had the smallest estimated coefficient than others, which 

shortened the tumor latency mostly. For tumor latency, the proportional assumption was violated 

according to proportionality test in PHREG procedure. Therefore, the results from proportional 
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hazards model were not as reliable as the results from LIFETEST and LIFEREG procedure. The 

log likelihood ratio test was conducted to select the variables due to the large P values of some 

variables in the model. Finally, treatment with five levels and four dummy variables were stayed 

in the model and could explain the model sufficiently. As shown in table 2, the medians of tumor 

latency for all counterpart groups with genistein diet were tended to be larger than those of the 

groups without genistein diet, expect for HC treatment. It means that the genistein tended to 

delay the time to first tumor but lack of statistical significance.  

Additionally, compared the results of the tumor latency, these of tumor burden were not 

exactly consistent. Still, the nonparametric comparison of Kaplan-Meier curves and log-rank test 

across ten groups were not significant. Even the overall effect of treatment by adjusting diet was 

not significant either. And because there were two groups, BPA+GEN and SO+GEN, having 

more than half of censored data, the estimated medians were indeterminate by nonparametric and 

could only be extrapolated by parametric methods. Therefore, all the information we knew about 

the median tumor burden of these two groups by nonparametric methods were they were more 

than 300 days. As shown in table 7, there was a big gap between LC group and others, no matter 

with or without genistein diet. Same result could also be reflected from descriptive table and 

boxplot, which suggested that the Low combination treatment shrank the tumor burden a lot. In 

order to further analysis the treatment effect, parametric methods, such as proportional hazards 

regression and Weibull regression were performed. Similar to the tumor latency, the 

proportionality test for tumor burden had not been past, which indicated that the proportional 

assumption for tumor burden was violated. Besides, the model was not significant, and none of 

the variable could stay in the final model. So the Weibull model was conducted to obtain a better 

fitness. Although the log likelihood ratio test indicated that there was no significant difference 
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between the full model with all categorical variable treatment, diet and their interaction terms 

and the reduced model with only treatment, the treatment variable could not stay in the model at 

last. Therefore, neither of the two variables could explain the variability of tumor burden in this 

study, even though the Low combination group indeed shrank the tumor burden significantly by 

comparing with other treatments. It means if we only compare the difference of tumor burden 

across the five treatment groups, Low combination group had the shortest one. However, the 

overall treatment factor did not affect the tumor burden statistically. It might be due to the large 

percentage of censoring data. Also because the rats were sacrificed when the tumor volume 

exceeded 10% of body weight, the time to sacrifice was not as objective as time to death. 

Therefore, conclusions that derive from tumor burden were not appropriate to infer to the whole 

population. 

Last but not least, tumor multiplicity had the most complicated analyzing results that 

needed to be discussed thoroughly. According to the descriptive table and boxplot, the smallest 

median and mean of tumor multiplicity was the BPA+GEN group, which was a big decrease 

compared to the BPA group. Similar to tumor latency, most of the medians and means of tumor 

multiplicity for counterpart groups with genistein diet were tended to be smaller than or equal to 

those of the groups without genistein diet. Nevertheless, the mean of DEHP, median and mean of 

HC treatment groups had the reverse pattern. It means the genistein might have effect on 

reducing total tumor number, and there might be some problems in DEHP and HC groups. In 

order to determine the explanatory effects of those chemical treatments and genistein diet on 

tumor multiplicity of the rats, general Poisson regression was conducted firstly since the count 

data was expected to follow a Poisson distribution[1]. The backward elimination suggested that 

the final model for Poisson regression should including treatment and the interaction between 
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treatment and diet. The main effect diet can be represented as the interaction level of treatment 

SO interacted with diet genistein. As shown in the table 11, the LC group had the largest 

coefficient among the main effect treatment, and HC interacted with genistein had the largest 

coefficient compared to other interactions. These were consistent with the information from 

descriptive table. The Poisson regression indicated that the BPA and Low combination groups 

significantly increased the total number of tumor per rat compared to other treatment effect, 

while the BPA interacted with genistein could reduce the tumor multiplicity. Also, the genistein 

combined with High combination group could increase the tumor amount. The main effect of 

genistein did not show up statistically in Poisson model.  

However, the over-dispersion issue can be detected in the descriptive table (table 10), 

where the mean of tumor multiplicity was 5.15, with a larger variance 21.95. Therefore, the 

negative binomial regression was conducted as in the most common solution for over-dispersion. 

The parameter α for over-dispersion was significantly different from zero, which means the 

negative binomial model was more appropriate for this data than Poisson model. Yet after fitting 

this flexible model, the significance of the explanatory factors was gone. It had a similar 

situation of the Weibull model for tumor burden, with a significant interaction level of BPA * 

genistein, but none of the overall effect of the three predictors. It gave us a general idea of that 

the tumor multiplicity of BPA* genistein group was smaller than other interaction groups, which 

can be read from the descriptive table and consistent with the result of Poisson. However, the 

overall treatment, diet and their interaction would not affect the total number of tumor per rat. 

And the whole model was not statistically significant. 

From the table 10 and figure 9, we can also observe a quite large fraction of zeros, 

especially in these two control groups, SO and SO+GEN. Zero-inflated count models, 
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corresponding to the Poisson and negative binomial, were appropriate for fitting this large 

fraction of zeros in count data according to the methodology introduction in chapter 1. Zero-

inflated Poisson (ZIP) model was fitted first. After deducting some excess zeros in each group, 

the DEHP treatment and BPA * genistein showed significantly reducing effects on tumor 

multiplicity by comparing other groups. This was statistically reasonable because they had 

relatively small means and zero fractions. Therefore, when other groups were deflated after 

eliminating proportional zeros, the means of these groups will be increase so that the groups that 

had low means would have significantly lower means compared to other deflated groups. So the 

decreasing of tumor multiplicity could be detected by fitting ZIP model. However, biologically, 

this result was beyond our expectation. We did not believe genistein combined by BPA can have 

a better chemopreventive effect than genistein itself. There must some hidden biological reasons 

that had not been revealed through the experiment.  On the other hand, the control group SO had 

largest zero fraction compare to all the other levels of treatment in the zero-inflated model, and 

they were significantly different from each other. In the last step, the corresponding zero-inflated 

negative binomial model was fitted to solve both the over-dispersion and excess zeros issues. 

Similar to negative binomial model, the over-dispersion parameter alpha was significant, which 

indicated that the ZIP model might not solve the over-dispersion problem. However, same to the 

NB model, only interaction between diet and treatment BPA significantly decreased the tumor 

multiplicity compared with other interaction groups. But no significantly contribution was from 

main effect treatment. And none of the variables could stay in the final model after conducting 

model selection procedure. The overall zero-inflation model was not significant dut to the giant 

standard errors for inflated-BPA, inflated-DEHP, and inflated-LC. We are not confident with the 

ZINB model because of the huge standard errors and the non-significance of global hypothesis. 
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After fitting four different models for tumor multiplicity, a best model was tentatively 

selected by comparing a bunch of criteria, such as log likelihood, AIC, BIC, Deviance/DF, Pearson 

Chi-Square/DF, and the estimated probabilities when count equals zero. All the criteria shown that 

there was a big improvement for model fitting from Poisson to ZIP, and another improvement 

from ZIP to NB and ZINB (please refer to table 15). Furthermore, because the NB model was 

nested in the ZINB model, the likelihood ratio test could be conducted for model comparison. 

And the result suggested that there was no significant difference with respect to the detective 

power between NB and ZINB. Therefore, simple model NB was preferred rather than ZINB 

model. Indeed, the NB distribution fitted the data best according to figure 10. However, the 

whole NB model was not significant when explained by treatment and diet. Therefore, the NB 

regression cannot explain where the variability of tumor multiplicity came from. Besides, over-

dispersion can be the result of excess zeros or some other causes. The ZIP model is also 

appropriate for such data if the over-dispersion is due to the excess zeros. In this study, the origin 

of the excess zeros was still unknown. Yet the ZIP model did reflect the data and presented what 

was going on in each group. The changes of results due to take off the excess zeros in Poisson 

model were statistically reasonable. Only the interactive effect was not biologically reasonable. 

Still,  ZIP model explained the variability of tumor multiplicity with respect to the treatment and 

diet. The reason that NB model cannot detect the difference might be because of the bad 

experiment administration. The DMBA induced mammary tumor model failed. There were a 

bunch of rats that had never developed a tumor which was not right. ZIP model as a mixture 

model can reflect the data better than NB because we believe our data is a mixed data with some 

hidden variables that we don’t know yet. In summary, although the NB distribution fitted the 
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data best, the ZIP model reflected the data best and explained what was going on in this data 

mostly. 

4.2 Compare to Previous literature 

 The results of the carcinogenic effect for BPA was consistent with the previous work [21, 

22]. Due to the multitude of sources for potential exposure suggests BPA exposure in the general 

population [67-71], more attention needed to be paid on the contamination of BPA in the 

drinking water or other food containers and medical devises. 

 The results for DEHP were consistent with the previous work as well. It has been shown 

that DEHP causes malignant hepatocellular tumors in rats and mice of both sexes [72]. The U.S. 

Agency for Toxic Substances and Disease Registry has determined that DEHP ``may be 

reasonably anticipated to be a carcinogen'' based on animal data. However, it was lack of 

evidence for the carcinogenic effect of the combinations of BPA and DEHP. Our study report the 

significant results firstly. 

 The potential role of genistein, one of several known soy isoflavones, in breast cancer 

treatment or prevention has been extensively investigated following the early demonstration in 

classical animal models of chemically-induced breast cancer that dietary soy protein containing 

isoflavones was chemopreventive[61, 73]. In contrast, studies in the athymic mouse model of 

transplanted human MCF-7 breast cancer cells found that addition of genistein to the diet led to a 

rapid increase in tumor growth[74]. This issue has been controversial despite a total lack of 

supportive clinical evidence[40]. In our study, genistein did not show any chemopreventive 

effect in rats. 
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4.3 limitations of the study 

 Although this study provided important evidence about the effect of these four kinds of 

compounds on tumor latency, burden and multiplicity, there were still few limitations on 

experimental design and statistical inference methods. 

 The first problem that could introduce bias for our study belonged to the experimental 

design. The animal was not died for cancer naturally, but was sacrificed by the conductor once 

the criteria for scarifying meet. In this case, there would be some bias from the conductor, and 

the work time since they only worked from Monday to Friday. Besides, they keep feeding those 

animals after the endpoint date (300 study days) to collect more information for the study. This 

was a violation for the principle of the experiment.  

 Another problem came from the DMBA induced rat mammary tumor model. All the 

animals were exposed by DMBA by lavage, which was supposed to induce a low number of 

mammary tumors. Note that, however, there were as high as one third of animal that had never 

developed a tumor by the endpoint date. It indicates that there might be something wrong with 

the DMBA induced rat mammary tumor model. Some of the animals might not be exposed to 

enough DMBA to develop tumor. That is why the zero-inflated model was introduced. Since the 

zero-inflated model did not fit this data better than negative binomial, the problem for DMBA 

model had still not been solved. 

 There is a limitation for statistical methods as well. The mammary tumor took time to be 

detected. Some of the animals might die before some / all induced tumors reach a detectable size. 

If it was true, the response in this study, latency, burden, and multiplicity could all be affected. 

And hence the statistical analysis might need to be adjusted to account for uncertainty in the 
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number of induced tumors. Some methods may correct this problem by using specific method 

[75-77]. Due to very limit research time, however, this improvement can be done in the future. 

Also the improvement for zero-inflated negative binomial model can be developed if time permit. 

Chapter 5: Conclusion 

5.1 Implications of results 

For answer the first questions at the beginning of the thesis, all the chemical compounds, 

including BPA, DEHP, Low combination and High combination, decreased the time for 

developing first tumor but did not have any significant effect on the survival time. We will not 

jump to a conclusion that the DEHP could decrease the tumor multiplicity from the results of ZIP 

model because first this data was not reliable statistically and second it was not reasonable 

biologically. The combinations of BPA and DEHP decreased tumor latency mostly, no matter 

low dosage or high dosage, followed by the single chemical effect. Moreover we are exposed to 

the chemical compounds, BPA, DEHP and their combination in our daily life widely. So we 

need to pay more attention to the contaminated water, plastic food container or medical devises, 

and the most important thing is to keep the infants away from these potential toxicities. 

On the other hand, genistein and all the interactions did not show any chemopreventive 

effect on tumor latency, burden and multiplicity in this study. Therefore, by drinking soymilk or 

taking genistein complement may not help to prevent the breast cancer. 

5.2 Future research 

 According to the limitation and the unsolved problems of this study, a series of research 

may need to be explored in the future. In order to explore the solve the zero inflated issue, 

DMBA induced model may need be redone from the very beginning and make sure that there is 
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no other hidden variables affect model. If the rat model cannot be redone, factor analysis or 

clustering analysis may need to be included to reveal the hidden variable. Also, some methods 

that can correct the uncertainty of the tumor occurrence can be developed in the future study. 
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Appendix 1: Tables and Figures 

 

Table 16: Model Selection of Poisson Model for Tumor Multiplicity 

Model Variables DF 
Log 

Likelihood 
AIC  BIC Comparison 

Likelihood 

ratio test 

P=.05 

Critical 

Value 

0 Intercept only 0 -1450.81 2903.61 2907.4 -- -- -- 

1 Treatment 4 -1422.07 2854.15 2873.1 0 vs 1 57.48*** 9.49 

2 
Treatment, 

Treatment*Diet 
9 -1401.59 2823.17 2861.1 1 vs 2 40.96*** 11.07 

Note: *** P < .0001 

Table 17: Model Selection of NB Model for Tumor Multiplicity 

Model Variables DF 
Log 

Likelihood 
AIC  BIC Comparison 

Likelihood 

ratio test 

P=.05 

Critical 

Value 

0 Intercept only 1 -940.866 1885.73 1893.3 -- -- -- 

1 Treatment 5 -936.582 1885.16 1907.9 0 vs 1 8.568 9.49 

2 
Treatment, 

Treatment*Diet 
10 -932.986 1887.97 1929.7 1 vs 2 7.192 11.07 

 

Table 18: Variable Selection for Poisson Given in ZIP Model for Tumor Multiplicity 

Model Variables DF 
Log 

Likelihood 
AIC  BIC Comparison 

Likelihood 

ratio test 

P=.05 

Critical 

Value 

0 Intercept only 4 -1062.514 2137 2160 -- -- -- 

1 Treatment 8 -1049.35 2119 2157 0 vs 1 26.328*** 9.49 

2 
Treatment, 

Treatment*Diet 
13 -1037.16 2104 2161 1 vs 2 24.38*** 11.07 

Note: *** P < .0001 
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Table 19: Variable Selection for NB Given in ZINB Model for Tumor Multiplicity 

Model Variables DF 
Log 

Likelihood 
AIC  BIC Comparison 

Likelihood 

ratio test 

P=.05 

Critical 

Value 

0 Intercept only 5 -936.233 1886 1913 -- -- -- 

1 Treatment 9 -932.963 1888 1930 0 vs 1 6.540 9.49 

2 
Treatment, 

Treatment*Diet 
14 -929.234 1890 1951 1 vs 2 7.457 11.07 

 

 

Figure 11: Boxplot for Tumor Latency by Treatment, Adjusting Diet 

 

  



 67 

 

Figure 12: Boxplot for Tumor Burden by Treatment, Adjusting Diet 
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Figure 13: Boxplot for Tumor Multiplicity by Treatment, Adjusting Diet 
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Figure 14: Histogram of Overall Tumor Multiplicity 

 

 

Appendix 2: Partial SAS Code 

proc  import  out =data0  

 datafile =' D: \ ******* '  

 dbms=csv replace;  

 getnames=yes;  

run ;  

 

proc  format ;  

 value  treat 1='BPA'  2='DEHP'  3='LC'  4='HC'  5='SO' ; run ;  

proc  format ;  

 value  diet 1='Gen'  0='Con' ; run ;  

proc  format ;  

 value  tgp 1='BPA'  2='DEHP'  3='LC'  4='HC'  5='SO'  6='SO+GEN'  7='BPA+GEN'  

8='DEHP+GEN' 9='LC+GEN'  10='HC+GEN' ; run ;  
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data  data0; set  data0;  

 Treat= 1*(group in ( 1, 7)) + 2*(group in ( 2, 8)) + 3*(group in ( 3, 9))+ 

4*(group in ( 4, 10)) + 5*(group in ( 5, 6));  

 Diet=(group > 5);  

 format  treat treat.  group tgp.  diet diet. ;  

 drop  treatment; rename  treat=Treatment;  

run ;  

data  data300; set  datacheck; cutoff_day= 300 ; if  days_on_study >= 0;  

array  palpable_t{ 23} palpable_t1 - palpable_t23;  

array  tcensor{ 23} tcensor1 - tcensor23;  

array  t{ 23} t1 - t23;  

do i= 1 to  23 ;  

tcensor{i}=(palpable_t{i} - dob >cutoff_day or palpable_t{i}= . );  

t{i}=min(palpable_t{i} - dob, cutoff_day);  

end ;  

Burden=min(cutoff_day,rdays_on_study);  

T2tumor= t2 - t1;  

t2censor=tcensor2 - tcensor1;  

Lnb=log(Burden);  

LNT1=LOG(T1);  

logbw=log(body_weight);  

loguw=log(uterine_weight);  

censor300=(rdays_on_study > cutoff_day);  

Weight_ratio=body_weight/ uterine_weight;  

Multiplicity=N(OF t1 - t23) - SUM(OF tcensor1 - tcensor23);  

Tumor_rate=Multiplicity/rdays_on_study* 300 ;  

BPA=(treaTment= 1);  

DEHP=(treaTment= 2);  

LC=(treaTment= 3);  

HC=(treaTment= 4);  

BPAGEN=BPA*DIET; 

DEHPGEN=DEHP*DIET; 

LCGEN=LC*DIET;  

HCGEN=HC*DIET; 

KEEP animal_id cage dob treatment group body_weight uterine_weight rsac_date  

      rdays_on_study total_tumors total_tumor_volume  tumor_burden LNT1 logbw 

loguw  

      t1 - t23 burden T2tumor t2censor lnb cutoff_day censor300 diet tcensor1 -

tcensor23  

      weight_ratio multiplicity tumor_rate Int BPA DEHP LC HC BPAGEN DEHPGEN 

LCGEN HCGEN;  

run ;  

PROC MEANS data =data300 maxdec=2 N median  mean stderr  min  max noprint ;  

    CLASS treatment diet group;  

   var  burden;  

   OUTPUT out =means1 n=n median =median  mean=mean stderr =stderr  min =min  

max=max;  

RUN;  

proc  sgplot  data =data300;  

vbox  burden/ category =group;  

run ;  

proc  freq  data =data300;  
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table  treatment*diet/ chisq ;  

weight  Multiplicity;  

run ;  

proc  logistic  data =data300;  

class  treatment ( ref ='SO' ) diet ( ref ='Con' )/ param =reference;  

model  tcensor1 ( event ='1' )=treatment diet;  

run ;  

PROC LIFETEST  data =data300 plots =(s, ls , lls);  

 STRATA treatment; TIME t1*tcensor1( 1); test  diet;  

 title  'Lifetest for Tumor Latency in 300 Days' ; run ;  

PROC LIFETEST  data =data300 plots =(s, ls , lls, h);  

 strata  treatment; time  burden*censor300( 1); test  diet BPAGEN DEHPGEN ;  

 title  'Lifetest for Tumor Burden in 300 Days' ; run ;  

PROC LIFEREG data =data300 outest =elt; CLASS treatment; MODEL 

t1*tcensor1( 1)=treatment diet treatment*diet;  

title  'Lifereg  for Tumor Latency in 300 Days' ;  

RUN;   

PROC LIFEREG data =data300; CLASS treatment; MODEL 

burden*censor300( 1)=treatment diet treatment*diet;  

title  'Lifereg for Tumor Burden in 300 Days' ;  

RUN;  

proc  phreg  data =data300; class  treatment;  

model  burden*censor300( 1)= treatment diet treatment*diet/ selection =forward;  

run ;  

proc  phreg  data =data300; class  treatment;  

model  burden*censor300( 1)= treatment x1 X2 X3 X4;  

OUTPUT OUT=Outp xbeta =xb resmart =mart resdev =dev;  

x1=lnb*(treatment= 1);  

x2=lnb *(treatment= 2);  

x3=lnb*(treatment= 3);  

x4=lnb*(treatment= 4);  

proportionality_test: test  x1, X2, X3, X4;  

RUN;  

proc  gplot  data =Outp;  

plot  (mart dev)*xb / vref =0 cframe =ligr;  

symbol1  value =circle c=blue;  

run ;  

PROC GENMOD data =data300 plots =all ; class  treatment ( ref ='SO' );  

 model  multiplicity=treatment diet treatment*diet/ offset =lnb dist =NB;  

 title  'Multiplicity Estemated by Treatment and Diet for Negative 

Binominal' ;  

run ;  

proc  countreg  data =data00;  

model  multiplicity=BPA DEHP LC HC DIET BPA GEN DEHPGEN LCGEN HCGEN/ offset  = 

lnb dist =zip;  

zeromodel  multiplicity~BPA DEHP LC HC DIET BPA GEN DEHPGEN LCGEN HCGEN;  

title  'Countreg for ZIP model' ;  

run ;  


