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Abstract

Emerging cyber-infrastructure tools are enabling scientists to transparently co-

develop, share, and communicate in real-time diverse forms of knowledge artifacts.

In this research, these collaborative environments are modeled as complex adaptive

systems using collective action theory as a basis. Communication preferences of sci-

entists are posited as an important factor affecting innovation capacity and resilience

of social and knowledge network structures. Using agent-based modeling, a complex

adaptive social communication network model is developed. By examining the Open

Biomedical Ontologies (OBO) Foundry data and drawing conclusions from observing

the Open Source Software communities, a conceptually grounded model mimicking

the dynamics in what is called Global Participatory Science (GPS), is presented.

Social network metrics and knowledge production patterns are used as proxy met-

rics to infer innovation potential of emergent knowledge and collaboration networks.

Robust communication strategies with regard to innovation potential are questioned

by exploring different parameter and mechanism configurations. The objective is

to present the underlying dynamics of GPS in a form of computational model that

enables analyzing the impacts of various communication preferences of scientists on

innovation potential of the collaboration network. The ultimate goal is to further our

understanding of the dynamics in GPS and facilitate developing informed policies

fostering innovation capacity.

ii



Acknowledgments

I would like to express my gratitudes to the advisory committee of this disserta-

tion. Without their support, suggestions, criticisms, and credences, this work would

not be possible. Special thanks to Dr. Levent Yilmaz for introducing me to the

Complex Adaptive Systems, countless creative discussions, encouragement, and his

never-ending confidence on me. Other special thanks to Dr. Jeffrey Smith for mind-

stretching arguments, his expertise, and his guidance. Thanks to Dr. Alice Smith for

recruiting me to the Auburn family and her valuable comments on my dissertation.

Thanks for their patience at the times i procrastinated. I wish i could be a better

student.

Additionally, thanks to the National Science Foundation (NSF) for the partial

support as authorized by the contract number NSF-SBE-0830261. The research is

also partially funded by the Industrial and Systems Engineering Department assis-

tantships/fellowships at Auburn University.

I would like to dedicate this hard-work to my family. To my favorite people who

love regardless...

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 General Concepts on Science . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Science and Research . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Open Science Paradigm . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Governance of Open Scientific Communities . . . . . . . . . . 11

2.2 GPS from Complex Adaptive Systems Perspective . . . . . . . . . . . 13

2.3 Understanding CAS by Agent Based Modeling . . . . . . . . . . . . . 16

2.3.1 Examples of Agent Based Modeling . . . . . . . . . . . . . . . 17

2.3.2 Simulation Models of Science . . . . . . . . . . . . . . . . . . 19

2.4 Communication and Collective Action in GPS . . . . . . . . . . . . . 20

2.5 Understanding GPS as an Innovation and Collaboration Network . . 22

2.5.1 Social Network Metrics and Innovation Potential . . . . . . . . 25

2.6 Diversity and Innovation Potential . . . . . . . . . . . . . . . . . . . 28

2.7 Robustness and Resilience in Socio-technical Systems . . . . . . . . . 29

3 RESEARCH PROBLEMS AND METHODOLOGY . . . . . . . 30

3.1 Stakeholders of the Research . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Methodology Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



3.3.1 Phase 1 - Conceptual Model Theory Base . . . . . . . . . . . 37

3.3.2 Phase 2 - Social Communication Model and Innovation . . . . 38

3.3.3 Phase 3 - Robustness Analysis . . . . . . . . . . . . . . . . . . 40

4 BASE-MODEL COMPONENTS AND VALIDATION . . . . . . 42

4.1 Base-Model Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Artifact Selection . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Collective Action Mechanism . . . . . . . . . . . . . . . . . . 46

4.1.3 Learning and Influencing Processes . . . . . . . . . . . . . . . 51

4.1.4 Information Foraging Mechanisms . . . . . . . . . . . . . . . . 52

4.1.5 Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.6 SEIR Metaphor . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.7 Conceptual Model Validation . . . . . . . . . . . . . . . . . . 57

4.2 Computational Model and Repast Implementation . . . . . . . . . . . 60

4.3 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 OBO data and Over-fitting Problem . . . . . . . . . . . . . . 66

4.5 Initial Conditions and Terminating State Decision . . . . . . . . . . . 68

4.5.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Bonferroni Analysis . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Activity Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Power-Law Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Collaboration Network Phases . . . . . . . . . . . . . . . . . . . . . . 80

5 SOCIO-COMMUNICATION MODEL AND EXPLORATORY

ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Communication Preferences . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Random Connection . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 Human Capital . . . . . . . . . . . . . . . . . . . . . . . . . . 86

v



5.1.3 Social Capital . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.4 Homophily Theory . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.5 Social Exchange Theory . . . . . . . . . . . . . . . . . . . . . 91

5.2 Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Social Network Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Diversity and Interdisciplinarity . . . . . . . . . . . . . . . . . . . . . 95

5.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1 Response Surface Analysis . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Communication Preferences . . . . . . . . . . . . . . . . . . . 99

6 ROBUSTNESS IN GLOBAL PARTICIPATORY SCIENCE . . 113

6.1 Exploratory Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 The Use of Genetic Algorithms . . . . . . . . . . . . . . . . . 114

6.1.2 Metamorphic Testing . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Design Decisions Relative to the GA . . . . . . . . . . . . . . . . . . 118

6.2.1 Encoding and Decoding of the Parameter Space . . . . . . . . 122

6.2.2 Activity Flow of the GA Module . . . . . . . . . . . . . . . . 124

6.2.3 Metamorphic Relations . . . . . . . . . . . . . . . . . . . . . . 124

6.2.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.5 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.6 Crossover and Mutation . . . . . . . . . . . . . . . . . . . . . 129

6.2.7 Culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Limitations and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 140

7 CONCLUSIONS AND FUTURE RESEARCH . . . . . . . . . . 142

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

vi



A.1 Termination State Analysis . . . . . . . . . . . . . . . . . . . . . . . 168

A.2 Response Surface Analysis . . . . . . . . . . . . . . . . . . . . . . . . 181

A.3 Core/Periphery Calculation Method . . . . . . . . . . . . . . . . . . . 184

vii



List of Illustrations

3.1 Network Visualizations of Micro-level, Meso-level, and Macro-level Sci-

ence Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The Chart of Objectives and Methodology . . . . . . . . . . . . . . . 36

3.3 Exploratory Software Coupling GA and Metamorphic Relations . . . 41

4.1 Moving and Artifact Selection Processes in the Model . . . . . . . . . 44

4.2 Shape of the Function that Updates Tension . . . . . . . . . . . . . . 50

4.3 Information Foraging Behavior . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Population Dynamics in the Environment . . . . . . . . . . . . . . . . 55

4.5 SEIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Activity Flow Diagram of a Scientist . . . . . . . . . . . . . . . . . . 58

4.7 RePast API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Life Cycle of a Simulation Study . . . . . . . . . . . . . . . . . . . . . 62

4.9 Sample Core-Periphery Structures at time 400 . . . . . . . . . . . . . 70

4.10 Number of Active Artifacts and Active Scientists Over Time - OBO . 77

4.11 Number of Active Artifacts and Active Scientists Over Time - Simulated 77

viii



4.12 Log-Log Plot of Degree Distribution and Contribution Distributions of

OBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Log-Log plot of Degree Distribution of Scientists - Simulated . . . . . 79

4.14 Log-Log Plot of Contribution Distribution of Artifacts - Simulated . . 80

4.15 Log-Log Plot of Contribution Distribution of Scientists - Simulated . 80

4.16 Emergent Network Patterns Over Time - Theoretical Model . . . . . 82

4.17 Emergent Network Patterns Over Time - OBO Data . . . . . . . . . 83

4.18 Emergent Network Patterns Over Time - Simulated . . . . . . . . . . 84

5.1 Activity Flow Diagram of Random Connection Mechanism . . . . . . 86

5.2 Activity Flow Diagram of Communication Mechanisms . . . . . . . . 87

5.3 Network Visualizations at Terminating State . . . . . . . . . . . . . . 100

5.4 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Degree Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Average Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Core/Periphery Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.9 Diversity Among Scientists . . . . . . . . . . . . . . . . . . . . . . . . 104

5.10 Diversity Among Artifacts . . . . . . . . . . . . . . . . . . . . . . . . 104

5.11 Diversity Among Links . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



5.12 Diversity Among Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.13 Expertise Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.14 Maturity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.15 Disparity Distribution Among Nodes . . . . . . . . . . . . . . . . . . 108

5.16 Disparity Distribution Among Links . . . . . . . . . . . . . . . . . . . 109

5.17 Active Scientists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.18 Active Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.19 Small-world Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.20 Node Diversity vs Network Coherence . . . . . . . . . . . . . . . . . . 111

6.1 Encoding and Decoding of the Parameters. . . . . . . . . . . . . . . . 123

6.2 Activity Flow Diagram of the Genetic Algorithm . . . . . . . . . . . 125

6.3 Average Fitness Values over Generations . . . . . . . . . . . . . . . . 132

6.4 Minimum and Average Fitness Values for each Theory . . . . . . . . 133

6.5 Integer Parameters of the Fittest Scenario over Generations . . . . . 134

6.6 Floating Number Parameters of the Fittest Scenarios over Generations 134

6.7 Communication Mechanism of the Fittest Scenarios over Generations 136

6.8 95% Confidence Intervals for Different Communication Mechanisms . 139

A.1 Density Over Time - OBO Scenarios . . . . . . . . . . . . . . . . . . 169

x



A.2 Degree Centrality Over Time - OBO Scenarios . . . . . . . . . . . . . 170

A.3 Clustering Coefficient Over Time - OBO Scenarios . . . . . . . . . . . 171

A.4 Average Path Length Over Time - OBO Scenarios . . . . . . . . . . . 172

A.5 Diversity (Scientist Population) Over Time - OBO Scenarios . . . . . 173

A.6 Diversity (in the network) Over Time - OBO Scenarios . . . . . . . . 174

A.7 Density Over Time - Random Connection . . . . . . . . . . . . . . . 175

A.8 Degree Centrality Over Time - Random Connection . . . . . . . . . . 176

A.9 Clustering Coefficient Over Time - Random Connection . . . . . . . . 177

A.10 Average Path Length Over Time - Random Connection . . . . . . . . 178

A.11 Diversity (Scientist Population) Over Time - Random Connection . . 179

A.12 Diversity (in the network) Over Time - Random Connection . . . . . 180

A.13 Core/Periphery Activity Diagram . . . . . . . . . . . . . . . . . . . . 184

xi



List of Tables

2.1 Social Communication Theories . . . . . . . . . . . . . . . . . . . . . 21

3.1 Traditional Science vs. Global Participatory Science . . . . . . . . . . 32

4.1 Conceptual Mechanisms and Assumptions . . . . . . . . . . . . . . . 59

4.2 Initial Settings of the Model . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Maximum n Values Found . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Summary of the Sensitivity Analysis . . . . . . . . . . . . . . . . . . 111

6.1 The Bit Values in Initial Genome . . . . . . . . . . . . . . . . . . . . 123

6.2 Decoded Values of the Identified Portfolio of Scenarios . . . . . . . . 136

6.3 Fitness Values - The Most Robust Parameter Scenario . . . . . . . . 137

6.4 Analysis of Variance for 20 batches of 10 replications . . . . . . . . . 138

6.5 Mean of Various Metrics - The Most Robust Scenario . . . . . . . . . 138

6.6 Standard Deviation of Various Metrics - The Most Robust Scenario . 139

A.1 Parameter Values for RSM . . . . . . . . . . . . . . . . . . . . . . . . 181

A.2 Summary of Response Surface Analysis - 1 . . . . . . . . . . . . . . . 182

A.3 Summary of Response Surface Analysis - 2 . . . . . . . . . . . . . . . 183

xii



Chapter 1

INTRODUCTION

Science is becoming increasingly global and participatory due to online collabo-

ration opportunities such as e-mailing, web-based social networking, and open-access

collaboration platforms. Hence, scientists interact not only locally but also glob-

ally by constructing self-organizing collaboration networks. Wagner (2008) states the

following regarding the emergence of these fluid networks:

They constitute an invisible college of researchers who collaborate not

because they are told to but because they want to, who work together not

because they share a laboratory or even a discipline but because they can

offer each other complementary insight, knowledge, or skills.

One of the most significant problems in organizational scholarship is to discern

how social collectives govern, organize, and coordinate the actions of individuals to

achieve collective outcomes (O’Mahony and Ferraro, 2007). The first phase of this re-

search explores micro-level (inter-scientist) socio-technical processes and mechanisms

that explain emergent behaviors observed in scientific communities that collaborate

over the cyber-infrastructure. Scientific knowledge creation in such communities is

called Global Participatory Science (GPS) (Zou and Yilmaz, 2011). First, based on

the views advocated by Wagner (2008) and Monge and Contractor (2003), the struc-

ture and behavior of GPS are interpreted as complex adaptive systems (CAS). Second,

recent ethnographic studies (Nielsen, 2010; Ostrom and Hess, 2007), which suggest

that GPS is a collective action undertaken by autonomous self-organizing scientists,

are leveraged. The first question of interest is “Which interaction mechanisms in

the literature explain operational behavior of GPS and its underlying socio-technical
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processes?” Then the focus of this research is on “How we can specify and implement

these mechanisms in the form of a computational model to gain empirical insight and

perform exploratory analysis?”

It is demonstrated by Wagner (2008) that science is complex because researchers

interact in both competitive and cooperative ways, with no imposed blueprint. Fur-

thermore, she states that it is adaptive because scientists respond to environmental

changes such as funding preferences and new discoveries . In this work, Information

foraging, preferential attachment, and population dynamics are conceptualized as the

underlying self-organization mechanisms of knowledge creation in GPS.

There are simulation studies that explore knowledge creation processes in sci-

ence (Shrager and Langley, 1990; Cowan and Jonard, 2004; Gilbert, 1997). However,

in these models social interactions are not taken into account. Using the collective

action theory, which includes models of self-interest (based on knowledge gain), ex-

posure (based on social influence), cognitive burden (based on expertise of scientists),

and tension (based on complexity of the projects) in scientific knowledge generation,

theoretically-grounded conceptual model of scientist behavior is developed.

The understanding of CAS is more likely to arise with the help of computer-

based models (Holland, 1996). Agent Based Modeling (ABM) provides us with the

opportunity to directly identify individual entities along with their relationships and

capabilities. Hence, simulation of these mechanisms using the ABM worldview is a

powerful method that is adopted in this study.

ABM involves rationally bounded human agents. Therefore, validation of these

models is a challenging task, and the assumptions of the models should be explic-

itly explained. But also computational laboratories are not supposed to be, indeed

should not be, exact replication of reality (Burton, 2003). For validation purposes, the
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presence of scale free networks, adaptive/renewal activity cycles, and network forma-

tion phases (e.g. core/periphery) are investigated. These are known characteristics

peculiar to collaboration networks and GPS.

Communication among agents in a CAS has an intense effect on the system

level behavior (Shlesinger, 2007). Wagner (2008) indicates that if we can discern

identifiable patterns and mechanisms of communication among the scientists, then

understanding can lead us to determine how the scientific endeavor operates and how

policymakers can effectively influence its evolution and growth. In an NSF workshop

in 20061, participants are called for new theoretical models that foster understanding

innovation through computational and cognitive models of creativity (Yilmaz, 2008b).

The second phase of this research focuses on implementing computational mechanisms

of selected social communication theories: (1) Homophily theory, (2) Social capital

theory, (3) Human capital theory, (4) Social exchange theory. Then the the goal is

to evaluate the evolution of the network. The question to address is: “Which social

communication mechanisms among scientists are more effective in fostering innovation

potential?”

Generative mechanisms of social capital, human capital, homophily, and social

exchange theories, which are relevant social communication theories applicable to the

problem domain, are implemented. There are studies that discuss diversity (Dha-

naraj and Parkhe, 2006; Powell et al., 1996) and network connectivity (Pyka, 2009;

Burt, 1995) as potential indicators of innovativeness. Diversity of the emergent knowl-

edge and collaboration network structures is measured and used as an indicator of

interdisciplinarity. Analysis of core/periphery ratio, small-world phenomena (based

on clustering coefficient and average path length), degree centrality, and density of

emergent collaboration networks are also conducted to assess innovation potential.

1NSF/SRS Workshop on Advancing Measures of Innovations: Knowledge Flows, Business Met-
rics, and Measurement Strategies, 2006
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Additionally, the utility of additional activity metrics (the number of active mem-

bers, distribution of expertise) are evaluated as proxy metrics of innovation potential.

The OECD and European Commission encourage the research on innovation

metrics, unanticipated consequences, and unrealized opportunities emerging from the

complex adaptive environments. Scientific networks cannot be controlled but can

be guided by the policymakers to influence collaboration environments. Recognizing

uncertainty and the lack of knowledge about the environment in science-based in-

novation systems such as GPS, designing robust systems is important as opposed to

searching for optimal system design. The third phase of the research is focused on the

question: “How to explore different parameter and mechanism configurations to seek

and identify more robust communication strategies in terms of variance of innovation

potential metrics?”

In order to address this question, an exploratory modeling tool is developed

which consists of coupled genetic algorithm and metamorphic relations module to

create models with distinct scenarios. Hence, decision-makers (policy-makers in this

research) can explore different parameter and mechanism set-ups. Mean absolute

errors (MAE) of different metrics are used to measure robustness performance of

each point in the scenario space. A feedback mechanism is constructed based on ro-

bustness performance and metamorphic relations to facilitate further generation and

exploration of the scenario space. More robust scenario space is investigated, while

the average robustness behavior for each communication mechanism under various

conditions (over generations) is monitored. Additionally, the levels that parameter

values converge at more robust landscapes are evaluated. The tradeoffs between

robustness and innovation potential are delineated by social network metrics.

The National Academy of Engineering report indicates that leadership in inno-

vation is essential to U.S. prosperity and security.2 By developing agent-based models

2http://www.nae.edu - As of 4.07.2013
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and conducting the analysis described above, the goal is to further our understand-

ing of innovation in GPS and to support policy-makers in nurturing open scientific

environments.

In the following Chapter, a summary of the literature relative to the topic is

provided. Chapter 3 outlines the methodology adopted and then research prob-

lems are introduced in detail. In Chapter 4, base-model design is discussed along

with verification and validation efforts conducted, and Chapter 5 includes the socio-

communication model development and sensitivity analysis. Chapter 6 introduces the

exploratory modeling algorithm that is designed for policy-makers to explore different

mechanism and parameter spaces for discovery of robust strategies. In Chapter 7, the

future work and concluding remarks of the research are summarized.
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Chapter 2

LITERATURE REVIEW

This chapter provides a background for the research conducted. It starts with

general concepts on science and research followed by the definitions that help us to

understand the environment of inquiry. Consequentially, the governance mechanisms

exist in GPS are summarized supported by the ethnographic studies on Open Source

Software (OSS) communities. Thereafter, GPS is examined from CAS perspective

and discussion of how to study CAS is done. Domain knowledge is concluded with

an introduction to ABM and simulation studies relevant to this research. Then theo-

retical basis of the computational models implemented in this research is delineated.

Subsequently, literature review about collaboration networks such as GPS from inno-

vation and social network perspective is revealed. In the last section, several concepts

about robustness and resilience of socio-technical systems are introduced.

2.1 General Concepts on Science

There is no precise definition of science that is widely-accepted. For example,

Feynman (1998) has a range of definitions for science from a special method of find-

ing things out, to knowledge arising from the things found out as well as new things

brought by the things found out or doing of new things. In another study, science

is addressed as a mode of inquiry(Epstein, 2008). Besides different interpretations

of science, this research is interested in the creativity process and the environmental

changes occurred during the creation of knowledge in scientific environments. There-

fore, an introduction to traditional science and research activities is summarized in

the following section.
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2.1.1 Science and Research

In his influential work, Kuhn (1996) discusses how scientific fields develop as a

result of cyclic revolutionary efforts. In normal science, researchers study based on

past scientific accomplishments that are accepted by the community they study in,

and they find themselves practicing parallel to the foundations of that particular com-

munity, at the same paradigm. Paradigm is the word for avenues of questions and the

style of conducting research. It emerges through time based on the previous successes

of the paradigm fellows’ scientific efforts. None of the paradigms can explain a phe-

nomenon exactly, but a widely-accepted paradigm survives, forming disciplines and

professions. Scientists learn to practice through disciplinary laws, concepts, and their

implementations. Since a paradigm cannot explain all the facets of a phenomenon,

new phenomena and anomalies occur. These anomalies can result in two outcomes:

novelty of fact or novelty of theory. Consequentially, these novelties can cause re-

finement of the paradigm or failure of it. Failure means crises that would end up

with a revolution (new paradigm) or an exception left to be handled for prospective

researchers.

Adaptive cycles are a good way to explain this progress in science. Walker et al.

(2004) describes four states of an adaptive cycle:“growth and exploitation phase, con-

servative phase, chaotic collapse, and innovation phase.” The growth is cumulative

but up to a certain extent. After a paradigm reaches the conservative phase, there

needs to be reorganization or a new paradigm shift because it cannot explain the phe-

nomenon any longer. Chaotic collapse brings new opportunities to compete against

each other and then innovation phase starts a new cycle with the fittest novel strategy

in the environment.

On the other hand, research is defined as puzzle-solving (Kuhn, 1996; Arndt,

1985). The aim of the traditional research is to explain what is known to be there in

advance. Although they contribute to the existing paradigm, the provided answers are
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questionable. Research is cumulative while scientific revolutions are non-cumulative,

and science improves by paradigm shifts as a result of the evolutionary process, in

which the fittest survive. While contradictory definitions exist about the difference

between research and science, Latour (1998) expresses a noteworthy observation to

explain the scientific endeavor emerging today:

Science is certainty; research is uncertainty. Science is supposed to

be cold, straight, and detached; research is warm, involving, and risky.

Science puts an end to the vagaries of human disputes; research creates

controversies. Science produces objectivity by escaping as much as possi-

ble from the shackles of ideology, passions, and emotions; research feeds

on all of those to render objects of inquiry familiar.

Scientists form hierarchically-structured teams or groups and synchronously con-

duct traditional science activities in a similar environment. Traditional science has

a high-entry threshold, static structure in terms of turnover of the participants, and

has finished products, which are usually in the form of publications. Complex traits

of the new scientific activities differ from the traditional scientific activities regard-

ing the communication styles, proximity and mobility of the actors, organizational

hierarchies, and products of the collaboration.

Gibbons et al. (1997) call the traditional way of doing science Mode-1 knowledge

production. It is in a disciplinary framework, hierarchical, and institutionalized while

Mode-2 science as a new production process of knowledge is transdisciplinary. Mode-2

science includes many diverse scientists or participants in the process. It has a deeper

quality control because the product is socially accountable. It is more formed around

an application area or an artifact (any form of information such as document, code,

vocabulary) including contributors from diverse ranges of disciplines, and the product

is transdisciplinary, which means it is not reversible to the contributing disciplines.

Mode 2 threatens the existence of Mode-1 knowledge production, but Mode-1 and

Mode-2 live simultaneously.
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2.1.2 Open Science Paradigm

Open Science is defined as a mode of knowledge production which has the dis-

closed knowledge of the earlier participants as an input to future researchers (Mukher-

jee and Stern, 2009). David (1998) defines the force of universalist pattern of open

science as providing entry into scientific artifacts and open discussion by all partic-

ipants, while promoting “openness” in regard to new findings. Carayol and Dalle

(2007) explain open-science phenomenon as significant freedom of scientists to choose

whatever they want to do and ho ver they want to do it. It is a Mode-2 way of

knowledge production and un-institutionalized.

With the increasing use of the Internet and collaboration tools, terms e-science

(The FANTOM Consortium, 2005), and service-oriented science (Booth et al., 2004)

are coined referring to scientific research enabled by networks of loosely connected

communicating services. Cofundos (Auer and Braun-Thürmann, 2011) as a stake-

holder driven research platform, the openscience project1, creativecommons2, and

innocentive3 are some of the web platforms fostering innovation and creating gov-

ernance mechanisms in open science. Open science summit4 is another initiative

that gathers open science endeavor to discuss the future of this emerging way of

doing science. Open Science GRID (OSG), Enabling Grids for eScience in Europe

(EGEE), Biomedical Informatics Research Network (BIRN), Network for Earthquake

Engineering Simulation (NEES) of National Science Foundation and Open Biomed-

ical Ontologies (OBO) in Sourceforge are some examples of open science initiatives

(Foster, 2005).

Merton (1979) described four basic elements of a community: “universalism (a

shared interpretation), communism (information sharing), disinterestedness (having

1www.openscience.org - As of 4.07.2013
2http://creativecommons.org/science - As of 4.07.2013
3http://www.innocentive.com/ - As of 4.07.2013
4http://opensciencesummit.com/ - As of 4.07.2013
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objective scientific inquiry), and organized skepticism (proof and review process).”

Open Source Software Development (OSSD) communities having the aforementioned

features are also producing science in a form of software. OSSD governance frame-

works are definitely beneficial to explain open science. GNU project5, Apache software

foundation6, and Linux operating system7 are successful OSSD communities that are

still active.

Nowotny et al. (2001) describe the main features of Mode-2 science environment

(agora), in which science and the public meets. Agora has diverse participants from

various disciplines with different interests and expertise. Participants produce not

only reliable but also more socially robust knowledge because of continuos review

mechanisms in agora. They are self-authorizing, and the expertise is socially dis-

tributed. Agora is complex and full of uncertainty, which fosters further innovations

co-evolving with the society.

In Sourceforge8, OBO Foundry9 can be defined as open source science develop-

ment platform that has diverse scientists who are setting principles for interoperable

ontology creation and are forming the shared terminology in biomedical domain.

There is no top-down leadership in communities and it consists of different communi-

ties focused on different subjects. These communities are divided into domains which

are basically smaller communities. Artifacts and emailing are the main collaboration

tools. Artifacts can be perceived as any form of knowledge (e.g. document, code, bug

report) and are created and elaborated by the community members evolving through

a consensus.

The actors of open science are academics, not only software developers as in the

OSS communities. Intellectual product is not only software but can be papers or

5http://www.gnu.org/ - As of 4.07.2013
6http://www.apache.org/ - As of 4.07.2013
7http://www.linux.com/ - As of 4.07.2013
8http://sourceforge.net/ - As of 4.07.2013
9http://www.obofoundry.org/ - As of 4.07.2013
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datasets in digital form (as artifacts). Ostrom and Hess (2007) list the differences

between OSSD and traditional scientific practices as sharing not only the research

product (e.g. software, paper) but also the research process, which is different than

the traditional journal publishing. Others outside the organizational borders can also

participate in different scientific research projects. Open commons do not hold full

copyright and they foster the speed of publishing the ideas and innovations compared

to standard peer-reviewed journal process.

2.1.3 Governance of Open Scientific Communities

One of the most significant problems in organizational scholarship concerns how

social collectives govern, organize, and coordinate the actions of individuals to achieve

collective outcomes (O’Mahony and Ferraro, 2007). Jensen and Scacchi (2010) aim

to develop understanding for how to characterize the ways and means for affecting

governance within and across OSS projects, as well as the participants and technolo-

gies that enable these projects and the larger communities of practice, in which they

operate and interact.

An important concern that arises from the Open Science concept is what kind

of incentives should be created to encourage scientists and academics to participate.

Even though journals have not paid authors for articles since the beginning of scientific

era, there are intangible rewards that authors want their work to be known, read, built

upon, used, and cited (Ostrom and Hess, 2007). Ostrom and Hess (2007) also state

that the authors can write journal articles without considering what idea is the best

seller or what would be noticed by the widest audience. So academic freedom and

gaining reputation can be seen as some of the incentives in open science but there

needs to be more incentives for better participation. Ostrom and Hess (2007) exert

attention on:
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(1) How to license digital content that is not computer software, (2)

how to work within the existing norms and incentive structures faced by

most scientists and academics in their workplace today, (3) how to govern

such a collaboration, and (4) how to finance such an endeavor.

In addition to the previously described governance studies for OSS, Preece and

Shneiderman (2009) offer the reader-to-leader framework for technology-mediated

social participations. They assert that all users first become aware of the participatory

and become a reader, some then become contributors, then collaborators, and later

on possibly leaders. They claim that people read because (1) they benefit from it,

(2) recognition is an important driving force of contributing, (3) interest triggers a

contribution which may turn into collaboration, (4) trust plays a role, and (5) altruism

is identified as a major motivator for encouraging contribution and collaboration.

Lattemann and Stieglitz (2005) aim to examine central structures and coordi-

nation patterns in open source communities. They see intrinsic motivation, group

identification processes, learning, and career concerns as the key drivers for a success-

ful cooperation among the participants. In their study, it is assumed that all member

groups are partially intrinsically and partially extrinsically motivated in every stage

of the life cycle (introduction, growth, maturity and decline or revival) of the commu-

nity. It can be perceived as positive and negative feedback mechanisms. They point

out that conventional control mechanisms are not usable in systems based on volun-

teer work because there is no possibility to penalize or reward members financially.

They advocate that the adequacy of governance tools is related with the motivation,

and motivation is related with the different member groups and life cycle stages of a

community.

Jensen and Scacchi (2010) illustrate an alternative perspective offering a multi-

level analysis and explanation for the governance of OSSD as below, in which this

research is interested in the micro-level analysis:
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In particular, Open Source Software Development (OSSD) projects

can be examined through a micro-level analysis of (a) the actions, be-

liefs, and motivations of individual OSSD project participants, and (b)

the social or technical resources that are mobilized and configured to sup-

port, subsidize, and sustain OSSD work and outcomes. Similarly, OSSD

projects can be examined through meso-level analysis of (c) patterns of

cooperation, coordination, control, leadership, role migration, and conflict

mitigation, and (d) project alliances and inter-project socio-technical net-

working. Last, OSSD projects can also be examined through macro-level

analysis of (e) multi-project OSS ecosystems, and (f) OSSD as a social

movement and emerging global culture.

Ostrom and Hess (2007) remind us that the analysis of different types of mo-

tivations fall into three groups: “technological, sociopolitical, and economic.” They

present the main technological reason for someone to participate as the need for soft-

ware that is unavailable or too expensive and the main socio-political motivations

as the belief in the social or political movement and the desire to participate in

a broader community with shared interest as well as passion to contribute. In their

study, economic motivations in OSS communities are building human capital through

learning by reading the existing software code and peer-review process, and signaling

the ability as an expert (earning reputation).

Understanding governance and the relationships between the actors in these com-

munities are essential to foster the conducive behaviors that steers these communities

towards a desired goal. Scientific knowledge creation in such communities is stated as

Global Participatory Science (GPS) (Zou and Yilmaz, 2011). Which tools are used

to explain this phenomenon are explained in the following sections.

2.2 GPS from Complex Adaptive Systems Perspective

It is demonstrated that science is complex because researchers around the world

interact in both competitive and cooperative ways, with no imposed blueprint, and
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it is adaptive because both the science and participating scientists respond to envi-

ronmental changes such as funding preferences or new discoveries (Wagner, 2008).

Participants of GPS learn from the knowledge repository or through communication

with each other. The knowledge network and the social network evolve over time

influencing each other and forming macro-level structures.

Complex Adaptive Systems (CAS) can be described as a framework to under-

stand the world around us. Complexity itself can be perceived in two different ways;

qualitatively and quantitatively. Standish (2008) asserts that qualitatively, complex-

ity is related with the ability to understand a system or object while quantitatively,

complexity is used to define something being more complicated than another. Yam

(2005) describes CAS as:

A new approach to science, which studies how relationships between

parts give rise to the collective behaviors of a system and how the system

interacts and forms relationships with its environment.”

CAS are formed of elements that have wide range in both form and capability

(Holland, 1996). Shlesinger (2007) describe CAS as “composed of interacting thought-

ful (but perhaps not brilliant) agents.” The phrase not brilliant raises concerns about

bounded rationality. Axtell and Epstein (2006) discuss the empirical data, which

demonstrate that all individuals should not necessarily be rational to produce effi-

ciency in macro-level outcomes of a system in CAS. Given that individual rationality

is bounded, they explore how much rationality should exist in a system to generate

macro-level patterns. In CAS, big changes can generate small outcomes, while small

perturbations can cause big emergent behaviors. Yam (2005) defines emergence as

the interdependence between details and the larger view of a system.

In addition to bounded rationality, Monge and Contractor (2003) describe the

main elements of complex systems in terms of the network of agents, their attributes

or traits, the rules of interaction, and the structures that emerge from these micro-level

interactions. Authors list typical classes of agent traits as location, capabilities, and
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memory. Communication among the agents, as a main interaction mechanism, has an

intense effect on the system level behavior of a complex adaptive system (Shlesinger,

2007). Yang and Shan (2008) depict that agents use belief-desire-intention framework

to guide their behavior.

In another seminal work Hidden Order, Holland (1996) describes 7 basics (four

properties and three mechanisms) that are common in CAS. Basic principles that are

also adopted by this research are listed below:

• Aggregation (a property): In one sense, it means defining similar things in the

same class. In another sense, it is emergent macro-level behaviors caused by

aggregate micro-level relationships.

• Tagging (a mechanism): It results in selective interaction between the agents.

• Nonlinearity (a property): There are nonlinear interactions among the compo-

nents of the system that means a change on a component non-linearly effects

the state of another component.

• Flows (a property): There is a flow of components and information through the

system.

• Diversity (a property): There are heterogenous agents and components in the

system.

• Internal Models (a mechanism): It refers to anticipation among the agents.

• Building Blocks (a mechanism): There is a repetition of novel situations or

structures that are emerged through building blocks (re-usable categorical parts).

Van Aardt (2004) views the OSS development communities as complex adap-

tive systems. Muffatto and Faldani (2003) represent the OSS community actors with

their interaction flows and depict them in terms of three fundamental processes that
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Axelrod and Cohen (2001) identify in complex adaptive systems: variation, interac-

tion, and selection. Scacchi and Jensen (2008) state that recent empirical studies

of OSS projects reveal that OSS developers often self-organize into organizational

forms characterized as evolving socio-technical interaction networks (STINs). They

are self-organizing because usually without extrinsic leadership, they are formed and

led.

2.3 Understanding CAS by Agent Based Modeling

Interdisciplinarity and computer-based thought experiments are common fea-

tures of CAS studies (Holland, 1996). As the purposes of our models diversify and

types of the inputs range, models formed become more interdisciplinary. Standard

models of others and recombination of mathematical algorithms enrich the process

of modeling CAS. Shlesinger (2007) defines the models as maps to develop scientific

understanding of the system of interest involving combination of theory, practice, and

art. The main purpose of CAS studies is to understand the underlying relationships

between parts while mostly people think that the problem is in the parts (Yam, 2005).

The understanding of CAS is more likely to arise with the help of computer-

based models (Holland, 1996). Axelrod (1997a) states that applications of simulation

in social science are really diverse so that it has no natural home as a field. There are

two methods to explore CAS. Agent based modeling (ABM) is bottom-up and Method

of Systems Potential (MSP) is top-down approaches which derive CAS properties

analytically (Yang and Shan, 2008).

ABM gives us the opportunity to directly identify the entities along with the

relationships and capabilities of them. ABM captures emergent phenomena because it

has a holistic approach that perceives a system as more than the sum of its constituent

parts. The system level behavior cannot be explained by the properties of the units

16



in the system. Since ABM is used more with the behavioral entities, it provides an

opportunity to model more realistically.

Holland (1996) states that the abstractions of the reality, which are agent based

models in this research, are metaphorical representations and are actually “the world

as it might be, not the world as it is.” In computer based simulations, accuracy

is expected but the model is not the exact reality. In the following section, some

examples are summarized regarding the use of ABM that is related to this research.

2.3.1 Examples of Agent Based Modeling

The use of agent based modeling as an explanatory tool is widespread among

disciplines and is gaining more popularity in the last decades. Epstein (2006) asks

the question “Can you grow it?” instead of “Can you explain it?” for observed

social phenomenon. He gives examples of agent-based models generating social in-

teractions and emergent behaviors in socio-cultural contexts. He calls agent-based

computational models as scientific instruments.

There are many inspiring implementations of agent based simulation models that

explain different systems and create understanding for different contexts. Carlson and

Doyle (2002) discuss highly optimized tolerance in a statistical physics environment.

Their forest-fire model aims to show connection between micro-level mechanisms and

the macro-level failures by building self-organized criticality and robustness barriers.

In another study, abstract computational forest-fire models are developed to gain an

understanding of mechanisms underlie different ecosystems and ultimately, different

fire management strategies are evaluated (Moritz et al., 2005).

This research focuses on socio-technical processes and use of ABM in socio-

technical environments. As a good example, Axelrod’ s disseminating culture model

(1997b) examines the relationship between local convergences and global polarization,

and builds social influence mechanisms of individual and group differences in terms
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of traits and features. In another study, Axelrod (2006) questions how the states

form and dissolve from small political actors providing new thinking on the policy

making of the real world in order to maintain more sustainable political structures.

In their remarkable work on the effect of individual rationality on macro-level be-

havior, Axtell and Epstein (2006) point out that imitative behavior and the social

interactions are not well considered in economic models. Therefore, they develop an

agent-based model for timing of retirement incorporated with social interactions and

social imitation process to investigate how desired (optimal) behavior converges even

with relatively small amount of rational agents.

Epstein et al. (2006) also examine the epidemic case of smallpox in a county-

level context with different scenarios (vaccination, population, etc.) and feed the

simulation with real data to question when and how much vaccination is needed to

stop the epidemic. In another study, Epstein (2006) grows an artificial hierarchical

management mechanism for a company to measure the adaptability of the employee

hierarchies. Then he creates an objective function representing the trade-off between

maintenance costs of the managerial layers and costs of missed marketing opportuni-

ties. At the end, he calculates the optimum hierarchy of the management for different

initial set-ups.

Cui et al. (2009) create a hypothetical open source software development envi-

ronment presenting a stigmergy approach and investigate whether they can validate

the network structures and collaboration frequency among scientists that are emerged

from micro-level stigmergy preferences. Yilmaz (2009) develops an understanding of

the coordination of OSS communities focusing on governance and the conflict man-

agement strategies and measures the performance in terms of collective creativity.

Dron and Anderson (2009) perceive the technology not only as a tool but also as a

component (processes and rules). They claim that people should design systems con-

sidering the significant components, and predictability of the behavior is not likely so
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people need to make the systems adaptable. McCormack (2007) creates an artificial

ecosystem, in which he builds the metaphor between adaptive individual agents and

colors exploring novel discovery processes.

2.3.2 Simulation Models of Science

Different scholars use simulation to study scientific domains. For instance, Gilbert

(1997) introduces a model to determine whether it is possible to reproduce observed

regularities in science using a small number of simple assumptions. His model gener-

ates knowledge structures consistent with observed Zipf distributions involving scien-

tific articles and their authorship, but it does not consider social processes as a mech-

anism. Naveh and Sun (2006) continue their analysis on top of Gilbert’ s model and

explore how different cognitive settings may affect the aggregate number of scientific

articles produced. They argue that using cognitively realistic models in simulation

may lead to novel insights in academia, but they just consider implicit and explicit

learning.

In the context of collective knowledge creation and diffusion, Cowan and Jonard

(2004) simulate the knowledge exchange process to examine the relationship between

network performance and the network architecture. Shrager and Langley (1990)

perceive science as problem solving including machine learning techniques. However,

in these studies, the social interactions are not taken into account. Socio-technical

modeling of science and representing knowledge generation as a social phenomenon

draw significant attention among researchers. Similarly, in this research, the focus

is on micro-level (inter-scientist) behaviors and developing a plausible socio-technical

model of GPS.
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2.4 Communication and Collective Action in GPS

Communication preferences and opportunities are important interaction mecha-

nisms embedded in the process of knowledge generation in science. Wagner (2008)

states that if we can discern identifiable patterns and mechanisms of communication

among the scientists then that can lead us to understand how this scientific endeavor

works and how policymakers can influence its evolution and growth. So, science can

also be perceived as a complex communication network consisting of individual scien-

tists who communicate, form partnerships, create opportunities, share their findings

and adapt to new constraints in their environment.

Little is known about the role of the grounding theoretical mechanisms of com-

munication in GPS. Table 2.1 categorizes the social communication theories that are

widely known in Psychology domain.

Olson (1974) argues in his seminal work The Logic of Collective Action that

“unless the number of individuals in a group is quite small, or unless there is coercion

or some other special device to make individuals act in their common interest, rational,

self-interested individuals will not act to achieve their common or group interest.” It

is essential to understand Olson’ s collective action dynamics in order to explain the

merits and nature of GPS. A group of people may all benefit greatly from a collective

action, yet be unable to act together to achieve it.10 Ostrom and Hess (2007) also

state that the challenge in FOSS commons is how to achieve collective action to create

and maintain commons or public good.

Collective action is focused mainly on mutual interests and the possibility of

benefits from coordinated action (Monge and Contractor, 2003). There is also a social

dilemma introduced by Hardin (1982), in which he asserts that the mutual-interest

and individual-interest conflicts resulting in dissolving of the collective action. The

dilemma between mutual and self interest is essential.

10http://michaelnielsen.org/blog/the-logic-of-collective-action/ - As of 4.07.2013
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Table 2.1: Social Communication Theories

Theories Sub-Theories

Theories of Self-interest
Social Capital

Structural Holes
Transaction Costs

Mutual Self-Interest & Collective Action
Public Good Theory

Critical Mass Theory

Cognitive Theories

Semantic or Knowledge Networks
Cognitive Social Structures

Cognitive Consistency
Balance Theory

Contagion Theories

Social Information Processing
Social Learning Theory

Institutional Theory
Structural Theory of Action

Exchange and Dependency
Social Exchange Theory

Resource Dependency
Network Exchange

Homophily & Proximity

Social Comparison Theory
Social Identity

Physical Proximity
Electronic Proximity

Theories of Network Evolution
Organizational Ecology

NK(C)

Monge and Contractor (2003)

One of the terms employed by Bonacich (1990) is communication dilemma, which

stresses the conflict between individual communication preferences and the organiza-

tional needs of communication. Self-interest theories explain some of these commu-

nication preferences of the scientists. They postulate that people make what they

believe to be rational choices in order to acquire personal benefits. These personal

benefits can be human capital, social capital or reputation. In this research, mecha-

nisms for self-interest, exposure, preferential attachment, and communication theories

are developed along with the collective action as an underlying mechanism.
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2.5 Understanding GPS as an Innovation and Collaboration Network

Kuhn (1996) approaches science from a paradigmatic point of view and per-

ceives it as a collective innovation. It is collective because it builds upon the past

achievements of the others and innovation is essential because science causes cyclical

revolutions that occur periodically, resulting in formation of new paradigms and it-

eratively adopting inventions. Even though the definition of innovation is dependent

on the system of inquiry, with a more abstract approach, it can be expressed as a

critical event that destabilizes the state of the system and leads to a self-organizing

new state (Pyka, 2009).

As a systemic sense in science, the emergence of new knowledge structures, new

channels of communication and new network topology can be described as innovation.

It is known that most of the outputs of an innovation system are the number of

publications or patents and the inputs are resources allocated; However, the process

that transforms inputs into outputs is a black-box (Milbergs and Vonortas, 2006).

The next generation innovation metrics are more focused on emergence. In GPS,

plausible underlying socio-technical mechanisms that lead to emergence of desirable

macro-level behaviors can be described as the processes that Milbergs and Vonortas

(2006) address. Emerging social-network structures and emerging diversity in the

topology can be perceived as innovation indicators.

It is demonstrated that user innovation communities are self-organizing com-

plex adaptive systems (Yilmaz, 2008a). However, not all complex systems are self-

organizing (Monge and Contractor, 2003). A system is self-organizing when the net-

work is self-generative (e.g. spawning agents), there is mutual causality between pa-

rameters, imports energy into system (e.g., creating new artifacts and opportunities),

and is not in an equilibrium state.

Saviotti (2009) perceives the scientific product of an economic system as a knowl-

edge network and introduces network interactions between the knowledge base of the
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firms. He synthesizes network science, complex systems, innovation, and knowledge

networks approaches in his model and analyzes the network connectivity to discuss

innovation. Diaz-Guilera et al. (2009) model propagation of innovations analyzing

a spread of stimulus among a network in terms of connectivity, and they use com-

plex interaction mechanisms such as punctuated equilibrium, self-organized criticality

under the assumption that the cost of connectivity is stable.

Similar to Saviotti (2009) and in addition to network model preferences, the

underlying assumptions of social network models created by Gilbert (2006) accepts

the maintenance of the network as costless. Thus, Lynne and Gilbert (2009) postulate

to limit the size of personal networks because of the costs of keeping the network alive.

Monge and Contractor (2003) list the four characteristics which are critical to

the creation of a public good: interests, resources, benefits, and costs. Udehn (1993)

states that only self-interest is inadequate and must be replaced by an assumption of

mixed motivations. “What is the mix of these motivations?” is the question awaiting

for further exploration.

Social network analysis, as one of the lately developed fields, has recently at-

tracted increasing attention among the scientists. Social network analysis constructs

networks from social relations and their functions in society (Wasserman, 1994b).

Pyka (2009) represent some empirical results on the trends in innovation networks:“(i)

The emergence of novelty tends to create new but poorly connected nodes, thus tem-

porarily reducing the connectivity of the system. (ii) The subsequent diffusion of the

innovations establishes new links and raises again the connectivity of the system. (iii)

As a result of (i) and (ii), the connectivity of the system is likely to fluctuate around

a given value.” Dhanaraj and Parkhe (2006) present Hub firms in an innovation net-

work to manage knowledge mobility, innovation appropriability, and network stability.

They regard the network and the members of the network as coupled and dependent

on one another.
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All intelligible ideas, information, and data that can be delivered or gathered in a

format can be referred to as knowledge (Ostrom and Hess, 2007). Innovation results

from the recombination of knowledge held by the collaborators, and the extent to

which agents’ knowledge complements each others’ is an issue of cognitive integrity

(Cowan and Jonard, 2004). The introduction of new ideas through weak ties can

foster innovation and development of the system (Wagner, 2008). In addition to the

artifacts, GPS has interactive communication outputs (Monge and Contractor, 2003).

In other words, connectivity of the members (the network itself) and communality

can be identified as the goods of the collective action.

Lynne and Gilbert (2009) suggest four different types of network models: regular

lattice, small-world, scale-free, and random. Watts (1999) describes four character-

istics of a small-world phenomenon. He argues that a small-world network consists

of large number of actors which are connected to relatively small numbers of actors.

There are no central actors, and the network is sparse. Relationships among actors

overlap; that is, friends of friends are more likely to be friends too.

Scale-free networks have a degree distribution that follows a power-law. Albert

and Barabási (2002) state that “Most real networks, however, exhibit preferential

attachment, such that the likelihood of connecting to a node depends on the degree

of the node.” The preferential attachment mechanism creates power-law distribution,

in which the ones with high level of resources, attract more resources.

Lynne and Gilbert (2009) argue that social networks are not random since people

connect with others who are similar to themselves. Scale-free networks are not realistic

because people do not only use preferential attachment, in which people connect to

the ones, who already have many links. Because, people do not necessarily know

who has the most number of connections. Newman and Watts (2006) postulate:

“the small-world model is not in general expected to be a very good model of real

networks,” because small-world models do not produce nodes with high degrees of
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connectivity. Hence, Lynne and Gilbert (2009) conclude that social network models

need to fall somewhere in-between scale-free and small-world, which is a new challenge

in the modeling.

2.5.1 Social Network Metrics and Innovation Potential

De Nooy et al. (2005) explain that “the main goal of social network analysis is

detecting and interpreting patterns of social ties among actors.” Social networks rep-

resent the complexity of human interactions (Wasserman, 1994b) and their topologies

are represented by sets of people or social actors and the set of peer-to-peer relation-

ships among them. Social distance mathematically presents a degree of closeness

and acceptance that these actors or group of actors feel towards each other (Boguna

et al., 2004). Boguna et al. (2004) also discuss three specific issues in social networks:

“transitivity of the relationships between peers (clustering), correlations between the

number of acquaintances (vertex degree) of peers, and the presence of a community

structure with patterns.”

The degree centrality for each actor is measured in order to capture degree distri-

butions. The degree centrality of an actor is calculated as the proportion of possible

ties that exist for that particular actor. Another metric that can be considered is ego

density a term coined by Burt (1982). The term refers to the proportion of existing

ties that includes the actor as a peer. It is a useful metric to assess which nodes

or actors are more likely to spread knowledge and innovation (Wasserman, 1994b).

Additionally, density is another metric, which is averaged standardized degree in the

whole network. Higher density suggests a higher connectivity and group cohesion

(Blau, 1977). The variability of individual indices can be quantified so that the de-

gree centrality of a network is calculated as a measure of variability among degrees

of actors.
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Regarding innovation potential, Yilmaz (2008a) argues that higher density net-

works have a better mobility of knowledge, which is desirable for innovation; however,

higher density also diminishes the positive effects of diversity on innovation by creat-

ing shared norms and skills. Therefore, it is essential to measure density along with

the diversity of a network. Yilmaz (2008a) identifies high centrality and low density

networks as another indicator of innovation potential that leads to more structural

holes and transformation of knowledge. Both Yilmaz (2008a); Burt (1995) discuss the

importance of high centrality and fewer structural holes as a competing preference.

In order to support the given hypothesis, more metrics need to be explored. Dis-

tance metrics between and among the groups such as Euclidian distance, Manhattan

distance, Mahalanobis distance, and Hamming distance are some of the most impor-

tant common metrics in use.11 Primarily, geodesic distance as a form of Euclidian

distance is used in social network metric calculations, whereas the other distance

metrics are outside of the scope of the social networks context. However, Hamming

distance is useful when analyzing diversity among scientists.

Wasserman (1994b) suggests that closeness centrality and betweenness centrality

are indicative of cohesion within the network. Closeness centrality of an actor states

how close an actor is to all other actors. There are different approaches for measuring

group closeness (Freeman, 1979; Bolland, 1988). The measure is between 0 and 1,

and lower values indicate better dissemination of information. Betweenness centrality

of an actor is the number of shortest paths that pass through a node divided by all

of the shortest paths within the network. This metric is useful for determining the

nodes where the network can fall apart. When the normalized metric for the group

is calculated, the higher values indicate it is easier to destruct the connectivity in

the network because connectivity is highly dependent on a few actors. Additionally,

eigenvector centrality and information centrality metrics capture who is connected

11http://www.statsoft.com/textbook/cluster-analysis/ - As of 4.07.2013
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to the most popular (central) nodes and who is connected to best information paths

(in the case of valued links), respectively (Wasserman, 1994a). These metrics can be

used in resilience analysis, but they are computationally costly to calculate.

The clustering coefficient is the most important metric of interest for capturing

clustering tendencies within the network. It is the density of a node in its neighbor-

hood, calculated from the average of coefficients for all actors. It is indicative of the

presence of different communities or groups within the network (Schank and Wagner,

2005). Higher values might indicate sparsely clustered groups or a high connectivity

in the whole network as a structure. Therefore, mathematically, the average of all

shortest paths between nodes in the network can help to distinguish which structure

is present. Also, it is discussed that the longest of the shortest paths in the network

can be useful for indicating the diameter in the network (as higher values reflect more

sparseness).12 As a consequence, calculating average path length along with the clus-

tering coefficient would allow us for distinguishing the high centrality-fewer structural

holes hypothesis.

After how to measure clustering and degree distributions are discussed, the afore-

mentioned third issue in social networks is the fractal-like network structures. One

structure to measure is the small-world phenomenon which indicates a higher cluster-

ing coefficient and relatively short average path length. These networks are clustered,

but there are also many bridges and structural holes between clusters. The small-

world phenomenon can be measured by the ratio between the clustering coefficient

and the average path length. Greater values indicate a better small-world structure

(Uzzi and Spiro, 2005). Additionally, degree centrality and density metrics can be

indicative of scale-free structures that have few highly central actors as opposed to

the majority of the actors that have small degree centrality.

12http://www.slideshare.net/gcheliotis/social-network-analysis-3273045 - As of 4.07.2013
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Core/periphery ratio is a relatively new metric, and there is no consensus on how

to calculate it. Core/periphery ratio is calculated by simply dividing the number of

core members to the number of periphery members. It is a measure of innovation

and the larger periphery is better as an indicator of diffusion of innovations (Krebs

and Holley, 2002). A well-known technique to identify core and peripheral nodes is

the recursive method that removes the nodes with a smaller number of degrees than

a predetermined number until there is no node remaining to remove (Boyd et al.,

2006). Then, remaining nodes are counted as core nodes while the removed ones are

counted as the peripheral nodes.

2.6 Diversity and Innovation Potential

Uzzi and Spiro (2005) analyze small-world phenomenon through innovation in

Broadway musicals. They indicate that quality of the show’s performances increases

with small-world network up to certain extent, after which there is a diminishing

effect on performance. Diversity needs to be spurred within the network. Badis et al.

(2009) also state that if we observe the companies in a market and ecosystems in

the nature, we can see a diminishing return of similarity. At some point, having

more similarity things diminishes the rate of benefits. There are also studies that

discuss diversity in the population (Dhanaraj and Parkhe, 2006; Powell et al., 1996)

and network connectivity as an indicator of innovativeness of the network (Pyka,

2009; Burt, 1995). Interdisciplinarity as a form of diversity is desirable in GPS,

and emergent knowledge and collaboration network structures can be used as proxy

metrics of innovation potential.

In this research, both interdisciplinarity and the connectivity in the network

reveal patterns that allow us to discuss on innovativeness based on those foundations

described in the previous section. A detailed summary of diversity metrics that are

measured in this research is made in Chapter 5.
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2.7 Robustness and Resilience in Socio-technical Systems

It is worth mentioning that robustness has different definitions in different prob-

lem domains. In ecology, robustness refers to preservation of diversity in a population,

while in medicine, it refers to healing and compensation. In cell biology, robustness

refers to how the cell fate decisions are consistent (Krakauer, 2006). Flack et al. (2005)

focus on a pigtailed macaque society by removing leaders and observing how the so-

ciety reacts to this perturbation in terms of conflict management. It is highly related

to the self-organization and to the levels of interactions between the individuals in

the system.

Pavard et al. (2006) define a robust system as one that adapts its behavior to

the unexpected outcomes and perturbations in the environment. Robustness refers

specifically to the ability of a system to operate in a desired way when that particular

system faces a wide range of operational condition (Sheard and Mostashari, 2008).

Resilience and robestness can have similar definitions in different domains. Re-

silience is more related with how long does it take for a system to regain a desired

output after a perturbation. Smith and Stirling (2008) describe resilience as “the

dynamic persistence of a regime under episodic shocks” and robustness as “system

maintenance under cumulative stress.” There is a need to acknowledge the uncer-

tainty and the lack of knowledge about GPS. So, robustness analysis is considered

an essential method for testing since the simulation models are likely to give vari-

able outputs, and because there is a need to capture the robustness of a mechanism

through distinct scenarios and parameter set-ups. Robustness is valuable to explore

as opposed to only searching for an optimal behavior in terms of a fitness function in

an unchanging environment.

In the following Chapter, the stakeholders of this research are introduced, method-

ology and research questions are briefly summarized.
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Chapter 3

RESEARCH PROBLEMS AND METHODOLOGY

In this chapter, the stakeholders in the research and the environment of interest

are introduced. Then, significance of the research problems and the contributions

that the research are described.

3.1 Stakeholders of the Research

The Science of Science Policy (SoSP) is “an emerging interdisciplinary field aim-

ing to provide scientifically rigorous basis from which policy makers can assess the

impacts of scientific enterprise, improve the understanding of its dynamics and assess

the likely outcomes.”1 There are three themes of SoSP:

• Understanding Science and Innovation

• Investing in Science and Innovation

• Using the Science of Science Policy to address National Priorities

Innovation is at the core of SoSP themes because the National Academy of Engi-

neering report states that it is critical for US prosperity2 and is a desirable outcome

of all collaboratories. Collaboratories are described as “a computer-supported system

that allows scientists to work with each other, facilities, and databases without re-

gard to geographical location” (Finholt and Olson, 1997), which are observed in GPS.

From the perspective of SoSP, scientific exercises can be conducted in traditional sci-

ence environments or GPS environments. Considering its knowledge creation process,

1http : //scienceofsciencepolicy.net - As of 4.07.2013
2http://www.nae.edu - As of 4.07.2013
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science is a collective action taken by diverse, autonomous individuals. Additionally

in GPS, scientists are self-organizing all over the globe, collaborating on the same

projects regardless of their physical proximity, learning from each other, and doing

research without an imposed blueprint. The governance mechanisms of individu-

als not only affect the individual gains from scientific activities but they also affect

emerging macro-level patterns. With the increasing importance of research on scien-

tific enterprise, SoSP created a roadmap for guidance of research on these scientific

communities. SoSP asks three fundamental questions relative to this research3:

• What are the behavioral foundations of science and innovation?

• How and why do communities of science and innovation form and evolve?

• Is it possible to predict discovery?

Traditional science and GPS activities differ at different aspects of scientific en-

vironments. Table 3.1 summarizes the comparison of the features by which both

scientific enterprises can be described.

3The Science of Science Policy: A Federal Research Roadmap, 2008
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3.2 Research Problems

There is uncertainty regarding the theoretical foundations of science communi-

ties. Also it is stated in SoSP roadmap that “theoretical and computational models

of science and innovation must be developed!” In the light of the needs stated by

SoSP, the initial research questions to be explored in this research are:

• Which interaction mechanisms in literature explain operational behavior of GPS

and its underlying socio-technical processes?

• How we can specify and implement these mechanisms in the form of a compu-

tational model to gain empirical insight and perform exploratory analysis?

There are three levels that science can be studied from: micro-level (inter-

scientist interactions), meso-level (interactions among communities), and macro-level

(communities of communities structures - ecosystem level. Figure 3.1 is introduced

for better interpretation of the network topologies. In meso-level analysis, nodes can

be perceived as communities, while in micro-level analysis, the nodes can be scien-

tists. In the macro-level analysis nodes can be domains that include many different

communities.4 The links between the nodes can be interpreted as any kind of rela-

tionship (i.e. collaboration, social, funding) and this interpretation is based on the

intention and the purpose of the model developer.

4http://www.cliquecluster.org/content/research-program - As of 4.07.2013
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The CAS characteristics observed in GPS provide for the opportunity to study

underlying micro-level (inter-scientist) behaviors in order to develop plausible ex-

planations for this phenomenon. Collective action theory is selected an underlying

theoretical base for addressing the operational behavior of GPS. More details about

model development and implementation of collective action theory are described in

the following chapters.

Following the development of the base-model, the next step is to explore the

emerging network structures in order to understand them. Therefore, policymak-

ers can benefit from their unanticipated opportunities and eventually manage the

evolution of GPS networks. Communication among agents, which is present within

collaboration networks, has an intense effect on the system level behavior. Theoreti-

cally grounded explanations of communication behaviors among scientists provide for

an opportunity to explore different communication preferences and their effects on

social network structures. The research question of interest in this research is:

• Which social communication mechanisms among scientists are more effective in

fostering innovation potential?

Ultimately, considering the uncertainty of the mechanisms and bounded ratio-

nality that exists in the environment (as global information does not exist among

agents), variable outcomes are likely to occur. Robustness can be identified as the

level of variability the system exhibits under various environmental and intrinsic con-

ditions. Less variable outcomes are indicative of more robust landscapes. Since robust

system design is more important than finding an optimal behavior of a single scenario,

the research question in this study is:

• How to explore different parameter and mechanism configurations to seek and

identify more robust communication strategies in terms of variance observed in

innovation potential metrics?
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3.3 Methodology Chart

In this research, a bottom-up approach is adopted that has top-down guidance as

articulated by the objectives of the study. The methodology is described in Figure 3.2.

Figure 3.2: The Chart of Objectives and Methodology

The base-model is grounded on theories and operating principles derived from

observations on the system of interest. First, the base-model is built with CAS prin-

ciples in mind. In the model, interpretation of collective action theory and social

interactions complement CAS principles (i.e., tagging, information-flows, diversity,

non-linear interactions). Along with the theory base, the information foraging mech-

anism, which is inspired from food foraging in nature (Pirolli and Card, 1999), is
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built and preferential attachment mechanism is designed as essential interaction pro-

cess. SEIR metaphor and population dynamics are introduced which conclude the

conceptual model development. Conceptual model development is followed by the

implementation of it as a computer simulation.

The second phase of the study builds on the base-model developed in phase

one. Different communication preferences of the scientists are implemented. Thus,

different communication mechanisms and their effects on innovation potential are

sought. The third phase consists of the discovery of more robust configurations by a

tool developed to help decision-makers to explore different mechanism and parameter

set-ups.

3.3.1 Phase 1 - Conceptual Model Theory Base

Scientists join or leave a problem domain on the basis of problems to be explored

and projects to be accomplished, and their position in the scientific enterprise depends

upon their knowledge, levels of interest, popularity, personal learning objectives, re-

sources, and commitments (Hollingshead et al., 2002).

In this research, Olson’ s collective action theory is identified as the socio-

cognitive interaction mechanism in GPS. It basically asserts that when the benefits

an individual gains are greater than the costs he or she is burdened with, then that

individual will join the collective action. GPS is perceived as a collective action be-

cause artifacts as a product of the collaboration are public goods which are owned

by the community and have features such as jointness of supply and impossibility of

exclusion. Because, knowledge produced is open; all may benefit from the knowledge,

and benefits of another do not diminish the benefits that can be gained by others.

In GPS, scientists are always in close proximity to one another so long as they

collaborate on the Internet. Scientists use web services and platforms to collaborate
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and socialize. Although traditional science is institutionalized and has certain incen-

tive mechanisms for scientists such as tenure, journal publishing, and funding, these

mechanisms do not exist in open science environments. Scientists participate because

of an altruistic belief in the action; they believe that collective innovation is necessary

in the interest area of that action, they desire to gain greater knowledge, and they

want to broadcast their skills and expertise to fellow scientists by weaving a social

network.

Basically, scientists follow their self-interests on the theme. But self-interested

people are more likely to acquire what they want without paying a great price. Ex-

ploitation causes an inevitable free-riding problem, but it does not destruct the value

of the work done in GPS. So, interested and self-motivated scientists keep contribut-

ing to the collective. The participation in GPS is not compulsory, but the social

pressures existing within the open science community leave scientists exposed to the

groupthink present in collective behaviors. This phenomenon creates exposure to the

mutual-interest. The dialectic interaction between mutual-interest and self-interest

is essential. While mutual-interest in an action drives an individual to participate,

self-interest might cause avoidance from participation, or vice-versa.

Through the development process of base-model, verification and validation stud-

ies are also conducted. At each level of conceptual model development, the mecha-

nisms are conceptually grounded on sound theories, based on the others’ work, and

empirical findings. The detailed summary of verification and validation efforts are

listed in Chapter 4.

3.3.2 Phase 2 - Social Communication Model and Innovation

In this phase, social communication theories that are relevant to GPS environ-

ment are selected. Generative mechanisms for selected theories are interpreted and

recommendations for their implementation are given. Then, sensitivity analysis is
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conducted to measure innovation potential for different simulation set-ups. Selected

communication theories are listed below:

• Human Capital mechanism states that scientists have broadcasted information

about the expertise of others and try to connect with the other scientists who

have higher expertise than themselves.

• Social Capital mechanism states that scientists will attach themselves to scien-

tists with high or terminal degrees in the social network.

• Homophily mechanism states that scientists can perceive the interest informa-

tion of others and will try to connect to scientists who are familiar to them.

• Social Exchange mechanism states that scientists are going to have the infor-

mation about what other scientists know and their degree of expertise. Then,

a scientist will connect with scientists who are experts in an area in which he

or she is not familiar in order to strengthen his or her own expertise.

• Random mechanism only allows scientists to connect to other randomly selected

scientists.

• Mixed communication is a scenario that randomly assigns one of the afore-

mentioned five theories to scientists. Each scientist then behaves according to

that particular theory. Also, probabilities that are assigned to each theory are

parameterized, and further analysis on population dynamics can be conducted.

Following the implementation, sensitivity runs are conducted. Diversity, in-

terdisciplinary, and social network metrics are measured to be able to distin-

guish more innovative communication behaviors. The results are presented to

policy-makers, so that they can promote desirable behaviors in open science

environments.
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3.3.3 Phase 3 - Robustness Analysis

In this phase, an algorithm is created that consists of a search algorithm that

explores different parameter values and a module that creates plausible simulation

scenarios. These two parts are integrated via a feedback mechanism. The results of

the search algorithm are measured by an objective function that indicates variability

of selected innovation potential metrics. Less variable results are assumed to be more

robust. The policy-maker (decision-maker) can generate new plausible scenarios by

observing the fittest parameter configurations. The ultimate goal is to find a strategy

that behaves more robustly than the others regarding the variability of the perfor-

mance metrics and to measure the robustness of different communication mechanisms

under various conditions. In an environment that has a high level of uncertainty, the

more robust strategies should be considered for implementation as opposed to opti-

mal but not robust strategies, because the most innovative strategy might create an

unsustainable, highly fragile environment. In Chapter 6, communication between the

components of the exploratory software is described in detail. In order to illustrate

the high-level structure of the exploratory software, Figure 3.3 is illustrated below.

In the next chapter, base-model and its components are introduced in detail along

with validation and verification studies conducted.
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Figure 3.3: Exploratory Software Coupling GA and Metamorphic Relations
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Chapter 4

BASE-MODEL COMPONENTS AND VALIDATION

There is no consensus over what the term conceptual modeling means. Robinson

et al. (2010) identify some key factors of conceptual modeling in their book. They

claim that it starts from problem situation and moves through the questions about

modeling such as,“What do we require to model?”,“What do we model,” and “How

do we model?” The questions are iterative, and there is continuous feedback with

revisions. The conceptual model is simplified. It is not the code or software model,

and it considers client-side perspective as much as modeler’s. Robinson, Brooks,

Kotiadis, and Van Der Zee’ s precise definition is:

The conceptual model is a non-software-specific description of the com-

puter simulation model (that will be, is or has been developed), describing

the objectives, inputs, outputs, content, assumptions, and simplifications

of the model.

The following sections give information on the conceptual model of the base-

model including the assumptions, grounding theories, and interaction mechanisms.

A detailed conceptual model description is followed by verification and validation

efforts, and analysis to determine the initial conditions of simulation experiments.

4.1 Base-Model Mechanisms

In GPS, scientists participate in artifacts or create new ones without a central

authority and meso-level (community-level) governance. In the formulation of base-

model, there is no enculturation or entrance threshold for a scientist who is willing

to become active and contribute to an artifact. Let us imagine a web tool, in which
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motivated scientists, who believe in the collective action, can browse the list of open

artifacts, select one of them, contribute to it, and thus learn from the artifact. In

the following sections, the micro-level interaction mechanisms of the base-model are

introduced.

4.1.1 Artifact Selection

It is mentioned in the previous sections that scientists browse the web-tool, which

is metaphorically a grid in the model. But, not all scientists are equal in terms of

time spent in browsing the online tool. Some scientists browse more titles while some

browse fewer. That means the environment is heterogenous regarding the width of

scopes among scientists. Each scientist has a scope that is bounded (they do not have

the perfect information about the whole environment) and scientists can only operate

within that scope while searching for an artifact. The selection process is based on

the calculation of three dimensions:

• Popularity: Scientists might select an artifact according to the artifact popu-

larity; the more elaborated the artifact is, the more likely it is to be selected

(0 < pa < 1).

• Self-interest: Scientists are more likely to select familiar artifacts (0 < si < 1).

• Imitation: Artifacts with greater number of active members are more likely to

be selected (0 < im < 1).

Each dimension has a weight that signifies its importance in selection process.

Initially, each weight is equal and wpa + wsi + wim = 1 . Each artifact j has an

incentive Pj = wpa × pa+wsi × si+wim × im. In the case of being exposed to more

than one artifact, a roulette wheel selection algorithm is used to assign probability pj

to each artifact j and select one of them based on the assigned probabilities.
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pj =
Pj∑N
i=1 Pi

(4.1)

where N is the total number of artifacts that are within the scope of a scientist. Prin-

cipally, in this research, the roulette wheel algorithm is used in all selection processes

since people in real life do not select the most likely decisions but they generally

satisfice. That means, instead of selecting the choice that has the best value, they

give their decision probabilistically relative to each decision element or criteria. Ra-

tionality in decisions are probabilistic based on clues collected from the environment.

This idea is supported by Ariely (2008) in Predictably Irrational. Figure 4.1 shows

the representation of the moving and artifact selection processes on a grid.

Figure 4.1: Moving and Artifact Selection Processes in the Model

(a) Moving of a scientist (b) Artifact selection of a scien-
tist

Selection process is an important component in the model that encourages some

artifacts to be preferred more than the others. Preferential attachment is also an

essential mechanism that precipitates the power-law distribution as a CAS hallmark

(Holland, 1996). Another motivation that preferential attachment process originates

in is what Barabasi (2002) states in his influential work Linked. He points out that the

random universe idea is good for mathematical representation of networks. However,
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real-social networks are more than random as they have a selection process (Lynne

and Gilbert, 2009; Barabasi, 2002).

In the fusion of these three dimensions, the goal is to capture the effects of

three different kinds of information perceived by scientists while browsing. There are

the aforementioned three kinds of available information, because in the base-model

there is a bounded-rationality assumption. Scientists perceive the environment but

all information (all parameter and variable values that belong to other agents) is not

available for them. This is supported by logic derived from observations gained by the

ethnographic analysis on OBO. The logic is: before scientists join an artifact, they can

only interpret what the artifact is about, the number of active members contributed

recently, and how many posts or contributions are there on that particular artifact.

This assumption can also be derived by observing forum websites. So, scientists are

not aware about the complexity of artifacts or the degree information of the fellow

scientists. In the base-model, scientists associate with an artifact, read, contribute,

and learn from it, subsequently they get familiar with that information.

The formulation of the selection process is an additive model. An additive model

represents the combined effects of the explanatory variables and their interaction is

equal to the sum of their separate effects. This research aims to capture the intensity

of these three dimensions by weights that are associated with every single dimension.

Subsequently, setting different weights for each dimension can reflect the different

importance each scientist attributes to available information in their decision process,

which can be considered in the future work. But in the base-model, the weights of

each dimension are set initially and are the same among all population members. An

advantage of the linear combination method that is described above is flexibility in

creation of different scenarios. But there is a question of concern regarding which

weighting schema is best (Wu, Bi, 2009). An additive model with a simple weighting

is used, which is used by Axtell and Epstein (2006) and Yilmaz and Hunt (2010).
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The additive model is easy to implement and can be updated easily. The model is

also suitable for calculating average effect. Major difficulties with the model are the

definition, assessment, and interpretation of the weights (Belton and Stewart, 2002).

Other options are summarized in Wu et al. (2009) such as the Borda Count Method

(voting for the values), the Probabilistic Method (instead of looking at the extremes,

it focuses on the average), and the Correlation Methods; however, they are outside

the scope of this study. Additionally, because of computational complexity, simple

weights satisfy the intended purpose of this research.

Another disadvantage of additive model is the assumption that dimensions are

independent of each other. It can be argued that the number of recent active mem-

bers affects the total number of contributions in an artifact. So, these two variables

are not independent of each other. An alternative method is to calculate the correla-

tion coefficient for the interdependent dimensions. Accepting that there is no global

interpretation of the multi-criteria evaluation described, the relative advantages of

different methods vary in different contexts (in this research it is collective behavior)

and decision makers (Wood, 2009). The main intentions of additive model are appro-

priateness of the method in a social process, applications in previous models (Axtell

and Epstein, 2006; Yilmaz and Hunt, 2010), flexibility in creating new scenarios, and

the simplicity of implementation.

4.1.2 Collective Action Mechanism

There are four major attributes in collective action (Monge and Contractor,

2003). The interpretations of each attribute in GPS are described below:

• Resources: Scientists have time and expertise acting as resources devoted to

the collective action. Metaphorically, in the base-model, the browsing area of a

scientist can be considered to be the time resources that the scientist devotes

to collective action.
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• Interest: Scientists have many scholarly interests and desire to participate in

activities that match their interests. Each artifact, which is a product of the

collaboration, has a theme. Another characteristic, altruism, can be perceived

as belief in the collective action.

• Cost: Scientists have to bear a cognitive burden and tension related with the

artifact to make a successful contribution. Cognitive burden is a variable that

is related to the cognitive difficulties a scientist faces while trying to contribute

to an artifact. Tension can be defined as how easy it is to give direction to the

artifact and elaborate on it. Tension is related to the phases of the project life

cycle in open science communities.

• Benefit: Familiarity and exposure are the driving forces for participation. Scien-

tists gain benefits such as a growth in the social ties formed with other scientists,

also known as social capital and learning.

There are two driving forces for scientists in collective action: self-interest and

mutual-interest. Scientists are more likely to benefit from familiar topics (Monge and

Contractor, 2003) and as a form of imitation they are more likely to follow the crowd

(exposure mechanism). Familiarity is the parameter of self-interest and is the average

similarity of two lists: interest (Ik[i]) of scientist k and the theme (Tj[i]) of artifact

j. Theme is basically what subjects the artifact is about. Both interest and theme

are lists of binary variables. Familiarity Fk, j for scientist k to artifact j is calculated

in equation 4.2, where N is the total number of interest or theme areas. So i is the

index of the interest and theme lists.

Fk, j =
1

N

N∑
i=1

Min(Ik[i], Tj[i]) (4.2)

Multiple exposure mechanisms are considered in this study. The first examined

only the proportion of active scientists in the artifacts. But this strategy does not
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properly capture the effects of negative feedback (Holland, 1996). An alternative

mechanism is to calculate the proportion of active scientists in the whole commu-

nity; however, scientists do not have the complete information about other scientists.

Therefore, the exposure mechanism is built around scientists’ individual social net-

works. The goal is to capture the general trend in the environment through activeness

in his or her social network. The implementation described by Axtell and Epstein

(2006) drives this approach.

Also, the influence of some scientists is greater than that of other scientists. The

weights of the social ties between the scientists are calculated by the collaboration

intensity between pairs. The more two scientists collaborate, the stronger the tie

between them. Each time two scientists collaborate, the weight of the tie is incre-

mented by certain amount so long as they have a pre-existing social tie between them

(initially 0.1). Consequently, weight information is used as the intensity of influence

between two scientists. The more two scientists collaborate together, the greater their

shared influence.

Exposure is the weighted influence of active scientists in the whole social network

of a single scientist. Exposure is defined in Equation 4.3, where Xk, t is the exposure

for scientist k at time t, and Ak, t is binary variable, which is “1” if scientist i is

active at time t. wki is the measure of collaboration intensity between scientist k and

scientist i, and N is the total number of scientists k is connected to at time t.

Xk, t =

∑N
i=1wki × Ak, t∑N

i=1wki
(4.3)

The cognitive burden of a scientist is dependent on two lists: the expertise (Ek[i])

of scientist k, and the complexity (Cj[i]) of artifact j. Both are defined as a list of

real numbers between 0 and 1. For the sake of simplicity, each scientist k is assumed

to have a minimum cognitive burden minBk. Cognitive burden of a scientist k for
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artifact j is the following, where N is the total number of areas and Cj[i] is the

complexity of the artifact j on theme i:

Bk, j = minBk +

∑N
i=1Max(0, Cj[i]− Ek[i])

N
(4.4)

Sj, t is the maturity of artifact j at time t, which is defined as the average com-

plexity:

Sj, t =
1

N

N∑
i=1

Cj[i] (4.5)

Tension is related to the artifact’s maturity and is higher at the beginning of

the artifact’ s lifetime, since at the early stages of a project it is difficult to have

contributions as there exists a tension among contributing scientists in expanding

the scope of the artifact theme and complexity. Tension decreases with increasing

numbers of collaborations and goes up again when the artifact becomes more mature.

Wynn’ s project life cycle approach is the underlying assumption here. But for

simplicity, the interpretation of tension (σj, t) in artifact j at time t is a V-Shaped

function, in which Minσj is the minimum tension artifact j has (it is different for each

artifact), Sj, t is the maturity of artifact j, and θ is the mid-point of the maturity range

that artifact j can take. The maturity range extends between initial-maturity and

completion-maturity of an artifact. Each artifact has a different completion-maturity,

at which point the artifact is closed and concluded.

σj, t =


(1− 1−Minσj

θ
)× Sj, t if Sj, t ≤initial-maturity+θ

(Minσj +
1−Minσj

θ
)× (Sj, t − θ) otherwise

(4.6)
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For better illustration, Figure 4.2 describes the shape of the introduced function

that updates Tension. As a note, in Figure 4.2, the completion maturity of the

artifact is 0.8, initial maturity is 0.3, and minimum tension is set to 0.2.

Figure 4.2: Shape of the Function that Updates Tension

Some scientists believe in the necessity of scientific collaboration within GPS

more than others. The altruism, an independent variable, explains belief in collective

action. A scientist’s decision to become active is based on Olson’ s statement in

the case of shared costs, which states,“if the benefit is more than the costs of an

action, people will participate” (Olson, 1974). There is an analogy between benefit

and multiplication of self-interest and exposure, and between cost, and multiplication

of tension in an artifact and the cognitive burden of a scientist. The condition to

become active is below:

Bk, j × σj, t − Fk, j ×Xk, t ≤ Altruism (4.7)

where altruism is a value which is fixed throughout the simulation and is different

for each scientist.
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4.1.3 Learning and Influencing Processes

Scientists interact via the flow of information through the artifacts. When a

scientist considers cost/benefit analysis (as described above), he or she contributes to

repository of the artifact in productive ways; for instance, by commenting, posting a

solution, or writing code. The monotonic transfer mechanism as described in Page

(2010) regarding information flows is interpreted in GPS and is implemented. If the

expertise of the scientist is greater then complexity of the artifact, then a contribution

results in:

Cj[i] = Cj[i] + (1− Cj[i])× Ek[i]× ωj (4.8)

where i is a randomly selected area, j is the contributed artifact, k is contributing

scientist, and ωj is the elasticity of the artifact. The greater elasticity of an artifact

indicates that it is easier to elaborate on that particular artifact. This transfer mech-

anism also refers to faster growth in complexity if the expertise of scientist k is higher

than the complexity of artifact j. The transfer mechanism indicates slower growth

when complexity approaches to its maximum value “1.”

The transfer mechanism for influencing the expertise level of the contributor, or

learning process, is articulated below. This mechanism indicates slower growth than

the influencing process in order to make it harder to gain expertise throughout time:

Ek[i] = Ek[i] + (1− Ek[i])× (Cj[i]− Ek[i])×Bk, j (4.9)

where i is a randomly selected area, j is the contributed artifact, and k is the con-

tributing scientist. The higher the challenge or cognitive burden is, the higher is

the learning of the contributor. Learning is only justified when the complexity of

the artifact is greater than the expertise of the scientist. Both transfer mechanisms

assume a monotonic increase in the expertise levels of scientists and the complexity
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levels of artifacts over time. These assumptions are also based on our observations

and logic derived from OSSD communities. Expertise is, logically, something that is

non-decreasing within the same context and without relative evaluation. Addition-

ally, complexity is observed to increase along with the number of contributions in OSS

environments, which makes it harder for fellow scientists to follow and understand

the artifacts.

Other than through transfer mechanisms, a contribution may cause a change

in the theme of an artifact or it may cause a change in a scientist’s interests. The

higher the expertise of a scientist, the more likely there is to be a change in an

artifact’s theme. The higher the maturity of an artifact, the less likely it will be

to change the interest level of a scientist. In both cases, a random area on both the

interest and theme lists are equalized to demonstrate the influence of the contribution.

Additionally, there is a mutation mechanism on an interest area of a scientist with a

certain probability (e.g., 0.01) at each time tick since a person’s interests are subject

to change through time.

4.1.4 Information Foraging Mechanisms

Metaphorically, scientists can be viewed as predators. Predators are expected

to abandon their current territory (e.g., domain) when the local capture rate (e.g.,

success of problem solving) is lower than the estimated capture rate in the overall en-

vironment (Bernstein et al., 1988). Information foraging theory, developed by Pirolli

and Card (1999), assumes that people, if they have an opportunity, will adjust their

strategies or the topology of their environment to maximize their rate of information

gain. In this study, scientists join or abandon artifacts based on perceived cues about

their performance in attaining the desired outcome.

Every scientist has a different instrumentality, meaning that they have different

levels of expectations for the amount of time they should spend on their research until
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they have a successful contribution. Each scientist has a different initial expectation,

which is called timeToContribution and shown as TCk, t for scientist k at time t.

Each scientist k has a memory-factor αk, which postulates that lower level memory

encourages conservative behavior which guides the scientist to maintain their previous

expectations. Scientists modify their expectations as following after every successful

contribution:

TCk, t = (αk × TPk, t) + [(1− αk)× TCk, t−1] (4.10)

where TPk, t is the number of time ticks passed without having a successful contribu-

tion for scientist k at time t. If the amount of time passed is more than the modified

expectations, then the scientist forages. In foraging, the scope is expanded (e.g., two

times) and scientist moves to a different area in the expanded scope on the grid.

Figure 4.3: Information Foraging Behavior

In food foraging, Charnov (1976) states that a forager should leave a territory if

the rate of gain (in terms of energy) within the territory that the forager resides in

drops below the rate of gain that can be achieved by traveling to a different territory.

In Charnov’ s Marginal Value Theorem, the gain starts after a certain time t where t is

the amount of time forager spends traveling to a new territory. Analogically, in GPS,

the amount of time spent for traveling to another territory is almost instantaneous.

Therefore, the tradeoff between time spent in traveling and the expected rate of gain

is not valid.
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In the base-model, the described basic foraging mechanism is used. Also, a second

foraging mechanism is developed: optimal foraging a term inspired by Pirolli (2007)

and Charnov (1976). Optimal foraging checks the rate of return in terms of expertise

a scientist gains from the environment. During a time window, if the rate of return

drops consecutively below the maximum rate of return achieved, then the scientist

forages. In both strategies, every scientist has a different expectation regarding the

amount of time that will pass until the success criteria is achieved.

4.1.5 Population Dynamics

Yilmaz (2008a) states that innovation communities are self-organizing complex

adaptive systems; however, not all complex systems are self-organizing (Monge and

Contractor, 2003). A system is self-organizing when the network is self-generative

(e.g. new arrivals), there is mutual causality between parameters, energy is imported

into the system (e.g., creating new artifacts and opportunities), and the system is not

in an equilibrium state.

The simulation environment in this research is not a closed system. Like web

platforms in real life, the model has new user arrivals. There is no recruiting process

for scientists in order to maintain simplicity. New scientists, who start to browse the

system, are created in context with a certain arrival rate. At each time tick, with

a certain probability (e.g., 0.2), a new arrival enters the system, either creating a

new artifact (with probability of 0.05) or just browsing the environment. Figure 4.4

illustrates the new scientists arriving at the system.

4.1.6 SEIR Metaphor

The SEIR model is a widely known epidemiology model (Newman, 2010). It

stands for four states of an individual’s transition:
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Figure 4.4: Population Dynamics in the Environment

• Susceptible(S) state describes the initial state. All individuals are susceptible

to the collective action or collaboration in the community.

• Exposed(E) state represents the interaction with an activity, virus, or idea.

• Infected(I) state that describes the influence on an individual by an activity,

virus, idea, or some sort of knowledge.

• Recovered(R) state is an inactive state. Scientists become inactive and leave

the environment in the Recovered state.

The metaphor built from the SEIR model is described through state machine

formalism in Figure 4.5. A state machine performs actions when a certain event

occurs.1 The state machine illustrated in Figure 4.5 is idle except that the times

events are realized. The actions that cause the transitions between the states can be

described below:

• E0/start(): Initial population and majority of the new arrivals (the ones arriving

without creating new artifacts) are initialized.

1http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm - As of 4.07.2013
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Figure 4.5: SEIR Model

• E1/select(): Initial population and new arrivals start the simulation at Suscep-

tible state. If they find an artifact in their scope, they switch to Exposed and

move on to the location of the artifact.

• E2/browse(): After evaluation of the selected artifact, scientists might decide

not to become active. In that case, they browse their scopes searching for

further opportunities, changing the selected artifact or residing on the same.

• E3/contribute(): If a scientist decides to become active after the collective

action mechanism is evaluated, then he or she transitions to an Infected state.

• E4/inactive(): At the next time tick after a successful contribution, there is a

20% chance that a scientist might change his or her artifact preference switching

to one of the past contributed artifacts. Scientists keep a list in mind consisting

of the artifacts they contributed in the past and probabilistically select one of

them. The more recent an artifact is contributed, the more likely it is to be

selected again.

• E5/return(): An Infected scientist evaluates the collective action mechanism

at each time tick, decides whether or not to become active in the following

time-tick, and transitions to Exposed.

56



• E6/create(): If a scientist cannot become active for certain amount of time and

has foraged for a while, then he or she can create a new artifact (5% chance)

which is related with his or her interest areas and become active on it.

• E7/leave(): Active scientists might not be able to find an artifact in their

memory list to study on (e.g. all past artifacts might be closed), so they leave

the contributed artifact and transition to a Susceptible state.

• E8/forage(): If a scientist cannot become active during the time that it takes

them to have their expectations fulfilled, then the scientist forages, expanding

the scope by a factor (initially 2).

• E9/recover(): If the expertise of a scientist is over a certain threshold (e.g. 0.5,

0.7), he or she can not have a successful contribution, and keep foraging in the

environment for a certain amount of time (e.g. 3), then with a certain proba-

bility (e.g. 0.2), the scientist becomes Recovered and leaves the environment.

• E10/arrive(): A proportion of the new arrivals (5% chance) start the system,

create a new artifact, and they start to work on that particular artifact in

Infected state.

• E11/depart(): Recovered scientists leave the environment. While in the base-

model, the nodes and ties of recovered scientists are retained, whereas in Phase-

2, scientists dissolve their social ties and disappear.

The activity flow chart of a scientist in Figure 4.6 represents the flow of the

mechanisms as a whole. In flow charts, the processes are associated with the vertices

and, when it is on a node, it executes activities.

4.1.7 Conceptual Model Validation

Sargent (2005) defines conceptual model validity as the following:
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Figure 4.6: Activity Flow Diagram of a Scientist

(1) The theories and assumptions underlying the conceptual model are

correct, and (2) the model representation of the problem entity and the

models structure, logic, and mathematical and causal relationships are

reasonable for the intended purpose of the model.

If the model outputs are tested by real world data, it is known as black-box

validity. Typically in socio-technical environments, providing real world data is a

luxury. In order to increase the white box validity, or credibility of a model, certain
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questions should be answered such as, “How well is the grounding theoretical base of

the model?” and “How realistic are the inputs?”

Since the conceptual model is the abstraction in the modeler’ s mind, model

representation is critical for ensuring better communication between clients, stake-

holders, and the modeler. Balci (1990) describes the communicative model, or rep-

resentation of the conceptual model and identifies six forms: “(1) structured, com-

puter assisted graphs, (2) flowcharts, (3) structured English and pseudocode, (4)

entity-cycle (or activity cycle) diagrams, (5) condition specification, and (6) other

diagraming techniques.” Good representation of the conceptual model can provide

an easier assessment process and better understanding of the model as well as in-

creased credibility. In this research, to delineate the base-model components, the

research provides flowcharts, state-charts, visual snapshots, mathematical formulas,

and structured English. Additionally, pseudo-codes of some important mechanisms

in the implementation are added to the Appendix A. Table 4.1 summarizes the

grounding theory base and the assumptions in the base-model.

Table 4.1: Conceptual Mechanisms and Assumptions

Mechanism/Assumption Grounding Theory/Study

Artifact Selection Mechanism Preferential Attachment Process
(Barabasi, 2002)

Bounded Rationality Assumption Axtell and Epstein’ s model (2006)

Roulette Wheel Algorithm Inspired by Predictably Irrational (Ariely,
2008)

Information Foraging Mechanisms Metaphors in (Pirolli, 2007) and Marginal
Value Theorem from Charnov (1976)

Collective Action assumption Olson’ s Collective Action Theory (1974)

Exposure to Mutual-interest Axtell and Epstein’ s model (2006)

Tension within the Projects Evolution of Project Life-cycles in OSSD
Communities (Wynn, 2003)

Population Dynamics Self-Organization Principles (Camazine,
2003; Monge and Contractor, 2003)

Learning and Influence Mechanisms Information Flows Process in Page (2010)

CAS Principles (e.g. Tagging, Informa-
tion Flows)

Holland’ s Hidden Order Book (1996), As-
sumptions in Yilmaz (2008a) and Wagner
(2008)
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4.2 Computational Model and Repast Implementation

Repast (Recursive Porous Agent Simulation Toolkit) is the toolkit used to create

the simulation environment. It is an open source simulation tool that allows for

development of multi-agent simulation models in Java. Though it has a powerful

framework that supports developers while building the context, it is open source and

it has a shallow learning curve. The number of demo models and documentation need

more detailed explanations. Even though it is possible to encounter maintenance

problems related with Repast, it has a highly active community that answers the

submitted inquiries and helps users to fix the software bugs.

In this research, the main interaction context is a grid. Both scientists and

artifacts are assigned to a cell. Cells are multi-occupancy, which means a cell can

have more than one agent. Figure 4.7 represents a snapshot of RePast API. The

right-top quadrant is the grid environment, and the right-bottom quadrant is the 3D

social network representation. On the far left column, users can schedule the length

of the simulations and change their run speed. In the parameters column, users can

explore the mechanism and parameter space by entering the values representing a

desired scenario. On the grid, blue nodes are artifacts, red ones are the scientists.
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4.3 Model Verification

Verification indicates how correctly the implemented model represents the con-

ceptual model. When the conceptual model becomes more complex, the magnitude

of complexity of the computational model increases significantly. Yilmaz (2006) in-

corporates model verification and validation in a life cycle of a simulation study.

Figure 4.8: Life Cycle of a Simulation Study

Yilmaz (2006)

The end result of verification is technically not a verified model, but rather a

model that has passed all the verification tests.2 The verification tests conducted in

this research are listed below:

• Eclipse3 is used as an editor and a development environment. Debugging is used

to detect anomalies at each implemented module.4 Step by step, each piece of

2http://jtac.uchicago.edu/conferences/05/resources/V&V macal pres.pdf - As of 4.07.2013
3http://www.eclipse.org/ - As of 4.07.2013
4http://www.ibm.com/developerworks/web/library/wa-debug/index.html - As of 4.07.2013
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code that updates variables is checked by the oversight in debugger through

reasonabless analysis.

• Unit-test principles5 ensure that every algorithm and method are checked indi-

vidually at extreme conditions (e.g. the behavior of certain outputs when there

is only one scientist in the network) before implementation (Extreme Program-

ming). Flow diagrams are used to verify the code.

• Performance metrics are manually calculated for small populations (typically

a network of 5 scientists) and outputs of the simulations are compared with

manual calculations.

• Input parameters are printed throughout the simulation to check any inconsis-

tencies that might have been caused.

• The code is self-documented. Every piece of code that is assumed to be impor-

tant has comments attached to it.

• Data interchange files (gdf) are generated for further verification in the format

that records the node and edge data created by the simulations. Then, the

network visualization tool Scibrowser, written in Python and developed in the

Auburn University Simulation and Systems Engineering Lab parses the gdf files

and calculates the network metrics. Calculations of the implemented Java code

are compared with Scibrowser outputs.

• OBO Foundry collaboration data is parsed in the Auburn University Simulation

and Systems Engineering Lab. This data is explored to determine parameter

and output ranges that can be encountered in GPS.

5http://geosoft.no/development/unittesting.html - As of 4.07.2013
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4.4 Model Validation

Simulation, as a simple definition, generates a model of a system with suitable

inputs and observes the outputs (Bratley et al., 1987). Simulation models can be

described as abstractions of real-world systems or proposed real-world systems, so

they cannot be expected to have every feature of a real system represented in the

model (Robinson et al., 2010). From this definition, the question to be asked is: “Do

we have a consensus between the model we build and what we intend to do?” The

problem formulation and definition are reflected highly on credibility and qualitative

performance of a model. Sargent (2005) defines validation as:

Model validation is usually defined to mean substantiation that a com-

puterized model within its domain of applicability possesses a satisfactory

range of accuracy consistent with the intended application of the model.

The approach of Silverman and Bharathy (2011) to validity assessment consid-

ers the life cycle of the entire simulation study and assesses the validity under the

following four dimensions: “(1) methodological validity, (2) internal validity, (3) ex-

ternal validity, and (4) qualitative, causal and narrative validity.” In methodological

validity, authors consider modeling process and software process adequacy while ob-

taining inputs. Internal validity refers to the theoretical base of the behaviors in the

model, and external validity examines how reasonable the output data is. Qualitative

analysis consists of cross-validation techniques such as face validation, comparison of

graphics, and visual analogies.

Regarding methodological validity, the ethnographic analysis is conducted in this

research that occurs through the observation of the environment of interest. OBO

data is analyzed to understand the possible outcomes and parameter ranges while de-

termining initial conditions of the simulation runs. The simulation modeling process

is followed and supported in order to avoid initialization bias, to support terminating
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state decisions, and to establish the number of replications. In the previous sec-

tions, the theoretical basis of the conceptual model was described for internal validity

concerns. External validity is checked by observing the variability of outputs for

different scenarios. Further, a single scientist is followed in two methods: debugging

and visual tracking on Repast API to compare behavior against expected regularities.

Qualitative analysis is performed in the next sections, presenting different macro-level

emergent patterns for validation purposes.

According to Yilmaz (2006), there are two classifications of validation stud-

ies: traditional and holistic/pragmatic approaches. The traditional approach sees

the model as either valid or invalid with regard to its application area. The prag-

matic/holistic approach does not value the definite correctness or incorrectness of the

model. The traditional view supports a division of our model into its parts (reduc-

tionist) in order to examine whether parts are representative of the real system or not.

The traditional view ensures that the predictive capability of the model is relevant

to the real system. But in complex systems, the holistic approach is more dominant,

meaning that the system is more than the summation of its parts. The ability of a

simulation model to generate an anticipated emergent behavior or to mimic the data

does not necessarily mean that it is good representation of reality (Yilmaz, 2006).

Silverman and Bharathy (2011) claim that models are frequently evaluated by their

capability to estimate an observed phenomenon over a specified range that means

each model has a fitness of use.

To what extent the model should be perceived as credible is also another question

of concern. Sargent (2005) postulates that validation is usually too costly in terms

of time and resources to determine the absolute validity of the model regarding the

domain and purpose of the study. While more effort might be better, reasonable

enough effort on validation can be satisfactory.
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Additionally, validation studies of socio-technical system simulations can be prob-

lematic. The lack of data and high-level abstraction in terms of assumptions of in-

dividual behaviors make it difficult to assess validity. Klügl (2008) lists the primary

obstacles for the validation of the proposed agent-based models including: transient

dynamics in the model, non-linearity, amount of effort, and availability of data. Data

can be used to train the model and calibrate it before conducting sensitivity analy-

sis. Tuning the model parameters using a meta-heuristic can increase the credibility

of the model by representing its ability to mimic real world cases. However, if the

model aims for a generalization ability and is desired to be used for exploratory anal-

ysis, then creating what-if scenarios and tuning the model would cause an over-fitting

problem.

4.4.1 OBO data and Over-fitting Problem

In statistics, over-fitting is the violation of parsimony that means including more

terms, variables, and/or procedures than necessary in the model (Hawkins, 2004). Ex-

perimenters explore the relationships between the measures. Complicated models are

not easy to interpret, which results in an over-fitting problem. The realism achieved

by mimicking the real world data and components in great detail may make the

model inappropriate and may impair the ability of the model to answer the questions

of interest (Laine, 2006). Grunwald (2005) points out the dangers of over-fitting:

If you over-fit, you think you know more than you really know. If

you under-fit, you do not know much but you know you do not know

much. In this sense, under-fitting is relatively harmless, but over-fitting

is dangerous.

In general, over-fitting happens when a model learns to describe noise in addi-

tion to the real dependencies between input and output.6 Cawley and Talbot (2010)

6https://alliance.seas.upenn.edu/ cis520/wiki/index.php?n=Lectures.Overfitting#toc1- As of
4.07.2013
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suggest separating model testing and model fitting processes from one another while

training the model with a wider range of available data. Reunanen (2003) also sug-

gests dividing available data into training and test sets. This suggestion, however,

assumes that the data is identically distributed. In the case of social network metrics

in OBO, the time series data has trends and high variability, especially during the

early stages of the network. Distinguishing different network phases in the data and

dividing each phase into subsets could be a solution to the problem of generating iden-

tically distributed data. However, the sample data sets of OBO are not large enough

for this practice. Cawley and Talbot (2010) state that it is possible to overcome the

over-fitting problem by regularization, early stopping or ensemble algorithms. Early

stopping first suggests us separating data into training and test subsets, then training

the model with the training set, pausing at times to test the model with the test data.

The training is stopped if the test results start to become less significant at which

point the validation is optimal. Regularization penalizes the complexity of the model

in the fitness function to avoid fitting the noise. An ensemble is defined as a collection

of models whose predictions are combined by weighted averaging or voting (Caruana

et al., 2004).

In OBO, scientists form communities and domains related to different areas of

health sciences while collaborating on the ontology data to standardize the shared

terminology. It is a Sourceforge style science development activity. In OBO data,

the assumption is that if two scientists collaborated on the same artifact in the same

month, then they are connected. OBO log-data (between 2000 - 2009) is parsed from

Sourceforge and the social network data is generated.

Over-fitting is likely to be undesirable when the sample data is small, which is

the case for OBO data. There is not a significant amount of data, and additional data

is not available. The validation method conducted in this research implements a ge-

netic algorithm that evolves the model parameters, thereby minimizing the absolute
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difference between simulation outputs and the OBO data. Since there are few com-

munities with a significant amount of data, statistically estimating the distribution

of certain metrics became unrealistic. Additionally, fitting the simulation parameters

to a single community data would destruct the generalization ability. Hence, OBO

data is only used for model calibration (oversight for the level of activity among arti-

facts and scientists) and validation of emergent patterns. Three macro-level patterns

(CAS specific and domain specific) are sought in simulation outputs and OBO data

for validation purposes in the following sections.

4.5 Initial Conditions and Terminating State Decision

Naturally, in complex adaptive models, the outputs are highly probable to have

cyclic structures. In theory, these systems never stop running and usually do not reach

equilibrium, because there are phase transitions in long run. The analysis of steady-

state simulations is more difficult than terminating simulations. In this research, the

sensitivity analysis is considered to be conducted by measuring the point-estimators at

the terminating-state. However, high variability among point-estimators is observed

at a terminating state. So, instead of observing point estimators, the average of

performance metrics are measured for last 100 time ticks before the terminating state.

In order to justify the terminating state decision, preliminary runs are conducted,

which have a variety of scenarios. The list of actions taken and conclusions derived

from the output behaviors are as the following:

• As a result of the computational complexity, it became impossible to run sim-

ulations for thousands of time ticks and to output the time series data for each

performance metric. Therefore, the simulation run-length is set to 1250 time

ticks for each scenario (30 replications for each), which is observed to be suffi-

cient to discern patterns of different output metrics in the long run. The main
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goal is to measure the trends of time-series data to identify different stages of

network evolution.

• A warm-up period for the simulation runs is not needed, that eliminates the

concern of initialization bias.

• Preliminary analysis is conducted for random scenarios, and time series for

different performance metrics are plotted. Plots are simply eyeballed for quali-

tative analysis purposes.

• No terminating state works perfectly for each scenario and each metric, follow-

ing the stochastic nature of this study. While some scenarios converge to the

core/periphery stage after 100 time ticks, some scenarios may need 400 time

ticks to converge. Therefore, the terminating state can be determined that is

sufficient enough to observe core/periphery stage under various scenarios.

In OBO scenarios before 500 time ticks, variances decrease and the metrics seem

to be fluctuating around the same values. In random connection scenarios, it is

qualitatively discernible that the metrics start to fluctuate around the same values

before 500 time ticks, but later time ticks it is possible to observe data trends due

to the dissolution of members from the social network. In this study, the goal is to

analyze the outputs at the core/periphery stage and to evaluate the network at that

stage.

Furthermore, the justification for the terminating state can be supported by

the following network snapshots. Figure 4.9 illustrates network snapshots at 400

time ticks for four scenarios extracted from the preliminary runs. These snapshots

represent distinct scenarios incorporating high-level of differences between parameter

values. The core periphery stage can be observed in the snapshots that has less

variable network metrics values. These networks are knitted closely in the core and

are more resilient. Hence, the terminating-state of the model is set to 500 time
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Figure 4.9: Sample Core-Periphery Structures at time 400

(a) Core/Periphery-Scenario1 (b) Core/Periphery-Scenario2

(c) Core/Periphery-Scenario3 (d) Core/Periphery-Scenario4

ticks, which can be perceived metaphorically as a 10-year collaboration period (by

comparing the output to OBO). The analysis are conducted over last 100 time ticks

(from 400 to 500 time ticks). Appendix A has the snapshots of different performance

metrics for different scenarios in order to illustrate the behavior of time series data.

4.5.1 Initial Conditions

Selected initial parameter values that are determined after the preliminary results

were observed are listed in Table 4.2.
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Table 4.2: Initial Settings of the Model

Parameter Name Initial Value Purpose

Weigh of Familiarity 0.34 Weight assigned to Familiarity in

preferential attachment mechanism

Weight of Imitation 0.33 Weight assigned to Imitation in pref-

erential attachment mechanism

Weight of Popularity 0.33 Weight assigned to Popularity in pref-

erential attachment mechanism

Arrival rate 0.2 Probability that a new scientist ar-

rives in the system at each time tick

End of simulation 500 Indicates the time tick to stop the sim-

ulation

Initial number of arti-

facts

10 Initial number of artifacts created on

the context

Initial number of sci-

entists

25 Initial number of scientists created on

the context

Probability to leave 0.2 It is a turnover rate for a scientist to

leave an artifact

Maximum Altruism 0.5 Maximum level of Altruism a scientist

can take

Maximum Scope 5 The maximum number of cells that a

scientist can browse

Minimum Scope 1 The minimum number of cells that a

scientist can browse

Continued on next page

71



Table 4.2 – Continued from previous page

Parameter Name Initial Value Purpose

Maximum Time Ex-

pectation

10 Maximum number of time ticks until

a reward/contribution

Minimum Time Ex-

pectation

5 Minimum number of time ticks until a

reward/contribution

Minimum Tension (0, 0.5] Range of values that lower bound of

Tension takes

Minimum Cognitive

Burden

(0,0.5] Range of values that lower bound of

Cognitive burden takes

Elasticity (0, 1] A value closer to one indicates easiness

of stretching the complexity of an ar-

tifact

Completion Threshold (Initial Maturity,

1]

Higher values mean relatively longer

life-cycle for an artifact

Memory Factor (0, 1] It is the weight given to previous esti-

mation as opposed to new experience

in foraging behavior

Core Threshold 5 Number of connections a scien-

tist should have to be core in

Core/Periphery calculations

Theme Length 10 Number of bits in Interest, Theme,

Complexity, and Expertise arrays

Forage Extension 2 Multiplier that expands the scope in

foraging mechanisms

Continued on next page
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Table 4.2 – Continued from previous page

Parameter Name Initial Value Purpose

Recover Rate 0.2 Probability of getting in Recovered

state if the conditions are occurred

World Width 50 Number of cells the grid has horizon-

tally

World Height 50 Number of cells the grid has vertically

Foraging Mechanism 2 Basic (2) or Optimal Foraging(1)

mechanisms

Migration Threshold 3 Number of migrations to be expe-

rienced before artifact creation and

leaving

Artifact Creation

Rate

0.05 The probability that new arrival or a

scientist who passed migration thresh-

old creates a new artifact

Mutation Rate 0.01 Probability that a scientist will change

his/her interest at each time tick

4.5.2 Bonferroni Analysis

After the length of runs has been established to avoid initialization bias and to

set the conditions for sensitivity analysis, the next step is to decide on the number

of replications (n) that will be used. Output metrics are not normally distributed in

the models of this research and the normality assumption can not be drawn. The

lack of distribution is inconsequential because if n replications for each scenario are

conducted, and are repeated for r times with different random number seeds, then
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the mean of each replication batch is expected to be normally distributed. This is a

result of the Central Limit Theorem.7

Sampling variability is a primary concern in the assignment of number n. In

this research, Bonferroni Analysis is conducted to determine the number of replica-

tions because multiple performance measures are observed. The so-called problem of

multiple comparisons should be mitigated. There may be a number sufficient for esti-

mating an output metric with a given confidence interval. But for different scenarios

and different metrics, the number of replications could vary. Regardless, Bonferroni

inequality states that “all intervals should contain their performance measure simul-

taneously.” Relative to this concern, the Bonferroni inequality addresses an overall

probability of at least 1−α that the confidence interval of all k metrics contain their

own expected performance measures. If the confidence interval of metric s is 1-αs,

then Bonferroni inequality states:

P (All intervals contain their respective performance measure) ≥ 1−
k∑
s=1

αs (4.11)

Fourty-four scenarios (8 OBO and 36 Random) and five performance metrics

are used for the Bonferroni analysis. αs is set to 0.02 for each metric. t-statistics

are used to determine the minimum number of n that would assure that all metrics

fall between their respective confidence interval with overall confidence of 1 − 0.10,

simultaneously. The initial number n is set to 30 replications. The decision of the

half-width to assure is set to 10% of the mean. So, the educated guess of n is found

as:

t2n−1,1−αs/2 ×
s2

h2
(4.12)

7http://www.math.csusb.edu/faculty/stanton/probstat/clt.html - As of 4.07.2013
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where tn−1,1−αs/2 is t statistics, s2 is the variance, and h2 is the square of the half-

width. The analysis is done for each scenario by recording the mean and standard

deviation at 500 time ticks. Table 4.3 below represents the maximum n that is found

among fourthy-four scenarios for each metric. Density is excluded from the analysis

because of the high coefficient of variation. Additionally, scenarios with low arrival

rates (e.g. 0.1) and small initial populations are excluded from the analysis due to

the significant effects of node removal on the variability of social network metrics in

smaller (population) social networks. The reason for the exclusions was to avoid the

impact of high variability on the n determined by Bonferroni Analysis. Also, it is

observed that under the initial conditions, these exclusions do not have an impact on

n that is determined.

Table 4.3: Maximum n Values Found

Avg. Path Length DC CC DiversityS DiversityN

Mean 2.75 0.27 0.28 0.26 0.47

Standard Deviation 0.35 0.08 0.10 0.08 0.01

Half-width 0.275 0.027 0.028 0.026 0.047

Maximum n 9.91 48.60 78.14 62.18 0.62

(t29,1−0.01 = 2.462)

A conservative approach is taken as the number of replications is set to 100,

which is assumed to be sufficient in order to avoid sampling variability. With regard

to the computational complexity and time constraints, conducting 100 replications

provides an acceptable performance. As a note, in Bonferroni analysis, the metrics

such as diversity among artifacts and diversity among links are excluded because they

have patterns similar to the other diversity metrics that are used in the analysis. It

is also revealed that the scenarios with small populations and arrival rates should

be analyzed with large numbers of replications (around 500) or else they should be

excluded from the sensitivity analysis to be able to capture statistical significance.
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4.6 Activity Time Series

Fluctuating time series are familiar representation of dynamical systems (Kendall,

2001). Complex adaptive systems, which include non-linear dynamics, exhibit attrac-

tors. Attractor can be subset of the states that system can phase through emerging

from typical initial conditions.8 It is common to observe more than one attractor in

complex adaptive systems. Chaotic attractors seem random but actually they consti-

tute a complex order that does not repeat, which represents that a dynamical system

behaves within certain ranges of possible behaviors (Goldstein, 2011). Kendall (2001)

indicates that nonlinear population dynamics represent chaotic attractors. Hence, the

activity diagrams of simulation runs and OBO data for a randomly chosen community

are plotted.

In Figure 4.10, activity diagrams of a single community in OBO are illustrated.

Figure 4.11 also presents the representation of simulation results for a single run

to illustrate similar fluctuating structures. This pattern is observed at each run in

the simulation outputs. In both simulation and OBO data, chaotic attractors are

observed as a hallmark of complex adaptive systems. These findings suggest that

the CAS assumption is legitimate in the model and the real world data (OBO) also

exhibits the same CAS patterns.

4.7 Power-Law Distributions

Another phenomenon this research explores is scale-free network structures,

which creates power law distribution (Blank and Solomon, 2000). Network topol-

ogy is expected to have a small number of highly central users with a substantial

number of links to others while most of the network members have small number of

links. The contribution data is suspected to have the same behavior, which means

that a small number of scientists have high number of contributions while most other

8http://www.scholarpedia.org/article/Basin of attraction - As of 4.07.2013
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Figure 4.10: Number of Active Artifacts and Active Scientists Over Time - OBO

(a) Active artifacts (b) Active scientists

Figure 4.11: Number of Active Artifacts and Active Scientists Over Time - Simulated

(a) Active artifacts (b) Active scientists

77



scientists have smaller numbers of contributions. The observation of power law dis-

tributions is also peculiar to CAS. Figure 4.12 shows Log-Log plots of degree and

contribution distributions of cumulative OBO data.

Figure 4.12: Log-Log Plot of Degree Distribution and Contribution Distributions of
OBO

(a) Degree distribution Log-Log plot (b) Scientist contribution Log-Log plot

(c) Scientist contribution Log-Log plot

Power law distributions indicate that the magnitude of a phenomenon is inversely

proportional to the frequency of that particular phenomenon. Fitness can be analyzed

by linear regression of log-log space. Because of multiple observations of the same

value, there is a noise in the tail. There are two ways to create bins of data. The

first way is to have equal width for each bin, and the second way is to normalize the

widths of bins such as logarithmic bins. If there is not a good fit, the data can be

fitted from a minimum value or until a maximum value since power law distributions

are sometimes mixed with another distributions.
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The Log-Log diagrams of the contribution distribution among scientists, distribu-

tion of degree information, and contribution distribution of artifacts are represented

below. In order to generate more data and better illustrations, the simulations with

the initial parameters are run for 200 times, after which the data is accumulated.

Each graph contains bins of equal width.

Figure 4.13: Log-Log plot of Degree Distribution of Scientists - Simulated

(a) Degree distribution Log-Log plot (b) Degree distribution Log-Log plot - After
cutting off the tail

It is not possible to confidently derive a power law distribution from Figure 4.13

part (a). The main mechanism that causes a power law distribution in the base-model

is preferential attachment. A reason for having an exponential decrease in the tail

is the lack of highly central members in the community. That is why outliers are

excluded after the bin that falls between 55 and 60 connections in Figure 4.13 part

(b) so that a good fit is observed, which indicates that the power law distribution

exists until certain degree values have been reached. The contribution distribution

for artifacts is represented in Figure 4.14.

In Figure 4.14 part (a), all data containing that has a high noise in the tail is

included. Figure 4.14 part (b) shows the data that is cut off from a certain point,

at which the continuity of histogram data (bins) starts to disconnect. The contribu-

tion distribution of artifacts is highly indicative of power law distribution, which is

expected because of the artifact selection mechanisms implemented. In Figure 4.15

there is also a good fit for the contribution distribution of scientists. The power law
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Figure 4.14: Log-Log Plot of Contribution Distribution of Artifacts - Simulated

(a) Contribution distribution Log-Log plot of
artifacts

(b) Contribution distribution Log-Log plot of
artifacts - After cutting off the tail

Figure 4.15: Log-Log Plot of Contribution Distribution of Scientists - Simulated

(a) Contribution distribution Log-Log plot of
scientists

results support the CAS assumption and validity of the CAS principles implemented

in this research.

4.8 Collaboration Network Phases

Creation of a fractal-like structure in the course of evolution is another CAS emer-

gent property (Yang and Shan, 2008). Regarding collaboration networks, there are

four stages through which a network evolves. The network topology is observed and

animated through time to discern scattered, one hub, multi-hub, and core/periphery

structures consecutively (Krebs and Holley, 2002). These four main stages that col-

laboration networks phase through are:
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• Scattered Clusters: The stage where the community starts with emergent clus-

ters isolated from each other.

• Single Hub-and-Spoke: The stage where a hub or single actor begins to connect

different clusters.

• Multi-Hub, Small-World Network: In this stage, other hubs start to emerge

that are connected by weak ties.

• Core/Periphery: This stage emerges after a long period of weaving by the hubs.

It is stable and easy to maintain.

As described in the theoretical model (Figure 4.16), the four phases of collabora-

tion networks are discernible in OBO data (Figure 4.17). The snapshots in Figure 4.18

are taken from a single simulation run to illustrate the generated collaboration net-

works. In contrast to the simulation data, OBO has star-like structures which indi-

cates a connection between core members and a significant number of inactive users

who have only one connection to that particular star. Due to the OBO, some core

members close or conclude the artifacts that are inactive; as a result, they form a

connection with the creators who never elaborate or create any artifacts. The phase

transitions can also be detected in the simulation data, and the snapshots may be

used for face-validity purposes.
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Figure 4.16: Emergent Network Patterns Over Time - Theoretical Model

(a) Scattered (b) One-hub

(c) Multi-Hub (d) Core/Periphery

Krebs and Holley (2002)

The snapshots reveal that the simulated networks exhibit the theoretical stages

through which a collaboration network evolve. This finding supports the model vali-

dation. The same patterns are also supported by OBO data observations.

In Chapter 5, socio-communication model is introduced along with the definitions

of the output metrics. Subsequently, sensitivity analysis are conducted for various

scenarios and innovation potential is discussed.
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Figure 4.17: Emergent Network Patterns Over Time - OBO Data

(a) Scattered (b) One-hub

(c) Multi-Hub (d) Core/Periphery
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Figure 4.18: Emergent Network Patterns Over Time - Simulated

(a) Scattered (b) One-hub

(c) Multi-Hub (d) Core/Periphery
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Chapter 5

SOCIO-COMMUNICATION MODEL AND EXPLORATORY

ANALYSIS

The assumption in the base-model states that if two scientists contribute to an

artifact at the same time period, they are then connected. This assumption on how to

connect scientists is changed before different communication theories are introduced

to the base-model. In the socio-communication model, scientists attempt to attach

themselves with other scientists based on their communication preferences. In the fol-

lowing sections, the shared assumptions among different communication mechanisms

and implementations of particular communication theories in GPS are discussed.

5.1 Communication Preferences

Scientists are familiar with the people who study the same artifacts that they

themselves study. Scientists may only consider others who elaborated on the artifact

themselves are active on, at the same time tick. Also, at each time tick, an active

scientist can try a connection only once. This is a matter of resources scientists

have. As an underlying assumption, the scientists are homogeneous and have the

same amount of resources. If the connection/interaction request is accepted and the

target scientist is already a member of his or her network, then the weight of the tie

between them is increased incrementally. Reciprocity is an important concern when

forming a tie with another. Even though scientists are willing to connect to the ones

with higher expertise or higher degree, these scientists might not want to connect in

response. In order to address the reciprocity issue, the tendency and motivations of

the other scientist, who is selected to be connected, should be taken into account.
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If forming a tie is a decision of both parties, then successful connection should also

be based on how the source scientist is perceived by the target scientist who was

selected. The mechanisms for each selected communication theory are described in

the following sections.

5.1.1 Random Connection

In this mechanism, a scientist selects another scientist to create a random con-

nection. The flow diagram describes the random process below:

Figure 5.1: Activity Flow Diagram of Random Connection Mechanism

5.1.2 Human Capital

Human capital is defined in terms of attributes and characteristics that one has,

such as reputation and knowledge. The theory of human capital explains that people
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who have greater numbers of attributes and features gain more advantages in the

network (Becker, 1978).

In this research, the human capital mechanism states that scientists have the

broadcasted expertise information of others and they attempt to connect to other

scientists with higher expertise. The general activity flow diagram of communication

mechanisms that are implemented are described in Figure 5.2. In human capital

mechanism, the evaluation is based on the expertise levels of the fellow scientists who

study on the same artifact. The greater the expertise of scientists, the more likely

they are to be selected by others.

Figure 5.2: Activity Flow Diagram of Communication Mechanisms
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Decision criteria Pij for scientist i to select scientist j is the average expertise

level of scientist j:

Pj =

∑M
n=1Ej[n]

M
(5.1)

where M represents the total number of expertise areas and Ej[n] is the expertise

level of scientists j on area n. In the following formula below, pij is the probability

of i to select j from candidate scientists.

pij =
Pj∑N
n=1 Pn

(5.2)

where N is the total number of scientists who actively study on the same artifact.

Roulette wheel algorithm is used to determine which scientist is selected as j by sci-

entist i. Regarding reciprocity, the probability that the connection will be successful

is represented by the Equation 5.3 below.

pji =
Pi∑N
n=1 Pn

(5.3)

5.1.3 Social Capital

Social capital is the sum of the resources that the virtual or actual ties of a person

has in a network. An example of social capital is the theory of structural holes (Burt,

1995). The theory asserts that people invest in social opportunities from which they

expect to profit. Structural holes are the non-connected actors in the network that

create opportunities to be filled by others. When the non-connected actors form ties,

better information sharing can be generated. In this work, the sum of the number of

actual ties is interpreted as the social capital among scientists.

The social capital mechanism indicates that scientists possess the others’ degree

information, and that these scientists try to forge connections with other scientists
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that have higher degrees than themselves. Bounded rationality is a concern, because

scientists may not know online connections of others, necessarily. Scientists can not

perceive the perfect information about the condition of whole network (such as who

is connected to who and if they are in different cluster). It is observed that cyber-

infrastructures typically broadcast the number of connections each user possesses and

that information is readily available. The more connections a scientist has online, the

more likely for them to be selected by other scientists to form a link.

In addition to degree information, closeness centrality and betweenness centrality

can be candidate attributes for use in social capital mechanisms. However, scientists

have limited information, and data items such as the number of central actors be-

tween clusters and the proximity of a scientists to all clusters of the network cannot

be processed. Another reason for selecting degree information as an attribute is the

computational ease to its calculation. Both betweenness and closeness need computa-

tionally costly algorithms to be calculated; since these calculations are performed on

each time tick for each scientist, the run-time of the simulations are severely altered.

Regarding social capital mechanism, in Figure 5.2, the evaluation process is based

on the degree information of the fellow scientists. The selection process is conducted

based on pij:

pij =
DCj∑N
n=1DCn

(5.4)

where N is the total number of scientists in the same artifact and DCj is the degree

centrality of scientist j. The reciprocal response from scientist j to scientist i is based

on the following probability:

pji =
DCi∑N
n=1DCn

(5.5)
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5.1.4 Homophily Theory

Homophily theory states that there is a stronger tendency to form social ties

with others who are regarded as similar to one’s self than with someone perceived as

being different.1 People are more likely to communicate with the others who have

similar attributes. Shared attributes may include one’ s interests, or any other variable

related to human capital. Effectively, people are likely to communicate with people

similar to themselves because no effort is required to build mutual understanding.2

The implemented homophily mechanism states that scientists have information

about others’ interests, and that they forge connections with those who share the

same interests as themselves. In Figure 5.2 the evaluation is based on the interest

levels of flow scientists.

Pj =

∑M
n=1Min(Ii[n], Ij[n])

N
(5.6)

where M is the total number of interest areas. Below, pij is the probability of i to

select j from candidate scientists.

pij =
Pj∑N
n=1 Pn

(5.7)

where N is the total number of scientists who are active on the same artifact. With

regard to reciprocity, the probability that the connection will be successful is the

same:

pji = pij (5.8)

1http://faculty.ucr.edu/ hanneman/soc157/18 Homophily.html - As of 4.07.2013
2http://jcmc.indiana.edu/vol11/issue4/yuan.html - As of 4.07.2013
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5.1.5 Social Exchange Theory

Cognitive consistency theory focuses on the individual’s perceptions of their net-

work. People aspire to balance the attitudes in their network. Social exchange theory

is the reverse of cognitive consistency, the condition in which unbalanced network

members exist, the theory encourages a person to exchange information and resources.

The theory also has a conflict with self-interest theories because self-interest theories

focus only on maximizing the individual value (Monge and Contractor, 2003).

The social exchange mechanism states that a scientist have information about

what others know and the level of their expertise. Scientists will attempt to connect

with other experts in order to balance their own expertise level. In Figure 5.2, the

evaluation process is based on the expertise gap between the fellow scientists.

Pj =

∑M
n=1Max(Ej[n]− Ei[n], 0)

N
(5.9)

where M is the total number of interest areas. Below, pij is the probability of i to

select j from candidate scientists.

pij =
Pj∑N
n=1 Pn

(5.10)

where N is the total number of scientists in the same artifact to who scientist i is

not connected. Regarding reciprocity, the probability that the connection will be

successful is the same as follows:

pji = pij (5.11)

5.2 Learning Process

To reiterate, information flows are represented between artifacts and scientists in

the base-model. In order to measure the effects of different communication preferences
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on diversity within the network, it must be assumed within the communication model

that scientists can learn from one another through the revision of their interest and

expertise levels. The influence process introduced in the base model also describes

a learning process. The following formula represents the transfer mechanism for

learning of a scientist. When a scientist is connected to a new scientist, with a certain

probability (0.80), their expertise level will be revised according to the formula below.

Ek[i] = Ek[i] + (1− Ek[i])× (Ej[i]− Ek[i]) (5.12)

where i is a randomly selected area, j is the scientist who is connected to, and k is

the scientist requesting communication process. When a connection is not realized,

a randomly selected scientist will learn from a randomly selected scientist in their

network. Learning is only justified when the expertise of scientist j is greater than

the expertise of the scientist k. The interests of a scientist are also influenced by other

scientists. The higher the expertise gap, the more likely they are to be influenced.

This mechanism only updates a randomly selected area i on interest of scientist k:

Ik[i] = Ij[i] (5.13)

5.3 Social Network Metrics

It is previously mentioned in the literature summary that the innovation potential

is likely to be captured by measuring various social network metrics. The relative

social network metrics that are identified as important in this study and the summary

of their definitions are listed below:

• Network Density: The calculation of the proportion of possible ties that exist in

the network (Rowley, 1997). Density is 2|E|
N(N−1) , where |E| is the total number

of edges in a network and N is the total number of nodes. High density is an
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indicator of mobility, which means increased connectivity and transfer of ideas

within the network.

• Diversity in the network: The number of different people connected in the net-

work. Diversity can be measured through different skills, expertise, resources,

and reputation.

• Diversity in the population: The perception of differences in others within the

population over time. Difference can also be in terms of skills, expertise, re-

sources, and reputation. How the diversity metrics are measured is defined in

the following sections.

• Degree: An actor’s total number of connections.

• Degree centrality of an actor: According to Wasserman (1994b), people with

the greatest number of ties are the most central actors in a network. It is the

proportion of possible ties that exists for an actor. In this research, the degree

centrality of scientist i is DCi = Degreei
N−1 , where N is the total number of nodes

in the network.

• Degree Centrality of a Network: The range of variability among degrees of the

actors. Degree centrality of a network is DCNetwork =
∑N

i=0DCmax−DCi

N−2 , where N

is the total number of nodes and DCmax is the maximum degree centrality a

scientist has in the network.

• Clustering Coefficient: The number of edges in a neighborhood divided by the

maximum possible number of edges that could exist in that neighborhood. The

coefficient provides information about how actors in a network tend to cluster

together. For each scientist i, a neighborhood is defined. The proportion of

possible ties that exist between neighbor nodes is measured, assuming that the
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neighborhood is a network itself. The clustering coefficient of the whole network

is the average of the clustering coefficients of individual scientists.

• Average Path Length: The average number of steps along the shortest paths for

all possible pairs of network actors (Albert and Barabási, 2002). It can also be

stated as the average of the shortest paths from every scientist i to scientist j.

Lower values indicate higher cliquishness and fewer structural holes.

• Core/Periphery Ratio: The ratio of the number of core actors to the number of

periphery actors. Boyd et al. (2006) state that “individuals in a group belong

to either the core, which has a high density of ties, or to the periphery, which

has a low density of ties.” The core-periphery ratio calculation removes less

central nodes recursively until only central nodes remain in the network. The

remaining nodes are counted as core nodes and the removed nodes are counted

as peripheral members (Borgatti and Everett, 2000).

In this study, the high centrality and fewer structural holes argument is adopted

to measure innovativeness in a network (Burt, 1995). This hypothesis promotes mod-

erate level average path length, higher degree centrality, and moderate level clustering

coefficients in the network while it may decrease the density, which fosters mobility

and diffusion of ideas. Since there is high turnover of the scientists within the en-

vironment, the high centrality with fewer structural holes argument is critical even

though high density networks are known to be innovative. However, high density is

still presented to decision-makers for comparison of different scenarios. Considering

the knowledge generation, the total maturity of the artifacts, the distribution of ex-

pertise levels of scientists, activeness in the population are also discussed as collective

creativity metrics.
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5.4 Diversity and Interdisciplinarity

In this research, a variation among a type strategy is adopted (Page, 2010) in

order to measure diversity in the environment. Basically, diversity can be defined as

combination of three properties:

• Variety: It defines “how many types of things are there?” The number of dif-

ferent scientists, themes or interests can be perceived as variety depending on

the metric. All else equal, the greater the variety, the greater the diversity.

• Balance: It defines “how much of each type of thing are there?” The greater

equality of the balance, the better the diversity. For Balance formulation, Shan-

non entropy (Stirling, 2007) is used in which pi indicates the proportion of

members of given type in the total population:

−
N∑
i=1

pi × ln pi (5.14)

• Disparity: It defines “how different from each other are the types of things?”

Greater disparity is beneficial for diversity. The theme of artifacts or interests

of scientists are used as attributes to calculate disparity in the population.

Although diversity is advocated as a unique quality in policy-making, the in-

terpretation of diversity is context dependent and relative to the intention of the

decision-makers. The challenge is how to accommodate threefold understanding and

how to aggregate them in a metric. For that purpose, Stirling (2007) introduces an

effective heuristic used in different studies (Benhamou and Peltier, 2010; Rafols and

Meyer, 2010):

D =
∑
ij

(dij)
α(pi × pj)β (5.15)
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where D is the diversity in the network or population, dij is the disparity between

type i and j, and i 6= j. While pi and pj are defined as proportions of type i and

type j, α and β are the relative weightings that are assigned to each component in

the formula.

There are four diversity metrics calculated in this study. For diversity in the

population of scientists and artifacts, dij is defined as dissimilarity between interest

and theme arrays, respectively. While measuring link diversity in the network, every

node is accepted as a kind, where pi and pj are the proportion of ties in the network

that scientist i and scientist j have respectively, and dij is the dissimilarity between

the individual networks of scientist i and scientist j. In order to calculate node

diversity of the network, dij is calculated as the dissimilarity between scientist i and

j based on their interest arrays as it is used in the diversity among population of

scientists.

Additionally, interdisciplinary is known to be a desired output of scientific activ-

ities (Rafols and Meyer, 2010). The authors define interdisciplinarity by two aspects:

diversity and coherence, or the extent to which two things are related. Coherence can

be defined in terms of the network of relations; however, what types of relations are

sought is the question of interest. Thagard’ s explanatory coherence (1989) is another

method in order to capture different types of coherence metrics within the environ-

ment. In this research, the diversity metric created to measure diversity among the

nodes, density of the network, and the average path length are observed to discuss

about interdisciplinarity that exists in the network.

5.5 Sensitivity Analysis

Before sensitivity analysis are conducted, the response surface of the model is

explored. Screening experiments are run with the parameter values that are identified

as important factors and expected to be effective factors on the outputs. The goal
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of applying response surface methodology (RSM) is to observe the effects of various

parameters values on various performance metrics and to identify parameters that

can be used in sensitivity analysis. Identified parameters and their respective levels

are listed in Appendix A.

5.5.1 Response Surface Analysis

RSM includes use of statistical and mathematical techniques to develop, improve,

and eventually optimize processes (Carley et al., 2004). Regarding simulation outputs,

a performance metric can be called response. Independent variables can be model

inputs, which are environmental or mechanistic parameters in the model. Practically,

while applying response surface analysis, an approximation model of response space

is created. Hence, in this research, first-order multiple linear regression model is

developed, which is also called main effects model.

Subsequently after the simulation runs, parameter values and corresponding per-

formance metrics for each scenario are imported in IBM-SPSS tool. All possible re-

gression method is not used, since the number of equations to be examined increases

exponentially as the number of candidate variables increases. Therefore, backward

elimination method is adopted, which is known to be a good variable selection pro-

cedure, when the effects of all candidate variables on performance metrics are desired

to be observed. Backward elimination basically starts with all variables in the model

and then F-statistic is calculated for each variable as if it were the last variable to

enter the model. If p-value is more than desired level, then that variable is removed.

This procedure continues until there is no variable to remove. In Appendix A, the

tables of IBM-SPSS results are presented. By examining the RSM results, the fol-

lowing conclusions are outlined, which can also be used to support internal validity

of the model.

• Maximum altruism level is highly effective on all metrics.
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• Minimum cognitive burden that is associated with the environment (perceived

as the difficulty of the problem domain) arises lower activity that triggers less

density in the network.

• Minimum tension that exists in the environment is related with elasticity of

the problem domain or transparency of the community. It is an altering factor

on outputs. Higher level of lower bound for the tension has similar effects as

minimum cognitive burden.

• Maximum altruism, minimum cognitive burden, and minimum tension are ex-

pected to be effective on the performance metrics, because they directly affect

the collective action mechanism and activeness in the population.

• Communication preferences of the scientists are observed to have important

effect on the output. Since, the purpose of phase two is to measure the effects

of different communication preferences on innovation potential, communication

type is coupled with various variables to observe their combined effect on the

simulation outcome. The results are presented in Appendix A for the design of

further sensitivity analysis in the future.

• Standardized β (coefficients of variables) values are observed to avoid effect

of scale. Also p-values are observed and the the p-values with less statistical

significance are printed in bold characters in Appendix A.

• Forage extension and minimum time expectation are not as effective as expected

on the outputs. Apparently, they just stretch or compress the timeline of the

activity time series. The metrics converge to similar results at the terminating

state.

• All parameter values that are associated with population dynamics (arrival rate,

probability to recover, probability to leave, and expertise level to recover) are
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effective on the performance metrics. The reason for that is considered as the

mechanism that dissolves the inactive scientists from the network.

• Migration threshold as an environmental parameter, which is related with the

patience among community members, is also effective on the outputs.

Under the lights of these observations, various scenarios can be created by mutat-

ing effective parameters. In this study, simulation experiments to discern more inno-

vative communication preferences are conducted under base-model parameter set-up

as relative to the intention of this research. Sensitivity analysis are summarized in

the following sections.

5.5.2 Communication Preferences

First, the simulation runs are conducted at initial conditions for each commu-

nication mechanism. Figure 5.3 illustrates emerging network topologies for different

communication mechanisms at time tick 500. As a note, darker colors indicate higher

levels of expertise.

Figure 5.4 represents error bars of density with 95% confidence interval for differ-

ent communication mechanisms. Especially, human capital and social capital mecha-

nisms promote connections between central and peripheral nodes, since more central

or expert scientists are more likely to be selected to form ties. Therefore, this process

results in more connections among different clusters in the network.

Figure 5.5 represents error bars of degree centrality with 95% confidence interval

for different communication mechanisms. Random, human capital, and social capital

mechanisms seem to have significantly higher degree centrality in the network, which

means there are highly central scientists and the variance of degree levels among

scientists is higher.

Figure 5.6 represents error bars of clustering coefficient with 95% confidence

interval for different communication mechanisms. Random, human capital, and social
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Figure 5.3: Network Visualizations at Terminating State

(a) Mixed Theories (Mi) (b) Random Connection (Ra)

(c) Human Capital (HC) (d) Social Capital (SC)

(e) Homophily (Ho) (f) Social Exchange (SE)
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Figure 5.4: Density

Mi: Mixed Communication, Ra: Random Communication, HC: Human Capital, SC: Social Capital,
Ho: Homophily, SE: Social Exchange

Figure 5.5: Degree Centrality

capital mechanisms result in higher clustering coefficients. Clustering coefficient is

also used in small-world calculations in the following analysis.
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Figure 5.6: Clustering Coefficient

Figure 5.7 represents error bars of average path length with 95% confidence in-

terval for different communication mechanisms. Social exchange and mixed commu-

nication mechanisms promote higher average path length and more dissolved network

structures.

Figure 5.7: Average Path Length
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Figure 5.8 represents error bars of core/periphery ratio with 95% confidence

interval for different communication mechanisms. Mixed communication and social

exchange mechanisms result in better core/periphery structures generating greater

number of periphery members to diffuse innovation.

Figure 5.8: Core/Periphery Ratio

Figure 5.9 and Figure 5.10 represent error bars of diversity among scientists and

diversity among artifacts with 95% confidence interval, respectively. In both graphs,

it can not be argued that different mechanisms cause significantly different levels of

diversity. The underlying reasons creating this phenomenon are the high variety and

convergence of disparity among the population to 0.50, which is thought to be caused

by binary interest and theme arrays.

Figure 5.11 represents error bars of diversity among links with 95% confidence

interval. Social capital mechanism results in more diverse social networks based on

links.

Figure 5.12 represents error bars of diversity among nodes with 95% confidence

interval. Random, human capital, and social capital mechanisms cause more diverse
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Figure 5.9: Diversity Among Scientists

Figure 5.10: Diversity Among Artifacts

social networks regarding how much dissimilar scientists are connected based on their

interests.

Figure 5.13 represents expertise distribution among scientist population. In the

figure, there is a peak at bin that represents expertise levels between 0.80 and 0.90.

It is caused by expertiseToRecover value. After expertise level of 0.80, if scientists
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Figure 5.11: Diversity Among Links

Figure 5.12: Diversity Among Nodes

can not become active, they recover and leave the environment. So, there are more

number of scientists who fall in the bin between 0.80 and 0.85. The last peak in

the graph represents the scientists who are highly active and central in the network.

Even though it is hard to distinguish, the levels between the bars of different colors
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indicate that highly expert scientists are more likely to occur in human and social

capital mechanisms.

Figure 5.13: Expertise Distribution

X-axis is the bin number. Each bin has width of 0.05. Y-axis is the proportion of the population
whose expertise levels fall on respective bin

Figure 5.14 represents maturity distribution among the artifact population. Hu-

man capital and social capital mechanisms create artifacts that have higher levels of

maturity, which is a result of information flows between scientists and artifacts.

In order to discuss through how disparity emerges for different communication

theories, Figure 5.15 and Figure 5.16 represent disparity distributions of links and

nodes, respectively. As a result, homophily mechanism generates cliques, therefore it

creates more disparate individual networks. Disparity among the nodes is based on

how dissimilar are the nodes that are connected. Interestingly, it indicates a binomial
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Figure 5.14: Maturity Distribution

distribution. Since each bit on binary arrays can be perceived as bernoulli trials, the

number of matches or dissimilar bits between two binary arrays produces binomial

distribution in long run, which is quite similar to normal distribution.

Figure 5.17 and Figure 5.18 represent the average number of active scientists

and artifacts. It is shown that mixed communications and social capital mechanisms

result in relatively higher level of activity than random connections and homophily

mechanisms. It is not possible to distinguish human capital and social exchange

mechanisms from the others.

Figure 5.19 illustrates small-world phenomenon information. The calculation

method, which basically divides clustering coefficient by the average path length is
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Figure 5.15: Disparity Distribution Among Nodes

X-axis is the bin number. Each bin has width of 0.1. Y-axis is the proportion of the pairs of nodes
which has disparity levels fall on respective bin

adopted (Uzzi and Spiro, 2005). Uzzi and Spiro (2005) state that small-world phe-

nomenon is also indicative of creativity, which spurs innovation until certain extent.

Random, human capital, and social capital have higher level clustering and smaller

average path length that means the network is dense and closely knitted allowing

diffusion of ideas and collective productivity.

Table 5.1 summarizes the results for different communication preferences. For

better illustration, relative values of each metric are indicated in three levels: low,

medium, and high. Bold characters are used to discern the values that promote

innovation potential.
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Figure 5.16: Disparity Distribution Among Links

Figure 5.17: Active Scientists
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Figure 5.18: Active Artifacts

Figure 5.19: Small-world Phenomenon

Interdisciplinarity is illustrated by Figure 5.20 below. Interdisciplinarity is also

a desirable feature that fosters innovation. The heuristic is adopted from the study

by Rafols and Meyer (2010).

In conclusion, social capital theory supports all indicators of innovativeness more

than the other candidate theories. Social capital theory promotes connections among
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Table 5.1: Summary of the Sensitivity Analysis

Criteria Mi Ra HC SC Ho SE

Density Low High High High Med Low

Degree Centrality Low High High High Med Low

Clustering Coefficient Low High High High Med Low

Avg Path High Low Low Low Med High

Core/Periphery Low High Med Med Med Low

DiversityL Low Med Med High Med Low

DiversityN Low High High High Med Low

Activity High Low Med High Low Med

Expertise Med Med High High Med Med

Maturity Med Med High High Med Med

Small World Low High High High Med Low

Figure 5.20: Node Diversity vs Network Coherence

central scientists and periphery scientists. Apparently, highly central members are

also more likely to be more active and accumulate more expertise. More expert sci-

entists in the population increase the complexity of the artifacts and lead to more

mature artifacts in the environment, which means more knowledge creation. Highly

central scientists also broadcast the knowledge to periphery members and spur the
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diversity among the network members. High centrality-fewer structural holes hypoth-

esis is supported more by social capital theory.

Additionally, core/periphery structures are desirable to promote diffusion of in-

novative ideas. Mixed connections and social exchange favor the balance of popularity

among the scientists, which also results in lower degree centrality. Therefore, they

have small number of core members while the number of periphery members are high

and they usually have moderate level of expertise.

The implemented simulation model can be used to conduct more sensitivity anal-

ysis under further environmental conditions and the different communication prefer-

ences can be tested along with different parameter set-ups (more altruistic, more

difficult, more elasticity etc.). In the following chapter, a search algorithm (genetic

algorithm) is introduced and more robust communication landscapes are explored

in the scenario space. The goal is to capture more robust parameter set-ups with

an evolutionary algorithm that enables intelligent search and avoids the exhaustive

parameter sweep.
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Chapter 6

ROBUSTNESS IN GLOBAL PARTICIPATORY SCIENCE

Developing innovation coordination mechanisms that are robust and resilient

under environmental uncertainty is critical for sustained innovation. For that reason,

robustness is valuable to explore as opposed to only searching for an optimal behavior

in terms of a fitness function in an unchanging environment. The motivation to

explore the scenario space is to gain deeper insight and generalize from the observed

behavior. Exploration vs. exploitation is a well-known trade-off (March, 1991). An

important issue is to decide when to stop exploring and when to start exploiting the

parameter space to discover robust system configurations. The aim in this chapter

is to exploit the possible scenario space to discover robust landscapes in terms of an

evolutionary search algorithm. To measure robustness, the fitness function is defined

in terms of the degree of variability among innovation potential metrics.

6.1 Exploratory Modeling

There is insufficient knowledge and a high level of uncertainty for the modeled

target system (Global Participatory Science). The estimates on initial and boundary

conditions or the nonlinearities in the models can cause even small levels of initial

uncertainties to generate remarkable levels of uncertainties in the results. The critical

question to be addressed is: “What is the appropriate method for using the model

considering its limitations?” In this chapter, an exploratory modeling approach is

adopted, which is defined as a series of computational experiments to explore the im-

plications of mechanisms (e.g., communication mechanisms) and parameter changes

(Bankes, 1993).
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An exploratory modeling can involve a search for key configurations of the sys-

tem (Bankes, 1992). Initially, boundaries of the plausible scenario space (possible

parameter ranges) and an ensemble of plausible scenarios are generated. The process

of selecting which ensemble of the plausible scenarios to run depends on the question

of interest. Through the search, an output metric is observed. In this research, the

output metric is defined as an indicator of robustness (related to the purpose of the

study). Moreover, a search strategy is needed in exploratory modeling. In this work,

a genetic algorithm (GA) is implemented to evolve the regions of parameter values

where more robust (less variable) social network structures are observed.

The ability to discern patterns from output metrics depends on being able to

define a topology (set of model configurations) in the ensemble such that similar

parameter ranges have similar outcomes (Bankes, 1993). In this research, the search

is guided by a heuristic (specifically a GA) and cannot guarantee an absolute optimal

scenario. Thus, the evolution of the ensemble of scenarios at different generations are

recorded.

Furthermore, the ensemble is interactively tested against different metamorphic

relations to bound the plausible scenario space (by interventions). This search can

be called human-mediated interactive robustness analysis. The ensemble of scenarios

is revised over time resulting in an evolving scenario space. In the following section,

the use of genetic algorithm in exploring plausible scenario space is discussed.

6.1.1 The Use of Genetic Algorithms

In genetic algorithms, through randomness associated with selection and crossover,

alternatives with desired outputs mate to generate new ensemble members. A scenario

with better output metric (with respect to a fitness function) has a higher probability

to be selected. Over iterated generations, an increasingly desired behavior is expected

to accumulate (Atmar, 1994).
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The selection decision of GA is motivated by simulation optimization studies.

Simulation optimization can be defined as the process of finding the most effective

and optimal input values among all possibilities without explicitly evaluating each

possibility (Carson, 1997). However, there exist other techniques that are used in

simulation optimization: “Gradient-based search, response surface method, stochastic

approximation, and Ranking and Selection etc.” (Carson, 1997; April et al., 2003).

Most available tools use evolutionary algorithms to optimize the inputs of a given

model (Fu and Glover, 2005). Artificial neural networks (ANN) simulation is also

a well-published method used for training a model with a given set of data (Sexton

et al., 1999). Fu and Glover (2005) state that there is no clear answer for why the

use of evolutionary algorithms are dominant, but they point out the benefits, such as

the ability to explore the entire state space and robust properties in practice.

Genetic algorithms are used in various simulation studies as parameter opti-

mization tools. For example, in GENOSIM, authors manipulate the values of control

parameters in a traffic micro-simulation and globally search for an optimal set of

values that minimize the gap between real field data and the simulation output data

(Ma and Abdulhai, 2002). Similarly, Zou (2012) explores the parameter space with a

genetic algorithm that minimizes the discrepancy between the real world community

data (also gathered from OBO) and various social network metrics. In a dynami-

cal system like a social network, Zou (2012) builds the fitness function based on the

point estimators at the termination state of the simulation. It adds credibility to the

models by stating that the model is capable of creating snapshots of some real world

networks at certain states, but it can not assert that the simulation arrive to observed

states following the same transient events.

Bäck and Schwefel (1993) compare different evolutionary algorithms and promote

the use of GA by stressing its ability to assign a nonzero selection probability to each

individual (called as preservative selection or proportional selection). Additionally,
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Paul and Chanev (1998) address the appropriateness of GA for simulation optimiza-

tion. Unlike this research, Paul and Chanev (1998) simulate an existing steady-state

Steelworks model. For each scenario, they run only a single replication for a long

period of time, which they believe is long enough to gather sufficient statistics at the

steady-state of the system.

Nazzal et al. (2011) state that when the goal is to optimize a stochastic system

with high variability, the performance of GA can be inadequate. The authors address

that it is important to consider variance when evaluating the alternative scenarios

produced by GA over generations. Hence, Nazzal et al. (2011) propose a methodology

that incorporates an indifference-zone (IZ) ranking and selection procedure under

common random numbers (CRN). The methodology also aims to reduce the required

number of replications for each scenario. In contrast, Pierreval and Tautou (1997) note

that when a simulation model is considered, as a common practice in GA selection

operation, scenarios are compared based on the differences between mean values of

an output metric (or fitness value). If the proportional selection operation is used,

the comparison tests (e.g., sensitivity analysis) between scenarios are less important

and the scenarios can evolve based on the mean values of the output metric (Pierreval

and Tautou, 1997).

In general, genetic algorithms are used to determine the discrete input values

(Liepins and Hilliard, 1989). Genetic algorithms mimic the evolutionary process of

biological systems to create new generations guiding the search towards optimal solu-

tion (Swisher et al., 2000). Genetic algorithms cannot guarantee optimality, but the

intention is to improve the ensemble, and if possible derive robust scenarios under

environmental uncertainty. As discussed in Chapter 4, for the sake of generalization,

the aim of this research is not to find the optimal parameter set that mimics the

real world data, but rather to explore the scenario space to measure the robustness
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of different communication theories under different conditions and if possible, to dis-

cover diverse scenarios that are more robust than the others. In order to limit the

search space or understand the response surface of the model, metamorphic testing

is introduced as a candidate process. In the following section, metamorphic testing

is delineated and characterized.

6.1.2 Metamorphic Testing

Metamorphic testing approach is introduced by Chen et al. (1998) to address

the problem of testing programs with no oracle. Metamorphic testing is a testing

method that is based on the expected properties of the application or model. The

properties, called metamorphic relations (MRs), are basically functions that define the

relationships between program, model, or function input and the expected changes in

output. Specifically, those relationships can provide means to define V&V test cases.

Suppose a case in which x is a test input and produces output f(x). The meta-

morphic properties of the function f can be used to develop a transformation function,

which when applied to the test input produces x′. This then enables prediction of the

expected output f(x′) based on the known f(x). If the outcome f(x′) is consistent

with the expectation, it is not necessarily correct. However, violation of the meta-

morphic property indicates that one (or both) of the outputs, f(x) or f(x′), is wrong.

So, though it may not be possible to know with a single test whether an output is

correct, it is determined if the output is incorrect. Metamorphic testing has been

used at the function (Guderlei and Mayer, 2007), application (Xie et al., 2011), and

simulation (Ding et al., 2011; Pullum and Ozmen, 2012) levels.

As an example to explain metamorphic relations, consider a function that cal-

culates the standard deviation of a set of numbers. For some transformations of the

input set, we expect no change in the result, e.g., if the order of the members of the

input set is permuted or if each member of the input set is multiplied by -1. Other
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transformations of the input set will predictably alter the output, e.g., multiplying

each member of the input set by 2 will result in a standard deviation twice that of

the original input set.

To date, there has been only a single published effort to apply metamorphic

testing to agent based models (Murphy et al., 2011). Murphy et al. (2011) investigate

the use of metamorphic testing on a simulation tool of a hospital in healthcare domain.

ABMs are often used as exploratory tool for discovery of unknown regularities. Prior

studies on metamorphic relations test if the implementation is correct, while in this

work, metamorphic relations are intended to be used to identify the boundaries of

the model response surface. Instead of classifying the model as wrong when the

model behaves differently than the expectation, the corresponding response area can

be flagged to be eliminated from the analysis. Metamorphic relations can be updated

iteratively to make sure that the analysis is conducted on the scenario space of interest.

In this research, it is only used to test expected behavior and derive new expected

behaviors for future use.

6.2 Design Decisions Relative to the GA

In this section, the components of the genetic algorithm module and the imple-

mentation of the algorithm are explained. It is worth mentioning that the main in-

tention is not to create a novel meta-heuristic, but to synthesize the existing methods

for better search within a computationally feasible time frame. In genetic algorithms,

variation is achieved via various operators (e.g., combination, mutation, crossover)

and the selective pressure is based on the fitness function. The relationship between

context of this study and the biological systems are listed below:

• A scientific community of scientists and its traits (phenotype) can be interpreted

as a member of the population.
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• The population consists of different scenarios/communities.

• In the algorithm, different communication theories are metaphorically perceived

as different species of the population.

• Each community has a scalar measure that identifies its fitness, which depends

on the purpose of the study. In this research, fitness is defined in terms of the

aggregation of variabilities that are observed in different metrics.

• Gene is the genotype. It is a vector that retains the parameter values for each

community.

Regarding the simulation optimization studies, a widely observed approach in

the literature is to run each scenario for a sufficient number of replications (using

CRN) and to compare mean values of the outputs while conducting proportional

selection. When the desired termination condition is met, the GA provides a single

best scenario (Tompkins and Azadivar, 1995; Bäck and Schwefel, 1993; Faccenda and

Tenga, 1992). However, GAs are random algorithms and if they are asked to solve

exactly the same problem twice, they are likely to come up with two different scenarios

(if exact optimum is not found).1 If the goal is to generate a set of scenarios (diverse

portfolio of solutions), one method is to re-initiate the GA multiple times. Likewise,

Zeigler et al. (1997) provide a high performance environment for modeling large-

scale systems at high resolution to enable parallel GA runs. Parallel GA modules are

initiated to identify possible parameter configurations using CRN for each GA module.

Corresponding to the goal of exploratory modeling, these parameter configurations

can serve as a basis for drawing general conclusions about the system of interest.

Zeigler et al. (1997) conclude that parameter estimations of simulation-based studies

for large-scale models must await new generation computers. Even though it has

1http://www.burns-stat.com/documents/tutorials/an-introduction-to-genetic-algorithms/ - As
of 4.07.2013
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been more than a decade since this paper was published, today’ s desktop computers

have only reached to Gflops of computational power, on average. Along with the

advancements in hardware, simulation studies have become more popular and high

resolution-more complex simulation models are being developed that still need High

Performance Computing (HPC).

Similarly in the analysis of exploratory modeling, the challenge is the problem of

deciding on the limited number of experiments that can be run practically (consuming

reasonable amount of computational resources) to best inform the question of interest.

The sampling strategy (the number of replications) involves human judgment. Bankes

(1993) states that:

Consequently, the result of an exploratory analysis will typically not

be a mathematically rigorous answer, but rather an imperfect image of the

complete ensemble that improves gradually as more cases are run. Given

a fixed analytic budget (in dollars, people, or time), the analysis must

provide the most useful results possible based on what is known about

problem on hand.

Given the complexity of the developed socio-communication model in this re-

search, an exhaustive parameter sweep across all plausible scenarios is not possible.

The sampling strategy (30 replications) is dedicated to produce a reasonable amount

of help in converging to robust configurations from a limited number of computational

experiments.

In the search, diversity is aspired to be maintained in the population. Diverse

configurations of parameters are explored and it is desired to produce likelihood (in

proportional selection) to potentially robust scenarios. In order to add diversity to

the ensemble and avoid premature convergence, randomness is perceived as a non-

parametric environmental condition that can not be controlled. At each generation,

the set of random numbers is changed. This approach is motivated by two studies:

(1) the search method suggested in (Dibble, 2006) and (2) the explicit separation of
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environmental conditions and model parameters (Mitchell and Yilmaz, 2009). Dib-

ble (2006) explores the parameter space running a small number of replications (2-3)

per scenario, then suggests a search across the sets of random number seeds to test

worst case combinations of stochastic events. Mitchell and Yilmaz (2009) also run

each scenario for a small number of replications and observe the adaptation of the

converged scenario space against non-parameterized environmental conditions mod-

eled by a separate simulator that emulates the environment. Random or purposeful

changes in the environment is fed back into the GA algorithm through explicitly

separated environmental parameters. This approach assures that the competing GA

solutions are in synch with the evolving environmental conditions under which they

are competing. However, considering the complexity of the model, the design of the

robustness metric, and the implementation of the GA, this approach is likely to gen-

erate variable results rather than convergence to a single best scenario. Therefore,

narrowing the focus on determining the best scenarios is postponed to future analysis.

A similar technique is delineated by Dibble (2006):

Using supervisory genetic algorithms to discover highly effective treat-

ments or to search for exceptional or surprising simulation outcomes has

the potential to profoundly enhance our ability to make the most effective

use of limited computational and analytical resources. It permits us to

discover and test incisive empirical insights, effective normative designs or

interventions, and surprising heuristic insights. Once such treatments or

outcomes have been identified by the genetic algorithm, subsequent ordi-

nary batches of simulations can be carefully targeted in order to evaluate

the accuracy, uncertainty, risk, and inference power of results obtained

from any well-specified agent-based simulation model.

When the decision maker (analyst) decides that the GA exploration is complete,

the task is to select a portfolio of scenarios that can be a basis on policy making

decisions. The key parameter configurations can be identified by observing the fittest

scenarios over generations. In this research, the portfolio is selected from the fittest
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scenarios to which the GA converges. The decision is qualitative and aims to identify

different level sets for parameters. In like manner, Bankes (2002) states that a port-

folio of models or level sets for parameter configurations that behave in a reasonable

range provide more information than does a single optimal configuration.

Dibble (2006) indicates that the greater economy in searching for key parameter

values can release computational resources that can be dedicated to simulate each

candidate key configuration for a sufficient number of replications to test if there are

statistically significant differences among them. Also, existing techniques of decision

support may need static recommendations such as providing a single scenario as

an answer (Bankes et al., 2002). Therefore, in this research for illustration purposes,

further batches of runs are conducted to evaluate the identified portfolio (of scenarios)

in terms of uncertainty in the robustness results. In the following sections, components

of the GA are described in detail.

6.2.1 Encoding and Decoding of the Parameter Space

Encoding refers to the mechanism of mapping the parameters to genes, so that

the evolution of the gene in the parameter space can be realized. Genes can be

represented as binary strings or real numbers. Allowing continuous values in bits

result in an exhaustive search, so it is essential to decide on what values the bits

can take and how many bits are needed to represent the plausible scenario space. In

this research, if the parameter value is a floating number, the precision is set up as

increments to have fixed numbers of values that are feasible. Then the combination

of binary bits are used to represent those parameter values.

Decoding is the reverse process of encoding. Decoding partitions the gene into

its parts so that the corresponding parameter values can be used in simulation runs.

Therefore, the fitness function value can be calculated for every set of replications
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for different genes/scenarios. Figure 6.1 illustrates two kinds of parameter values and

how they are represented in a gene.

Figure 6.1: Encoding and Decoding of the Parameters.

The initial search is conducted on the scenario space that is bounded by the

experience of the modeler of this research. The gene consists of 22 bits that describe

the parameter set-up. The parameter values are identified in two classes: (1) integers

and (2) floats. The Table 6.1 lists the bits and value ranges to interpret in the

decoding process.

Table 6.1: The Bit Values in Initial Genome

Bits Parameter Code Values/Range

1 Communication Preference Integer [0,5]

2 Maximum Time Expectation Integer [2,10]

3 Foraging Mechanism Integer [1,2]

4 Migration Threshold Integer [2,5]

5 Maximum Scope Integer [1,10]

6-7 Maximum Altruism {00,01,10,11} {0.1, 0.3, 0.5, 0.9}
8-10 Minimum Tension {000,001,...,111} {0.1,0.2,...,0.8}
11-13 Minimum Burden {000,001,...,111} {0.1,0.2,...,0.8}

14 Mutation Rate {0,1} {0.01,0.05}
15-16 Probability to Recover {00,01,10,11} {0.1,0.2,0.3,0.4}
17-18 Probability to Leave {00,01,10,11} {0.1,0.2,0.3,0.4}
19-20 Artifact Creation Probability {00,01,10,11} {0.05,0.1,0.2,0.3}
21-22 Arrival Rate {00,01,10,11} {0.05,0.1,0.2,0.3}
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6.2.2 Activity Flow of the GA Module

Figure 6.2 represents the activity-flow specification of the genetic algorithm mod-

ule. The population is randomly initialized. For the bits that have an integer value,

the value is drawn uniformly from the list of possible values. If the bits are repre-

sented as binary numbers, the values are uniformly assigned to each bit. As a note,

all possible combinations of the bits represent a number, so all permutations are valid

scenarios.

6.2.3 Metamorphic Relations

Based on the analysis that are conducted in previous chapters and the observa-

tions on the behavior of the model, initial metamorphic relations are identified. By

identifying the metamorphic relations, it is aimed to understand the response surface

of the model. Since the model is a dynamical system, bounding the search space in a

way consistent with the goal of the research is critical. Even though individual values

for each parameter are valid, the combined effect of different parameters can steer the

search toward undesired regions. Especially, the parameters that are incorporated in

the collective action formula can have this impact. Below, some initial metamorphic

relations are listed to test the effectiveness of the method.

• Initially cognitive burden, tension, and altruism are uniformly distributed be-

tween 0 and minimum or maximum values. Tension starts at 1 and gradually

decreases with new contributions. Considering the collective action formula, in

order to have an active initial population, an MR about the expected values of

selected parameters is identified as follows:

minCognitiveBurden

2
<
maxAltruism

2
+ 0.25 (6.1)
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Figure 6.2: Activity Flow Diagram of the Genetic Algorithm

where the values are divided by 2 to find the expected value. 0.25 is the expected

value of the initial benefits. In these cases, the outputs are expected to be highly

variable, because cost is higher than the initial benefits. Therefore, it is harder

for a scientist to become active, resulting in fizzling activity.
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• If arrival rate and artifact creation rate are at low, while probability to recover

is high, the scenario might lead to low level of activity and a small population

size, resulting in fizzling activity. In those scenarios, the activity level is highly

dependent on the initial conditions.

These metamorphic relations are initially identified for test purposes, and the

evolution of the ensemble is monitored against those conditions. In the initial gen-

erations, rather than bounding the plausible scenario space by excluding the regions

that violate the MRs, the results are recorded. The results are used to verify if the vi-

olations of identified MRs are observed and under what conditions they are observed,

so that, in future replications, refined MRs can be derived from the outputs and if

desired, the scenario space can be bounded.

6.2.4 Fitness Function

In genetic algorithms, likewise in biology, there is a selection process by which the

fittest parameter value configurations are retained in the population. The fitness is

quantitatively represented as a function that includes the fusion of five output values.

As aforementioned, identifying possible robust landscapes and to determine how the

communication theories behave under diverse range of scenarios is important. The

output values that are under consideration are related to innovation potential metrics

discussed in Chapter 5. The Core/Periphery ratio is excluded from the analysis due

to the high level of variation under the majority of the scenario space. Including

Core/Periphery in the calculation of the fitness function would cause bias due to the

number of connections that is assigned to identify core members in the method of

calculation. Further information can be found in Appendix A about the activity flow

of the calculation method for Core/Periphery ratio. The metrics that are used in the

fitness function are:

• Density
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• Degree Centrality

• Clustering Coefficient

• Average Path Length

• Diversity Among Nodes

Functional robustness definition by Krakauer (2006) is interpreted to define the

robustness metric. This kind of robustness can be achieved by invariance of the

output metrics. Thus, the fitness function is described as minimization of aggregated

variance measures (for each relative social network metric). There are two goals of the

implemented fitness function. First goal is to minimize the variability among various

metrics to discover more robust scenario space. The second goal is to measure average

variability comparing different communication preferences. The fitness function to

minimize is defined by Equation 6.2 below:

fj =

∑N
i=1

MAEi

Meani

N
(6.2)

where j is a gene (i.e., scenario), N is the number of output metrics under consider-

ation, and MAEi is the mean absolute error for the ith element of the output vector.

In the analysis, MAE is used since the deviation among the data-points for each

time-tick in the time-series data is measured and it is aimed to diminish the effects

of outliers on the fitness function. Different output metrics may have MAE values at

different scales, so MAE is divided by mean values of each metric to normalize.

As a note, MAE and mean values are calculated based on the last N time ticks of

time series data for each metric. The formula used in calculating the mean of density

is represented in Equation 6.3.

Mean of Density =

∑N
j=1

∑R
i=1Densityi,j

R

N
(6.3)
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where i is the total number of replications per scenario and N is the number of time

ticks that are considered at the end of each time series data. The same logic is used

to calculate means and MAE’ s for each metric.

6.2.5 Selection

The selection operator is built to select the parent scenarios, which are used

to reproduce offspring population to replace the actual population in the following

generation. The selection operator is applied after each scenario (the population) is

run for 30 replications. After the runs are completed, the mean fitness function value

for each scenario is calculated. Subsequently, the probability for each scenario to be

selected as a mate is determined by the following equations.

pj =

1
fj∑N
i=1

1
fj

(6.4)

Pj =

j∑
i=1

pj (6.5)

where pj is the probability for gene j to be selected, Pj is the cumulative probability

that is used in roulette wheel algorithm, and fj is the fitness of gene j. N is the total

number of genes representing the addition of fittest members of each communication

theory and the whole population.

The fittest population member of each communication theory is shuffled in the

selection process twice since parameter set-ups might behave differently under dif-

ferent communication mechanisms. In order to keep track of the fittest population

members for each communication theory and to avoid dominance of the parameter

set-ups that behave better under certain theories, selection is done among the fittest

genes for each theory and the existing population. This mechanism adds scaling to

the proportional selection algorithm; however as a disadvantage, it may cause genetic
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drift to be altered, evolving the population members to be identical. That is why

two crossover operators are introduced in the next section. The selection of gene j is

based on the following condition:

Pj ≥ R > Pj−1 (6.6)

where R is the random number that is drawn between 0 and 1. If the condition is

satisfied, then gene j is selected to mate. This process is replicated until the operator

finds the second mate, which must be different than the first mate. As described,

proportional selection algorithm is adopted among the other techniques such as “Rank

Based Selection,” “Tournament Selection,” and “Truncation Selection” (Dréo et al.,

2005).

6.2.6 Crossover and Mutation

The reproduction of genes is realized by the crossover and mutation operators.

A total of N − 1 new offsprings are reproduced after N − 1 couples are determined

by tournament selection. Among each couple, the gene with better fitness value is

determined and the offspring is created with identical genome to the selected gene.

Then one point crossover is applied twice. One for selecting a random bit among

binary bits and equalizing that bit to the mate’ s value. The other one is for equalizing

a randomly selected bit among integer bits (bits 2,3,4,5) to the average of both parties’

bit values. The process is stochastic, so crossover of the same distinct parents can

generate different offsprings. This process is repeated until N − 1 offsprings are

reproduced.

If a randomly generated number is less than or equal to a certain probability,

i.e., 1%, then a randomly selected binary bit is flipped. Mutation is a unary operator

like crossover operators and realized on a single bit. First bit is not changed through
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crossover and mutation operators, because first bit represents communication prefer-

ences and it is intended to stay the same among all generations. As aforementioned,

metaphorically, communication ttheories can be perceived as different species, while

other evolving parameters are traits that are passed between species.

6.2.7 Culling

As the last step, the population members except the fittest member in terms of

the fitness function value are replaced by the offsprings. It is generational replacement

with elitist approach. Elitism consists of preserving at least one of the individuals

with the best fitness from one generation to another (Dréo et al., 2005). The intention

in this research is to avoid getting away from the optimum/sub-optimum areas easily

by giving more chance to the best gene for reproduction. Followed the culling, the

next generation runs are started. Steady-state replacement is not adopted. Because,

due to the computational complexity and to promote diversity, the GA needs to

excessively disturb the scenario space rather than gradual evolution.

6.3 Analysis

During the initial analysis, the ensemble consists of 30 scenarios/population

members (5 scenarios for each communication mechanism). Before the first inter-

vention, the ensemble is evolved for ten generations. Then metamorphic relations

and the fittest scenarios are evaluated. It is observed that maximum altruism dom-

inated the other variables, and genes converged to similar scenarios, which always

have the highest value of maximum altruism (0.9).

In the early generations, some scenarios are observed to violate initial MRs, but

they result in highly variable landscapes, so they are disappeared from the ensemble

at later generations. Also, in some scenarios, it is identified that, collective action

formula might be redundant for the majority of scientists. In those scenarios, high
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level of activity is expected to be observed. So, another metamorphic relation is

added to the list, which is represented below:

1 + MinTension
2

2
>
maxAltruism

2
(6.7)

This MR is included to mitigate the dominant effect of maximum altruism on

the activeness. Additionally, maximum altruism value is set to 0.5 to avoid the region

the second metamorphic relation has violated.

Moreover, it is observed that both the foraging mechanism and the mutation rate

stabilized. (Foraging = 2 and Mutation = 0.01). Those parameters that do not have

an impact on the fitness function are eliminated. As a last step, two more parameters

are introduced (foraging extension and expertise to recover) on the bits that are idle

after the elimination. Then the fittest scenario is kept, kick the ball principle is

applied by varying the parameter values of the other population members, and new

generations are run. In the following sections, the results are delineated.

6.3.1 Results

In Figure 6.3, the evolution of the average fitness value for each communication

mechanism along with the mean fitness in whole population are represented.

It is observed that the GA module improves the results over generations, which

verifies the implemented algorithm. As a note, peaks are observed at generation 11

and generation 16 as a result of implemented kick the ball principle.

As a first observable, mean robustness for each communication mechanism is

presented. This representation is inspired by the use of ensembles in the machine

learning domain (Dietterich, 2000). Likewise comparing the average behavior of

model ensembles, the average behavior of the sub-populations (for each communi-

cation mechanism) are compared. The goal is to measure how each communication

mechanism behaves under various scenarios in Figure 6.4 is illustrated.
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Figure 6.3: Average Fitness Values over Generations

The minimum fitness value that is observed over generations is a scenario with

social capital theory. However, considering the average performance, human capital

theory behaves more robust than the others. When the 95% confidence intervals are

presented in Figure 6.4, due to the small sample size, it is not possible to prefer one

theory over another in terms of robustness. Further runs are recommended.

Additionally, accepting that the ensemble improves in terms of robustness over

generations, examining the distinct parameter values can lead to draw conclusions on

the converged scenario space and the impacts of variability. It is a scenario space that

GA module discovers. The ensemble could converge to a scenario or diverse scenarios

that provide basis for further exploration. In the analysis, the fittest scenarios con-

verged to an identical parameter set-up with different communication mechanisms.

Figure 6.5 represents the evolution of the fittest member in the ensemble for each

integer parameter.

When the maximum scope is increased, the scientists have more global informa-

tion, which gives them the ability to identify the artifacts to study on more effectively.

Interestingly, the scope does not evolve to the maximum value and stabilizes around
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Figure 6.4: Minimum and Average Fitness Values for each Theory

(a) Average Fitness Value for each Theory

(b) Minimum Fitness Value for each Theory

Mi: Mixed Communication, Ra: Random Communication, HC: Human Capital, SC: Social Capital,
Ho: Homophily, SE: Social Exchange

the 7 cells. This observation can be indicative of the presence of a level of diminishing

return of the scope in relation to the robustness of the system.

Migration threshold is the number of times that a scientist forages before consid-

ering to leave the environment to recover. The greater the threshold, the less likely

the scientists are to depart from the network. This is the reason why a higher level
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Figure 6.5: Integer Parameters of the Fittest Scenario over Generations

of migration threshold creates more robust networks. However, further exploration

is needed to determine if there is a diminishing return as observed for the scope.

The same comments can be made for the forage extension, which defines how broader

scope scientists perceive in case of foraging. Figure 6.6 represents the evolution trends

among the parameter values represented in the genome (floating numbers).

Figure 6.6: Floating Number Parameters of the Fittest Scenarios over Generations
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Expertise to recover sets the expertise level above which, scientists consider to

depart from the environment. The greater the value is, the less likely the scientists are

to leave the environment. Earlier in the analysis, it was expected that greater values

would create more robust environments. However, experiments indicate otherwise.

Letting scientists dissolve sooner does not improve network centrality. That is, when

scientists dissolve from the network, the perturbation to the social network is smaller,

resulting in more robust environments. Hence it is converged to value of 0.7.

Maximum altruism value is stabilized at 0.9 for the first 10 generations. After

the value is limited to 0.5, it stabilized around 0.5. Higher values of altruism create

more active and crowded social networks, which are more robust than smaller social

networks. Interestingly, when altruism values are higher (first 10 generations delin-

eate it better), minimum tension and minimum cognitive burden move in the same

direction. This observation suggests that moderate level of difference between the

parameter values that are dialectic forces in the collective action formula can lead to

more robust landscapes.

Arrival rate is converged to the value of 0.2. Increased arrival rate result in more

crowded social networks, that can be more robust against perturbations. However,

it is stabilized at lower values than the upper limit. Probability to recover (related

to the turnover rate) decreases as expected, because it decreases the probability of

dissolution from the network. Probability to leave is related to mobility of the mem-

bers. Lower level of mobility can cause scientists to stick with the project they reside

on, missing other opportunities, while higher levels can cause distraction, abandoning

promising opportunities before attracting more attention. Thus, scientists may end

up wandering in the environment most of the time and connect to less number of

people. This causes the network to be smaller, therefore less robust to perturbations.
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Figure 6.7 represents the communication mechanism of the fittest scenarios over

time. It is observed that under the same parameter configurations, different com-

munication mechanisms outperform the others at different generations, which can be

caused by environmental uncertainty (different random number seeds) or communi-

cation mechanisms.

Figure 6.7: Communication Mechanism of the Fittest Scenarios over Generations

Mi: Mixed Communication, Ra: Random Communication, HC: Human Capital, SC: Social Capital,
Ho: Homophily, SE: Social Exchange

Table 6.2: Decoded Values of the Identified Portfolio of Scenarios

Parameter Value

Communication Preference {0,1,2,3,4,5}
Maximum Time Expectation 4

Mutation Rate 0.01

Foraging Mechanism Basic

Expertise to Recover 0.7

Migration Threshold 4

Maximum Scope 7

Maximum Altruism 0.5

Minimum Tension 0.7

Minimum Burden 0.2

Forage Extension 3

Probability to Recover 0.1

Probability to Leave 0.3

Artifact Creation Probability 0.3

Arrival Rate 0.2
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The portfolio of scenarios is represented in Table 6.2. The parameters that

are not presented in the table are the same as the base-line model. The portfolio

is determined by observing the scenarios that output the fittest results at the last

generations of the search. The decision of selecting the scenarios that are added in

the portfolio is qualitative. Depending on the purpose of the study, the decision can

be made by just observing the fittest scenarios over time or selecting the scenarios

that give results between a range of values. In this study, further batches of runs

are conducted to provide an example for the use of exploratory modeling. In order

to narrow the focus while enabling the best use of the computational resources, only

fittest scenarios of last generations are included in the portfolio.

In conclusion, communication theory parameter is flipped a couple of times in

the portfolio. When the overall robustness of the population is observed, non of the

theories are significantly better than the others. The analysis needs more number of

replications and further exploration. Therefore, in order to test the communication

mechanisms at the portfolio scenarios and to measure innovation potential, 200 runs

for each theory are conducted. The aim is to assess fitness values of different commu-

nication mechanisms and examine whether there is a tradeoff between robustness and

innovation potential. Table 6.3 presents the fitness values for each communication

mechanism.

Table 6.3: Fitness Values - The Most Robust Parameter Scenario

Theory Fitness

Mixed Communications 0.072

Random Communication 0.062

Human Capital 0.060

Social Capital 0.057

Homophily 0.067

Social Exchange 0.076
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For further analysis, confidence intervals are needed. However, fitness function

is based on time-series data of all replications and there is no fitness value for a sin-

gle replication. So, these 200 runs are divided into batches of 10 replications (20

batches) and the analysis of variance is conducted among these batches. Table 6.4

summarizes the number of batches that is guessed to conduct analysis of variance with

desired half-width. Figure 6.8 represents 95% confidence intervals for each mecha-

nism. As a note, the interpretation of these confidence intervals are biased on the

number of replications for each batch and the assigned half-width. As a result, it

is not possible to prefer one theory over another. Further tests can be conducted

including more replications for each batch or lower level of half-width (which will

require more number of batches) to be able to distinguish the performance of com-

munication mechanisms. It is interpreted from the analysis that the fitness function

design (accounting MAE of time-series data) is also effective on variable and similar

outputs of some communication mechanisms.

Table 6.4: Analysis of Variance for 20 batches of 10 replications

Theory Mean Standard Deviation n 95% CI

Mi 0.072 0.012 11.517 0.011

Ra 0.062 0.011 12.771 0.010

HC 0.060 0.010 12.104 0.010

SC 0.056 0.006 4.794 0.006

Ho 0.066 0.009 9.141 0.009

SE 0.069 0.009 7.687 0.009

(t19,1−0.025 = 2.093, half-width = 10% of the mean)

Table 6.5: Mean of Various Metrics - The Most Robust Scenario

Theory Density DC CC AvgPath CP DiversityN DiversityL SW

Mi 0.192 0.255 0.397 2.434 1.493 0.492 0.286 0.163

Ra 0.322 0.33 0.322 1.805 4.600 0.607 0.371 0.178

HC 0.287 0.319 0.287 1.884 3.664 0.559 0.399 0.152

SC 0.281 0.325 0.281 1.896 3.370 0.571 0.390 0.148

Ho 0.254 0.318 0.254 1.933 3.710 0.519 0.422 0.131

SE 0.199 0.257 0.199 2.400 1.585 0.495 0.285 0.083
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Figure 6.8: 95% Confidence Intervals for Different Communication Mechanisms

Mi: Mixed Communication, Ra: Random Communication, HC: Human Capital, SC: Social Capital,
Ho: Homophily, SE: Social Exchange

Table 6.6: Standard Deviation of Various Metrics - The Most Robust Scenario

Theory Density DC CC AvgPath CP DiversityN DiversityL SW

Mi 0.030 0.021 0.040 0.146 0.400 0.064 0.046 0.274

Ra 0.051 0.021 0.056 0.087 1.594 0.044 0.032 0.644

HC 0.038 0.017 0.048 0.075 0.792 0.042 0.023 0.640

SC 0.035 0.021 0.038 0.070 0.796 0.042 0.022 0.543

Ho 0.040 0.018 0.049 0.082 1.194 0.045 0.019 0.598

SE 0.026 0.020 0.037 0.161 0.408 0.061 0.051 0.230

Comparing the results (Table 6.5 and Table 6.6) of the most robust landscape

with the analysis of Chapter 5, more robust networks generate more connections.

While degree centrality is observed at similar levels, clustering coefficient is observed

at higher levels than the base-line scenario, suggesting that the networks have densely

connected cliques, or the network behaves like a single densely connected clique. Since

average path length is observed at lower numbers and core periphery ratio is high, it

can be concluded that the networks consist of a single highly dense cluster, which is

a small world itself. Small-worldliness, lower average path length, and higher density

are indicative of a more innovation potential. However, Core/Periphery ratios are

increased that indicates the number of periphery members are not many. Diversity
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among links suffers from highly dense clusters. Additionally, diversity among nodes

is spurred creating connections between scientists from different interest levels.

6.4 Limitations and Conclusions

The exploration software in this research provides a process to navigate effec-

tively through the plausible scenario space and identify key configurations that can

lead to construct lines of reasoning in terms of robustness and innovation. If more in-

sight is desired, further sensitivity analysis can provide information on whether these

scenarios are significantly different or similar. Additionally, the identified portfolio

of scenarios are constructed as a basis for further exploration of the genetic algo-

rithm by bounding the plausible scenario space, or for high-resolution exploration by

re-determining the possible parameter ranges to search on. The developed human-

mediated exploration software is realized to provide a search process and a portfolio

of robust scenarios rather than a product (optimal answer).

An important limitation of this research is the amount of computational re-

sources that could be dedicated to exploration. Thirty replications for each scenario

are dedicated to provide sufficient level of convergence. Since the research does not

aim optimization, strong convergence can also be problematic. Aside from the dis-

cussed approach of re-initiating the GA for multiple times (Zeigler et al., 1997), an

alternative implementation would be to run each scenario for 2 or 3 replications and

dedicate the remaining computational resources to further exploration (Dibble, 2006).

However, standard GA (as implemented in this research) have strong convergence ten-

dencies (Burke et al., 2002). So, in order to interpret whether this alternative method

would provide more diversity as expected, the GA operators should be varied and the

performance should be evaluated.

In this chapter, four particular operations are implemented to promote diversity

in the population: (1) the set of random number seeds are changed at each generation,

140



(2) by the interventions, kick the ball principle is introduced (randomly varying the

population), (3) during interventions, metamorphic relations are tested to bound

the plausible scenario space, and (4) the population is divided in sub-populations of

communication mechanisms (which are preserved over time). Alternative approaches

to maintaining the diversity in the population are listed such as crowding models,

assortative mating, dividing the population in sub-populations, and fitness sharing

(Smith et al., 1993; Burke et al., 2002). Another limitation of the study is related

to the implemented GA design. In particular, experimentation with alternative GA

designs can be performed to understand the features that can make the exploration

software faster and more effective. The results can be compared to determine the

effectiveness of the operations that are applied to promote diversity in this research.

To conclude, in the most robust landscape, high level of activity and knowledge

creation generate highly dense, clustered small-world networks that increase the ro-

bustness while the diversity and core-periphery structures are mitigated. Further runs

with more number of replications are suggested to compare communication mecha-

nisms and their robustness performance. If desired, different fitness functions can

be tested based on the standard deviation of average behavior among replications or

coefficient variation (not MAE) etc. Also, the portfolio can be extended by including

the scenarios (i.e. fittest scenario of generation 14) that perform close enough to the

scenarios in the portfolio for further sensitivity analysis. In the following chapter, the

summary of the research is described along with suggestions for future research.
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Chapter 7

CONCLUSIONS AND FUTURE RESEARCH

The Science of Science and Innovation Policy program of the National Science

Foundation (NSF) is particularly interested in development of computational models

that explore different aspects of knowledge creation. The aim is to identify the the-

ories and the mechanisms that mimic the dynamics in knowledge creation and then

to conduct exploratory analysis under various conditions to develop better under-

standing of innovation and creativity. Policymakers might eventually aim to develop

open-scientific environments and maintain cyber-infrastructures that provide a land-

scape for scientific collaboration.

In his well-known work, Nielsen (2011) coins the term designed serendipity. He

anticipates that the world is approaching to the second open science revolution (first

one was the publication system around 300 years ago), that will alter the way people

publish and the publication system itself by creating new norms (new agora) (Gibbons

et al., 1997) and tools that people conduct research on. IBM1 and MIT Collective

Intelligence Lab2 have already been working on online collaboration tools that will

foster innovation and creativity. Nielsen (2011) states that human society is in the era

to figure out how to design these tools in a way to promote serendipity coming out of

the system. That is why he calls the phenomenon designed serendipity. The results

presented in this dissertation provide insight about which components have

impacts on collaboration in Global Participatory Science (GPS) and which

communication behaviors can be promoted to improve innovation potential

1http://www.research.ibm.com/labs/watson/index.shtml - As of 4.07.2013
2http://cci.mit.edu - As of 4.07.2013
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and capacity. In the long run, these findings can be used for orchestrating

the collaboration in GPS and designing online cyber-infrastructures.

In this study, self-organizing complex adaptive system viewpoint is adopted. The

CAS domain provides a trans-disciplinary research framework, allowing a wide-variety

of disciplines to benefit from. Initially, self-organization principles and theoretical

foundations that can explain the behaviors of the scientists in GPS are examined. It

is observed that collective action theory is a plausible theory on which to

ground the models of collaborative environments. Collective action dynamics

is modeled in terms of self and mutual interest variables based on the findings of

Olson (1974). The theory is used to explain different phenomena in late ′80s and

early ′90s including computational models, however the theory has vanished in the

last decades (Oliver and Marwell, 2001). Recently, the theory is brought up to explain

the open science phenomenon.3 To the best of our knowledge, to date, there

is no computational model that incorporates collective action theory to

explain scientific knowledge generation.

Self-organization mechanisms that explain the dynamics in GPS are

implemented over the collective action model. Unlike prior studies on OSSD

communities that use the stigmergy mechanism (Cui et al., 2009), preferential at-

tachment mechanism is used to represent the artifact/project selection process. In-

formation foraging theory is interpreted along with the domain knowledge, and it

is implemented as a mechanism that explains the migration of scientists among the

projects. Learning and influence mechanisms are implemented by monotonic increase

functions, representing the cumulative knowledge creation. Since GPS is an open sys-

tem with new arrivals and departures of the scientists, population dynamics are also

introduced. All these mechanisms are implemented with positive and negative feed-

back dynamics based on the local information that is available to scientists. Bounded

3http://michaelnielsen.org/blog/the-logic-of-collective-action/ - As of 4.07.2013
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rationality assumption is an essential principle perceived in all human decision pro-

cesses. The mechanisms that are related with those decisions incorporate roulette

wheel algorithms to represent proportional selection rather than optimal selection.

The main principle is: “People satisfice, rather than optimize.” All mechanisms

that are implemented in this research are grounded on theory and empir-

ical findings.

One of the limitations at the first phase of this research is the use of the V-shaped

function that approximates tension over time. A U-shaped function can be introduced

to the model in future studies. Different learning techniques can be employed to build

up expertise of scientists and the complexity of the artifacts. Additionally, agents can

perceive different levels of appropriate information in effectively finding the artifact

opportunities for contribution. Different information types can be introduced to the

preferential attachment mechanism based on the objective of the study.

Following the representation of the intrinsic motivation dynamics of scientists,

the conceptualization of the base-model is concluded. The base-model development

was an important stage for this research, since it formally defines the parameters

and effectively formulates the known dynamics and spatio-temporal characteristics

of GPS. Verification and validation studies are conducted during and after

the implementation with performance tests as described in Chapter 4.

Additionally, OBO data is used to conduct tests for validation of emergent

patterns. In the future, if additional social network data become available,

the model can be calibrated to represent specific communities for further

validation.

The second milestone, was the identification of more innovative com-

munication traits among scientists. Communication preferences are stated

as important factors that have an impact on the evolution of GPS and
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social networks. To conduct sensitivity analysis, the candidate communi-

cation theories that are related with the problem domain are identified.

Then those theories are implemented over the base-model. In Chapter 5,

the interpretation of each theory and their relative implementations are described.

Under the base-model conditions that the validation studies are conducted on, in-

novation potential of the identified communication traits are explored. Innovation

potential is represented in terms of different hypothesis: (1) High centrality-fewer

structural holes, (2) Density, (3) Diversity, and (4) Interdisciplinarity. Most studies

calculate the diversity in terms of individual disparities in the population,

while in this research, another diversity metric that identifies discrepancy

among the atomic social networks of individuals is introduced. It was ef-

fective to identify disparity among the nodes in the social network, so it

is promising to be used in different studies.

All metrics are represented to policymakers by a summary table (matrix of levels

that different metrics converge), so that the behavioral patterns of different theories

can be distinguished. Moreover, if it is desirable to conduct further runs, the outputs

can be interpreted by the policymakers to aid their multi-criteria decision making

process. While a theory might seem more innovative under a set of conditions, another

theory can outperform that theory under different set of conditions. Interestingly,

social capital theory dominated the other theories during the analysis in Chapter 5.

Social capital theory supports innovativeness relatively more than the

other candidate theories. In this research, it is revealed that if the infor-

mation about the social degrees of scientists are broadcasted on online

tools and if link formation between highly central members and periphery

members are fostered, then networks generate more innovation potential.

Specifically, the social capital theory promotes connections among central scientists

and periphery scientists, enabling innovation diffusion among the scientists. Highly
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central members are also more likely to have more contributions and gain more exper-

tise. As the expertise levels of the scientists increase, complexity of the artifacts also

benefit. This leads to increased maturity in the environment, resulting in sustained

knowledge creation. High centrality-fewer structural holes hypothesis is supported

more by the social capital theory, because the theory promotes highly central mem-

bers, who are connected to the periphery members from different clusters. In terms of

link diversity, social capital gives opportunity to form connections between different

cliques, causing diverse atomic individual networks. This mechanism also decreases

the observed average path length in the network.

Core/periphery structures promote diffusion of innovative ideas. It is

observed that mixed connections and social exchange favor the balance

among the scientists. They generate a small number of core members, while the

number of periphery populations is large. Regarding the balance of expertise, they

usually result in moderate level of expertise in the population.

This research provides the base-model as a computational laboratory

that is developed with object oriented programming language (Java) prin-

ciples using the Repast framework, so that it is extensible and portable

across platforms. Repast is selected as the development framework, because it is

porous; that is, it provides a framework to model agents that are not necessarily

atomic but can be distinct by design. Repast is also called recursive and hence allows

designing nested combinations of agents and spaces. Therefore, the model can be ex-

tended by adding higher level contexts or agents, including communities as different

layers and these different layers can still communicate.

Robustness, as a systemic characteristic, is an important objective for policymak-

ers. The scenario space is needed to be explored by testing different communication

preferences under different parameter set-ups. For that reason, exploratory modeling

method is adopted and a GA module is implemented to conduct intelligent

146



search on the scenario space while improving the scenarios in terms of the

robustness metric. Robustness is defined by aggregating the mean absolute errors

of different output metrics. The less variable the outputs are, the more robust are the

scenarios. Furthermore, there was a need to build a feedback mechanism between gen-

erations to identify the domain specific or model specific regions of the scenario space

that behave highly variable or give trivial results. Metamorphic relations (MRs)

are introduced as a feedback mechanism. It is addressed as a promising

method in identifying the expected behaviors of the model under different

conditions as well as bounding the search space. In this research, the feed-

back mechanism between MRs and GA module is realized manually, however there

are studies that implement automatic creation of metamorphic testing (Gotlieb and

Botella, 2003). Future research includes the evaluation of metamorphic relations to

automatically generate further relations that can be used. Experimental results

indicate that the implemented GA module that is coupled with MRs can

be applied in different domains for different problem sets.

The search for robust landscapes in this research is limited due to the compu-

tational complexity and the lack of computational resources. In order to draw more

significant results, the number of replications can be re-determined. The simulations

are run on an Apple laptop, that has 8 GB of memory and 2.3 Ghz i5 CPU with 5400

Rpm hard-drive. Even though the kick the ball principle is applied, the runs con-

verged to the same region after each randomization. Different techniques to promote

diversity can be used in the GA design as a future work. Also, more runs can be

conducted after the boundaries of the parameter values are relaxed and continuous

values are allowed in the parameter space. Therefore, diminishing returns of various

parameters can be identified. For the objective of this research, providing the

exploration software and exploring the general behaviors of the system
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that is bounded by the MRs and expert opinion (opinion of the author)

is considered sufficient.

The further experiments could not reveal any communication theory

that globally outperforms the others in terms of robustness. In general,

the parameter values that generate more arrivals and cause more populated social

networks (by mitigating the effect of dissolution) are observed to create more robust

landscapes, since they are more resilient against perturbations by the removal of cen-

tral members. Interestingly, the tendency to balance certain values is observed. For

example, the expertise threshold after which scientists might leave the environment, is

set at a medium level. Experimental observations suggest that more expert scientists

are likely to become central in the network over time and in the case of a removal, they

are more likely to perturb the network more. So, medium level values result in more

robust landscapes. Additionally, the gap between maximum altruism value and the

combined effect of minimum cognitive burden and minimum tension values is oriented

to be at medium levels. A tradeoff is addressed between robustness and in-

novation potential. It is stated that more robust scenarios have dense and

more clustered networks with highly central members promoting trust and

sharing of ideas. However, the diversity among links and core/periphery

structures that are related with structural holes are hindered.

The findings of this research can assist policymakers during the design phase of

online collaboration tools. The behaviors observed under each theoretical mechanism

can be interpreted and related information can be broadcasted transparently in terms

of the network structure. For example, the social capital theory, that is found to

promote higher levels of innovation potential, states that scientists are more likely to

connect to the ones who are connected to more people. Consequently, scientists aim

to increase the social resources they have. In order to support social capital theory,

in the tool design, the degree information of scientists and their social reachability
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can be presented publicly to guide the scientists. Besides, policymakers can develop

mechanisms (such as reputation index) to incentivize the connections between central

members and periphery members. Hence central members would incline to connect

to less central scientists.

Moreover, the evolution of the social network can be observed over time. If the

network evolves to undesired stages, other communication styles can be promoted.

For example, if the network transtions into a state, which has great number of cen-

tral members and highly specialized cliques, then mixed communications or social

exchange theory can be supported. Scientists from different backgrounds and exper-

tise levels can be injected into different projects to balance the network. This would

promote core/periphery structures, which are known to promote innovation potential

and capacity.

Interdisciplinarity is an aspired characteristic highly promoted in the modern

scientific culture. Network coherence matrix can be used by policymakers to

identify what properties they want and by which theories they can guide

the system toward that particular property. While specialized interdisciplinary

networks are more innovative, more balanced networks with potential interdisciplinary

integration can also be desired by policymakers to enable effective management. Such

networks can be generated and maintained by promoting homophily theory (connec-

tion between scientists from similar domains and interests).

Mixed communications mechanism assigns a communication preference to a sci-

entist with equal probability. As a future venue of research, until what extent each

communication style should be promoted in the environment can be investigated.

Subsequently, the granularity of individual information that enables each communi-

cation preference and the way that information is shared can be diversified in the

model. Further, incentive mechanisms to encourage different communication pref-

erences can be designed to promote innovation potential and capacity. Besides the
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implemented communication mechanisms in this research, other mechanisms can also

be modeled based on different communication theories (i.e., Cognitive Consistency,

Balance, and Network Exchange Theory).
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Appendix A

A.1 Termination State Analysis

The snapshots of time-series plots for different performance metrics are illustrated

below. The means and standard deviations for each metric are observed to support

terminating state decision. The detailed information about the calculation process

of diversity metrics is provided in Chapter 5. The first set of snapshots are taken

for four different scenarios, which are assumed to represent the different patterns

encountered in the analysis (only one representative of qualitatively similar patterns

are plotted for readability). During the runs, scientists are socially connected when

they contribute on the same artifact at the same time-tick (OBO assumption). Also,

recovered scientists are not removed from the social network.
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Figure A.1: Density Over Time - OBO Scenarios

(a) Mean of Density

(b) Standard Deviation of Density

Series-1 is Opt. Foraging/Low initial population, Series-2 is Opt. Foraging/Moderate initial pop-
ulation, Series-3 is Basic Foraging/Low initial population, Series-4 is Basic Foraging/High initial
population
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Figure A.2: Degree Centrality Over Time - OBO Scenarios

(a) Mean of DC

(b) Standard Deviation of DC
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Figure A.3: Clustering Coefficient Over Time - OBO Scenarios

(a) Mean of CC

(b) Standard Deviation of CC
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Figure A.4: Average Path Length Over Time - OBO Scenarios

(a) Mean of Average Path Length

(b) Standard Deviation of Average Path Length

The scenarios at which scientists are connected randomly are illustrated in the

following plots, and their mechanisms are described in Chapter 5. In this case, Recov-

ered scientists are removed from the social network. That is why in some scenarios,

after 500 time-ticks, the network starts to dissolve (as central members leave the en-

vironment). Compared to OBO scenarios, relatively high variability is observed in

social network metrics. Four scenarios out of 40 scenarios are selected, which present

different patterns.
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Figure A.5: Diversity (Scientist Population) Over Time - OBO Scenarios

(a) Mean of Diversity (Scientist Population)

(b) Standard Deviation of Diversity (Scientist Population)
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Figure A.6: Diversity (in the network) Over Time - OBO Scenarios

(a) Mean of Diversity (in the network)

(b) Standard Deviation of Diversity (in the network)
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Figure A.7: Density Over Time - Random Connection

(a) Mean of Density

(b) Standard Deviation of Density

Series-1 is Low Arrival Rate/High Turnover rate, Series-2 is Low Arrival Rate/Low Turnover rate,
Series-3 is High Arrival Rate/High Turnover rate, and Series-4 is High Arrival Rate/Low Turnover
rate
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Figure A.8: Degree Centrality Over Time - Random Connection

(a) Mean of DC

(b) Standard Deviation of DC
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Figure A.9: Clustering Coefficient Over Time - Random Connection

(a) Mean of CC

(b) Standard Deviation of CC
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Figure A.10: Average Path Length Over Time - Random Connection

(a) Mean of Average Path Length

(b) Standard Deviation of Average Path Length
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Figure A.11: Diversity (Scientist Population) Over Time - Random Connection

(a) Mean of Diversity (Scientist Population)

(b) Standard Deviation of Diversity (Scientist Population)
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Figure A.12: Diversity (in the network) Over Time - Random Connection

(a) Mean of Diversity (Network)

(b) Standard Deviation of Diversity (in the network)
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A.2 Response Surface Analysis

Table A.1 represents the variables identified for response surface analysis and

their respective values.

Table A.1: Parameter Values for RSM

Parameter Scenarios

Communication Type(Theory) [1,...,5]

Expertise Level to Recover [0.7,0.9]

Probability to Leave [0.1,0.2]

Minimum time Expectation [1,5]

Arrival Rate [0.1,0.2]

Migration Threshold [3,5]

Recover Rate [0.1,0.2,0.5]

Forage Extension [2,3,5]

Minimum Tension [0.1,0.5,1]

Minimum Burden [0.1,0.5,1]

Maximum Altruism [0.1,0.5,1]

The following Table A.2 and Table A.3 represent response surface analysis results.
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A.3 Core/Periphery Calculation Method

In Figure A.13, the activity diagram of calculation method of the core/periphery

metric is represented.

Figure A.13: Core/Periphery Activity Diagram
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