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Abstract

With the increasing use of open source software components in real world systems, there

has arisen a need for increasing the dependability of these components. The dependability

of these components can be increased like any other software component, by adding error

detection and error recovery mechanisms to the code to deal with unforeseen errors and faults

occurring in the system that will be running the software. The major issue is not in the

implementation of these error handling mechanisms, but instead in the speed that they can

be applied and where to apply them. The reason for considering an open source solution to

a problem is most likely to save time and money using a solution that may already do what

needs to be done. The goal is to incorporate these open source components into a system

after verifying and if need be, increasing the dependability of the component. But, with

open source components, they are already in a maintenance stage of development, where

the code is either refined or new functionality is possibly added. Thus, standard techniques

that rely on use during development will take too long to implement. This thesis proposes a

novel way of determining the highest priority modules in the system and the most important

locations for placing error handling mechanisms in the functions within those modules.
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Chapter 1

Introduction

1.1 Overview

The use of open source software is becoming more prevalent in real-world projects and

software development [34]. There are obvious benefits to using open source software that is

readily available, including great savings in both time and money. Many organizations have

turned to using open source components in their projects and for replacing more expensive

consumer off-the-shelf, CotS, products or in house development. But, open source software

is still limited in its applications in many real-world projects that demand a certain level

of security or dependability in their software before they can be used. The issue with open

source software is that there is usually no guarantee of the dependability of the components

and there is often just a single developer for the system.

It is reasonable to assume that an organization that wishes to use an open source

software, OSS, component would do some stress testing or other verification to determine if

the component is worth using. But, the problem with post-development testing of software

system is the large time and cost investment, especially when the component was developed

by an outside source and no one necessarily has experience using it. Testing early and using

certain standards during development can be done to avoid this. There is research available

for defining key locations for error detection and recovery mechanisms or ways to ensure

software dependability, as discussed in section 1.2.2 and section 1.2.4. The issue with this

research is that it is intended to be used early in the development phase and not on the final

product.

Consider this situation: a project developing a UAV to reconnoiter a hostile environment

finds an open source solution to the ground station software for controlling and receiving
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data from the UAV. The open source software was completed by a single developer and

the developers of the UAV project determine that the OSS does not meet the criteria for

dependability when dealing with mission-critical components. This means that the project

will need to look for another alternative, such as acquiring CotS or developing the ground

station software in house, costing time and money. The methodology proposed in this thesis

is for increasing the dependability of OSS components so that they can be used in projects

that have higher standards for dependability. A major hurdle to overcome is to create a

methodology that is lightweight enough that the benefits of using OSS components remain,

but the dependability of the software is increased.

This methodology utilizes fault injection testing, data-flow analysis and lightweight

error detection and recovery mechanisms for increasing software dependability. A fault in-

jection framework was written in order to obtain the values of various metrics throughout

the system. The framework was modeled in part after PROPANE, a propagation analysis

environment that utilizes fault injection. PROPANE allows for the user to define and instru-

ment fault injection and sampling locations throughout the system and then outputs logs of

the tests. These logs have applicable metrics for measuring the dependability of the system,

such as failure rates, coverage and latency of the error detection and recovery mechanisms.

PROPANE was a project completed by the DEEDs, dependable, embedded systems and

software, research group [3]. The tool is outdated after not being updated since 2006. In

order to leave room for the potential of future work and expanding the capabilities of the

methodology, a new framework was written.

For the proposed methodology, the chosen use cases should be indicative of the real world

intended use of the system. Because the testing is to be done late stage, there most likely is

not time to fully test every capability of the system. The target source code is instrumented

in order to determine the frequency that modules and the functions within those modules are

called during the intended use cases. Once the call frequency for the modules is determined,

modules with outlying frequencies, such as zero or a small fraction of calls compared to
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other modules, are disqualified from being priority modules. The keys to determining the

highest priority modules are: the probability that a fault occurring in memory belongs to

space related to a particular function, the probability that the now corrupted code will run

during the current execution of the program, and the number of functions that a corrupted

variable could pass its value. In this thesis, it is assumed that the chance for a single bit

fault to affect a function is equal for all functions. The important factors to determine

priority are the probability that the corrupted code will be executed and the propagation.

The probability of the code being executed is determined by the fraction of effective lines of

code for that function and the fraction of functions that the function either sends data to or

obtains data from. With this calculation completed for each function, the priority modules

can be determined by the sum of the priorities of the functions within them.

A critical path is defined as the data flow paths from the highest priority function in

a high priority module. All the variables in the modules are considered for error handling,

and any variables in the connecting functions that have an effect on one of the variables in

the module are also considered. Once these variables for a critical path are found, a golden

run, a single perfect execution of the test case, is done to simulate a perfect instance of

the system and the results are compared to faulty runs. Once the results of the testing are

collected, the importance of each variable is calculated. Only the variables with the highest

importance with respect to other variables in the critical path are considered as locations for

placing the error handling mechanisms. If error handling were added to the entire system,

then the overhead of the system would be too high and the time needed to implement these

mechanisms would defeat the purpose of using OSS components.

Lastly, lightweight error handling mechanisms are implanted into the code to increase

it’s dependability. The goal for the mechanisms is to be unobtrusive and create as little

overhead as possible. The error handling mechanisms to be used have already been proven

to be both lightweight and effective at reducing the failure rate of variables, while at the

same time maintaining a relatively low latency increase and memory usage overhead. The
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novelty of this approach is in the speed at which these priority locations for placing error

handling code are identified and in the accuracy in which they are identified, not in the error

handling itself.

Ultimately, the goal of this research is to fill the need for a means of increasing de-

pendability of late stage and post development OSS components so that they can be used

in projects that demand higher dependability software. This research is important because

there is a vast amount of OSS that could be used, but is overlooked because it cannot be

trusted. The methodology is int an initial stage and will ideally be refined and expanded to

include other major factors, such as security validation.

1.2 Literature Review

For this thesis I reviewed research in several areas including the use of open source

software development, OSSD, in real-world projects versus the use of consumer off-the-shelf

software development, CotSD, software dependability measures and testing; fault injection

techniques and methodologies; fault detection and recovery mechanisms; data flow analysis;

and wrapper-based software implementations used increasing software dependability. In this

section of the thesis, I present the references used along with a brief explanation of what

they are about and how they are useful to the proposed research.

1.2.1 OSSD and CotSD

A comparison of the benefits of OSSD and CotSD in [27] states that the benefits of using

OSSD over CotSD for a project are parallel and repeated development techniques; free user

participants; huge development communities; and effective user testing. The paper illus-

trates the key differences in using the two types of software development. The portion that

contributes most to this research has to do with the limitations of OSSD. These key prob-

lems include decreased communication between developers, informal management policies,
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possibility of low contributors, and economic concerns. From a business point of view, de-

velopers are not being paid for their OSSD and it is possible that they will not be motivated

to continue updating the software. Also, there is a higher short-term cost with integrating

OSS within a system, and a lack of defined support means more time spent troubleshooting.

Lack of defined support means that immediate corrections may go unanswered.

An article by Nagy, Yassin, and Bhattacherjee [28] states the benefits of using OSSD

are clear: cost savings, vendor independence, and open standards. But, the limitations

of OSSD are of greater importance to this research. The paper described five barriers for

the integration of open source software in a real-world business environment and possible

remedies. The most applicable of these barriers is the perception of technological immaturity.

It is a common problem that open source solutions are often thought to be of lesser quality

due to zero cost and lack of formal direction during development. This issue can be remedied

with the introduction of a methodology to ensure an OSS solution with a high level of

dependability. Also, the paper gave some examples of real-world businesses switching to

open source software and the savings that resulted. For example, Amazon cut technology

costs from 71 million to 54 million by switching to open source applications. Many companies,

such as Sabre Holdings, saved tens of millions by switching to MySQL for their databases.

A paper by Kropp, Koopman, and Siewiorek [25] discusses the the creation of a set of

black-box processes to certify the suitability of CotS components. There is a drawback to

these black-box processes because such testing can fail to exercise significant portions of the

code. The methodology requires the buyers of the CotS software to purchase oracles in order

to test the code against what they want it to do, because the buyer cannot be sure of how

rigorous the testing actually was.

Kropp, Koopman, and Siewiorek [25] wrote a paper about using automated testing

in order to assess component robustness of CotS solutions, because even though there are

savings in cost and time, the CotS component may not have been designed for robustness.

Here, the robustness of the component is defined as the degree to which the component
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functions correctly in the presence of exceptional inputs or stressful environmental conditions

[25]. Fault injection testing is used in the testing phase to attempt to cause failures in the

system under different circumstances.

The article by Ghosh and Voas [26] about software inoculation discusses the idea of

using fault injection testing to identify vulnerable parts of a software system and introducing

mechanisms to increase the resistance to these faults. Two solutions are offered after the

testing: sending results to the developer to fix the problem at the source, or using a software

wrapper to harden its defenses. Getting the vendor to make the necessary changes can be

difficult, so the ideal solution is to use the software wrapper. In this case, the wrapper is

useful because of the lack of access to the source code. Whenever the software is run, so is

the wrapper code that is used to catch operating system exceptions and return a specified

error code.

1.2.2 Software Dependability

A lightweight code analysis is suggested to evaluate dependability cases in [14]. The

approach is to seek a balance between analysis and design. This is done in order to try and

reduce the critical path for fulfilling critical properties, so that a simpler analysis tool can be

used to establish them. These critical properties are tested using dependability cases which

present explicit arguments that a system satisfies a critical property. The implementation

of lightweight coding techniques through flow- and context-sensitive static analysis and the

use of a single pathway on the control-flow mapping to reduce overhead are derived from the

research found in this section.

The importance of variables in dependable software is the major focus in [13]. This

paper is key in the research proposed in this thesis. Here, Leeke and Jhumka propose a novel

metric for measuring dependable software systems. Detecting and correcting erroneous states

can be very difficult. The key to this research is finding a way to determine if the correct

values are held by variables determined to be important. The importance of variables is

6



measured through a combination of other metrics, including failure rate, spatial impact,

and temporal impact. Spatial and temporal impact are metrics that measure how many

adjacent modules are affected when a variable in a component is corrupted and how long the

state of the program remains affected by the corrupted variable, respectively. Importance

is then used to identify the most important variables, where error detection and recovery

mechanisms can be focused.

The location and generation of detectors are considered in [8] and [9]. Leeke and Jhumka

explore the early identification of detector locations in order to cut down on the costs of late

lifecycle assessment of dependability. Insight into the potential for errors during development

can help to reduce the costs as opposed to finding such errors late in development. Spatial

impact is used in order to define locations of detectors because of its measure of areas of

high error propagation and module coupling. Fault injection testing was done to verify

the connection between late lifecyle metric spatial impact and the early detection metric of

module coupling.

Leeke, Jhumka, Arif, and Anand propose a methodology for generating efficient error

detection mechanisms in [9] that utilizes fault injection testing and data mining. First, fault

injection testing is done on the target systems with PROPANE and the results are put

through pre-processing algorithms to counter the inherit weaknesses of analyzing trends in

fault injection data. After this, a symbolic pattern-learning algorithm is used to look for

first-level predicates, meaning values that have an effect on the flow of the program. The

algorithm uses a decision tree to create a baseline for the predicates and is later refined

in order to create an efficient predicate for error detection and recovery mechanisms. This

means that for each boolean value or if-type statement, there is a node in the true for

whether the program should be true or false with a correct run. If the path on the decision

tree for a run differs from the path for a correct run, then an error has occurred. This is

done variously through over and under sampling of the data in the pre-processing phase, or

other parameters.
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1.2.3 Fault Injection

The next section of literature is a review of fault injection techniques and tools from

past and current research that is included in order to provide insight into the design of the

testing phases of the methodology to be proposed in the thesis. The first of these is [3]

by Hiller, Jhumka, and Suri for the propagation analysis environment PROPANE. It is an

environment that helps in the process of designing efficient error detection mechanisms by

providing analysis of the effects of faults in a system. PROPANE supports both faults, by

mutation of source code, and data errors, by manipulating variables and memory contents.

The environment logs the results of these faults and errors and places them in a file that

can be used to see the results of the test represented in various metrics. It is a portable

and lightweight solution for dependability testing in a wide array of systems. But, the

environment has not been updated in over eight years, so a different framework, based

partially on PROPANE’s functionality, was utilized for this methodology.

Chen, Tsai and Iyer [4] present hardware and software fault injection environments

and injection and implementation methods. Discussion on compile-time, where faults are

injected into the source code before the program image is loaded and executed in order

to emulate various error types, was compared to run-time injection. Run-time injection is

detailed, including several examples. Of particular interest is code insertion, such as the

probes used by PROPANE, because this is the method for fault injection that is used in the

proposed methodology. Lastly, the limitations of software fault injection testing compared

to hardware testing are examined along with tools for completing both. The limitations

indicate that hardware testing costs more and has a higher risk of damage, whereas software

testing his more controllable and is easily repeatable.

A paper on enhancing fault injection testbenches by Sosnowski, Gawkowski, Zygulski

and Tymoczko [5] deals with the problems of classical fault injection tools with respect to

improving the experiment effectiveness and result analysis capabilities. The results of this

research aided in preparing the test phases to be used in the proposed methodology and
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the resulting analysis. The research is demonstrated through distribution of fault injection

processes within a computer network utilizing data mining methods to collect simulation

results. This resulted in increased speed in the testing phase, but was not without limitations.

The golden run of the software could not be distributed across computers in the network, but

the research provides insight into finding relations and critical dependability points. This

means that the process for fault injection across a network, in this paper, is not applicable

to the proposed methodology, but the steps for finding relations and important locations in

the code are.

Moraes, Duraes, Barbosa, Martins, and Madeira [6] use software fault injection for

experimental risk assessment and comparisons in. This research focuses on estimating the

risk of using using outside software, such as CotS, in component-based software development.

The paper presents an approach to assessing the risk of using a software component, either

CotS or not. This is done through fault injection of realistic faults and their impact on

possible component failures and using software complexity metrics to estimate the possibility

of residual defects. The paper presents findings on determining cost of failure measurements

through fault injection and frequency of faults. The findings presented were then used in

deciding how best to calculate the probability of execution for faults.

A 2011 article by Natella, Cotroneo, Duraes and Madeira [7] and a dissertation by

Natella [22] present an experimental study on the representativeness of injected faults on

residual software faults, meaning faults that are actually experienced in the field. The study

shows that the representativeness of the faults is affected by the location of the fault in the

system, which results in different distributions of faults across the system. An approach is

proposed to refine the fault load by removing faults that are not representative of the residual

software faults. This is done to ensure that the results of the testing are meaningful and

reduce the number of faults needed to test a system. The papers present several approaches

to software fault injection and tools that utilize software insertion fault injection methods.

This is very important to the methodology proposed in this thesis, because the information
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in these papers was used to influence how to calculate the probabilities that the faults would

occur in a function. This value is then used to calculate the primary metric for ranking

variables.

A 2010 paper on assessing and improving the effectiveness of logs when analyzing soft-

ware faults. A paper by Cinque, Cotroneo, Natella, and Pecchia [10] presents an approach to

assess the effectiveness of using logs to keep track of software faults in the field, using fault

injection. The use of logs is crucial to the fault injection testing method in order to collect

data about the results of the testing and this research provides a means to improve the

effectiveness of the logs. A fault injection framework is proposed utilizing G-SWFIT, which

is used in several of the previous papers, to define a set of fault operators and generate the

logs. G-SWFIT injects faults by changing the binary code corresponding to programming

mistakes in high-level source code, which is primarily used when testing CotS software. The

logs are then collected and refined in order to increase their efficiency. Of interest here, are

the results of the number of injections and the failures that occurred from those injections

that were actually logged. The data shows that before refining the logs, the number of

faults logged versus unlogged were only around 20% to 30%. This shows the limitations of

using logs to gather data on the software faults and their approach to increasing the percent

coverage of the logs. This data influenced the method used to collect the information from

the fault injection test run in this paper.

An older article by Clark and Pradhan [11] on using fault injection as a method for val-

idating the dependability of a computer system provides details on various fault models and

injection methods, as well as measures of software dependability. The research also includes

information on several prevalent fault injection tools, such as MESSALINE and FIAT, that

helps in looking for which fault injection tool would best suit the needs of the proposed

methodology. This paper helped lead to developing a framework for the methodology, as

opposed to just using MESSALINE or FIAT, which did not fill the requirements set for the

methodology.
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Madeira, Costa and Vieira present a paper on using software fault injection to emulate

software faults [12]. The experimentation results were found by comparing real software

faults found in various programs with the faults injection using the Xception tool, a SWIFI

tool. The results show what kinds of faults that are possible to find and which types of faults

are unlikely to be detected using this method of fault injection testing. An approach using

software metrics to guide the injection process is presented when field data is not available,

which is the case when trying to determine whether to integrate open source software with

a system is the goal. The concepts presented in this paper were used to see what types of

faults would be practical to test for using software implemented fault injection.

A 2011 paper on fault injection methodology and tools by Song, Qin, Pan, and Deng [17]

describes the concept and principals of fault injection. The paper includes a detailed review

of some techniques and their tools using: hardware fault injection, simulation fault injection,

and software fault injection. Of particular interest is software fault injection data for compile

and run-time fault injection and some useful tools, such as Ferrari, Doctor and Xception.

Also, a comparison of the various tools available between each type of fault injection is

presented, which aids the proposed research by helping to identify the type of fault injection

tool that may need to be used. When selecting which fault injection framework to model

the fault injection step of the methodology after, the data in this research helped to narrow

down the choices.

Two more papers about fault injection methodologies and tools [18] and [19] present

some applications of dependability validation tools. Confidence in the error handling mecha-

nisms in a software component are analyzed through fault injection testing with MESSALINE

in [18] and FIAT in [19]. Each paper provides insight into the operation and possible useful-

ness of their respective tools in the proposed research for the thesis. Of concern here, is not

only the individual fault, but it’s overall effect on the target system. Other fault injection

frameworks were considered for use in the proposed methodology and were used to guide the

development of the fault injection framework designed for this thesis.
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A 2011 paper by Benso and Carlo on the art of fault injection [20] provides some

interesting points of interest to consider when conducting any type of fault injection testing.

The paper highlights good and bad practices when setting up a fault injection experiment

and common errors in methodologies that affect the coherency and meaningfulness of the

results of the experiments. The paper reads as a sort of guide for creating and setting up

fault injection experiments. The major points include, the structure of the environment,

choice of fault model, fault locations and generation of the actual target fault list. Of key

importance is using this paper to ensure that the mistakes of past research are not repeated

in the proposed methodology and that the results will be meaningful. The fault injection

framework designed for this methodology used this paper as a guide for determining the

specifics of injection location and choosing a fault model.

A paper by Jiang, Munawar, Reidemeister and Ward [21] presents a method for auto-

matic fault detection and diagnosis using information-theoretic monitoring. The methodol-

ogy involves combining two algorithms. The first is RatioScore, which is based on Jaccard

coefficients, and the second is SigScore, which uses knowledge of the component dependen-

cies. The approach monitors the state of the system and flags an anomalous state to be

determined as either faults or not. The approach is limited by the availability of component

dependency information and the dynamic changing of dependencies. The algorithms pre-

sented in this paper were considered for finding the dependencies of the relevant variables

to be tested in the proposed methodology.

Of concern when utilizing fault injection testing is how the results can be used to identify

the impact of the faults. This is often done utilizing golden runs of the system, meaning a

perfect run of the system with no errors. A 2009 paper by Leeke and Jhumka [23] evaluates

the use of these reference run models in fault injection analysis. Of particular interest in

this paper is the finding that certain systems are not properly represented in testing with

the use of these reference runs. The paper defines various types of oracles that are used to

determine the impact of fault injection, such as specifications, error detection mechanisms
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or golden runs, and shows that of these, golden runs are not effective when used on a system

with a main control loop with an irregular period. The paper goes on to suggest a model for

refining the golden run oracle for use with these types of systems. The data from this paper

was useful for selecting which open source software to test the methodology on because a

golden run oracle is used to look for failures during fault injection.

1.2.4 Fault Detection and Correction

There are several approaches to handling faults that may appear in software, the fol-

lowing papers detail techniques and approaches for handling the detection of these faults.

A paper by Arora and Kulkarni [2] on error detectors and correctors details a theory for

detectors and correctors that characterizes their role in achieving various types of fault-

tolerances. The paper presents a large number of definitions and background on faults and

the mechanisms to handle them. Also included in the research are applications of different

mechanisms and what types of fault-tolerance are best fulfilled with which types of mecha-

nisms. Examples are given for the composition of the mechanism and how they can be used

in the software.

A 2009 paper on using software invariants for dynamic detection of transient errors [15]

by Lisboa, Grando, Moreira and Carro discusses the possibility of using software invariants

as a low cost means to detect soft errors after the execution of an algorithm, by looking

for changes in the invariants for the algorithm. Usually the use of software invariants is

during the development phase to check for correctness because of the huge memory footprint

and overhead with late lifecycle use. The paper gives insight into a lightweight approach to

hardening an algorithm without changing the algorithm itself; the overhead and computation

cost of the algorithm is much smaller than duplicating an algorithm. Fault injection is used

to test the algorithms and the proposed hardening methods. A software invariant is a

program property that must be preserved when the code is modified, such as preconditions,

post conditions or loop invariants. The focus of the methodology is the detection of single
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event transient faults during the execution of the software. This paper was considered as a

potential solution for detecting errors that occur in the system after fault injection.

Another 2009 article by Hamill and Goseva-Popstojanova [16] on common trends in

software fault and failure data, examines fault and failure data from two real-world case

studies, giving valuable data about the origins of errors in a system. In particular, the article

focuses on localization of faults leading to individual software failures and the distribution

of different types of software faults. The paper reveals requirement faults, coding faults and

data problems as the primary types of software faults. Also, it is shown that individual

software failures are likely caused by several faults spread throughout the software. The

article explores whether or not certain software faults are more common than others, and

how the localization of faults changes depending on the individual software failure. Most

importantly, the research reveals that the trends are likely intrinsic characteristics of software

faults and failure rather than being specific to a project. This means that it should be possible

to create a methodology that is capable of adapting to any type of project it is used on.

1.2.5 Data-Flow Analysis

Tan and Xiong [29] published a 2011 paper on data flow error recovery using check-

pointing and instruction-level fault tolerance. This paper is particularly useful because of

its use of both data flow analysis for error recovery while considering fault tolerance of

the software. The paper proposes an approach to data flow error recovery using check-

pointing. The software is examined at the instruction level and split into protected code and

unprotected code. In the protected code, data values are replicated and at certain locations,

such as branch instructions, the values are compared and if there is a discrepancy then an

error has occurred and a previous state of the software is loaded. This method has several

similarities to the error handling mechanisms in [1].

An article by Taylor and Osterweil [30] discusses using state data flow analysis to detect

anomalies in concurrent software. The article presents algorithms for using data flow analysis
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for detection of variable usage errors in single and concurrent process software. The focus of

the flow analysis is on variables that are shared between the multiple processes in a software

system. The fundamental use of data flow analysis in this research served as good background

information for deciding how best to approach the data flow analysis found in this thesis.

Bergeretti and Carre present a paper on information flow and data flow analysis specif-

ically for while procedures[31]. In this paper, information flow is expanded from its common

use for ensuring that program variables are not violating security requirements. Information

flow relations are used to identify program statements that cause information to transmit

between certain inputs, internal, or output values. This is useful in testing and updating pro-

grams and can extend the types of errors that can be detected automatically during static

analysis. The concepts presented in this paper for handling information flow with while

statements influenced the method used to determine the relevant variables in the critical

path.

1.2.6 Wrapper-Based Solutions

The following two programs implement wrapper-based solutions for error detection in

complex software systems. The first paper details a framework for detecting these errors [32],

where the goal is to cope with software failures, based on data obtained on the application

and OS levels. The framework is implemented as a wrapper about the complex system in

order to detect errors. The reasoning behind the framework is that there are complex inter-

dependencies between components and in turn these lead to subtle faults that are cause by

complex triggering patterns which can escape testing. So, in order to not track down each of

these complex patterns, the entire system is observed to look for errors in both application

and OS activity.

The second paper [1], by Leeke and Jhumka, proposes an automated wrapper-based

approach for designing dependable software. Two major activities for developing dependable

software are detailed: design of the dependability mechanisms and their location. They use
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their importance metric defined in an earlier paper to identify variables to be replicated.

These replicated variables are used in standard, efficient dependability mechanisms, and are

deployed wherever the variable is located in the software. Whenever the variable is written

to, copies are made based on the level of importance of the variable. When the variable is

read, the variable values are compared and the majority voting rule is used to select which

of the values will be used. This means that even if one of the instances of the variables being

stored is corrupted, the other two instances will have the correct value and the correct value

will be returned. These algorithms were used in order to create a lightweight implementation

as an alternative to the high overhead of code replication and N-version programming. The

testing is done strictly through fault injection, including the determination of important

variables.

1.3 Problem Statement

The use of OSS components has been used to save organizations money that can be

allocated elsewhere, in addition to the time that does not need to be spent on the development

of the software. This use of OSS for certain components of a system could be even higher,

allowing for an even more widespread use of OSS components. The issue with the widespread

use of OSS components is that most real-world projects have certain standards and software

dependability requirements that need to be met before the open source solutions can be

used.

Most of the research being done in current software dependability for systems where the

source code is available is directed at the development process. These techniques and tools

are meant to be used early in development and followed closely throughout. This is due to

the fact that the later these error detection and recovery mechanisms need to be added, the

more time it takes to develop and troubleshoot the changes to the code. With the case of

open source software, like that of CotS software, the component being used is passed the

development phase and is in its released form. The benefits of saved time and money start
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to seem less appealing if a full suite of testing and possible development will need to be done

in order to bring the component up to a level of dependability that meets requirements. The

increase in overhead from adding these error handling mechanisms could render the OSS

component ineligible for use in the system regardless of time spent testing and developing

code.

There are many cases where an OSS solution could be implemented over a CotS solu-

tion. For example, there could be OSS systems available that fulfill the required performance

measures and no CotS systems. Also, with many CotS systems there are additional costs,

such as purchasing a license to use the software. Developing code in house or contracting

an organization to develop software for a particular function is also a significant investment

on a project’s budget, when compared to free OSS. With CotS software or contracted devel-

opment, there is a certain level of assurance that the software will be developed and tested

according to the desired requirements of the customer. An issue with OSS systems is that in

many cases, there is no guarantee of any standard of development or formal testing. Often,

development is done by a small group or even just a single person and testing is done only

loosely to ensure that the product will run and the burden of testing and troubleshooting

falls to the community.

In order to solve this problem, this thesis proposes a methodology for increasing the

dependability of OSS components. The focus of the research is to implement a methodology

for identifying critical artifacts and locations in open source systems and adding lightweight

error handling mechanisms to detect and recover from errors. There has been significant

research done in the realm of fault injection, including the definition of metrics used to

identify important variables and injection and sampling methods. The major issue with the

importance metric defined by [13], is that it is irrelevant when considering more than one

module. A new modified importance metric is proposed that takes into account the fault

chance of each function in the system to create a more relevant metric, measured as the

relative importance of a set of variables given a specific set of use cases. This research is
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confined to specific subsets of system execution. Errors are measured according to these

pre-defined runs, as it is with all fault injection research. Currently, the greatest measure of

the importance of a variable is to use several metrics, including failure rate and spacial and

temporal impact, described above. This methodology for determining the most important

variables and their propagation is done completely through fault injection, which does not

necessarily reflect real world situations that may occur while the software is in use.

In an attempt to both further verify this method of using a variable’s importance to

direct the use of error handling mechanisms and to explore the possibility of increasing the

benefits, both fault injection and data-flow analysis is used. To limit the negative effects

innate to using fault injection testing, data-flow analysis is done on modules to identify the

modules with the highest priority. Then these modules are tested to highlight the variables

and functions with the highest failure rates. Research in the use of data flow analysis for

dependability testing has grown less popular, but by combining the use of data-flow analysis

with the results from the fault injection testing, the propagation of the critical errors can be

determined and then the important locations and artifacts for implementing error handling

mechanisms can be identified. The data-flow analysis helps to keep the error handling code

added to the OSS system in only the most critical locations. This should allow for a rapid

testing phase that increases the software dependability, without creating too much overhead.

The issue with adding error handling mechanisms this late in the life cycle of the software

is that they have a harsh overhead if they are too obtrusive. This thesis proposes using an

existing wrapper-based solution, similar to [1], that is a lightweight error handling mechanism

that limits this overhead, while still increasing the dependability by a significant amount.

The majority of the research for late-stage dependability and reliability techniques is aimed

at closed source CotS components. Whereas, the research aimed at systems where the source

code is available are intended to be used much earlier in the life cycle. Thus, this methodology

creates a means of speeding up the process of locating high priority locations for placing error

handling mechanisms to increase the dependability of OSS in order to allow for the benefits
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to be used more often in systems that have strict timelines and higher standards for software

dependability and reliability. Furthermore, this methodology forms a foundation for a larger

methodology that can include increasing desired factors other than dependability, such as

security.
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Chapter 2

Fault Injection Framework

This chapter details the implementation of the fault injection framework that was used

in order to test the methodology on an open source software system.

2.1 Fault Model

The first thing to consider when doing fault injection testing is the fault model that

will be used. Depending on the type of fault that is going to be considered, the type of

injection will change. The type of fault model used has two major parts: a local model and

a global model. The local model states the types of faults that could occur in the system

and the global model constrains the occurrence of the faults from the local model, so that

dependability can be measured.[33] In this methodology, the faults considered were those

that could occur at any time or at any place during the execution of the system. The fault

injection framework simulates the occurrence of transient hardware faults. The local model

is a transient data value failure, which means that a variable has a corrupted value and could

become corrupted again. The global model in this case is the assumption that any variable

in the system could be affected by this data failure. This model is the same model used in

[1].

2.2 Implementation

The implementation of the fault injection framework was split into three different parts.

The first and most crucial part of the framework was the injection functionality that corrupts

the value in a variable. The probe functionality is used to output the value of a variable

at various locations throughout the testing process. The environment simulator is used to
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control the test and manages the output of the tests for comparison to the golden run. Note

that all code for the framework was written in C.

2.2.1 Injections

The injection functionality is incorporated into the system first by adding the injectors.h

header file to all file to be tested and by placing the injectors.o object file in the compile

path for the system. Once this is done, it is possible to inject errors directly into variables

at any location in the code. There were two different types of injection functions written for

the framework. The first takes a specific value and inserts it into the variable in order to

test boundary conditions or specific faults, such as NULL or zero.

The manual injection function takes in four inputs. The iid variable is the string that

identifies the injection point. This value is compared to a file containing all the probes and

injections that will be used in the current experiment. If the string is located in the file,

then the injection is completed and the specified injection value, int inject val, is returned.

If not, then the original integer value, int var, will be returned. The variable p specifies the

probability that the injection will occur. This is important when considering several modules

in the same system and are discussed in chapter three.

Figure 2.2 shows a simple example that calls the injection function and specifies that the

value of 100 be inserted into the variable x and the variable x is then stored in the variable

log produced by the framework after each experiment.

The second function, used in the testing in this experiment, injects a random error in

the variable. This is done by flipping a random bit in the variable and then returning the

variable with the flipped bit. The prototype and way that the function is called is very

similar to the manual injection function, but instead the injection value is randomly defined

from within the function. Figure 2.3 shows the function to randomly flip a bit in an integer.

Note that the file points fp1 and fp2 are defined globally for all functions in the injector file.
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int injector_i(char *iid, int var, int inject_val, float p);

Figure 2.1: Prototype for manual integer injection.

int fmul( int x, int y) {

x = injector_i("mulInject1",x,100,1);

int result = x * y;

probe_i("mulProbe1",x);

return result;}

Figure 2.2: Integer injection and probe example.

Figure 2.4 shows the more difficult task of flipping a bit in a floating point variable

or pointer. The code is mostly the same between the functions, but the added difficulty

of flipping a bit for a variable of floating point or pointer format is done by casting the

incoming variables address to an unsigned long* and dereferencing it. The bitwise operation

is completed on the unsigned long, which should be the longest variable type available on

the system so that it can be used to represent any other variable including a long double.

When the single random bit-flip is complete, the variable is then cast back as the original

variable pointer and then dereferenced. This method works with pointers of various types

as well, affecting the address to which the variable points.

Instrumentation of a system involves a single call to an initialization function for the in-

jectors which includes a seed function call for rand and then the injector functions themselves

wherever the user wishes to place a fault in the system.

2.2.2 Probes

The probes currently serve the purpose of allowing the tester to see if the variable

injection was completed and what the value of a particular variable is at a given location in

the system. There is only one set of probe functions, where each function handles a different

22



//Fault injection function to force an int variable fault with a given prob and

random bit-flip

int injector_rand_i(char *iid, int var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(int);

int fault_loc = rand()%bitCount + 1;

int inject_val = var ^ (1 << fault_loc);

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %d injection =

%d\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

Figure 2.3: Function for random bit-flip fault in an integer.
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//Fault injection function to force a float variable fault with given

probability and random value

float injector_rand_f(char *iid, float var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(float);

int fault_loc = rand()%bitCount + 1;

unsigned long temp = *(unsigned long*)&var;

temp = temp ^ (1 << fault_loc);

float inject_val = *(float*)&temp;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %f injection =

%f\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

Figure 2.4: Function for random bit-flip fault in a float.
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int injector_i(char *iid, int var, int inject_val, float p);

Figure 2.5: Prototype for variable probe.

//Probe function to read integer variable

void probe_i(char *pid, int var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %d\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

Figure 2.6: Integer variable probe function.

type of variable probe. Figure 2.5 shows the prototype for a probe function and Figure 2.2

already showed an example of the probe function’s use in a simple function.

The probe functionality also has to check the experiment list to see if that probe is

to be used during the current experiment. This allows all of the injections and probes to

be placed into the instrumented system at one time and then by modifying the experiment

list document, the framework knows which of the injection and probe sites to use for that

particular experiment. Figure 2.6 shows the function for storing the value of the integer.

2.2.3 Environment Simulator

The environment simulator is the program that is actually run when testing the instru-

mented system. The program takes in the experiment number as a command line input

and then runs the intended use cases of the function a set number of times and collects the
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results of these experiments in a file in a results directory with experiment number labels

for each file. This is done in order to streamline the process of testing the instrumented

system, but also to simulate the intended use of the system. Any inputs the instrumented

code may need are controlled by the environment simulator and any outputs are dealt with

accordingly. This way, the testing of the instrumented component can be done in a way that

closely represents how it will fit into the entire system.

The environment simulator is written to replicate the intended usage of the open source

component; consequently, it will differ based on each system. The way that the environment

simulator is written to test the open source component in the experiment section of this thesis

is not necessarily the same way the simulator will be written when testing a component for

another system. The general method is the same, but the specifics of implementation will be

different. It is important to note that this thesis proposes a methodology for accomplishing

a task and not a set-in-stone way of completing the tasks. The ’how’ of the problem is

hypothesized and validated, but the ’what’, as in what to use to accomplish the goal, is left

up to those who are implementing the methodology.
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Chapter 3

Methodology

3.1 Define Critical Path

The first step of the methodology, as shown in Figure 3.2, is to define the critical path

for applying error-handling mechanisms. A critical path in this context is a high-priority

module and all the functions inside of that module, plus functions in any other module

that exchange data with the high-priority module. Determining a critical path is done by

finding the highest-priority modules and the functions that deal with that module. Priority

is defined as potential impact an error occurring in a module will have on the system.

3.1.1 Instrumentation Stage One

In order to determine the highest-priority module, the target software is instrumented

to track the number of calls made to each module and function within that module in one

instance of the intended use cases for the system. Finding the frequency that modules will

be called with each execution of the target software allows for modules that are not directly

related to the proper execution of the system to be eliminated from consideration. This

3. Identify Locations for
Error Handling2. Define Critical Path1.Target Software

4. Wrap Important
Variables 5. Wrapped Software

Figure 3.1: Overview of Methodology
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Target Software

Call Instrumentation Code Analysis Data-Flow

Call Frequency Worst Case LoC Call Depth

Critical Path 2

Figure 3.2: Stage one of methodology

narrows down the potential number of modules for testing. Because the focus is on both

speeding up the process and accurately identifying important locations for error handling, it

is important that no unnecessary tests are completed. Modules with zero or only a fraction

of calls compared to other modules will not be considered. The frequency is also found for

each function in the remaining modules. This value will be used in a later section to calculate

the priority of the function in relation to other functions in the system.

3.1.2 Data Flow Analysis

Once the unrelated modules of the system have been ruled out, it becomes necessary

to narrow down the possible high priority locations for error handling further. The next

step is to determine the priority of each function in the remaining models. The first value

to be determined is the depth of the call and caller graphs for each of the functions. This

value will represent the propagation factor of the function in relation to the rest of the

functions in the system. For this step, Doxygen was used in order to generate dependency

graphs for each module and call and caller graphs for each function. Doxygen also lists any

structs, variables, defines, and classes found in each module. Doxygen is most useful when
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the target source code has been instrumented with special comment blocks to alert Doxygen

that certain information should be included. Even without the extra comment blocks, it is

able to generate the necessary graphs.

Doxygen was used through its Linux version command line interface. The setup involves

generating a configuration file that has a list of options that the user can either set to ’yes’

or ’no’ and other options such as giving a specific file path or file names. Doxygen was set up

to ignore private internal functions of a module, such as small functions that perform single

actions and other such functions. This is because if the function is an internal function,

then it is only called by functions within the same module. It has the same propagation to

functions in other modules as the function that called it. The Doxygen command is then

run again with the configuration file for the target software as input.

This data is important because the call and caller graphs for each function were used to

determine its propagation factor in relation to the other potentially high priority functions.

The call depth of an individual function was set to the length of the data path from its

callers and called functions. The propagation factor was found by equation 3.1, where p is

the propagation factor, Fcd is the call depth of the function and Maxcd is the maximum call

depth. The Maxcd is highest call depth for all the functions being considered.

p = Fcd/Maxcd (3.1)

3.1.3 Determine Priority Functions

When finding the highest priority functions, it was determined that there were three key

factors to consider: probability that the single bit-flip fault occurred in memory related to a

function, probability that the corrupted code in that function would then be run during the

current execution of the program, and the propagation factor. The propagation factor was

found as described in the previous section. For the purposes of testing this methodology and

proving the concept it is assumed that the probability that the fault occurs in a function to
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be equal for all functions. In reality, this is most likely not the case. It should be possible

to determine the probability that a single bit-flip fault occurs in the memory space related

to a function based on the amount of memory that the function has reserved and obtains

dynamically during run-time. This amount of memory would then be divided by the total

memory used by the program to determine what percentage of the memory is related to that

function. This way is still assuming that the fault has an equal chance to occur in any bit

in memory and does not consider which sections of memory would be more prone to having

a fault than others.

With the probability that a fault occurs in a function equal for all functions, the re-

maining factors to be used to set a priority for each function are the propagation factor and

the probability that the corrupted code in a function will be run during the same execution

of the program in which it occurs. For this thesis, it was determined that the probability

that corrupted code in a function would be executed in the instance of the program it was

injected would be based on the effective lines of code for that function and the frequency

that function was called given the intended use cases. The effective lines of code is found

by equation 3.2, where ELoCf is effective lines of code. The worst case lines of code for a

function, LoCwc, was determined through code analysis as the maximum number of lines

of code that could be executed in a single instance of that function and the function call

frequency, Fcf, was determined through instrumentation.

ELoCf = LoCwc ∗ Fcf (3.2)

After calculating the effective lines of code for each potentially high-priority function,

the probability that corrupted code will be executed in that function at a given point during

run-time is found by equation 3.3, where ELoCf is the effective lines of code for the function

in question and TELoc is the total effective lines of code across all functions.

Pe = ELoCf/TELoC (3.3)
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At this point for each function, probability of corruption and execution of corrupted

code and propagation factor have been determined. These three values are used as shown in

equation 3.4 to determine the priority of each function, where Pe is the probability that the

corrupted code is executed, Pc is the probability of corruption for the function, and p is the

propagation factor. Again, it is assumed that the probability of corruption, Pc is equal for

all functions and as such is equal to 1 for all calculations. When considering the potential a

fault has to affect a function, it is important to consider both the likelihood that the fault

occurs in memory reserved for that function and the likelihood that the corrupted code will

even be executed. A fault that occurs in memory causing code corruption in a function

that will not be executed again during the remaining run-time of the system, will not have

an effect on the outcome of the current run. Priority is determined based on the functions

that have the greatest chance to have code corruption that is then executed during run-time

and the potential propagation of that fault. The propagation is important because even if

the fault does not cause failure immediately in the function in which it was found, further

calculations and use of variables that carry the result of the corrupted code could still lead

to failure.

Priority = Pc ∗ Pe ∗ p (3.4)

This priority calculation is then used to determine the priority modules in the system.

The priority of the modules is just the sum of the priority calculations for all functions within

that module. With the highest priority modules determined, the critical paths can be found.

The critical paths are ranked according to the module priorities found for the intended use

cases. A critical path is the full call graph for the highest priority function in the high priority

module. The first critical path starts from the highest priority function in the system for

the intended use cases and the data-flow for the functions it calls and the functions that

call it. The second critical path is the same, but for the highest priority function in the

second highest priority module, and so on. Testing indicates that determining priority this
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Figure 3.3: Stage two of methodology

way accurately leads to finding the variables that create the highest number of relative failed

tests.

3.2 Identify Locations for Error Handling

Now that the critical paths have been determined, it is necessary to identify the priority

locations for placing error handling mechanisms. These locations are the instances of reads

and writes for the important variables in the critical path. In order to determine these

important variables, a variation of the importance metric in [13] is used to calculate the

relative importance of all the important variables found in the critical path. This section

details the process for ranking the relevant variables, as shown in Figure 3.3.

3.2.1 Determine Important Variables

A technique called dynamic program slicing is used to identify the important variables

in the critical path. This is a method of analyzing code that finds all the statements that

affect the value of a variable at a given point during a particular execution of the program.
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Given the intended use cases determined for testing purposes, the highest priority function

and all the statements, and variables within those statements, that have a potential effect

on the important variables in the critical path are determined.

First, all the variables in the highest priority function for the critical path are added

to the list of relevant variables, because it is unknown which variables in the function will

be the most important. But, it is known from the priority calculations from the previous

section that the most important variables are in this function. The next step is for each

function that is called by the highest priority function in the critical path to be analyzed

with dynamic program slicing. In the called functions, the variables that are used in the

function call itself are the starting point for the dynamic program slicing. In this called

function, any variables that are affected by the variables sent from the original function are

added to the list of relevant variables. Then, any variables that affect these variables are

added and so on until there are no more variables to be added from the call graph side of

the critical path.

For the caller side graph of the critical path, the same method is used to identify relevant

variables. The variables sent from the function that calls the highest priority function are

added to the list of relevant variables. Then, any variables in program statements that affect

these values are added and then the variables that affect those are added and so on. This

is done until all variables in the chain of function calls from the high priority function in

the critical path to the last function are found. These variables are all added to the list of

relevant variables in the critical path and are subjected to fault injection testing.

3.2.2 Instrumentation Stage Two

The second stage of instrumentation of the target source code is for completing the fault

injection testing of the relevant variables in the critical path. The goal of the fault injection

testing is to determine three key values for each relevant variable in the critical path. These

33



values are the modified failure rate, spatial impact, and temporal impact. The spatial and

temporal impact metrics are defined in [13].

Given a software system with functionality distributed logically over a set of distinct

components, the spatial impact of a variable v, of component C, in a run r, is denoted in

equation 3.5. The spatial impact is then defined as the number of components that are

corrupted in r when the variable v is corrupted.

σv,C = max{σr
v,C},∀r (3.5)

Spatial impact finds the number of modules affected when a variable v in component

C is corrupted. The higher the value, the harder it will be for a system to recover from the

corruption. For the purposes of this thesis, only the worst case value of spatial impact is

considered for each variable.

Given the same software system, temporal impact as defined by [13] is the impact of

a variable v of component C in a run r, denoted in equation 3.6. This value indicates the

number of time units where at least one component of the software system remains corrupted

in r.

τv,C = max{τ rv,C},∀r (3.6)

After determining the spatial and temporal impact for each relevant variable in the

critical path, it is important to determine the relative failure rate of each of the variables.

The relative failure rate is the failure rate determined through fault injection when the faults

are injected into each function according to the probability of execution found in equation

3.3, given a specific set of use cases for the target software. The reason why this methodology

does not use just the local failure rate is that the importance calculated with just the failure

rate of a variable and the local spatial and temporal impacts are limited to just the modules
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where they are calculated. This thesis seeks to modify the importance metric so that its

value is relative across multiple modules.

3.2.3 Calculate Relative Importance

The general-form equation for calculating the local importance of a variable is defined

in equation 3.7, where G, K and L are arbitrary functions that determine the importance,

spatial impact, and temporal impact respectively. The value incorporates the failure rate

and the spatial and temporal impact of a variable. This is done because a variable v in a

component C with a high spatial impact is likely to pass the corruption on to other variables

and a high temporal impact indicates that recovery efforts will be less effective.

Iv,C = G[K(σv,C), L(τv,C)] (3.7)

The final equation found for the local importance of a variable is as defined in equation

3.8, where f indicates the failure rate and n and m indicate the focus of the testing. To be

more specific, the greater n is the more the metric focuses on the failure rate of the variables

and the greater m is the metric focuses on the spread and time of existence of corruption.

So, an m of zero and an n greater than zero would measure solely for failure rate of the

variable and conversely, an n of zero and an m greater than zero would measure only the

impact of the failure.

Iv,C = [1/(1− f)n][(σv,C/σmax + τv,C/τmax)]m (3.8)

The impact of the variables measured in this way is inherently reliant on other com-

ponents or modules in the system because the spatial and temporal impact are determined

based on their effect on these modules. So, in order to make these metrics measure relative

importance across multiple modules, σmax and τmax are determined based on the maximum

values for all variables in the critical path and not just from within a single function. The
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Figure 3.4: Stage three of methodology

other issue of relevance for the importance metric is the failure rate. Finding the failure rate

in this way assumes that there is an equal chance of the failure occurring across all functions.

A failure that is introduced into a system, but is never executed has no effect on the

outcome of the current run of the program. The failure rate is instead measured with the

probability of execution in mind. This means that if the fault is injected at the start of the

function to maximize potential damage, the actual likelihood of failure is found only when

the fault is injected according to P e. Thus, the relative failure rate is determined by the

failure rate of the system when a fault is injected in the function with a probability equal

to the P e. These changes yield the relative importance metric as defined in equation 3.9,

where σmaxr is the maximum spatial impact across the critical path, τmaxr is the maximum

temporal impact across the critical path and f r is the relative failure rate.

RIv,C = [1/(1− fr)n][(σv,C/σmaxr + τv,C/τmaxr)]
m (3.9)

Once the relative importance, RIv,C has been calculated for all variables in a critical

path, they are ranked according this value and then these ranked variables move on to the

next stage of the methodology. This process can be repeated for multiple critical paths,

where the relative importance is calculated across all paths.

3.3 Wrapper-Based Error Handling

In this last phase of the proposed methodology, wrapper-based error handling mecha-

nisms are put in place around instances of the highest importance variables in the critical
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path, as indicated in Figure 3.4. The novelty of this research focuses on identifying important

variables for error handling mechanisms and the speed that the identification occurs, not the

actual error handling mechanisms. The mechanisms discussed in this section are from the

solution in [1], where lightweight and effective error handling mechanisms are tested using a

similar testing scenario as is done in this thesis.

The general idea behind the use of the wrapper-based error handling mechanisms with

the following algorithms is to utilize lightweight and efficient mechanisms to reduce the failure

rate. The lightweight portion of the idea comes from the wrapper-based implementation

around the instances of the important variable in a module. This is preferable to an N-

programming solution or a wrapper-based on an entire module to secure the correct outcome.

The algorithm chosen should be an efficient and well-tested algorithm that is simple to

implement and will not introduce a large amount of overhead due to complicated calculations

or logic. The user of the methodology must decide upon two threshold values to identify

which of the ranked variables should be wrapped.

3.3.1 Write-Wrapper

The first algorithm defined in [1] is the write-wrapper function is called when an im-

portant variable is written to. When a variable v is assigned a value f..., where f is some

function from the unwrapped module, the ranking of the variable is checked. This is when

the selected threshold values come into play. The first threshold, λt determines which vari-

ables will be triplicated and the second, λd determines which will be duplicated. If, for

example, the first threshold is the top ten percent out of one hundred variables, then the

variables ranked one through ten will have two shadow variables created upon being written

to. If the second threshold is fifteen percent, then ranks eleven through fifteen will have a

single shadow variable created upon being written to. The remaining variables will not have

a wrapper.
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Algorithm 1 Write-Wrapper: Writing a variable v

v := f(...)
if (rank(v) ≥ λt) then
create(v,)
create(v,,)
v, v,, v,, := f(...)

else if (rank(v) ≥ λd) then
create(v,)
v, v, := f(...)

end if

3.3.2 Read-Wrapper

The second algorithm defined in [1] is the read-wrapper. The read-wrapper is called

whenever an important variable is read. So, when a variable y is assigned a value that

includes the functiong(v, ...) in the unwrapped module, where g is some function of v to be

read, the rank of variable v is compared to the threshold values defined earlier. Considering

the same example as before, variables ranked one through ten will have a majority algorithm

run against the variable v and its two shadow variables, with the majority variable being

returned. For variables ranked eleven through fifteen, either the variable v or its single

shadow variable will be chosen at random. The algorithms presented in this section are

taken from [1] as the focus of the research is in quickly determining important locations for

error handling mechanisms based off of the relative importance of variables in the critical

path, and not in declaring a new error handling mechanism.

Algorithm 2 Read-Wrapper: Reading a variable v

y := g(v, ...)
if (rank(v) ≥ λt) then
y := g(majority(v,, , v,,), ...)

else if (rank(v) ≥ λd) then
y := g(random(v, v,), ...)

end if
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3.3.3 Results

This section displays the results of the testing in [1] that indicate that the error handling

mechanisms discussed there are sufficient for the purposes of this methodology and do not

need to be upgraded at this time. Both tables are taken from [1], where 7Z# are the modules

selected for testing from the 7Zip application, FG# are the modules selected for testing from

the Flight Gear application and MG# are the modules selected for testing from the Mp3gain

application.

Module Unwrapped Failure Rate Wrapped Failure Rate
7Z1 0.002407940 0.000017397
7Z2 0.007082023 0.000141946
7Z3 0.000856604 0.000030189
FG1 0.004582688 0.000045475
FG2 0.002481621 0.000002047
FG3 0.001471873 0.000135395
MG1 0.004983750 0.000012083
MG2 0.007888044 0.000013426
MG3 0.002780792 0.000006076

Table 3.1: Results for wrapper-based error mechanism testing [1]

Module Execution Time Memory Usage
7Z1 26.048% 07.55%
7Z2 31.470% 18.16%
7Z3 20.359% 00.94%
FG1 30.660% 20.63%
FG2 35.829% 03.32%
FG3 23.529% 02.03%
MG1 25.983% 05.22%
MG2 29.090% 04.93%
MG3 23.174% 00.58%

Table 3.2: Peak increase % in run-time and memory usage [1]
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Chapter 4

Experiment

This section details the process of utilizing the proposed methodology in order to find

the important error handling locations for an open source software component. The open

source software used for this experiment is called Mp3gain. It is a tool that allows the user

to normalize volume settings by adjusting the gain of individual mp3 tracks and mp3 tracks

across an album. It is a highly modular system and was designed and implemented mostly

by a single developer, aside from a few fixes and language translations.

4.1 Design

The set up of the experiment was to test Mp3gain with several potential real world use

cases. The use cases selected were the options to scan a track or album for the maximum

gain adjustment, normalize volume across all tracks in an album and to undo all known

changes to the files by Mp3gain. These were selected as the three test cases to represent

the functionality that the hypothetical system looking to incorporate Mp3gain would want

to implement. The target source code was instrumented by first adding the header files to

each module and then adding the object files from the framework to the path in Mp3gain’s

makefile. Then, Mp3gain was re-compiled with the instrumentation attached. The first

stage of instrumentation was done by having the program output both the module and the

specific function within that module to a file. The output was done once for each use case

for Mp3gain. The three resulting files were parsed and the frequency of function calls was

obtained.

Next, a Doxygen configuration file was created in the Mp3gain directory and setup with

the options discussed in chapter 3. The returned results were then used to calculate the call
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depth for functions and to aid in determining the critical path once a priority module was

determined. The worst case lines of code and dynamic program slicing were done by manual

code analysis.

The fault injection testing was completed for each relevant variable found in the crit-

ical path. The input to Mp3gain for the three use case tests was an album of 25 tracks.

Faults were injected 25 times throughout a single execution of Mp3gain at 25 equal spaced

points, meaning that there was one injection per track analysis. Each fault injection test

for a variable was completed 100 times, so each use case given 25 input tracks was run 100

times. Two types of runs were completed for each variable. The first run was to obtain the

spatial, temporal and failure rate metrics. This was done to obtain the worst case spatial

and temporal metrics and to determine the local importance based on local failure rate for

validation purposes. The second set of tests for a variable were done using the Pe found

earlier to create a number of fault injections relative to the actual expected amount of faults

to occur in that function.

Using the relative failure rate and the spatial and temporal impact metrics, the local

and relative importance metrics were calculated for each variable. This process was repeated

using the second critical path to show that the results of the second set of tests should yield

variables with a lesser chance of causing system failure. The number of tests was tracked

in order to compare the total number of tests needed to find the important error handling

locations using the proposed method to the number of tests needed to complete a cost-benefit

analysis of placing error handling in each module in the function. Lastly, the proposed

methodology was further validated by comparing the total number of relevant failed test

cases found using the proposed methodology versus using local importance.

Note that the wrapper-based error handling mechanisms were not tested in this case.

This is because there is no change to the error handling mechanisms suggested for use here

compared to those in [1]. The mechanisms proposed there already met the requirements of
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being lightweight and efficient, so there was no need to develop new mechanisms. Instead,

the focus is on determining important locations for these error handling mechanisms.

4.2 Phase 1

The first phase of testing the methodology was to find the priority modules in the

system. Table 4.1 shows the priority of modules and table 4.2 shows the ranking and the

values needed to calculate it for the functions in the highest priority modules. Note that in

the case of table 4.2, the call frequency of test 1 and test 2 were omitted because there were

little to no entries. The majority of the work came from the use case involved the volume

normalization across the album, not the max gain analysis or undoing the changes. This

was due to the tag that Mp3gain updates on each file whenever it makes a change.

Table 4.1: Priority of Modules
Module T1 Freq T2 Freq T3 Freq Sum Priority Rank # of variables

mp3gain 1 462862 483097 3841.5 7 168

apetag 109 151 121 521.7 8 58

gain analysis 0 0 46572341 202183.975 6 53

id3tag 0 0 0 0 9 87

replaygaindll 0 0 0 0 9 19

rg error 0 0 0 0 9 6

common 0 0 4350007 9207297.75 2 24

decode i386 0 0 1448424 55257375.6 1 18

dct64 i386 0 0 2896848 2027793.6 5 11

interface 4 0 241416 2908720.125 3 37

layer1 0 0 0 0 9 24

layer2 0 0 0 0 9 54

layer3 2 0 123710987 2684186.725 4 65

tabinit 0 0 0 0 9 16

The knowledge obtained from these tables is where to start the analysis for the critical

path. In this thesis, testing was done for the first and second critical path so that the results

could be analyzed to ensure that the first critical path did indeed lead to more failed test

cases than the second. The last step of this phase was determining the critical path. Figure

4.1 through Figure 4.3 indicate the critical path for the highest priority module in the path
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Table 4.2: High Priority Module - Functions

Module Function T3 Freq Call Depth Rank ELOC Pe

mp3gain main 1 40 15 3693 0.0000075323

common head check 20117 4 11 905265 0.0018463889

common decode header 20117 8 7 1830647 0.0037338086

common print header 0 1 31 0 0.0000000000

common print header compact 0 1 31 0 0.0000000000

common getbits 4289656 3 2 102951744 0.2099815579

common getbits fast 2209014 1 6 39762252 0.0810995452

common set pointer 20117 5 13 281638 0.0005744321

decode i386 synth 1to1 mono 0 7 31 0 0.0000000000

decode i386 synth 1to1 1448424 7 1 315756432 0.6440204404

dct64 i386 dct64 2896848 7 4 11587392 0.0236337776

interface InitMP3 2 5 24 128 0.0000002611

interface ExitMP3 2 3 27 44 0.0000000897

interface remove buf 20117 4 14 281638 0.0005744321

interface copy mp 60351 4 10 1267371 0.0025849444

interface GetVbrTag 2 4 22 190 0.0000003875

interface check vbr header 2 4 25 72 0.0000001469

interface sync buffer 20117 4 9 1448424 0.0029542222

interface decodeMP3 20119 21 3 4969393 0.0101356310

layer3 init layer3 2 4 19 760 0.0000015501

layer3 do layer3 sideinfo 20117 3 12 865031 0.0017643271

layer3 do layer3 40234 8 5 5672994 0.0115707036

layer3 III get side info 2 20117 2 13 1750179 0.003569685

layer3 III dequantize samples 80468 2 5 29692692 0.0605615552

MAX CD 40 SUM ELOC = 490289457 —
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synth_1to1

synth_1to1_mono

do_layer3

decode_header

decodeMP3 main

Figure 4.1: Caller side for first critical path

synth_1to1 dct64

Figure 4.2: Called side for first critical path

as denoted by a grey box. Figure 4.4 indicates the caller graph for the function getbitsfast,

which was included to validate that there were no important variables in that path and only

in the path defined by the highest priority function, getbits.

4.3 Phase 2

The second phase of the experiment tested the variables acquired through dynamic

program slicing for spatial and temporal impact, failure rate, and relevant failure rate. Note

that in the data presented here, temporal impact was limited to the value of either 1 or 25.

getbits decodeMP3 main

Figure 4.3: Call graph for second critical path

44



getbits_fast

III_get_side_info_1

III_get_side_info_2

III_get_scale_factors_1

III_get_scale_factors_2

do_layer3_sideinfo

decodeMP3 main

do_layer3
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Figure 4.4: Call graph for alternate second critical path

The failures either caused a failure in the single track into which they were injected into or

caused the entire album normalization process to fail, such as with a segmentation fault.

Both of the critical paths were subjected to the fault injection testing and the results

of the top 15% of the variables are included in Table 4.1 and 4.2. Critical path one has

47 variables total and critical path two, including the additional branch from getbitsfast

that would not usually be considered, has 59 variables. The additional variables from the

getbitsfast path are included to show that none qualify as an important variable. The only

variables from critical path two that are near the 15% threshold of rank 16 is the rank 17

bsbufold and rank 7 wordpointer variable. The other variables are either out of range or

already located in critical path one.

The variables analyzed in critical path one are only those which have the potential to

cause an error based on their connection to the highest priority module in the system. It

is understandable that there should be some variables located in critical path two or even

three that have importance rankings not too far out from the thresholds. But, it is clear that

the majority of high importance variables found through the fault injection are located in

the first critical path. These highest ranking variables are the key to setting error handling

mechanisms. The important locations for setting error handling mechanisms are the code

statements that either write to or read from one of the ranking variables within the defined

thresholds. Also, by expanding the range of critical path two and incorporating the variables
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from other functions in the dolayer3 module more variables were found for fault injection

testing. None of the variables were within the importance ranking threshold. There was one

rank 30 variable and the rest were between rank 40 and 80. Selecting the variables from

the program slice of the highest priority function, getbits, was more effective at finding the

important variables than the variables from the program slice of the second highest priority

function, getbitsfast.

Function Variable σv,C τv,C Failure Rate Relative Failure Rate Relative Importance

synth 1to1 bandPtr 3 25 0.0138666667 0.0088 1.7816802003

synth 1to1 pnt 3 25 0.0088 0.0056 1.769765878

do layer3 pcm point 3 25 0.0284 0.0002666667 1.7511506951

synth 1to1 buf 2 25 0.0321333333 0.0206666667 1.5640653421

synth 1to1 maxAmpOnly 2 25 0.0081333333 0.0052 1.5158384332

main curframe 2 25 0.0188 0 1.5

synth 1to1 window 1 25 0.0734666667 0.0472 1.3772426984

Table 4.3: Fault injection results for variables for critical path one

Function Variable σv,C τv,C Failure Rate Relative Failure Rate Relative Importance

main curframe 2 25 0.0188 0 1.5

common wordpointer 1 25 0.188 0.0548 1.3992370494

common bsbufold 1 25 0.1876 0 1.2502694522

main wrdpntr 1 25 0.0033333333 0 1.25

main nprocsamp 4 1 0.0017333333 0 1.04

common rval 2 1 0.2857333333 0.0830666667 0.6424178797

common number of bits 2 1 0.1666666667 0.0484 0.5964698746

layer3 h− >linbits 2 1 0.0217333333 0.0012 0.5414243122

main bytesinframe 2 1 0.0065333333 0 0.54

Table 4.4: Fault injection results for variables for critical path two
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Chapter 5

Results

To validate the results obtained in chapter 4, testing was done to determine the number

of relative failed tests using the proposed methodology versus using just local importance for

cost-benefit analysis. In this context, a failed test was determined using the standard fault

injection method and a relative failed test was determined using the fault injection based

on the probability of execution. Table 5.1 and Table 5.2 show the number of failed tests

and relative failed tests found by the proposed method and by just using local importance,

respectively. Table 5.3 shows the percent difference between the proposed method and a

cost-benefit analysis of placing error handling mechanisms using only local importance.

Table 5.1: Number of failed tests found using proposed methodology

Critical Path # Failed Tests Relative Failed Tests
CP1 2135 1145
CP2 6601 1406
CP1/2 5398 1724

Table 5.2: Number of failed tests found using just the local importance

Critical Path # Failed Tests Relative Failed Tests
CP1 3647 110
CP2 6551 1110
CP1/2 9100 1155

Just using local importance as a metric to assigning locations for wrapper-functions is

unreliable and is influenced primarily by failure rate and not by other factors, such as spatial

and temporal impact across multiple modules, or the likelihood that the code corruption

47



Table 5.3: % difference between the number of failed tests found

Critical Path # %diff FR %diff MFR
CP1 -70.8196721311 90.3930131004
CP2 0.7574609908 21.0526315789
CP1/2 -68.5809559096 33.0046403712

Table 5.4: Proposed Methodology vs. Local Cost-Benefit Analysis

MP3gain # of tests PM # of tests LCBA % diff
CP1 47 640 92.65625
CP1/2 97 640 84.84375

in that function is meaningful. The proposed methodology does not appear to generate

satisfactory results. The relative importance metric accounts for the highest possible spatial

impact and temporal impact, as well as the likelihood that the corrupted code will be run in

the function where the testing is taking place. By injecting faults with a probability equal to

the chance that the function will still be run at the time of injection, the number of failures

found by the proposed method ranges from 21% to 90% greater than the number of failures

found just by local importance. This is meaningful because calculating the failure rate when

the fault is known to be placed into a particular location for testing purposes, the resulting

failure rate loses its relevance to the system as a whole. One must also consider the chance

that the fault will even occur in the memory space belonging to that function and the chance

that when the fault occurs, the resulting code corruption will even be executed.

Also, Table 5.4 clearly shows a significantly reduced number of tests required to locate

these important error handling locations. Given these results, the methodology would appear

to accurately locate variables with a high failure rate relative to the intended use cases for the

system, as well as drastically reduce the number of tests required to identify importance error

handling locations in the target software. There is still room for improvement in the design
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and implementation of the methodology, discussed in chapter 6, but the results indicate a

successful completion of the research goal.
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Chapter 6

Conclusion and Future Work

The primary benefit this research provides is to create a methodology for quickly finding

important locations for placing lightweight error handling mechanisms. These mechanisms

will then increase the dependability of the OSS components they are placed into, allowing

systems that have higher standards for dependability and stricter timelines to consider using

OSS components. This is an important benefit that will serve as a step towards increasing

the use of OSS in more real world applications and mission critical systems. OSS has many

clear benefits, the most applicable here being the savings in both time and money that are

not being fully utilized in the current market.

The proposed methodology also provides data from a hybrid testing process that com-

bines a fault injection environment with data-flow analysis to identify critical modules and

artifacts in the software by mapping out their propagation throughout the software to es-

tablish a critical path. This path can then be used to illustrate the most critical variables of

the software and how they communicate with each other. These critical variables are deter-

mined through a measurement of their importance determined primarily by relative failure

rate and the flow of data between and within modules. This serves to show the benefits of

combining the two testing processes for greater effect and also to further verify the concept

of determining the importance of artifacts in the software based on their failure rates and

propagation.

The shortcomings of current methodologies are that they are intended for use in earlier

stages of the design process and do not allow for bias in the modular structure of the system.

That is, all modules and signals are treated with the same level of importance in the greater

system view. The proposed methodology attempts to incorporate an understanding of system
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structure, dependability properties and insight into the operation of the system as a whole

to help determine placement of the error handling mechanisms. For instance, in the case

that there is a hub module that the majority of modules receive input from or certain signals

that have a greater effect on the overall system, the proposed methodology will recognize

these through code analysis and data-flow analysis. Instead of treating each module as an

isolated unit, the proposed methodology also considers the flow between modules before

instrumenting the additional error handling mechanisms into the source code.

Lastly, this research is directed at the level of dependability of the OSS systems being

tested, but it would be possible to focus the research instead on the level of security or other

possible factors. The methodology proposed in this thesis will form a foundation for a more

refined methodology that could be molded to fit the needs of the system to be integrated

into, or possibly a combination of dependability and security. There is still refinement to be

done with the current goal of quickly and accurately defining high importance locations for

placing error handling mechanisms. Considerations should be made as to the probability that

a fault occurs in memory related to a function and how that would change the priority of the

modules. Further automation of the designed fault injection framework and instrumentation

process should be pursued in the case that the methodology is to see any widespread use on

large components or systems.
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