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Abstract

E. S. Mahmoodian gave necessary conditions for when the edges of a complete tripartite

graph can be partitioned so that each set in the partition induces a 5-cycle. Since then, he, N.

J. Cavenagh, E. J. Billington, S. Alipour, and E. Mollaahmadi have found several cases where

these necessary conditions are also sufficient. We continue this investigation by considering

further cases for complete tripartite graphs.
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Chapter 1

History

A graph, G, is said to be decomposable into a subgraph, H, if the edges of G can be

partitioned into sets, each of which induces a copy of H. A bipartite graph is a graph in

which the vertices can be partitioned into two groups such that no edges exist between any

pair of vertices in the same group, but there may be an edge between a pair of vertices in

different groups. A complete bipartite graph is a bipartite graph in which every possible edge

exists; if the parts have sizes r and s then it is denoted by Kr,s. Similarly, a tripartite graph

is a graph in which the vertices can be partitioned into three groups where no edges exist

between any pair of vertices in the same group, but there may be an edge between a pair of

vertices in different groups; if all such edges are in the graph then it is called complete, and

is denoted by Kr,s,t, where r, s, and t are the sizes of each part. A cycle is a walk in a graph

that starts and ends at the same vertex, but otherwise has no repeated vertices.

In 1981, D. Sotteau[6] developed necessary and sufficient conditions for decomposing

complete bipartite graphs into cycles of any fixed even length. More recently, in 1995 E. S.

Mahmoodian and M. Mirzakhani[4] developed necessary conditions for decomposing com-

plete tripartite graphs into 5-cycles, and conjectured that these conditions are also sufficient.

Since then several papers have been written trying to prove that these necessary conditions

are also sufficient. Many cases towards showing that these conditions are sufficient have

been settled, while several others are still open for investigation. Necessary conditions for

the existence of a 5-cycle system of a tripartite graph Kr,s,t follow.
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Theorem 1.1 [4] Let r ≤ s ≤ t. If there exists a decomposition of Kr,s,t into 5-cycles then

the following conditions are satisfied:

(i) r, s, and t are either all even or all odd;

(ii) 5 | rs+ rt+ st; and

(iii) t ≤
(

4rs

(r + s)

)
.

These three conditions are necessary, as the following arguments show.

• (i) is necessary because clearly all vertices must have even degree since each vertex is

incident with an even number of edges in each cycle. If only one part has odd size then

the degrees of the vertices in the other parts will be odd, and if only one part has even

size then the degrees of the vertices in the other parts will be odd.

• (ii) is necessary because the 5-cycles partition the edges of Kr,s,t, so the number of

edges rs+ rt+ st must be a multiple of 5.

• Now, it is a little less obvious why (iii) is necessary. The basic idea here is that there

cannot be too many vertices in the largest part in order for there to be a chance of

using up all of the edges that are incident with vertices in this part. To prove (iii),

Mahmoodian found three sets of inequalities that must be satisfied for a 5-cycle system

to exist, one for each part of the graph. These inequalities were determined by the

three types of 5-cycles that can exist, as pictured in Figure 1.1.
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(a) Type 1 (b) Type 2 (c) Type 3

Figure 1.1: Types of 5-cycles

It is clear that in each 5-cycle in Kr,s,t there must be exactly one edge or exactly three

edges between vertices in any two of the three parts. We know that the number of

5-cycles is precisely |E(Kr,s,t)|/5 = (rs+st+rt)/5, so the number of edges between any

two parts must be greater than or equal to this number, and one third of the number

of edges between any two parts must be less than or equal to this number. So, we get

two inequalities for each pair of parts of the graph. For the parts of size r and s these

inequalities are rs/3 ≤ (rs + st + rt)/5 and (rs + st + rt)/5 ≤ rs. Simply replace rs

with st and then with rt to obtain the inequalities for the other two pairs of parts. By

solving for each part size the following inequalities can be obtained:

2st

3(s+ t)
≤ r ≤ 4st

(s+ t)

2rt

3(r + t)
≤ s ≤ 4rt

(r + t)

2rs

3(r + s)
≤ t ≤ 4rs

(r + s)

The last of these three inequalities contains condition (iii). Notices that since t is the

largest of these part sizes, requiring that t ≤ 4rs

(r + s)
forces the other bounds on the part

sizes to hold. To see this, rearrange t ≤ 4rs

(r + s)
to obtain r ≥ st

4s− t
≥ 2st

3(s+ t)
since
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t ≥ s by assumption and similarly, s ≥ rt

4r − t
≥ 2rt

3(r + t)
since t ≥ r by assumption.

To see the implication that s ≤ 4rt

(r + t)
we start with s ≤ t

4r2s+ 4rst ≤ 4r2t+ 4rst

4rs

(r + s)
≤ 4rt

(r + t)

s ≤ t ≤ 4rs

(r + s)
≤ 4rt

(r + t)

So, s ≤ 4rt

(r + t)
, and similarly r ≤ t ≤ 4rs

(r + s)
≤ 4st

(s+ t)
. Similar to the first implica-

tion we can see that r ≤ 4st

(s+ t)
implies that t ≥ 2rs

3(r + s)
.

Mahmoodian goes on to conjecture that the necessary conditions given in Theorem 1.1

are also sufficient. He then proves some very useful corollaries about when these conditions

are sufficient. First, if Kr,s,t admits a 5-cycle decomposition, then so does Kar,as,at for each

positive integer a. Next, Kr,r,r admits a 5-cycle decomposition if and only if 5 | r. He also

shows that for any positive integer n, K2n,2n,4n and Kn,3n,3n admit 5-cycle decompositions.

The main result of Mahmoodian’s first paper on decomposing complete tripartite graphs

into 5-cycles was his theorem that Kr,s,t admits a 5-cycle decomposition if two of the parts

have the same size and the necessary conditions are satisfied except possibly when the two

parts have size divisible by 5 but the third does not.

Theorem 1.2 [4] Suppose that at least two parts in a complete tripartite graph G have the

same number of vertices, say G = Kr,r,s. And suppose that Kr,r,s satisfies all three necessary

conditions given in Theorem 1.1. Then Kr,r,s has a 5-cycle decomposition except possibly

when r is a multiple of 5 but s is not.

N.J. Cavenagh and E.J. Billington[2] introduced a new way to represent a complete

tripartite graph by extending the idea of a latin square. An r× s latin rectangle is an r× s

array, each cell being filled with one of n different symbols, with each symbol occurring at
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most once in each row and at most once in each column. In [2] Kr,s,t is represented by starting

with an r× s latin rectangle R, the entries of R being elements of the set T = {1, 2, . . . , t},

and finishes the representation by adding t−s entries at the end of each row and t−r entries

at the end of each column so that each element of the set T = {1, 2, . . . , t} appears exactly

once in every row and exactly once in every column. (See Figure 1.2 for an example)

1 2 3 4 5 6 7

2

3

4

5

6

7

1 4 1 3

4 5 5 6

3 6 7 4

5

6

7

7 6 2

1 3 7

2 4 1 3 6

2 5

1 4

1 5

Figure 1.2: Latin Representation of K5,5,7

In this Latin Representation ofKr,s,t the numbers inside the r×s latin rectangle represent

a 3-cycle in Kr,s,t and the numbers outside of the latin rectangle represent single edges in

Kr,s,t in the following way. Let the vertex set of Kr,s,t be {(v, w) | v ≥ 1, and v ≤ r, s, or t

if w = 1, 2 or 3 respectively}. The cell (i, j) in R containing symbol k corresponds to the

3-cycle ((i, 1), (j, 2), (k, 3)) in Kr,s,t. Now, the edges that are not in the 3-cycles are either of

the form {(i, 1), (k, 3)}, which is represented by k being an entry in row i outside of R, or

{(j, 2), (k, 3)}, which is represented by k being an entry in column j outside of R.

Cavenagh uses this latin representation to implement a technique known as a trade.

Definition 1.1 [3] Let M be a Latin Representation of the complete tripartite graph Kr,s,t.

A trade is a set of entries in M for which the corresponding 3-cycles and edges in Kr,s,t

form a graph which can be decomposed into 5-cycles.

For example, it is possible to form a trade using two entries corresponding to 3-cycles

and four entries corresponding to edges. As the name suggests, these two 3-cycles and the

four single edges contain ten edges which can be rearranged into two 5-cycles.
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Cavenagh goes on to describe two different types of 5-cycle trades. A trade of Type

1 uses both 3-cycles and single edges, and in fact always uses exactly twice as many single

edges, or entries from outside the latin rectangle, as 3-cycles, or entries from inside the latin

rectangle. So, the different trades of Type 1 either use two 3-cycles and four single edges

to obtain two 5-cycles or use three 3-cycles and six single edges to obtain three 5-cycles. A

trade of Type 2 uses only 3-cycles, or entries from inside the latin rectangle. So, the different

trades of Type 2 use five 3-cycles to obtain three 5-cycles.

Cavenagh then uses this method to show that the necessary conditions that Mahmoodian

developed in [4] are also sufficient for several new cases. He starts by finishing the case where

two of the partite sets have the same size by considering the situation when the part sizes

that are the same are divisible by 5 and the third part size is not, which was the exception

Mahmoodian had in [4]. He goes on to complete the case when r and s are both divisible

by 10.

In [3] Cavenagh continues to use this method of trades described in [2] to complete the

proof that the necessary conditions given by Mahmoodian in [4] are sufficient for Kr,s,t when

either two of the partite sets have the same size, or in the case where all partite sets have

even size. He considered four cases to complete this, one of which he had completed in [2].

These four cases are:

(A) Either r ≡ t ≡ 0 (modulo 10) and s is not divisible by 10 or s ≡ t ≡ 0 (modulo 10) and

neither s nor t are divisible by 10.

(B) Either s ≡ t ≡ 0 (modulo 10) and r is not divisible by 10 or r ≡ t (modulo 10) and

neither r nor t are divisible by 10.

(C) r ≡ s (modulo 10) and neither r nor s is divisible by 10.

(D) r ≡ s ≡ 0 (modulo 10).

E. J. Billington and N. J. Cavenagh introduce a new approach to this problem in [1] by

embedding smaller, previously known decompositions into larger decompositions. They start

by finding 5-cycle decompositions of subgraphs of K5,5,5, and then using this process to embed
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K2r,2s,2t into KR,S,T where R > 2r, S > 2s, and T > 2t, by first finding a decomposition of

KR,S,T \E(K2r,2s,2t) into 5-cycles. Using the two following definitions they give the subsequent

theorem for this decomposition.

Definition 1.2 [1] A triple {x, y, z} is said to be good if there exists a subgraph Gx,y,z of

K5,5,5 and there exist subsets Xab, Xbc, Xca of Z5 with |Xab| = x, |Xbc| = y and |Xca| = z

such that Gx,y,z contains only the edges of difference d ∈ Xab between Va and Vb, the edges

of difference d ∈ Xbc between Vb and Vc, and the edges of difference d ∈ Xca between Vc and

Va and there exists a decomposition of Gx,y,z into 5-cycles.

Definition 1.3 [1] We say that a positive integer D is permissible with respect to r, s and t

if there exist x1, x2, . . . , xD; y1, y2, . . . , yD and z1, z2, . . . , zD, each between 0 and 5 inclusive,

with the following properties:

• for each 1 ≤ i ≤ D, the triple {5− x, 5− y, 5− z} is good;

•
D∑
i=1

xi = α;

•
D∑
i=1

yi = β;

•
D∑
i=1

zi = γ.

where α = r + s− t, β = r − s+ t, and γ = −r + s+ t and a

Theorem 1.3 [1] Let D be an odd integer that is permissible with respect to r, s and t. Let

d = 5D, R = 2r + d, S = 2s + d, and T = 2t + d. Then there exists a decomposition of

KR,S,T \K2r,2s,2t into 5-cycles.

Billington and Cavenagh go on to give several lemmas describing some values of D that

are permissible, one over-arching and two with specific restrictions on r, s, and t. They

conclude this paper by considering the case when R, S, and T have similar sizes, meaning
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that R, S, and T are all odd with R < S < T and T ≤ κR, where κ is a constant. A bound

for this κ is given in the following theorem:

Theorem 1.4 [1] Let κ = −95

16
+

3

16

√
1401 ≈ 1.0806. Let R, S, and T be odd integers such

that RS + ST + RT is divisible by 5 and 100 < R < S < T ≤ κR. Then KR,S,T has a

decomposition into 5-cycles.

In [5] Mahmoodian introduces a new type of trade:

Definition 1.4 [5] Let M be a Latin representation of Kr,s,t. A new trade is made of n

triangles and 2n edges which can be decomposed into n 5-cycles. It has n entries from a row

of Latin rectangle M and 2n entries from M1 and/or M2 (See Figure 1.3).

Figure 1.3: A trade with n triangles and 2n edges
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Mahmoodian uses this new trade together with the old trades to decompose K7,17,19,

K11,15,25, K13,15,25, K15,17,25, and K15,19,25 into 5-cycles. He uses these trades and the Propo-

sition 1.1 to prove the following three theorems which all improve the bound on κ given in

[1].

Proposition 1.1 Let Kr,s,t be a complete tripartite graph which satisfies the conditions of

Theorem 1.1 with r, s, and t all being odd, and let r ≡ r′ (mod 10), s ≡ s′(mod 10), and

t ≡ t′(mod 10), where 1 ≤ r′, s′, t′ ≤ 9. Then the multi set {r′, s′, t′} is equal to one of the

following multisets:

{1, 1, 7}, {1, 3, 3}, {3, 9, 9}, {7, 7, 9}, {1, 5, 5}, {3, 5, 5}, {5, 5, 5}, {5, 5, 7}, {5, 5, 9}

Theorem 1.5 [5] Let Kr,s,t be a complete tripartite graph such that

(i) r, s, and t are all odd and divisible by 5; and

(ii) 75 ≤ r ≤ s ≤ t ≤ 5

3
r − 50,

Then the necessary conditions of Theorem 1.1 are sufficient.

Theorem 1.6 [5] Let Kr,s,t be a complete tripartite graph such that

(i) r, s, and t are odd and exactly one of them is not divisible by 5; and

(ii) 86 ≤ r ≤ s ≤ t ≤ 5

3
r − 57,

Then the necessary conditions of Theorem 1.1 are sufficient.

Theorem 1.7 [5] Let Kr,s,t be a complete tripartite graph such that

(i) r, s, and t are odd and none of them is divisible by 5; and

(ii) 96 ≤ r ≤ s ≤ t ≤ 5

3
r − 46,

Then the necessary conditions of Theorem 1.1 are sufficient.

9



To this point, many cases have been proved in an effort to show that the necessary

conditions developed by Mahmoodian in [4] are also sufficient. These are (assuming that the

necessary conditions are satisfied):

• Kr,r,r admits a 5-cycle decomposition if and only if 5|r;

• If Kr,s,t admits a 5-cycle decomposition, then so does Kar,as,at;

• Kr,r,s and Kr,s,s admit 5-cycle decompositions;

• Kr,s,t admits a 5-cycle decomposition if r, s, and t are all even;

• Kr,s,t admits a 5-cycle decomposition if 100 < R < S < T ≤ κR;

• K7,17,19, K11,15,25, K13,15,25, K15,17,25, and K15,19,25 admit 5-cycle decompositions;

• Kr,s,t admits a 5-cycle decomposition if:

– r, s, and t are all odd and divisible by 5 and 75 ≤ r ≤ s ≤ t ≤ 5

3
r − 50;

– r, s, and t are odd and exactly one of them is not divisible by 5 and 86 ≤ r ≤

s ≤ t ≤ 5

3
r − 57; or

– r, s, and t are odd and none of them are divisible by 5 and 96 ≤ r ≤ s ≤ t ≤
5

3
r − 46.

10



Chapter 2

A New Approach to Decomposing Complete Tripartite Graphs

In this chapter we will introduce a new approach to decomposing complete tripartite

graphs. The majority of these graphs that have not been solved are complete tripartite

graphs, Kr,s,t, with small part sizes. When beginning to work on this topic, the K7,17,19 case

was the smallest such graph. Since then, Mahmoodian has completed this case, finding a

decomposition for the graph. However, here a new approach is presented for decomposing

this graph, and hopefully also graphs similar to it.

In [5], Mahmoodian gives a decomposition of K7,17,19 using trades. Using the trades

described by Cavenagh, in [2], and his new trade from [5], both of which are described in

the previous chapter, Mahmoodian describes a set of trades on the latin representation of

K7,17,19 (See Figure 1 in the Appendices). In this representation there are two numbers in

each cell, the top number describes the trade of which the corresponding edge or 3-cycle is

a part, while the bottom number is the edge or 3-cycle that is in the graph.

The approach that I take to decompose this graph into 5-cycles relies upon edge differ-

ences. An edge difference here is defined to be j − i where j ∈ Zt is the vertex in the larger

part with which the edge is incident, and i ∈ Zs is the vertex in the smaller part with which

the edge is incident. We use differences to find a 3-path between the two largest parts that

can subsequently be joined to a pair of edges from a vertex in the smallest part to form a

5-cycle; we can then cycle, or shift the 5-cycle down through the edges of the graph to get as

many 5-cycles as possible, stopping just before the process would use an edge for a second

time if we were to continue the process. The following lemma shows that this is possible if

the part sizes are relatively prime to each other.

11



Lemma 2.1 Consider the complete bipartite graph G = Kx,y with V (G) = {(i, 1), (j, 2) | i ∈

Zx, j ∈ Zy} with x < y. If gcd(x, y) = 1, that is x and y are relatively prime to each other,

then E(G) = {((i, 1), (i, 2)) | i ∈ Zxy}, reducing the first component modulo x or y if the

second component is 1 or 2 respectively.

Proof. Assume that we have a bipartite graph with part sizes x and y with x < y and

gcd(x, y) = 1, hence x and y are relatively prime to each other. Start with the edge

{(1, 1), (1, 2)}, which has edge difference 0, and cycle this edge through the graph, thus

the second edge will be {(2, 1), (2, 2)}, and so on. This process will use exactly x edges of

difference 0 before moving to the next difference of 0 + x = x. This will use x more edges

and the next difference will be x + x = 2x reduced modulo y since the largest difference is

y − 1. So, the differences used are 0, x, 2x (mod y), 3x (mod y), . . . y − 1. Since x and y are

relatively prime, ix (mod y) 6= jx (mod y) for 0 ≤ i < j ≤ y. So, this process produces x

edges of each of y distinct differences. So, all xy edges are used exactly once.

�

Using this lemma we can see that we can find a 3-path that will cycle through the edges

between the two larger parts of the tripartite graph to get a large number of the 3-paths

that we can then make into 5-cycles.

We first need to see how many of each type of 5-cycle we need. As a reminder there are

three types of 5-cycles (see Figure 2.1).

12



(a) Type 1 (b) Type 2 (c) Type 3

Figure 2.1: Types of 5-cycles

We can see that each type uses a specific number of edges between each pair of parts of

the graph. Let the parts of Kr,s,t be R, S, and T with |R| = r, |S| = s, and |T | = t. Type

1 uses one edge between parts R and S, one edge between parts R and T , and three edges

between parts S and T . Type 2 uses one edge between parts R and S, three edges between

parts R and T , and one edge between parts S and T . Type 3 uses three edges between parts

R and S, one edge between parts R and T , and one edge between parts S and T . So, we

can make a linear system of equations connecting the number of edges that each type of

5-cycle uses with the number of edges between each pair of parts of the graph. This system

of equations is:

x+ y + 3z = rs

x+ 3y + z = rt

3x+ y + z = st

where x, y, and z are the number of 5-cycles of Types 1, 2, and 3, respectively.

13



For example, the K7,17,19 case has rs = 119, rt = 133, and st = 323. Substituting rs,

rt, and st with these numbers and solving this system of equations shows that we need 104

5-cycles of Type 1, 9 5-cycles of Type 2, and 2 5-cycles of Type 3.

We want to use the approach suggested by Lemma 2.1 to define as many 5-cycles as

possible. Removing these 5-cycles from K7,17,19 will give us what is called the leave of the

graph, (i.e., the graph induced by the edges that remain after removing all edges of the

5-cycles just defined). We know that we need 104 5-cycles of Type 1, so we start with those.

Using Lemma 2.1 define as many 5-cycles as possible by carefully choosing a 3-path between

parts S and T along with a pair of edges adjacent with the ends of the 3-paths and a vertex

in part R, then cycling the resulting 5-cycle through the graph. It is possible to define s ·
⌊
t

3

⌋
such 5-cycles in Kr,s,t using this approach. We get this many because each of these 5-cycles

takes three edges from between S and T , one edge from between R and S, one edge from

between R and T and t ≤ 3r. If this is as many or more of this type of 5-cycle that we

need, then great. However, if we still need 5-cycles of this type we need a way to get these.

I introduce a new trade that will take one 5-cycle along with seven edges and produce two

new 5-cycles, along with two edges left over, in order to increase s ·
⌊
t

3

⌋
= 17 ·

⌊
19

3

⌋
= 102

to the required 104 5-cycles of Type 1.

2.0.1 A New Trade

With this new trade we can take an existing 5-cycle along with seven edges from the

leave to get two new 5-cycles with two edges from the original 5-cycle left over. The edges

between parts S and T in the leave of the graph will be single edges and 2-paths because

there cannot be any more 3-paths and each vertex in part S will have exactly one edge

incident with it in the leave. So, we can take a 2-path and a single edge and find the 5-cycle

that contains the 3-path that connects these two components, noting that we now have a

6-path that we can then break into two 3-paths and form two new 5-cycles by finding two

pairs of edges that are each incident with one vertex in part R and form a 2-path with ends
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at the ends of the 3-paths. It may be necessary to swap the vertex in part R to which the

new endpoints are adjacent to in order for the trade to work. Note that this will always

result in one more 5-cycle than was originally defined; thus if we need only one new 5-cycle

we need only use the trade once (see Figure 2.2 for an example).

Figure 2.2: Example of the New Trade

After using the new trade we will have exactly the right number of 5-cycles of Type 1.

At this point we can look at the leave of the graph and find as many 5-cycles of the other

two types as we can. This will possibly leave some edges, the number of which will be some

multiple of 5, to be dealt with.

We deal with these edges by making an edge swap. An edge swap here is done by taking

an edge from an existing 5-cycle and placing it into a new 5-cycle, thus removing a 4-path

from the leave and replacing it with a new 4-path, which will begin and end with the same

vertices as the removed 4-path, but is incident with three new vertices in the leave. This
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gives us a slightly different leave that we can then check for additional 5-cycles. We continue

this process until the leave is empty, thus every edge of Kr,s,t is part of a 5-cycle.

This process of swapping, or removing an edge from one 5-cycle and creating another,

actually describes a trade where we take some number of 5-cycles along with the edges of the

leave, which will be a multiple of 5, and are able to decompose this new graph into 5-cycles.

2.0.2 Decomposition of K7,17,19 using this new approach

Now we will show this process using the complete tripartite graph K7,17,19. First, note

that the known necessary conditions for a 5-cycle system of Kr,s,t to exist are satisfied. First

of all, all three parts sizes are odd, thus the degree of each vertex is even. Secondly, the

number of edges is divisible by 5: |E(K7,17,19)| = rs+ st+ rt = 7 · 17 + 7 · 19 + 17 · 19 = 575.

Lastly, the inequality t ≤
(

4rs

(r + s)

)
holds, since(

4 · 7 · 17

(7 + 17)

)
=

476

24
= 19.833 > 19 = t.

Now we see how many of each type of 5-cycle we need. Using the system of linear

equations described earlier we take the part sizes r = 7, s = 17, and t = 19 and we get that

we need 104 5-cycles of Type 1, 9 5-cycles of Type 2, and 2 5-cycles of Type 3.

We start by taking as many 5-cycles as we can, so we find a 5-cycle that we can cycle

through the edges of the graph by adding 1 to each vertex incident with edges of the 5-cycle to

get the next 5-cycle. So, we begin by finding a 3-path between parts S and T that will cycle

through all the edges of the graph between parts S and T and find two further edges, one

incident with one of the ends of this 3-path and the vertex (1, 1) and the other edge incident

with the other end of the 3-path and the vertex (1, 1). In order to define as many 5-cycles as

possible in this way, we start with the 3-path P = ((1, 3), (1, 2), (8, 3), (13, 2)), noting that

the edge differences here are 0, 7, and 14. The edge differences here are important because

the difference between s and t is 2, so we pick differences that alternate in parity, hence

the even-odd-even arrangement. So, the first 5-cycle is ((1, 1), (1, 3), (1, 2), (8, 3), (13, 2)),

the second 5-cycle will be ((2, 1), (2, 3), (2, 2), (9, 3), (14, 2)). When an edge joining vertices
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in parts S and T is cycled, the difference of the resulting edge is unchanged unless the

vertex (16, 2) is cycled to the vertex (1, 2), in which case the edge difference will decrease by

t − s = 19 − 17 = 2. Note here that looking at the differences 0, 7, and 14 it takes six full

cycles for the difference 0 to shift down to 7 (namely 0 to 17 to 15 to 13 to 11 to 9 to 7) ,

six full cycles for the difference 7 to shift down to 14 (namely 7 to 5 to 3 to 1 to 18 to 16 to

14), and yet again six full cycles for the difference 14 to shift down to 0 (namely 14 to 12 to

10 to 8 to 6 to 4 to 2 to 0). Thus we get 6 · 17 = 102 5-cycles of Type 1 this way. Note that

6 =

⌊
t

3

⌋
, so this is precisely s ·

⌊
t

3

⌋
.

After we take these 5-cycles out of K7,17,19 we are left with the leave, L1, in Figure 2.3.

Figure 2.3: Leave L1
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Now, we know that we need 104 5-cycles of type 1, so we implement the new trade

described earlier, performing it twice to get two more 5-cycles. For the first implementation

we pick the 5-cycle ((1, 1), (1, 3), (1, 2), (8, 3), (13, 2)) and the edges {(1, 3), (6, 2)}, {(1, 2),

(15, 3)}, {(15, 3), (13, 2)}, {(6, 2), (1, 1)}, {(1, 1), (8, 3)}, {(3, 1), (8, 3)} and {(3, 1), (1, 2)},

though in order to use the edge {(1, 1), (8, 3)} we must take the 5-cycle ((1, 1), (3, 2), (15, 3),

(8, 2), (8, 3)) and replace it with the 5-cycle ((5, 1), (3, 2), (15, 3), (8, 2), (8, 3)). With these

edges we can get two 5-cycles instead of just the one 5-cycle that we started with; these 5-

cycles are ((1, 1), (6, 2), (1, 3), (1, 2), (8, 3)) and ((3, 1), (1, 2), (15, 3), (13, 2), (8, 3)) leaving

the edges {(1, 1), (1, 3)} and {(1, 1), (13, 2)}. For the second implementation we pick the

5-cycle ((2, 1), (2, 3), (2, 2), (9, 3), (14, 2)) and the edges {(2, 3), (7, 2)}, {(2, 2), (16, 3)},

{(16, 3), (14, 2)}, {(7, 2), (2, 1)}, {(2, 1), (9, 3)}, {(4, 1), (9, 3)} and {(4, 1), (2, 2)}, though

in order to use the edge {(2, 1), (9, 3)} we must take the 5-cycle ((2, 1), (4, 2), (16, 3), (9, 2),

(9, 3)) and replace it with the 5-cycle ((6, 1), (4, 2), (16, 3), (9, 2), (9, 3)). With these edges

we can get two 5-cycles instead of just the one 5-cycle that we started with; these 5-cycles

are ((2, 1), (7, 2), (2, 3), (2, 2), (9, 3)) and ((4, 1), (2, 2), (16, 3), (14, 2), (9, 3)) leaving the

edges {(2, 1), (2, 3)} and {(2, 1), (14, 2)}. See Figure 2.4 and 2.5 for a picture of this trade.
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Figure 2.4: First Implementation of this New Trade

Figure 2.5: Second Implementation of this New Trade
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After we implement these trades we have 104 5-cycles of Type 1 and a new leave, L2

(see Figure 2.6).

Figure 2.6: Leave L2
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From this leave we will find as many of the other two types of 5-cycles as we can. We

can get both of the 5-cycles of Type 3 that we need, these 5-cycles are ((1, 1), (13, 2), (5, 1),

(17, 3), (3, 2)), and ((2, 1), (14, 2), (6, 1), (18, 3), (4, 2)), which we remove to get a new leave,

L3 (see Figure 2.7).

Figure 2.7: Type 3 5-cycles removed and Leave L3
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Now we start looking for 5-cycles of Type 2, we can see that there are five of these

5-cycles in this leave. These 5-cycles are ((5, 1), (10, 3), (7, 1), (5, 3), (10, 2)), ((6, 1), (11, 3),

(1, 1), (6, 3), (11, 2)), (7, 1), (12, 3), (2, 1), (7, 3), (12, 2)), ((3, 1), (15, 3), (5, 1), (3, 3), (8, 2)),

and ((4, 1), (16, 3), (6, 1), (4, 3), (9, 2)), which we remove to get a new leave, L4 (see Figure

2.8).

Figure 2.8: Type 2 5-cycles removed and Leave L4
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This new leave has no 5-cycles that we can remove from the graph, so we need to start

the process of swapping one 4-path from a 5-cycle we have already defined for a 4-path in

the leave of the graph to create a new 5-cycle in order to change the leave and look for an

additional 5-cycle. We find the 4-path ((4, 1), (2, 3), (2, 1), (19, 3), (17, 2)) and see that we

need the edge {(4, 1), (17, 2)}, so we need to find the 5-cycle that contains this edge. The

5-cycle that contains {(4, 1), (17, 2)} is ((4, 1), (1, 3), (5, 2), (8, 3), (17, 2)), so we now have

the 5-cycle ((4, 1), (2, 3), (2, 1), (19, 3), (17, 2)) (see Figure 2.9). Note that this new 5-cycle

is a Type 2 5-cycle, of which we now need 3 more.

Figure 2.9: First 4-path to be replaced along with the 5-cycle needed and Leave L5
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We see that this leave has no 5-cycles that we can remove from the graph, so we make

another swap. We find the 4-path ((4, 1), (1, 3), (1, 1), (18, 3), (16, 2)) and see that we need

the edge {(4, 1), (16, 2)}, so we need to find the 5-cycle that contains this edge. The 5-cycle

that contains {(4, 1), (16, 2)} is ((4, 1), (4, 3), (4, 2), (11, 3), (16, 2)), so we now have the

5-cycle ((4, 1), (1, 3), (1, 1), (18, 3), (16, 2)) (see Figure 2.10). Note that this new 5-cycle is

a Type 2 5-cycle, of which we now need 2 more.

Figure 2.10: Second 4-path to be replaced along with the 5-cycle needed and Leave L6
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We see that this leave has no 5-cycles that we can remove from the graph, so we make

another swap. We find the 4-path ((1, 1), (13, 3), (3, 1), (1, 3), (5, 2)) and see that we need

the edge {(1, 1), (5, 2)}, so we need to find the 5-cycle that contains this edge. The 5-cycle

that contains {(1, 1), (5, 2)} is ((1, 1), (2, 3), (10, 2), (9, 3), (5, 2)), so we now have the 5-cycle

((1, 1), (13, 3), (3, 1), (1, 3), (5, 2)) (see Figure 2.11). Note that this new 5-cycle is a Type 2

5-cycle, of which we now need 1 more.

Figure 2.11: Third 4-path to be replaced along with the 5-cycle needed and Leave L7
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We see that this leave has no 5-cycles that we can remove from the graph, so we make

another swap. We find the 4-path ((4, 1), (14, 3), (2, 1), (17, 2), (8, 3)) and see that we need

the edge {(4, 1), (8, 3)}, so we need to find the 5-cycle that contains this edge. The 5-cycle

that contains {(4, 1), (8, 3)} is ((4, 1), (8, 3), (12, 2), (15, 3), (7, 2)), so we now have the 5-

cycle ((4, 1), (14, 3), (2, 1), (17, 2), (8, 3)) (see Figure 2.12). Note that this new 5-cycle is a

Type 2 5-cycle, of which we now have all 9 needed.

Figure 2.12: Fourth 4-path to be replaced along with the 5-cycle needed the Leave L8
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We see that this leave has no 5-cycles that we can remove from the graph, so we make

another swap. We find the 4-path ((7, 2), (4, 1), (4, 3), (4, 2), (11, 3)) and see that we need

the edge {(7, 2), (11, 3)}, so we need to find the 5-cycle that contains this edge. The 5-cycle

that contains {(7, 2), (11, 3)} is ((7, 2), (11, 3), (12, 2), (4, 3), (3, 1)), so we now have the

5-cycle ((7, 2), (4, 1), (4, 3), (4, 2), (11, 3)) (see Figure 2.13).

Figure 2.13: Fifth 4-path to be replaced along with the 5-cycle needed and Leave L9
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We see that this leave does have a 5-cycle that we can remove from the graph, this

5-cycle is ((3, 1), (4, 3), (12, 2), (15, 3), (7, 2)) leaving 15 edges in the leave, L10 (see Figure

2.14).

Figure 2.14: 5-cycle removed and Leave L10

28



We see that this leave has no 5-cycles that we can remove from the graph, so we make

another swap. We find the 4-path ((10, 2), (2, 3), (1, 1), (16, 2), (11, 3)) and see that we need

the edge {(10, 2), (11, 3)}, so we need to find the 5-cycle that contains this edge. The 5-cycle

that contains {(10, 2), (11, 3)} is ((10, 2), (11, 3), (5, 2), (5, 1), (4, 3)), so we now have the

5-cycle ((10, 2), (2, 3), (1, 1), (16, 2), (11, 3)) (see Figure 2.15).

Figure 2.15: Fifth 4-path to be replaced along with the 5-cycle needed and Leave L11
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We see that this leave does have a 5-cycle that we can remove from the graph, this

5-cycle is ((5, 1), (5, 2), (9, 3), (10, 2), (4, 3)) leaving 10 edges in the leave, L12 (see Figure

2.16).

Figure 2.16: 5-cycle removed and Leave L12
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We see that this leave has no 5-cycles that we can remove from the graph, so we make

another swap. We find the 4-path ((7, 1), (5, 2), (8, 3), (12, 2), (11, 3)) and see that we need

the edge {(7, 1), (11, 3)}, so we need to find the 5-cycle that contains this edge. The 5-cycle

that contains {(7, 1), (11, 3)} is ((7, 1), (11, 3), (15, 2), (18, 3), (10, 2)), so we now have the

5-cycle ((7, 1), (5, 2), (8, 3), (12, 2), (11, 3)) (see Figure 2.17).

Figure 2.17: Sixth 4-path to be replaced along with the 5-cycle needed and Leave L13
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From the 10 edges in this leave we actually have both of the 5-cycles that we need,

which is to be expected. If we had only one 5-cycle the leave would only have 5 edges and

supposedly no 5-cycles, which is impossible since this would imply that at least one vertex

had degree 1 which can not be the case since each vertex in the graph started with even

degree and whenever a 5-cycle is removed from the graph the degree of each vertex incident

with an edge in the 5-cycle decreased by precisely 2. These 5-cycles are ((7, 1), (19, 3), (5, 2),

(11, 3), (15, 2)) and ((7, 1), (10, 2), (18, 3), (15, 2), (17, 3)) (see Figure 2.18).

Figure 2.18: Final two 5-cycles
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This process of swapping one 5-cycle for another in order to create a new leave represents

a trade in which we take seven 5-cycles and twenty edges and decompose the graph induced

by these edges into 5-cycles. We take the 5-cycles ((4, 1), (1, 3), (5, 2), (8, 3), (17, 2)); ((4, 1),

(4, 3), (4, 2), (11, 3), (16, 2)); ((1, 1), (2, 3), (10, 2), (9, 3), (5, 2)); ((4, 1), (8, 3), (12, 2), (15, 3),

(7, 2)); ((7, 2), (11, 3), (12, 2), (4, 3), (3, 1)); ((10, 2), (11, 3), (5, 2), (5, 1), (4, 3)); and ((7, 1),

(11, 3), (15, 2), (18, 3), (10, 2)) along with the edges {(1, 1), (1, 3)}; {(1, 1), (17, 3)}; {(1, 1),

(18, 3)}; {(1, 1), (16, 2)}; {(3, 1), (1, 3)}; {(3, 1), (17, 3)}; {(16, 2), (18, 3)}; {(2, 1), (2, 3)};

{(2, 1), (14, 3)}; {(2, 1), (19, 3)}; {(2, 1), (17, 2)}; {(4, 1), (2, 3)}; {(4, 1), (14, 3)}; {(7, 1),

(5, 2)}; {(7, 1), (15, 2)}; {(7, 1), (17, 3)}; {(7, 1), (19, 3)}; {(5, 2), (19, 3)}; {(15, 2), (17, 3)};

and {(17, 2), (19, 3)} to get the following eleven 5-cycles ((4, 1), (2, 3), (2, 1), (19, 3), (17, 2));

((4, 1), (1, 3), (1, 1), (18, 3), (16, 2)); ((1, 1), (13, 3), (3, 1), (1, 3), (5, 2)); ((4, 1), (14, 3),

(2, 1), (17, 2), (8, 3)); ((7, 2), (4, 1), (4, 3), (4, 2), (11, 3)); ((3, 1), (4, 3), (12, 2), (15, 3), (7, 2));

((10, 2), (2, 3), (1, 1), (16, 2), (11, 3)); ((5, 1), (5, 2), (9, 3), (10, 2), (4, 3)); ((7, 1), (5, 2), (8, 3),

(12, 2), (11, 3)); ((7, 1), (19, 3), (5, 2), (11, 3), (15, 2)); and ((7, 1), (10, 2), (18, 3), (15, 2),

(17, 3)).

This uses all of the edges from the leave of the graph of K7,17,19, thus we have a decom-

position of K7,17,19 into 5-cycles.
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Chapter 3

Final Comments

Several of the cases that remain to be solved are complete tripartite graphs where the

part sizes are relatively prime to each other. It is my belief that the process detailed in

the previous chapter will define 5-cycle decompositions for any Complete Tripartite graph

G = Kr,s,t where r, s, and t are relatively prime to each other. Thus I make the following

conjecture, which is made inconsequential if Mahmoodian’s original conjecture is proved:

Conjecture 3.1 Let Kr,s,t be a complete tripartite graph with part sizes r < s < t. If r,

s, and t are pairwise relatively prime and the necessary conditions are satisfied, then Kr,s,t

admits a 5-cycle decomposition.
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Appendices

Figure 1: Covered latin representation of K7,17,19 by trades
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Figure 2: List of 5-cycles to which edges between R and S belong in Kr,s,t
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Figure 3: List of 5-cycles to which edges between R and T belong in Kr,s,t
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Figure 4: List of 5-cycles to which edges between S and T belong in Kr,s,t
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