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Abstract 

 
 

Attacks on information networks have been increasing in frequency and success in recent years.  Attack methods are 

becoming increasingly sophisticated, and network defense systems have not kept pace.  IDS and IPS systems utilizing 

signature- and statistics-based methods are not agile enough for today's environment.  This paper presents an alternative 

solution; the Intrusion-resilient, Denial-of-Service resistant, Agent-assisted Cybersecurity system (IDACS).  IDACS utilizes the 

concept of a space-time separated and jointly-evolving relationship to provide network defenses that can defend against zero-

day and metamorphic attacks.  IDACS provides network security in three key areas: attack detection and prevention, digital 

forensics to identify the origin of the attack, and deep protection of at-rest encrypted data in case of a successful network breach.  

IDACS combines these three aspects into a complex space-time relationship that provides mutual reinforcement between these 

aspects.  A mathemtical analysis of IDACS reveals that several facets of its network defense are NP-complete, presenting a 

potential attacker with an incredibly complex problem to solve.  Multiple simulations of a fielded IDACS system demonstrate the 

high attack detection rate, network traitor identification rate, and data protection capabilities provided by this system. 
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Table 1.  Summary of Notation 
Symbol Name Type Description 

SAχ Security
Agent Location Network-side authentication machine 

SSAκ Super Security Agent Location Network-side authorization machine 

DBγ Database Location Network-side data storage machine 

Userω User Human Human User of the IDACS network 

Clientρ Client computer Location Client-side computer (laptop, smartphone, etc.) 

Badgeδ User Badge Location Client-side smartcard security badge 

Pwdζ User Password Location Client-side password 

PINλ Badge PIN State Client-side PIN entered into User Badge 

UAβ User Agent virtual 
location 

Small 
software application downloaded from IDACS Network to Client 
computer to perform security operations 

Custψ Customer State Combination of Userω, Clientρ, Badgeδ, Pwdζ, PINλ, and UAβ, authorized to 
access the ID
CS Network 

Seedσ,     ̅̅ ̅̅ ̅̅ ̅
 , 

    ̅̅ ̅̅ ̅̅ ̅
 , 

    ̅̅ ̅̅ ̅̅ ̅
 ◊PINλ, 

    ̅̅ ̅̅ ̅̅ ̅
 ◊Badgeδ 

Seed State Cryptographic seed stored on Clientρ, Badgeδ, SAχ, or SSAκ or derived from 
Pwdζ or PINλ 

S, SClientρ, 

S      ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Super-state State Represents a combination of states 

Ticketψ Client Security Ticket State Data structure used to send, authenticate, and authorize a data or service 
request from Custψ to IDACS Network 

Reqψ Merchandise Request State Data request that specifies target data and desired operation 

OTPχ,     ̅̅ ̅̅ ̅̅ ̅̅  One-Time Password (OTP) State Used to authenticate Custψ with all SAχ in   ̅̅ ̅̅  

PIDε,     ̅̅ ̅̅ ̅̅ ̅̅  Pseudo-ID (PID) State Used to authorize Custψ and Reqψ with   ̅̅ ̅̅  and    ̅̅ ̅̅ ̅̅  

N Authentication Chain 
Length 

 Lenght of Authentication Chain, i.e. how many SAs and SSAs are in the 
approach and return authentication chains 

Key(A, B) Shared cryptographic key State Cryptographic key shared between locations A and B 

XV1 Xchain value State Cryptographic hash value calculated for authentication between machines in 

  ̅̅ ̅̅  and    ̅̅ ̅̅ ̅̅  

TK2 Network Security Ticket State IDACS network message containing Ticketψ and XV values 

\TK2\ Packet record State Log record of the critical attributes of an IDACS network message 

F-box(Lookup) Lookup transform Transform Based on certain inputs (super-states), 
returns a particular ordered set of 
seeds from a location or state 

F-box(Concat) Concatenate transform Transform Concatenates a set of objects 

F-box(Hash) Hash transform Transform Performs a cryptographic hash on the inputs 

F-box(Next) Next-SA-SSA transform Transform Calculates the next SA or SSA in the authentication chain 

F-box(Insert) Insert Log Record transform Transform Inserts a packet record \TK\ for received network message TK into a location's 
security logs 

F-box(Rtrv) Retrieve Log Record 
transform 

Transform Retrieves a packet record from a location's security logs based on specified 
search criteria 

F-box(Mrand) Random transform Transform Returns a random byte string 

F-box(Offset) Data Block Offset transform Transform Returns the length of the next Data Block 

F-box(XLth) Xslice Length transform Transform Returns the length of the next Xslice 

F-box(SString) Substring transform Transform Returns a substring of the input string 

F-box(Encrypt) Encrypt transform Transform Encrypts the input data with the input key 

A◊B  Notation Data block A is stored at location/state B 

A → B: C  Notation Location A sends message C to location B 

 ̅={E1, E2, …}  Notation Notation indicating a set of objects 
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1 Introduction 
 

As the world proceeds farther into the Information Age, the need to protect sensitive information is increasing quickly.  

Many organizations are storing their information in centralized secure datacenters [1].  However, news stories over the past few 

years from Google, RSA, PlayStation, and others continue to remind us that information/cyber security technology has not kept 

pace with the capabilities of attackers.  Much of the research to date in improving network defenses has focused on detecting 

and preventing “incorrect” network and database access [2] [3] [4] [5] [6], and allowing all other access to proceed through 

rigorous access control [7] [8] [9] [10] [11].  However, this security technology is unlikely to be able to defend against zero-day 

attacks and mutating malware [12], since these attacks present new footprints that have not yet been classified as malicious.   

In order to deal with these emerging threats, the research presented in this paper approaches the problem from a 

different angle: mathematically define “correct” network access behavior for protected information and services, and block all 

other behavior.  The mathematically-governed access behaviors provide sufficient complexity to be unpredictable to attackers, 

but are easily verified by the security system.  This design should provide three mathematically-related capabilities; rigorous but 

fast network access control, efficient real-time forensics capabilities, and further protection of at-rest data in case of a network 

breach.  The mathematical design that provides this level of protection is based on the theory of the Space-Time Separated and 

Jointly Evolving relationship.  This theory calls for space-time evolving relationships between authentication credentials, 

file/database systems, and protected data in the realms of space and time in order to render the breaking of the access control 

system mathematically infeasible.  Furthermore, this space-time separated and evolving relationship is encoded into network 

application layer packets, and becomes a means for rapidly tracing attacks back to the source attacker, thus providing real-time 

forensics capability.  The relationship also determines the storage locations of protected data (e.g. in a cloud) and authentication 

credentials (e.g. on security tokens) in a time-evolving manner so that it becomes infeasible for attackers to decode the dynamic 

relationships. Hence, three distinct capabilities (or modules) of a security system are described by a single principle of the space-

time separated and evolving relationship. 

A simple example helps explain the space-time separated and jointly evolving relationship concept.  Consider a 

military-style restricted area that uses a challenge-response system to unlock the doors to restricted areas.  Any user U must 

carry an electronic codebook CB which contains a list of challenges and responses.  This list is generated from a few 

cryptographic seeds unique to U as well as the U‟s PIN, the state of CB, and the state of the current door (Fig. 1).  Each door 
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between restricted areas presents U with a challenge code; U must use CB to locate the corresponding response code to open 

the door.  As soon as U opens the door, the state of the door and the state of CB are pseudo-randomly changed with forward 

secrecy, resulting in a new challenge-response list if U attempts to re-open this door.  Additionally, the cryptographic seeds 

associated with U residing on CB are changed at regular time intervals (e.g. Δt = 1 minute) with forward secrecy; these changes 

are propagated to all doors in the system.  Each door presents U with multiple challenges, and multiple doors must be opened to 

access different restricted areas.  Additionally, the system maintains logs of the histories of the CB state, the door states, and the 

challenge-response pairs; if an attacker A attempts to open a door using an older, stolen challenge-response pair, the door 

system can compare this pair to all previous challenge-response pairs to trace back where and when A stole this pair, thus 

identifying security breaches in the system. 

 
Fig. 1.  CB and door states are used to calculate the matching between challenges and responses 

This paper presents the Intrusion-resilient, Denial-of-Service resistant, Agent-assisted Cybersecurity system (IDACS).  

IDACS relies on the concept of the space-time separated and jointly evolving relationship to achieve a high level of security in 

computer and information networks.  This is accomplished in three ways.  First, the space-time separated and evolving 

relationship is used as the basis for the IDACS Network Access Control protocol.  By using multiple (space-separated) time-

evolving items for identifying an information or service access, e.g. file name and user ID, IDACS can efficiently allow legal 

access and block illegal access to the IDACS network.  Second, the mathematical properties of the space-time separated and 

evolving relationship of the IDACS Network Access Control protocol provide a number of built-in forensics capabilities.  Attacks 

by unauthorized users can be detected, blocked, traced back to the origin of the attack, and analyzed to determine what 

authentication items have been compromised, all in a very quick and efficient manner using the properties of this relationship.  

Third, IDACS uses the space-time separated and evolving relationship to protect at-rest encrypted data stored on network-

connected devices (in the cloud or on PCs or mobile devices such as tablets or smartphones).  IDACS uses jointly space-
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separated and time-evolving storage to store critical pieces of at-rest ciphertext in the IDACS network so that reassembling and 

decrypting the ciphertext without access to the distributed pieces spread in the cloud is mathematically infeasible.  The space-

time separated and evolving relationship aspect of authentication seeds is transparent to legitimate users, but it presents an 

insurmountable barrier to attackers due to the NP-completeness of generating authentication credentials as well as the encoded 

file/database systems using space/time-varying IDs, locations, and protections.  Additionally, this relationship aspect of 

authentication seeds and states contributes to the speed of the IDACS forensics capabilities.  These three built-in modules of 

IDACS are all interconnected using the space/time relationship and all provide mutual support for each other, as indicated in Fig. 

2.  The “Access Control” module will be discussed in “3 IDACS Network Description and Security”, the “Forensics” module will be 

discussed in “4 IDACS Network Attack Detection, Prevention, and Traceback”, and the “Distribution” module will be discussed in 

“5 IDACS Protection of Encrypted Data”.  Additionally, the current implementation of IDACS will be discussed in “6 

Implementation”. 

 
Fig. 2.  Relationships between built-in modules of IDACS 
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2 Related Work 
 

The research presented in the paper focuses on the detection and prevention of unauthorized network and data 

access.  Due to the current security environment, this area has been the focus of much research.  Recent research has 

especially focused on Denial of Service (DoS) attack detection [13] [14] [15] [16] [17] and botnet attack detection [18] [19] [20].  

Until now, Intrusion Detection and Prevention systems have been using two major methods for attack detection: signatures and 

statistics, which both focus on the characteristics of illegal activity.  In today‟s threat environment, however, new threats are 

cropping up at a prodigious rate, and many attacks go undetected by signature-based methods [21].  Researchers have begun 

talking of a need for a paradigm shift in the field of intrusion detection. 

The research presented in this paper presents such a paradigm shift; it applies the idea of space-time separated and 

jointly evolving relationships to mathematically define and permit only "correct" network access.  Network authentication and 

authorization are spread across space (multiple network authentication points) and time (time-evolving authentication credentials) 

with joint evolution between the space and time parameters in order to make “correct” network behavior and its history 

mathematically infeasible for an attacker to reconstruct.  While some have previously addressed the idea of space/time 

relationships [22] [23], this research will use the realms of space and time jointly in previously unconsidered ways.  This paper 

also demonstrates the real-time forensics for attack traceback capabilities and the attack report correlation and aggregation 

capabilities of the proposed system.  While digital forensics [24] [25] [26] [14] and attack report correlation [27] [28] have been 

discussed in other research, space/time relationships have not been previously leveraged to provide speed and accuracy and 

avoid ambiguity in the manner presented in this paper.  Additionally, the concept of distributed data storage has been addressed 

at length in prior research.  However, it is typically focused on scalability [29] and redundancy for integrity and availability [30] 

[31].  Little work has been done in the area of distributed storage for security purposes. 
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3 IDACS Network Description and Security 

3.1 Introduction 
With the rise of the Internet and computer networks, network security has become increasingly important.  Recent 

stories in the news have reminded us how vulnerable network-connected computer systems are, and the frightening regularity 

with which they are breached.  Many of these breaches are the result of the exploitation of zero-day and metamorphic attacks, 

using previously unseen attack vectors, or metamorphic variants of known attacks, to strike at the vulnerable underbellies of 

networks.  There is a rising need for a type of network defense system that can detect and block new and emerging threats.  The 

proposed solution here is to use a space-time separated and jointly evolving relationship to define “correct” network behavior in a 

way that is easily verified by the network but mathematically infeasible for an attacker to replicate.  This section introduces the 

Intrusion-resilient, Denial of Service resistant, Agent assisted Cybersecurity System (IDACS), which utilizes this space-time 

relationship to achieve a high level of network security.  The elements and operations of IDACS will be introduced, and the 

mathematical properties of its defenses will be analyzed and proven.  Additionally, simulations will be provide a demonstration of 

the real-world strength of IDACS against external attacks. 

3.2 IDACS Description 

3.2.1 Definitions for IDACS Elements and Operations 
The following definitions and notation are used as the basis for the description of the IDACS network: 

Definition 1 :  A location is a physical device with an associated physical location.  The physical device includes memory storage 

and data processing capabilities.  A virtual location is a software object with memory storage and data processing 

capabilities.  A virtual location is capable of residing in different physical locations. 

Definition 2 :  A state represents the PID (Definition 3) and memory contents associated with a piece of data that can change 

over time.  It can also represent the memory contents of a physical location.  The relationship between states and locations 

is detailed in Definition 17. 

Definition 3 :  A location or state may be represented by a permanent, well-protected ID, or by a time-changing Pseudo-ID (PID) 

which is derived by  

PID(A) = hash( ID(A), crypto seeds, time-changing sequence number ) 

PID(A) may also be represented implicitly as A.  Specific applications of PIDs are discussed in Definition 21. 

Definition 4 : A transform is a mathematical operation which accepts a set of states and/or locations as inputs and produces a 

set of states and/or locations as outputs.  In this paper, all transforms are represented by the notation F-box().  In this 
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notation, the parentheses contain a number of parameters which are inputs to the transform.  The first parameter defines 

the actual internal operation of the transform.  For example, a transform that computes a cryptographic hash of the inputs 

would be called F-box(hash), with “hash” being represented as Hash; the remaining parameters would detail the inputs to 

the hash function. 

output = F-box(Hash, input data) 

Transforms may be combined in a particular order in order to form new transforms.  For example, a given transform may 

involve a lookup (Lookup) followed by a concatenate (Concat) of the outputs of the lookup.  Transforms may be combined 

according to the following notation: 

output = F-box(Lookup∙Concat, input_1, input_2, input_3) 

Many transforms make changes to their input superstates (e.g. SCustψ as discussed in Definition 17), although these 

changes are abstracted in this notation. 

Definition 5 : Some variables are a function of other variables; that is, if the value of variable A is a function of the values of 

variable B and time t, then the value of A depends on the value of B at time t.  This relationship is represented by the 

notation A:f(B, t).  This relationship implies that B is the input to an F-box() that is used to calculate the value of output A. 

Definition 6 : A set of elements  ̅ = {E1, E2, … Ex} is a collection of elements.  An ordered set shall be defined as a set where 

the ordinality (order) of the elements in the set is one of the attributes of the set.  Changing the ordinality of the members of 

 ̅ creates a different set  ̅ .  Therefore, if  ̅ = {E1, E2, E3} and  ̅  = {E3, E1, E2}, then  ̅ ≠  ̅ .  Unless specified, all sets are 

unordered. 

3.2.2 IDACS System Components 
 The IDACS Network previously discussed is composed of a number of network entities.  These items are defined in 

Definition 7 to Definition 16, and they are shown graphically in Fig. 3. Given the IDACS Network, it contains the elements shown 

in Table 2. 
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Table 2.  IDACS System Elements 
 ..a set of ... termed …which are There are The set of ...is represented as 

Definition 7 servers Security Agents 
(SAs) 

locations. q SAs SAχ, χ∊[1, q]. SAχ   ̅̅ ̅̅  = {SA1, SA2,…, SAq} 

Definition 8 servers Super Security 
Agents (SSAs) 

locations. n SSAs SSAκ, κ∊[1, n]. SSAκ    ̅̅ ̅̅ ̅̅  = {SSA1, SSA2, …, SSAn} 

Definition 9 servers Databases locations. h Databases DBγ, γ∊[1, h] DBγ   ̅̅̅̅̅ = {DB1, DB2, …, DBh} 

Definition 10 humans Users humans. u Users, Userω, ω∊[1, u]. Userω     ̅̅ ̅̅ ̅̅ ̅ = {User1, …, Useru} 

Definition 11 Computers/Devices Clients locations. z Clients, Clientρ, ρ∊[1, z]. Clientρ       ̅̅ ̅̅ ̅̅ ̅̅ ̅ = {Client1, …, Clientz} 

Definition 12 smartcards Badges locations. y Badges Badgeδ, δ∊[1, y]. Badgeδ      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = {Badge1, …, Badgey} 

Definition 13 user passwords  states. ζ User Passwords Pwdζ, ζ∊[1, w]. Pwdζ    ̅̅ ̅̅ ̅̅ ̅ = {Pwd1, Pwd2, ..., Pwdw} 

Definition 14 Badge PINs  states. x Badge PINs PINλ, λ∊[1, x]. PINλ    ̅̅ ̅̅ ̅̅  = {PIN1, PIN2, ..., PINx} 
 

 

 
Fig. 3.  IDACS elements 

Property 1 : All Pwdζ∊   ̅̅ ̅̅ ̅̅ ̅ and all PINλ∊   ̅̅ ̅̅ ̅̅  are stored in the brains of Userω∊    ̅̅ ̅̅ ̅̅ ̅, and are not stored at any other 

location.  However, cryptographic hashes of all Pwdζ∊   ̅̅ ̅̅ ̅̅ ̅ and all PINλ∊   ̅̅ ̅̅ ̅̅  are stored at locations (SAs and SSAs) that 

are required to verify these Pwdζ and PINλ.  This space-separated relationship allows Pwdζ and PINλ to be verified when 

they are provided by Userω, while providing no useful information (due to the one-way property of the cryptographic hash) to 

an attacker who gains access to a location‟s memory contents. 

Definition 15 : Given the IDACS Network, when Userω seeks to use Clientρ to communicate with the IDACS servers at time t, 

Clientρ downloads a unique User Agent software program UAβ from the network.  This UAβ handles all communications 

between Clientρ and the IDACS servers.  UAβ is considered a virtual location.  UAβ is a function of Userω, Clientρ, and time, 
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thus UAβ: f(Userω, Clientρ, t).  UAβ is the entity that will be performing most of the operations on the client side in the IDACS 

Network, so the following definitions and procedures will reference a single UAβ. 

Definition 16 : Given the IDACS Network, at time t there are c sets of Userω, Clientρ, Badgeδ, Pwdζ, PINλ, and UAβ (denoted as 

{Userω, Clientρ, Badgeδ, Pwdζ, PINλ, UAβ}) that are authorized to access the network.  These combinations are termed 

Customers Custψ, ψ∊[1, c].  Custψ is considered a state.  Since Custψ represents a combination of the other parameters, 

Custψ: f(Userω, Clientρ, Badgeδ, Pwdζ, PINλ, UAβ, t). 

Definition 17 : Given the locations defined in the IDACS network, some of the following definitions will depend on the state that 

describes the configuration and memory contents of a combination of certain locations.  These states represent a 

combination of other states as defined in Definition 2, so they are termed super-states.  The symbol S represents the 

super-state covering the entire IDACS system, with other symbols representing more narrowly-defined super-states that are 

subsets of S, e.g. SClientρ represents the state of Clientρ in combination with UAβ.   

SClientρ: f(Clientρ, UAβ, t) 

The definition of S depends mainly on the memory contents of different locations and the results of the lookup transform as 

defined in Definition 24.  Similar notation is used for Badgeδ,      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , PINλ,    ̅̅ ̅̅ ̅̅ , Pwdζ,    ̅̅ ̅̅ ̅̅ ̅, SAχ,   ̅̅ ̅̅ , SSAκ, and    ̅̅ ̅̅ ̅̅ .  

These super-states represent the basis of the space-time separated and jointly evolving relationship in IDACS. 

The locations, states, transforms, and notation that are defined here and in the following sections are summarized in Table 1 for 

easy reference. 

3.2.3 IDACS Client-side Authentication and Access Control 

3.2.3.1 IDACS Client-side Elements, Operations, and Definitions 
 The definitions given in the previous section form the basis for the description of the IDACS system.  This section will 

build on those definitions and expand on the Client-side operations of IDACS.  It details how the IDACS Network Access Control 

protocol is handled for Customer authentication and authorization to allow customers to access data or services residing on a DB. 

Definition 18 : Given the set     ̅̅ ̅̅ ̅̅ ̅, in order for Custψ to initiate communications with the IDACS servers (SAs and SSAs) and 

perform network actions (Read/Write/Execute a piece of data on DBγ), Custψ must present a Client Security Ticket Ticketψ 

to the IDACS network.  Ticketψ is considered a state.  Ticketψ is a function of both Custψ and time t; thus, Ticketψ:f(Custψ, t).  

Ticketψ is the set containing the sets     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ , and the state Reqψ (all defined in the following definitions); i.e. 

Ticketψ = {    ̅̅ ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅ ̅̅ , Reqψ}. 
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Definition 19 : Given Ticketψ, it requires a Merchandise Request Reqψ to communicate the specifics of the desired network 

action.  Reqψ is considered a state.  Reqψ specifies the request type (Read/Write/Execute a piece of data on DBγ), the 

unique PID for Custψ, the Content(PIDε) tied to the specified data (as defined in Definition 22), and the data itself.  The 

mechanics of the formation of Reqψ also depend on SCustψ;  Reqψ: f(SCustψ,     ̅̅ ̅̅ ̅̅ ̅̅ ). 

Definition 20 : Given Ticketψ, it requires a set     ̅̅ ̅̅ ̅̅ ̅̅  of q One-Time Passwords (OTP) OTPχ, χ∊[1, q].  Since all OTPχ are data 

structures, they are considered states.  These OTPχ are used for pairwise authentication between Custψ and each SAχ.  

Each calculated OTPχ is a function of the Custψ calculating it, the SAχ which will be verifying it, and time t.; thus, 

OTPχ:f(Custψ, SAχ, χ, t).  The set     ̅̅ ̅̅ ̅̅ ̅̅  of OTPχ for all SAχ, which is calculated by the UAβ associated with Custψ is 

represented as     ̅̅ ̅̅ ̅̅ ̅̅  = {OTP1, OTP2, …, OTPq}.     ̅̅ ̅̅ ̅̅ ̅̅ : f(Custψ, S  ̅̅̅̅ , t).  Algorithm 2 illustrates the procedure by which 

OTPχ is calculated. 

Definition 21 : Given Ticketψ, it also requires a set     ̅̅ ̅̅ ̅̅ ̅̅  of r Psuedo IDs (PID) PIDε, ε∊[1, r].  Since all PIDε are data structures, 

they are considered states.  These PIDε are used for access control; they verify the identity of Custψ as well as the 

permissions of Custψ to perform the requested network action in Reqψ, and they identify the information associated with 

Reqψ residing on DBγ.  Each calculated PIDε is a function of the associated Custψ and Reqψ, the index ε, and time t.  Thus, 

PIDε: f(Custψ, Reqψ, ε, t).  The set     ̅̅ ̅̅ ̅̅ ̅̅  of PIDε calculated by the UAβ associated with Custψ to authorize with the network 

is represented as     ̅̅ ̅̅ ̅̅ ̅̅  = {PID1, PID2, …, PIDr}.      ̅̅ ̅̅ ̅̅ ̅̅ : f(Custψ, Reqψ, t).  Algorithm 3 illustrates the procedure by which 

PIDε is calculated. 

Definition 22 : Given     ̅̅ ̅̅ ̅̅ ̅̅ , one  of the PIDε in     ̅̅ ̅̅ ̅̅ ̅̅  is tied to the specific piece of data (merchandise) specified in Reqψ.  

This particular PIDε is called the Content PID; it is represented by Content(PIDε).  The Content PID indicates the data being 

accessed in a Read or Execute operation, or establishes a data PID for future reference in a Write operation.  Permission is 

granted to different Custψ to access different pieces of data residing on DBγ; checking the permissions of Custψ to access a 

requested piece of data is part of the IDACS Network Access Control mechanism.  To protect Content(PIDε) for data 

residing in   ̅̅̅̅̅ from attacks against relatively less-protected SAs, the information needed to calculate Content(PIDε) resides 

only on the relatively better-protected SSAs; only SSAs are capable of verifying Content(PIDε).  This is reflected in the 

simulations in “3.4 Simulations”. 

Property 2 : Although     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  are calculated similarly, they serve separate functions.  The elements of     ̅̅ ̅̅ ̅̅ ̅̅  are 

used for authentication to verify the identity of Custψ, while the elements of     ̅̅ ̅̅ ̅̅ ̅̅  are used for access control to verify that 
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Custψ is allowed to perform the action specified in Reqψ on the data specified by Content(PIDε).      ̅̅ ̅̅ ̅̅ ̅̅  provides space-

time separated and evolving authentication (Property 3), while     ̅̅ ̅̅ ̅̅ ̅̅  provides per-customer and per-data access control 

which enforces broader group-based access policies. 

Notation: When a piece of data A is stored at a location or state B at time t, this is indicated by the notation A◊(B, t).  However, 

the time parameter is often abstracted, so the notation is simplified to A◊B. 

Definition 23 : Given       ̅̅ ̅̅ ̅̅ ̅̅ ̅, every Clientρ can store up to ς cryptographic seeds Seedσ, σ∊[1, ς].  Seedσ is considered to be a 

state.    The set of all Seedσ◊Clientρ  is represented as     ̅̅ ̅̅ ̅̅ ̅◊Clientρ = {Seed1◊Clientρ, Seed2◊Clientρ, …, Seedς◊Clientρ}.  

These relationships are represented by Seedσ◊Clientρ: f(Clientρ, t) and     ̅̅ ̅̅ ̅̅ ̅◊Clientρ: f(Clientρ, t).    All Badgeδ can also 

store a set     ̅̅ ̅̅ ̅̅ ̅◊Badgeδ of Seedσ◊Badgeδ, so Seedσ◊Badgeδ: f(Badgeδ, t) and     ̅̅ ̅̅ ̅̅ ̅◊Badgeδ: f(Badgeδ, t).  Additionally, 

Seedσ can be derived from Pwdζ and PINλ by applying the cryptographic hash function to a concatenation of Pwdζ or PINλ 

with pseudo-random nonces and time-evolving sequence numbers.  Thus, Seedσ◊Pwdζ: f(Pwdζ, t),     ̅̅ ̅̅ ̅̅ ̅◊Pwdζ: f(Pwdζ, t), 

Seedσ◊PINλ: f(PINλ, t), and     ̅̅ ̅̅ ̅̅ ̅◊PINλ: f(PINλ, t).   

Definition 24 : Given the sets    ̅̅ ̅̅ ̅̅ ̅,    ̅̅ ̅̅ ̅̅ ,      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , or       ̅̅ ̅̅ ̅̅ ̅̅ ̅, each Pwdζ, PINλ, Badgeδ, or Clientρ stores (q + r) ordered sets 

    ̅̅ ̅̅ ̅̅ ̅
      or     ̅̅ ̅̅ ̅̅ ̅

      each consisting of j seeds Seedσ◊Pwdζ, Seedσ◊PINλ, Seedσ◊Badgeδ, or Seedσ◊Clientρ.  Each 

set is needed to calculate one OTPχ or one PIDε, respectively. The F-box(lookup) transform takes the item type (OTP or 

PID), the index (χ or ε), the super-state SClientρ, SBadgeδ, SPINλ, or SPwdζ (which provides the seeds and states), and 

SCustψ (which determines the order of the seeds in different     ̅̅ ̅̅ ̅̅ ̅
      and     ̅̅ ̅̅ ̅̅ ̅

     ) as inputs; and outputs the 

ordered set of Seedσ which corresponds to the item type and index.  This transform is represented by 

    ̅̅ ̅̅ ̅̅ ̅
     ◊Clientρ = F-box(Lookup, SCustψ, SClientρ, OTP, χ) 

where SClientρ can be replaced by SBadgeδ, SPINλ, or SPwdζ, and (OTP, χ ) may be replaced by (PID, ε).  For some 

combinations of inputs, the output set may be an empty set, i.e. j = 0 and     ̅̅ ̅̅ ̅̅ ̅
     ◊Clientρ = Ø.  

Property 3 : The members of     ̅̅ ̅̅ ̅̅ ̅
 ◊Clientρ,     ̅̅ ̅̅ ̅̅ ̅

 ◊Badgeδ, etc. are not stored consecutively in their respective locations; 

they are stored randomly in that location‟s memory.  Additionally, based on the IDACS state history and nonces, their 

positions in memory are changing in time with forward secrecy.  This provides the space-time separation and the space-

time joint evolution of IDACS.  Because of this, the F-box(Lookup) transform is non-trivial for an attacker to break and gives 

the strength to Theorem 1. 
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Definition 25 : Given a group of n generic objects O1, O2, …, On, the F-box(concatenate) transform accepts this group of objects 

as input and outputs the objects concatenated into an ordered set.  The generic objects may be individual objects, or they 

may be sets of objects. In equation notation, the “concatenate” is represented by Concat. For example, 

    ̅̅ ̅̅ ̅̅ ̅
      = F-box(Concat,     ̅̅ ̅̅ ̅̅ ̅

     ◊Clientρ,     ̅̅ ̅̅ ̅̅ ̅
     ◊Badgeδ ,     ̅̅ ̅̅ ̅̅ ̅

     ◊PINλ ,     ̅̅ ̅̅ ̅̅ ̅
     ◊Pwdζ ) 

   ̅̅ ̅̅ ̅̅
  = F-box(Concat, OTP1, OTP2, …, OTPn) 

Definition 26 : The F-box(random) transform generates a random byte array.  For this research, the array is typically 256 bits 

long (corresponding to the SHA-256 hash algorithm). 

XV1 = F-box(Mrand) 

Definition 27 : Given a generic set of inputs, the F-box(hash) transform applies a cryptographic hash function (e.g. SHA-256) to 

a byte array representation of the inputs and outputs the resulting byte array. 

output = F-box(Hash, inputs) 

A specific instance of this transform operates as follows.  Given an item type OTP or PID of index χ or ε, the  transform 

accepts the item type(OTP or PID), the index (χ or ε), and the associated set of seeds i.e     ̅̅ ̅̅ ̅̅ ̅
      or     ̅̅ ̅̅ ̅̅ ̅

      as 

inputs.  The output OTPχ or PIDε is calculated by applying the cryptographic hash to     ̅̅ ̅̅ ̅̅ ̅
      or     ̅̅ ̅̅ ̅̅ ̅

     combined 

with well-known (system-wide for IDACS and publically known) values and a time-evolving sequence number.  Different but 

well-known values and order of the seeds are used for each OTPχ or PIDε; thus, each OTPχ or PIDε is calculated differently, 

but the calculation method is well-known.  The time-evolving sequence number is used to accomplish anti-replay 

functionality of the output. 

OTPχ = F-box(Hash, SCustψ,     ̅̅ ̅̅ ̅̅ ̅
     , OTP, χ) 

Property 4 : Due to Property 3, the outputs of the F-box(Lookup) transform and the composition of     ̅̅ ̅̅ ̅̅ ̅
      and     ̅̅ ̅̅ ̅̅ ̅

      

are drawn from space-separated elements that are time-evolving with forward secrecy.  Additionally, when a OTPχ or PIDε is 

being calculated using     ̅̅ ̅̅ ̅̅ ̅
      or     ̅̅ ̅̅ ̅̅ ̅

      as inputs to F-box(Hash), a time-evolving sequence number is used as 

another of the inputs.  As a result, the     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  that depend on these values are also space-time separated and 

jointly evolving.  An attacker who intercepts     ̅̅ ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅ ̅̅ , or any     ̅̅ ̅̅ ̅̅ ̅
      or     ̅̅ ̅̅ ̅̅ ̅

     will be unable to use them 

after the sequence number or any of the Seedσ have changed, as they will be invalid.  Additionally, an attacker cannot use 
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an intercepted OTPχ or PIDε to obtain any information regarding the Seedσ used to calculate them (due to the one-way 

property of the cryptographic hash function). 

Given Definition 17, Definition 24, and the related Property 3, the following Theorems may be formed.  Both of these Theorems 

are proved in "3.3 Proofs for Theorem 1 and Theorem 2": 

Theorem 1 : Given the F-box(Lookup) transform, which takes as inputs (a) a super-state SClientρ, SBadgeδ, SPINλ, or 

SPwdζ (which contain cryptographic seeds), (b) the super-state SCustψ, and (c) an OTP or PID index ((b) and (c) are 

used together to determine the identity and order of the seeds returned by the F-box(Lookup) transform).  This 

transform returns an ordered subset of the seeds derived from (a).  An attacker who wishes to recreate the F-

box(Lookup) transform and has access to (c) and all or part of (a) but not (b) faces an NP-complete problem due to the 

order of the output seeds. 

 

Theorem 2:  Given the IDACS system and an attacker who is trying to calculate     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  without access to the 

super-states SClientρ, SBadgeδ, SPINλ, SPwdζ, or SCustψ.  Such an attacker must reassemble SCustψ (which 

contains SClientρ, SBadgeδ, SPINλ, and SPwdζ) in order to successfully calculate     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ .  It is an NP-

complete problem for the attacker to reassemble SCustψ or any other super-state. 

 

3.2.3.2 IDACS Client-side Algorithms 
 The Client-side operations for IDACS network authentication and authorization may now be detailed in terms of these 

definitions.  Algorithm 1 outlines the entire IDACS Network Access Control procedure, and the Client-side operations are detailed 

in Algorithm 2 and Algorithm 3.  The network-side operations will be detailed in the next section. 

Notation: The notation A → B: C indicates that message C is being sent from party A to party B. 

In Algorithm 1, UAβ first calculates the     ̅̅ ̅̅ ̅̅ ̅̅  (1) and     ̅̅ ̅̅ ̅̅ ̅̅  (2) needed to authenticate the data request Reqψ (3) with 

the IDACS network and packages them together into Ticketψ (4).  Custψ then sends Ticketψ to a pre-determined SA1 (5) to begin 

the network access control process.  The network access control module defined in Algorithm 4 uses SAs and SSAs to 

authenticate Ticketψ as many times as necessary (as defined by the authentication chain length, N) according to the specific 

IDACS implementation (7 and 8) using randomly generated XV1 and XV4 values (6) for the first iteration of the module.  If the 

network access control module fails at any time, the data request is dropped (10).  After the network access control module has 

been run several times, the final SSA to handle Ticketψ sends Reqψ to DBγ for processing (11).  Algorithm 1 (and all contained 

sub-algorithms) is outlined in Fig. 4.  The     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  used in Algorithm 1 are calculated according to Algorithm 2 and 

Algorithm 3. 
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In Algorithm 2, if     ̅̅ ̅̅ ̅̅ ̅̅  is being calculated by Custψ (1), each individual OTPχ (2) is calculated by gathering the 

relevant seeds from the relevant Clientρ, Badgeδ, PINλ, and Pwdζ (3), and hashing them together (4).  The individual OTPχ are 

concatenated together to generate the set     ̅̅ ̅̅ ̅̅ ̅̅  (5).  If the calculation is being performed by SAχ (7), then only OTPχ is needed 

to be authenticated rather than the entire set     ̅̅ ̅̅ ̅̅ ̅̅ .  Thus, all of the relevant seeds are gathered and hashed together to 

generate OTPχ (8).  On the other hand, the entire set     ̅̅ ̅̅ ̅̅ ̅̅  is generated by Custψ and the entire set is authenticated by each 

SAχ or SSAκ (excluding Content(PIDε), which is only checked by SSAκ).  In Algorithm 3, Custψ gathers all of the relevant seeds 

from Clientρ, Badgeδ, PINλ, and Pwdζ (3) and hashes them together (4) for each individual PIDε (1).  Any SAχ or SSAκ gathers the 

seeds and hashes them together (6) to generate each individual PIDε (1).  Finally, all PIDε are concatenated to form     ̅̅ ̅̅ ̅̅ ̅̅  (7).  

The procedure for calculating a single OTPχ at Custψ in Algorithm 2 is outlined in Fig. 5; the procedure for calculating a single 

PIDε at Custψ is similar. 

Algorithm 2.  calculate_OTPs() 
input: location, Custψ 
output:     ̅̅ ̅̅ ̅̅ ̅̅  or OTPχ 

  
1 if (location == SCustψ) 

2 for χ=1 to q 
3     ̅̅ ̅̅ ̅̅ ̅OTP, χ = F-box(Lookup∙C, SCustψ, OTP, χ) 

4 OTPχ = F-box(Hash, SCustψ,     ̅̅ ̅̅ ̅̅ ̅OTP, χ, OTP, χ) 

 end 
5     ̅̅ ̅̅ ̅̅ ̅̅  = F-box(Concat, OTP1, OTP2, …, OTPq) 

6 return     ̅̅ ̅̅ ̅̅ ̅̅  

  
7 else if (location == SSAχ) 

8 OTPχ = F-box(Lookup∙Hash, PID(Custψ), SSAχ, OTP,  χ) 

9 return OTPχ 
 end 

 

Algorithm 3.  calculate_PIDs() 
input: location, Custψ 
output:     ̅̅ ̅̅ ̅̅ ̅̅  

  
1 for ε=1 to r 
2 if (location == SCustψ) 

3     ̅̅ ̅̅ ̅̅ ̅
PID,ε = F-box(Lookup∙C, SCustψ, PID, ε) 

4 PIDε = F-box(Hash, SCustψ,     ̅̅ ̅̅ ̅̅ ̅
PID,ε, PID, ε) 

5 else if (location == SSAχ or SSSAκ) 

6 PIDε = F-box(Lookup∙Hash, PID(Custψ), Slocation, PID, ε) 

 end 
 end 
  
7     ̅̅ ̅̅ ̅̅ ̅̅  = F-box(Concat, PID1, PID2, …, PIDr) 

8 return PIDψ 
 

Algorithm 1. IDACS Network Access Control procedure 
input: Custψ, S  ̅̅̅̅ , S   ̅̅ ̅̅ ̅, S  ̅̅ ̅̅ , data operation (Read/Write/Execute), data, SA1, N 

output: Custψ, S  ̅̅̅̅ , S   ̅̅ ̅̅ ̅, S  ̅̅ ̅̅  

  
 at UAβ 
1     ̅̅ ̅̅ ̅̅ ̅̅  = calculate_OTPs(SCustψ, Custψ) 

2     ̅̅ ̅̅ ̅̅ ̅̅  = calculate_PIDs(SCustψ, Custψ) 

3 Reqψ = F-box(Concat, (Read/Write/Execute), PID(Custψ), Content(PIDε), data) 
4 Ticketψ = F-box(Concat,     ̅̅ ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅ ̅̅ , Reqψ) 

  
5 Custψ → SA1 : Ticketψ 
  
6 XV1 = F-box(Mrand)        XV4 = F-box(Mrand) 
7 for n = 1 to N 
8 { XV1, XV4, SA1, SSA2, passed } = run_auth_chain(SA1, XV1, XV4, Ticketψ) 
9 if (passed =
 false) 
10 exit al
orithm 
 end 
 end 
  
11 SSA2 → DBγ : Reqψ 
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Fig. 4.  IDACS Network Access Control top-level view 

 
Fig. 5.  Procedure to calculate a single OTPχ at Custψ 

 

3.2.4 IDACS Network-side Authentication and Access Control 

3.2.4.1 IDACS Network-side Elements, Operations, and Definitions 
 The previous section outlined the IDACS Client-side authentication and authorization procedures for gaining access to 

data stored on a DB.  This section will discuss the corresponding Network-side procedures that verify     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  in order 

to authenticate Custψ and grant DB access. 

Definition 28 : Given   ̅̅̅̅  and    ̅̅ ̅̅ ̅, each pair of two machines from these sets share a cryptographic key.  This key is used for 

encryption and cryptographic hash functions.  A cryptographic key shared between machines A and B is represented as 

Key(A, B).  These shared keys are referenced in Algorithm 4. 
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Definition 29 : Given Ticketψ,   ̅̅̅̅ , and    ̅̅ ̅̅ ̅, Ticketψ must be authenticated (    ̅̅ ̅̅ ̅̅ ̅̅ ) and authorized (    ̅̅ ̅̅ ̅̅ ̅̅ ) by multiple SAχ 

and SSAκ (space separation and redundancy) both before it reaches   ̅̅ ̅̅  and before it returns to Custψ.  As Ticketψ is 

passed through this authentication chain, there is also an authentication method for messages passed between the SAχ 

and SSAκ to verify the identity of the sending SAχ or SSAκ.  Xchain Values are used in these messages for inter-machine 

authentication.  Details on how these values are calculated are included in Algorithm 4.  The notation for these values is 

XVA, A ∊ [1, 6] as described in Algorithm 4. 

Definition 30 : Given Ticketψ which is sent by Custψ to the IDACS network, the    ̅̅ ̅̅ ̅̅
  and    ̅̅ ̅̅ ̅̅

  contained in Ticketψ must be 

verified by an authentication chain of multiple SAχ and SSAκ before it is sent to DBγ (as detailed in Algorithm 1 and Definition 

29).  The order in which SAχ and SSAκ verify Ticketψ is pseudo-random, but calculated by the F-box(next-SA-SSA) 

transform.  This transform accepts Ticketψ, the current location SAχ or SSAκ, and SSA or SSSA as inputs and outputs 

index χ or κ for the next-hop SA or SSA (next-hop SAχ ∊   ̅̅̅̅ , next-hop SSAκ ∊    ̅̅ ̅̅ ̅).  The transform applies F-box(Hash) 

to Ticketψ and then calculates the Hamming distance between F-box(Hash, Ticketψ)and PID(SAχ) or PID(SSAκ) for χ∊[1, q] 

and κ∊[1, n].  The index χ or κ where PID(SAχ) or PID(SSAκ) has the lowest Hamming Distance (excluding all SAχ or SSAκ 

already in the authentication chain) is the index of the next-hop SA or SSA.  The F-box(next-SA-SSA) is represented in 

equation notation by 

χ = F-box(Next, Ticketψ, SAχ, S  ̅̅̅̅ ) 

PID(SAχ) or PID(SSAκ) are shared among all SAχ or SSAκ, but they are not shared with Custψ.  The F-box(next-SA-SSA) 

transform may only occur at SA or SSA locations. 

Definition 31 : Given Ticketψ and XV values, the complete messages passed between multiple SAχ and SSAκ are termed 

Network Security Tickets, denoted TKA, A ∊ [1, 5].  The details are shown in Algorithm 4.  TKA is a concatenation of the 

relevant Ticketψ and Xchain values. 

Definition 32 : Given network message B, any SAχ or SSAκ processing B will record a Security Ticket Log Record \B\ detailing 

the vital information regarding B (e.g. the time B was processed, the IP address of the Custψ that sent B, etc.)  B may be 

any Ticketψ or TK network messages.  The logs residing on SAχ or SSAκ are part of SSAχ or SSSAκ. 

Definition 33 : Given Definition 32, any SA or SSA that processes a network message (e.g. TK) records a log record \TK\ using 

the F-box(insert-log-record) transform.  This transform accepts SSAχ or SSSAκ and TK as inputs and outputs an updated 
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version of SSAχ or SSSAκ which contains \TK\.  The F-box(insert-log-record) transform is represented in equation notation 

by 

SSAχ = F-box(Insert, SSAχ, TK) 

Definition 34 : Given Definition 33, any SAχ or SSAκ may search its own log entries for a given \TK\ that matches certain input 

parameters such as time, IP address of sending Custψ, etc.  These input parameters are not rigidly defined, and may exist 

in many combinations.  The F-box(retrieve-log-record) transform accepts SSAχ or SSSAκ and a list of conditions as inputs 

and outputs one or more matching log records \TK\, or „null‟ if no matching records are found.  This transform is represented 

in equation notation by 

\TK\ = F-box(Rtrv, SSAχ, {conditions}) 

3.2.4.2 IDACS Network-side Algorithms 
 The network-side authentication and authorization process described in Algorithm 1 is carried out in the 

“run_auth_chain()” function described in Algorithm 4.  

The initial inputs to Algorithm 4 are handled separately depending on if this is the first call of the function (Algorithm 1 

(8) with n=1) or a subsequent call.  For the first call of the function, SA1 has been randomly selected by Custψ, Ticketψ has been 

sent from Custψ to SA1 (Algorithm 1 (5) connected to Algorithm 4 (2)), and XV1 and XV4 have been randomly generated by SA1 

and SSA1, respectively (Algorithm 1 (6) connected to Algorithm 4 (1) and (7)). For subsequent function calls, SA1 and SSA1 in the 

current Algorithm 4 function call are SA2 and SSA2 from the previous Algorithm 4 function call, and Ticketψ resides at SA1 as a 

consequence; XV1 and XV4 in the current Algorithm 4 function call are XV2 and XV5 from the previous Algorithm 4 function call, 

respectively (Algorithm 1 (8) connected to Algorithm 4 (1) and (3)) (see Fig. 6 and Fig. 7 for details on how consecutive calls to 

Algorithm 4 are linked). 
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The main body of Algorithm 4 is represented graphically in Fig. 6.  First, SA1 records a security log record of Ticketψ (4).  

Next, SA1 verifies the associated OTPχ and also     ̅̅ ̅̅ ̅̅ ̅̅  extracted from Ticketψ; if the verification fails, then the function returns 

“false” (5).  The next-hop SA2 and SSA1 are determined (6), and XV2 is calculated (7).  TK1 is formed and sent to SA2 (8), and 

TK2 is formed and sent to SSA1 (9).  SSA1 mirrors this process; SSA1 records a security log record of TK2 (10) and verifies  

Algorithm 4.  run_auth_chain() 

input: SA1, XV1, XV4, Ticketψ 
output: XV2, XV5, SA2, SSA2, passed 
  
 At beginning of algorithm, the following values reside at the indicated locations after the last iteration of this 

algorithm, or are sent to (Ticketψ) or generated at (XV1 and XV4) the indicated locations during the first iteration of 
the algorithm 

1 XV1 ◊ SA1 
2 Ticketψ ◊ SA1 
3 XV4 ◊ SSA1 
  
 at SA1 
4 SSA1 = F-box(Insert, SSA1, Ticketψ) 

5 if (check_OTP_PID(SA1,Ticketψ, Custψ) == false)     return (passed = false) 
6 SA2 = F-box(Next, Ticketψ, SA1, S  ̅̅̅̅ )                          SSA1 = F-box(Next, Ticketψ, SA1, S   ̅̅ ̅̅ ̅) 

7 XV2 = F-box(Hash, XV1, Key(SA1, SA2)) 
  
8 SA1 → SA2: TK1 = { Ticketψ, XV1, XV2 }  
9 SA1 → SSA1: TK2 = { Ticketψ, XV2 } 
  
 at SSA1 
10 SSSA1 = F-box(Insert, SSSA1, TK2) 

11 if (check_OTP_PID(SSA1, Ticketψ ◊ TK2, Custψ) == false)     return (passed = false) 
12 SA2 = F-box(Next, Ticketψ ◊ TK2, SSA1, S  ̅̅̅̅ )                       SSA2 = F-box(Next, Ticketψ ◊ TK2, SSA1, S   ̅̅ ̅̅ ̅) 

13 XV3 = F-box(Hash, XV2, Key(SSA1, SA2))                                XV5 = F-box(Hash, XV4, Key(SSA1, SSA2)) 
  
14 SSA1 → SA2: TK3 = { Ticketψ, XV3, XV5 } 
15 SSA1 → SSA2: TK4 = { Ticketψ, XV4, XV5 } 
  
 at SA2 
16 SSA2 = F-box(Insert, SSA2, TK1, TK3) 

17 if (XV2 ◊ TK1 != F-box(Hash, XV1 ◊ TK1, Key(SA1, SA2)) or (XV3 ◊ TK3 != F-box(Hash, XV2 ◊ TK1, Key(SSA1, SA2)) 
18 report_and_trace_attack()     return (passed = false) 
 end 
19 SSA2 = F-box(Next, Ticketψ, SA2, S   ̅̅ ̅̅ ̅) 

20 XV6 = F-box(Hash, XV5, Key(SA2, SSA2)) 
  
21 SA2 → SSA2: TK5 = { Ticketψ, XV6 } 
  
 at SSA2 
22 SSSA2 = F-box(Insert, SSA2, TK4, TK5) 

23 if (XV5 ◊ TK4 != F-box(Hash, XV4 ◊ TK4, Key(SSA1, SSA2)) or (XV6 ◊ TK5 != F-box(Hash, XV5 ◊ TK4, Key(SA2, SSA2) 
24 report_and_trace_attack()     return (passed = false) 
 end 
  
25 return (passed = true) 
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    ̅̅ ̅̅ ̅̅ ̅̅  extracted from Ticketψ which is extracted from TK2 (11).  SSA1 then calculates the next-hop SSA2 and SA2 (12) and also 

calculates XV3 and XV5 (13).  SSA1 then forms TK3 and sends it to SA2 (14) and forms TK4 and sends it to SSA2 (15). 

While SA1 and SSA1 verify OTPχ and     ̅̅ ̅̅ ̅̅ ̅̅ , SA2 and SSA2 verify the Xchain values (however, SA2 and SSA2 will also 

be verifying OTPχ and     ̅̅ ̅̅ ̅̅ ̅̅  as SA1 and SSA1 in the next function call of Algorithm 4).  SA2 first records security log records for 

TK1 and TK3 (16).  Next, the relationship between XV1 and XV2 and also the relationship between XV2 and XV3 are verified (17).  

If the XV relationships fail verification, the authentication process is stopped (18).  The next-hop SSA2 (19) and XV6 (20) are both 

calculated.  Finally, TK5 is formed and sent to SSA2 (21).  SSA2 verifies its received Xchain values in a similar fashion (22–24).  If 

all of the authentication checks and Xchain verifications pass, the function returns successfully (25). 

 

 

Fig. 6.  Mutual authentication in authentication chain Fig. 7.  Cascading the run_auth_chain() 

algorithm 
 
Algorithm 5. check_OTP_PID() 

input: location, Ticketψ, Custψ 
output: passed 
  
  
1 if (location     ̅̅ ̅̅ ) and (OTPlocation◊Ticketψ != calculate_OTPs(Slocation, Custψ)) 

2 report_and_trace_attack()     return (passed = false) 
 end 
3 if(    ̅̅ ̅̅ ̅̅ ̅̅  ◊ Ticketψ != calculate_PIDs(Slocation, Custψ)) 

4 report_and_trace_attack()     return (passed = false)  
 end 
  
5 return (passed = true) 

 Algorithm 5 outlines the procedure used by SAs and SSAs to verify the     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  contained in Ticketψ.  The 

OTPχ associated with SAχ is verified by each SAχ (1), and the entire     ̅̅ ̅̅ ̅̅ ̅̅  is verified by each SAχ and SSAε (3) (excluding 

Content(PIDε), which is only checked by SSAκ).  If either of these checks fail, the “report_and_trace_attack()” function is called to 
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identify the source of error (which is assumed to be an attacker with incomplete authentication credentials).  The details of this 

algorithm are discussed in "4.4 Attack Traceback". 

 The following properties help to explain the operation and purpose of the Xchain values. 

Property 5 : The procedure outlined in Algorithm 4 provides mutually-supported authentication between the SAs and SSAs 

authenticating Ticketψ.  Fig. 6 graphically illustrates the XV portion of Algorithm 4 run_auth_chain().  During the first iteration 

of run_auth_chain(), XV1 and XV4 are randomly generated; in subsequent iterations, they are given the values of XV2 and 

XV5 from the previous iteration. SA1 calculates XV2 by hashing XV1 with Key(SA1, SA2), and sends both values to SA2.  SA2 

is able to verify XV2 using its own copy of Key(SA1, SA2), which verifies the identity of SA1.  SA1 also sends XV2 to SSA1, 

which calculates XV3 by hashing XV2 with Key(SSA1, SA2) and sends it to SA2.  SA2 is able to verify the SA1-SSA1 

connection as well as the identity of SSA1 by verifying XV3.  Similarly, SSA1 calculates XV5 by hashing XV4 with Key(SSA1, 

SSA2) and sends both XV4 and XV5 to SSA2 but only XV5 to SA2.  SA2 calculates XV6 by hashing XV5 with Key(SA2, SSA2) 

and sends it to SSA2.  SSA2 is then able to verify the identity of SSA1 by verifying XV5 and is able to verify the SSA1-SA2 link 

as well as the identity of SA2 by verifying XV6.  The run_auth_chain() algorithm may be cascaded across N SAs and SSAs 

to accomplish the desired number of authentications (Fig. 7).  In this way, the authentication chain provides mutually-

supported space-separated authentication that is time-evolving between the SAs and SSAs. 

Property 6: When the run_auth_chain() algorithm is cascaded, XV2 and XV5 of one iteration are, in fact, the XV1 and XV4, 

respectively, for the next iteration; cascaded iterations of the run_auth_chain() algorithm are seamlessly integrated (Fig. 7).  

This is demonstrated at (8) in Algorithm 1.  In this way, consecutive iterations provide mutually-connected authentication for 

each other. 

3.3 Proofs for Theorem 1 and Theorem 2 

3.3.1 Proofs 

Consider the following scenario: an attacker wishes to replicate the IDACS Network Access Control procedure for a 

legitimate Custψ in order to impersonate Custψ and gain access to Custψ's data residing on DBγ.  In order to impersonate Custψ, 

the attacker requires correctly generated    ̅̅ ̅̅ ̅̅
  and    ̅̅ ̅̅ ̅̅

  for Custψ.  To accomplish this, the attacker requires two things: a) 

the cryptographic seeds residing on/derived from Clientρ, Badgeδ, PINλ, and Pwdζ (i.e.      ̅̅ ̅̅ ̅̅ ̅
 ◊Clientρ,     ̅̅ ̅̅ ̅̅ ̅

 ◊Badgeδ, 

    ̅̅ ̅̅ ̅̅ ̅
 ◊Pwdζ, and     ̅̅ ̅̅ ̅̅ ̅

 ◊PINλ) and b) the order in which these seeds must be hashed to generate all OTPχ and PIDε (i.e., the 

output of the F-box(Lookup) transform in Algorithm 2 (3) and Algorithm 3 (3)).  An attacker who is able to steal or clone a Clientρ, 
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Badgeδ, Pwdζ, or PINλ can gain access to (a) through memory scraping or other memory access strategies.  However, in order to 

obtain (b), the attacker needs access to SCustψ, which is the critical input to the F-box(Lookup) transform.  Now, SCustψ is 

composed of SClientρ, SBadgeδ, SPwdζ, and SPINλ; the entire SCustψ does not reside with any one of these locations or 

states.  Therefore, an attacker who does not possess all four of these items cannot recreate SCustψ apart from a brute-force 

attack; such an attacker must resort to other means to recreate (b) (i.e. the output of the F-box(Lookup) transform). 

The attacker faces an order-reassembly problem; this problem can be represented using graph theory.  The group of 

seeds     ̅̅ ̅̅ ̅̅ ̅
  is represented as a set of vertices Ѵ and a set of directed edges E, where each v Ѵ is connected to every other 

v Ѵ by a pair of directed edges e E with opposite directions.  Each e E is given an associated weight W(e), 0≤W(e)≤1 (Fig. 8 

(a)).  Each e E with a tail connecting to v1 and a head connecting to v2 (v1,v2  Ѵ), represents the possibility that v2 follows v1 in 

the output of the F-box(Lookup) transform, while W(e) represents the associated probability (the determination of W(e) is 

discussed in the following section).  Presumably, the path connecting N vertices (where N is known to be the number of seeds 

output by the F-box(Lookup) transform) that has the highest sum W(e) of any path with N vertices will be the correct solution to 

the F-box(Lookup) transform (Fig. 8 (b)).  The problem of finding the highest sum W(e) path is defined as the Maximum Weight 

Directed Path of Specified Length (MWDPSL) problem; this problem is proven NP-complete in "Appendix A".  The inspiration for 

this proof is drawn from [29].  The NP-complete proof of the (MWDPSL) problem in turn proves Theorem 1. 

Consider a second scenario.  The same attacker does not have access to Clientρ, Badgeδ, Pwdζ, or PINλ (and therefore 

not SCustψ either).  This attacker must recreate SClientρ, SBadgeδ, SPwdζ, and SPINλ in order to gain access to both (a) and 

(b); therefore, the attacker must correctly reassemble the memory contents of Clientρ and Badgeδ and an analagous 

representation of Pwdζ, or PINλ (these memory contents are the definition of SClientρ, SBadgeδ, SPwdζ, and SPINλ).  Each of 

these items is represented by b memory locations, each of which is Σ bits long; therefore, each memory location contains one of 

2Σ possible values.  This situation can be represented using an undirected “colored” graph [30].  The possible values for a given 

memory location can be represented by a group of 2Σ vertices v of the same “color”, v Ѵ, and each memory location can be 

represented by a different “color” group (represented as different shapes in Fig. 9).  Each v Ѵ is connected to every other v Ѵ 

(except for v of the same “color”) by an undirected edge e E, and each e E has an associated weight W(e), 0≤W(e)≤1.  Each 

edge represents the possibility that the two connected v are both present in the correct reconstruction of the memory contents, 

and the associated W(e) represents the probability (again, the manner in which W(e) is assigned is discussed in the next section).  

A path connecting one v of each “color” that has the highest sum W(e) will represent the correct reconstruction of the memory 
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contents (Fig. 9).  This problem is defined as the Maximum Weight Path of Specified Length (MWPSL) problem; this problem is 

also proved NP-complete in “Appendix A”.  In turn, the proof of the MWPSL problem proves Theorem 2. 

a) 

 

b) 

 
Fig. 8.  (a) Directed graph representing seed reassembly problem, and (b) solution to the MWDPSL problem, N=4 

 

a) 

 

b) 

 
Fig. 9. (a) Graph representing memory reassembly problem, b = 4 (b) solution to the MWPSL problem, N = 4 (W(e) not 

shown) 

3.3.2 Constraints on NP-completeness 
The NP-completeness put forth in Theorem 1 and Theorem 2 points to a high level of security for IDACS, since NP-

completeness is associated with an exponential increase in the problem solution complexity.  However, NP-completeness 

speaks only to the worst-case (for the attacker) situation.  It may be that the problem soultion can be found with significantly less 

than exponential complexity.  Consider Fig. 8; the difficulty in finding the MWDPSL lies in the fact that the maximum weight path 

is not immediately apparent.  If the graph in Fig. 8 contained a few very high-weight edges and the remaining edges had lower 

weights, this would provide a significant portion of the solution and greatly reduce the problem complexity.  In the paper which 

originally presented the graph method for matching fragemnts of data [32], the authors discuss how this method can be used to 

reassemble scattered data file fragments.  They note in their work that fragments from highly-patterned data files generate 

graphs with a few higher weight edges, resulting in significantly reduced probelm complexity, while data with more pseudo-

random qualities generated graphs with more uniformly weighted graphs, resulting in higher problem complexity.  This leads to 

the important question, what would a graph generated by a realistic IDACS situation look like? 



 
 
 

22 
 

According to the research in [32], data fragments (whether file fragments in that paper or     ̅̅ ̅̅ ̅̅ ̅ in this paper) that are 

more "random" will have a low correlation with each other; when analyzed for likelihood of matching, they will result in a uniform 

distirbution of edge weights (Fig. 10).  A strong Random Number Generator would be expected to generate this type of result.  

However, if the data fragments are highly patterned (e.g. the outputs of a poorly-designed hash function), the analysis will result 

in a graph with a few high-weight edges (Fig. 11).  So which of these two situations most closely matches the analysis of the 

IDACS     ̅̅ ̅̅ ̅̅ ̅? 

 
 

Fig. 10. Graph problem for uniform probability relationship 
(e.g. true Random Number Generator) 

Fig. 11. Graph problem for highly correlated relationship 
(e.g. poorly designed hash function) 

The National Institute of Standards and Technology (NIST) has provided a battery of tests [34] that analyze the outputs 

of Random Number Generators (RNGs) to measure their “randomness” by looking for patterns  [35].  This battery of tests has 

also been used on ciphertext from various encryption algorithms to measure how closely it matches truly random data.  This 

battery contains 15 individual tests, each of which measures different aspects of “randomness” in a set of data.  Each test, when 

analyzing a data sample, asks this question: “If the algorithm that generated this data sample was truly random, what is the 

probability that this specific data sample could have been generated?”  The test responds with a p-score for the analyzed data 

sample; this p-score is a probability in the range [0, 1].  NIST recommends interpreting these p-scores using a “significance level” 

of 0.01; if a data sample‟s p-score is above 0.01, then the data sample has passed the randomness test.  Now, some data 

samples that are truly random will generate a failing p-score, which would be a “false negative” for randomness; this is due to 

inherent weaknesses in the tests [35].There are two ways to interpret the results of these tests.  The first way is to look at the 

proportion, or percentage, of data samples with passing p-scores.  According to the parameters in [35], for a set of  tests run with 

1000 data samples, a truly random RNG will have a minimal proportion  of 0.9805068, i.e. a minimum 98.05% pass rate.  The 

second way is to look at the distribution of the test p-scores.  For a set of truly random data samples being subjected to a test, it 

is expected that the p-scores of the data samples should be evenly distributed.  Evenness of distribution can be measured by 
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calculating P-valueT based on the chi-square statistic for each test as discussed in [35]; if each test has P-valueT ≥ 0.0001, then 

the p-scores are considered to be evenly distributed. 

In order to determine the “randomness” of     ̅̅ ̅̅ ̅̅ ̅ that will be used in IDACS, the NIST battery of tests was applied to a 

number of SHA-256 cryptographic hash outputs designed to simulate the     ̅̅ ̅̅ ̅̅ ̅ that will be used by IDACS.  The battery of tests 

was applied to 1000 data samples of sizes dictated by the NIST battery. 

Of the 15 tests in the battery, two of the tests are run twice during the course of the battery.  Results for both tests are 

reported here.  Three of the tests are run a number of times; results for two randomly chosen instances of those tests are 

reported here.  All other tests were run once, and the results are reported here.  There are a total of 20 separate test results. 

For the first analysis, the proportions of data samples that pass each test are presented in graph form in Fig. 12.  It can 

be seen that all tests exceed the minimum pass proportion of 0.9805068. 

 
Fig. 12. Proportion of Passing Data Samples for Each Test 

For the second analysis, the P-valueT for each of the tests is presented in Table 3.  It can be seen that all tests exceed 

the minimum pass value of 0.0001. 

Table 3.  P-valueT for each test 

Test # P-valueT  Test # P-valueT  Test # P-valueT 

1 0.461612  8 0.378705  15 0.907498 

2 0.328297  9 0.572847  16 0.345744 

3 0.134944  10 0.873987  17 0.915241 

4 0.788728  11 0.581082  18 0.078567 

5 0.918317  12 0.444691  19 0.278461 

6 0.605916  13 0.455937  20 0.614226 

7 0.018668  14 0.052531    
 

3.3.3 Implications for IDACS 
What are the implications of the previous sections for IDACS?  Consider the attacker in the scenarios; an attacker who 

has access to cryptographic seeds but not SCustψ (Theorem 1) OR no access to any memory locations at all (Theorem 2) faces 

the NP-complete reassembly problem.  There is no known solution to these problems with a complexity polynomial to the 
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problem size (number of seeds or memory locations in the graph).  A polynomial-time solution could exist for certain situations 

meeting special constraints; however, due to the demonstrated randomness of the     ̅̅ ̅̅ ̅̅ ̅ used in IDACS, it is expected that the 

best algorithm will be of exponential complexity to the problem size.  Having no special algorithms to aid him, and the attacker 

will be reduced to brute-force attacks.  For a Theorem 1 situation, he must try every possible seed combination solution to F-

box(Lookup) to guess the solution as shown in Fig. 8 (b).  For a Theorem 2 situation, he must try every possible memory value 

to guess the solution as shown in Fig. 9 (b).  Such attacks will be detected quickly, and the security log/forensics capabilities of 

IDACS will allow the system to identify which seeds, locations, and states have been compromised by the attacker.  The attacker 

will be foiled even if the some (but not all) of {Clientρ, Badgeδ, PINλ, Pwdζ} are stolen.  Furthermore, even if the attacker is able to 

guess the solution, because of Property 3, the identity, memory locations, and order of the cryptographic seeds evolve in time, 

presenting the attacker with totally new problems as shown in Fig. 8 (a) and Fig. 9 (a). 

To get an idea of the real-world implications of this, consider a Theorem 1 situation where the attacker has access to 

all of the Seedσ needed to calculate     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  (but without access to the F-box(Lookup) transform).  For an IDACS 

system with a given q (number of SAΧ, with the same number of OTPΧ to be calculated) and a given r (number of PIDε to be 

calculated) and a given number of Seedσ used to calculate each OTPΧ and PIDε, Table 4 shows how long it would take the 

attacker (on average), trying all possible permutations of Seedσ at 106 permutations per second, to find the ordering to correctly 

calculate     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ .  Since Theorem 1 deals with the ordering of known Seedσ and Theorem 2 deals with generating 

these Seedσ (before ordering can even occur), it is accepted that the computation times for a Theorem 2 situation would be 

significantly greater than those shown in Table 4. 

Table 4.  Average time to for permutation orderings of Seedσ to generate correct OTPs and PIDs at 10
6
 permutations per 

second 

  # Seedσ per OTP/PID 

  8 12 16 

# OTPs (SAs) + 
# of PIDs 

6 + 8 3.13 * 10174 years 4.01 * 10294 years 8.87 * 10422 years 

8 + 8 6.11 * 10207 years 5.63 * 10348 years 1.36 * 10499 years 

10 + 8 8.80 * 10241 years 1.59 * 10404 years 1.14 * 10577 years 
 

 

3.4 Simulations 

3.4.1 Simulation Setup 
Simulations for this research were carried out using a model of an IDACS network built using MATLAB.  The simulation 

network was built as demonstrated in Fig. 13.  The network contains a variable number of Clients up to a maximum of 102,400.  

The SA barrier consisted of four SAs (with the possibility for future expansion).  The network contained one or two SSAs and one 
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Database (both with the possibility for future expansion).  Network links were built according to the bandwidths indicated in Fig. 

13, and were full-duplex. 

During all simulations, background traffic was introduced into the network in order to simulate normal operating 

conditions.  It was determined that introducing network traffic on the slower network connections did not affect the simulation 

results (but made the simulation running time prohibitively long).  Therefore, all background traffic was introduced between the 

SAs and the SSAs.  Uniformly distributed background traffic equal to 80 Kbps/Client was divided equally between the SAs and 

sent from each SA to each SSA.  An equal amount of traffic was also sent from each SSA to each SA.  This rate of background 

traffic ranged from a one-way 80% load on a 10 Gbps link for a full-sized network (102,400 Clients) to a much smaller load for 

smaller networks (0.8% load for 1000 Clients).  This rate of background traffic affected both SA/SSA security log size (which has 

a substantial effect on real-time forensics, which is discussed in "4.5.1 Attack Traceback Time Simulations") and packet transit 

time in the datacenter (due to network congestion).  Additionally, realistic packet delay times for routers were obtained from 

router manufacturer documentation and incorporated into the simulation.  Packet processing delays for Clients, SAs, SSAs, and 

Databases were estimated; when the IDACS prototype implementation is completed by the researchers, more precise packet 

processing times will be measured and incorporated into the simulation. 

Each simulation consisted of two phases.  In the first phase, each Attacker would build a set of compromised Slaves (a 

botnet) gathered from a pool of vulnerable Clients.  The attacker would compromise the Clients (turning them into bots) by 

sending a Compromise packet to each Slave candidate.   During the second phase, each Attacker would send out a specified 

 
Fig. 13.  Simulation Network 
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number of Read and Write attacks using a random-length Attack Chain of chained Slaves (the details of the attack scenarios 

used in this simulation are discussed in "4.2 Attack Vectors").  The start times for these attacks were uniformly distributed over a 

20 millisecond period.  These attack packets would be checked for     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  by the SAs and the SSAs according to 

normal IDACS operations.  If the packet failed any of these checks, the packet would be dropped as an attack.  If an attack 

packet was able to bypass all of the security checks and successfully carry out a Database Read or Write operation, the attack 

was considered successful.  Background traffic was present in the network during both of these phases. 

3.4.2 Simulation Parameters 

In the simulation, if the attack packet did not possess the proper     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ , any SA or SSA would detect the 

attack 100% of the time.  In reality, however, some attacks would go undetected due to various attack methods (zero-day attacks, 

SQL injection, buffer overflow, etc.)  Therefore, SAs and SSAs in the simulation were classified as “fully compromised” and 

“partially compromised”.  A “fully compromised” SA or SSA would pass a failed     ̅̅ ̅̅ ̅̅ ̅̅  or     ̅̅ ̅̅ ̅̅ ̅̅  check as successful 100% of 

the time; this situation represents an SA or SSA that is fully controlled by an attacker.  A “partially compromised” SA or SSA 

would pass a failed     ̅̅ ̅̅ ̅̅ ̅̅  or     ̅̅ ̅̅ ̅̅ ̅̅  check 50% of the time; this represents a “normal”, or uncontrolled by an attacker, SA or 

SSA.  The rationale behind setting a “partially compromised” SA or SSA to a 50% fail rate is twofold.  First it simulates zero-day 

attacks, etc.; second, it demonstrates the strength of the IDACS system, even under “poor” conditions and makes more visible 

the effect of other variables on network performance.  In a realistic situation, it is expected that the failure rate of “normal” 

machines will be much less than 50%.   

Additional probability variables were also used to govern other factors in the simulation.  During chained attacks (in 

which an Attacker uses a chain of Slaves (bots) to launch an attack; this is discussed in "4.2 Attack Vectors"), the attacker was 

given an 80% probability of stealing the cryptographic seeds needed to calculate     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ and an 80% chance of an 

attack chain packet (prior to the final leg of the chained attack) passing a failed permissions check based on Content(PIDε). 

3.4.3 Attack Detect Rate 
All tests were based on 1000 attacks for a given test case; 500 Read attacks and 500 Write attacks.  Some tests used 

1 SSA, and some used 2 SSAs.  The first set of tests (Fig. 14) demonstrates the performance of the IDACS system under 

casualties (“fully compromised” SAs).  It shows that even with multiple SAs compromised, the attack detect ratio is still very high.  

1 SSA was used in these tests. 
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As expected, Fig. 14 shows that the Attack Detection Ratio is fairly constant across network sizes.  However, the 

Attack Detection Ratio is affected by the number of “fully compromised” SAs.  When no SAs are “fully compromised”, the system 

performs very well, with an average detection ratio above 99.5%.  With one or two SAs “fully compromised”, the detection ratio is 

still fairly high.  Thus, it can be seen that the system provides an excellent defense against attacks, even under heavy casualties. 

The second set of tests (Fig. 15) was performed to test the system under SSA “full compromise”.  The simulated 

network in these tests contained two SSAs; one was “fully compromised” and the other was “partially compromised”.  By 

comparing Fig. 14 and Fig. 15, it can be easily seen that the compromise of an SSA has greater effect on the Attack Detection 

Ratio than the compromise of an SA.  This is because the simulation specified the chances of an attacker obtaining     ̅̅ ̅̅ ̅̅ ̅̅  and 

    ̅̅ ̅̅ ̅̅ ̅̅  for a Slave were fairly high (80% chance), thus making permissions checks based on the Content(PIDε) (which were only 

performed at SSAs) the primary mode of detecting attacks.  Thus, the loss of an SSA has a greater effect on system security.  

However, even with an SSA and up to 2 SAs “fully compromised”, the Attack Detect Ratio was still above 94%.  This test shows 

that protecting the SSAs should be a top priority in any implementation of this system. 

 
Fig. 15.  Attack Detect Ratio vs. Network Size and Number of SA/SSAs “fully compromised” 

One of the main features of IDACS is the real-time forensics capability.  Through log examination and correlation, 

IDACS is able to trace back and correctly identify the origin of an attack, whether the attack is launched directly by the attacker or 

 
Fig. 14.  Attack Detect Ratio vs. Network Size and Number of SAs “fully compromised” 
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indirectly using a botnet of legitimate IDACS users.  This simulation also addressed these capabilities; the results will be 

presented and discussed in “4.5.1 Attack Traceback Time Simulations”. 
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4 IDACS Network Attack Detection, Prevention, and Traceback 

4.1 Introduction 
In today‟s network security environment, it is critically important to detect and prevent network intrusions.  However, it 

is almost equally important to trace network attacks to their origins and identify the culprits and their methods.  This allows the 

guilty parties to be held liable for their actions; it also allows network administrators to focus their resources once they know the 

weak spots in their defenses.  IDACS provides real-time digital forensics capabilities that can identify network attackers as well 

as their collaborators, and even traitors within IDACS itself.  This section will detail those capabilities possessed by IDACS and 

discuss how they can be used to detect, block, and trace attacks to their origins.  Additionally, simulations will demonstrate the 

ability of IDACS to detect attacks and self-heal even when the network contains a high percentage of insider traitors. 

4.2 Attack Vectors 
When an attacker wishes to defeat the IDACS Network Access Control Protocol in order to gain access to protected 

data or services residing within the IDACS datacenter, there are several general attack vectors available for this task. 

1) Forge legitimate Custψ credentials (Clientρ, Badgeδ, Pwdζ, and PINλ) in order to impersonate a legitimate Custψ 

2) Steal/hack credentials for a legitimate Custψ 

3) Hack and gain control over one or more SAs and/or SSAs in order to manipulate the authentication process 

Attack vector 1) requires brute-force guessing of SClientρ, SBadgeδ, SPwdζ, and SPINλ; this is infeasible according to 

Theorem 2.  Attack vector 2) may be more effective, although the space-separation of Clientρ, Badgeδ, Pwdζ, and PINλ makes it 

more difficult for an attacker to collect them all and acquire a botnet of complete Custψ.  By using attack vector 3), an attacker 

can use a botnet of SAs and SSAs to bypass     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  checks and even manipulate the correct authentication chain 

path.  Attack vector 3) can be accomplished by hacking loyal SAs and SSAs, turning them into traitor machines; these traitor 

machines possess all of the Seedσ used by that particular IDACS machine.  Additionally, it may be possible to use a hostile 

machine to impersonate, or spoof, legitimate SAs and SSAs, although a spoofed machine would not possess the Seedσ 

associated with the legitimate machine.  The most effective attack scenario combines vectors 2) and 3) in an attempt to access 

the IDACS datacenter. 

If an attacker is able to use attack vector 1) possibly combined with 3) to control a single Custψ, he will most likely 

attempt to access the IDACS datacenter directly (Fig. 16).  However, if the attacker uses 2) to build a botnet of traitor Custψ, he 

may choose to send Ticketψ through multiple traitor Custψ (Fig. 17).  In this way, the attacker is able to accomplish several 
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objectives.  First, the attacker takes advantage of the credentials owned by the traitor Custψ in order to send a legitimate Ticketψ.  

Second, in the case that the attack is detected, he masks his identity from the IDACS forensics suite.  However, even in this 

situation, once an attack is detected, the IDACS real-time forensics will be able to identify the attacker through the methods 

described in "4.4 Attack Traceback". 

 

 

Fig. 16.  Direct Attack Fig. 17.  Chained Botnet Attack 

By means of attack vectors 2) and 3), any Custψ, SAχ, or SSAκ can be turned into a traitor machine.  When this 

happens, the machine becomes a Byzantine actor (i.e. a malicious system actor that actively works to defeat the correct 

operation of the system).  A great deal of research has been done on the subject of Byzantine actors [34] [35] [36], and it is of 

great interest to be able to prove that a given system is Byzantine-resistant, able to operate correctly in the presence of a given 

number of Byzantine actors. 

4.3 Attack Detection and Prevention 
The incorporation of the space-separated time-evolving relationship into the IDACS Network is based on a simple 

principle, which affects its real-time forensics capabilities: 

Principle 1: Any Custψ, SAχ, or SSAκ in IDACS can be hacked and turned into a traitor/Byzantine actor.  Any Customer (Custψ), 

authenticating machine (SAχ or SSAκ), or real-time forensics machine (SSAκ) can be turned into a traitor/Byzantine 

actor. 

This principle is the reason for the decentralized approach of separating authentication capabilities in space and time.  

With a design that keeps this principle in mind, IDACS is able to detect and prevent almost all illegal Ticketψ that are passed to it.  

In fact, IDACS is demonstrably secure against any illegal Ticketψ under certain conditions.  The following Claims are based on a 

certain set of assumptions outlined below, which enforce the parameters of network communication. 

Assumption 1:  Any Custψ can only communicate with   ̅̅ ̅̅ . 
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Assumption 2:  Any member of   ̅̅ ̅̅  can communicate with any Custψ, any member of    ̅̅ ̅̅ ̅̅ , and any other member of   ̅̅ ̅̅ . 

Assumption 3:  Any member of    ̅̅ ̅̅ ̅̅  can communicate with any member of   ̅̅ ̅̅  or   ̅̅̅̅̅, and any other member of    ̅̅ ̅̅ ̅̅ . 

Assumption 4:  Any member of   ̅̅̅̅̅ can communicate with any member of    ̅̅ ̅̅ ̅̅ . 

Assumption 5:  An attacker who is forming Ticketψ has access to all Seedσ stored on traitor SAχ or SSAκ. 

Assumption 6:  A spoofed SAχ or SSAκ does not have access to the Seedσ stored on the machine it is spoofing. 

Assumption 7:  Any DBγ that receives a Ticketψ can verify whether or not the SSAκ that sent it was the correct SSAκ at the end 

of the calculated authentication chain. 

Assumption 8:  When processing Ticketψ, IDACS performs     ̅̅ ̅̅ ̅̅ ̅̅  or     ̅̅ ̅̅ ̅̅ ̅̅  checks on both the approach from Custψ to   ̅̅̅̅̅, 

and on the return from   ̅̅̅̅̅ to Custψ.  However, the authentication chain path for the return is based on the 

reply message Ticket'ψ, which is different from Ticketψ. 

Assumption 9:  Any attack Ticketψ falls into one of two categories: a) contains incorrect     ̅̅ ̅̅ ̅̅ ̅̅  or     ̅̅ ̅̅ ̅̅ ̅̅ , or b) contains correct 

    ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ , but is attempting to access data or service that the originating Custψ does not have 

permissions to access. 

Based on these assumptions, certain Claims about the attack detection and prevention capability of IDACS can be 

made.  Recall that N is the Authentication Chain Length; there are N SAs and N SSAs in the approach authentication chain and 

N SAs and N SSAs in the return authentication path. 

Claim 1: A Ticketψ with incorrect     ̅̅ ̅̅ ̅̅ ̅̅  will be detected with up to 2N traitor SSAs and (2N - 1) traitor SAs in the approach and 

return authentication chain paths if the authentication chain path is not manipulated. 

Justification for Claim 1: According to Assumption 5, if any SAχ or SSAκ is a traitor, then the attacker will have access to the 

Seedσ necessary to calculate     ̅̅ ̅̅ ̅̅ ̅̅  correctly.  Thus,     ̅̅ ̅̅ ̅̅ ̅̅  checks will pass at each SAχ or SSAκ even if they are not traitors.  

However, if there is even one loyal SAχ in the authentication chain, the attacker does not have access to the Seedσ needed to 

calculate OTPχ.  This incorrect OTPχ will be detected by the loyal SAχ, and the attack will be detected and prevented (Fig. 18). 

  
Fig. 18.  Illustration of Claim 1 Fig. 19.  Illustration of Claim 2 
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However, the strength of IDACS illustrated by Claim 1 is qualified by Claim 2. 

Claim 2:  A Ticketψ with incorrect     ̅̅ ̅̅ ̅̅ ̅̅  or     ̅̅ ̅̅ ̅̅ ̅̅  is not guaranteed to be detected with one traitor SA and two traitor SSAs in 

IDACS if the authentication chain path is manipulated. 

Justification for Claim 2: Under certain circumstances, IDACS cannot guarantee detection of an attack Ticketψ with one traitor 

SA and two traitor SSAs in IDACS if authentication chain path manipulation is allowed.  The attacker is allowed to choose the 

first SA in the authentication chain, so he chooses a traitor SA.  Since this SA is a Byzantine actor, it calculates the 

authentication chain path based on Ticketψ and checks to see whether the last SSA in the authentication chain is also a traitor.  If 

it is, then the SA passes Ticketψ to this SSA, which then passes Ticketψ to a DBγ (Fig. 19).  This action bypasses the     ̅̅ ̅̅ ̅̅ ̅̅  and 

    ̅̅ ̅̅ ̅̅ ̅̅  checks that would be performed by (potentially) loyal SAs and SSAs in the authentication chain. It is necessary for the 

last SSA in the authentication chain to be a traitor, because according to Assumption 7, DBγ will also validate the authentication 

chain for the sending SSA.  When DBγ forms the return ticket Ticket'ψ, it will calculate a return authentication chain where the first 

SSA in the path cannot (by the rules) be the same as the last SSA in the approach path.  If this SSA happens to be a traitor also, 

then it sends Ticket'ψ directly to the first traitor SA, which sends it to the attacker's Custψ. 

Claim 1 and Claim 2 address a) in Assumption 9; similar claims can be made to address b) in Assumption 9. 

Claim 3: A Ticketψ with correct     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  but seeking to access data/services for which Custψ is not granted 

permissions will be detected with up to (4N - 1) traitor SAs and SSAs  in the approach and return authentication chains 

if the authentication chain is not manipulated. 

Justification for Claim 3: Since Ticketψ contains correct     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ , the attack will not be detected on those grounds.  

However, each SA and SSA also checks the data/service targeted by Ticketψ to see if Custψ has permissions on it.  If only one 

SA or SSA in the approach or return authentication chain is loyal, then a non-permitted Ticketψ will be detected, and the attack 

will be prevented. 

 
Fig. 20.  Illustration of Claim 3 
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Claim 4: A Ticketψ with correct     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  but seeking to access data/services for which Custψ is not granted 

permissions is not guaranteed to be detected with 1 traitor SA and 2 traitor SSAs in IDACS if the authentication chain 

is manipulated. 

Justification for Claim 4: The justification for Claim 4 is identical to the justification for Claim 2. 

There is also one final Claim that can be made regarding spoofed IDACS machines. 

Claim 5: A spoofed SAχ or SSAκ will be detected as soon as it communicates with a loyal SAχ or SSAκ. 

 

Justification for Claim 5: According to Assumption 6, a spoofed SAχ or SSAκ does not have access to the Seedσ of the machine 

it is spoofing, including the Seedσ needed to calculate XV when communicating with other SAχ or SSAκ.  Therefore, it will be 

unable to correctly calculate the requisite XV; this situation will be detected immediately by a loyal SAχ or SSAκ. 

4.4 Attack Traceback 
When an attack is detected by IDACS, it falls into one of several categories, with each category having corresponding 

root causes.  If an attack is detected based on a OTPχ or     ̅̅ ̅̅ ̅̅ ̅̅  failure, this is because the attacker possesses an incomplete 

subset of the set { Clientρ, Badgeδ, Pwdζ, PINλ }; additionally, if prior SAs or SSAs correctly authenticated the attack packet based 

on OTPχ and     ̅̅ ̅̅ ̅̅ ̅̅ , they may be controlled or spoofed by the attacker.  If the attack is detected base on an XV failure, this is 

because the attacker is spoofing one or more of the SA/SSAs.  Each of these situations is handled differently by IDACS. 

When an attack is detected in Algorithm 4, the function “report_and_trace_attack()” (Algorithm 6) is called to invoke the 

IDACS real-time digital forensics suite.  The inputs to Algorithm 6 are        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TK_A, TK_B, and 

current_location.         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ indicates the reason the attack was detected; it may contain one or more of the following values: 

OTP_fail, PID_fail, and XV_fail.                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  contains a list of which (if any) of the PIDε failed.  TK_A and TK_B are the 

two TKs received by the detecting SA or SSA (if applicable).  “current_location” indicates the identity of the SA or SSA detecting 

the attack.  When “report_and_trace_attack()” is called, these inputs are packaged into an attack report (3).  If the attack was 

detected by an SA (1), the report is sent to an SSA for processing (2 and 3).  If the attack is detected at an SSA (4), then the 

attack is processed by that SSA (5).  To process the attack, the SSA calls different forensics subroutines based on the reasons 

for the attack detection.  If the attack failed due to OTPχ or     ̅̅ ̅̅ ̅̅ ̅̅  (6), then “trace_attack()” is called to identify the root attacker, 



 
 
 

34 
 

the bot chain used in the attack, and any suspicious packet types that may have been used by the attacker to compromise other 

bots (7); “identify_bots()” is called to identify possibilities for traitor Clientρ controlled by the attacker (8); and 

“identify_compromised_items()” is called to determine which members of { Clientρ, Badgeδ, Pwdζ, PINλ } have been stolen by the 

attacker based on correlation with                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (9).  If an attack was detected by a failed OTPχ,     ̅̅ ̅̅ ̅̅ ̅̅ , or XV (10), then 

“identify_bad_SA_SSA()” is called to determine which SAs or SSAs (if any) are traitor or spoofed.  All of these subroutines are 

discussed in the following sections. 

Algorithm 6.  report_and_trace_attack() 

inputs :        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TK_A, TK_B, current_location 
outputs : none 
  
1 if ( current_location ∊   ̅̅ ̅̅  ) 
2 dest_SSA = random SSA 
3 current_location → dest_SSA: {       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TK_A, TK_B, PID(current_location) } 
4 else if ( current_location ∊    ̅̅ ̅̅ ̅̅  ) 
5 dest_SSA = current_location 
 end 
  
 at dest_SSA: 
  
6 if (OTP_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) or (PID_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 
7 {sourceTraitorCust,          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } = trace_attack(TK_A) 
8 traitorCustBotnet = identify_bots(sourceTraitorCust,                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,   ̅̅ ̅̅ ,    ̅̅ ̅̅ ̅̅ ) 
9 traitorCustItems = identify_compromised_items(                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TK_A) 
 end 
10 if (XV_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) or (OTP_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) or (PID_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 
11 traitorSAsSSAs = identify_bad_SA_SSA(       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, TK_A, TK_B) 
 end 

 

Fig. 21 presents a block diagram representation of Algorithm 6, showing the relationship between int inputs, outputs 

and different functions that are called within the algorithm.  The following table provides an overview of the traceback algorithms 

provided by the IDACS real-time digital forensics suite and what types of attacks they are able to detect: 

Table 5.  Traceback functions and what they detect 
Traceback function What it detects 

trace_attack() Root traitor Custψ and other bot Custψ used in attack chain 

identify_bots() Attacker‟s controlled botnet of traitor Custψ 

identify_compromised_items() Which cryptographic seeds have been leaked, and by whom { Clientρ, Badgeδ, 
Pwdζ, PINλ } 

identify_bad_SA_SSA() Which SAs and SSAs are spoofed bad XV), or traitors (clearing packets with 

incorrect     ̅̅ ̅̅ ̅̅ ̅̅  or     ̅̅ ̅̅ ̅̅ ̅̅ ) 
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Fig. 21.  Block diagram of "report_and_trace_attack()" 

 

When reading the following sections about the different digital forensics functions used by IDACS, it is important to keep the 

following Property in mind: 

Property 7 : The different design elements of IDACS (the distribution of PID seeds, the design of Xchain values, the design of 

security log records, etc.) are carefully crafted to facilitate the real-time digital forensics capabilities of IDACS.  

Therefore, IDACS is able to provide high-speed forensic services in real-time with minimal overhead. 

4.4.1 Log Correlation to Identify Attacking Clients 
When an attack is detected by IDACS, the real-time digital forensics suite is able to trace the attack to the root attacker 

by correlating the security log records on IDACS machines.  In a fully-realized IDACS system, all data packets (including Client-

Client packets such as are used in attack chains) are required to pass through the SA barrier.  Even in a less-complete IDACS 

system, the Clientρ still maintain security logs for all of the data packets they send and receive.  These security logs are the key 

component to the attacker traceback capability. 

As an example, consider the detected attack packet log record on the right in Fig. 22.  This record was generated for a 

data packet that was detected to be an attack due to OTPχ or PIDε failure.  IDACS begins from the assumption that this packet 

was part of an attack chain (Fig. 17), and begins to trace the attack chain back to the root attacker.  The trace is based on the log 

record items TIME, SOURCE/DESTINATION_IP_ADDRESS, PARENT/CURRENT_UA_PID, and CONTENT_PID.  The SSA 

running the trace searches its own logs as well as the logs of other SSAs, SAs, and Clients (if necessary) for the “parent” packet 

that directly precedes the detected packet in the attack chain.  The trace searches for a packet that was logged before the attack 

was logged (TIME < 14830.528934) where the IP Address of the machine that sent the attack packet is the same as the 

destination IP address of the "parent" packet (SOURCE_IP_ADDRESS for the attack packet = DESTINATION_IP_ADDRESS for 
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the "parent" packet); the DB-side data targeted by the Content(PIDε) in the “parent” packet is the same as in the attack packet 

(CONTENT_PID = 34876105); and the parent UA for the detected attack packet is the same as the current UA for the “parent” 

packet (PARENT_UA_PID for the attack packet = CURRENT_UA_PID for the “parent” packet).  Such a "parent" attack packet is 

detected (left side of Fig. 22).  The investigating SSA then compares the CURRENT_UA_PID and PARENT_UA_PID in the 

"parent" packet record.  If they are the same, then the machine at SOURCE_IP_ADDRESS is flagged as the root attacker; if they 

are different, the machine at SOURCE_IP_ADDRESS is flagged as a traitor Clientρ, and the traceback continues. 

 
Fig. 22.  Attack packet traceback to identify root attacker 

 The details of this traceback are show in the "trace_attack()" function defined in Algorithm 7.  The SSA executing the 

traceback receives the log record \TK\ of the detected attack packet as input.  The critical trace parameters are extracted from 

this record: the Custψ who sent TK is marked as the candidate for the attacker (1), and the time (2), Parent UA(PIDε) (3), and 

Content(PIDε) (4) are isolated.  Additionally, the          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ outputs are initialized (5 and 6).  

Until the source attacker has been identified (7 and 8), the SSA initiates a search of all SSA, SA, and Client logs (10) searching 

for a "parent" packet logged before the current attack packet with parameters on the Destination IP address, Current UA(PIDε), 

and Content(PIDε) (9).  If the F-box(Rtrv) transform (10) returns no hits on the "parent" packet (11), the traceback has failed to 

detect the root attacker; however, a partial list of bots used in the attack chain can be returned (12).  If a "parent" packet with 

matching Current UA(PIDε) and Parent UA(PIDε) is discovered (13), then the Custψ that sent this packet is identified as the root 

attacker (15).  Additionally, since this packet was used in an attack chain, this packet‟s type is flagged as suspicious (16) and is 

used in  

Algorithm 8 to identify candidate members of the attacker‟s controlled botnet.  Otherwise, the Client that sent the "parent" packet 

is marked as one of the bots controlled by an attacker (17), the search parameters are reset based on the "parent" packet (18 to 

21), this packet‟s type is flagged as suspicious (16), and the search continues (8).  Once the root attacker has been identified, 
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the function returns the identity of the root attacker, the bots that were identified in the attack chain, and the suspicious packet 

types (23). 

Algorithm 7.  trace_attack() 

inputs: \TK\ 

outputs: sourceAttacker,          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
  
1 sourceAttacker = Custψ ◊ \TK\ 
2 sourceT
me = current time 
3 sourceParentUAPID = Parent_UA(PIDε) ◊ \TK\ 
4 sourceContentPID = Content(PIDε) ◊ \TK\ 
5          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = null 
6                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = null 
7 sourceFound = false 
  
8 while (sourceFound == false) 
9           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = {time ◊ \Ticketψ\ < sourceTime, 
 destination_IP ◊ \Ticketψ\ = = sourceAttacker, 
 Current_UA(PIDε)  ◊ \Ticketψ\ == sourceParentUAPID, 
 Content(PIDε) ◊ \Ticketψ\ == sourceContentID} 
10 source\Ticketψ\ = F-box(Rtrv, S  ̅̅ ̅̅ , S   ̅̅ ̅̅ ̅̅ ,           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

  
11 if(source\Ticketψ\ == null) 
12 fail;     return {null,          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }  
13 else if((Parent_UA(PIDε) ◊ source\Ticketψ\) == (Current_UA(PIDε) ◊ source\Ticketψ\)) 
14 sourceFound =
true 
15 sourceAttacker = Custψ ◊ source\Ticketψ\ 
16                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = F-box(Concat,                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, packet_type(source\Ticketψ\)) 
 else 
17          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = F-box(Concat,          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , Custψ ◊ source\Ticketψ\) 
18 sourceAttacker = Custψ ◊ source\Ticketψ\ 
19 sourceTime = time ◊ source\Ticketψ\ 
20 sourceParentUAPID = Parent_UA(PIDε) ◊ source\Ticketψ\ 
21 sourceContentID = Content(PIDε) ◊ source\Ticketψ\ 
22                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = F-box(Concat,                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, packet_type(source\Ticketψ\)) 
 end 
 end 
  
23 return { sourceAttacker,          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ } 

 

4.4.2 Log Correlation to Identify Traitor Client Botnet 
 Immediately following the call of "trace_attack()" to identify the root traitor Client and the traitor Client bots in the attack 

chain, the SSA running the real-time digital forensics suite will run the "identify_bots()" function to identify all traitor Client bots 

controlled by the attacker, even those in a dormant state.  In the example shown in Fig. 22, it was seen that the root traitor Client 

and other traitor Clients in the attack chain used "Remote Terminal" packets to carry out attack activities.  Therefore, the digital 

forensics suite designates "Remote Terminal" packets, especially those sent by the root Traitor Client, to be suspicious.  The 

SSA running the real-time digital forensics suite searches through the security log records of all SAs, SSAs, and Clients to 

identify suspicious network traffic.  In the example shown in Fig. 23, the digital forensics suite searches for "Remote Terminal" 
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packets in the security logs that were sent by the root traitor Client (SOURCE_IP_ADDRESS = 75.128.32.146).  This search 

yields a number of Clients that are strong candidates for being Traitors.  This list of potential Traitor Clients is added to those 

identified in the attack chain in "trace_attack()"; these Clients may be quarantined and examined in-depth until they can be 

healed and returned to service.  It should be noted that this algorithm is capable of detecting dormant traitor Clients even beyond 

those that were used in the attack. 

 
Fig. 23. Traitor Client botnet detection using Security Log correlation 

  

Algorithm 8 details the "identify_bots()" algorithm.  The function receives the identity of the root Traitor Client, any suspicious 

packet types as determined by the "trace_attack()" algorithm, and    ̅̅ ̅̅  and    ̅̅ ̅̅ ̅̅  as inputs.  It creates a set of parameters (1) to 

be the input to the F-box(Rtrv) transform; the packets sought by the F-box(Rtrv) transform must be among the suspicious 

packet types and must have originated from the attacker detected by "trace_attack()".  The function then loops through every SA 

(2) and every SSA (5), searching for log records that meet the search parameters (3 and 6).  For any security log records that 

match the conditions, the Custψ that were targeted by those packets are added to the list of possible traitor Clients controlled by 

the attacker (4 and 7). 
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Algorithm 8.  identify_bots() 

inputs: attacker-Custψ,                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,   ̅̅ ̅̅  ,    ̅̅ ̅̅ ̅̅  

outputs:                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
  
1           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = { packet type(\Ticketψ\) ∊                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 
 source IP(\Ticketψ\) == source IP(attacker-Custψ)} 
  
2 for index=1 to χ 
3 temp = F-box(Rtrv, SSAχ,           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

4                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  F-box(Concat,                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, destination_IP ◊ temp) 
 end 
  
5 for index=1 to κ 
6 temp = F-box(Rtrv, SSSAκ,           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

7                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  F-box(Concat,                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, destination_IP ◊ temp) 
 end 
  
8 return                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

4.4.3 PID/OTP Correlation to Identify Client-Side Security Items 
The space-time separated and jointly evolving relationship built into IDACS can be used to assist the real-time digital 

forensics capabilities.  The elements of     ̅̅ ̅̅ ̅̅ ̅̅  are calculated based on seeds drawn from Clientρ, Badgeδ, Pwdζ, and PINλ.  

However, not every PIDε needs to draw seeds from each of these sources; the locations of seeds used to calculate individual 

PIDε can be tailored to meet the security requirements of the system.  In addition to the distributed storage of the seeds, certain 

bits are removed from the seeds themselves and stored in a physically different location.  These bits are called Xbits; they will be 

discussed in more detail “5.2.1 Separation of Encryption Keys”.  The Xbits are stored on the SAs in the IDACS Network, and they 

must be recombined with the cryptographic seeds to correctly calculate the elements of     ̅̅ ̅̅ ̅̅ ̅̅ .  Fig. 24 demonstrates how 

different PIDε can be calculated using different combinations of cryptographic seeds and xbits; Type A PIDε are calculated using 

only seeds from Clientρ, Type B PIDε are calculated using only seeds from Clientρ and the associated Xbits, Type F PIDε are 

calculated using seeds and associated Xbits from both Clientρ and PINλ, etc.  This division accomplishes two purposes.  First, 

separating the seeds across different locations increases the complexity for an attacker to correctly construct     ̅̅ ̅̅ ̅̅ ̅̅ , as 

discussed previously.  Second, a seed separation and combination such as indicated in Fig. 24 can be used as a forensics tool.  

If an attack is detected by an SA or SSA due to     ̅̅ ̅̅ ̅̅ ̅̅  failure, an analysis of which PIDε failed and which PIDε were formed 

correctly can indicate which Client-side items and Network-side SAs or SSAs are Traitors or have had their memory 
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compromised.  For example, if a Type D PIDε was formed correctly, it may be assumed that the attacker owns the seeds derived 

from PINλ as well as the associated Xbits; if a Type F PIDε was formed correctly, it may be assumed that the seeds stored on 

Clientρ and derived from PINλ as well as the associated Xbits are owned by the attacker. 

 
Fig. 24.  Space-separated combinations of seeds used to calculate PIDε 

An example of the “identify_compromised_items()” algorithm corresponding to Fig. 24 is shown in Algorithm 9.  The 

Custψ that sent the detected attack packet TK1 is marked as a Traitor (1), with the Clientρ, Badgeδ, Pwdζ, and PINλ contained in 

Custψ and the SAs storing their corresponding Xbits all possibly controlled/cloned by an attacker.  Based on what type of PIDε 

were formed correctly in the attack packet TK1, certain elements of Custψ and   ̅̅ ̅̅  are marked as Traitor (4 – 11).  The following 

properties hold true for this forensics capability: 

Property 8 : Due to the seed distribution and PIDε formation (as discussed generically in Property 7, the checks performed in 

"identify_compromised_items()" are performed very quickly with very little overhead. 

Property 9 : The seed distribution shown in Fig. 24 is very flexible, and can be adjusted on a per-Client basis to meet the 

security needs of the particular Client or IDACS implementation. 

Algorithm 9. identify_compromised_items() 

inputs:                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, TK_A 
outputs: traitor_items 
  
1 traitor_C = Custψ ◊ TK_A 
2 traitor_items = null 
  
3 switch (PIDε ∉                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 
4 case Type A, B, E, F, or N:  traitor_items = F-box(Concat, traitor_items, Z ◊ compromised_C) 
5 case Type C, D, E, F, or G:  traitor_items = F-box(Concat, traitor_items, X ◊ compromised_C) 
6 case Type G, H, I, J, or K:  traitor_items = F-box(Concat, traitor_items, W ◊ compromised_C) 
7 case Type J, K, L, M, or N: traitor_items = F-box(Concat, traitor_items, Y ◊ compromised_C) 
  
8 case B, E, or F: traitor_items = F-box(Concat, traitor_items, SA storing xbits for Z ◊ traitor_C) 
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9 case D, F, or G: traitor_items = F-box(Concat, traitor_items, SA storing xbits for X ◊ traitor_C) 
10 case I, J, or K: traitor_items = F-box(Concat, traitor_items, SA storing xbits for W ◊ traitor_C) 
11 case K, M, or N: traitor_items = F-box(Concat, traitor_items, SA storing xbits for Y ◊ traitor_C) 
 end 
  
12 return traitor_items 

 

4.4.4 TK Correlation to ID Traitor SA/SSAs 
Fig. 25 graphically illustrates the handling of the XV used in the “run_auth_chain()” algorithm outlined in Algorithm 4.  

Multiple iterations of Algorithm 4 are called by Algorithm 1 (7 and 8) in order to form the complete authentication chain of SAs 

and SSAs, as shown in Fig. 26.  The iterations are linked, with the SA2 and SSA2 of one iteration becoming the SA1 and SSA1 of 

the next iteration (Fig. 25 and Fig. 26).  In a given iteration, SA1 and SSA1 perform OTPχ and     ̅̅ ̅̅ ̅̅ ̅̅  checks and generate XV, 

while SA2 and SSA2 verify the XV to verify the identity of SA1 and SSA1.  At SA2, if the XV2 verification fails, it indicates that SA1 

is being by an attacker; if the XV3 verification fails, this indicates that SSA1 is being spoofed by an attacker.  In the same way, at 

SSA2 if the XV5 verification fails, it indicates that SSA1 is being spoofed; if XV6 fails, it indicates that SA2 is being spoofed.  These 

relationships are discussed more extensively in “3.2.4.2 IDACS Network-side Algorithms". 

Additionally, each SA2 and SSA2 in a given iteration of Algorithm 4 are the SA1 and SSA1 for the next iteration, and will 

also be performing OTPχ and     ̅̅ ̅̅ ̅̅ ̅̅  checks in the next iteration.  If an SA or SSA finds that the     ̅̅ ̅̅ ̅̅ ̅̅  fails the check, but a 

previous SA or SSA indicated that the     ̅̅ ̅̅ ̅̅ ̅̅  had passed the check (by passing Ticketψ along the authentication chain), then this 

is highly indicative that the previous SA or SSA is a traitor (having passed verifiably bad     ̅̅ ̅̅ ̅̅ ̅̅ ).  In the same way, if an SAχ 

finds that OTPχ fails the check, but a previous SA passed Ticketψ along the authentication chain, this may be indicative that the 

previous SA is a traitor.  This cannot be directly verified, since only the previous SA possesses the seeds to verify his OTP; 

however, the forensics engine can be configured on the assumption that it is statistically unlikely that the seeds to correctly 

calculate a given OTP could be obtained without obtaining the seeds for all OTPs. 
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Fig. 25. Mutual Authentication in authentication chain Fig. 26.  Cascading the run_auth_chain() 
algorithm 

Due to the design of     ̅̅ ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅ ̅̅ , and the XV relationships, traitor or spoofed SAs or SSAs can be detected and 

isolated very quickly.  Algorithm 10 illustrates how the digital forensics suite performs this detection. 

Property 10 : The relationships between the XV values (as discussed generically in Property 7) and also     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  are 

carefully designed to allow traitor or cloned SAs/SSAs to be detected quickly in real time with very little overhead. 

Algorithm 10. identify_bad_SA_SSA() 

inputs:        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, TK_A, TK_B 
o
tputs: compromised_machines 
  
1 traitor_spoofed_machines = null 
2 sourceA = origin of
 TK_A 
3 sourceB = origin of TK_B 
  
4 if (TK_A_XV_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) OR (TK_A_PID_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) OR (TK_A_OTP_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 
5 traitor_spoofed_machines = F-box(Concat, traitor_spoofed_machines, sourceA) 
 end 
6 if (TK_B_XV_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) OR (TK_B_PID_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) OR (TK_B_OTP_fail ∊        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 
7 traitor_spoofed_machines = F-box(Concat, traitor_spoofed_machines, sou
rceB) 
 end 
  
8 return traitor_spoofed_machines 

 

 

4.5 Simulations 

4.5.1 Attack Traceback Time Simulations 
The simulations discussed in "3.4 Simulations" were also used to simulate the attack traceback time.  When an attack 

was detected (i.e. (4), (11), (17), or (23) in Algorithm 4), this point in time was recorded as T1.  After the attack had been 

reported to an SSA and the traceback to identify the root attacker was completed (i.e the "trace_attack()" algorithm called at (7) 
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of Algorithm 6 completes), this point in time was recorded as T2.  After the attacker's botnet was identified (i.e. the 

"identify_bots()" function called at (8) of Algorithm 6 completes), this point in time was recorded as T3.  The statistics of interest 

in this situation were the (T2 - T1) time and the (T3 - T1) time.  The (T2 - T1) time is termed the "Attack Traceback Time", since it 

represents the time it takes for the root attacker to be identified after the attack is detected.  The (T3 - T1) time is termed the 

"Botnet Detection Time", since it represents the time it takes for the root attacker's botnet to be detected after the attack is 

detected.  It should be noted here that the "Botnet Detection Time" will always be greater than the "Attack Traceback Time", 

since (T3 - T1) = (T2 - T1) + (T3 - T2). 

 The IDACS Network measured in Fig. 27 through Fig. 29 consisted of 4 "partially compromised" SAs and either 1 or 2 

"partially compromised" SSAs.  Fig. 27 shows the average attack traceback time for an IDACS network with 1 SSA.  Fig. 27 

shows that the attack traceback for this simulated IDACS network is extremely fast, with both the root attacker and its botnet 

identified in less than 3.5 milliseconds even for a network of 100,000 Client Devices.  Additionally, the attack traceback time 

grows logarithmically with the network size; this is because the simulation uses log2(x) to calculate security log search times, 

since there currently exist search algorithms that are better than log2(x).  Because the attack traceback time is so short, an 

IDACS Netowork can alert a system administrator and begin network healing procedures before the attacker even realizes that 

the attack has been detected. 

 
Fig. 27.  Attack Traceback Time 

 An additional benefit of the IDACS system is that attack traceback time can be improved by scaling the network.  Fig. 

28 and Fig. 29 show the Attack Traceback Time and Botnet Detection Time for an IDACS network, one with 1 SSA, and one with 

2 SSAs.  These figures show that the traceback times can be dramatically improved by expanding the network side of the IDACS 

system; this is because the traceback duties are spread across multiple SSAs, resulting in a lighter workload for each machine.  

These findings provide significant incentive to expand fielded IDACS systems. 
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Fig. 28.  Attack Traceback Time, 1 SSA vs. 2 SSAs Fig. 29.  Botnet Detection Time, 1 SSA vs. 2 SSAs 

 

4.5.2 Attack Detection, Traceback, and Remediation Simulations 
In addition to the simulations described in "3.4 Simulations", a second simulation suite performed for this research 

addresses the effects of the attack traceback combined with quarantine and healing for Byzantine traitor agents.  Given an 

IDACS network under attack by parties that are able to steal Client authentication items and turn SAs and SSAs into traitors, how 

well will the attack traceback protect the IDACS datacenter from illegal (no permission) access?  The simulation results 

presented here attempt to answer that question. 

4.5.2.1 Assumptions for Simulation 
In order to fully test the capabilities of the IDACS network against real-world threats and attacks, it was necessary to 

construct attack scenarios based on the latest and most lethal real-world attack vectors.  Therefore, these simulations were 

carried out under the assumption that all attempts to hack SAs and SSAs and turn them into traitors would be accomplished 

using zero-day attacks.  Since zero-day attacks have not been previously observed, it is virtually impossible to defend against 

them, and they will almost always be successful.  Additionally, through the use of metamorphic evolution techniques, it is 

possible to generate endless variants of these zero-day turn-traitor-attacks, each of which has a unique signature.  This method 

can be used to defeat security systems that use signature-based scans to detect known turn-traitor-attacks.  Since both of these 

attack methods are widely in use today, they will both be considered in this simulation. 

This simulation is based on a number of assumptions, each of which is justifiable according to real-world conditions.  

The first assumptions on which this simulation is based are as follows: 

Assumption 10:  Previously unobserved zero-day turn-traitor-attacks used to gain control over network machines will require a 

relatively long time (weeks) for a patch that successfully secures that attack‟s entry point to be issued. 

Assumption 11:  A zero-day attack used to gain control over network machines, once detected and analyzed, can be 

blacklisted with a signature-scanning security system very quickly.  A zero-day turn-traitor-attack or a metamorphic 

variation thereof, once detected and blacklisted, will be detected and blocked 100% of the time thereafter. 



 
 
 

45 
 

Assumption 10 is reasonable; it is seen to be true across almost all computer security vulnerabilities that are being 

discovered today.  Assumption 11 reflects the strengths of signature-based scanners, although their strength may be slightly 

overstated in order to simplify this simulation.  Based on Assumption 11, it follows that attacker behavior will reflect this reality. 

Assumption 12:  A zero-day turn-traitor-attack or a metamorphic variation thereof, once detected and blocked, will not be 

reused by the attacker. 

Based on the relative importance of Custψ,   ̅̅ ̅̅ , and    ̅̅ ̅̅ ̅̅  in IDACS, they are accorded different levels of protection 

against theft (Custψ) or outside zero-day turn-traitor-attacks (  ̅̅ ̅̅  and    ̅̅ ̅̅ ̅̅ ).  Custψ are used by human users in the field, so the 

elements of Custψ (Clientρ, Badgeδ, Pwdζ, and PINλ) are (relatively) easy to steal, although it may be difficult to steal a complete set.  

On the other hand,   ̅̅ ̅̅  and    ̅̅ ̅̅ ̅̅  reside inside protected network datacenters, so they are relatively more difficult to gain control 

over.  Thus, the assumptions: 

Assumption 13:  Completely turning a Client into a traitor (with access to Clientρ, Badgeδ, Pwdζ, and PINλ) through theft or 

coercion is difficult.  An exception would be in an active battlefield scenario, where a number of human users (soldiers) could be 

captured and coerced into turning over all of the elements of Custψ. 

Assumption 14:  Custψ are easier to turn into traitor bots than SAs, and SAs are easier to turn into traitor bots than SSAs. 

Finally, any attacker, being intelligent and wishing to maximize his chances of success, will not launch attempts to 

access the IDACS datacenter until he has a certain chance of success. Thus, 

Assumption 15:  An attacker will not launch access-DB-attacks against the IDACS datacenter until he controls a certain 

number of traitor Custψ, SAχ and SSAκ. 

4.5.2.2 Simulation Parameters 
This simulation was implemented in MATLAB, and examined an IDACS network consisting of 500 Custψ, 40 SAs, 20 

SSAs, and 10 DB (reference Fig. 3).  Unlike the first simulation, this simulation did not consider the details of network 

transmission speeds or packet processing times.  All packets are considered to be transmitted from one machine to another in 

one clock cycle, and all packets are processed in one clock cycle, with one clock cycle per queued packet. 

The simulation consists of two phases. In Phase 1, the attacker uses turn-traitor-attacks to build a botnet of traitor 

Custψ, SAs, and SSAs for use in IDACS access-DB-attacks.  According to Assumption 15, the attacker builds a botnet consisting 

of traitor SAs equaling 60% of all SAs in IDACS, and traitor SSAs equaling 60% of all SSAs in IDACS (15% of the traitor SAs and 

SSAs were spoofed machines).  Additionally, the attacker builds a botnet consisting of four traitor Custψ for each traitor SA and 

SSA (this number was experimentally determined to provide a sufficient number of traitor Custψ to launch a sufficient number of 

access-DB-attacks for the duration of the simulation).  In accordance with Assumption 13, this simulation is assumed to 
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represent an active battlefield situation, so 15% of the traitor Custψ have full access to their authentication credentials (Clientρ, 

Badgeδ, Pwdζ, and PINλ).  Once a sufficient number of bots have been obtained, the attacker launches Phase 2. 

In Phase 2, the attacker sends a burst of a high number of access-DB-attacks.  The logic behind the burst is that an 

attacker maximizes his chance of successful datacenter accesses if he sends them quickly; detected and prevented access-DB-

attacks will result in the detection and quarantine of traitor Custψ, SAs, and SSAs.  By sending a burst of access-DB-attacks, the 

attacker makes full use of these bots before they are detected and quarantined, and the advantage gained from Assumption 15 

begins to slip away.  During Phase 2, access-DB-attacks are launched at an average rate of one attempt per 15 clock cycles (the 

actual start times of the access-DB-attacks are randomized using a normal distribution over the complete period of Phase 2).  If 

an illegal data center access is detected and traced to one or more traitor machines based on the methods discussed in “4.4 

Attack Traceback”, that machine is quarantined (removed from the IDACS network) and healed over a period of 100 clock cycles, 

and then returned to IDACS as a loyal Custψ, SAχ or SSAκ.  During Phase 2, the attacker continues to attack Custψ, SAχ and SSAκ 

and turn them into traitors, thus replenishing the botnet even as bots are detected and quarantined.  In accordance with 

Assumption 14, one new Custψ is turned traitor every 150 clock cycles, one new SAχ is turned traitor every 300 clock cycles, and 

one new SSA is turned traitor every 600 clock cycles (this is on average; the actual times the machines turn traitor are 

randomized over the period of Phase 2 using a normal distribution).  In accordance with Assumption 15, if the percentage of 

traitor SAs or SSAs in IDACS fell below 10%, the attacker stopped launching access-DB-attacks until both of those numbers 

rose above 10%.  As long as there was any traitor Custψ available, access-DB-attacks would continue.  All traitor Custψ without 

access to complete authentication credentials (Clientρ, Badgeδ, Pwdζ, and PINλ) launched access-DB-attacks against data/services 

that particular Custψ had permissions to access (the access-DB-attack was illegal due to incorrect     ̅̅̅̅̅̅̅ or     ̅̅ ̅̅ ̅̅ ̅), but all traitor 

Custψ with access to complete authentication credentials launched access-DB-attacks against data/services that particular Custψ 

did not have permissions to access (since a traitor Custψ with access to complete authentication credentials is indistinguishable 

from a loyal Custψ, access of data/services for which that Custψ has correct permissions cannot be detected; therefore, this 

situation was not addressed in this simulation). 

In this simulation, the botnet-building activity of Phase 1 was compressed into a period of 100 clock cycles (in reality, 

this botnet building could occur in a “low-and-slow” turn-traitor-attack strategy over the course of weeks or months).  Phase 2 

activity was simulated over a period of 4000 clock cycles.  The length of both the approach and return authentication chains was 

4 (N=4), as would be expected in a fielded IDACS implementation. 
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In order to address the question of zero-day turn-traitor-attacks with metamorphic variants, the simulation was divided 

into three scenarios.  In Scenario 1, whenever an access-DB-attack is detected and prevented, one or more traitor Custψ, SAχ or 

SSAκ is identified.  This traitor is quarantined and healed, but no attempt is made to analyze the zero-day attack used to turn that 

machine into a traitor.  Therefore, the same zero-day turn-traitor-attack can be used again to turn other machines into traitors 

during Phase 2.  In Scenario 2, there are 20 different zero-day turn-traitor-attacks used to turn machines into traitors.  When a 

traitor machine is identified, the IDACS forensics suite analyzes the zero-day turn-traitor-attack that was used to turn this 

machine into a traitor.  A signature for the zero-day turn-traitor-attack is identified and added to each Custψ, SAχ and SSAκ‟s 

blacklist in accordance with Assumption 11, and will not be successful in turning any more machines into traitors during Phase 2.  

Therefore, the attacker will stop using that zero-day turn-traitor-attack according to Assumption 12.  In Scenario 3, the attacker 

begins with 20 different zero-day turn-traitor-attacks and 20 metamorphic variants of each zero-day attack.  Each analyzed and 

blacklisted metamorphic turn-traitor-attack variant will no longer be used, but many other metamorphic variants will be available.  

In short, Scenario 1 represents the "simplified case" situation, Scenario 2 represents the "best case" situation, and Scenario 3 

represents the "realistic case" situation.  Results from these three Scenarios are presented in the following section. 

4.5.2.3 Simulation Results 
Each of these three scenarios was simulated 10 times, and the results averaged together.  This was done to gain a 

better view of broad trends and mask random variations in different simulation runs. 

The purpose of this simulation was to demonstrate how well IDACS could protect the datacenter from illegal access.  

This can be measured in two ways.  First, the number of successful illegal accesses over the period of the simulation indicates 

the success of the IDACS defense.  Second, the number of undetected traitor Custψ, SAs, and SSAs remaining in IDACS over 

the course of the simulation demonstrate how effectively IDACS is detecting, quarantining, and healing traitor machines. 

Fig. 30 shows the percentage of the active SAs and SSAs in IDACS that are traitors for Scenario 1, or the "simplified 

case" situation (because there is no attack analysis or blocking in this scenario).  Note that this graph counts only SAs and SSAs 

that are "active", i.e. not under quarantine; this measurement was chosen to reflect the network situation faced by an attacker 

trying to pass an illegal datacenter access through IDACS.  After the botnet-building period represented by the first 100 clock 

cycles of the simulation, access-DB-attacks commence, leading to the discovery and quarantine of traitor SAs and SSAs.  

Initially both traitor SAs and SSAs are detected at a high rate, leading to the increased "sanitation" of the IDACS Network.  When 

the percentage of traitor SAs in the system drops below the 10% mark, access-DB-attacks are no longer launched until 

additional SAs are turned into traitors; since fewer access-DB-attacks are being launched, it leads to traitor SSAs being identified 
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at a lower rate (since the "first line" of SAs will trigger illegal access detection, leading to fewer SSAs having the opportunity to be 

detected), and with the slow addition of new traitor SSAs, the percentage of traitor SSAs rises to a slightly higher level.  The 

percentage of both traitor SAs and SSAs stabilizes to a relatively low equilibrium point. 

 
Fig. 30.  Percentage of IDACS Network Machines controlled by Attacker over the Scenario 1 simulation 

 

Fig. 31 shows the percentage of active SAs and SSAs that are traitors for Scenario 2, or the "best case" situation 

(because there is attack analysis and blocking with a limited number of unique zero-day turn-traitor-attacks, so eventually no 

more new SAs or SSAs can be turned into traitors).  As in Scenario 1, the percentage of traitor SAs and SSAs both drop as 

traitors are identified and quarantined.  Once all 20 unique zero-day turn-traitor-attacks have been analyzed and blocked, no new 

SAs or SSAs can be turned into traitors; therefore the percentage of traitor SAs and SSAs both drop to levels below the 10% 

cutoff, and remain level as no new traitors are added and no more traitors are identified (since access-DB-attacks are not 

launched below the 10% cutoff).  Scenario 2 demonstrates better performance than Scenario 1; however, the scenario most 

reflective of a real-world situation is Scenario 3. 

 
Fig. 31.  Percentage of IDACS Network Machines controlled by Attacker over the Scenario 2 simulation 
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Fig. 32 shows the percentage of active SAs and SSAs that are traitors for Scenario 3, or the "realistic case" situation 

(because there is attack analysis and blocking, but with metamorphic turn-traitor-attack variants, there is a large supply of new, 

unidentified turn-traitor-attack variants).  Since this scenario gives the attacker a large number of attack variants, the 

performance of Scenario 3 in Fig. 32 is similar to the performance of Scenario 1 in Fig. 30.  However, some detected zero-day 

turn-traitor-attack variants are re-used before the attacker realizes they have been detected and blocked, and are subsequently 

blocked by IDACS; therefore, the performance in Scenario 3 is somewhat better than Scenario 1.  This can be observed in the 

lower equilibrium point of percentage of traitor SSAs towards the end of the simulation period.  Since Scenario 3 most closely 

reflects the "real-world" situation faced by a fielded IDACS system, Fig. 32 demonstrates that IDACS will provide an exceptional 

defense against an attacker with a botnet of Byzantine SAs and SSAs at his disposal. 

 
Fig. 32.  Percentage of IDACS Network Machines controlled by Attacker over the Scenario 3 simulation 

Fig. 33 shows the percentage of active Custψ that are controlled by the attacker across the simulation for the different 

Scenarios.  This graph shows that Scenario 3 performs better than Scenario 1 for "sanitizing" the set of Custψ; this is because as 

zero-day turn-traitor-attack variants are detected and blocked, but still re-used before the attacker is aware they have been 

blocked, fewer new Custψ are being tuned into traitors.  Additionally, since more traitor SAs and SSAs are added in Scenario 3 

than in Scenario 2, more access-DB-attacks are launched, allowing more traitor Custψ to be detected in the end.  This graph also 

demonstrates that a real-world IDACS system will have excellent performance in identifying and sanitizing traitor Custψ. 
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Fig. 33.  Percentage of IDACS Customers controlled by Attacker over the simulation 

Fig. 34 shows the average number of access-DB-attacks that were successfully passed through IDACS with the help 

of traitor SAs and SSAs.  This chart shows that the most successful time period for the attacker is when he has the maximum 

number of traitor SAs and SSAs at his disposal (as expected), but that the success rate drops to almost zero as more traitor SAs 

and SSAs are identified and quarantined.  Since Scenario 3 is most representative of a real-world fielded IDACS system, the 

performance results shown in this graph are encouraging.  "5.3 Simulations" will present additional simulations demonstrating 

how confidential data stored in IDACS can be protected even in the presence of a low number of successful illegal datacenter 

accesses. 

 
Fig. 34.  Average Number of Successful Illegal Datacenter Access Attempts over the Simulation Time Period 
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5 IDACS Protection of Encrypted Data 

5.1 Introduction 
In the age of WikiLeaks and the rise of insiders leaking confidential information, it is critical to provide data networks 

with defenses against this sort of malicious insider behavior.  Additionally, with employees losing laptops and mobile devices 

containing proprietary information with alarming frequency, it is important to minimize the effects of memory-scraping and 

unauthorized information access.  IDACS leverages the space-time separated and jointly-evolving relationship to defend against 

these types of leaks of at-rest data.  It also provides detection and accountability for the sources of data leaks.  By separating 

encrypted data into pieces that are useless by themselves and storing them in separate and time-changing locations, IDACS can 

greatly increase the security of stored data.  This section introduces the principles and methods by which IDACS provides this 

data security, and it will provide proofs for the mathematical strength of these methods.  Additionally, simulations will 

demonstrate the real-world effectiveness of such a system, even in the presence of a high number of insider traitors. 

5.2 Space-Time Protection of Encrypted Data 

5.2.1 Separation of Encryption Keys 
Definition 23 discusses the concept of cryptographic seeds Seedσ and explains that Seedσ are spread across different 

locations (i.e. Seedσ◊Clientρ,     ̅̅̅̅̅̅◊Clientρ, etc.).  Algorithm 2 and Algorithm 3 demonstrate how these Seedσ are collected from 

across these locations and combined in order to calculate     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅ .  The cryptographic keys used to encrypt data 

residing on Clientρ, similarly to these Seedσ, are split into pieces and spread across different locations.  However, these 

cryptographic keys have an additional space-separation protection; certain bits are removed from these cryptographic keys and 

stored on the SAs in the IDACS Network.  In order to decrypt data residing on Clientρ, these bits must be retrieved and 

reassembled with the cryptographic keys.  These bits may be formally defined: 

Definition 35:  The cryptographic keys used to encrypt data residing on Clientρ have a certain number of bits removed and 

stored in a different location.  These bits are termed Xbits, corresponding to the relevant Custψ. 

When the Xbits are removed from the cryptographic keys, one bit is removed from each byte of the cryptographic key (Fig. 35).  

These bits are removed from pseudo-random locations in each byte; the locations from which bits are removed (and conversely, 

the locations where the Xbits should be reinserted when the cryptographic key is being reassembled) are calculated based on 

the value of SCustψ; the locations of the removed Xbits will be different for each cryptographic key.  As a consequence of this 
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arrangement, an attacker who manages to steal the contents of Custψ will still be unable to decrypt data residing on Clientρ 

without retrieving the corresponding Xbits from the IDACS Network side. 

 
Fig. 35.  Xbits removed from the cryptographic keys 

Each time the cryptographic key is used for encryption or decryption, Clientρ reforms the cryptographic keys and 

calculates new Xbit locations base on the updated version of SCustψ.  As such, an attacker who manages to derive the Xbit 

insertion locations for a given cryptographic key at time t will not possess the correct Xbit insertion points at a later time t’ after 

SCustψ has been adjusted.  Thus, the space-separated time-evolving relationship is used to protect the integrity of cryptographic 

keys.  This difficulty faced by the attacker is summarized in the following Theorem, which is proved in “5.2.4 Mathematical 

Proofs”. 

Theorem 3 : An attacker who possesses a cryptographic key and the corresponding Xbits, but does not possess the SCustψ necessary to 

determine the Xbit insertion points, faces an NP-complete problem to determine the Xbit insertion points. 

5.2.2 Separation of Encrypted Data 

5.2.2.1 Concept 
The IDACS system is designed to store and protect data or services in the IDACS datacenter.  However, this design 

can also be used to help protect data stored on Client devices.  Data stored on Clientρ is encrypted using encryption keys stored 

across multiple locations (Clientρ, Badgeδ, Pwdζ, and PINλ); this guarantees that an attacker must have access to all of these items 

in order to decrypt the data.  Additionally, pieces of the ciphertext are removed and stored in the IDACS datacenter (Fig. 36).  

These pieces must be retrieved from the datacenter in order to correctly decrypt the data stored on Clientρ. 

Definition 36:  When encrypted data is stored on Clientρ, segments of data are removed from the ciphertext and stored in a 

physically different location.  These removed segments are called Xslices. 

All of the Xslices that are removed from a Client-side ciphertext are stored in the IDACS datacenter (Fig. 36).  The Xslices may 

be stored in a single contiguous block (Storage Method 1), or they may be split and stored across multiple locations (Storage 

Method 2). 
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Fig. 36.  Xslices removed from Client-side ciphertext and stored in IDACS 
datacenter 

Fig. 37.  Multiple layers of encryption 

In order to decrypt data stored on Clientρ, one must have access to the ciphertext stored on Clientρ; all of the locations 

storing pieces of the encryption keys (Clientρ, Badgeδ, Pwdζ, and PINλ); the Xbits for the encryption keys, which are stored across 

multiple SAs in IDACS; and the Xslices that are stored across multiple DB in the IDACS datacenter.  Additionally, each time the 

data stored on Clientρ is decrypted to be viewed, the value of SCustψ is updated, and the data is re-encrypted with new 

cryptographic keys that have new Xbits, and new Xslices are removed from the ciphertext and stored at new locations in the 

datacenter.  By combining space-separation and time-evolving charactersitics, this IDACS encryption scheme can achieve a 

much higher level of security than simple encryption. 

As a final security measure, the encryption/Xbits/Xslices can be applied in multiple layers to protect high-sensitivity 

data (Fig. 37).  In addition to providing more complex security, this provides additional options for space-time evolving 

protections.  At certain time intervals, the top level of encryption can be re-processed with new encryption keys/Xbits/Xslices, 

while the lower levels are left untouched; in this way, the security is time-evolving with a minimum of effort. 

5.2.2.2 Implementation 
The location and length of the Xslices in the ciphertext are pseudorandom; they are calculated based on SCustψ, 

according to Definition 37 and Definition 38.  This pseudorandomness contributes to the strength of the IDACS encryption, as 

addressed in Theorem 4 through Theorem 6. 

Definition 37 : Given SCustψ, a block of ciphertext to have Xslices removed, and the PID of that data block, the F-box(data-

block-offset) transform returns the length between the beginning of the block of data or the end of the previous xslice, 

and the beginning of the next xslice.  This transform also updates SCustψ so that the next call to the transform will 

return the length of the next sub-block.  This transform must produce the same sequence of lengths for consecutive 
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transform calls for a given data block PID after SCustψ has been reinitialized, so that data blocks may be 

disassembled and reassembled.  The sub-block lengths are determined based on the cryptographic hash of secret 

seeds stored in SCustψ.  This transform is represented by 

local_data_block_length = F-box(Offset, SCustψ) 

Definition 38 : Given SCustψ, a block of data to have xslices removed, and the PID of that data block, the F-box(xslice-length) 

transform returns the length of the next xslice to be removed from the data block.  This transform also updates SCustψ 

so that the next call to the transform will return the length of the next xslice.  This transform must produce the same 

sequence of lengths for consecutive transform calls for a given data block PID after SCustψ has been reinitialized, so 

that data blocks may be disassembled and reassembled.  The xslice lengths are determined based on the 

cryptographic hash of secret seeds stored in SCustψ.  This transform is represented by 

local_xslice_length = F-box(XLth, SCustψ) 

 
Fig. 38.  Using F-box(Offset) and F-box(XLth) transforms to remove Xslices 

Fig. 38 demonstrates how these transforms are used to divide the ciphertext into a block of Xslices and a block of 

ciphertext.  This process is formalized in Algorithm 11, with the addition of another F-box transform defined in Definition 39.  

Finally, the entire multiple-layer encryption process illustrated in Fig. 37 is formalized in Algorithm 12, which also references 

Definition 40. 

Definition 39 : Given an input string or byte array, the F-box(substring) transform returns a substring or sub-array based on 

specified indices.  The transform is represented by 

local_xslice = F-box(SString, data_block, offset, length) 
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The "data_block" parameter is the input string or byte array, the "offset" parameter is the index indicating where in 

"data_block" the desired substring begins, and the "length" parameter indicates the length of the desired substring. 

Definition 40 : Given a block of data and SCustψ, the F-box(encrypt) transform encrypts the block of data using encryption 

keys provided by SCustψ and returns the ciphertext along with the updated version of SCustψ.  This transform is 

represented by 

{ SCustψ, ciphertext } = F-box(Encrypt, SCustψ, data_block) 

Algorithm 11. remove_xslices() 

inputs : SCustψ, data_block 

outputs : SCustψ, data_block’, xslices 

  

1 pointer = index of 1
st

 byte of data_block 

2 xslices = empty string 

3 data_block’ = empty string 

  

4 while (pointer < data_block.length) do 

  

5 local_data_block_length = F-box(Offset, SCustψ) 

6 local_xslice_length = F-box(XLth, SCustψ) 

7 local_data_block = F-box(SString, data_block, pointer, local_data_block_length) 

8 local_xslice = F-box(SString, data_block, [pointer + local_data_block_length], local_xslice_length) 
  

9 xslices = F-box(Concat, xslices, local_xslice) 

10 data_block’ = F-box(Concat, data_block’, local_data_block)  
  

11 pointer = pointer + local_data_block_length + local_xslice_length 

  

 end 

 

Algorithm 12. encrypt_data() 

inputs : SCustψ, data_block, num_layers 

outputs : SCustψ, ciphertext, xslices 

  
1 ciphertext = data_block 
2 xslices = empty string 
  
3 for index = 1 to num_layers 
4 { SCustψ, ciphertext } = F-box(Encrypt, SCustψ, ciphertext) 

5 { SCustψ, ciphertext, temp_xslices } = remove_xslices(SCustψ, ciphertext) 

6 xslices =  F-box(Concat, xslices, temp_xslices) 
 end 
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5.2.2.3 Theoretical Implications 
The use of Xslices in the IDACS Client-side data encryption scheme leads to several theoretical implications which 

demonstrate the security of this encryption scheme.  First, consider the situation where the Xslices extracted from a given piece 

of data‟s ciphertext are stored in a contiguous block in a single location (Storage Method 1 in Fig. 36).  Alternatively, when Custψ 

requests these Xslices from the IDACS datacenter, they are returned to Custψ in a single block of data.  An attacker who 

manages to retrieve the ciphertext and the block of corresponding Xslices, but does not possess SCustψ and thus cannot 

perform the F-box(Offset) or F-box(XLth) transforms in Algorithm 11, is faced with the problem of determining 1) where the 

ciphertext splits for the insertion of Xslices, and 2) where the contiguous block of Xslices splits into individual Xslices.  The 

difficulty of 1) is addressed in Theorem 4, and the difficulty of 2) is addressed in Theorem 5. 

Theorem 4 : An attacker who possesses a ciphertext block requiring Xslice insertion, but does not possess the SCustψ necessary to 

determine the Xslice insertion points, faces an NP-complete problem to determine the Xslice insertion points. 

 

Theorem 5 : An attacker who possesses a block of concatenated Xslices extracted from a ciphertext, but does not possess the SCustψ 

necessary to determine the lengths of and separated individual Xslices, faces an NP-complete problem to separate the individual 

Xslices. 

 

A second situation, where individual Xslices are stored across multiple DB in the IDACS datacenter (Storage Method 2 

in Fig. 36), presents a similar problem.  Consider an attacker who is able to retrieve all the individual Xslices associated with a 

certain piece of Client-side data‟s ciphertext.  However, without access to SCustψ, the attacker is unable to determine the correct 

order in which these Xslices should be arranged for reinsertion into the ciphertext.  This problem is addressed in the following 

Theorem. 

Theorem 6 : An attacker who possesses all Xslices extracted from a ciphertext, but does not possess the SCustψ necessary to determine 

the order in which these Xslices should be re-inserted into the ciphertext, faces an NP-complete problem to correctly order the individual 

Xslices. 

 

The preceding Theorems are proved in “5.2.4 Mathematical Proofs”. 

 

5.2.3 Data Segmentation 
The previous section described how Xslices are used to protect the confidentiality of encrypted Client-side data.  This 

section will examine how the used of distributed Xslices can be combined with data segmentation gain additional security by 
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minimizing the level of decrypted data exposure and minimize the damage caused by an attacker who is able to successfully 

pass several illegal IDACS datacenter access requests. 

5.2.3.1 Single File 
The standard approach to file encryption and decryption is to decrypt an entire protected file at the time of access.  

Unfortunately, this exposes the entire contents of the protected file to an attacker who can steal a Clientρ on which a currently 

decrypted file is being viewed.  The concept of the space-time evolving relationship can be used to minimize this risk.  Rather 

than encrypting a file in a single “block”, the file can be divided into multiple “segments” (e.g. one page of the file equates to one 

segment).  A “navigation” file associated with the encrypted data file is formed; this navigation file contains metadata regarding 

each segment in the data file, such as where each segment begins and ends in the ciphertext, which Xslices are used in that 

segment, and where those Xslices are inserted into the ciphertext (Fig. 39).  When a user wants to view part of the encrypted file, 

the contents of the navigation file are presented as a “Table of Contents”.  The user selects the segment he wishes to view, and 

Custψ requests the Xslices for the specified segment, inserts them into the ciphertext, and decrypts that particular segment.  The 

remaining segments in the file are not decrypted unless they are specifically accessed later. 

 
Fig. 39.  Data segmentation for a single file 

Segmenting an encrypted data file in this manner enhances data security in several ways.  First, in the event that a 

Clientρ being used to decrypt and view data is stolen, the amount of decrypted data residing on Clientρ is limited.  Additionally, if 

an attacker is able to force a few illegal IDACS datacenter access requests through IDACS, the encrypted data that attacker can 

recover is limited to a few file segments rather than the same number of files. 
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 Segmenting data on the single file-level provides benefits in terms of both security and performance, which are 

summarized in Table 6.  If a single segment of a file is decrypted, the number of Xslices retrieved from the datacenter as well as 

the amount of decrypted plaintext exposed is less than if the encrypted file were non-segmented.  Additionally, the time required 

to complete this operation is constant (O(1)) rather than linear (O(x)).  If all segments of the file are decrypted, then there is no 

relative advantage over a non-segmented approach. 

Table 6.  Comparison of segmented vs. non-segmented data encryption for file of length x. 

 Non-segmented file Segmented file (decrypting one segment) Segmented file (decrypting entire file) 

Performance    

Time to retrieve Xslices Request Xslices: O(1) 

Send XSlices: O(x) 

Insert Xslices: O(x) 

Total: O(x) 

Request Xslices: O(1) 

Send XSlices: O(1) 

Insert Xslices: O(1) 

Total: O(1) 

Request Xslices: O(x) 

Send XSlices: O(x) 

Insert Xslices: O(x) 

Total: O(x) 

Time to decrypt O(x) O(1) O(x) 

Total time O(x) O(1) O(x) 

    

Security    

Xslices exposed O(x) O(1) O(x) 

Decrypted plaintext 

exposed 

O(x) O(1) O(x) 

 

The results shown in Table 6 may be used as justification for the following: 

Claim 6:  Segmenting encrypted files and decrypting and issuing Xslices one segment at a time increases security and 

performance if one or a few pages are decrypted, but has no effect on security or performance if an entire file is 

decrypted. 

5.2.3.2 File Directory Tree 
In the previous section, it was shown how data segmentation could be used to protect a single encrypted data file; the 

same concept can also be used to protect and encrypt a file directory tree.  Consider the file directory tree shown in Fig. 40.  The 

different levels of folders in Fig. 40 correspond to the “navigation” file in Fig. 39; they are files that do not contain actual data, but 

only pointers to the actual data files.  The actual data files that are the leaf nodes of this tree correspond to the ciphertext 

segments in Fig. 39.  In Fig. 40, each Zone is a separate file with its own Xbits and Xslices residing in the IDACS datacenter, and 

each leaf node data file also contains its own Xbits and Xslices.  Using this tiered encrypted File Directory Tree is ideal for a 

situation where encrypted data is maintained on the Client-side with Xbits and Xslices stored on IDACS Databases.  Decrypting 

the File Directory Tree requires that Xbits and Xslices be retrieved to decrypt each successive Zone.  If an attacker is able to 

pass a few access-DB-attacks, he may be able to gather some information on the structure of the File Directory Tree, but it may 

not be enough to recover any of the actual data files.  Additionally, this structure obfuscates information regarding the size, 



 
 
 

59 
 

quantity, and organization of the data files in the File Directory Tree by minimizing the amount of file pointers and file data that 

are exposed during a single file access, as will be seen in the following example.  Obfuscating this information also minimizes the 

number of targets an attacker can address. 

 
Fig. 40.  Encrypted File Directory Tree segmented into zones 

Navigating through the encrypted File Directory Tree is similar to navigating through any file explorer program on a PC.  

Consider Fig. 41; a user initially possesses encrypted pointer information regarding the “root” of the File Directory Tree.  The 

user requests the Xbits and Xslices to decrypt the “root” file residing on Custψ, revealing the contents of Zone 1 (Folder 1).  The 

user then requests the Xbits and Xslices to decrypt the Folder 1 pointer file (Zone 2), revealing the children folders of Folder 1 

(Folders 2, 3, and 4).  The user proceeds through Zone 5 and Zone 14 to reach the target File 25.  Through this process, only 

information regarding folders and their children along the direct path to the target (File 25) are revealed; information regarding 

unexplored folders is not revealed to the user. 

 
Fig. 41.  Retrieving a single data file from the File Directory Tree 
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Table 7 illustrates the performance of a non-segmented File Directory Tree compared to the segmented version.  The 

performance of the segmented version exceeds that of the non-segmented version if a single file is retrieved; however, the 

performance of the segmented version drops if all of the files in the Directory Tree are retrieved.  For its application in IDACS, 

this tradeoff in performance is considered acceptable in return for the corresponding increase in security, which is demonstrated 

in Table 8. 

Table 7.  Comparison of performance of segmented vs. non-segmented File Directory Trees containing x data files 

 Non-segmented File Directory Tree Segmented File Directory Tree 

Time to locate a single file Request File Directory Tree: O(1) 
Send File Directory Tree: O(x) 
Decrypt File Directory Tree: O(x) 

Total: O(x) 
 

Request Zone: O(1) 
Send Zone: O(1) 
Decrypt Zone: O(1) 

Repeat for the depth of the File 
Directory Tree: O(log x) 

Total: O(log x) 

Time to decrypt a single file O(1) O(1) 

Total for a single file O(x) O(log x) 

Total for all files in File Directory Tree O(x) (because File Directory Tree only 
needs to be retrieved once) 

O(x log x) (because potentially entire 
depth of File Directory Tree must 
be  retrieved for each file) 

 

Table 8 compares the security provided (in terms of how much file data and pointers are exposed) for non-segmented and 

segmented File Directory Trees.  If a single file is accessed, the segmented version provides higher security by not exposing the 

file data and pointers for non-accessed files; of course, this advantage is lost if all of the files in the directory tree are accessed.  

In either case, the segmented version provides a higher level of security by forcing more authentication and permissions checks 

by a factor of log x.  Since the user must potentially navigate the depth of the File Directory Tree for each file accessed, retrieving 

Xbits and Xslices from the IDACS datacenter for each zone accessed, the segmented version forces more     ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅̅  

checks, making a traitor Custψ controlled by an attacker more likely to be detected. 

Table 8.  Comparison of security of segmented vs. non-segmented File Directory Trees containing x data files 
 Non-segmented File Directory Tree Segmented File Directory Tree 

For a single file access   

How many files exposed O(1) O(1) 

How many file pointers (leaf nodes) 
exposed 

O(x) (all file pointers exposed) O(1) (only files in folder containing target 
file) 

How many folder pointers exposed (by 
decrypting zones) 

O(x) (all folder pointers exposed) O(log x) 

How many authentication/ permissions 
checks 

O(1) O(log x) 

   

For all files in Directory Tree accessed   

How many files exposed O(x) O(x) 

How many file pointers (leaf nodes) 
exposed 

O(x) (all file pointers exposed) O(x) (all file pointers exposed) 

How many folder pointers exposed (by 
decrypting zones) 

O(x) (all folder pointers exposed) O(x) (all folder pointers exposed) 

How many authentication/permissions 
checks 

O(x) O(x log x) 
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The results displayed in Table 7 and Table 8 may be taken as justification for the following claims. 

Claim 7:  Segmenting the File Directory Tree and allowing a user to decrypt one zone at a time, as compared to a File Directory 

Tree system that  provides the entire directory tree at once, for a single file access in a tree containing x files, 

a) Improves the efficiency of retriving a single file from O(x) to O(log x) 

b) Improves security by reducing the number of exposed file pointers from O(x) to O(1) 

c) Improves security by increasing the number of required authentication/permissions checks from O(1) to O(log x) 

 

Claim 8:  Segmenting the File Directory Tree and allowing a user to decrypt one zone at a time, as compared to a File Directory 

Tree system that  provides the entire directory tree at once, for accessing every file in a tree containing x files, 

a) Reduces the efficiency of retrieving all files from O(x) to O(x log x) 

b) Improves security by increasing the number of required authentication checks from O(x) to O( x log x) 

5.2.4 Mathematical Proofs and Analysis 
This section provides the mathematical proofs for Theorem 3 through Theorem 6. 

5.2.4.1 Theorem 3, Theorem 4, and Theorem 5 
First, a short review of the Theorems to be proved: 

Theorem 3 : An attacker who possesses a cryptographic key and the corresponding Xbits, but does not possess the SCustψ necessary to 

determine the Xbit insertion points, faces an NP-complete problem to determine the Xbit insertion points. 

 

Theorem 4 : An attacker who possesses a ciphertext block requiring Xslice insertion, but does not possess the SCustψ necessary to 

determine the Xslice insertion points, faces an NP-complete problem to determine the Xslice insertion points. 

 

Theorem 5 : An attacker who possesses a block of concatenated Xslices extracted from a ciphertext, but does not possess the SCustψ 

necessary to determine the lengths of and separated individual Xslices, faces an NP-complete problem to separate the individual 

Xslices. 

 

All three cases represent a “splitting” problem, where a block of data must be split at certain points in order to re-insert 

extracted information (Theorem 3 and Theorem 4) or to separate the extracted information into pieces for re-insertion (Theorem 5).  

In essence, the problem requires the attacker to recreate the sequence of outputs from repeated calls to the F-box(XLth) or F-

box(Offset) transforms, as demonstrated in Fig. 38.  Although the outputs of these transforms are calculated based on the value 

of SCustψ, in a fielded IDACS system, the lengths of individual Xslices or the data blocks in the ciphertext between Xslices are 
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chosen from a finitely long list of known possible lengths.  In the case of Xbit insertion, there are a finite number of possible 

insertion points in each byte for the corresponding Xbit (8 possible positions).  Therefore, solving these problems requires 

recreating a sequence of numbers (lengths) drawn from a known, finite list. 

 
 

Fig. 42.  Xslice/Data Block splitting problem Fig. 43.  Xbits splitting problem 

Fig. 42 and Fig. 43 demonstrate these problems graphically.  To solve these problems, one member from each column 

must be selected, with the final sequence of selections representing the actual division of Xslices/Data Blocks or insertion points 

for Xbits.  These problems can be represented in terms of graph theory.  Let the options in each column be represented by a set 

of vertices Ѵ.  Consistent with the concept of "graph coloring", each vertex in the same column is assigned the same color, with 

different colors assigned to each column (represented by shapes in Fig. 44).  Each v Ѵ is connected by an directed edge e, e E, 

to every other v in an adjacent column (in Fig. 44, only a few e are shown for the sake of simplicity).  Each e E has an associated 

edge weight W(e), 0≤W(e)≤1, where W(e) represents the probability that the {v1, v2} connected by e, with their respective values and colors, 

are both present in a path which contains one v of each color that represents the correct sequence Xslice lengths etc. (the method for 

determining these weights will be discussed in “5.2.4.3 Randomness in Xslices”)  Theoretically, the path containing one v of each color that has 

the highest sum W(e) of all such paths (i.e the Maximum Weight Path) should represent the correct sequence of Xslice lengths etc. (Fig. 45) 

 
 

Fig. 44.  Splitting problem represented in terms of graph 
theory. 

Fig. 45.  Maximum Weight Path. 
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Now, solving the problem posed in Theorem 3, Theorem 4, or Theorem 5 is equivalent to solving this Maximum Weight Path 

problem.  This problem may be formalized by specifying that a path of length Z (where Z is the number of columns) must be found.  This is now 

the Maximum Weight Directed Path of Specified Length (MWDPSL) problem, which is proved NP-Complete in "Appendix A".  Thus, the NP-

Completeness of Theorem 3, Theorem 4, and Theorem 5 is proved. 

5.2.4.2 Theorem 6 
 

Theorem 6 : An attacker who possesses all Xslices extracted from a ciphertext, but does not possess the SCustψ necessary to determine 

the order in which these Xslices should be re-inserted into the ciphertext, faces an NP-complete problem to correctly order the individual 

Xslices. 

The proof for Theorem 6 is identical to the proof for Theorem 1, with the Seedσ in Theorem 1 replaced by the Xslices in Theorem 6.  

The Xslice ordering problem in Theorem 6 may also be represented by the Maximum Weight Path of Specified Length (MWPSL) problem, 

which is proved NP-Complete in "Appendix A".  Thus, the NP-Completeness of Theorem 6 is proved. 

5.2.4.3 Randomness in Xslices 
While Theorem 3, Theorem 4, Theorem 5, and Theorem 6 have been proved NP-complete, the value of this proof must be qualified.  

NP-completeness speaks only to the worst-case complexity of a given decision problem (which is that the complexity grows exponentially with 

the problem size); there may be other factors that can significantly reduce the complexity of a problem.  If the edge weights in the graph are 

relatively uniform (Fig. 46), then the complexity of finding the Maximum Weight Path is close to the worst-case scenario; however, if the edge 

weights are not relatively uniform (Fig. 47), then a simple algorithm (or a human analyst) can significantly reduce the complexity of finding the 

Maximum Weight Path by picking out the high-weight edges that are more likely to be part of the solution. 

  
Fig. 46.  Graph with uniform edge weight distribution Fig. 47. Graph with non-uniform edge weight distribution 

Consider the example of reassembling fragmented data as discussed in [31].  This paper discusses a method of 

reassembling fragmented data by using the Maximum Weight Path problem with the weights of edges between data fragment 

nodes based on recognized patterns in the data.  Therefore, highly-patterned data will result in stronger pattern recognition, 

which will result in a graph with a few high-weight edges.  Therefore, highly-patterned data will result in a Maximum Weight Path 
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reassembly problem that has a complexity significantly less than the worst-case exponential.  In [31], the authors discuss this 

phenomenon, and show through their experiments that highly-patterned data does indeed lead to faster and more accurate file 

reassembly.  So the question is, does the fragmented, distributed ciphertext (Xslices and their associated ciphertext) that is 

present in IDACS produce a uniform or non-uniform edge weight distribution in the graph? 

In order to answer this question, it is necessary to analyze the “randomness” of the type of ciphertext fragments that 

will be present in IDACS in order to judge what type of edge weight distribution a Maximum Weight Path model applied to these 

fragments would generate.  This analysis was performed using a software package created by the National Institute of Standards 

and Technology (NIST) [32], which provides a battery of tests that analyzes the outputs of Random Number Generators (RNGs) 

to measure their “randomness” by looking for patterns in the outputs [33].  The battery consists of 15 individual tests, each of 

which measures different aspects of “randomness” in the data.  Each of these tests ask the question: “If the algorithm that 

generated this data sample was truly random, what is the probability that this specific data sample could have been generated?”  

The individual tests respond with a p-score in the probability range [0, 1].  The NIST standard [33] recommends using a passing 

score, or “significance level”, of 0.01.  Some truly random data samples will fail the tests and generate a “false positive” for 

randomness due to weaknesses in the test; therefore, two types of statistics are recommended for analyzing the test p-scores. 

The first statistic looks at the proportion, or percentage, of tests with passing p-scores  According to the parameters in 

[33], for a set of tests run with 1000 data samples, a truly random RNG will have a minimal proportion of 0.9805068, i.e. a 

minimum pass rate of 98.05%.  The second statistic looks at the distribution of the p-scores.  For a set of truly random data 

samples, it is expected that the p-scores should be evenly distributed.  The evenness of the distribution can be measured by 

calculating the P-valueT for each test based on the chi-square statistic discussed in [33]; if each test has a P-valueT ≥ 0.0001, 

then the p-scores are considered to be evenly distributed. 

To measure the randomness of ciphertext blocks, the NIST battery was applied to two sets of data.  The first set of 

data consisted of samples of normal AES ciphertext blocks (representing a segment of AES ciphertext with the correct Xslice re-

inserted), and the second set consisted of samples of two normal AES ciphertext blocks encrypted with two different AES keys 

back-to-back with each other (representing a segment of AES ciphertext with an incorrect Xslice re-inserted).  This test was 

designed to determine whether there was any discernible difference between the “pattern” (or randomness) of a correctly- and 

incorrectly- re-inserted Xslice.  Both data sets consisted of 1000 samples, each of which was 106 bits (1.25 * 105 bytes) long.  

The samples in the first data set consisted of plaintext encrypted using AES in CBC mode, using a unique key for each sample.  
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The samples in the second data set consisted of the same plaintext encrypted using AES in CBC mode, but each sample was 

split into two halves, each of which was encrypted using a unique key). 

The NIST battery of tests consists of 15 individual tests.  Two of these tests are run twice during the course of the 

battery; results for both of the tests are reported here.  Three of the tests are run a number of times; results for two randomly 

selected instances of those tests are reported here.  All other tests were run once; the results are reported here.  In total, 20 

separate test results are reported. 

Fig. 48 shows the proportion of passing NIST tests for the first data set (Fig. 48 (a)), which represents a “matched” 

Xslice and ciphertext, and the second data set (Fig. 48 (b)), which represents a “mismatched” Xslice and ciphertext (or two 

concatentated Xslices or ciphertext segments that were not adjacent in the original ciphertext).  It can be seen that all but one 

test result pass the minimum proportion requirements; more importantly, both data sets are demonstrated to be “random”, and 

there is no distinguishable difference between the proportions for the two data sets. 

a)

 

b) 

 
Fig. 48. Proportion of passing NIST tests for (a) regular ciphertext (representing “matched” ciphertext fragments) and (b) 

dual-AES key ciphertext (representing “mismatched” ciphertext fragments) 

Table 9 lists the P-valueT for all of the NIST tests for both the “matched” and “mismatched" ciphertext fragments.  It can 

be seen that all tests for both data sets pass the minimum score of 0.0001.  Thus, the two data sets may be considered equally 

“random”.  Therefore, it can be concluded that both matching and mismatching ciphertext fragments would generate uniform 

edge weights in a weighted graph.  This indicates that there is no discernible difference (pattern-wise) between adjacent 

ciphertext blocks (ciphertext joined with associated Xslices) and non-adjacent blocks (concatentated Xslices or ciphertext with 

Xslices removed), and that the graphs generated to solve Theorem 3 through Theorem 6 would have uniform edge weights, maximizing 

the effect of the NP-complete property. 
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Table 9.  P-valueT for NIST tests for “matched” ciphertext fragments and “mismatched” ciphertext fragments 
Test # Matched 

Ciphertext 
Mismatched 
Ciphertext 

 Test # Matched 
Ciphertext 

Mismatched 
Ciphertext 

 Test # Matched 
Ciphertext 

Mismatched 
Ciphertext 

1 0.147815 0.514124  8 0.162606 0.570792  15 0.243466 0.291249 

2 0.173770 0.325206  9 0.174728 0.647530  16 0.888892 0.356948 

3 0.528111 0.605916  10 0.323668 0.153763  17 0.105377 0.148760 

4 0.340858 0.689019  11 0.867692 0.574903  18 0.504219 0.948298 

5 0.196920 0.626709  12 0.649612 0.794391  19 0.156373 0.081013 

6 0.875539 0.500279  13 0.522100 0.344048  20 0.257004 0.705466 

7 0.727851 0.039073  14 0.437274 0.974555     
 

 

5.3 Simulations 

5.3.1 Simulation Parameters 
The simulations used to examine the effect of Xbits, Xslices, Single File Data Segmentation, and File Directory Tree 

Segmentation on increasing IDACS security used the same simulation suite discussed in “4.5.2 Attack Detection, Traceback, 

and Remediation Simulations”.  In order to simulate the use of Xbits, Xslices, and Data Segmentation, the simulation was 

expanded to make the access-DB-attacks directed towards accessing the contents of a Segmented File Directory Tree and the 

data files it stores.  The Segmented File Directory Tree used in these simulations is illustrated in Fig. 49.  Each Traitor Custψ in 

the simulation had legal access (permissions) to access 3 random data files in the File Directory Tree; however, no Traitor Custψ 

had access to the full set of authentication tokens (Clientρ, Badgeδ, Pwdζ, and PINλ).  Because of this, all access-DB-attacks were 

illegal.  Each Traitor Custψ began with the contents of the File Directory Tree (minus Xslices) encrypted on his Clientρ, with the 

Xbits and Xslices necessary for decryption residing in the IDACS datacenter.  Each Traitor Custψ began with a pointer to the “root” 

of the File Directory Tree; he would need to retrieve the Xbits and Xslices necessary to decrypt the “root” from the IDACS 

datacenter in order to access the “root‟s” contents (the pointers for the Level 1 Folders).  He would then need to retrieve the Xbits 

and Xslices to decrypt a given Level 1 Folder from the IDACS datacenter in order to access that Level 1 Folder‟s contents (the 

pointers to the children Level 2 Folders).  A Traitor Custψ would need to repeat this process until he was able to retrieve all four 

Segments of a target Data File. 
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Fig. 49.  Simulation File Directory Tree setup 

Each Traitor Custψ in IDACS possessed the same encrypted File Directory Tree; however, each Traitor Custψ‟s File 

Directory Tree was encrypted using different encryption keys, different Xslices, and different Content(    ) associated with the 

store Xbits and Xslices.  Therefore, Traitor Custψ were not able to collaborate with each other by sharing Content (    ) and 

thus “skipping over” the retrieval of a given folder; all Traitor Custψ were forced to completely decrypt their own File Directory 

Trees.  Additionally, each Traitor Custψ contained only the portions of the File Directory Tree that were “ancestors” of the Data 

Files that particular Custψ had permissions to access; in this simulation, Traitor Custψ were unable to access files for which they 

did not have permissions.  However, the group of Traitor Custψ was able to collaborate with each other in a limited way; if one 

Traitor Custψ had retrieved a particular Data File Segment, all other Traitor Custψ would seek to retrieve other Data File 

Segments, rather than pursue data that had already been successfully recovered.  Additionally, the group of Traitor Custψ would 

give priority for retrieval attempts to the Traitor Custψ with the deepest exploration into the File Directory Tree, thus focusing the 

resources of Traitor SAs and SSAs towards the Traitor Custψ with the highest likelihood of successfully accessing Data File 

Segments. 

During this simulation, it was necessary to complete two separate IDACS datacenter accesses in order to decrypt a 

single folder/data file pointer/data file segment; one access to retrieve the Xbits, and one access to retrieve the Xslices.  The 

length of the approach and return authentication chains was 2 (N = 2); this parameter was shortened from the previous value of 4 

in order to allow more access-DB-attacks to succeed during this simulation.  This simulation used the turn-traitor-attack vectors 

and metamorphic variations defined for Scenario 3 in “4.5.2.2 Simulation Parameters”, with 40 attack vectors and 100 variations 

per attack vector (these parameters were increased in order to mask the limiting effects of these parameters from the results of 

this simulation).  Phase 2 of the simulation began after a threshold of 90% of the SAs and SSAs had been turned into traitors, 

with a single Traitor Custψ for each Traitor SA or SSA.  This 90% threshold is much higher than what we would expect to see in a 

real-world situation; however, it was set at that level for two purposes.  First, the 90% threshold represents a catastrophic 
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scenario; if IDACS is capable of defending against this type of scenario, then the real-world performance is expected to be much 

higher.  Second, it was necessary to raise the threshold to 90% in order for an appreciable number of access-DB-attacks to 

succeed so that the effect on the Segmented File Directory Tree could be observed.  Access-DB-attacks would cease if the 

percentage of active SAs or SSAs that were traitors fell below 15%.  Additionally, no SAs or SSAs in this simulation were 

spoofed; all traitor SAs or SSAs were completely functional traitors. 

During Phase 2 of this simulation, if a Traitor Custψ was identified, it would be quarantined and the entire File Directory 

Tree residing on that Custψ would be “re-encrypted”.  Therefore, if that Custψ was later turned into a Traitor, he would have none 

of the File Directory Tree decrypted, and would have to start again from the “root”.  However, once a Data File segment was 

retrieved, it was considered to be owned by the attacker regardless of whether that Custψ was detected in the future or not, and 

that data was added to the pool of data that had been successfully retrieved by the collaborating Traitor Custψ. 

5.3.2 Controlled vs. Runaway simulations 
Because the threshold of 90% of SAs and SSAs turned traitor before Phase 2 of the simulation began, a unique 

situation presented itself.  In most cases, the percentage of Traitor SAs and SSAs in IDACS would drop quickly after the start of 

Phase 2 of the simulation (Fig. 50), similar to the results in “4.5.2.3 Simulation Results” with a 60% threshold.  However, with a 

90% threshold, in about 1 in 10 simulation runs, new Traitor SAs and SSAs would be turned more quickly than they were 

detected and quarantined at the beginning of Phase 2.  If 100% of the SAs and SSAs in IDACS were turned Traitor, there were 

no loyal SAs or SSAs remaining to detect, identify, and quarantine the Traitors.  In that case, IDACS was completely controlled 

by the attacker, and the IDACS defenses were completely nullified.  In this discussion, a simulation that results in 100% Traitor 

SAs and SSAs will be termed a “Runaway Botnet”, while a simulation that reduces the percentage of Traitor SAs and SSAs over 

time will be referred to as a “Contained Botnet”.  Fig. 50 compares the results of IDACS Network loyalty for a given Contained 

Network simulation run and a given Runaway Network simulation run. 

 
Fig. 50.  Percentage of Active SAs/SSAs that are Traitors in IDACS, Contained vs. Runaway Botnet 
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It should be noted that Runaway Botnet simulations occurred in only 1 out of 10 simulation runs with an SA/SSA Traitor 

threshold of 90%; Runaway Botnets were not observed in simulations with a threshold of 80% or less.  Therefore, a Runaway 

Botnet represents a highly unlikely, but very catastrophic situation.  For the sake of completeness, the results for Runaway 

Botnet simulations will be included in the following discussions. 

5.3.3 Data Protection Results 
The results of this simulation were analyzed to discover the effectiveness of the protection provided by the Segmented 

File Tree Directory against illegal access of the Client-side encrypted data.  Fig. 51 shows the percentage of the File Directory 

Tree stolen by the attacker averaged across 9 Contained Botnet simulation runs, compared to the same data for a single 

Runaway Botnet simulation.  For the Contained Botnet, a small percentage of the File Directory Tree is initially retrieved, riding 

on the initial high percentage of Traitor SAs and SSAs (Fig. 50).  However, as Traitor SAs and SSAs are identified and 

quarantined, more Traitor Custψ are also identified and quarantined; as their individually encrypted File Directory Trees are re-

encrypted, those previously retrieved Folders are lost, and the percentage drops.  Eventually, when fewer access-DB-attacks are 

being made and even fewer are successful, due to a low percentage of Traitor SAs and SSAs in IDACS (compare to Fig. 32 and 

Fig. 34), the percentage of the File Directory Tree that is retrieved will drop to zero.  This simulation demonstrates that even 

under extremely adverse situations, IDACS will contain and eliminate the results of an initial burst of successful illegal IDACS 

database accesses.  However, Fig. 51 also demonstrates that in the rare, catastrophic situation of a Runaway Botnet, the Traitor 

Custψ become functionally equal to Loyal Custψ, and the entire File Directory Tree can be retrieved with sufficient time. 

 
Fig. 51.  Percentage of File Directory Tree stolen over simulation period 
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Fig. 52 and Fig. 53 show the percentage of the total Data File Segments in IDACS that were successfully stolen by 

Contained Botnets and Runaway Botnets.  For a Contained Botnet (which is the more realistic situation), the Traitor Custψ meet 

with some initial success in retrieving Data File Segments (compare to the percentage of the retrieved Data File Tree in Fig. 51).  

However, after IDACS becomes more successful at blocking access-DB-attacks, no more Data File Fragments are retrieved.  

Because a Data File Fragment, once stolen, is permanently stolen (re-encryption of a Data File Tree does not nullify the theft of a 

given Data File Fragment), quarantine of Traitor Custψ does not reduce the percentage of Data File Segments stolen; however, 

IDACS is able to limit the damage to an average of about 0.22%, or slightly less than one complete Data File Segment.  Once 

again, however, if an attacker manages to accomplish a Runaway Botnet (the rare, less realistic situation), there is a virtual open 

door for the Traitor Custψ to retrieve all of the Data File Segments, limited only by time. 

  
Fig. 52.  Average percentage of Data File Segments stolen for 

a Contained Botnet 
Fig. 53.  Percentage of Data File Segments stolen for a Single 

Runaway Botnet 

5.3.4 Leakage Detection Results 
One of the advantages of the IDACS Segmented File Directory Tree approach is that it allows previous illegal IDACS 

datacenter accesses to be detected.  When a Traitor Custψ is detected, the IDACS forensics engine reports to the System 

Administrator that all Data File Segments previously retrieved by that Custψ have been stolen.  It is very useful, in the aftermath of 

a network breach, to know where data leakages occurred, and what data was leaked. 

Fig. 54  and Fig. 55 demonstrate when File Data Segments were retrieved during the simulation, and when they were 

detected as having been stolen.  Fig. 54 shows that File Data Segments stolen during the Contained Botnet simulation were 

detected as stolen soon after the theft.  This demonstrates the strength of data leakage capabilities of IDACS.  However, when 

the Runaway Botnet gains control of all of the SAs and SSAs in IDACS (Fig. 55), none of the stolen data is detected as such. 
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Fig. 54.  Histogram for when Data File Segments were stolen 

vs. when they were detected Stolen; Contained Botnet 
Fig. 55.  Histogram for when Data File Segments were 
stolen vs. when they were detected stolen; Runaway 

Botnet 

When a Traitor Custψ is detected to be a Traitor, this allows IDACS to hold that Custψ accountable for stealing files.  Fig. 

56 demonstrates the success rate for identifying every Custψ that was ever turned Traitor for the Contained and Runaway Botnet 

simulations.  In the common real-world case (Contained Botnet), IDACS is able to identify and quarantine a large percentage of 

the Traitor Custψ, only failing to identify them once the percentage of Traitor SAs and SSAs drops below the threshold below 

which access-DB-attacks s are no longer launched (compare to Fig. 50).  Thus, IDACS provides strong capabilities for identifying 

and holding accountable Byzantine agents in the system.  For the rare case (Runaway Botnet), several Traitor Custψ are 

identified, but once 100% of the SAs and SSAs in IDACS are turned Traitor, there are no new detections of Traitor Custψ. 

 
Fig. 56. Percentage of all Clients ever turned Traitor that are detected, Contained vs. Runaway Botnet 
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6 Implementation 

 At this time, the IDACS Network has been implemented by the researchers as a proof-of-concept to demonstrate the 

feasibility of IDACS.  The current implementation focuses on the IDACS Network Protocol (which governs network messages as 

well as the exchange of     ̅̅ ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅ ̅̅ , and XV) and distributed storage.  Only limited forensics capabilities have been 

implemented; currently, only Algorithm 9 (identifying stolen/cloned Client-side Clientρ, Badgeδ, Pwdζ, and PINλ) has been 

implemented.  Algorithm 7 (identify root attacker),  

Algorithm 8 (identify root attacker's botnet), and Algorithm 10 (identify controlled/spoofed SAs and SSAs) will be implemented at 

a later time. 

 All IDACS Network elements (SAs, SSAs, and Databases) and the User Badge (Badgeδ) have been implemented in 

Java as Command Line Interface (CLI) programs (Fig. 58 (a) through (d)).  The Client Device (Clientρ) has been implemented in 

two different ways.  First, it has been implemented as a CLI program (Fig. 58 (e)).  This Client Device implementation performs 

simple Read and Write operations to store and retrieve blocks of data on the IDACS Database; the purpose of this 

implementation is to test the IDACS reaction to incorrectly formed PIDs (PIDε) and also compromise of the Client Device (Clientρ), 

User Badge (Badgeδ), User Password (Pwdζ), or Badge PIN (PINλ).  The second Client Device implementation is an app that runs 

on a BlackBerry 9800 simulator available from RIM (Fig. 58 (f)).  This app encrypts a file and stores Xslices and Xbits on the DB 

in a distributed manner.  The current implementation has been tested in the configuration shown in Fig. 57; however, the IDACS 

network can be scaled to any size desired (1 SSA, 2 SAs, and 1 DB minimum are required).  The space separation of the Client 

Device (Clientρ) and User Badge (Badgeδ) is simulated by storing their respective cryptographic seeds on different Java Virtual 

Machines. 

 
Fig. 57.  IDACS Implementation Tested Setup 
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 In addition to being scalable, this implementation of IDACS uses a network communications protocol that achieves 

reliable delivery over UDP.  Given the particulars of the IDACS algorithm and the per-message overhead     ̅̅ ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅ ̅̅ , and 

XV, the researchers believe that combining IDACS with TCP mightbe inefficient.  The researchers believe that it would be more 

efficient to build a proprietary IDACS protocol on top of UDP.  Therefore, the current implementation of IDACS is built on top of 

UDP; in order to compensate for the reliable delivery problem, IDACS contains built-in reliable delivery capabilities based on the 

concept of TCP SACKs [34].  Using this method, IDACS is able to reliably transfer large numbers of packets. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Fig. 58.  Java CLI implementations of (a) SSA, (b) SA, (c) Database, (d) User Badge , and (e) Client Device.  BlackBerry app 

implementation of (f) Client. 

 A demonstration of the real-time digital forensics capabilities of this implementation is shown in Fig. 59.  A simulated 

attacker attempts a Data Write operation, having stolen the User Password and the Client Device, but not the User Badge (the 

Badge PIN is bundled with the User Badge in this particular implementation) (Fig. 59 (a)).  Due to the missing cryptographic 

seeds residing on the User Badge, several of the PIDs (PIDε) cannot be formed correctly; these incorrect PIDs are detected by an 

SA, and the attack is flagged (Fig. 59 (b)).  Based on the cryptographic seed space separation and PID formation in this 

particular IDACS implementation, the digital forensics suite is able to determine correctly that the User Password and Client 

device were stolen or cloned (Fig. 59 (c)). 
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(a) 

 

(b) 

 

  

(c) 

 
Fig. 59.  A demonstration of the implementation: (a) Attacker with access to User Password and Client Device; (b) Attacker 

attemps a Write Transaction and is detected by an SA due to Client PID violations; (c)digital forensics report identifies 
which User Authentication elements have been compromised. 

The BlackBerry application implements the concepts of space/time-separation and also Xbits and Xslices to protect 

encrypted data.  When the BlackBerry application is run, it is given a file to encrypt.  The application begins with a few randomly-

generated cryptographic seeds that are the basis for all following actions.  These cryptographic seeds are used to seed a 

pseudo-random process which divides the file data into pseudo-random-sized blocks and encrypts each block with a unique 

pseudo-random AES key.  Next, the resulting ciphertext is divided into pseudo-random-sized blocks, and a certain percentage of 

those blocks are removed as Xslices.  Xbits are also pseudo-randomly removed from these cryptographic seeds (using the User 

Password as a seed for the pseudo-randomness).  The post-Xslice ciphertext is then divided into 1 KB blocks, which are stored 

in alternating data files (Fig. 59 (a)) that have random file names and random file extensions (Fig. 59 (b)).  A “pointer” file is 

formed which contains the names of the data files as well as the cryptographic seeds (minus the Xbits).  All of this information is 

mixed randomly with garbage data, encrypted with the User Password, and stored in the “pointer” file (Fig. 59 (c)).  The Xslices 

and Xbits are sent to IDACS to be stored on a random Database (Fig. 59 (d)).  Only the SSAs are able to link the User with the 

stored Xslices and Xbits; the Databases store no information regarding the type of the data or the owner of this data.  The 
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Database stores all data simply as data; there is no indication as to whether the data is Xslices, Xbits, or another type of data.  In 

this way, an Attacker would be forced to compromise both an SSA and the correct Database to recover the Xbits or Xslices and 

relate them to the correct Client Device and User.  In order to decrypt the file, the User must possess the Client Device and 

provide the correct User Password to extract and retrieve all the relevant data to complete reassembly and decryption (Fig. 59 

(e)).  In this implementation, the space separation of the storage of authentication items is simulated by storing Client and User 

Badge data in different text files (Fig. 59 (f)); however, due to the difficulty of integrating a stand-alone User Badge program with 

the BlackBerry simulator, the User Badge interface and the User Badge PIN are only used in conjunction with the CLI Client, not 

the BlackBerry application. 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

  

 
 

Fig. 60.  BlackBerry implementation of IDACS encryption and distributed storage. (a) file ciphertext with Xslices removed is 
(b) divided and stored in multiple data files. (c) Names of data files are encrypted and stored in a pointer file. (d) Xslices and 
Xbits are stored on IDACS Database as pure data; no information saved on Database indicating the identity of this data. (e) 
Correctly reassembling all distributed and mutated pieces results in correct file decryption. (f) Distributed storage between 

Client and User Badge is simulated using separate text files. 
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7 Conclusion 
The work presented in this paper describes an integrated security system IDACS that utilizes the space-time separated 

and jointly evolving relationship to provide multiple layers of constantly-changing barriers that will be mathematically infeasible for 

attackers to predict.  The implementation of these ideas in the IDACS system can successfully detect and defeat different types 

of network attacks, including zero-day attacks.  Table 10 details several common network attacks that IDACS addresses.  

Mathematical analysis demonstrates that it is infeasible to recreate the IDACS  authentication protocol, and simulations also 

reinforce the strength of these space-time relationships. 

Table 10.  Types of Network Attacks Defeated by IDACS 

Attack defeated Reason 

Zero-day attack Network access control is mathematically defined by a space-time separated and jointly evolving 
relationship; zero-day attacks which can compromise hosts cannot forge such a relationship when 
accessing protected data; furthermore, the zero-day attack method can be captured and analyzed 

Denial-of Service (DoS) attack Quick stateless OTP checking allows attack packets to be quickly discarded 

Replay attack Time-evolution means OTPs and PIDs are true one-use items tied to packet sequence number 

Client-side device loss Cryptographic seeds for calculating authentication parameters are space-separated; loss of one or 
more devices does not allow attacker to reconstruct the space-time separated and evolving 
relationship 

SA and/or SSA hijacking Mutual support in authentication chain detects a hijacked SA or SSA 

SA and/or SSA memory leakage Space-time separation and evolution of cryptographic seeds means memory leakage at one or more 
SAs does not leak all OTP/PID seeds 

System downtime while waiting for 
network healing 

Space-time evolving determination of network-side authentication chain path allows real-time network 
healing with no network downtime by using available system migration 

 

In addition to detecting and preventing attacks, the design of IDACS also provides real-time forensics capabilities, 

allowing traitorous network actors to be identified quickly and accurately.  Simulations demonstrate that IDACS forensics are 

efficient and effective.  Also, IDACS uses the space-time separated and jointly-evolving relationship to protect at-rest encrypted 

data.  Time-changing Xbits and Xslices stored across multiple locations and data segmentation provide greater security for 

encrypted data.  Once again, mathematical analysis demonstrates the theoretical strength of this system, and simulation 

provides a more concrete expression of this security. 

IDACS implements the space-time separated and jointly-evolving relationship across multiple aspects of the system to 

provide a complete end-to-end network and data protection system that has strong mathematical properties. 
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9 Appendix A 
 The purpose of this section is to prove that the Maximum Weight Path of Specified Length (MWPSL) and Maximum 

Weight Directed Path of Specified Length (MWDPSL) decision problems are NP-complete. 

 The process of proving a given decision problem C to be NP-complete has two steps: 

1.  Show that C is in NP 

2. Show that every problem in NP is reducible to C in polynomial time 

The first step can be shown by demonstrating that a candidate solution to C can be checked for correctness in polynomial (or 

better) time.  The second step can be shown by demonstrating that any one known NP-complete problem B is reducible to C.  If 

one NP-complete problem B can be reduced to C, then all other NP-complete problems can be reduced to C.  A problem B is 

reducible to problem C if there is a polynomial-time, many-one reduction from B to C; that is, there is a reduction that can 

transform any instance of B into an instance of C.  Any algorithm that can be used to solve all instances of problem C can be 

used to solve all instances of problem B [30]. 

 The process of proving that the MWPSL and MWDPSL problems (C) are NP-complete begins with a proven NP-

complete problem, the Hamiltonian Path problem (B) [30].  The reduction path between the Hamiltonian Path problem (B) and 

the MWPSL and MWDPSL (C) problems is shown in Fig. 61. 

 
Fig. 61.  NP-complete reduction path 

In the following sections, each of the reductions will be shown in the indicated steps.  At the end, the MWPSL and MWDPSL (C) 

problems will be proven to be NP-complete. 

Starting Point: The Hamiltonian Path is NP-Complete 

Hamiltonian Path: Given an undirected graph G = (Ѵ, E) where Ѵ is a set of vertices {v1, v2, …} and every e   E is an unordered 

set of vertices {v1, v2} called edges.  Does G contain a Hamiltonian path, which is a sequence <v1, v2, …, vε> of distinct vertices 

from Ѵ such that {vi, vi+1}   E for 1≤i<ε and every member of Ѵ appears once and only once in the sequence?  

The Hamiltonian Path problem has been proven NP-complete [30]. 

Step 1: Show that the Maximum Weight Hamiltonian Path problem is NP-complete. 

Maximum Weight Hamiltonian Path:  Given an undirected graph G = (Ѵ, E) where every e   E is an unordered set of vertices {v1, 

v2} called edges and has a weight W(e)   Q+, and there is a number R   Q+.  Is there a Hamiltonian path <v1, v2, …, vi, …, vε> in 



 
 
 

80 
 

G where ε=|Ѵ| such that ∑  (       )
   
     , where {vi, vi+1}   E? 

Step 1.1:  Show that the Maximum Weight Hamiltonian Path is in NP. 

A candidate solution to this problem can be checked by tracing the path, verifying that each vertex is touched once and only 

once, and summing the weights of the edges in the path and checking the final sum.  The candidate solution is checked in linear 

time. 

Step 1.2:  Show that the Hamiltonian Path problem is reducible to the Maximum Weight Hamiltonian Path problem in 

polynomial time. 

The Hamiltonian Path problem is a special case of the Maximum Weight Hamiltonian Path problem, so the first can be reduced 

to the second.  Create an instance of the Maximum Weight Hamiltonian Path problem.  Set all W(e) = 1 for all e   E and set R = 

(|Ѵ| - 1).  This is now an instance of the Hamiltonian Path problem, and the reduction is accomplished in linear time. 

Result:  The Maximum Weight Hamiltonian Path problem is NP-complete. 

Step 2: Show that the Maximum Weight Path of Specified Length (MWPSL) problem is NP-complete. 

Maximum Weight Path of Specified Length (MWPSL) :  Given an undirected graph G = (Ѵ, E) where every e   E is an unordered 

set of vertices {v1, v2} called edges and has a weight W(e)   Q+, there is a number R   Q+ and an integer N ≤ |Ѵ|.   Is there a 

path P = <v1, v2, …, vi, …, vN> in G such that any v   Ѵ appears at most once in P and ∑  (       )    
   
   , where {vi, vi+1} 

  E? 

Step 2.1:  Show that the MWPSL problem is in NP. 

A candidate solution that connects some or all of the vertices can be checked by tracing the path, verifying each vertex in the 

path is touched at most once, verifying that there are N vertices in the path, and summing the path edge weights and comparing 

the sum to R.  This candidate solution is checked in linear time. 

Step 2.2:  Show that the Maximum Weight Hamiltonian Path problem is reducible to the MWPSL problem. 

The Maximum Weight Hamiltonian Path problem is a special case of the MWPSL problem, so the first can be reduced to the 

second.  Create an instance of the MWPSL problem and set N = |Ѵ|.  This is now an instance of the Maximum Weight 

Hamiltonian Path problem; this reduction is accomplished in linear time. 

Result:  The Maximum Weight Path of Specified Length (MWPSL) problem is NP-complete. 

Step 3: Show that the Maximum Weight Directed Path of Specified Length (MWDPSL) problem is NP-complete. 

Maximum Weight Directed Path of Specified Length (MWDPSL):  Given a directed graph G = (Ѵ, E) where every e   E is an 

ordered set of vertices {v1, v2} called arcs and has a weight W(e)   Q+, there is a number R   Q+ and an integer N ≤ |Ѵ|.   Is 
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there a path P = <v1, v2, …, vN> in G such that any v   Ѵ appears at most once in P and ∑  (       )    
   
   , where {vi, 

vi+1}   E? 

Step 3.1:  Show that the MWDPSL problem is in NP. 

A candidate solution that connects some or all of the vertices can be checked by tracing the path, verifying each vertex in the 

path is touched at most once, verifying that there are N vertices in the path, and summing the path edge weights and comparing 

the sum to R.  This candidate solution is checked in linear time. 

Step 3.2:  Show that the MWPSL problem is reducible to the MWDPSL problem. 

The MWPSL problem is a special case of the MWDPSL problem, so the first can be reduced to the second.  Create an instance 

of the MWDPSL problem corresponding to an instance of the MWPSL problem where every e   E with a given W(e) in the 

MWPSL problem is replaced by a pair of opposite-direction directed e   E in the MWDPSL problem, both with the same W(e) as 

in the MWPSL problem. This now equates to an instance of the MWPSL problem; this reduction is accomplished in linear time. 

Result:  The Maximum Weight Directed Path of Specified Length (MWDPSL) problem is NP-complete. 

 

Implications for IDACS strength: The MWPSL and MWDPSL problems represent a reassembly-due-to-space-separation 

problem at a given instant in time.  Thus, the space separation of IDACS provides the NP-completeness to the systems.  

However, due to the joint time-evolution of IDACS, the problem evolves into a completely new MWPSL or MWDPSL problem 

each time the system states change (which can occur every few seconds).  Therefore, the time-evolution greatly increases the 

complexity of the problem. 

 


