Object-Oriented Design Quality Adaptation: A System Dynamics Simulation

by

Asmae Mesbahi EI Aouame

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama
May 5, 2013

Keywords: Design quality adaptation, System dynamics simulation

Copyright 2013 by Asmae Mesbahi EI Aouame

Approved by

David A. Umphress, Chair, Associate Professor of Computer Science & Software Engineering
James H. Cross Il, Professor of Computer Science & Software Engineering
Dean. Hendrix, Associate Professor of Computer Science & Software Engineering
Lloyd S. Riggs, Professor of Electrical & Computer Engineering

Abstract

Despite the increasing interest of the software engineering research community in
assessing and improving quality at the early phases of the software development lifecycle such as
the design phase, less attention is devoted to adapting software quality to changing environment
conditions especially at the design stage. Design quality can be significantly impacted when
design decisions are modified due to changes in requirements or design strategies. This research
sheds light on possible adaptation mechanisms that can effectively mitigate any decrease in
object-oriented design quality due to a particular design change. To forecast the impact of design
changes and possible adaptations on design quality, a system dynamics simulation is developed
in Powersim®. The simulation variables are grouped into sub-models and represented by the
quality factors of the Quality Model for Object Oriented Design (QMOQOD) developed by
Bansiya and Davis. Each sub-model simulates the interactions between a specific QMOOD
quality attribute and its corresponding design properties as well as design metrics. The
simulation is developed by following Pfahl and Ruhe’s System Dynamics Model. If after a
design change, the simulated design quality decreases below a defined reference value, designers
can apply one of the suggested adaptation equations that are extracted from the QMOOQOD quality
attributes equations.

The simulation is validated by applying design changes and their adaptations on real
academic designs and computing correlations between the simulated and the real values of each

QMOOD quality attribute after adaptation. High correlations are obtained for all the quality

attributes, which shows the effectiveness of the adaptation mechanisms in adjusting design

quality.

Acknowledgments

I am deeply grateful and thankful to God, my source of power and enlightenment. Thank
you God for your infinite blessings and opening the right doors in times of happiness and sorrow.

After spending long days and nights working on this dissertation, | would like to thank all
the people who touched my life and helped me overcome all the encountered challenges.

I am so thankful for being raised and surrounded by amazing parents and family. Mom,
dad, I am dedicating this dissertation to you. Thank you for believing in me and bearing my
craziness, sometimes. | hope that | was able to achieve what you taught me and to be your
source of pride. | am also dedicating my work to my beautiful sisters Salma and Aya as well as
my handsom brother Mohamad. Thank you my dear family. You have all showered me with love
and support.

My deep thanks and gratitude go to my major professor and my advisory committee
members. Thank you Dr. Umphress for your support and enlightening guidance. Thank you for
believing in me and giving me the opportunity to complete my PhD. in good conditions. You are
and will be one of my inspiring role models as a professor, a mentor, an advisor, and above all as
a caring instructor towards all of his students. I would like also to thank my advisory committee
members. Thank you Dr. Cross and Dr. Hendrix for honoring my research with your valuable
feedback and support. 1 am also deeply thankful to Dr. Lloyd Riggs for honoring my research as
an outside reader with his valuable feedback and comments. My deep gratitude and thanks go

also to Dr. Yilmaz and Dr. Chapman for helping me in the validation of my research.

Above all, I would like to thank all of my PCSE research group fellows and my friends
for their support and help. You were all inspiring models to me and allowed me to enjoy my

journey in Auburn.

Table of Contents

AADSTIACT ...ttt bbbt bbb I
LISE OF TADIES ...ttt bbbt viii
LASE OF HTUSErAEIONS ...ttt X
Chapter 1: INTTOQUCTION ... bbbt ens 1
Statement of the problem and anticipated benefits ..., 2
RESEAICN @PPIOACK ... 4
Simulation-based Virtual Software Engineering Laboratories (VSEL)ccccocevvivnnnns 4
Chapter 2: LITEIrAtUIE SUIVEBYoiiiiiiiiieieeieie sttt sttt sttt b e bbb enes 9
Simulation techniques and tOO0IScccoiviiiiiiii e 9
Software Process Simulation Modeling (SPSM) ..o 11
SPSM 0f dESIGN PRASE ...t 21
SPSM Of Q0aPTIVE SYSTEMS ...ttt bbb 24
The verification and validation of SPSM simulations.............ccocviiiiieninee 28
Chapter 3: Simulation development and VerifiCationccccooeiiiiniiiiineeeee e 31
Phase 0 of the SDM: Pre-study and research hypotheses definitioncc.ccoovenenne 32
Phase 1 of the SDM: initial model development ... 33
Phase 2 of the SDM: Model eNhanCemMEeNt.............ocveieieiiiineicseeee s 48
Chapter 4: SImulation Validationccoiiii e 74
Design 1 (D1): Library Information System (LIS)cccoviiiiiiiiiiiiieie e 75

Vi

Quiality attributes correlation reSUIS.........ccovoiviiiic i 92

Chapter 5: Conclusions and future reSearch WOrkcccoeoeieiiniiiiinisseeeese e 96

CONCIUSIONS. ... bbbttt ettt b e ene s 96

FULUIE rESEAICI WOTK.......eeuiititi it 97
RETEIENCES ...ttt bbb bRt n bt 100
Appendix A: SysStem dYNAmMICS CONCEPLS.......oiviiriririiiieieiei ettt 113
Appendix B: SIMUIAtioN SOUICE COUEooiiiiiiiiiiieiieeeeeeee e 116
Appendix C: simulation validation on D2-D10 deSIgNScccereririririniinieiene e 166

vii

List of Tables

Tablel: Discrete-event simulation process activitiescccecevvvevivereciesieese s,

Table 2: SDM 1018 MOUEI ...t

Table 3: Representative publications with their simulation techniques and

treated SOTtWare ProCess tOPICSc.evververririirieriiriisie e
Table 4: Reusability adaptation QUALIONSccccoeiiererieiieenenie e e sie e
Table 5: Classification of reusability’s adaptation equationsccccvvvereeierinennns
Table 6: Flexibility adaptation @QUALIONSccceeveiiereeieesiene e
Table 7: Classification of flexibility’s adaptation equation............cccoccerivrieeriernnnennn.
Table 8: Understandability adaptation equations.............ccccooeiveieienene e,
Table 9: Classification of understandability’s adaptation equation..............ccccceevenee.
Table 10: Functionality adaptation qUALIONScccverveierieeresie e
Table 11: Classification of functionality’s adaptation equationc.ccoceeevrernennen.
Table 12: Extendibility adaptation qUationscccoeririiinieienc e,
Table 13: Classification of extendibility’s adaptation equationcccocvervrrnenne.
Table 14: Effectiveness adaptation eqUALIONS...........cccereriririeiieie e
Table 15: Classification of effectiveness’s adaptation equation...........c.ccocervrernenen.

Table 16: QMOOD design metrics formula ..o,

viii

Table 17:

Table 18:

Table 19:

Table 20:

Table 21:

Table 22:

Table 23:

Table 24:

Table 25:

Table 26:

The initial QMOOD design metrics values for the ten designs.........c.ccoccveveiieiennne 91
The reference values of the quality attributes for the ten designs ..., 92
Pearson’ 1 COrrelation GEGIEEScooiiiiriiiiiiieee e 93
Correlation computations of understandabilitycccooiiiiiiis 94
Correlation degrees of the QMOOD quality attributes............ccoocvriiiieiininiieiene 94
Correlation computations of extendibility ..o 274
Correlation computations of FlexiDIlity ... 274
Correlation computations of reusability ... 275
Correlation computations of functionality...........cccccviiiiiiiniiic e 275
Correlation computations Of effeCtiVENESScccvvvivriiiieri e 276

List of Illustrations

Figure 1: Sargent’s Simulation Modeling ProCeSS..........ccooviiiiiiiiiiiiie s 5
Figure 2: SDM ProcCess MOUENc..oiiiiiiiieie e 8
FIQUIE 3: SPSIM QOIS ... bbb 12
Figure 4: Design cycle for self-adaptive SYSTEMSccooviiiiiiiieie s 25
Figure 5: Simulation verification teCANIQUESccoiiiiiiiiiiee s 30
Figure 6: Simulation validation teChNIQUESccoiiiiiiiiicce s 30
Figure 7: The hierarchical structure of the QMOODcccceiiiiiini s 34
Figure 8: QMOOD quality attribDULESc.ooiiiiiei s 34
Figure 9: QMOOD quality attributes eqUAatIONS. ..o 35
Figure 10: Design properties definitioNS...........cooeiiiiiiiiiiiieee s 35
Figure 11: Design metrics and their corresponding design propertiesccccceeeverencresennn. 36
Figure 12: Design metrics defiNITIONS.coueiiiiiiiiiiieiieeeeee s 37
Figure 13: Reusability design properties and MetriCS.........ccooevriirininineniseeeeee s 38
Figure 14: Reusability reference simulation modelcccooeiiiiiiiiii e 42
Figure 15: A snapshot of the simulation INterfaceccooveieiiiiiciiee 44

Figure 16: The reusability quality attribute and the design properties values

before applYiNg CRANGJESooiieie e 45
Figure 17: Scenario 2 results without adaptation.............cccccveiiieiiiiie e 46
Figure 18: Scenario 2 results with adaptation...........cccooiieiiiiii i 46
Figure 19: Scenario 3 results without adaptation............ccccccveiiieiieiiic i 47

Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:

Scenario 3 results With adaptation.............cceoiiiiieiiie e 47
POWEISIM® WOTKSPACEoovvvveorieseseeeseeseesseesssssessssssssees s s sessesssenssnsessssenssnees 50
Reusability SUD-MOGEL..........cooiiie e e 53
Flexibility design properties and MEtriCScceveiereieniiiniseeee s 54
Flexibility SUD-MOGELcoiiiii s 57
Understandability design properties and MetriCsccoovvvvereereniesieenenie e 58
Understandability SUD-model ... 60
Functionality design properties and MEetriCS.........ccooererererinienieeeeese s 61
Functionality SUD-model.............coii s 63
Extendibility design properties and MetriCS.........ccooereiininininiineeee s 64
Extendibility SUD-MOel ..o 66
Effectiveness design properties and MetriCsccoveeieririninieeieesee s 67
Effectiveness SUD-MOEL...........c.cooiiiii s 69
The welcome page of the SIMUIATION...........cccoiiiiiii s 70
The input menu of the SIMUIATION..........occiiiiiii e 71
The Simulation reSUIS PAGE..........oviiirie e 72
The library server classes Of LIScoooiiiiiiiiiee e 76
The database server Classes Of LIS ... 77
Understandability adaptation results 0f D1cccocviieiiiii i 80
The classes used in D1’°s understandability design change...........cccoceviviiieniinnnne 81
Extendibility adaptation results of D1.........ccccooiiiiiiiiicieee s 83
Flexibility adaptation reSults OF D1........ccooiiiiiiiiiiiieie e 83
The changed parts of D1 for flexibility and extendibility adaptations...................... 85

Xi

Figure 43: Reusability adaptation results 0f D1 ... 87

Figure 44: Functionality adaptation results 0f D1ccocoiiiiiiiiiiieeee e 87
Figure 45: Effectiveness adaptation results Of D1cooeiiiiiiiiiniiieee s 89
Figure 46: The changed parts of D1 for reusability, functionality, and effectiveness

Y0 0] £ U1 [0 o USSR 90
Figure 47: Pearson’t fOIMUIAccveiiiieiieie et ste e sneenns 92
Figure 48: A feedback loop that shows the relationshipsccccovveveiiiiicie e 114
Figure 49: Reinforcing feedback 100Dc.coviiiiiiii e 114
Figure 50: Balancing feedback [00Pcoiveiiiiiiicii e 114
Figure 51: level-rate diagram eXampleccovoiiiiiii e 115
Figure 52: The banker system class diagramccooviiieiieeiiiie i 168
Figure 53: Understandability adaptation results 0f D2...........ccccooeiieiiiieiecie e 169
Figure 54: D2’s understandability design change and adaptationcccocevveeiiiiiienieninnns 170
Figure 55: Flexibility adaptation results 0f D2............cocooiiiieie i 172
Figure 56: Extendibility adaptation results 0f D2...........ccccoveiiiieiicie e 173
Figure 57: Flexibility and extendibility design change and adaptation in D2...............c..c........ 174
Figure 58: Functionality adaptation results 0f D2ccccooveiiiic i 175
Figure 59: Reusability adaptation results 0f D2ccccoevieiiiicii e 176
Figure 60: Functionality and reusability design change and adaptation in D2......................... 177
Figure 61: Effectiveness adaptation results 0Ff D2cccoovveiiiiiiiiii i 179
Figure 62: The workstation Classes 0f D3........ccooiiiiiiiiiiiiie e 180
Figure 63: The server Classes 0F D3........ccooiiioieie e 180
Figure 64: The monitoring device classes 0f D3cooiiiiiiiiiiic e 181
Figure 65: Understandability adaptation results of D3...........ccccoiiiiiiiic i, 182

xii

Figure 66: Understandability design change and adaptation in D3cccocoevviiiiieiiinennns 184

Figure 67: Extendibility adaptation results of D3..........cccooiiiiiiiiiee s 184
Figure 68: Flexibility adaptation results 0f D3...........coooiiiiiiiiiieeee e 185
Figure 69: Flexibility, extendibility, reusability, and functionality design changes with their
adaptationNS N D3 ... e 187
Figure 70: Reusability adaptation results 0f D3 ... 187
Figure 71: Functionality adaptation results 0f D3cccooieiiiie i 188
Figure 72: D4 Class QIagramcccueiieieiieie e st e e be e e reeresnaesreenae s 190
Figure 73: Understandability adaptation results 0f D4cccoooeiieiiiicceciecc e 191
Figure 74: Understandability design change and adaptation in D4ccccccevvevveieiicieennns 192
Figure 75: Understandability design change and adaptation in D4ccccccveveiieieiicieenns 193
Figure 76: Flexibility adaptation results 0f D4covoieiiiii i 194
Figure 77: Extendibility adaptation results 0f D4cccoieiiiiiii e 195
Figure 78: Flexibility and extendibility design change and adaptation in D4c........... 196
Figure 79: Flexibility and extendibility design change and adaptation in D4c........... 197
Figure 80: Reusability adaptation results 0f D4ccccoeiiiiiiicii e 198
Figure 81: Functionality adaptation results 0f D4ccccooveiiiii i 199
Figure 82: Reusability and functionality design change and adaptation in D4 200
Figure 83: Reusability and functionality design change and adaptation in D4 202
Figure 84: D5 Class diagramcooviiiiiiie ittt 203
Figure 85: Understandability adaptation results of D5.........ccccceviviiiiiiiciic e, 204
Figure 86: Understandability design change and adaptation in D5...........cccccoevieiiiciic e, 205
Figure 87: Flexibility adaptation results 0f D5.........ccccooiiiiiiii e 206
Figure 88: Extendibility adaptation results 0f D5.........ccccoiieiiiiic e 207

Xiii

Figure 89: Extendibility and flexibility design change and adaptation in D5c.ccccvene. 209

Figure 90: Reusability adaptation results of D5 ... 209
Figure 91: Functionality adaptation results 0f D5ccooeiiiiiiiiiieeee e 210
Figure 92: Effectiveness adaptation results 0f D5 ..o 211
Figure 93: Reusability, functionality, and effectiveness design change
and adaptation N D5c.ociiier e 213
Figure 94: D6 Class QIAQIamccueiioiiiieieeie et se e e et re b e e e reenesraesreene s 214
Figure 95: Understandability adaptation results 0f D6cccccoevieiiiieiecie e 214
Figure 96: Understandability design change and adaptation in D6ccccccooeiieieiicneennns 216
Figure 97: Flexibility adaptation reSults 0f D6c.cocevieiiiii i 216
Figure 98: Extendibility adaptation results 0f DB............ccccovveiiiiieii e 217
Figure 99: Extendibility and flexibility design change and adaptation in D6c.c....... 219
Figure 100: Reusability adaptation results 0f D6ccccoveiiiiieii e 219
Figure 101: Functionality adaptation results 0f DBccccoiiieiieii i 220
Figure 102: Effectiveness adaptation results 0f D6ccceviiieiicie i 220
Figure 103: Reusability, functionality, and effectiveness design change
and adaptation 1N DBcooeiiiiiieiee s 221
Figure 104: D7 €lass diagram (1).......couoeieriieieienie sttt 222
Figure 105: D7 Class diagram (2).......ccuuuiurieieiesie sttt 223
Figure 106: D7 Class diagram (3).......coereririeieienie sttt 225
Figure 107: Understandability adaptation results 0f D7cccooiiiiiiiiininiiieec s 226
Figure 108: Understandability design change and adaptation in D7 (1)cccccooeviiiieininnnnns 227
Figure 109: Understandability design change and adaptation in D7 (2)cccocevvienineinnnnns 228
Figure 110: Understandability design change and adaptation in D7 (3)ccccceoeviieiiiiinnnnns 229

Xiv

Figure 111: Extendibility adaptation reSults Of D7.........ccccoviiiiiiiieiece e 230
Figure 112: Flexibility adaptation results OF D7cooiiiiiiiiiiiiieeee e 231
Figure 113: Extendibility and flexibility design change and adaptation in D7 (1)............c...... 233
Figure 114: Extendibility and flexibility design change and adaptation in D7 (2)................... 233
Figure 115: Extendibility and flexibility design change and adaptation in D7 (3)...........c...... 234
Figure 116: Reusability adaptation results 0f D7ccccoiiiiiieiiiiiieeeeee e 234
Figure 117: Functionality adaptation results 0f D7cccceiiiiiiiiniiiieiieeeee e 235
Figure 118: Effectiveness adaptation results 0f D7cceeieiiiiniiiiisseeee e 236
Figure 119: Functionality, reusability, and effectiveness design changes

and adaptations IN D7 (1) ...cc.eceeiieiececeee e 237
Figure 120: Functionality, reusability, and effectiveness design changes

and adaptations N D7 (2)ccviieieeenereer s 239
Figure 121: Functionality, reusability, and effectiveness design changes

and adaptations IN D7 (3) ...cveceeiieicece et 240
Figure 122: D8 Class GIagramccueiiieiiiieiieeie s sttt ste et re e teeaesnee s e enesnaeareeneeas 241
Figure 123: Understandability adaptation results 0f D8.............cccooveviiieiicie e 242
Figure 124: Understandability design changes and adaptations of D8..............cccccveviiieieennnns 243
Figure 125: Extendibility adaptation results 0f D8...........c.ccceviiiiiicie i 244
Figure 126: Extendibility adaptation results 0f D8...........c.ccceviiiiiiciiiecece e 245
Figure 127: Extendibility and flexibility design changes and adaptations in D8 246
Figure 128: Reusability adaptation results 0f D8c.ccooveiiiiiiicii e 243
Figure 129: Functionality adaptation results 0f D8cccccoiviiiiiii i 244
Figure 130: Reusability and functionality design changes and adaptations in D8 245
Figure 131: Effectiveness adaptation results 0f D8ccccccviiiiiiiiiic e 247
Figure 132: Effectiveness design change and adaptation in D8cccco e iiiccie e, 248

XV

Figure 133: D9 Class QIAQIamcoiiiiiiiiiieie ettt st sreesbe e 250
Figure 134: Understandability adaptation results 0f D9ccccciiiiiiiiiiicic s 251
Figure 135: Understandability design change and adaptation in D9cccceeeiiiiiiiiinnnns 252
Figure 136: Flexibility adaptation results 0f D9ccociiiiiiiiiiieeee e 253
Figure 137: Extendibility adaptation results 0f D9..........cccoeiiieiiiiiiiieeeee e 254
Figure 138: Flexibility and extendibility design change and adaptation in D9........................ 255
Figure 139: Second extendibility adaptation results of D9..........cccccoviiiiiiiiii s 256
Figure 140: Second understandability adaptation results of D9cccoeoviiininciiniiee 257
Figure 141: Second extendibility and Understandability design change

and adaptation IN DOcoiiiiiicie s 259
Figure 142: Reusability adaptation results 0f D9ccccoeviiiiiiiiice e 259
Figure 143: Functionality adaptation results 0f D9 ... 260
Figure 144: Effectiveness adaptation results 0f D9ccccovveiiiii i 261
Figure 145: Reusability, functionality, and effectiveness design change

and adaptation 1N DOcoiiiiiii s 262
Figure 146: D10 class diagram (1)coeiieireierenieniesesieseeeeee e 263
Figure 147: D10 Class diagram (2)........coererierierienie ettt 264
Figure 148: D10 class diagram (3).......ooerieiieiierienie st 265
Figure 149: D10 Class diagram (4).......uoeiieieieiesie sttt 266
Figure 150: D10 class diagram (5).......uiuiurieierinienie st 267
Figure 151: Understandability adaptation results 0f D10cccccoeiiiiiiiiiniiienesc s 267
Figure 152: Understandability design change and adaptation of D10...........ccccoceveriiinninnnns 268
Figure 153: Extendibility adaptation results of D10.........ccccooiiiriiiniiiiinsee e 269
Figure 154: Flexibility adaptation results 0f D10cccccoviiiiiiinineiereeee e 270

XVi

Figure 155: Flexibility and extendibility design change and adaptation of D10...................... 271

Figure 156: Reusability adaptation results 0f D10cccceiiiiiiiiiiiiieeeeee s 272
Figure 157: Functionality adaptation results of D10cccooeieiiiiniiinieeeeee e 272
Figure 158: Effectiveness adaptation results 0f D10cccceveiiiiiiiiiienieceee e 272

Figure 159: Reusability, functionality, and effectiveness design change
and adaptation OF D10ccceiiiiiiie e 273

XVii

Chapter 1: Introduction

Defining practices that produce high quality software has been the focus of software
engineering research for many years. Researchers and practitioners have become conscious of
the importance of following a proven process and how it greatly affects product quality. Besides,
a myriad of studies (e.g. [Abreu et.al 1996], [Briand et.al 2000], and [Bansiya and Davis 2002])
show that quality improvement in the early phases of the development cycle, such as design, can
greatly boost the end product quality. Enhancing design quality by choosing the design
alternatives that minimize costs can also be a rewarding investment activity for software
organizations [Lazic et.al 2009]. Through design quality evaluation, designers can determine the
most profitable design decisions, reduce costs of maintenance, and minimize possible risks of
rework. Experience and economical investigations depict numerous benefits of investing on
design quality [Sullivan et. al 1998]:

1) Increase the flexibility of the whole development process through a well-structured
design.

2) Cancel unprofitable projects early in their lifecycles.

3) Increase the adaptability of design to changing market conditions.

4) Prevent possible uncertainties such as failures.

From the literature, we can categorize design quality investment approaches into three
groups: analytical/static design quality evaluation, simulation-based design quality evaluation,

and design quality adaptation. Extensive design quality research was devoted to the first group

through the definition of quality metrics, quality attributes, and combining them in quality
models. Other quality tools depicted the required design activities that determine a specific
maturity level of a process such as in CMMI [CMMI 2011]. Further, some standards such as the
IEEE standard for developing software life cycle processes suggested a set of desired design
activities [IEEE Std 1074-2006]. As a part of software quality assurance activities, technical
reviews are also applied in assessing design quality. In the second group of design quality
investment options, some studies (see [Xu et.al 2006], [Bogado et. al 2010], [Chiang et.al 2002])
use simulations as a decision support tool that assists designers in evaluating and choosing
optimum design strategies. Finally, the quality of design is not only determined from its
assessment but also from its ability to adapt to changing environment conditions. This area of
research, which represents the third group of quality investment, is still immature despite the

vital role of adaptation in stabilizing high quality design.

1.1 Statement of the problem and anticipated benefits

Since design is the blueprint of software, a high quality design is likely to produce a high
quality software product. On the one side, solving design problems early in the lifecycle and
sustaining high quality values in design attributes is a key success factor in improving not only
design quality but also the remaining process phases. Furthermore, it allows software engineers
to reduce defect amplification and the number of latent bugs. On the other side, various factors
may destabilize design quality. Changing design decisions because of continuous requirements
or design strategies alterations may lead to a possible decline in design quality. Other possible
reasons of quality change include quality reviews and design flaws. Under such conditions
design quality can be restored to its predetermined level at strategic points in the design phase by

identifying which design characteristics can be changed as a quality adaptation mechanism.

Although run-time adaptation deals with applying specific quality attribute trade-offs at
the implementation phase to regulate a software product quality, it does not take into
consideration quality adaptation at design phase. In addition, adaptation strategies are applied at
run-time with no beforehand knowledge of their effectiveness or risks. Thus, choosing wrong
adaptation strategies or running several adaptations simultaneously can have a conflicting impact
and affect a system’s performance [Yang et. al 2009]. The main goal of this dissertation is to
shed light on OO design quality adaptation through cost-effective and safer techniques such as
System Dynamics (SD) simulations. Through design quality adaptation simulation, various
stakeholders such as software engineers, software architects, and software quality assurance
agents will also be able to benefit from the following additional research goals:

1) Extend the use of software process simulation to process lifecycle phases’ quality
adaptation.

2) Save cost: experiment design quality adaptation through simulation instead of costly real
time adaptation.

3) Save time: a simulation allows us to visualize the impact of changes quicker than in the
case of real experimentations.

4) Understand the interactions between OO design quality characteristics.

5) Depict and test feedback mechanisms for changes in design decisions.

6) Perform “what if” analysis of design decisions changes and forecast the needed quality
compensations for quality attributes disequilibrium.

7) Reduce the cost of new adaptation experimental scenarios through simulation.

8) Maximize OO design quality.

1.2 Research approach

1.2.1 Simulation-based Virtual Software Engineering Laboratories (VSEL)

A simulation model is a simplification of a complex system that is hardly understood via
analytical methodologies [Muller and Pfahl 2008]. Simulations have been widely employed in a
plethora of disciplines such as business case-studies, sociology, physics, biology, and
engineering. The application of computer simulations in software process was first initiated by
[Abdel-Hamid and Madnick 1991]. Software process simulations can be applied to a specific life
cycle phase such as requirements or code testing. It can also model the whole development
project as well as multiple simultaneous projects. According to Kellner et.al, those simulations
can be used to explore six software process topics namely training and learning, strategic
management, process improvement and technology adoption, planning, control and operational
management, and understanding [Kellner et. al 1999]. Muller and Pfahl extend Kellner’s
simulation categories by adding the new trends of process simulation goals such as software
acquisition management and COTS, risk management, and product-lines [Muller and Pfahl
2008]. My research is part of software quality adaptation which is a new software process
simulation goal that extends Muller and Pfahl’s categories. My work is also founded upon the
concept of VSEL introduced by [Munch et.al 2005]. VSEL uses simulations to experiment with
software process policies or decisions, detect their possible problems, and test their corrective
procedures before they are applied in real projects. VSEL can help project managers in finding
trade-offs between project duration, needed effort, and product quality. In my research, SD
simulation is used to explore both the impact of changing design decisions on design quality and

the adaptation strategies that compensate for those quality changes.

1.2.2 Simulation development process
Figure 1 illustrates one of the oldest Simulation Model Processes (SMPs) defined by

Sargent in order to link between simulation model development and validation [Sargent 1981,
2004]. Sargent’s SMP is composed of three main elements: a problem entity, a conceptual
model, and a computerized model. First, the problem entity or simulated system is identified.
Then, it is analyzed and represented through a mathematical or verbal conceptual model. Finally,
the conceptual model is transformed into a computerized program to experiment with the desired
scenarios of the given problem entity. To produce valid simulations, Sargent is integrating

verification and validation procedures in each of his three simulation process components.

Problem Entity
(Svstem) Aol

-

-~ -
g A N
Operational (-ﬂ\ﬂlﬂ?{lf]ﬂﬂl
Validation Vinde?
. Validation
f L1

1 : : alvsi \
! Experimentation Analysis \
] amd \
! Data Modeling 1
| Validity |
| I
I I

Compuaterized Computer Programming Concepmal
Model and Implementation Model
ir\\ . 4
e - Computerized a

T Maodel -

Verification

Figure 1: Sargent’s Simulation Modeling Process [Sargent 2004]

Rus et. al defined an SMP for discrete-event simulations based on the generic model of
Sargent [Rus et. al 2003]. Their process is not only composed of traditional engineering activities

such as model design and implementation but also from managerial activities (see table 1).

Engineering activities Managerial activities

Requirements identification and specification | Model development planning.
for the model to be built.

Analysis and specification of the modeled Model development tracking.

process.

Design of the model. Measurement of the simulation model.

Implementation of the model. Measurement of the model development
process.

Verification and validation throughout Risk management of risk factors such as

development. changes in customer’s requirements and in the

description of the modeled process.

Tablel: Discrete-event simulation process activities

To achieve my research goals, | will apply SD simulation process such as in [Pfahl and
Ruhe 2002]. In Pfahl and Ruhe’s SMP, System Dynamics Model (SDM) can be produced with
the help of four models: phase, role, product, and process.

The phase model defines four main stages in the development of an SD model: pre-study,
initial model development, model enhancement, and model application. In the pre-study stage,
the simulation modeler identifies the model goals and users. During the initial model
development, the behavior of a subset of the system’s parameters is illustrated through a
reference model to get an idea about the dynamics of the studied software process issues. Then,
the reference model is extended to include all system parameters and made ready for problem
analysis in the model enhancement stage. Improvement and maintenance of the produced SDM
are part of the last stage.

The role model (table 2) identifies the set of stakeholders involved in the development of

SDM. According to Pfahl and Ruhe, six actors impact the production process of SDM: Customer

6

(©), User (U), Developer (D), Facilitator (F), Moderator (M), and SE subject matter Expert (E)

[Pfahl and Ruhe 2002].

Actor C U D F M E
Role Sponsor | Future Responsible | Planand | Guide Provide
of the user of of arrange workshops | managerial
project. SDM. producing | project and and
the SDM. meetings. | meetings | technical
of D with | consultancy
E. for SDM
production.

Table 2: SDM role model
The product model matches SDM process artifacts to their corresponding phases in the
phase model (e.g., technical briefing materials and minutes are delivered in the initial model
development phase of the phase model). Finally, the process model combines between all of the

previous models in a control-flow-oriented scheme (figure 2).

Phase 0: Pre-study

Activity 1d Activity name Roles involved

01 First contact C.D

02 Characterisation C.D.F

03 Management bnefing C.D.F. potential U
04 Identification of SDM users C. potential U

05 Problem definition C.D.U

0.6 Technical feasibility check C.D.EFU

0.7 Planning and contract C.D

v

Phase 1: Initial Model Development

Activity 1d Activity name Foles involved

1.1 Technical briefing C.DEEFU

1.2 Definition of dynamic DEFMU
hypotheses

1.3 Definition of the causal D
diagram

14 Review of the causal DEF MU
diagram (verification 1)

1.5 Implementation of the mitial | D.E F. U
SDM

1.6 Review of the imitial SDIM D
(verification 2)

1.7 Test of the mnitial SDM D.EFMU
(validation 1)

Phase 2: Model Enhancement

Activity 1d Activity name

Roles involved

21 Enhancement of the initial D EFU
SDM
22 Test of the enhanced SDM DEFMTU

{validation 2)

Phase 3: Model Application

Activity 1d Activity name

Roles involved

31 Application and
maintenance of the SDM

D.EU

Figure 2: SDM process model [Pfahl and Ruhe 2002]

Chapter 2: Literature Survey

Software processes can be modeled by applying several techniques (e.g. the discrete-
event (DE) and SD paradigms) to shed light on various process issues such as planning,
understanding, and improvement. This led to the emergence of a new field in simulation
modeling knows as software process simulation modeling (SPSM) devoted to track process

issues (table 3).

2.1 Simulation techniques and tools
2.1.1 Simulation techniques for software process

Simulations are either modeled using deterministic or stochastic paradigms. In the case of
deterministic modeling, the simulation runs always lead the same results for given input
parameters [Muller and Pfahl 2008]. Stochastic modeling relies on random input parameters,
which vary the resulting output from one simulation run to another. Stochastic simulations are
also described as static simulations since they track models’ variables at a specific point of time.
On the other hand, deterministic simulations can be modeled statically such as stochastic
simulations or dynamically by tracing a model’s behavior over a specific period of time.

There are two types of dynamic simulations: continuous and event-driven. Both groups
can be decomposed into quantitative and qualitative techniques. Simulation models’ variables are
updated at a fixed time step interval in continuous simulations and modified in Event-Driven
(ED) simulations when new events occur [Mller and Pfahl 2008]. Quantitative simulation

techniques are useful in depicting the complexities in a system’s behavior and require enough

historical data or experts’ estimation to run the model. Qualitative techniques overcome the lack
of historical data and simulate the general simple trend of a system’s behavior. Quantitative
continuous simulations apply System Dynamics (SD) technique, created by Jay Forrester in 1961
to model a system [Forrester 1961]. SD employs differential equations to describe the
cause-effect relationships in the feedback loops of a system [Martin and Raffo 2000] [De
Oliveira et.al 2011]. QUalitative Analysis of causal Feedback (QUAF) and Qualitative
SIMulation (QSIM) represent the qualitative continuous simulation paradigm [Muller and Pfahl
2008]. Instead of initializing the parameters’ simulation with numerical values, QUAF feeds the
model with the parameters’ relative values and QSIM uses the model’s functions polarity
(positive or negative) to specify the increase and decrease of variables.

ED simulations can be modeled quantitatively or qualitatively if the simulation’s events
are based on non-quantitative conditions. The DE technique is one type of ED modeling
paradigm that represents a system’s activities as a linked set of stations whose statuses change
when events are altered [Martin and Raffo 2000]. Other types of ED simulation techniques such
as Petri-net, rule-based, state-based and agent-based modeling are employed respectively to
provide us with a description of distributed systems, define simulation models as a set of rules,
represent the significant events that drive the software process to progress, and show interactions
and actions between agents [Huang et.al 2010] [Drappa and Ledwig 1998] [Raffo et. al 1999]
[Phillips and Yilmaz 2006].

To benefit from the advantages of more than one simulation technique, hybrid
simulations are created by combining the previously described modeling methods. For example,
a hybrid simulation can use both deterministic and stochastic techniques. Or, a hybrid simulation

can combine the benefits of both continuous and event-driven paradigms. Over all of the

10

described simulation modeling techniques, SD and DE (49% and 31% of the available Software
Process Simulation Modeling (SPSM) research respectively) are the most widely used ones for
process simulation [Zhang et.al 2008]. Table 3 presents representative publications with their

corresponding modeling techniques and software process coverage.

2.1.2 Simulation tools

There exist several commercial tools that support most of the presented simulation
techniques. For example, Stella®/iThink® specializes in modeling both static and continuous
simulations [Stella/iThink 1985]. @RISK® supports Monte Carlo stochastic modeling [@RISK
1987]. Extend® enables modelers to create both DE and SD simulations through its graphical
modeling language ModL and VENSIM® produces SD simulations [Extend 1988] [VENSIM

1985].

2.2 Software Process Simulation Modeling (SPSM)

Software processes are complex systems whose description can be effectively simplified
through SPSM. One aspect of software processes’ complexity is their composite structure made
of several interrelated components through cause-effect relationships and feedback loops
[Sterman 1992]. Another characteristic of software process complexity is the influence of “soft”
qualitative variables such as team motivation on determining the quantitative attributes such as
project delivery date and cost. To effectively visualize those complex characteristics, SPSM
simulate software processes to understand them at cognitive, and tactical or strategic levels by

using the previously described simulation techniques (figure 3) [Zhang et.al 2008].

11

Understanding

- Communicatin
Cognitive Level &

SPSM Goals Investigating process

training and learning

Predicting & planning

control and operational
managing
Managing risk
Improving process

Adopting technology

Tactical/Strategic Levels

Analysing tradeoff and
optimizing

Figure 3: SPSM goals

2.2.1 SPSM through SD and continuous simulation techniques

Abdelhamid and Madnick’s software projects dynamics research is the seminal
application of SD in software process [Abdelhamid and Madnick 1991]. Their SD process model
simulates management policies dealing with scheduling, project control, quality assurance,
productivity and staffing. The model is divided into 4 sections: human resource management,
software production, project planning, and software control.
1) The human resource management: illustrates activities related to developers participating on a
software development project. It handles personnel hiring, firing, and transferring to other
projects.
2) The software production: allocates available developers to several software development

activities such as training, designing, coding, testing, reworking, and quality assurance. It also

12

handles team motivation, developer’s exhaustion, and productivity overhead factors such as
communication and rework.

3) The software control: measures software production activities. This section controls overtime
work, schedule pressure, and project funding consumption.

4) The software planning: provides initial values for the software project parameters: project
size, initial underestimated factor, initial team size, expected conclusion date. It also controls
upper management willingness to hire new developers depending on project expected conclusion
date.

Abdelhamid’s model variables were determined from field interviews, literature review,
and peer /expert reviews. The validity of the model was demonstrated by reviewing its behavior
when subjected to sensitivity analysis and comparing it with the actual characteristics of real
projects. The model can be used, for example, to estimate the optimal quality assurance effort
that avoids an increase in testing cost due to a low quality assurance level and minimizes any
unnecessary quality expenses.

In their Software Engineering Process Simulation Model (SEPS), Lin and his colleagues
adopt the same simulation model structure applied by Abdelhamid and Madnick [Lin et. al
1997]. SD is employed to study the interactions between SEPS sub-models namely production,
staff/effort, scheduling, and budget. In addition, project managers can perform what-if —analysis
of their managerial policies through SEPS to detect trade-offs of cost, schedule, and
functionality.

One of the drawbacks of Abdelhamid and Madnick’s software project dynamics model is
the huge number of variables that need to be initialized to run the simulation. To overcome this

limitation, Ruiz and his colleagues suggest a simplification of the software project dynamics

13

model by eliminating unnecessary feedback loops in the analysis of the needed behavior, which
reduces the number of initialized variables to half the quantity used by Abdelhamid [Ruiz et. al
2001]. Ruiz’s model can be used to train project managers in choosing appropriate strategies that
reduce a project’s development time and cost. The model was verified by reviewing its
equations’ consistency and validated by comparing its runs’ results to a real system’s behavior.

Software process simulations can also help project managers in achieving higher CMMI
levels [Miller et.al 2002]. To increase the Organizational Process Performance process area of
the 4th CMMI maturity level, simulation is a useful analysis environment in detecting
appropriate performance measures for process cycle time, product quality, and development
time. Similarly, process simulations can improve the Organizational Innovation and Deployment
process area of the 5th CMMI maturity level by allowing the project managers to forecast the
impact of process changes on process performance such as new staffing policies and decision
rules.

Ruiz’s simulation model can be used to analyze the impact of each key process area in
CMMI level 2 on productivity, product quality and ability to meet deadlines [Araujo et.al 2007].
Productivity is mainly impacted by software quality assurance process areas whereas scheduling
is affected by all the CMMI level 2 process areas. Product quality is also mostly impacted by all
process areas except the software project planning and software project tracking process areas.
Applying CMMI level 2 activities improves product quality by decreasing the number of errors
when compared to CMMI level 1.

To study the impact of human resources allocation on the lead time of the project and
product quality, an SD simulation of the requirements and test phases was modeled [Andersson

et al. 2002]. The simulation runs show that product quality increases when the effort spent in the

14

requirements phase is increased. In addition, the lead time is decreased thanks to improved
specification accuracy when devoting more time to the requirements phase.

SD paradigm is also used by Madachy to track error generation rates, defect amplification
between phases, staffing policies, schedule compression, and personnel experience in software
processes [Madachy 1996]. The simulation runs show that despite the 10% effort addition in the
design and coding phases due to inspections, testing and integration effort is reduced by 50%.

Software evolution process, which is concerned with the adaptation and enhancement of
software systems, can be explored through SD simulation to balance progressive and anti-
regressive evolution policies [Kahen et. al 2001]. Progressive activities deal with system
functionality by adding or modifying code whereas anti-regressive activities cover dead code
removal, refactoring, system re-engineering, and system restructuring. The authors’ model
simulates the consequences of anti-regressive activities on long term system growth. The
simulation runs show that assigning 30% of resources to anti-regressive activities results in a
significant extension of a system’s life span. Moreover, the imbalance between progressive and
regressive activities is the main cause behind software evolution productivity.

System dynamics simulations are useful in evaluating the business value of the applied
product and process strategies and their corresponding return on investment [Madachy et.al
2006]. By simulating software processes, marketing practices and financial measures over time,
both business analysts and software developers can determine the required process activities to
meet their business goals.

Continuous simulations can be represented qualitatively by using QSIM, QUAF, and
Integrated Measurement, Modeling and Simulation (IMMoS). Unlike quantitative modeling that

requires precise data (e.g. SD); qualitative modeling can overcome the lack of accurate variables

15

quantities by applying abstract techniques such as model functions polarity [Zhang et.al 2009].
This technique allows simulation modelers to represent the increase or decrease in variables
through positive or negative polarity instead of specific numbers. IMMOoS is another simulation
implementation methodology that can resolve the lack of accurate quantitative modeling data.
IMMOS combines between SD, static modeling techniques such as Process Modeling (used to
identify the variables of a simulation model) and measurement-based Quantitative Modeling
(establishes the functional relationships between a simulation’s variables) [Pfahl and Ruhe 2002]

[Pfahl and Lebsanft 1999].

2.2.2 SPSM through DE simulation technique

One of the goals of developing software process simulations is to train future project
managers and improve their managerial skills. Drappa and his colleagues suggest a quality
assurance discrete-event simulation system that exposes project managers to real situations and
allows them to watch the consequences of their managerial decisions such as changing resource
allocation, and skipping requirements specification and reviews on the project’s quality [Drappa
et. al 1999]. The quality assurance model enables students and novice project managers to test
different managerial scenarios for small to medium-size projects. Managers can also plan and
control their simulated projects and assign tasks to their virtual developers. The simulation
system displays the expected results of the software project and suggests improvements to its
management.

To analyze and improve a specific software process phase such as maintenance, Podnar
and his colleagues developed a discrete-event simulation based on decision tree representation

where entities are Modification Requests (MR) and their corresponding Technical Actions (TA)

16

[Podnar et.al 2001]. The goal of the simulation is to ensure high quality TAs from maintenance
administrators.

Reliability can be simulated in all process phases by using discrete-event or continuous
paradigms [Rus et.al 1999]. Besides tracking defects and failures over the entire project,
reliability simulations can be used to predict acceptable defect levels at delivery. Furthermore,
this type of simulations allows managers to determine the tradeoffs between reliability strategies
such as defect detection and prevention techniques based on their impact on cost, staffing, and

ability to detect failures.

2.2.3 SPSM through hybrid simulation technique

Since the software process can be represented as a set of DE phases implemented in a
continuously changing environment, a hybrid simulation that combines both of those discrete
and dynamic aspects is a more realistic representation of software process [Donzelli and lazeolla
2001b]. Therefore, process activities are modeled by a DE queuing network where activities are
described with their interactions and artifacts. The environment is modeled using either an
analytical function such as COCOMO or a purely dynamic simulation paradigm such as SD or
both of them to illustrate the resources, time, and effort consumed during process activities. The
hybrid simulation model enables managers to analyze the impact of their various changing
requirements scenarios on effort, delivery time and productivity.

In the Dynamic Capability Model (DCM) introduced by Donzelli and lazeolla, the effect
of process management elements (e.g. reviews) on process quality factors (e.g. effort, delivery
time, and productivity) is analyzed by applying a hybrid modeling approach [Donzelli and

lazeolla 2001a]. Since the waterfall process phases are sequential and their corresponding

17

artifacts are simultaneous, the DE paradigm is employed in the first category and analytical
techniques such as COCOMO as well as custom continuous functions are integrated in the
second category. DCM allows managers to test their defect detection policies either in the early
phases of the software process, in the middle or late in the process lifecycle. Simulation results
show that the early detection policy where defects are discovered and corrected in the same
injection phase reduces resources consumption, effort and delivery time.

Hybrid simulations can be employed to model different kinds of software projects such as
Global Software Development (GSD), geographically distributed developed software. A GSD
simulation model illustrates the different interactions between fundamental factors such as
communication problems, strategic factors such as distribution overhead, and organizational
factors such as team formulation [Setamanit et. al 2006]. Project managers can test the impact of
their managerial decisions on effort, quality, and duration of GSD projects. Thus, managers can
depict appropriate planning and management tracking policies for offshore sites versus near-

shore projects.

Simulation | SD DE Static/ Petri-net | Rule- State- Hybrid

echniques Stochastic based based (DE and
SD)
Software
Process topics
Planning / [Rus et.al [Bandin- [Kellner | [Setaman
Process 1999] elli et.al 1991] -it et. al
engineering [Pfahl and 1995] 2006]
Lebsanft
1999]
[Powell
et.al 1999]
[Williford
and Chang
1999]

18

Process
improvement
& technology
adoption

[Araujo
et.al 2007]
[Abdelha
mid and
Madnick
1991]

[Lin et.al
1997]
[Ruiz et.al
2001]
[Madachy
1994]
[Pfahl and
Lefsanft
1999]
[Powell
et. al
1999]
[Andersso
net. al
2002]
[Donzelli
& lazeolla
2001a]
[Madachy
1996]
[Madachy
et.al 2006]

[Podnar
&Mikac
2001]
[Ferayor
ni et. al
2007]
[Bogado
et.al
2010]

[Chiang
and
Menzies
2002]

[Raffo
1996]
[Raffo
et.al
1999]

[Sataman
-it et.al
2006]
[Donzelli
&
lazeolla
2001b]
[Martin
and
Raffo
2000]

Understanding

[Andersso
n et.al
2002]

[Donzelli
& lazeolla
2001a]

[Madachy
1996]

[Powell
et. al
1999]
[Wernick
and
Lehman
1999]

[Drappa
and
Ludewi
-0

1999]

[Raffo
et.al
1999]
[Kellner
1991]

[Setaman
-it et. al
2006]

19

Training & [Drappa [Drappa
learning & et.al
Ludewig 1995]
1999] [Drappa
and
Ludewi
-0
1999]
Project [Araujo [Pfahl
management | et.al 2007] and Ruhe
[Abdelha 1999]
mid and
Madnick
1991]
[Lin et.al
1997]
[Ruiz et.al
2001]
[Wiliford
and Chang
1999]
Risk [Ruset.al | [Ruset. | [Briand
management 1999] al 1999] | and Pfahl
2000]
Quality [Ruiz et. [Drappa | [Briand [Huang
assurance & al 2001] et. al and Pfahl | et. al
management [Miller et. | 1999] 2000] 2010]
al 2002] [Ferayor
[Araujo ni at. Al
et. al 2007]
2007] [Bogado
[Andersso | et. al
net. al 2010]
2002]
Software [Kahen
maintenance et.al 2001]
& evolution

Table 3: Representative publications with their simulation techniques and treated software

20

process topics

Besides modeling the impact of managerial decisions on the overall software project
time, effort, quality (errors percentage, errors detection, and rework effort), and size, SPSM
simulates also the characteristics of specific software process phases. For example, SPSM can

help in determining the design phase quality attributes tradeoffs (e.g. [Chiang et.al 2002]).

2.3 SPSM of design phase

A software system that satisfies non functional requirements early in the design phase is
likely to minimize the cost of correcting them late in the software lifecycle. Xu and his
colleagues propose a simulation that experiments with design alternatives and how they achieve
the non functional requirements by taking into consideration their conflicting, crosscutting, and
open-ended nature [Xu et. al 2006]. Non functional requirements can have conflicting goals such
as in the case of implementing encryption that reduces a system’s responsiveness. They are also
crosscutting since integrating security in the system, for instance, require changes in different
locations including but not limited to the server and client modules. Furthermore, implementing
a specific quality attribute can have an open-ended set of possible solutions (e.g. security can be
implemented using authentication only or combined with encryption). Through Xu’s simulation,
software architects can choose their desired design alternatives that are modeled as state-charts.
Then, they can run the simulation and detect design alternatives that satisfy their non-functional
requirements.

Resolving the conflicting nature of quality attributes yields high-quality software
architecture [Xu 2008]. Xu proposes a Multiple-Objective Decision Analysis (MODA)
methodology that relies on multiple-objective decision theory [Xu 2008]. Thus, the conjoint

scaling interview scheme from decision theory is applied to gather stakeholders’ judgments

21

about the system’s design alternatives and their quality attributes support. A high ranking is
assigned to the design alternative that supports most of the required quality attributes. Moreover,
value gaps are applied to forecast the most relevant quality attributes for future stages in the
design phase. Through a design simulation, stakeholders identify the value gap between the ideal
level of a specific quality attribute and its current value. Quality attributes that are characterized
by a high value gap are selected as the most important attributes for future design phases.

Simulations can also assist software project managers in determining quality tradeoffs of
design decisions in the early phases of software development lifecycle. Chiang and his
colleagues present a soft goal simulation that support decision making during design phase
[Chiang et.al 2002]. In the case of projects where quality assurance is mandatory, the simulation
goal is to identify design alternatives that achieve optimum quality attributes. A soft goal model
is composed of three types of soft goals: Non-functional-Requirement (NFR), operationalizing,
and claim. NFR soft goals deal with quality requirements such as time performance.
Operationalizing soft goals represent possible design alternatives that implement the NFR soft
goals (e.g. incorporate java script in an online storefront). Claim soft goals explain the context
for a soft goal (e.g., a claim may argue that client-side scripting loads faster).

According to Ferayorni and his colleagues, a design simulation helps architects in
improving their architecture’s quality and reduces the overall software development effort
especially if it integrates domain knowledge by including appropriate design patterns [Ferayorni
et.al 2007]. Discrete Event System Specification (DEVS) supports the modeling of complex
hierarchical interacting components. The authors extend this modeling and simulation
framework to support domain knowledge by adding design patterns suitable to a specific

application domain such as Composite, Facade, and Observer patterns. DEVS can also be

22

employed in simulating software architecture and determining design quality attributes at run
time [Bogado et.al 2010]. It decouples the conceptual model of the architecture from the
simulator. DEVS simulation allows designers to evaluate performance quality attribute design
scenarios.

Real-time embedded multiprocessor systems’ design is classified as a complex structure
due to the interactions between many hardware and software elements. That is why Thuente
suggests the combination between rapid simulation and rapid prototyping to depict the optimum
design of embedded systems [Thuente 1991]. Rapid simulation is similar to rapid prototyping
since it relies on delivering high level simulations characterized by quick development and rapid
changes. The initial simulations can be extended as far as rapid prototyping produces additional
input for the simulation. Through rapid simulation, the hardware and software components go
through iterative refinements based on their performance.

SPSM is also applied in modeling self-adaptive systems and how they adjust to changes
in requirements at run-time (e.g. [Yau et.al 2009], [Kumar et.al 2009], and [Beckmann et.al
2009]). An interesting extension of SPSM applications would be to simulate software design’s
adaptation at design phase instead of leaving it to run-time such as in [Yang et. al 2009].
Simulating adaptation at design stage is likely to minimize risks and ensure an early assessment

of adaptation strategies.

23

2.4 SPSM of adaptive systems

Self-adaptive systems adjust their behaviors to face any changes in their environment
such as a decrease in response time, system failures, and new requirements [Oreizy et.al 1999].
Unlike closed adaptive systems, open-adaptive systems apply adaptations during run-time.
Conditional expressions are an example of open self-adaptive systems since an application’s
behavior changes based on the result of the evaluated expression. Oreizy and his colleagues
come up with a design cycle for self-adaptive systems [Oreizy et.al 1999]. It is composed of two
inter-connected cycles: adaptation management and evolution management (figure 4). The
evolution management cycle tracks possible changes to the application either in its architecture
or code. Then, those enacted changes are handled by the adaptation management cycle, which

plans their possible solutions before deploying them on the system.

24

Plan changes

Deploy change - Adaptation Evaluate and
descriptions management monitor
observations

\

/

Enact changes and
collect observations

|

[]
Architectural Evolution :
model — management D::>D Implementation

T

4
\ Maintain /
consistency

and system integrity

Figure 4: Design cycle for self-adaptive systems [Oreizy et.al 1999]

In self-adaptive systems, adaptation can be weak if it deals with minor low cost changes

such as changing parameters (e.g. bandwidth limit) whereas strong adaptation is concerned with

changing, adding/substituting, and removing system artifacts. In addition, self-adaptiveness has

several facets such as self-configuring, self-protecting, and self-healing adaptiveness [Salehie

and Tahvildari 2009]. To adapt to changes, self-configuring systems can decompose or update

system artifacts. Self-protecting systems defend the application against security breaches and

self-healing systems repair any dysfunction. According to the authors, self-adaptiveness facets

25

impact software quality factors. For instance, the self-configuring facet influences the
maintainability, the functionality, the portability, and the usability quality factors. Organic
computing (OC) systems are self-organized and can self-adapt to any changes in their
environment [Schmeck et.al 2010]. Thus, OC systems can maintain a specific robustness level
despite the variations in the environment’s variables without any external control. Digital
evolution is a design methodology where a population of self-replicating computer programs
known as digital organisms is subject to mutations and natural selection [Beckmann et.al 2009].
Those digital organisms optimize their resources to survive. Beckmann and his colleagues
employ digital evolution in the design of self-adaptive control software for mobile robots. Their
approach is composed of four phases: cultivation, translation, simulation, and deployment in
order to adapt the system to its environment. Digital Petri dishes where digital organisms
develop new computational behaviors to fit their environment are the main components of the
cultivation phase. Those evolved programs are translated into the programming language of the
target hardware platforms. The simulation and deployment phases are used to evaluate the
effectiveness of the evolved digital organisms.

Design alternatives of design decisions can be analytically adapted and traced through a
design tree where the leaves are the completed designs and nodes are in-transition designs
[Noppen et.al 2011]. This methodology enables software engineers to evaluate design
alternatives and choose the ones that best fit the functional and non-functional requirements of
the system. On the other hand, a system’s performance model can facilitate the dynamic
adaptation of software systems to run-time changes in the host and network environments
[Kumar et.al 2009]. An example of a performance model for adaptive software processes is the

transactional user workload of request/ response such as HTTP workload. Adaptive Service-

26

Based Software (ASBS) systems identify tradeoffs among conflicting Quality of Service (QOS)
aspects and adapt service configurations to satisfy multiple QOS requirements simultaneously
through DEVS simulation [Yau et.al 2009]. Those services determine the runtime properties of
the service, such as authentication mechanism, priority, and maximum bandwidth. Zhang and his
colleagues apply dynamic adaptation to legacy systems by using aspect-oriented paradigm
[Zhang et. al 2007]. This approach ensures that adaptation code is separated from legacy code.
Then, to enable adaptation in legacy programs, the constructors of the non-adaptive classes are
replaced with those of the adaptive classes.

Yang and his colleagues plan software non functional requirements (e.g. performance and
availability) adaptation strategies at design phase and apply the appropriate ones at runtime
[Yang et. al 2009]. Adaptive strategies can have conflicting effects. A security adaptive strategy
that applies encryption may decrease the impact of system responsiveness strategies. Although
planning adaptive strategies at design phase without experimenting them does not guarantee their
success at run-time, the author’s approach is novel in terms of integrating adaptive strategies at
design phase.

To maximize SPSM simulations reliability, verification and validation procedures

(figures 5 and 6) are a key element in reducing errors and achieving simulations’ goals.

27

2.5 The verification and validation of SPSM simulations

The credibility of a software process simulation model is defined as the level of
confidence in its results and is measured through its verification and validation results [Kleijnen
1995]. For example, the verification and validation of simulation models is part of NASA’s
credibility assessment scale described in the NASA-STD-7009 modeling and simulation standard
[Thomas et.al 2011]. Model verification ensures that the simulation program is error-free and
works correctly whereas model validation verifies that the implemented model is an accurate
representation of the real system and achieves the simulation goals [Sargent 1998]. On the one
hand, simulation verification techniques can be grouped into two categories: static testing and
dynamic testing. A simulation program can be verified statically by employing walk-throughs,
correctness proofs, and examining the structure properties of the program [Sargent 1998]. Code
tracing and analyzing execution samples are the main dynamic verification techniques. On the
other hand, validation techniques are either subjective relying on experts’ judgment or objective
applying statistical techniques. In the subjective validation approaches, the model’s validity is
either determined by the development team, the user of the model, or an independent third party.
Besides the objective validation techniques presented by Kleijmen in [Kleijmen 1995], Sargent
describes a detailed set of validation techniques such as the historical methods and the multistage
validation. There are three types of historical methods: rationalism, empiricism, and positive
economics. In the rationalism method, any validity judgments are based on the models accepted
assumptions. Empiricism is based on empirically validating the model’s assumptions and results.
Positive economics assesses the ability of the model to forecast the future. All of those historical
approaches are combined in a multistage process that represents the multistage validation

technique.

28

Chwif and his colleagues suggest a verification and validation approach for Discrete-
event simulation whose core element is the causal influence matrix [Chwif et.al 2006]. The
influence matrix is composed of correlations between a simulation inputs and outputs described
as positive, negative, or neutral (e.g. airport check-in desk: higher times between customers’
arrivals imply lower waiting times in the queue). Although those relationships are biased by
experts’ judgments and difficult to track when several input variables are involved the authors’
method can overcome the lack of real parameters’ values.

Heuristic search algorithms increase the effectiveness of verification and validation by
avoiding exhaustive simulation testing and targeting unusual parameters combinations that may
lead to exceptions. Scatter/tabu is a heuristic algorithm where the simulation modeler can input
her business rules and constraints [Wakeland et.al 2011]. Based on those rules, adequate unusual
parameter values, which can be fed on the simulation, are generated.

A set of simulation verification and validation techniques are summarized in figures 5
and 6. To verify and validate software process simulations, each of the described techniques can
be used individually or combined with the other procedures. A simulation model’s verification
and validation are important phases in its development process since they increase the

correctness level of the simulation results.

29

Verification Techniques

Tracing:compare manual
simulation results with
intermediate outputs of
the simulation program.

Statistical testing: the
simulation response of the
simplified model equals
the expected steady state

mean (known solution of a

test case).

Animation: run dynamic
displays of the
simulation

Figure 5: Simulation verification techniques

Validation Techniques

Schruben-Turing and
t tests: compare
siumlated results to real
data.

Spectral analysis:
check the correlation of
simulated and real data.

Sensitivity analysis

(regression analysis, design

of experiments), risk

analysis, and Monte Carlo

sampling: generate the
simulation inputs.

Figure 6: Simulation validation techniques

30

Chapter 3: Simulation development and verification

Object-oriented design quality can be affected by several factors throughout the software
development lifecycle, which requires the application of appropriate adaptation strategies that
can be tested through SD simulation. Several design quality attributes such as reusability,
flexibility and effectiveness can be negatively destabilized by the following possible reasons:

1) Changes in system requirements that affect the design structure, such as the addition or the
omission of components (e. g: classes, methods).

2) Deviating from good design principles such as increasing coupling between classes and
producing less cohesive components.

3) Changes in a system’s implementation such as in timing, storage, and input/output transfers
that can lead to major redesign actions [Royce 1970].

4) The addition of new functionalities and design modifications in an iterative development
process that can lead to changes in design decisions and quality at each iteration.

5) Modifications in design decisions issued after design reviews (Preliminary Design Review
(PDR) and Critical Design Review (CDR)/ Final Design Review (FDR)).

Since design quality can change over the software development lifecycle time, SD is the

appropriate modeling technique. Besides simulating the impact of those destabilizing factors on

design quality, the goal of the research is to show how a set of adaptation mechanisms, described

in the following sections, can counterbalance any possible quality decrease. The simulation of

31

0O design quality can be considered as a decision-support tool where software designers can
assess the impact of design changes and their corresponding adaptation mechanisms on design
quality before applying them on real designs. The simulation is created by following the phases
0-3 (application without maintenance) of the SDM process model (figure 2) and implemented by
using the academic version of PowerSim® studio. PowerSim® is a simulation modeling

environment devoted to SD paradigm [PowerSim 1985].

3.1 Phase 0 of the SDM: Pre-study and research hypotheses definition
The main tasks of this phase dealt with identifying the simulation model users and the

modeling goal represented by the research hypotheses (tasks ID 0.4 and 0.5 in figure 2).

3.1.1 Simulation model users
The potential users of the simulation model are the software designers since they are

responsible of producing design and integrating any required changes into it.

3.1.2 Research hypotheses

Besides the research goals defined in chapter 1, the simulation model is used to evaluate
the following research hypotheses:
Ho: Design quality without adaptation mechanisms is the same as design quality with adaptation
mechanisms.
Hi: Design quality with adaptation mechanisms is higher than design quality without adaptation

mechanisms.

32

The goal of the research is to reject the null hypothesis (Ho) in favor of the alternative hypothesis

(Hy).

3.2 Phase 1 of the SDM: initial model development
The main product of this phase was a reference simulation model that illustrates the
impact of design changes on quality and the mechanisms of quality adaptation. The reference

model is the nucleus of the final simulation that is developed in phase 2 of the SDM.

3.2.1 Initial model creation

By using the SD modeling paradigm (appendix A), OO design was modeled in terms of
its quality factors that are part of the hierarchical Quality Model for Object Oriented Design
(QMOOD) [Bansiya and Davis 2002]. Unlike McCall et.al, ISO 9126, and Dromey’ s quality
models, QMOOD (figure 7) establishes clear linkages between the high-level quality attributes
(e.g. reusability, flexibility) of a design and its sub-attributes or design properties (e.g. coupling,
cohesion) [McCall et.al 1977] [ISO 9126] [Dromey 1996] [Bansiya and Davis 2002]. In addition,
QMOOD provides software architects with a set of numerical equations that define the polarity
(positive or negative) and the weights of the design properties that characterize each quality
attribute (figure 9). The design quality attributes defined in the QMOOD are the main sensors of
quality (figure 8). According to Bansiya and Davis, design can be represented by six quality
attributes such as extendibility and flexibility that represent QMOOD’s first level (figure 7)
(figure 8) [Bansiya and Davis 2002]. Those quality attributes’ values are the outcome of specific
design properties such as abstraction and polymorphism that are combined in numerical

weighted equations based on an extensive review of existing literature and experience (figures 9

33

and 10) (second level in figure 7). The values of design properties are extracted from design

components such as classes and objects through a set of design metrics (figures 11 and 12).

First Level Second Level Third Level Fourth Level
L L, L, L
3 L, L
Desien L Object- e Object- - Object-
Sie Oriented Oriented Oriented
Quality : : :
Attributes SeSiEn DR Design
Properties Metrics Components

Figure 7: The hierarchical structure of the QMOOD [Bansiya and Davis 2002]

Quality Attribute Definition
Reusability Reflects the presence of object-oriented design characteristics that
allow a design to be reapplied to a new problem without significant
ceffort.
Flexibility Characteristics that allow the incorporation of changes in a design.
The ability of a design to be adapted to provide functionally related
capabilities.

Understandability | The properties of the design that enable it to be easily learmed and
comprchended. This directly relates to the complexity of the
design structure,

Functionality The responsibilities assigned to the classes of a design, which are
made available by the classes through their public interfaces.

Extendibility Refers to the presence and usage of properties in an existing design
that allow for the incorporation of new requirements in the design,

Effectivencss This refers to a design’s ability to achieve the desired functionality

and behavior using object-oriented design concepts and techniques,

Figure 8: QMOOD quality attributes [Bansiya and Davis 2002]

34

Quality Attribute Index Computation Equation

| Reusability -0.25 * Coupling + 0,25 * Cohesion + 0.5 * Messaging + 0.5 *

| Design Size

| Flexibility 0.25 * Encapsulation - 0.25 * Coupling + 0.5 * Composition + 0.5 *
Polymorphism

| Understandability | -0.33 * Abstraction + (.33 * Encapsulation - 0.33 * Coupling +
0.33 * Cohesion - 0.33 * Polymorphism - 0.33 * Complexity - 0.33

: * Design Size

| Functionality 0.12 * Cohesion + 0.22 * Polymorphism + 0.22 Messaging + 0,22 *
Design Size + (.22 * Hierarchies

| Extendibility 0.5 * Abstraction - 0.5 * Coupling + 0.5 * Inheritance + 0.5 *
Polymorphism

| Effectiveness 0.2 * Abstraction + (.2 * Encapsulation + 0.2 * Composition + 0.2
: * Inheritance + 0.2 * Polymorphism

Figure 9: QMOOD quality attributes equations [Bansiya and Davis 2002]

Design Property Definition
|

Design Size A measure of the number of classes used in a design.

Hierarchies Hierarchies are used to represent different generalization-
specialization concepts in a design. It is a count of the number of
non-inherited classes that have children in a design.

Abstraction A measure of the generalization-specialization aspect of the design.
Classes in a design which have one or more descendants exhibit this
property of abstraction. |
Encapsulation | Defined as the enclosing of data and behavior within a single
construct. [n object-oriented designs the property specifically refers
to designing classes that prevent access to attribute declarations by
defining them to be private, thus protecting the internal representation
of the objects. .
Coupling Defines the interdependency of an object on other objects in a design. |
It is a measure of the number of other objects that would have to be
accessed by an object in order for that object to function correctly.
Cohesion Assesses the relatedness of methods and attributes in a class. Strong
overlap in the method parameters and attribute types is an indication

of strong cohesion. .
Composition Measures the “part-of,” “has,” “consists-of,” or “part-whole™ ‘
relationships, which are aggregation relationships in an object-

oriented design.

Inheritance A measure of the “is-a” relationship between classes. This

relationship is related to the level of nesting of classes in an

inheritance hierarchy,

Polymorphism | The ability to substitute objects whose interfaces match for one

another at run-time. [t is a measure of services that are dynamically
determined at run-time in an object.

Messaging A count of the number of public methods that are available as
services to other classes. This 1s a measure of the services that a class
provides. |
Complexity A measure of the degree of difficulty in understanding and ‘

comprehending the internal and external structure of classes and their
relationships.

Figure 10: Design properties definitions [Bansiya and Davis 2002]

35

Design Derived Design Metric

Property
Design Size Design Size in Classes (DSC)
| Hierarchies Number of Hierarchies (NOH)
| Abslraction Average Number of Ancestors (ANA)
- Encapsulation Data Access Metric (DAM)
Coupling Direct Class Coupling (DCC)
' Cohesion Cohesion Among Methods in Class (CAM)
. Composition Measure of Aggregation (MOA)
Inheritance Measure of Functional Abstraction (MFA)
. Polymorphism Number of Polymorphic Methods (NOP)
- Messaging Class Interface Size (CIS)
| Complexity Number of Methods (NOM)

Figure 11: Design metrics and their corresponding design properties
[Bansiya and Davis 2002]

36

METRIC

NAME

DESCRIPTION

DSC Design Size in This metric is a count of the total number of classes in
Classes the design.

NOH Number of This metric is a count of the number of class
Hierarchies hicrarchies in the design.

ANA Average Number This metric value signifies the average number of
of Ancestors classes from which a class inherits information. It is

computed by determining the number of classes along
all paths from the “root™ class(es) to all classes in an
. inheritance structure.

DAM Data Access Metric | This metric is the ratio of the number of private
{protected) attributes to the total number of attributes
declared in the class. A high value for DAM is
desired. (Range 010 1)

DCC Direct Class This metric is a count of the different number of

Coupling classes thata class is directly related to. The metric
includes classes that are directly related by attribute
declarations and message passing (parameters) in
methods.

CAM Cohesion Among This metric computes the relatedness among methods
Methods of Class of a class based upon the parameter list of the methods

[3]. The metric is computed using the summation of
the intersection of parameters of a method with the
maximum independent set of all parameter types in the
class. A metric value close to 1.0 is preferred. (Range
Ot)

MOA Measure of This metric measures the extent of the part-whole
Aggregation relationship, realized by using attributes. The metric is

a count of the number of data declarations whose types
are user defined classes.

MFA Measure of This metric is the ratio of the number of methods
Functional inherited by a class to the total number of methods
Abstraction accessible by member methods of the class. (Range 0

to 1)

NOP Number of This metric is a count of the methods that can exhibit
Polymorphic polymorphic behavior. Such methods in C-++ are
Methods marked as virtual.

IS Class Interface Size | This metric is a count of the number of public methods

in a class

NOM Number of Methods | This metric is a count of all the methods defined in a

class.

Figure 12: Design metrics definitions [Bansiya and Davis 2002]

37

The initial model simulates one quality attribute, namely reusability with its
corresponding design properties and metrics (figure 13). The remaining quality attributes are

modeled in Phase 2 of the SDM.

Design properties Design metrics

Design size—»DSC
Reusabilit Coupling—DCC

Cohesion —>CAM

Messaging— > CIS

Figure 13: Reusability design properties and metrics

By applying the principles of the SD paradigm (appendix A), reusability’s initial model
was developed in PowerSim® (figure 14). The model is applying six types of constants
represented as diamonds. The first type of constants holds the values of design metrics such as
“DCC”, “CIS”, and “CAM?”. The second type of constants represents the needed time to compute
each metric such as “DCC_ExecuteTime”, “CIS ExecuteTime”, and “CAM_ ExecuteTime”.
The third type of constants represents the possible changes in design metrics such as
“CISChangel” and “DSCChange2” . Designers can input up to three possible changes in one
simulation run. Those changes are executed at specific points of time in the simulation, which
are also represented as diamonds such as “CISTime Changel”, “DSCTimeChange2”, and

“CISTimeChange3”. The fifth type of constants, namely “DesignScenarios” receives the chosen

38

changes scenario by the designer from the simulation interface (figure 15). The last type of
constants represents the reference values of quality attributes. The goal of quality adaptation is
to counterbalance any decrease in a quality attribute below its reference value. Those optimum
quality values are not defined on literature. In this research, reference values are either the initial
values of quality attributes before applying any changes or the quality attributes values after an
adaptation and before applying a new change. In the initial model, “InitialReusability” is the
reference value of reusability.

Other variable types are applied in the initial simulation model to represent the reusability
quality attribute, its design properties, the design changes equations, and their corresponding
adaptations. Since design changes and adaptations are applied at specific points of time in the
simulation run, PowerSim®s time step functions (appendix B) are applied and enclosed in
auxiliary clock-like variables such as “Computed DCC” and “Computed CIS” (figure 16). A
design change is applied to design properties through their design metrics. Therefore, a design
change is computed within the clock-like variable by either increasing or decreasing a specific
metric value at a specific point of time (change time) in the simulation (appendix B). To
overcome the decrease in reusability after applying a design change, one of reusability’s design
properties (apart from the changed design property) is increasingly accumulated by applying its
corresponding adaptation equation (table 4) through several simulation runs until the reference
value is reached. After applying a set of mathematical manipulations to the QMOOD’s
reusability equation, we came up with its corresponding adaptation equations (table 4). For each
design property change, reusability can reach its reference value when the best fit adaptation
equation is applied. If the design property of the best fit equation is already at its optimum level

in the studied design, an alternate adaptation equation can be applied (table 5). In this case,

39

reusability is slightly increased above its reference value. This classification of the adaptation
equations is obtained empirically from various simulation runs. The initial model’s simulation
enables designers to experiment specific combinations of changes and adaptations per simulation
run as it is described in the verification of the model.

In the initial model, the reusability quality attribute is represented as an auxiliary variable
(circle) and fed with its corresponding quality equation from figure 9 whereas the design
properties are illustrated as levels (rectangles). The accumulation degree of levels (i.e. increase
or decrease) is controlled by rates (valves) such as “change in Messaging”. The rates determine
the difference between the design property before and after changing it through a differential
equation (appendix B) such as in the equation of the rate “change in Messaging : ‘Change in
Messaging = (Computed CIS-Messaging)/CIS_ExecuteTime’. Any sensed change is sent from
the rate to the design property through a quality flow represented by a double-lined arrow. Then,
the new design property value is sent to the quality attribute variable to update its equation. If the
newly computed reusability’s equation is lower than the reference value, the adaptation
equations in the clock-like variables are executed. The communication between the other model
variables is established through single-lined information arrows (figure 14). A variable that is
enclosed within brackets is a shortcut to an already existing variable in the diagram to avoid long
awkward links from the source variable (e.g. “Design size” and “Messaging” shortcut variables
in figure 14). The “StopCondition” auxiliary variable (circle) compares between the value of
reusability after applying an adaptation equation and its reference value (“InitialReusability”).

The simulation stops when those variables are equal.

40

Design property for Adaptation equation
adaptation
Design size 2 * reusability + 0.5 *coupling -0.5 *cohesion — messaging.
Messaging 2* reusability + 0.5 * coupling -0.5 * cohesion — design size.
Cohesion 4* reusability + coupling -2 *messaging -2* design size.
Coupling - 4* reusability + cohesion + 2* messaging + 2* design size.

Table 4: Reusability adaptation equations

Design change/ Change in
design property

Best fit adaptation equation
from table 4

Alternate adaptation
equation from table 4

Decrease in messaging.

Cohesion equation.

Design size equation.

Decrease in design size.

Cohesion equation.

Messaging equation.

Decrease in cohesion.

No best fit.

Coupling, messaging, and
design size equations.

Increase in coupling.

Cohesion equation.

Messaging and design size
equations.

Change more than one design
property.

Cohesion equation.

Any design property’s equation
except the changed one (s).

Table 5: Classification of reusability’s adaptation equations

41

<> ComputedPCC

DCC_ExechteTime
N v

7—’.
'.‘ Coupling 0

Change in coupling

Cohesion

CAM

|
ghesion Itl]
sin_ISize
LJ
Reusability

—

Qa :
cls Complted CIS =

Couplin
CIS_ExecyteTime e

CISChangel
S

Mlessaging

DSCTimeChange2

InitialReusability

A

AN VAR

Q)
\Y,

Change in
Messaging

DSCTimeChange2,

PR
(4
4 Pesign Size

Change in Design
Size

Figure 14: Reusability reference simulation model

42

3.2.2 Initial model verification

The goal of model verification is to show that the initial simulation model is working
correctly and that the adaptation equations bring back the value of reusability to its reference
value when design changes are applied. The initial model was expanded in Phase 2 of the SDM
and its validation is part of the final simulation model validation described in chapter 4.

After inputting fictitious design metrics values, design changes and times of changes in
the simulation interface (figure 15), the following simulation scenarios were executed:
1) Simulate the initial reusability quality attribute before changing any design properties
(figure 14), which represents the reference value of reusability.
2) Decrease messaging at a specific time in the software development lifecycle and apply the
adaptation equation of cohesion (figures 17 and 18).
3) Decrease design size and cohesion at a specific time in the software development lifecycle
and apply the adaptation equation of messaging (figures 19 and 20).

Unlike the first simulation scenario that illustrates the initial design quality without any
changes, the remaining scenarios enable designers to experiment more than one design change at
different points of time in the software development lifecycle. In each scenario, the simulation
stops when reusability is completely adapted and at least equals the reference value
(InitialReusability). In PowerSim®, each variable value is characterized by a specific metric. In
figure 15, the metric of the quality attributes’ values is “qual” (i.e. quality) and the adopted

metric for the simulation steps is “da” as an abbreviation of day.

43

Design Changes

Decrease Messaging only

[Decrease Design Size and Cohesion

" Initidl Design Quality

(" Decrease Messaging without adaptation

[Decrease Design Size & Cohesion without adaptation

Quality Metrics . w.. ... =
Reusability Adaptation to Changes in Quality Sub-Attributes a3 30:00;quat
qual CiSChangel 15.00 qual
€0
CiSChange2 20.00 qual
30T CISChange3 25.00 qual
g B CiSTimeChange1l 30.00 da
-.- L
> Reusabiity CiSTimeChange? 60.00 da
£ ..l Cohesion T
e — Massaging CiSTimeChange3 90.00 da
= — Coupling
E 20+ — Design Size | Quality Metrics parameters
. cam 0.90 qual
DSC 30.00 qual
1stqt : 2nd gt ‘ 3ed gt l ath gt : DSCChangel 15.00 qual
Reusability adaptation time DSCChange? 25.00 qual
DSCTimeChangel 40.00 da

Figure 15: A snapshot of the simulation interface

The results show the effectiveness of the feedback equations in adjusting the reusability
quality level. In the second simulation scenario, if the messaging changes are injected without
applying the cohesion adaptation equation, the reusability quality attribute keeps decreasing and
never reaches its reference value (the reference value is ‘38.98’ in this example from figure 17).
Figure 18 shows that adaptation through cohesion in the three changes of messaging value was
sufficient and effective in adjusting reusability to at least its reference value. According to this
simulation scenario, cohesion should be increased by a factor of ‘51° to compensate for the
decrease in messaging in order for reusability to reach its reference value. The same observations

are depicted in the third simulation scenario (figures 19 and 20). In this particular example,

44

messaging should be increased by a factor of ‘60’ to compensate for the decrease in design size
and cohesion in order for reusability to reach its reference value. Since the change in cohesion
does not have a best-fit equation (table 5), adaptation through messaging increases the value of

reusability above its reference value.

Reusability Adaptation to Changes in Design Quality properties

qual
50

30 — Cohesion
Coupling
— Design Size
— Meassaging
04 — Reusability

ReusabilityReference

10+

Reusability and design properties levels

1st gt 2nd gt 2rd gt 4th qt

Reusability adaptation time

Figure 16: The reusability quality attribute and the design properties values before
applying changes

45

qual
S0

Reusability Adaptation to Changes in Design Quality properties

40

/ . . .

ist gt Znd gt 2rd gt 4th gt

Reusability adaptation time

Figure 18: Scenario 2 results with adaptation

46

u
1]
-
9
L]
gz
T
L1}
o
[=]
o
o 320 — Cohesion
5. Coupling
0 — Diesign Size
g — Messaging
'E 204 — Reusability
m ReusabilityReferenca
-2
=
5
o 1o
3
L1}
4
ist gt 2nd gt 3rd gt 4th gt
Reusability adaptation time
Figure 17: Scenario 2 results without adaptation
Reusability Adaptation to Changes in Design Quality properties
qual
s0 -
n
1}
-
2
w 40+
Lt
& W
[}
[+ 8
[=]
ul
o 30 — Cohesian
E. Coupling
W — Diesign Size
% — Messaging
'E 204 — Reusability
m ReusabilityReference
)
=
5
o 104
3
[}
o

Reusability Adaptation to Changes in Design Quality properties

Reusability and design properties levels

20

20+

10+

—

qual

50
W
o
>
]
P LD
3z
T
0
o
2
o 30 — Cohesion
E‘I Coupling
0 — Diesign Size
g — Messaging
- 204 — Reusability
E || ReusabilityReferance
-y
E
m 10+
L]
3 \
1]
o

1st gt I 2nd gt I 2rd gt I 4th gt
Reusability adaptation time
Figure 19: Scenario 3 results without adaptation
Reusability Adaptation to Changes in Design Quality properties
qual
s0
40

— Cohesion
Coupling
— Design Size
— Meassaging
— Reusability

ReusabilityReference

1st gt 2nd qt 2rd gt 4th gt

Reusability adaptation time

Figure 20: Scenario 3 results with adaptation

47

3.3 Phase 2 of the SDM: Model enhancement

The goal of model enhancement is to improve the initial simulation model and
incorporate the remaining QMOOD quality components. The application and validation of the
complete simulation model is described in chapter 4.

In the PowerSim®workspace (figure 21), OO design quality was modeled as a set of
QMOOD quality attributes sub-models. In each sub-model, design quality is described in terms
of its quality components and quality flow. In addition, the quality sub-models, as well as their
input panel and simulation results can be accessed through a simulation interface that was also
produced in the PowerSim® workspace (figures 32, 33, and 34).

A set of changes were applied to the initial model and adopted in the remaining quality
sub-models including the reusability sub-model. All of the variable types, definitions of
reference values, and the classification as well as the identification procedure of the adaptation
equations of phase 1 were adopted in phase 2 of the SDM except the following changes and
features:

1) Delete the “DesignScenarios” variable. Since the goal of creating the initial model is to
illustrate the research idea, a limited set of design changes and adaptations were adopted and
stored as design scenarios. In the updated version of the reusability sub-model and the other
quality sub-models, designers can experiment different combinations of design changes and
adaptations per simulation run. The maximum number of design properties that can be changed
in each quality attribute per simulation run equals the total number of design properties of that
attribute minus 1.

2) Omit the “StopCondition” variable. In phase 1, once the adapted quality attribute reaches its

reference value after applying all of the design changes, the simulation stops. To prove the

48

correctness of the simulation results, the enhanced model keeps running even after reaching the
reference values. Once the reference value is reached, it never decreases again throughout the
simulation run as long as no more design changes are applied.

3) Add new variables linked to each design property in the sub-models such as “DCC-
FirstChange” and “CIS- FirstChange” (figure 22). The function of those variables is to keep
track of each design property’s last value whether it is equal to the initial quality value, updated
after an adaptation, or after all adaptations. This procedure ensures that each design change is
applied on the correct value of its corresponding design property.

4) Add new variables linked to each design metric and property in the sub-models such as
“DSClnitial” and “CISlnitial” (figure22). Design metrics values change from one simulation run
to another. To ensure the correctness of the simulation results, those variables keep track of the
input metrics in each run.

5) Apply PowerSim®’s sliced variables technique. A sliced variable is characterized by distinct
aspects in its definition so that each aspect is defined in a specific sub-model. Apart from the
complexity design property, each QMOOD design property is shared by more than one quality
attribute’s equation. To correctly implement the behavior of the design property that corresponds
to each quality attribute, PowerSim®’s sliced variables technique is adopted. A variable slice
distinguishes itself from an ordinary variable in a sub-model by a slice indicator (%) in the

upper left corner of the variable.

49

[Bl 8 Yiew [rsmt Fuemet Dagram Lipowt Smudion Broject Teoh Wiedow Help
DERS B ¢ RS T e I " wr A P> 4€ D DReeQraTp
WE T - lig DR #F- BRIQA DTS00 s Hra-0-%-0-2 84BN 0RIE
Tesh Antant x

(2 | Gutting Started ¢

8 Open_
[}t defout progect
[) toew pengers mzmrt

Figure 21: PowerSim® workspace

3.3.1 Reusability sub-model
3.3.1.1 Reusability quality components

The reusability enhanced sub-model adopts the QMOOD design properties and metrics
described in figure 13. It also simulates the output of reusability’s adaptation equations and their
classifications (tables 4 and 5).
3.3.1.2 Reusability quality flow

After entering the metrics, the combination of changes and the adaptation options of
reusability (figure 33), the sub-model assigns those values to their corresponding variables and
implements the reusability’s appropriate adaptation and quality equations (figure 22). In the
QMOOD, each design metric corresponds to a specific design property and the simulation

enables designers to change up to eleven design properties. However, the design properties that

50

impact a specific quality attribute cannot all be changed at once since one of them, at least,
should be applied as an adaptation option. In the case of reusability, the maximum number of
design properties that can be changed in one simulation run equals 3. Before running the
simulation, the designer enters the values of the metrics in the interface such as “DCC”, “CIS”,
and “CAM?”. He also enters the amounts of changes of each metric such as “DCC_Changel” and
“CAM_Change2” (figures 22 and 33). Designers can enter up to three changes for each metric in
one simulation run. Then, the time of each change is entered and assigned to its corresponding
variable such as “DCC_TimeChangel”, “CIS_TimeChange2”, and “CAM_TimeChange3”. Once
the simulation runs, the initial quality value of reusability is computed and stored in the
“Reusability” auxiliary variable (figure 22 and appendix B). The initial value of reusability is
also stored in the “ReusabilityReference” variable (figure 22). If a design change is applied with
its corresponding adaptation, the updated values of design properties will be entered by the user
in the subsequent simulation run to compute the updated “ReusabilityReference” value.

After computing the initial and the reference values of “Reusability”, the clock-like
auxiliary variables such as “Computed CAM” do not sense any change in the value of the design
properties. When a given time step of the simulation equals one of the entered change times, the
corresponding change amount of a specific metric is applied and stored in its corresponding
clock-like variable (e.g. at day 30 of the simulation, the value of CAM is decreased by 10 and
stored in the rate “Computed CAM”). That change (either an increase or a decrease) is sent to its
corresponding rate such as “Change in cohesion”. The role of the rate is to compute the
difference between the value of the design property (e.g. Cohesion) before and after any change.
The rate is like a valve that increases or decreases the level value of the design property (e.g.

“Cohesion”). The same quality flows are applied in all the level-rate variables in the sub—model

51

at each time step of the simulation (appendix B). When the design properties of reusability are
updated, their values are sent to the “Reusability” variable to re-compute its quality equation. If
the new “Reusability” value is lower than the stored “ReusabilityReference”, the corresponding
adaptation equations of the checked design properties in the interface are computed in the clock-
like variables (appendix B). Adaptation through design properties is implemented in a set of
slices that differs from one quality attribute to another. In the case of the reusability sub-model,
the adaptation slices are represented by the adaptation equations of coupling, cohesion,
messaging, and design size properties that are devoted to the reusability quality attribute (tables 4
and 5). Once the adaptation equations are computed, the new difference in the design properties
values is sensed by the rates (“Change in coupling”, “Change in cohesion”, “Change in
messaging”, and “Change in Design Size”’) and sent again to the level design properties
(“Coupling”, “Cohesion”, “Messaging”, and “Design Size”) . Then, the updated values of the
design properties are sent to the “Reusability” quality attribute to compute its new adapted value.
The simulation keeps running and adapting any decrease in the reusability quality attribute until

the end of the simulation time. The detailed implementation of the reusability sub-model is

described in appendix B.

52

Figure 22

: Reusability sub-model

53

3.3.2 Flexibility sub-model
3.3.2.1 Flexibility quality components

In figure 24, flexibility is simulated with its corresponding design properties and metrics
(figure 23). After evaluating the values of the design properties, flexibility’s quality equation is
computed and stored in its variable (figures 9 and 24). In addition, design properties’ slices

implement flexibility’s adaptation equations (tables 6 and 7).

Design properties Design metrics

Encapsulation — DAM

Flexibility Coupling —— DCC
Composition ™ MOA
Polymorphism—— NOP

Figure 23: Flexibility design properties and metrics

Design property for Adaptation equation
adaptation
Encapsulation 4 * flexibility + coupling - 2*composition - 2* polymorphism.
Coupling - 4* flexibility + encapsulation + 2* composition + 2* polymorphism.
Composition 2* flexibility - 0.5* encapsulation + 0.5*coupling - polymorphism.
Polymorphism 2*flexibility — 0.5*encapsulation + 0.5* coupling — composition.

Table 6: Flexibility adaptation equations

54

Design change/ Change in Best fit adaptation equation Alternate adaptation
design property from table 6 equation from table 6
Increase in coupling. Encapsulation equation. Composition & polymorphism
equations.
Decrease in composition. Encapsulation equation. Abstraction & polymorphism
equations.
Decrease in polymorphism. Encapsulation equation. Composition equation.
Change more than one design | Encapsulation equation. Any design property’s equation
property. except the changed one (5).

Table 7: Classification of flexibility’s adaptation equation

3.3.2.2 Flexibility quality flow

In the implementation of the flexibility sub-model (appendix B), the input metrics, the
design changes, and the adaptation options are assigned to their corresponding variables (figure
24). In the case of flexibility, the maximum number of design properties that can be changed in
one simulation run equals 3. After entering the simulation variables, the initial quality value of
flexibility is computed and stored in the “Flexibility” auxiliary variable (figure 24 and appendix
B). The initial value of flexibility is also stored in the “FlexibilityReference” variable (figure 24).
If a design change is applied with its corresponding adaptation, the updated values of design
properties will be entered by the user in the subsequent simulation run to compute the updated
“FlexibilityReference” value.

Before running the simulation, the designer enters the values of the metrics in the
interface such as “DAM”, “DCC”, and “MOA”. He also enters the amounts of changes of each
metric such as “DAM_Changel” and “MOA_Change2” (figures 24 & 33). Then, the time of
each change is entered and assigned to its corresponding variable such as
“DAM_TimeChangel”, “MOA_TimeChange2”, and “DCC_TimeChange3”. Once the
simulation runs, the initial quality value of flexibility is computed and stored in the “Flexibility”

auxiliary variable (figure 24 and appendix B). The initial value of flexibility is also stored in the

55

“FlexibilityReference” variable (figure 24). If a design change is applied with its corresponding
adaptation, the updated values of design properties will be entered by the user in the subsequent
simulation run to compute the updated “FlexibilityReference” value. The same quality flow that
was implemented in the reusability sub-model was adopted in the flexibility sub-model and the
remaining sub-models of the simulation. In the case of the flexibility sub-model, the adaptation
slices are represented by the adaptation equations of coupling, encapsulation, composition, and
polymorphism properties that are devoted to the flexibility quality attribute (tables 6 and 7). The

detailed implementation of the flexibility sub-model is available in appendix B.

56

Figure 24: Flexibility sub-model

57

3.3.3 Understandability sub-model
3.3.3.1 Understandability quality components

In figure 26, understandability is simulated with its corresponding design properties and
metrics (figure 25). After evaluating the values of the design properties, understandability’s
quality equation is computed and stored in its variable (figures 9 and 26). In addition, design

properties’ slices implement understandability’s adaptation equations (tables 8 and 9).

Design properties Design metrics
Abstraction ANA
Encapsulation DAM
Coupling DCC
Understandability —> Cohesion CAM
Polymorphism NOP
Complexity NOM
Design size DSC

Figure 25: Understandability design properties and metrics

58

Design property for Adaptation equation
adaptation
Abstraction -3.03 * understandability + encapsulation - coupling + cohesion —
polymorphism — complexity — design size.
Encapsulation 3.03* understandability + abstraction + coupling — cohesion +
polymorphism + complexity + design size.
Coupling -3.03 * understandability — abstraction + encapsulation + cohesion —
polymorphism — complexity — design size.
Cohesion 3.03 * understandability + abstraction — encapsulation + coupling +
polymorphism + complexity + design size.
Polymorphism -3.03 * understandability + abstraction + encapsulation — coupling +
cohesion — complexity — design size.
Complexity -3.03 * understandability — abstraction + encapsulation — coupling +
cohesion — polymorphism — design size.
Design size -3.03 * understandability — abstraction + encapsulation — coupling +
cohesion - polymorphism — complexity.

Table 8: Understandability adaptation equations

Design change/ Change in
design property

Best fit adaptation equation
from table 8

Alternate adaptation
equation from table 8

Increase in coupling.

Encapsulation equation.

No alternate.

Increase in complexity.

Encapsulation equation.

No alternate.

Increase in design size.

Encapsulation equation.

No alternate.

Change more than one design
property.

Encapsulation equation.

Any design property’s equation
except the changed one (5).

Table 9: Classification of understandability’s adaptation equation

3.3.3.2 Understandability quality flow

On the one hand, the understandability sub-model implements the same quality flows

described in the previous sub-models (figure 26). On the other hand, the maximum number of

design properties that can be changed in one simulation run equals 6. In addition, the adaptation

slices are represented by the adaptation equations of abstraction, cohesion, coupling,

encapsulation, complexity, design size, and polymorphism properties that are devoted to the

understandability quality attribute (tables 8 and 9). Appendix B describes the detailed

implementation of the understandability sub-model.

59

Figure 26: Understandability sub-model

60

3.3.4. Functionality sub-model
3.3.4.1. Functionality quality components

In figure 28, functionality is simulated with its corresponding design properties and
metrics (figure 25). After evaluating the values of the design properties, functionality’s quality
equation is computed and stored in its variable (figures 9 and 28). In addition, design properties’

slices implement functionality’s adaptation equations (tables 10 and 11).

Design properties Design metrics
Cohesion CAM
Polymorphism NOP
Functionalit » Messaging CIS
Design size DSC
Hierarchies NOH

Figure 27: Functionality design properties and metrics

Design property for Adaptation equation
adaptation
Cohesion 8.33 * functionality -1.83 * polymorphism — 1.83 * messaging — 1.83 *
design size — 1.83 * hierarchies.
Polymorphism 4.54* functionality — 0.54 * cohesion - messaging — design size -

hierarchies.

Messaging 4.54 * functionality — 0.54 * cohesion — polymorphism — design size —
hierarchies.

Design size 4.54 * functionality — 0.54 * cohesion — polymorphism — messaging -
hierarchies.

Hierarchies 4.54 * functionality — 0.54 * cohesion — polymorphism — messaging —
design size.

Table 10: Functionality adaptation equations

61

Design change/ Change in
design property

Best fit adaptation equation
from table 10

Alternate adaptation
equation from table 10

Decrease in polymorphism.

Cohesion equation.

Messaging, design size, and
hierarchies equations.

Decrease in messaging.

Cohesion equation.

Polymorphism, design size,
and hierarchies equations.

Decrease in design size.

Cohesion equation.

Polymorphism, messaging, and
hierarchies equations.

Change more than one design
property.

Cohesion equation.

Any design property’s equation
except the changed one (5).

Table 11: Classification of functionality’s adaptation equation

3.3.4.2 Functionality quality flow

Like the previous sub-models, functionality implements the same quality characteristics

(figure 28). However, the maximum number of design properties that can be changed in one

simulation run equals 4. Moreover, the adaptation slices are represented by the adaptation

equations of messaging, cohesion, design size, hierarchies, and polymorphism properties that are

devoted to the functionality quality attribute (tables 10 and 11). The detailed implementation of

the functionality sub-model is available in appendix B.

62

aQra
I r.

.1

Figure 28: Functionality sub-model

63

3.3.5 Extendibility sub-model
3.3.5.1 Extendibility quality components

In figure 29, extendibility is simulated with its corresponding design properties and
metrics (figure 29). After evaluating the values of the design properties, extendibility’s quality
equation is computed and stored in its variable (figures 9 and 29). In addition, design properties’
slices implement extendibility’s adaptation equations (tables 12 and 13). For each design change
in figure 13, all of the possible adaptation equations of extendibility were experimented.

However, no adaptation equation made extendibility equal to its reference value (i.e. no best fit).

Design properties Design metrics
Abstraction ANA
Coupling DCC
Extendibilit » Inheritance MFA
Polymorphism NOP

Figure 29: Extendibility design properties and metrics

Design property for Adaptation equation
adaptation
Abstraction 2 * extendibility + coupling — inheritance — polymorphism.
Coupling -2 * extendibility — abstraction- inheritance — polymorphism.
Inheritance 2* extendibility — abstraction + coupling — polymorphism.
Polymorphism 2* extendibility — abstraction + coupling — inheritance.

Table 12: Extendibility adaptation equations

64

Design change/ Change in
design property

Best fit adaptation equation
from table 12

Alternate adaptation
equation from table 12

Decrease in abstraction. No best fit. Coupling and polymorphism
equations.

Increase in coupling. No best fit. Abstraction and polymorphism
equations.

Decrease in inheritance. No best fit. Polymorphism and abstraction
equations.

Decrease in polymorphism. No best fit. Abstraction and coupling
equations.

Change more than one design | No best fit. Any design property’s equation

property.

except the changed one (5).

Table 13: Classification of extendibility’s adaptation equation

3.3.5.2 Extendibility quality flow

The quality flow in the extendibility sub-model is similar to the previous sub-models

(figure 30). Furthermore, the maximum number of design properties that can be changed in one

simulation run equals 3. In the case of the extendibility sub-model, the adaptation slices are

represented by the adaptation equations of abstraction, coupling, inheritance, and polymorphism

properties that are devoted to the extendibility quality attribute (tables 12 and 13). The complete

implementation of the extendibility sub-model is described in appendix B.

65

model

Extendibility sub-

Figure 30

66

3.3.6 Effectiveness sub-model
3.3.6.1 Effectiveness quality components

In figure 32, effectiveness is simulated with its corresponding design properties and
metrics (figure 31). After evaluating the values of the design properties, effectiveness’s quality
equation is computed and stored in its variable (figures 9 and 31). In addition, design properties’

slices implement effectiveness’s adaptation equations (tables 14 and 15).

Design properties Design metrics
Abstraction ANA
Encapsulation DAM
Effectivenes » Composition MOA
Inheritance MFA
Polymorphism NOP

Figure 31: Effectiveness design properties and metrics

67

Design property for
adaptation Adaptation equation
Abstraction 5 * effectiveness — encapsulation — composition — inheritance —
polymorphism.
Encapsulation 5 * effectiveness — abstraction - composition — inheritance —
polymorphism.
Composition 5 * effectiveness — abstraction — encapsulation — inheritance —
polymorphism.
Inheritance 5 * effectiveness — abstraction — encapsulation — composition —
polymorphism.
Polymorphism 5 * effectiveness — abstraction — encapsulation — composition —
inheritance.

Table 14: Effectiveness adaptation equations

Design change/ Change in
design property

Best fit adaptation equation
from table 14

Alternate adaptation
equation from table 14

Decrease in abstraction.

Encapsulation equation.

Composition and
polymorphism equations.

Decrease in composition.

Encapsulation equation.

Abstraction and polymorphism
equations.

Decrease in inheritance.

Encapsulation equation.

Polymorphism, abstraction, and
composition equations.

Decrease in polymorphism.

Encapsulation equation.

Abstraction and composition
equations.

Change more than one design
property.

Encapsulation equation.

Any design property’s equation
except the changed one (5).

Table 15: Classification of effectiveness’s adaptation equation

3.3.6.2 Effectiveness quality flow

The effectiveness sub-model is applying the same quality characteristics of the previous

sub-models. In this case, the maximum number of design properties that can be changed in one

simulation run equals 4. In addition, the adaptation slices are represented by the adaptation

equations of abstraction, encapsulation, composition, inheritance, and polymorphism properties

that are devoted to the effectiveness quality attribute (tables 14 and 15). The detailed

implementation of the effectiveness sub-model is available in appendix B.

68

Figure 32: Effectiveness sub-model

69

Figure 33: The welcome page of the simulation

70

= 3000 qual
§ CISChanget -15.00 quat
: CISChange? 20.00 qual
i ClsChanged -35.00 qual
L CISThnuChangel 30,00 de
CISTneChange) 60.00 da
CISThnecChanges VO.00 da
- One 50,00 quat
DSCChange i 20,00 guel
DECChangw? ~A0.00 el
DECChanged ~45.00 gual
OSCThneChange 1 30,00 32
ORC e Change 2 60,00 @
= O%CTTmetChangae 3 90,00 e
ada o e
- I AnNa 20.00 qut
I ANA_Changel %.00 gqual
ANA_Chongwd ~10.00 quat
ANA_Changed ~ 15,00 guat
ANATIeChange 1 30,00 da
ANA T Chnnge 2 60,00 da
ANATIMeChange 50.00 du
DAm Q.60 qual
5 DAM_ Changet ~0,30 qus
; DAM_Change? -0, 50 aqua
DAM_Changed -0.70 qua
_TimaChongea 1) 20.00 de
o | Theme Chvormge 2] 80,00 de
L Tlms Chusnge | ©0.00 d=
: HOM .00 cuial nOP 20.00 qust) = 500 qual
NOMChangel .00 aual NOPChange ~%.00 gquet DCC_ Change 500 quasl
NOMOChAnNGe 2 10,00 gus NOPChge 2 ~10.00 qual DOC_Clusige 3 10600 gual
i NOMChanged 15,00 quet NOPChanget -15.00 qual o DCC_Changed 15.00 gquul
: NOMTImaChange L 20.00 da NOP T T Clusnge 1 M.00 da DOC_TNmeChange i 000 da
NOMTImeChange? 60,00 G NOPTImeChonge 2 60,00 da DCC_TimaChange2 £0.00 da
NOMTImeChange) 90.00 da NOPTImes Clusnge ©0.00 da DCC_Thmethanges 00 d>
mra 0.90 guel NOM 20.00 quel cAM 0.90 gqual
MEAChange 1 -0 20 qual NOMChange ~5.00 qual CAMChange i ~0.20 qua
MEAChange? 0.50 qual NOHChange2 “10.00 qual CAMChanga2 0.50 qued
MrAChange3 0. 70 qusl NOMChangwe3 “1%,00 guw CAMChangwd “0.70 quet
FATImeChange 30.00 de NOHTHneChange 1 30,00 de CAMTImeChange 1 30.00 de
ATImeChange 2 G000 ca NOHTIMeChange 2 GO,00 dn CAMTImaChange 2 £A.00 dx
ATIrveChanges 20.00 04 RO e Chnnges #O.00 da CAMTImeChanges 20.00 da
oA 20.00 gual
MOAChange 1 .00 quad
MOAChange2 ~10.00 guel
MOAChange: - 1500 qual
MOA ThseChangel 3000 Jda
MOA_TimeChange? £0.00 da
MOA_ HimeChange s S0.00 da

Figure 34: The input menu of the simulation

71

Design Quality Results

Hlexitility Adaptation 10 CRanges i Design Quality praperties

X‘“

H
i%
g

e e e -

Faatebty mtepethen b

bl to Ch n Desgn Qualty properies
1
-t
E 2 l-bh‘-o
Taeg
— ety .
Rl
e C Semen iy
Saca s b
nt
|
e ~e -e -

Understandab@ty Adaptation to (hanges i Design Quality propesrtes

.

Functosality Adaptation 1o Changes in Design Qualty propesthes

"
i ' |
-
”~
! =l
[- T —
D atew
1 — ’ S
- Carmn Rt)
. oot ‘ »h ~ Ma——g -
— Bk e t Lo——",
| re— it | B A b
et LT
} |
" {
- e w e - - e - -
Uneterclandabiely adiap!aties Cone L
Extendbaty Adagtation to Chasges o Design Qualty properties 1Hecoweness Adagtaton to Chasges s Design Quirkty progerties
! =4 i =)
fupsres—r— e eSS
i B | o,
nt Switey 3 = [SH,
: e 1 Iertene
! L teesniubcioas) ‘ o e

- e ™o -

CatenaSR4Ty sdagratioe Tave

Qualty Attributes Adaptation 1o Changes in Desgn Quality propertios
o
i
e e e
Destze Duakny Allridaries asbaptatam tome

Figure 35: The simulation results page

72

Chapter 3 was devoted to the creation of the different components of design quality’s
simulation by following phases 0-2 of the SDM. In PowerSim®, each QMOOD quality attribute
was developed in a separate sub-model that showed how its quality components interact with
each other to face any decrease in design quality. Instead of testing a limited set of scenarios, the
enhancement of the initial simulation model enables designers to experiment with all possible
combinations of design changes and adaptations. Therefore, the resulting simulation from Phase
2 of the SDM is ready to be applied and validated in a set of real OO designs as illustrated in

chapter 4.

73

Chapter 4: Simulation validation

To validate the simulation sub-models and apply the suggested adaptations, ten academic
design class diagrams were studied (phases 2.2 and 3 of the SDM process in figure 2). To
illustrate the validation process and the application of the adaptation mechanisms, one design is
described thoroughly in this chapter and the remaining designs are discussed in appendix C. The
design documents were produced by students from two different classes offered by the Computer
Science and Software Engineering department at Auburn University: Software Modeling and
Design (COMP 3700) and the Senior Design Project (COMP 4710). The designs illustrate the
components of small to medium-sized systems in different application areas such as healthcare
and education. The design changes and their adaptations were validated by applying the
following steps in the designs:

1) Initial design quality measured: The QMOOD metrics, design properties and quality
equations were extracted manually and computed for each design class diagram before
applying any design changes. The initial values of the quality attributes in each design are
considered as the reference quality values for that particular design in both the simulation and
the real results.

2) Design changes and adaptations simulated: A set of design changes was experimentally
applied to each design through the simulation. It is assumed that changes on the

requirements from the client side trigger the design changes. The obtained results depicted

74

3)

4)

the affected QMOQOD quality attributes by those changes. If the quality values were lower
than their initial values (i.e. the reference values of the quality attributes) the impact of the
selected design properties’ adaptation equation was also simulated. The main result of the
simulation is the adaptation amount of the selected design property (i.e. how much the
adaptation design property should be increased/ decreased to reach the reference value of the
affected quality attribute).

Design changes and adaptations applied on the designs’ class diagrams: The same simulated
changes were applied on the real designs as well as their corresponding simulated adaptation
amounts. The QMOQOD quality attributes were also computed for the adapted class
diagrams.

Correlations between the simulated and the real quality attributes’ values from the
simulation and the class diagrams were computed: The correlations were calculated by
applying the Pearson product-moment coefficient or Pearson's r. Pearson's r determines the
linear relationship between two sets of values (e.g. set X and set Y) and can range from -1 to
1 [Jackson 2011]. In this research, X represents the set of all the adapted simulated values of
a specific quality attribute and Y represents the set of all the adapted values of the same

quality attribute that are computed from the class diagrams.

4.1 Design 1 (D1): Library Information System (LI1S)

4.1.1 System description and reference quality values

The class diagram in figures 36 and 37 represents the design components of a library

information system (LIS). The main goal of the LIS is to automate the operations of library

management such as checking books in and out; adding books to the library; and handling

75

outstanding fees. The initial values of the QMOOD metrics of this class diagram and the

remaining designs were extracted by applying the formula in table 16. Both values of the metrics

and their corresponding quality attributes’ reference values are recorded in tables 17 and 18.

Erowser

SessionlD
UserlD

LibraryServer
1
<
logOut()
1
1.%
Pageltem Button
L 0.*
title * title
LoginPage LoginButton LogoutButton

logininame, password)

Figure 36: The library server classes of LIS

76

DatabaseBarver

Userdener BookSewer Booktem
Useritem
fnokD
theck{name) 0.+ name rakuleteD) |, 0 it
CreatE(nMe, BassWOd) FL—— nagsword Createq e author
theckFeesfhame) foes find{hooklD) e
3ezign{bookiD) daletahookiD)
unassignihoakiD) refined
talcFined
D"*
Panetem Buttan
fitl & 0.7 e
Ji) Ji
| | | |
AddBonkPage CheckinPage RegisterButian | | [DeleteBution | | | CheckOutButon
send(ADDBEOOK, data)
RedisterPane SearchPane FawFineBution | | AddBaokButton | | SearchBution CheckinBution
sendREGISTER, name passward) | | [send(3EARCH fitle author genre)

FinePane

DeleteBonkPane

CheckOuBonk

Send(CHECKFINE hame)

sendiDELETE hookiD)

send(CHECKOUT bookiD)

Figure 37: The database server classes of LIS

77

Design metric

Formula

Design Size in Classes (DSC)

¥ of classes in the class diagram.

Number Of Hierarchies (NOH)

¥ of class hierarchies in the class diagram.

Average Number of Ancestors (ANA)

i= number of leaf classes

> of ancestors
i=1

sum of leaf classes in the design

Average Data Access Metric (DAM)

Total number of private
(protected) attributes

in a class
Total number of attributes

Total number of classes in the design

0<DAM <1 in each class

Average Direct Class Coupling (DCC)

Y of classes a class is related to.

Average Cohesion Among Methods of
classes (CAM)

i= number of parameters of

all methods in a class.
Y number of methods that share i
i=1

total number of parameters in a class

Total number of classes in the design

0< CAM <1 in each class

Measure Of Aggregation (MOA)

The number of part-whole relationships in the
class diagram.

Average Measure of Functional
Abstraction (MFA)

The number of methods
inherited

by a class
Total number of methods
accessible

Total number of classes in the design

0< MFA <1 in each class

Number Of Polymorphic methods

% of polymorphic methods in the class diagram.

(NOP)
Sum of Classes Interfaces Size (CIS) ¥ of public methods in the class diagram.
Number Of Methods (NOM) 2 of all methods in the class diagram.

Table 16: QMOOD design metrics formula

78

4.1.2 Design changes

After extracting the design metrics values from the class diagram in figures 36 and 37, a
set of design changes was applied to validate the results of the simulation. Each design change
affected at least one quality attribute and enabled us to validate its corresponding simulation sub-
model.
4.1.2.1 Design changes affecting the understandability quality attribute

After entering D1’s design metrics values from table 16 in the simulation interface, the
initial understandability value (i.e. the targeted reference value) was evaluated (Table 17). One of
the new requirements received from the system’s client is to add new functionalities that deal
with books management, library events organization, amenities reservation, and complaints
management. Therefore, five new classes were added to D1’s class diagram: “Client service”,
“Books suggestion”, “Library events”, “Library amenities”, and “Post complaints” that deal with
new operations such as allowing users to suggest books and post complaints about any library
service. The impact of this design change on understandability and the adopted equation of
encapsulation were first experimentally simulated in Powersim® before applying them on D1 s
class diagram.
1) Simulated results

Increasing the DSC metric of D1 (table 15) by increasing the number of classes led to a
decrease in understandability below its reference value (table 17). To counterbalance the impact
of that design change, the adaptation equation of encapsulation from table 8 was applied as

illustrated in figure 38.

79

The increase in design size (dark pink) led to a decrease in understandability (green)
below its reference value (blue). Understandability started to increase and reached its
reference value when the adaptation equation of encapsulation (brown) was applied.

Understandability Adaptation to Changes in Design Quality properties
aual Design size (design
—
@ 30"4[change)
£
7]
o
0 204+
o
c
o — Polymorphism
ﬁ 10—+ — Encapsulation
: — Coupling
5 I \ — Abstraction
I Cohesion
E ° Complexity
._E — Diesign Size
% — Understandability
c -0 i — UnderstandReference
2 Understandability
. - -
33 (quality attribute) :
53 7 Encapsulation
A ; ; , /| (adaptation)
ist gt 2nd gt 3rd gt 4th gt
Understandability adaptation time

Figure 38: Understandability adaptation results of D1

From figure 38, the decrease in understandability is counterbalanced when encapsulation
increases from its original value of 1 to 5, or a factor of five. The encapsulation of D1 can be
improved by increasing the DAM values to 1 in the following classes: Client service” “Books
suggestion”, “Library events”, “Post complaints”, and “Library amenities”.

2) Real results

After experimenting the impact of the design change on understandability and the
effectiveness of the encapsulation adaptation equation through Powersim®, the same changes and
the obtained adaptation from the simulation were applied on D1’s class diagram (figure 39). The
encapsulation adaptation, which is based on increasing DAM in D1’s classes, is illustrated

through the UML minus symbol in front of the classes’ attributes. Before applying the simulation

80

results on the real design, the attributes of the classes in figure 39 were all public. The increase in
encapsulation as an adaptation mechanism is based on making those attributes private by adding

the minus sign in front of them.

The minus symbol indicates that

the attributes of the class are made
private which increases DAM to 1.

Library events
- event Topic: String
| - event date: String
- newArrival: String
- specialEdition: String
+ exhibitBooks (newArrival: String,
specialEdition: String)

Client service
- service id : int
+ getService (serviceid: int)

Library amenities + announceTalk (event date: String, event
-reservationType: String Topic: String)
-date: String
+ Complaints
postTalkRoomReservation - type: String
(date: String, -date: String
reservationType: String) - content: String
+ updateReservation (date: - title: String
String, reservationType: - id: int - _
String) + postComplaint (id: int, type: String, date:
+ cancelReservation (date: String, title: String, content: String)
String, reservationType: + updateComplaint (id: int, date: String,
String) title: String)
+ cancelComplaint (id: int)

Books suggestion
-title: String
-author: String
-bookid: int
- type: String

-availability: bool

+ addSuggestion (bookid: int, author: String, type: String, title: String)
+ updateSuggestion (bookid: int, availability: bool)

+ cancelSuggestion (bookid: int, title: String, author: String)

Figure 39: The classes used in D1’s understandability design change

81

After applying the encapsulation adaptation on D1’s design, the real QMOOD
understandability value was computed. Table 20 results show that the simulated value of

understandability after adaptation matches its real value.

4.1.2.2 Design changes affecting the extendibility and the flexibility quality attributes

Additional design changes were simulated and then applied on the adapted version of D1
after the first design change. To illustrate the effect of design changes on extendibility and
flexibility, the “Client service” class from figure 39 was modified to be a subclass of
“Pageltem”. In addition, each of the remaining four classes in figure 39 was modified to be a
specific client service. The impact of those design changes on extendibility and flexibility as well
as the adopted polymorphism adaptation mechanisms was first simulated in Powersim® and then
applied on the real class diagram of D1.
1) Simulated results

The described design changes led to an increase in the number of hierarchies, inheritance,
complexity, abstraction, messaging, complexity, and coupling design properties. Figures 40 and
41 show that both quality attributes decreased below their reference values before applying the
polymorphism adaptation equation (the blue and green lines represent the reference values of
extendibility and flexibility respectively. The reference values are also recorded in table 17).
From table 7, the best fit adaptation equation for flexibility is the equation of encapsulation.
However, encapsulation was already at its optimum level (DAM=1 in D1’s classes) and did not
need an additional increasing. In this case, the alternate adaptation equation of polymorphism
described in tables 6 and 7 was simulated. In the case of extendibility, table 13 shows that this

quality attribute has no best fit adaptation but can be adapted by applying the alternate equation

82

of polymorphism. From figures 40 and 41, the decrease in flexibility and extendibility was

counterbalanced when polymorphism was increased by a factor of ten.

Extendibility and design properties levels

Extendibility Adaptation to Changes in Design Quality properties

gqual

301 \ Coupling (design change)

204

— Polymorphism

/ Polymorphism (adaptation)

— Abstraction

Coupling
— Inheritance
— Extendibility

104 /
Extendibility (quality

1 / attribute)

ExtendibilityReference

ist gt 2nd gt 3rd gt
Extendibility adaptation time

4th gt

Figure 40: Extendibility adaptation results of D1

Flexibility and design properties levels

Flexibility Adaptation to Changes in Design Quality properties

gqual

change)

304 \ Coupling (design

201

/

Polymorphism
(adaptation)

— Flaxibility
FlexibilityRefarence

— Polymaorphism

— Encapsulation

— Coupling

1

Composition

ey

1/ . .

\

ist gt 2nd gt 3rd gt

Flexibility adaptation time

4th qt

Flexibility
(quality attribute)

Figure 41: Flexibility adaptation results of D1

83

2) Real results

The simulated changes and their corresponding adaptations for extendibility and
flexibility were applied on D1 as shown in figure 42. The simulated adaptation was applied in
the “Books suggestion” class where the polymorphic forms of its methods are increased to nine.
Then, the computed values of extendibility and flexibility from D1 after adaptation were
compared to their simulated values. The results show a strong connection between the real and

the simulated values of both quality attributes (tables 22 and 23 in appendix C).

84

Pageltem

- title

Library events

- event topic: String

- event date: String

- newArrival: String

- specialEdition: String

Books suggestion

Client service

- service id : int

+ exhibitBooks
(newArrival: String,
specialEdition: String)

+ announceTalk (event §
date: String, event

+ getService (serviceid:
int)

AR

topic: String)

-title: String
-author: String
-bookid: int

-type: String
-availability: String

Library amenities

Complaints
- type: String -
-date: String -re§ervat|onType:
- content: String String .
- title: String -date: String
- id: int *

title: String, content:
String)

int, date: String, title:
String)

int)

+ postComplaint (id: int,
type: String, date: String,

+ updateComplaint (id:

+ cancelComplaint (id:

postTalkRoomReserv
ation (date: String,
reservationType:
String)

+ updateReservation
(date: String,
reservationType:
String)

+ cancelReservation

(date: String,
reservationType:
String)

+ addSuggestion
(bookid: int, author:
String, type: String,
title: String)

+ addSuggestion
(bookid: int)

+ addSuggestion
(bookid: int, author:
String)
+addSuggestion
(author: String)

+ updateSuggestion
(bookid: int,
availability: bool)

+ updateSuggestion
(bookid: int)

+ updateSuggestion
(availability: bool)
+ cancelSuggestion (id:
int)

+ cancelSuggestion
(bookid: int, title:
String)

+ cancelSuggestion
(bookid: int, title:
String, author: String)
+ cancelSuggestion
(author: String)

Figure 42: The changed parts of D1 for flexibility and extendibility adaptations

85

4.1.2.3 Design changes affecting the reusability and the functionality quality attributes

After adapting the values of the extendibility and the flexibility quality attributes,
additional design changes were experimented in the simulation then applied on D1°’s class
diagram. The classes “CheckInPage”, “CheckOutBook”, and “FinePage” in figure 37 were
deleted from D1.
1) Simulated results

The new design changes led to a decrease in the design size of D1 and two QMOQOD
quality-attributes below their reference values: reusability and functionality (table 17, figures 43
and 44). The best-fit adaptation equation for reusability and functionality is the equation of
cohesion as it is described in tables 5 and 11. When the value of cohesion was increased after
applying its adaptation equation, the reusability and the functionality values increased and
reached their reference values as illustrated in figures 43 and 44. Furthermore, cohesion is
measured through the CAM metric, which represents the degree of relatedness among the
methods of a design’s classes. The simulation results in figures 43 and 44 suggested that
cohesion/ CAM should equal 1 in six classes of D1. The application of those simulated

suggestions in the real design was described in figure 46.

86

Reusability Adaptation to Changes in Design Quality properties

AN

qual
. .

@ | Design size
e e design
3 \ (desig
a change)
5 L/
=8
2 .. .
& zop Reusability (quality — Cohesion

. Coupling
g attribute) — Design Size
- — Messaging
'E — R.eusability
m ReusabilityReference
-
E 10+
=
m
1]
a \
e Cohesion (adaptation)

ist gt I 2nd gt I 3rd gt I 4th gt I
Reusability adaptation time
Figure 43: Reusability adaptation results of D1
Functionality Adaptation to Changes in Design Quality properties
uzl
; 1

5 1
g 30+
2
s \ Design size (design
t change)
o
2
o gl — Polymorphism
E‘ Cohesion
n — Design Size
g \ - - — Hierarchies
T Functionality — Messaging
m - - — Functionality
3‘ 104 (qualltv attrIbUte) FunctionalityReference
"
=
L
L]
=
=5
L

Cohesion

ist gt 2nd gt 3rd gt 4th gt

(adaptation)

Functionality adaptation time

Figure 44: Functionality adaptation results of D1

87

2) Real results

The changes that affect reusability and functionality as well as the suggested adaptation
from the simulation were applied on D1. After applying the changes, the parameters in the
classes “Library events”, “Complaints”, and “Library amenities” were shared by most of their
methods, increasing the value of CAM from 0.8 to 1. This adaptation mechanism
counterbalances the decrease in both quality attributes and makes the real values nearly equal

their simulated counterparts (tables 24 and 25 in appendix C).

4.1.2.4 Design changes affecting the effectiveness quality attribute

In the last design change to D1, the “Client service” class was deleted, leaving the
remaining classes to inherit characteristics directly from the “Pageltem” class (figure 46). The
impact of this design change on effectiveness and the adopted adaptation equation was first
simulated in Powersim® and then applied on the real class diagram of D1.
1) Simulated results

This design change led to a decrease in the abstraction design property and the
effectiveness quality attribute. From table 15, the equation of encapsulation is the best fit
adaptation of effectiveness. However, encapsulation was already at its optimum level (i.e. DAM
=11n D1’s classes) and did not need to be increased. As a result, the alternate adaptation
equation of polymorphism described in tables 14 and 15 was simulated. Figure 45 illustrates that
polymorphism must increase from 9 to 18 to accommodate the design change. Thus, the
adaptation through NOP, the QMOQOD measure of polymorphism, should be increased by nine

polymorphic methods in the D1°s class diagram.

88

Abstraction

(design change) Polymorphism

(adaptation)

ffectiveness Adaptation to Changes in Design Quality properties
qual v

15+

— Polymaorphism
10—+ — Abstraction

Composition

— Encapsulation
— Inheritance
Effectiveness

— EffectivenessReferance

Effectiveness
(quality attribute)

Effectiveness and design properties levels

u] t } } {
ist gt 2nd gt 3rd gt 4th gt

Effectiveness adaptation time

Figure 45: Effectiveness adaptation results of D1

2) Real results

The simulated changes and adaptations that affect effectiveness were applied on D1’s
class diagram. The polymorphic adaptation from the simulation was applied in the “Library
amenities” and “Complaints” classes where the polymorphic forms of its methods were increased
to eighteen (figure 46). The computed value of effectiveness from D1’s class diagram after

adaptation nearly equals its simulated value (table 26 in appendix C).

89

The intersection between the parameters of the methods and the overall class attributes
is high so that CAM =1. All of the class attributes are almost part of each method’s
parameters. Thus, the cohesion of the class that corrsponds to CAM is increased, which
adapts the values of reusability and functionality. Adding polymorphic methods, such
as “updateSuggestion (availability: bool)” in ‘Books suggestion” class, adapted the
value of effectiveness.

Pageltem
f - title
Library events -
- event Topic: String ﬁ Books suggestion
- even;\d?{lteilsgt"}g Library amenities -title: String
- newArrival: String _ —— -author: Strin
- specialEdition: String -reservationType: String - bookid: int ’
+ exhibitBooks -date: String - type: String
(newArrival: §trlng, + _ - availability: bool
speCIaIEdltlon._ String, postTaIkRoomReservatlon + addSuggestion
event date: String, event (date: String, event: (bookid: int, author:
Topic: String) String, lecturer: String) String type:’ String
+announceTalk (event + title: étring) ’
date_: String, event postTaIkRoomReservatlon + addSuggestion
Topic: String) (date: String) (bookid: int)
+ TalkRoomR i + addSuggestion
. postialkroomReservation | | (hookid: int, author:
— Stcr:'(r)lmplamts (date: String, event: (String)
: dgg';' Striagg String) +addSuggestion
i int +) (author: String)
S postTalkRoomReservation | | , updateSuggestion
- title: St.rlng_ (date: String, lecturer: (bookid: int
_coment Sting String) _ availability: bool)
posti-ompfain .(l - Int, + updateReservation (date: | | 1 yndateSuggestion
type: String, date: String, String, event: String, (bookid: int)
title: String, cc_)nter_1t.. Strmg) lecturer: String) + updateSuggestion
+ postComplamt_(ld-_lr)t_) + updateReservation (date: | | (availability: bool)
+ updateComplaint (id: int) | | string, event: String) + cancelSuggestion
+ updateComplaint (id-int, | | 4 ypgateReservation (date: (bookid: int)
date.. String, title: Strlng,_ String, lecturer: String) + cancelSuggestion
type: String, content: String) | | 4 yndateReservation (date: (bookid: int, title:
+ cancelComplaint (id: int, String) String) o '
date: String, title: String, + cancelReservation (date: ;
type: String, content: String) String, event: String,
+ cancelComplaint (id: int) lecturer: String)

Figure 46: The changed parts of D1 for reusability, functionality, and effectiveness

adaptation

90

The same validation process was applied in D2-D10 designs where the data in tables 17
and 18 were used in running the simulation and checking that the obtained quality attributes
reached their reference values after adaptation. The detailed description of design changes and

adaptations of D2-D10 is described in appendix C.

Designs
QMOOD D1 | D2 | D3 D4 D5 D6 D7 D8 D9 | D10
Metrics
DSC 28 |13 | 47 38 40 21 10 41 7 12
NOH 5 1 3 5 5 1 3 4 0 0
ANA 1 1 1 145 |1 1 1.75 | 1.06 |0 0
DAM 1 07 (025 |1 1 1 1 1 1 1
DCC 27 |11 |9 19 21 10 14 25 16 6
CAM 08 |1 019 |1 0.2 1 1 1 1 1
MOA 6 7 0 3 2 2 1 8 16 6
MFA 0508 |0 0 098 |0.2 |0.27 |0.66 |0 0
NOP 1 1 1 1 1 1 1 1 1 3
CIS 19 |33 |58 18 40 101 | 22 65 31 98
NOM 19 |33 |58 18 40 101 | 22 65 31 98

Table 17: The initial QMOOD design metrics values for the ten designs

91

Designs

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Reference

quality values
Reusability |232|3175 [518 |33 38.05 | 47.75 | 6175 | 20 21.25 | 575

Flexibility 3 15 |15 |25 |35 |15 025 | 225 | 4.75 | 3.25

Understandabi | 544 | 189 | 3813 | 24.90 | 3359 | 4325 | 43.56 | 1543 | 17.49 | 38.61

lity 9
Functionality | 17.4 | 1838 | 26.64 | 20.8 | 22.02 | 2586 | 30.26 | 12.44 | 13.98 | 27.84
8

Extendibility | 122|410 |350 |813 |9.06 11.14 388 |545 |6.75 |07

Effectiveness | 3.6 |4.12 |0 0 2.18 (334 |245 |182 |65 |292
8
Table 18: The reference values of the quality attributes for both the simulated and the real
results in the ten designs

4.2 Quality attributes correlation results

After experimenting and applying a set of design changes and their adaptations on the
simulation and the real designs, the resulting simulated and real quality attributes were generated
and computed. Then, the Pearson product-moment correlation coefficient (Pearson's r) was
computed for each design quality attribute between its simulated and its real values. Pearson's r
coefficient determines the association level of two sets of variables X and Y [Jackson 2011]. It
can be computed by applying the following formula where n represents the population’s size

(e.q. size of X):

.- NEXY - (EXNEY)
7N INEX - &XVINZY - aY

Figure 47: Pearson’r formula [Jackson 2011]

92

Pearson’r value ranges from -1 to 1 with specific correlation strength (table 19). The sets
X and Y can be perfectly correlated when r =1/-1. Moreover, X and Y are considered not linearly
related or correlated when r =0. In the validation of this research, X represents the simulated
values of the quality attributes after adaptation while Y is the set of their corresponding real
values. A high or very high correlation between X and Y shows the effectiveness of the
adaptation equations in adjusting design quality (table 19). The detailed application of Pearson’s
r in each design quality attribute is illustrated in tables 19-24. Pearson’s r computes the
correlation between two sets of variables. Therefore, Pearson’s r is computed for each QMOOD
quality attribute between the set X of all its simulated values and the set Y of all its real values in
all the designs. Table 20 illustrates the computation of Pearson’s r for understandability between
the set X of its simulated values and the set Y of its real values over all designs. The correlations

of the remaining quality attributes are presented in appendix C.

Correlation Negative correlation Positive correlation
strength value value
Very low -0.3<r<0 0 <r<0.3
Low -0.5<r<-0.3 03<r< 05
Moderate -0.7<r<-05 05<r< 0.7
High -09<r<-07 0.7<r< 0.9
Very high -1 <r<-0.9 09<r< 1

Table 19: Pearson’r correlation degrees [Jackson 2011]

93

X: Simulated Y: Real
understandability | understandability XY X2 Y?
in D1-D10 in D1-D10
-24.49 -24.47 599.27 599.76 598.78
-18.90 -18.89 357.19 357.55 356.83
-38.13 -38.13 1453.89 1453.89 1453.89
-24.90 -24.88 619.51 620.01 619.01
-33.59 -33.58 1127.95 1128.28 1127.61
-43.25 -43.24 1870.13 1870.56 1869.69
-43.56 -43.53 1896.16 1897.47 1894.86
-15.43 -15.42 237.93 238.08 237.77
-17.49 -17.49 305.90 305.90 305.90
-38.61 -38.60 1490.34 1490.73 1489.96
Y X=-298.35 Y Y=-298.23 X XY= Y X= Y Y?*=9954.30
9958.27 9962.23
n =10
Table 20: Correlation computations of understandability
10 (9958.27) — (-298.35) (-298.23)
Fxy =

=1 very high correlation

V|10 (9962.23) — (- 298.359)2 * |10 (9954.30) — (-298.23)?

Quality attribute Correlation value | Correlation
degree
Understandability 1 Very high
Extendibility 0.99 Very high
Flexibility 0.90 Very high
Functionality 0.99 Very high
Reusability 0.99 Very high
Effectiveness 0.97 Very high

Table 21: Correlation degrees of the QMOOD quality atributes

94

From the obtained Pearson’r coefficient values in table 21, the simulated values of the six
quality attributes after adaptation highly correlate with their real values. Therefore, the
simulation results are valid and the suggested adaptation equations are effective. In addition, the
obtained results concretely reject the null hypothesis of this research in favor of the alternative

hypothesis.

95

Chapter 5: Conclusions and future research work

5.1 Conclusions

The presented research extracted a set of adaptation equations from the QMOOD to face
any possible decrease in design quality due to changes in design decisions. Those adaptation
equations as well as the different components of the QMOOD were modeled as a system
dynamics simulation implemented in Powersim®. The simulation was an experimental
environment where designers can test the impact of changes before applying them on real
designs. The simulation was also useful in defining the appropriate adaptation equation for each
design change that decreased the value of a specific QMOQOD quality attribute.

The validation of the simulation showed that the suggested adaptations can be applied
effectively and smoothly in the real designs. After applying a set of design changes on the real
designs, design quality dropped below its defined reference values. Then, the obtained increase
in the adaptation design properties from the simulation was applied on the real designs. The
validation of the research showed that the simulated results highly correlated with the real
adaptations. Therefore, the suggested adaptations can effectively adjust design quality.
Moreover, the application of any of the adaptation equations for a specific quality attribute had
no side effect on the other quality attributes since they kept their high level and did not drop

below their reference values.

96

5.2 Future research work

The simulation produced in this research can be extended to study more design quality
variables and adapt other phases of the software process. The current simulation uses only the
quality attributes defined in the QMOOD. However, software design can also be characterized
by other quality attributes such as reliability whose assessment and adaptation can improve
design quality. Moreover, design quality can also be impacted by other exogenous soft factors
such as the motivation of designers, their commitment and their organizational culture. The
simulation can help in defining the impact of those soft factors on QMOOD quality attributes
and depict the required adaptations in this case. In addition, a mapping catalog between each
quality attribute and its set of impacting soft factors can be defined. For example, the simulation
can define the organizational, the economic and the psychological factors impacting the
reusability quality attribute such as the required effort, the existing incentives and the job
security threats respectively. The simulation can also be extended to assess and adapt other
software process phases such as the requirements phase. Through the simulation of the complete
software process, software engineers will be able to determine the impact of a specific process
phase on the quality of other phases. Furthermore, software engineers will also be able to
evaluate the impact of skipping a process phase on the quality of the other phases and the
produced software.

The current research defines local reference values for each particular design. The
reference values are defined as the initial values of the quality attributes before any design
change. As an improvement, those reference values can be determined statistically along many
sets of projects or from the history of projects in a company. The reference values can also be

updated from one simulation run to another or fixed from the first run. Similarly, the same

97

methodologies can determine the required initial values of the design properties to run the
simulation for any project type. Therefore, designers will be able to determine a uniform
proportion for each design property that can be run in any design’s simulation. For example,
statistical studies over a large set of designs may suggest that the third of any design should be
composed of hierarchies and then assign the value .3 to the hierarchies design property and its
corresponding metric in the simulation.

Besides design quality evaluation and adaptation, the simulation can be extended to
include other options that will help designers in optimizing their designs’ quality and estimating
the costs of adaptations. To find realistic trade-offs between design decisions and the intended
quality attributes values, a quality optimization mechanism can effectively guide designers in
forecasting those trade-offs. Therefore, the simulation can be extended to provide designers with
the needed values of design properties to reach any targeted quality attributes levels. Another
interesting extension to the simulation is to run a cost-benefit analysis of the simulated design
changes and their corresponding adaptations. Hence, designers will be able to forecast the costs
of their design changes and adaptations before applying them in the real designs.

To consolidate the obtained results from this research, more validations are required by
including other types of design deliverables and simulating industry-based software designs.
Besides the UML class diagrams that were studied in this research, the simulation will be
extended to evaluate and adapt other design data obtained from other types of design deliverables
such as the entity-relationship and the data flow diagrams. As an industrial validation to this
research, the simulation results will be applied in open-source software. This type of validation is
based on a long time consuming process and constitute by itself a research project. This type of

validation may specialize on one type of open source software such as android applications or

98

consider different types of software at the same time. Then, those applications should be reverse-
engineered to transform code to UML class diagrams. Design quality should be assessed from
one reverse-engineered release to another by applying QMOOD. The reverse-engineered
designs should also be thoroughly analyzed to detect any design changes from one release to
another. A decrease in design quality indicates that changes need to be counterbalanced by
applying one of the presented adaptation mechanisms in this research. All of this data should be
experimented in the simulation before applying the obtained adaptations on the real reversed
design. Then, a second QMOOD quality evaluation should be performed on the real adapted
design to check the effectiveness of adaptations. The same methodology is applied on the
different releases of an open-source project as well as in the remaining projects. By the end,

Pearson’'s r correlation factors are computed between the simulated and the real results.

99

References

ABDEL-HAMID, T., AND MADNICK, S.E. 1991. Software project dynamics: an integrated

approach. Prentice-Hall, Inc., Upper Saddle River, NJ.

ABREU, F.B., AND MELO, W. 1996. Evaluating the impact of object-oriented design
on software quality. In Proceedings of the 3" International Software Metrics Symposium

(Metrics'96), Berlim, Alemanha.

ANDERSSON, C., KARLSSON, L., NEDSTAM, J., HOST, M., AND NILSSON, B. 2002.
Understanding software processes through system dynamics simulation: a case study. In
Proceedings of the 9" Annual IEEE International Conference and Workshop on the Engineering

of Computer-Based Systems, Lund, Sweden, 41-48.
ARAUJO, E., CASSIVI, L., CLOUTIER, M., AND ELIA, E. 2007. Improving the software

development process: a dynamic model using the capacity maturity model. In Proceedings of the

25" International Conference of the System Dynamics Society, Boston, 1-19.

100

BANSIYA, J., DAVIS, D .C.G. 2002. A hierarchical model for object-oriented design

quality assessment. Journal of IEEE Transactions on Software Engineering, 28, 4-17.

BECKMANN, B.E., GRABOWSKI, L.M., MCKINLEY, P.K., AND OFRIA, C. 2009. Applying
digital evolution to the design of self-adaptive software. In Proceedings of the IEEE Symposium

on Artificial life, Nashville, TN, 100-107.

BOGADO, V., GONNET, S., AND HORACIO, L. 2010. An approach Based on DEVS for
Evaluating Quality Attributes. In Proceedings of the XXIX International Conference of the

Chilean Computer Science Society, Antofagasta, Chile, 110-118.

BRANDON, J. 2007. Similarity of temporal query logs. Doctoral dissertation. University of

California, Los Angeles.

BRIAND, L.C., WUST, J., DALY, JW., AND PORTER, D.V. 2000. Exploring the
relationships between design measures and software quality in object-oriented systems. The

Journal of Systems and Software, 51, 245-273.

CHIANG, E., AND MENZIES, T. 2003. Simulations for very early lifecycle quality

evaluations. Software Process: Improvement and Practice 7, 141-159.

101

CHWIF, L., MUNIZ SILVA, P.S., STURLINI, R.N., AND SHIMADA, L.M. 2006. A
prescriptive technique for V&V of simulation models when no real-life data are available. In

Proceedings of the 38" Winter Simulation Conference, Monterey, Canada, 911-918.

DE OLIVEIRA, M., LIMA WERNER, L.C., AND TRAVASSOS, G.H. 2000. Using process
modeling and dynamic simulation to support software process quality management. In

Proceedings of the 14™ Brazilian Symposium in Software Engineering, Paraiba, Brazil.
g ymp

DIETMAR, P., AND LEBSANT, K. 1999. Integration of system dynamics modeling with
descriptive process modeling and goal-oriented measurement. Journal of Systems and Software,

46, 135-150.

DONZELLI, P., AND IAZEOLLA, G. 2001. A dynamic simulator of software processes to test

process assumptions. Journal of Systems and Software, 56, 81-90.

DONZELLLI, P., AND IAZEOLLA, G. 2001. Hybrid simulation modeling of the software

process. Journal of Systems and Software 59, 227-235.

DOOLEY, J. 2011. Object-Oriented design principles. Journal of Software Development and

Professional Practice, 115-136.

102

DRAPPA, A., AND LUDEWIG, J. 1998. Simulation model development based on the
function point metric. In Proceedings of the European Measurement Conference FESMA Seite,

Antwerpen, 515-523.

DRAPPA, A., AND LUDEWIG, J. 1999. Quantitative modeling for the interactive simulation

of software projects. Journal of Systems and Software, 46, 113-122.

DROMEY, G.R. 1996. Cornering the chimera. Journal of IEEE software, 13, 33 — 43.

Extend® corporation, 1988. http://www.extendsim.com/.

FERAYORNI, A.E., AND SARJOUGHIAN, H.S. 2007. Domain Driven Simulation Modeling
for Software Design. In Proceedings of the Summer Computer Simulation Conference, San

Diego, CA, July 2007, 297- 304.

FORRESTER, J.W. 1961. Industrial dynamics. MIT Press, Cambridge, MA.

HUANG, L., JIDONG, G., BOEHM, B., AND JIAN, L. 2010. Modeling the value-based
software process with object-petri nets. International Journal of Software Informatics, 4, 101-

119.

IEEE Standard for Developing a Software Project Life Cycle Process. IEEE Std 1074-2006

(Revision of IEEE Std 1074-1997), 0_1-104.

103

http://www.extendsim.com/

IOANA, R., COLLOFELLO, J., AND LAKEY, P. 1999. Software process simulation for

reliability management. Journal of Systems and Software, 46, 173-182.

ISO-9126, ISO/ IEC standard. 1991. Software product evaluation, quality characteristics and

guidelines for their use.

JACKSON, S.L. 2011. Research methods and statistics: a critical thinking approach. Cengage

learning, Belmont, CA.

KAHEN, G., LEHMAN, M., RAMIL, J.F., AND WERNICK, P. 2001. System dynamics
modeling of software evolution processes for policy investigation: approach and example.

Journal of Systems and Software, 59, 271-281.

KELLNER, M. 1991. Software process modeling support for management planning and control.

In Proceedings of the 1st International Conference on the Software Process, Los Alamitos,

California, 8-28.

KELLNER, M. , I, MADACHY, R.J., AND RAFFO, D.M. 1999. Software process simulation

modeling: why? what? How? , Journal of Systems and Software, 46, 91-105.

KLEIINEN, J.P.C. 1995. Verification and validation of simulation models. European

Journal of Operational Research, 82, 145-162.

104

KUMAR, D., TANTAWI, A., and ZHANG, L. 2009. Real-time performance modeling for
adaptive software systems. ACM SIGMETRICS: ACM Special Interest Group on
Measurement and Evaluation, In Proceedings of the 4™ International Conference on

Performance Evaluation Methodologies and TOOLS, Pisa, Italy, 1-4.

LIN, C.Y, ABDEL-HAMID, T., AND SHERIF, J.S. 1997. Software engineering process

simulation model (SEPS). Journal of Systems and Software 38, 263-277.

LOSAVIO, F., CHIRINQOS, L., AND PEREZ, M.A. 2001. Quality models to design software
architectures. In Proceedings of the Technology of Object-Oriented Languages and Systems,

Zurich, Switzerland, 123-135.

MADACHY, R., A. 1994. A Software project dynamics model for process cost, schedule and
risk assessment. Doctoral dissertation. University of Southern California, Los Angeles,

California.
MADACHY, R.J. 1996. System Dynamics modeling of an inspection-based process. In

Proceedings of the 18™ International Conference on Software Engineering (ICSE), Berlin,

Germany, 376-386.

105

MADACHY, R. 2006. Simulation for business value and software process/product trade-off
decisions. ACM SIGSOFT: ACM Special Interest Group on Software Engineering, In
proceedings of the 2006 International Workshop on Economics Driven Software Engineering

Research, 25-30.

MARINESCU, R., AND RATIU, D. 2004. Quantifying the quality of object-oriented design:
the factor-strategy model. In Proceedings of the 11" Working Conference on Reverse

Engineering, Delft, The Netherlands, 192-201.

MARTIN, R., AND RAFFO, D. 2000. A Model of the software development process using
both continuous and discrete models. International Journal of Software Process Improvement

and Practice 5, 147-157.

MCCALL, J.A., RICHARDS, P.K., AND WALTERS, G.F. 1977. Factors in Software Quality.

National Technical Information Service, 1, 2, 3, AD/A-049- 015/055.

MILLER, M.J., PULGAR-VIDAL, F., AND FERRIN, D.M. 2002. Achieving higher levels of
CMMI maturity using simulation. In Proceedings of the 34™ Winter Simulation Conference, San

Diego, CA, 1473-1478.

MULLER, M., AND PFAHL, D. 2008. Simulation Methods. In The Guide to Advanced
Empirical Software Engineering. J. Singer, F. Shull, D. Sj@berg, Eds, Springer-Verlag, London,

117-152.

106

NOPPEN, J., VAN DEN BROEK, P. , AND AKSIT, M. 2005. A model for quality optimization

in software design processes. In Net.Objectdays, Erfurt, Germany, 529-541.

OREIZY, P., GORLICK, M.M., TAYLOR, R.N. , HEIMBIGNER, D., JOHNSON, G.,
MEDVIDOVIC, N., QUILICI, A., ROSENBLUM, D.S., AND WOLF, A.L. 1999. An
architecture-based approach to self-adaptive software. Journal of IEEE Intelligent Systems, 14,

54-62.

PFAHL, D., AND LEBSANFT, K. 1999. Integration of system dynamics modeling with
descriptive process modeling and goal-oriented measurement. Journal of Systems and Software,

46, 135-150.

PFAHL, D., AND RUHE, G. 2002. IMMoS: a methodology for integrated measurement,

modeling and simulation. Software Process: Improvement and Practice, 7, 189-210.

PHILLIPS, J., AND YILMAZ, L. 2006. An agent-based simulation study of cooperative team
behavior in software development with rational unified process. In Proceedings of the Agent-
Directed Simulation Symposium of the Spring Simulation Multi-conference, Huntsville,

Alabama, 73-80.

107

PODNAR, I., AND MIKAC, B. 2001. Software maintenance process analysis using discrete-
event simulation. In Proceedings of the fifth European Conference on Software Maintenance

and Reengineering, Lisbon, Portugal, 192-195.

POWELL, A., MANDER, K., AND BROWN, D. 1999. Strategies for lifecycle concurrency

and iteration- A system dynamics approach. Journal of Systems and Software, 46, 151-161.

PowerSim® corporation. 1993. http://www.powersim.com/.

RAFFO, D. 1996. Modeling software processes quantitatively and assessing the impact of
potential process changes on process performance. Doctoral dissertation. University of Carnegie

Mellon, Pittsburgh, Pennsylvania.

RAFFO, D., KALTIO, T., PARTRIDGE, D., PHALP, K., AND RAMIL, J, F. 1999. Empirical
studies applied to software process models. Journal of Empirical Software Engineering, 4, 353-

369.

RAFFO, D., M, VANDEVILLE, J.V., AND MARTIN, R, H. 1999. Software process
simulation to achieve higher CMM levels. Journal of Systems and Software, 46, 163-172.
ROYCE, W. 1970. Managing the development of large software systems. In Proceedings of

IEEE WESCON, Los Angeles, 1-9.

108

http://www.powersim.com/

RUIZ, M., RAMOS, I., TORO, M. 2001. A simplified model of software project dynamics.

Journal of Systems and Software, 59, 299-309.

RUS, I., COLLOFELLO, J., AND LAKEY, P. 1999. Software process simulation for reliability

management. Journal of Systems and Software, 46, 173-182.

RUS, 1. ,NEU, H., AND MUNCH, J. 2003. A systematic methodology for developing discrete
event simulation models of software development processes. In Proceedings of the 4" Workshop

on Software Process Simulation and Modeling, Portland, Oregon.

SALEHIE, M. AND TAHVILDARI, L. 2009. Self-adaptive software: landscape and research

challenges. Journal of ACM Transactions on Autonomous and Adaptive Systems, 4, 1-40.

SARGENT, R.G. Verification and validation of simulation models. 1998. In Proceedings of the

30™ conference on Winter Simulation, Washington, DC, 121-130.
SCHMECK, H. , MULLER-SCHLOER, C., CAKAR, E., MNIF, M. AND RICHTER, U. 2010.

Adaptivity and self-organization in organic computing systems. ACM Transactions On

Autonomous and Adaptive Systems, 5, 1-32.

109

SETAMANIT, S., WAKELAND, W., AND RAFFO, D. 2006. Planning and improving global
software development process using simulation. ACM SIGSOFT: ACM Special Interest Group
on Software Engineering, In Proceedings of the 2006 International Workshop on Global

software development for the practitioner, 8-14.

Stella®/iThink® corporation. 1985. http://www.iseesystems.com/.

STERMAN, J.D. 1992. System dynamics modeling for project management. Technical Report.

MIT System Dynamics Group, Cambridge, MA.

THOMAS, D., JOINER, A., LIN, W., LOWRY, M., AND PRESSBURGER, T. 2010. The
unique aspects of simulation verification and validation. In Proceedings of the 2010 IEEE

Aerospace Conference, Big Sky, MT.
THUENTE, D.J. 1991. Rapid simulation and software prototyping for the architectural
Design of embedded multiprocessor systems. In Proceedings of the 19" ACM Annual

Conference on Computer Science, San Antonio, Texas, 113-121.

VENSIM® corporation. 1985. http://www.vensim.com/software.html.

110

http://www.iseesystems.com/
http://www.vensim.com/software.html

WAKELAND, W., SHERVAIS, S., AND RAFFO, D. 2004. Heuristic verification and
validation of software process simulation models. In Proceedings of the 5" International
Workshop on Software Process Simulation and Modeling ProSim, Edinburg, Scotland, UK, 113-

119.

WERNICK, P., AND LEHMAN, M.M. 1999. Software process white box modeling for

FEAST/1. Journal of Systems and Software, 46, 193-201.

WILLIFORD, J., AND CHANG, A. 1999. Modeling the FedEXIT division: a system dynamics

approach to strategic IT planning. Journal of Systems and Software, 46, 203-211.

XU, L., HENDRICKSON, S.A., HETTWER, E., ZIV, H., VAN DER HOEK, A., AND
RICHARDSON, D.J. 2006. Towards supporting the architecture design process through
evaluation of design alternatives. In Proceedings of the International Symposium of Software

Testing and Analysis, Portland, Maine, 81-87.
XU, L.2008. Moda - Multiple Objective Decision Analysis: balancing quality attributes in
software architectures. ACM Special Interest Group on Software Engineering: In Proceedings of

the 30™ International Conference on Software Engineering, Leipzig, Germany, 1019-1022.

YANG, J., HUANG, G., ZHU, W., CUI, X., AND MEI, H. 2009. Quality attributes tradeoff

through adaptive architectures at runtime. Journal of Systems and Software, 82, 319-332.

111

YAU, S.S., YE, N., SARJOUGHIAN, H.S., HUANG, D., ROONTIVA, A., BAYDOGAN, M.,
AND MUQTISH, M.A. 2009. Toward development of adaptive service-based software

systems. IEEE Transactions on Services Computing, 2, 247-260.

ZHANG, J., AND CHENG, B.H.C. 2007. Towards re-engineering legacy systems for assured
dynamic adaptation. International Workshop on Modeling in Software Engineering,

Minneapolis, MN, 10.

ZHANG, H. , KITCHENHAM, B., AND PFAHL, D. 2008. Software process simulation
modeling: facts, trends and directions. In Proceedings of the 15" Asia-Pacific Software

Engineering Conference, Beijing, China, 59-66.
ZHANG, H., KITCHENHAM, B., AND JEFFERY, R. 2009. Qualitative vs. Quantitative
software process simulation modeling: conversion and comparison. In Proceedings of the

2009 Australian Software Engineering Conference, Gold Coast, QLD, 345-354.

@RISK® corporation, 1987. http://www.palisade.com/.

112

http://www.palisade.com/

Appendix A: System dynamics concepts

System Dynamics (SD) is a computer-based simulation modeling methodology
developed at the Massachusetts Institute of Technology (MIT) in the 1950s as a tool for
managers to analyze complex problems. It is used to model systems’ behavior that changes over
time.

System dynamics simulations are based on the principle of cause and effect relationships
between outputs that both respond and influence inputs in a closed feedback loop. There are two
types of feedback loops: positive and negative. Positive loops represent self-reinforcing systems
that are either growing or declining. Negative loops represent goal-seeking systems that keep
improving or get stabilized over time. The direction of causality between the variables in a
feedback loop is represented by a minus or a positive sign at the head of each arrow. The positive
sign indicates that the variable at the tail of each arrow causes a change in the variable at the
head of each arrow in the same direction and vice versa. The positive sign is also represented by
S (same direction) and the negative sign is represented by O (opposite direction). Figure 48

shows an example of a feedback loop where an increase in price leads to a decrease in sales.

113

el

Price Sales

_ O
. NIt
Costs
Figure 48: A feedback loop that shows the relationships

between price, sales, and unit costs
The overall polarity (positive or negative) of the feedback loop is determined by
multiplying all of its arrows’ signs. If the resulting sign is negative, the feedback loop describes a
balancing (B) or a counteracting (C) behavior to adjust and stabilize the status of a system. When
the resulting sign is positive, the feedback loop represents a reinforcing (R) behavior towards the
growth or the decline of a given system. Figure 49 illustrates a reinforcing feedback loop that
describes the growth of the national debt due to the compounding of interest payments. Figure 50

presents a balancing loop that stabilizes the rate of itching by applying regular scratching.

National Debt ltchi
: . ching
(R)
(B)

Interest S g

Payments On :
Debt Scratching

Figure 49: Reinforcing feedback loop Figure 50: Balancing feedback loop

114

Besides the cause and effect relationships, dynamic systems’ variables accumulate over
time due to continuous flows of policies. Those accumulations are represented as levels such as
an inventory level that increases due to increasing production flows. To control the production, a
specific production rate is applied. Levels (rectangle symbol), flows (double arrows), and rates
(valve symbol) are the main representations of variables in SD. In addition, rates and levels can
be influenced by other external variables that are modeled as constants (diamond) or auxiliaries
(circle) linked by information links (single arrows). Figure 51 represents a simple simulation
model that helps us understand the interactions between the ordered merchandise from clients
(order rate), the available goods (inventory), and production rate (production). Those
interactions are computed numerically through a set of differential equations (e.g.; Production=
(Desired Inventory - Inventory)/Inventory Adjustment Time). The simulation can help business

managers in estimating the optimum level of inventory to cover their future market demands.

1

Tirne to Carrect

Inventaory
& s se—— ")
Inwentory Q
Production Shipmjnts
Desired Inventory Order Rate

Figure 51: level-rate diagram example

115

Appendix B: Simulation source code

The following appendix illustrates the implementation code of the simulation in the

Powersim® environemt that uses a C-like syntax.

116

mainmodel Composant 1 {
const AbstractAdaptationEffect {
autotype Real
init 0

}

const AbstractAdaptationU {
autotype Real
init0

}

const AbstractAdaptEx {
autotype Real
inito

}
level Abstraction {
autotype Real
autounit qual
init ANAInitial
inflow { autodef ‘Change in abstraction' }

}

const ANA {
autotype Real
autounit qual
init 20<<qual>>

}

const ANA_Change1 {
autotype Real
autounit qual
init -5<<qual>>

}

const ANA_Change2 {
autotype Real
autounit qual
init -10<<qual>>

}

const ANA_Change3 {
autotype Real
autounit qual
init -15<<qual>>

)

const ANA_ExecuteTime {
autotype Real
autounit da
init 1<<da>>

}
const ANAFirstEffect {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(MFATImeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5§ <<da>>)))) AND (Effectiveness >=
EffectivenessReference)), Abstraction)

}
const ANAFirstExt {
autotype Real
autounit qual
init INITIE((((TIME >=(STARTTIME + (DCC_TimeChange1) + § <<da>>)) OR ((TIME >=(STARTTIME +
(MFATIimeChange1)+ § <<da>>))) OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>))))
AND (Extendibility >= ExtendibilityReference)), Abstraction)

}
const ANAFirstUnderst {
autotype Real
autounit qual
init INITIF(((TIME >=(STARTTIME + (DCC_TimeChange1) + 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DAM_TimeChange1)+ 5§ <<da>>))) OR ((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME +
(NOMTimeChange1)+ 5 <<da>>)))OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ § <<da>>))))

117

AND (Understandability >= UnderstandReference)), Abstraction)

}
const ANAInitial {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, ANA)

}

const ANATimeChange1 {
autotype Real
autounit da
init 30<<da>>

}

const ANATimeChange2 {
autotype Real
autounit da
init 80<<da>>

}

const ANATimeChange3 {
autotype Real
autounit da
init 90<<da>>

}

const CAM {
autotype Real
autounit qual
init 0.9<<qual>>

}
const CAM-FirstChange {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DCC_TimeChange1)+ 5§ <<da>>))) OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>))))
AND (Reusability >= ReusabilityReference)), Cohesion)

}

const CAM_ExecuteTime {
autotype Real
autounit da
init 1<<da>>

}

const CAMChange1 {
autotype Real
autounit qual
init (-0.30)<=qual>>

}
const CAMChange2 {
Real

autounit qual
init (-0.5)<<qual>>

}
const CAMChange3 {
Real
autounit qual
init (-0.7)<<qual>>

}
const CAMFirstFunct {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (CiSTimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(NOPTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5§ <<da>>)))
OR ((TIME >=(STARTTIME + (NOHTimeChange1)+ 5 <<da>>)))) AND (Functionality >=
FunctionalityReference)), Cohesion)

H
const CAMFirstUnderst {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DCC_TimeChange1) + § <<da>>)) OR ((TIME >=(STARTTIME +

118

(DAM_TimeChange1)+ 5 <<da>>}))) OR ((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME +
(NOMTimeChange 1)+ 5 <<da>>)))OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>))))
AND (Understandability >= UnderstandReference)), Cohesion)

autotype Real

autounit qual

Init INITIF(TIME = STARTTIME, CAM)

autounit qual/da
) def (‘Computed MOA-Composition)MOA_ExecuteTime

aux Change in coupling (
autotype Real
autounit

qualida
) def (‘Computed DCC-Coupling)/DCC_ ExocuteTime
aux Change in Design Swe
autotype Real

autounit qualda
def (‘Computed DSC-'Design Size'YOSC_ExecuteTime

}
aux Change In Encapsulation {
autotype Real
autounit qualida
def (‘Computed DAM-Encapsulation)/DAM_ExecuteTime
}
aux Change in Hierarchies {
autotype Real
autounit qualida
def (Computed NOH-Hierarchies)NOH_ExecuteTime

)amcwnlmm(

119

autotype Real
autounit qual/da
def ('Computed MFA'-Inheritance)/MFA_ExecuteTime

aux Change in Messaging {
autotype Real
autounit qual/da
def ((Computed CIS'-Messaging)/CIS_ExecuteTime

aux Change in polymorphism {
autotype Real
autounit qual/da
def ((Computed NOP'-Polymorphism)/NOP__ ExecuteTime

const CheckedAbstraction {
autotype Real
init O

const CheckedCohesion {
autotype Real
init O

3

const CheckedComplexity {
autotype Real
init O

const CheckedComposition {
autotype Real
init O

}

const CheckedCoupling {
autotype Real
init O

const CheckedDesignSize {
autotype Real
init O

const CheckedEncapsulation {
autotype Real
init O

const CheckedHierarchies {
autotype Real
init O

const Checkedlnheritance {
autotype Real
init 0

b

const CheckedMessaging {
autotype Real
init O

const CheckedPolymo {
autotype Real
init O

b

const CIS {
autotype Real
autounit qual
init 30=<=qual==

¥
const CIS-FirstChange {

autotype Real
autounit qual

120

Init INITIF({((T'WME >=(STARTTIME + (CAMTimeChange 1)+ 5 <<da>>)) OR ((TIME >»=(STARTTIME +
(DCC_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>))))
AND (Reusability >= ReusabiityReference)) Messaging)

Init 1<<da>>

)

const CISChange! (
autotype Real
autounit qual
init -15<<quai>>

qual
init INITIF(({(TIME >=(STARTTIME + (CAMTimeChange1)+ 5§ <<da>>)) OR ((TIME >=(STARTTIME +
(NOPTIimeChange1)+ § <<da>>))) OR ((TIME >=({STARTTIME + (DSCTimeChanget)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (NOHTimeChange1)+ § <<da>>)))) AND (Functionality >=
FunctionaltyReference)), Messaging)

)
const CiSinitial {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, CIS)

121

const CohesionAdaptationU {

autotype Real
init0

}

const ComplexAdaptation {
autotype Real
init0

}
level Complexity {
autotype Real
autounit qual
init NOMInitial
inflow { autodef 'Change in Complexity’ }

}

const ComposAdaptationEffect {
autotype Real
init0

}

const ComposAdaptationF {
e e
nit

}
level Composition {
autotype Real
autounit qual
init MOA Initial
inflow { autodef '‘Change in composition' }

}
aux Computed ANA {
autotype Real
autounit qual
def ANA +
IF{CheckedAbstraction =1, IF((TIME >=(STARTTIME + ANATimeChange1)) AND (TIME <

(STARTTIME + ANATimeChange2)) ANA_Change1, IF((TIME >=(STARTTIME + ANATimeChange1)

) AND (ANA_Change2 = 0 <<qual>>) AND (ANA_Change3 = 0 <<qual>>) ANA_Change1,
IF((TIME >=(STARTTIME + ANATimeChange2)) AND (TIME <(STARTTIME +
ANATImeChange3)), ANA_Change2. IF((TIME >=(STARTTIME + ANATimeChange2)) AND
(ANA_Change1 = 0 <<qual>>) AND (ANA_Change3 = 0 <<qual>>),ANA_ChangeZ2 IF((TIME >=
(STARTTIME + ANATIimeChange1)) AND (TIME <(STARTTIME + ANATimeChange3)) AND

(ANA_Change2 = 0 <<qual>>),ANA_Change1, IF((TIME >=(STARTTIME +ANATImeChange2)) AND

(ANA_Change3 = 0 <<qual>>), ANA_Change2,
IF((TIME >=(STARTTIME + ANATimeChange3)).ANA_Change3)))))).

IF(AbstractAdaptationU =1,
IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND

(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling

+ Cohesion - Polymorphism - Complexity - ‘Design Size’),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND

(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling

+ Cohesion - Polymorphism - Compilexity - "Design Size'),
IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND
(Understandability == UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME >=

(STARTTIME + (DCC_TimeChange3 + 5<<da=>>))) AND (Understandability < UnderstandReference))

, ((-3.03"Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -

‘Design Size'),
IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME >=

(STARTTIME + (DCC_TimeChange1 + S<<da>>))) AND (Understandability< UnderstandReference))

[((-3.03"Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -
‘Design Size'),
IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND

(Understandability >= UnderstandReference)) . ((-3.03*Understandability) + Encapsulation - Coupling

+ Cohesion - Polymorphism - Complexity - '‘Design Size’),
IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND

122

(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>})) AND
(Understandability >= UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -
‘Design Size'),

IF((TIME >=(STARTTIME + {CAMTimeChange3+ 5 <<da>>))) AND
(U >= UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) ,(
(-3.03*Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -
‘Design Size'),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , {(-3.03*Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME >=
(STARTTIME + (NOPTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03"Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -
'‘Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst). IF(((TIME >=
(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) ,(
(-3.03*Understandability) + Encapsutation - Coupling + Cohesion - Polymorphism - Complexity -
‘Design Size'),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst),

IF((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - ‘Design Size'),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))

, ((-3.03"Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexty -
Design Size’),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst), 1F(((TIME >=
(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference))
.((-3.03*Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -
‘Design Size'),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03"Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - ‘Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - ‘Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange2)+ 5 <<da>>)) AND
| Inderstandahility >= | InderstandRaference) (- ANAY + ANAFirst Indarsty IF{ ((TIMF >=

123

(-3.03*Understandability) + Encapsulation - Coupling + Cohesion -~ Polymorphism - Complexity -
‘Design Size"),

IF(((TIME >=(STARTTIME + (NOMTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03"Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - ‘Design Size'),

IF((TIME >=(STARTTIME + (NOMTimeChange1)+ 5 <<da=>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst),

IF(((TIME >=(STARTTIME + (NOMTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Encapsulation - Coupling
+ Cohesion - Polymorphism - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (NOMTimeChange2)+ 5 <<da=>=>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME ==
(STARTTIME + (NOMTimeChange3 + 5<<da>=>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -
'‘Design Size"),

IF((TIME ==(STARTTIME + (NOMTimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- ANA) + ANAFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) .(
(-3.03*Understandability) + Encapsulation - Coupling + Cohesion - Polymorphism - Complexity -
‘Design Size")

DIDIIIMIMINMINIMMIIND.

IF(AbstractAdaptEx =1,

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Extendibility <
ExtendibilityReference)) , ((2*Extendibility) + Coupling -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <=<da=>)) AND (Extendibility==
ExtendibilityReference), ((- ANA) + ANAFirstExt),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Extendibility <
ExtendibilityReference)) . ((2*Extendibility) + Coupling -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND (Extendibility >
= ExtendibilityReference), ((- ANA) + ANAFirstExt), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3 + 5<<da=>>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) +
Coupling -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND (Extendibility >
= ExtendibilityReference), ((- ANA) + ANAFirstExt), IF(((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da>>))) AND (Extendibility< ExtendibilityReference)) ,((2*"Extendibility) +
Coupling -Inheritance- Polymorphism),

IF(((TIME >=(STARTTIME + (MFATimeChange1 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) + Coupling -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange1)+ 5 <<da==)) AND (Extendibility >=
ExtendibilityReference), ((- ANA) + ANAFirstExt),

IF(((TIME >=(STARTTIME + (MFATimeChange2 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) + Coupling -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange2+ 5 <=<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- ANA) + ANAFirstExt), IF(((TIME >=(STARTTIME + (MFATimeChange3+
S5<<da>=>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) + Coupling -Inheritance-
Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange3+ 5 <<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- ANA) + ANAFirstExt), IF(((TIME >=(STARTTIME + (MFATimeChange1
+ 5<=<da>>))) AND (Extendibility< ExtendibilityReference)) ,((2*Extendibility) + Coupling -Inheritance-
Polymorphism),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) + Coupling -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ § <=da>>)) AND (Extendibility >=
ExtendibilityReference), ((- ANA) + ANAFirstExt),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da=>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) + Coupling -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Extendibility>=
ExtendibilityReference), ((- ANA) + ANAFirstExt), IF(((TIME >=(STARTTIME + (NOPTimeChange3+
5=<da=>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) + Coupling -Inheritance-
Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- ANA) + ANAFirstExt), IF(((TIME >=(STARTTIME + (NOPTimeChange1

124

+ 5=<da>>))) AND (Extendibility= ExtendibilityReference)) ,((2*Extendibility) + Coupling -Inheritance-
Polymorphism))))))N)MNNNNNNN,
IF(AbstractAdaptationEffect =1,

IF(((TIME ==(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND (Effectiveness
< EffectivenessReference)) , ((6*Effectiveness) - Encapsulation - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>=>)) AND (Effectiveness
== EffectivenessReference), ((- ANA) + ANAFirstEffect),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da==>))) AND (Effectiveness
< EffectivenessReference)) , ((5*Effectiveness) - Encapsulation - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND (Effectiveness
== EffectivenessReference), ((- ANA) + ANAFirstEffect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*
Effectiveness) - Encapsulation - Composition - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- ANA) + ANAFirstEffect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange1l + 5<<da>=))) AND (Effectiveness< EffectivenessReference)) ,((5*Effectiveness)
- Encapsulation - Compeosition - Inheritance - Polymorphism),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da=>))) AND (Effectiveness >
= EffectivenessReference)) , ((5*Effectiveness) - Encapsulation - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Effectiveness>=
EffectivenessReference), ((- ANA) + ANAFirstEffect),

IF(((TIME >=(STARTTIME + (NOPTimeChangeZ2 + 5<<da>>))) AND (Effectiveness >
= EffectivenessReference)) , ((5*Effectiveness) - Encapsulation - Composition - Inheritance -
Polymorphism),

IF((TIME ==(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Effectiveness >
= EffectivenessReference), ((- ANA) + ANAFirstEffect), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((56"Effectiveness)
- Encapsulation - Composition - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Effectiveness >
=EffectivenessReference), ((- ANA) + ANAFirstEffect), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ,((5*Effectiveness) -
Encapsulation - Composition - Inheritance - Polymorphism),

IF(((TIME >=(STARTTIME + (MOA_TimeChange1 + 5<<da>>))) AND (Effectiveness
>= EffectivenessReference)) , ((5*Effectiveness) - Encapsulation - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- ANA) + ANAFirstEffect),

IF({ ((TIME >=(STARTTIME + (MOA_TimeChange2 + 5<<da=>>))) AND
(Effectiveness=>= EffectivenessReference)) , ((5*Effectiveness) - Encapsulation - Composition -
Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange2+ 5 <<da>>))) AND (Effectiveness
>= EffectivenessReference), ((- ANA) + ANAFirstEffect), IF(((TIME >=(STARTTIME +
(MOA_TimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*
Effectiveness) - Encapsulation - Composition - Inheritance - Polymorphism),

IF{ (TIME >=(STARTTIME + (MOA_TimeChange3+ 5 <<da>>))) AND (Effectiveness
== EffectivenessReference), ((- ANA) + ANAFirstEffect), IF(((TIME ==(STARTTIME +
(MOA_TimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ,({5*
Effectiveness) - Encapsulation - Composition - Inheritance - Polymorphism),

IF(((TIME >=(STARTTIME + (MFATimeChange1 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Encapsulation - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange1)+ 5§ <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- ANA) + ANAFirstEffect),

IF{ ((TIME >=(STARTTIME + (MFATimeChange2 + 5<<da>=>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Encapsulation - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange2)+ 5 <<da=>>)) AND (Effectiveness >
= EffectivenessReference), ((- ANA) + ANAFirstEffect), IF((TIME >=(STARTTIME +
(MFATIimeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5"Effectiveness)
- Encapsulation - Composition - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange3)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- ANA) + ANAFirstEffect), IF(((TIME >=(STARTTIME +
(MFATIimeChangel + 5<<da>>))) AND (Effectiveness< EffectivenessReference}) ,((5"Effectiveness) -

125

}

Encapsulation - Composition - Inheritance - Polymarphism)))MNMMININIIN)

aux Computed CAM {

autotype Real
autounit qual
def CAM +

IF(CheckedCohesion =1, IF((TIME >=(STARTTIME + CAMTimeChange1)) AND (TIME <
(STARTTIME + CAMTimeChange2)),CAMChange1,IF((TIME >=(STARTTIME + CAMTimeChange1))
AND (CAMChange2 = 0 <<qual>>) AND (CAMChange3 = 0 <<qual>>), CAMChange1,

IF({TIME >=(STARTTIME + CAMTimeChange2)) AND (TIME <(STARTTIME +
CAMTimeChange3)),CAMChange2, IF((TIME >=(STARTTIME + CAMTimeChange2)) AND
(CAMChange1 = 0 <<qual>>) AND (CAMChange3 = 0 <<qual>>),CAMChange2 IF((TIME >=
(STARTTIME + CAMTimeChange1)) AND (TIME <(STARTTIME + CAMTimeChange3)) AND
{CAMChange2 = 0 <<qual>>),CAMChange1, IF((TIME >=(STARTTIME + CAMTimeChange2)) AND
(CAMChange3 = 0 <<qual>>), CAMChange2,

IF((TIME >=(STARTTIME + CAMTimeChange3)),CAMChange3))))))).
IF(CohesionAdaptationR =1, IF(((TIME >=(STARTTIME + (CISTimeChange1 + 5<<da>>))) AND
{Reusability < ReusabilityReference)) , (4*"Reusability + Coupling + (-2*"Messaging) + (-2"'Design

Size')),

IF((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CAM) + 'CAM-FirstChange’),

IF(((TIME >=(STARTTIME + (CISTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , (4*Reusability + Coupling + (-2*Messaging) + (-2"Design Size')),

IF((TIME >=(STARTTIME + (CISTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CAM) + 'CAM-FirstChange’), IF(((TIME >={STARTTIME +
(CISTimeChange3 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , (4*"Reusabliity +
Coupling + (-2*Messaging) + (-2"Design Size")),

IF((TIME >=(STARTTIME + (CISTimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), (- CAM) + 'CAM-FirstChange’), IF(((TIME >=(STARTTIME +
(CISTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , (4"Reusabiiity +
Coupling + (-2*Messaging) + (-2“Design Size")),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , (4*Reusability + Coupling + (-2*Messaging) + (-2"'Design Size')),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CAM) + 'CAM-FirstChange'),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , (4*Reusability + Coupling + (-2*Messaging) + (-2"Design Size')),

IF((TIME >=(STARTTIME + (DSCTimeChange2)+ § <<da>>)) AND (Reusability >=
ReusabilityReference), (- CAM) + 'CAM-FirstChange’), IF(((TIME >=(STARTTIME +
(DSCTimeChange3+ S<<da>>))) AND (Reusability < ReusabilityReference)) , (4*Reusability +
Coupling + (-2"Messaging) + (-2"Design Size")),

IF((TIME >=(STARTTIME + (DSCTimeChange3)+ & <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CAM) + 'CAM-FirstChange'), IF(((TIME >=(STARTTIME +
(DSCTimeChange1 + S<<da>>))) AND (Reusability < ReusabilityReference)) , (4*"Reusability +
Coupling + (-2*'Messaging) + (-2*'Design Size’)),

IF(((TIME >=(STARTTIME + (DCC TImeChangﬂ + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , (4*Reusability + Coupling + (-2*Messaging) + (-2"Design Size')),

IF((TIME >=(STARTTIME + (DCC_TimeChanga1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CAM) + 'CAM-FirstChange’),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , (4*Reusability + Coupling + {(-2*Messaging) + (-2*Design Size")),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CAM) + 'CAM-FirstChange'), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , (4*Reusability +
Coupling + (-2*Messaging) + (-2"Design Size)),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CAM) + 'CAM-FirstChange’), IF(((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , (4"Reusability +
Coupling + (-2"Messaging) + (-2"Design Size))))N)NMMMNN).

IF(CohesionAdaptationU =1,IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((3.03)"Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + ‘Design Size’),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da>>))) AND

(Understandability < UnderstandReference)) , ((3.03)"Understandability + Abstraction -

126

Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5 <=da>>)) AND
(Understandability = UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((3.03)*Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity +
'‘Design Size"),

IF((TIME >=(STARTTIME + (ANATimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATimeChange1+ 5<=da>>))) AND (Understandability < UnderstandReference)) ,
((3.03)*Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity +
'‘Design Size'),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((3.03)*Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND
(Understandability = UnderstandReference), ((- CAM) + 'CAM-FirstChange'),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<=da>>))) AND
(Understandability < UnderstandReference)) , ((3.03)*Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange2)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + 'CAM-FirstChange’), IF((TIME >=
(STARTTIME + (DSCTimeChange3+ 5<=da>=>))) AND (Reusability < ReusabilityReference)) , ((3.03)"
Understandability + Abstraction - Encapsulation+ Coupling + Palymorphism + Complexity + 'Design
Size"),

IF((TIME >=(STARTTIME + (DSCTimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + 'CAM-FirstChange"), IF(((TIME ==
(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((3.03)
*Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity + 'Design
SizeNMNNNNNN.

IF(CohesionAdaptationU =1, IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((3.03) *Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da=>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND
(Understandabillity < UnderstandReference)) , ((3.03)*Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da=>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (DCC_TimeChange3 + 5<=<da>>))) AND (Understandability < UnderstandReference)
) . ((3.03)*Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity
+ 'Design Size"),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), 1F(((TIME >=
(STARTTIME + (DCC_TimeChange1 + §<<da>>))) AND (Understandability =< UnderstandReference)
) ., ((3.03)*Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity
+ 'Design Size'),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((3.03)*Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size’),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da==)) AND
(Understandability = UnderstandReference), ((- CAM) + CAMFirstUnderst),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((3.03)"Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME ==
(STARTTIME + (DAM_TimeChange3 + 5<<da==>))) AND (Understandability < UnderstandReference)
) . ((3.03)*Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity
+ 'Design Size"),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5§ <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange1+ 5<<da=>>))) AND (Understandability <= UnderstandReference))
, ((3.03)*Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity +
'‘Design Size'),

IF(((TIME >=(STARTTIME + (NOMTimeChange1 + 5<<da>>))) AND

127

(Understandability < UnderstandReference)) , ((3.03)*"Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size"),

IF((TIME >=(STARTTIME + (NOMTimeChange1)+ 5 <<da=>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst),

IF(((TIME >=(STARTTIME + (NOMTimeChange2 + 5<<da=>=>))) AND
(Understandability < UnderstandReference)) , ((3.03)*Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (NOMTimeChange2)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange3 + 5<=da=>>))) AND (Understandability < UnderstandReference))
, ((3.03) *Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity +
‘Design Size'),

IF((TIME ==(STARTTIME + (NOMTimeChange3)+ 5 <<da=>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange1+ 5<<da=>>))) AND (Understandability < UnderstandReference)) ,
((3.03) “Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity +
‘Design Size'),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da=>>))) AND
{(Understandability < UnderstandReference)) , ((3.03)*Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da=>)) AND
(Understandability = UnderstandReference), ((- CAM) + CAMFirstUnderst),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((3.03)*Understandability + Abstraction -
Encapsulation+ Coupling + Polymorphism + Complexity + 'Design Size'),

IF((TIME ==(STARTTIME + (NOPTimeChange2)+ 5 <<da==)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (NOPTimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))
, ((3.03) *Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity +
'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- CAM) + CAMFirstUnderst), IF(((TIME >=
(STARTTIME + (NOPTimeChange1+ S5<<=da>>))) AND (Understandability < UnderstandReference)) ,
((3.03) *Understandability + Abstraction - Encapsulation+ Coupling + Polymorphism + Complexity +
‘Design Size)NNNNMNNINMNINNN.

IF(CohesionAdaptationFunct =1,

IF(((TIME >=(STARTTIME + (CISTimeChange1 + 5<<=da>>))) AND (Functionality <
FunctionalityReference)) , ((8.33*Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83"
'Design Size') - (1.83"Hierarchies)),

IF((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct),

IF(((TIME >=(STARTTIME + (CISTimeChange2 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ({(8.33*Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83*
'Design Size') - (1.83*Hierarchies)),

IF((TIME >=(STARTTIME + (CISTimeChange2)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME + (CISTimeChange3
+ 5<<da=>))) AND (Functionality < FunctionalityReference)) , ((8.33"Functionality) - (1.83*
Polymorphism) - (1.83* Messaging) - (1.83"Design Size') - (1.83*Hierarchies)),

IF((TIME >=(STARTTIME + (CiISTimeChange3)+ 5 <<=da==)) AND (Functionality ==
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME +
(CISTimeChange1 + 5<<da>>))) AND (Functionality= FunctionalityReference)) ,((8.33*Functionality) -
(1.83* Polymorphism) - (1.83* Messaging) - (1.83*'Design Size') - (1.83"Hierarchies)),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) , ((8.33*Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83*
‘Design Size') - (1.83*Hierarchies)),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da=>>)) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) , ((8.33*Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83*
'‘Design Size') - (1.83*Hierarchies)),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da=>>))) AND (Functionality < FunctionalityReference)) , ((8.33*
Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83"Design Size') - (1.83*Hierarchies)),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME +

128

(NOPTimeChange1 + 5<<da>>))) AND (Functionality= FunctionalityReference)) .((8.33"Functionality)
- (1.83* Polymorphism) - (1.83" Messaging) - (1.83%Design Size") - (1.83*Hierarchies)),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + §<<da>>))) AND (Functionality >
= FunctionalityReference)) , ((8.33*Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83*
‘Design Size') - (1.83"Hierarchies)),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND (Functionality>=
FunctionalityReference)) . ((8.33*Functionality) - (1.83" Polymorphism) - (1.83* Messaging) - (1.83%
‘Design Size") - (1.83"Hierarchies)).

IF((TIME >=(STARTTIME + (DSCTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME +
(DSCTimeChange3+ 5<<da>>))) AND (Functionality < FunctionalityReference)) , ((8.33"Functionality)
- (1.83" Polymorphism) - (1.83* Messaging) - (1.83"Design Size') - (1.83*Hierarchies)),

IF((TIME >=(STARTTIME + (DSCTimeChange3+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME +
(DSCTimeChange1 + 5<<da>>))) AND (Functionality< FunctionalityReference)) .((8.33*Functionality)
- (1.83" Polymorphism) - (1.83* Messaging) - (1.83"Design Size’) - (1.83"Hierarchies)),

IF(((TIME >=(STARTTIME + (NOHTimeChange1 + S<<da>>))) AND (Functionality <
FunctionalityReference)) , ((8.33*Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83*
‘Design Size') - (1.83*Herarchies)),

IF((TIME >=(STARTTIME + (NOHTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct),

IF(((TIME >=(STARTTIME + (NOHTimeChange2 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ((8.33*Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1.83*
‘Design Size') - (1.83*Hlerarchies)),

IF((TIME >=(STARTTIME + (NOHTimeChange2)+ 5 <<da=>)) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME +
(NOHTimeChange3 + 5<<da>>))) AND (Functionality < FunctionalityReference)) , ((8.33"
Functionality) - (1.83* Polymorphism) - (1.83* Messaging) - (1,83*Design Size’) - (1.83*Hierarchies)),

IF((TIME >=(STARTTIME + (NOHTimeChange3)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CAM) + CAMFirstFunct), IF(((TIME >=(STARTTIME +
(NOHTIimeChange1 + 5<<da>>))) AND (Functionality< FunctionalityReference)) ,((8.33*Functionality)
;)g;)-);';’);)’)’)dv'mfphim) - (1.83" Messaging) - (1.83"Design Size’) - (1.83"Hierarchies))))NMNNMNNNN)

}
aux Computed CIS {
autotype Real
autounit qual
def CIS +
IF(CheckedMessaging =1, IF((TIME >=(STARTTIME + CiSTimeChange1)) AND (TIME <
(STARTTIME + CISTimeChange2)), CISChange1, IF((TIME >=(STARTTIME + CISTimeChange1))
AND (CISChange2 = 0 <<qual>>) AND (CISChange3 = 0 <s<qual>>) CISChange1,
IF((TIME >=(STARTTIME + CISTimeChange2)) AND (TIME <(STARTTIME +
CISTimeChange3)),CISChange2 IF((TIME >=(STARTTIME + CISTimeChange2)) AND (CISChange1
= 0 <<qual>>) AND (CISChange3 = 0 <<qual>>),CISChange2, IF((TIME >=(STARTTIME +
CISTimeChange 1)) AND (TIME <(STARTTIME + CISTimeChange3)) AND (CISChange2 = 0 <<qual>
>),CISChange1, IF((TIME >=(STARTTIME + CISTimeChange2)) AND (CISChange3 = 0 <<qual>>),
CISChange2,
IF((TIME >=(STARTTIME + CiSTimeChange3)),.CISChange3))))))).

IF(MessagingAdaptationR =1, IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND
(Reusability < ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -Design
Size’),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange"),

IF(((TIME ==(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -'Design Size"),

IF((TIME >=(STARTTIME + (CAMTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange’), IF(((TIME >=(STARTTIME +
{CAMTimeChange3+ 5<<da>>))) AND (Reusability < ReusabilityReference)) . ((2"Reusability) + (0.5"
Coupling) + (-0.5"Cohesion) -‘Design Size’).

IF((TIME >=(STARTTIME + (CAMTimeChange3)+ § <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange’), IF(((TIME >=(STARTTIME +
(CAMTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.
5*Coupling) + (-0.5*Cohesion) -'Design Size"),

129

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <=da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + ‘CIS-FirstChange'),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -'Design Size"),

IF((TIME >=(STARTTIME + (DSCTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange"), IF(((TIME >=(STARTTIME +
(DSCTimeChange3+ 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.5*
Coupling) + (-0.5*Cohesion) -'Design Size'),

IF((TIME ==(STARTTIME + (DSCTimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange'), IF(((TIME ==(STARTTIME +
(DSCTimeChange1 + 5<<da=>>))) AND (Reusability < ReusabilityReference)) . ((2*Reusability) + (0.5*
Coupling) + (-0.5*Cohesion) -'Design Size'),

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -'Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<=da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange"),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -'Design Size’),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange"), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.
5*Coupling) + (-0.5*Cohesion) -'Design Size'),

IF((TIME ==(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- CIS) + 'CIS-FirstChange’), IF(((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da=>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.
5"Coupling) + (-0.5*Cohesion) -'Design Size))N)))NMNNMNI).

IF(MessagingAdaptationFunct =1,

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5=<<da>>))) AND (Functionality <
FunctionalityReference)) , ((4.54*Functionality) - (0.54" Cohesion) - Polymorphism - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFirstFunct),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ((8.33*Functionality) - ((4.54*Functionality) - (0.54* Cohesion) -
Polymorphism - 'Design Size' - Hierarchies)),

IF((TIME >=(STARTTIME + (CAMTimeChange2)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFirstFunct) , IF(((TIME >=(STARTTIME + (CAMTimeChange3
+ 5<<da>>))) AND (Functionality < FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion)
- Polymorphism - ‘Design Size' - Hierarchies),

IF((TIME ==(STARTTIME + (CAMTimeChange3)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFirstFunct), IF(((TIME >=(STARTTIME + (CAMTimeChange1
+ 5<<da>>))) AND (Functionality< FunctionalityReference)) ,((4.54*Functionality) - (0.54* Cohesion) -
Polymaorphism - 'Design Size' - Hierarchies),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - ‘Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFirstFunct),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da=>=))) AND (Functionality >
= FunctionalityReference)) . ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFirstFunct), IF(((TIME >=(STARTTIME + (NOPTimeChange3+
S5<<da>>))) AND (Functionality < FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) -
Polymorphism - 'Design Size' - Hierarchies),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<=da>>))) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFirstFunct), IF(((TIME >=(STARTTIME + (NOPTimeChange1
+ 5<<da>>))) AND (Functionality= FunctionalityReference)) .((4.54*Functionality) - (0.54* Cohesion) -
Polymorphism - 'Design Size' - Hierarchies),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) , ({(4.54*Functionality) - (0.54* Cohesion) - Polymorphism - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFirstFunct),

130

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + S<<da>>))) AND (qup-
Fum“u)) ((4.54*Functionality) - (0,54* Cohesion) - Polymorphism - 'Design Size’

IF{ (TIME >=(STARTTIME + (DSCTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- CIS) + CISFistFunct), IF(((TIME >=(STARTTIME + (DSCTimeChanged+
S<<da>>))) AND (Fmﬂy < Fumau)) ((4.54*Functionality) - (0.54* Cohesion) -
Polymorphism - 'Design Size’

IF((TIME >-(8TARTI’IE (DSC‘IMW 5 <<da>>))) AND (Functionality >=
FunciionalityReferance), ((- CIS) + CiSFirstFunct), IF(((TIME >=(STARTTIME + (DSCTimeChange1
+ Seeda>>))) AND a-'mr FunctonalityReference)) (4 54 Functionality) - (0.54* Cohesion) -
Polymorphism - 'Design Sizo”

- Hierarchies),
IF(((TIME >=(STARTTIME + (NOHTimeChange1 + 5<<da>>))) AND (Funclionality <
Fwwiﬁzﬁdwm» . ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Design Size’ -

IF((TIME >={STARTTIME + (NOHTimeChange1)+ § <<da>>)) AND (Functionality >«
FuncionaltyRederence), ((- CIS) + CISFirstFunct),
IF(({TIME >=({STARTTIME + (NOHTimeChange2 + 5<<da>>))) AND (Functionality <
) - Polymorphism - ‘Design Size’ -

IF((TIME >=(STARTTIME + (NOHTimeChange2)+ 5§ <<da>>)) AND (Functionality >=
FunctonalityReferonce), ((- CIS) + CISFirstFunce), IF{ ((TIME >=(STARTTIME + (NOHTimeChange3
+ Secda>>))) AND (Fuuonlly < FunclionalityReference)) , (4 54°Functionality) - (0.54* Cobesion)

« Polymorphism - 'Design Size' - Hierarchies),

IF((TIME >=(STARTTIME + (NOHTimeChanged)+ § <<da>>)) AND (Functionality >=
FuncionalityReference), ((- CIS) + CISFirstFunct), IF(((TIME >=(STARTTIME +
+ f<<da>>)}) AND (quomurt FunctionalityReference)) .((4 54 Functionality) - (0.54° Cohuhn)
Polymorphism - 'Design Sze” - Hierarchies))))NNIMNNMNIMMIN)

]
aux Computed DAM {
autotype Real
autounit qual
def DAM +
IF(ChackedEncapsulation =1, IF((TIME >=(STARTTIME + DAM_TimeChange1)) AND (TIME <
(STARTTIME + DAM_TwneChange2)),0AM_Change!, IF((TIME >=(STARTTIME +
m_‘l'&mmt:npl)) AND (DAM_Change2 = 0 <<gual>>) AND (DAM_Change3 = 0 <<guab>>),

(DAM_Change1 -o«qud»)AND(DAM cnmoa-o«q-»)om Change2 IF{ (TIME »=
(STARTTIME + DAM_TimeChange1)) AND (TIME <(STARTTIME + DAM_TimeChange3)) AND
(DAM _Change2 = (<<qual>>) DAM_Change1, IF((TIME >=(STARTTIME +DAM_TimeChange2))
AND (DAM_Change3 = 0 <<quat>>) DAM_Change2,
IF((TIME >=(STARTTIME + DAM_TimeChange3)),DAM_Change3))))).

IF
IF(«'nne >=(STARTTIME + (OCC. __TimeChange1 + 5<<du>>))) AND (Flexibilty <
Fhmm)) {{4*Flexbility) + Coupling - (2"Composition) - (2*Folymorphism)),
IF{ (TIME >=(STARTTIME + (DCC_TimeChanga1)}+ 5 <<da>>)) AND (Flexibilty >=
Fwd-m) ((- DAM) + DAMFi

irstFlexibility),
IE(((TIME >=(STARTTIME + (DCC_TimeChango2 + 5<<da>>))) AND (Flexibdity <
mm)) ((4*Flexbility) + Coupling - (2"Composition) - (2*Polymorphism)),
IF{ (TIME >=({STARTTIME ¢+ (DCC_TimeChange2)+ 5 <<da>>)) AND (Floxibility >=
Flmmmu') (- DAM) + DAMFirstFlexibility), IF{ ((TIME >={STARTTIME +
(oce nmcws * S<«<da>>))) A)&)JD (Flexibility < FlexibiityReference)) . ((4*Flexibility) + Coupling

m(mwmom_wps<Ws»wmn
FloxibiltyRofaconce), ((- DAM) A
(DCC_TimeChange1 » S<<da>>))) AND (Flexibility< FlexibilityReference)) ,((4*Flexibility) + Coupling
« (2*Composition) - (2*Polymorphism)),
IE{ ((TIME >=(STARTTIME + (MOA_TIm-Chmoﬂ + B<<da>>))) AND (Flexibilty <
mm)) ((4*Flexibility) + Coupling - (2*Compasition) - (2*Polymorphism)},
F((TIME >=(STARTTIME + (MOA_TimeChange1}+ 5 <<da>>}) AND Mm >=
DANFirstFlexibility),

Fm) ((- DAM) +
IF(((TIME >=(STARTTIME + (MOA_TimaChange2 + 5<<da>>))) AND (Flexibility <

131

FlexibilityReference)) , ((4*Flexibility) + Coupling - (2*Compaosition) - (2*Polymorphism)),

IF((TIME >=(STARTTIME + (MOA_TimeChange2+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- DAM) + DAMFirstFlexibility), IF(((TIME >=(STARTTIME +
(MOA_TimeChange3+ 5<<da>>))) AND (Flexibility < FlexibilityReference)) , ((4*Flexibility) + Coupling
- (2*Composition) - (2*Polymorphism)),

IF((TIME >=(STARTTIME + (MOA_TimeChange3+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- DAM) + DAMFirstFlexibility), IF(((TIME >=(STARTTIME +
(MOA_TimeChange1 + 5<<da>>))) AND (Flexibility= FlexibilityReference)) ,((4*Flexibility) + Coupling
- (2*Compaosition) - (2*Polymorphism)),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Flexbility <
FlexibilityReference)) , ((4*Flexibility) + Coupling - (2*Composition) - (2*Polymorphism)),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Flexbility >=
FlexibilityReference). ((- DAM) + DAMFirstFlexibility),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) , ((4*Flexibility) + Coupling - (2*Composition) - (2*Polymorphism)),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5§ <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- DAM) + DAMFirstFlexibility), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da>>))) AND (Flexibility < FlexibilityReference)) , ((4*Flexibility) + Coupling -
(2*Composition) - (2*Polymorphism)),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- DAM) + DAMFirstFlexibility), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + 5<<da>>))) AND (Flexibility< FlexibilityReference)) ,((4*Flexibility) + Coupling -
(2*Composition) - (2*Polymorphism))))))))))NNINN),

IF(EncapsuAdaptationU =1, IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5§ <<da>>)) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size’),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (DCC_TimeChange3 + S5<<da>>))) AND (Understandabllity < UnderstandReference))
, (((3.03)*"Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
‘Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference))
[{((3.03)*Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
'Design Size’),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Caohesion + Polymorphism + Complexity + 'Design Size’),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) . (((3.03)"Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + ‘Design Size"),

IF((TIME >=(STARTTIME + (ANATimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (ANATimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
(((3.03)"Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +

‘Design Size'),

IF((TIME >=(STARTTIME + (ANATimeChange3+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) .(
((3.03)*Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
‘Design Size))))NNMMNN).

IF(EncapsuAdaptationU =1,

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>)}) AND
(Understandability < UnderstandReference)) , (((3.03)"Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size"),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND

132

(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange2+ 5 <<da=>>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (CAMTimeChange3+ 5<<=da>>))) AND (Understandability < UnderstandReference)) ,
(((3.03)*Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
'‘Design Size"),

IF((TIME >==(STARTTIME + (CAMTimeChange3+ 5 <<da=>=>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND (Understandability= UnderstandReference)) .(
((3.03)*"Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
‘Design Size'),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>==)) AND
(Understandability == UnderstandReference), ((- DAM) + DAMFirstUnderstand),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size"),

IF((TIME >=(STARTTIME + (DSCTimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (DSCTimeChange3+ 5<<=da=>=>))) AND (Understandability < UnderstandReference)) ,
(((3.03)*Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
'‘Design Size"),

IF((TIME >=(STARTTIME + (DSCTimeChange3+ 5 <<da>>))) AND
(Understandability == UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF{ ((TIME ==
(STARTTIME + (DSCTimeChange1 + 5<<da=>>))) AND (Understandability< UnderstandReference)) .(
((3.03)*Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
‘Design Size'),

IF(((TIME >=(STARTTIME + (NOMTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , (((3.03)"Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size’),

IF((TIME >=(STARTTIME + (NOMTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand),

IF(((TIME >=(STARTTIME + (NOMTimeChange2 + 5<<da=>=>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size"),

IF((TIME >=(STARTTIME + (NOMTimeChange2+ 5 <<da>=))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (NOMTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
(((3.03)*Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
'‘Design Size'),

IF((TIME ==(STARTTIME + (NOMTimeChange3+ 5 <<da=>>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (NOMTimeChange1+ 5<<da>>))) AND (Understandability< UnderstandReference)) ,(
((3.03)"Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
'‘Design Size'),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + 'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 =<da=>)) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da=>))) AND
(Understandability < UnderstandReference)) , (((3.03)*Understandability) + Abstraction + Coupling -
Cohesion + Polymorphism + Complexity + ‘Design Size®),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <=da=>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME ==
(STARTTIME + (NOPTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
(((3.03)*"Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
‘Design Size"),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- DAM) + DAMFirstUnderstand), IF(((TIME >=
(STARTTIME + (NOPTimeChange1+ S<<da=>>))) AND (Understandability< UnderstandReference)) .((
(3.03)*Understandability) + Abstraction + Coupling - Cohesion + Polymorphism + Complexity +
‘Design Size)M,

133

IF(EncapsuAdaptationEffect =1,

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- DAM) + DAMFirstEncapsu),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da=>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- DAM) + DAMFirstEncapsu), IF(((TIME >=(STARTTIME +
(ANATImeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5"Effectiveness)
- Abstraction - Composition - Inheritance - Palymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange3)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- DAM) + DAMFirstEncapsu), |F(((TIME >=(STARTTIME +
(ANATIimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) .((5*Effectiveness) -
Abstraction - Composition - Inheritance - Polymorphism),

IF(((TIME ==(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Effectiveness >
= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>=>)) AND (Effectiveness>=
EffectivenessReference), ((- DAM) + DAMFirstEncapsu),

IF(((TIME ==(STARTTIME + (NOPTimeChange2 + 5<<da=>>))) AND (Effectiveness >
= EffectivenessReference)) , ((6*Effectiveness) - Abstraction - Composition - Inheritance -
Polymorphism),

IF((TIME ==(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Effectiveness >
= EffectivenessReference), ((- DAM) + DAMFirstEncapsu), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da=>))) AND (Effectiveness < EffectivenessReference)) , ((5*Effectiveness)
- Abstraction - Composition - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>=>))) AND (Effectiveness >
=EffectivenessReference), ((- DAM) + DAMFirstEncapsu), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + 5<<da=>>))) AND (Effectiveness< EffectivenessReference)) ,((5"Effectiveness) -
Abstraction - Composition - Inheritance - Polymorphism),

IF(((TIME >=(STARTTIME + (MOA_TimeChange1 + 5<<da>>))) AND (Effectiveness
== EffectivenessReference)) , ((5"Effectiveness) - Abstraction - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- DAM) + DAMFirstEncapsu),

IF(((TIME >=(STARTTIME + (MOA_TimeChange2 + 5<<da>>))) AND
(Effectiveness>= EffectivenessReference)) , ((6*Effecliveness) - Abstraction - Composition -
Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange2+ 5 <<da>>))) AND (Effectiveness
>= EffectivenessReference), ((- DAM) + DAMFirstEncapsu), IF(((TIME >=(STARTTIME +
(MOA_TimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*
Effectiveness) - Abstraction - Composition - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange3+ 5§ <<da>>))) AND (Effectiveness
== EffectivenessReference), ((- DAM) + DAMFirstEncapsu), IF(((TIME >=(STARTTIME +
(MOA_TimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ,((5*
Effectiveness) - Abstraction - Composition - Inheritance - Polymorphism),

IF(((TIME >=(STARTTIME + (MFATimeChange1 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((6*Effectiveness) - Abstraction - Compasition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange1)+ 5 <<=da>>)) AND (Effectiveness >
= EffectivenessReference), ((- DAM) + DAMFirstEncapsu),

IF(((TIME >=(STARTTIME + (MFATimeChange2 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Composition - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange2)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- DAM) + DAMFirstEncapsu), IF(((TIME >=(STARTTIME +
(MFATimeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*Effectiveness)
- Abstraction - Composition - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange3)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- DAM) + DAMFirstEncapsu), IF(((TIME >=(STARTTIME +
(MFATimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ,((5*Effectiveness) -
Abstraction - Composition - Inheritance - Polymorphism))))))))NN)NHNNINIMNIN.

134

}
aux Computed DCC {
autotype Real
autounit qual
def DCC +
IF(CheckedCoupling =1, IF((TIME >=(STARTTIME + DCC_TimeChange1)) AND (TIME <
(STARTTIME + DCC_TimeChange2)),DCC_Change1, IF((TIME >=(STARTTIME +
DCC_TimeChange1)) AND (DCC_Change2 = 0 <<qual>>) AND (DCC_Change3 = 0 <<qual>>),
DCC_Change1,
IF((TIME >=(STARTTIME + DCC_TimeChange2)) AND (TIME <(STARTTIME +
DCC_TimeChange3)), DCC_Change2, IF((TIME >=(STARTTIME + DCC_TimeChange2)) AND
(DCC_Change1 = 0 <<gual>>) AND (DCC_Change3 = 0 <<qual>>),DCC_Change2 IF((TIME >=
(STARTTIME + DCC_TimeChange1)) AND (TIME <(STARTTIME + DCC_TimeChange3)) AND
(DCC_Change2 = 0 <<qual>>),DCC_Change1, IF(TIME >=(STARTTIME + DCC_TimeChange2))
AND (DCC_Change3 = 0 <<qual>>), DCC_Change2,
IF((TIME >=(STARTTIME + DCC_TimeChange3)),DCC_Change3))))))).

IF(CouplingAdaptationR =1, IF(((TIME >=(STARTTIME + (CiSTimeChange1 + 5<<da>>))) AND
(Reusability < ReusabilityReference)) , -((-4*"Reusability) + Cohesion + (2*"Messaging) + (2"Design
Size"),

IF((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange’),

IF(((TIME >=(STARTTIME + (CISTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , -((-4*Reusability) + Cohesion + (2*Messaging) + (2*'Design Size")),

IF((TIME >=(STARTTIME + (CISTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange”), IF(((TIME >=(STARTTIME +
(CISTimeChange3 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , -((-4*Reusability) +
Cohesion + (2*Messaging) + (2"Design Size’)),

IF((TIME >=(STARTTIME + (CiSTimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange’), IF(((TIME >=(STARTTIME +
(CISTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) -((-4*Reusability) +
Cohesion + (2*Messaging) + (2*Design Size")),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((-4"Reusability) + Cohesion + (2*Messaging) + (2*'Design Size")),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange'),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , -((-4*Reusability) + Cohesion + (2*Messaging) + (2*'Design Size")).

IF((TIME >=(STARTTIME + (DSCTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange’), IF(((TIME >=(STARTTIME +
(DSCTimeChange3+ 5<<da>>))) AND (Reusability < ReusabilityReference)) , -((-4*Reusability) +
Cohesion + (2*Messaging) + (2*'Design Size')).

IF((TIME >=(STARTTIME + (DSCTimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange’), IF(((TIME >={STARTTIME +
(DSCTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , -((-4"Reusability) +
Cohesion + (2*Messaging) + (2"'Design Size')).

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , -((-4*Reusability) + Cohesion + (2*Messaging) + (2*'Design Size")).

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , -((-4*Reusability) + Cohesion + (2*Messaging) + (2'Design Size"),

IF((TIME >=(STARTTIME + (CAMTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabllityReference), ((- DCC) + 'DCC-FirstChange’), IF(((TIME >=(STARTTIME +
(CAMTimeChange3 + 5<<da>>))) AND (Reusability < ReusabilityReference)) . -((-4*Reusability) +
Cohesion + (2*Messaging) + (2*'Design Size'")),

IF((TIME >=(STARTTIME + (CAMTimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DCC) + 'DCC-FirstChange'), IF(((TIME >=(STARTTIME +
(CAMTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , -((-4*Reusability) +
Cohesion + (2*Messaging) + (2*Design Size))))MMNMMN).

IF(CouplingAdaptationF =1,IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND
(Flexibility <= FlexibilityReference)) , -((-4*Flexibility) + Encapsulation + (2*Composition) + (2*
Polymorphism)),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND (Flexibility >=

FlexibilityReference), ((- DCC) + DCCFirstFlexibility),

135

IF{ ((TIME ==(STARTTIME + (DAM_TimeChange2 + 5=<da>>))) AND (Flexibility <
FlexibilityReference)) , -((-4*Flexibility) + Encapsulation + (2*Composition) + (2*Polymorphism)),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da=>>)) AND (Flexibility >=
FlexibilityReference), ((- DCC) + DCCFirstFlexibility), IF(((TIME >=(STARTTIME +
(DAM_TimeChange3 + 5=<da>>))) AND (Flexibility < FlexibilityReference)) , -((-4*Flexibility) +
Encapsulation + (2*Composition) + (2*Polymorphism)),

IF((TIME ==(STARTTIME + (DAM_TimeChange3)+ 5 <<da=>)) AND (Flexibility ==
FlexibilityReference), ((- DCC) + DCCFirstFlexibility), 1F(((TIME >=(STARTTIME +
(DAM_TimeChange1 + 5<<da>>))) AND (Flexibility<= FlexibilityReference)) ,-((-4*Flexibility) +
Encapsulation + (2*Composition) + (2*Polymorphism)),

IF(((TIME >=(STARTTIME + (MOA_TimeChange1 + 5<<da=>>))) AND (Flexibility <
FlexibilityReference)) , -((-4*Flexibility) + Encapsulation + (2*Compeosition) + (2*Polymorphism)),

IF((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<=da>>=)) AND (Flexibility ==
FlexibilityReference), ((- DCC) + DCCFirstFlexibility),

IF(((TIME >==(STARTTIME + (MOA_TimeChange2 + 5<<da=>>))) AND (Flexibility <
FlexibilityReference)) , -((-4*Flexibility) + Encapsulation + (2*Composition) + (2*Polymorphism)),

IF((TIME >=(STARTTIME + (MOA_TimeChange2+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- DCC) + DCCFirstFlexibility), IF(((TIME >=(STARTTIME +
(MOA_TimeChange3+ 5<<da>>=))) AND (Flexibility < FlexibilityReference)) , -((-4*Flexibility) +
Encapsulation + (2*Composition) + (2*Polymorphism)),

IF((TIME ==(STARTTIME + (MOA_TimeChange3+ 5 <<da=>>))) AND (Flexibility ==
FlexibilityReference), ((- DCC) + DCCFirstFlexibility), IF(((TIME >=(STARTTIME +
(MOA_TimeChange1 + 5<<da=>>))) AND (Flexibility= FlexibilityReference)) ,-((-4"Flexibility) +
Encapsulation + (2*Composition) + (2*Polymorphism)),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) , -((-4*Flexibility) + Encapsulation + (2*Composition) + (2*Polymorphism)),

IF((TIME ==(STARTTIME + (NOPTimeChange1)+ 5 <=da>=>)) AND (Flexibility >=
FlexibilityReference), ((- DCC) + DCCFirstFlexibility),

IFC ((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) , -((-4*Flexibility) + Encapsulation + (2*Compaosition) + (2*Polymorphism)),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- DCC) + DCCFirstFlexibility), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da=>>))) AND (Flexibility < FlexibilityReference)) , -((-4*Flexibility) +
Encapsulation + (2*Compaosition) + (2*Polymorphism)),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <=da>>))) AND (Flexibility >=
FlexibilityReference), ((- DCC) + DCCFirstFlexibility), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + 5<<da>>))) AND (Flexibility= FlexibilityReference)) ,-((-4"Flexibility) +
Encapsulation + (2*Composition) + (2*Polymorphism))))))NNNNMNNI.

IF(CouplingAdaptationU =1, IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) . ((-3.03)*Understandabillity - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - '‘Design Size"),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND
(Understandability = UnderstandReference), ((- DCC) + DCCFirstUnderst),

IF(((TIME ==(STARTTIME + (NOPTimeChange2 + 5<<da==>))) AND
(Understandability < UnderstandReference)) . ((-3.03)"Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - 'Design Size’),

IF((TIME >=(STARTTIME + (NOPTimeChange2)+ § <=<da>>)) AND
(Understandability < UnderstandReference). ((- DCC) + DCCFirstUnderst), IF(((TIME ==
(STARTTIME + (NOPTimeChange3 + 5<<da>>))) AND (Understandability <= UnderstandReference))
. {(-3.03)"Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Design Size"),

IF((TIME >=(STARTTIME + (NOPTimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF((TIME >=
(STARTTIME + (NOPTimeChange1+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03)*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
'Design Size"),

IF(((TIME >=(STARTTIME + (NOMTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)*Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - ‘Design Size’),

IF((TIME >=(STARTTIME + (NOMTimeChange1)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst),

IF(((TIME >=(STARTTIME + (NOMTimeChange2 + 5<<da>>))) AND
(Understandability = UnderstandReference)) . ((-3.03)"Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - ‘Design Size'),

136

IF((TIME >=(STARTTIME + (NOMTimeChange2)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))
, ((-3.03)*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Design Size’),

IF((TIME >=(STARTTIME + (NOMTimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange1+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
{(-3.03)*Understandabillity - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Design Size'),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)*Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - ‘Design Size'),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)*Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - 'Design Size"),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5§ <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03)*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Design Size'),

IF((TIME >=(STARTTIME + (ANATimeChange3)+ 5§ <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATimeChange 1+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03)*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Design Size’),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)*Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - 'Design Size"),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + S<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)*Understandability - Abstraction +
Encapsulation+ Cohesion - Polymaorphism - Complexity - 'Design Size"),

IF{ (TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference)
) . ((-3.03)*"Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
'Design Size"),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange1+ 5<<da>>))) AND (Understandability < UnderstandReference))
. ((-3.03)"Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
'Design Size’),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)"Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)"Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - 'Design Size’),

IF((TIME >=(STARTTIME + (DSCTimeChange2)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (DSCTimeChange3+ 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((-3.03)
*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity - 'Design
Size"),

IF((TIME >=(STARTTIME + (DSCTimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((-3.
03)*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Design Size7)MNMMMMMMMNMMNMN.

IF(CouplingAdaptationU =1, IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) . ((-3.03)"Understandability - Abstraction +

137

Encapsulation+ Cohesion - Polymorphism - Complexity - "Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03)"Understandability - Abstraction +
Encapsulation+ Cohesion - Polymorphism - Complexity - "Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange2)+ 5 <<da>>)) AND
(Understandability < UnderstandReferenca), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))

. ((-3.03)*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Design Size),

IF((TIME >=(STARTTIME + (CAMTimeChange3)+ 5 <<da>>)) AND
(Understandability < UnderstandReference), ((- DCC) + DCCFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND (Understandability < UnderstandReference))

, ((-3.03)*Understandability - Abstraction + Encapsulation+ Cohesion - Polymorphism - Complexity -
‘Desm Size)NMN,

IF(CouplingAdaptationEx =1,

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Extendibility <
ExtendibilityReference)) , ((-2"Extendibility) - Abstraction -Inheritance- Polymorphism),

IF((TIME >={STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND (Extendibility>=
ExtendibilityReference), ((- DCC) + DCCFirstExt),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da>>))) AND (Extendibility <
ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- DCC) + DCCFirstExt), IF(((TIME >=(STARTTIME + (ANATimeChange3 +
S5<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -
Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange3)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- DCC) + DCCFirstExt), IF(((TIME >=(STARTTIME + (ANATimeChange1
+ 5<<da>>))) AND (Extendibility< ExtendibilityReference)) .((-2*Extendibility) - Abstraction -
Inheritance- Polymorphism),

IF(((TIME >=(STARTTIME + (MFATimeChange1 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange1)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- DCC) + DCCFirstExt),

IF(((TIME >=(STARTTIME + (MFATimeChange2 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange2+ § <<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- DCC) + DCCFirstExt), IF(((TIME >=(STARTTIME + (MFATimeChange3+
S<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -
Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (MFATimeChange3+ 5§ <<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- DCC) + DCCFirstExt), IF(((TIME >=(STARTTIME + (MFATimeChange1
+ 5<<da>>))) AND (Extendibility< ExtendibilityReferance)) ,((-2*Extendibility) - Abstraction -
Inheritance- Polymorphism),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- DCC) + DCCFirstExt),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Extendibility>=
ExtendibilityReference), ((- DCC) + DCCFirstExt), IF((TIME >=(STARTTIME + (NOPTimeChange3+
S5<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((-2*Extendibility) - Abstraction -
Inheritance- Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- DCC) + DCCFirstExt), IF(((TIME >=(STARTTIME + (NOPTimeChange1
+ 5<<da>>))) AND (Extendibility< ExtendibilityReference)) ,((-2*Extendibility) - Abstraction -
Inheritance- Polymorphism)))))NNNNNNNINN

138

aux Computed DSC {
autotype Real
autounit qual
def DSC +
IF (CheckedDesignSize =1, IF((TIME >=(STARTTIME + DSCTimeChange1)) AND (TIME <
(STARTTIME + DSCTimeChange2)),DSCChange1 IF((TIME >=(STARTTIME + DSCTimeChange1))
AND (DSCChange2 = 0 <<qual>>) AND (DSCChange3 = 0 <<qual>>) DSCChange1,

IF((TIME >=(STARTTIME + DSCTimeChange2)) AND (TIME <(STARTTIME +
DSCTimeChange3)),DSCChange2.IF((TIME >=(STARTTIME + DSCTimeChange2)) AND
(DSCChange1 = 0 <<qual>>) AND (DSCChange3 = () <<qual>>),DSCChange2, IF((TIME >=
(STARTTIME + DSCTimeChange1)) AND (TIME <(STARTTIME + DSCTimeChange3)) AND
(DSCChange2 = 0 <<qual>>) DSCChange1, IF((TIME >=(STARTTIME + DSCTimeChange2)) AND
(DSCChange3= 0 <<qual>>),DSCChange2,

IF((TIME >=(STARTTIME + DSCTimeChange3)),DSCChange3))))))).
IF (DesignSizeAdaptationR =1,IF((TIME >=(STARTTIME + (CAMTimeChange1 + S<<da>>))) AND
(Reusability < ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -

Messaging),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityRefarence), ((- DSC) + 'DSC-FirstChange’),

IE(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2*Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -Messaging),

IE((TIME >=(STARTTIME + (CAMTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DSC) + 'DSC-FirstChange'), IF(((TIME >=(STARTTIME +
(CAMTimeChange3+ 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.5
Coupling) + (-0.5*Cohesion) a),

IF((TIME >=(STARTTIME + (CAMTimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DSC) + 'DSC-FirstChange’), IF((TIME >=(STARTTIME +
(CAMTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.
5*Coupling) + (-0.5*Cohesion) -Messaging),

IF(((TIME >=(STARTTIME + (CiISTimeChange1+ 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2"Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -Messaging),

IF((TIME >=(STARTTIME + (CISTimeChangel)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DSC) + 'DSC-FirstChange’),

IF(((TIME >=(STARTTIME + (CiSTimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2"Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -Messaging),

IF{ (TIME >={STARTTIME + (CiSTimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DSC) +DSC-FirstChange’), IF(((TIME >=(STARTTIME +
(CISTimeChange3+ 5<<da>>))} AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.5*
Coupling) + (-0.5*Cohesion) -Messaging),

IF((TIME >=(STARTTIME + (CISTimeChange3)+ 5§ <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DSC) + 'DSC-FirstChange’), IF(((TIME >=(STARTTIME +
(CISTimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.5*
Coupling) + (-0.5*Cohesion) -Messaging),

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) , ((2"Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -Messaging),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DSC) + 'DSC-FirstChange’),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Reusability <
ReusabilityReference)) . ((2"Reusability) + (0.5*Coupling) + (-0.5*Cohesion) -Messaging),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), {(- DSC) + 'DSC-FirstChange’), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.
5*Coupling) + (-0.5*Cohesion) -Messaging).

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND (Reusability >=
ReusabilityReference), ((- DSC) + 'DSC-FirstChange’), IF((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da>>))) AND (Reusability < ReusabilityReference)) , ((2*Reusability) + (0.
5"Coupling) + (-0.5*Cohesion) -Messaging)))))))))NN)M)).

IF(DesignSizeAdaptationU =1,

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - Complexity),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND
{Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - Complexity),

139

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (DCC_TimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))
. ((-3.03"Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference))
{(-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity)

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3. 03’Undentandabimy) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - Complexity|

IF((TIME >=(STARTTIME + (CAM'ﬂmeChange1)¢ 5 <<da=>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03*Understandability) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - Complexity),

IF((TIME >=(STARTTIME + (CAMTimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity),

IF((TIME >=(STARTTIME + (CAMTimeChange3+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) ,(
(-3.03"Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03"Understandability) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - Complexity),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND
{Understandability >= UnderstandReference)) , ((-3.03"Understandability) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - Complexity),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ({- DSC) + DSCFirstUnderst), IF(((TIME >=
{(STARTTIME + (NOPTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) .
((-3.03"Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
Complexity),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>=>))) AND
(Understandability >= UnderstandReference), ({- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) (
(-3.03"Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - Complexity),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst),

IE(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation

- Coupling + Cohesion - Polymorphism - Complexity),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND
{Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange3 + S5<<da>>))) AND (Understandability < UnderstandReference))
, ((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange1 + 5<<da=>>))) AND (Understandability< UnderstandReference))

.((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity),
IF(((TIME >=(STARTTIME + (NOMTimeChange1 + §<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation

140

- Coupling + Cohesion - Polymorphism - C).

IE((TIME >=(STARTTIME + (NOMTimeChange 1)+ 5 <<da>>)) AND

== UnderstandReference), ((- DSC) + DSCFirstUnderst),

IF{ ((TIME >=(STARTTIME + (NOMTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation

- Coupling + Cohesion - Polymorphiam - Complexity),

IF((TIME >=(STARTTIME + (NOMTimeChange2)+ 5 <<da>>)) AND
(Understandability »= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReferance)) .
((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Complexity),

IF((TIME >=(STARTTIME + (NOMTimeChange3)+ § <<da>>)) AND
(Undearstandability »= UnderstandReferences), ((- DSC) + DSCFirstUnderst), |F(((TIME >=
(STARTTIME + (NOMTimeChange1 + S<<da>>))) AND (Understandability< UnderstandReference)) (
(-3.03"Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
Complexity),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) . ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Coheslon - -G

1F((TIME =>=(STARTTIME + (ANAMW”O 5 <<da>>)) AND
(Understandability >» UnderstandReference), ((- DSC) + DSCFirstUnderst),

IE(((TIME >=(STARTTIME + (ANATimeChange2 + S<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation

- Coupling + Cohesion - Polymorphism - Complemy)
IF((TIME >»(STARTTIME + (ANATIimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATImeChange3 + 5<<da>>))) AND (Understandabilty < UnderstandReference)) ,
((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
Complexity),

IF((TIME >»(STARTTIME + (ANATimeChange3)+ § <<da>>)) AND
(Understandability >= UnderstandReference), ((- DSC) + DSCFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATImeChange1 + S<<da>>))) AND (Understandability< UnderstandReference)) (
(-3 03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
CWW))).

IF(DesignSizeAdaptationFu

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + S<<da>>))) AND (Functionality <
FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

Hierarchies),

IF(({TIME >=(STARTTIME + (CAMTimeChange 1)+ § <<da>>)) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct),

IF{ ((TIME >={STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND (Functionality <
FuncﬂonnllyReluumo)) ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

IF{ {TIME >=(STARTTIME + (CAMTimeChange2)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct) , IF{ ((TIME >=(STARTTIME +
(CAMTimeChange3 + S<<da>>))) AND (Functionality < FunctionalityReference)) . ((4.54*
Functionality) - (0.54* Cohesion) - Polymorphism - Messaging - Hierarchies),

IF((TIME >=(STARTTIME + (CAMTimeChange3)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ({- DSC) + DSCFirstFunct), IF(((TIME >=(STARTTIME +
(CAMTimeChange1 + 5<<da>>))) AND (Functionality= FunctionalityReference)) ,((4.54"Functionality)
- (0.54* Cohesion) - Polymorphism - Messaging - Hierarchies),

IF{ ((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

Hierarchies),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReferance), ((- DSC) + DSCFirstFunct),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) . ((4 54 Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

Hierarchies),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct), IF(((TIME >=(STARTTIME
(NOPTimeChange3d+ S<<da>>))) AND (Functionality < FunctionalityReference)) , ((4 54*
Functionality) - (0.54* Cohesion) - Palymorphism - Messaging - Hierarchies),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ({- DSC) + DSCFirstFunct), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + S<<da>>))) AND (Functionality< FunctionalityReference)) ,((4.54*Functionality)

141

- (0.54* Cohesion) - Polymorphism - Messaging - Hierarchies),

IF(((TIME >=(STARTTIME + (CiSTimeChange1 + 5<<da>>))) AND (Functionality >=
FunctionalityReference)) , ((4.54"Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -
Hierarchies),

IF((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct),

IF(((TIME >=(STARTTIME + (CISTimeChange2+ 5<<da>>))) AND (Functionality>=
FunctionalityReference)) , ((4.54"Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

Hierarchies),

IF((TIME >=(STARTTIME + (CISTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct), IF(((TIME >=(STARTTIME +
(CISTimeChange3+ 5<<da>>))) AND (Functionality < FunctionalityReference)) , ((4.54*Functionality)
- (0.54* Cohesion) - Polymorphism - Messaging - Hierarchies),

IF((TIME >=(STARTTIME + (CISTimeChange3+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct), IF(((TIME >=(STARTTIME +
(CISTimeChange1 + 5<<da>>))) AND (Functionality< FunctionalityReference)) .((4.54*F unctionality) -
(0.54* Cohesion) - Polymorphism - Messaging - Hierarchies),

IF{ ((TIME >=(STARTTIME + (NOHTimeChange1 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ((4.54 Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

Hierarchies),

IF((TIME >=(STARTTIME + (NOHTIimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct),

IF(((TIME >=(STARTTIME + (NOHTimeChange2 + 5<<da>>))) AND (Funcuonamy <
FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism -

Hierarchies),

IF((TIME >=(STARTTIME + (NOHTIimeChange2)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct), IF(((TIME >=(STARTTIME +
(NOHTimeChange3 + 5<<da>>))) AND (Functionality < FunctionalityReference)) , ((4.54"
Functionality) - (0.54* Cohesion) - Polymorphism - Messaging - Hierarchies),

IF((TIME >=(STARTTIME + (NOHTIimeChange3)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- DSC) + DSCFirstFunct), IF(((TIME >=(STARTTIME +
(NOHTimeChange1 + 5<<da>>))) AND (Functionality< FunctionalityReference)) ,((4.54*Functionality)
- (0.54” Cohesion) - Polymorphism - Messaging - Hierarchies))))))))MMNMMNNNINN)

)
aux Computed MFA {
autotype Real
autounit qual
def MFA +
IF(Checkedinheritance =1, IF((TIME >=(STARTTIME + MFATimeChange1)) AND (TIME <
(STARTTIME + MFATIimeChange2)), MFAChange1, IF((TIME >=(STARTTIME + MFATimeChange1))
AND (MFAChange2 = 0 <<qual>>) AND (MFAChange3 = 0 <<qual>>), MFAChange1,

IF((TIME >={STARTTIME + MFATimeChange2)) AND (TIME <(STARTTIME +
MFATimeChange3)),MFAChange2, IF((TIME >=(STARTTIME + MFATimeChange2)) AND
(MFAChange1 = 0 <<qual>>) AND (MFAChange3 = 0 <<qual>>) MFAChange2 IF((TIME >=
(STARTTIME + MFATIimeChange1)) AND (TIME <(STARTTIME+ MFATIimeChange3)) AND
(MFAChange2 = 0 <<qual>>),MFAChange1, IF((TIME >=(STARTTIME +MFATIimeChange2)) AND
(MFAChange3 = 0 <<qual>>) MFAChange2,

IF((TIME >={STARTTIME + MFATimeChange3)) MFAChange3))))))).

IF(InheritanceAdaptationExt =1,

IF{ ((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Extendibility <
ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling- Polymorphism),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND (Extendibility>=
ExtendibilityReference), ((- MFA) + MFAFirstExt),

IF((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Extendibility <
ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling- Polymorphism),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND (Extendibility >
= ExtendibilityReference), ((- MFA) + MFAFirstExt), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3 + 5<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) -
Abstraction + Coupling- Polymorphism),

142

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND (Extendibility >
= ExtendibilityReference), ((- MFA) + MFAFirstExt), IF(((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da>>))) AND (Extendibility< ExtendibilityReference)) ,((2"Extendibility) -
Abstraction + Coupling- Polymorphism),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling- Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- MFA) + MFAFirstExt),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling- Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange2+ 5 <<da>>))) AND (Extendibility >=
ExtendibilityReferencs), ((- MFA) + MFAFirstExt), IF(((TIME >=(STARTTIME + (ANATimeChange3+
5<<da>>))) AND (Extendibility < ExtendibllityReference)) , ((2*Extendibility) - Abstraction + Coupling-
Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange3+ 5 <<da>>))) AND (Extendibility >=

eference), ((- MFA) + MFAFirstExt), IF(((TIME >=(STARTTIME + (ANATimeChange1
+ S5<<da>>))) AND (Extendibility< ExtendibilityReference)) ,((2*Extendibility) - Abstraction + Coupling-
Polymorphism),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) . ((2*"Extendibility) - Abstraction + Coupling- Polymorphism),

IF((TIME ==(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- MFA) + MFAFirstExt),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>})) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling- Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Extendibility>=
ExtendibilityReferance), ((- MFA) + MFAFirstExt), IF(((TIME >=(STARTTIME + (NOPTimeChange3+
5<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling-
Pot

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- MFA) + MFAFirstExt), 1F(((TIME >=(STARTTIME + (NOPTimeChange1
+ S5<<da>>))) AND (Extendibility< ExtendibilityReference)) ,((2*Extendibility) - Abstraction + Coupling-
Polymorphism)))))NMNNNNINN).

IF(InheritanceAdaptationEffect =1,

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND (Effectiveness
< EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <=da>>)) AND (Effectiveness
>= EffectivenessReference), ((- MFA) + MFAFirstEffect),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da>>))) AND (Effectiveness
< EffectivenessReference)) . ((5'Effectiveness) - Abstraction - Encapsulation - Composition -
Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <=da>>)) AND (Effectiveness
>= EffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*
Effectiveness) - Abstraction - Encapsulation - Composition - Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange1 + S5<<da>>))) AND (Effectiveness< EffectivenessReference)) ,((5"Effectiveness)
- Abstraction - Encapsulation - Composition - Polymorphism),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Effectiveness >
= EffectivenessReference)) ., ((5°Effectiveness) - Abstraction - Encapsulation - Composition -
Potymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5§ <<da>>)) AND (Effectiveness>=
EffectivenessReference), ({- MFA) + MFAFIirstEffect),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND (Effectiveness >
= EffectivenessReference)) . ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Effectiveness >
= EffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((6*Effectiveness)
- Abstraction - Encapsulation - Composition - Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Effectiveness >
sEffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(NOPTImeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ((5*Effectiveness) -
Abstraction - Encapsulation - Composition - Polymorphism),

IF(((TIME >=(STARTTIME + (MOA_TimeChange1 + S5<<da>>))) AND (Effectiveness

143

>= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- MFA) + MFAFirstEffect),

IF(((TIME >=(STARTTIME + (MOA_TimeChange2 + 5<<da>>))) AND
(Effectiveness>= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation -
Composition - Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange2+ 5 <<da>>))) AND (Effectiveness
>= EffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(MOA_TimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*
Effectiveness) - Abstraction - Encapsulation - Composition - Polymorphism),

IF((TIME >=(STARTTIME + (MOA_TimeChange3+ 5 <<da>>))) AND (Effectiveness
>= EffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(MOA_TimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) .((5*
Effectiveness) - Abstraction - Encapsulation - Composition - Polymorphism),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- MFA) + MFAFirstEffect),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5"Effectiveness) - Abstraction - Encapsulation - Composition -
Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(ANATimeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*Effectiveness)
- Abstraction - Encapsulation - Composition - Polymorphism),

IF((TIME >=(STARTTIME + (ANATIimeChange3)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- MFA) + MFAFirstEffect), IF(((TIME >=(STARTTIME +
(ANATimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) .((5*Effectiveness) -

) Abstraction - Encapsulation - Composition - Polymorphism)) D)N)NNNNINIINININD)

aux Computed MOA {

autotype Real

autounit qual

def MOA +
IF(CheckedComposition =1, IF((TIME >=(STARTTIME + MOA_TimeChange1)) AND (TIME <
(STARTTIME + MOA_TimeChange2)), MOAChange1, IF((TIME >=(STARTTIME +
MOA_TimeChange1)) AND (MOAChange2 = 0 <<qual>>) AND (MOAChange3 = 0 <<qual>>),
MOAChange1,

IF((TIME >=(STARTTIME + MOA_TimeChange2)) AND (TIME <(STARTTIME +
MOA_TimeChange3)) MOAChange2, IF((TIME >=(STARTTIME + MOA_TimeChange2)) AND
(MOAChange1 = 0 <<qual>>) AND (MOAChange3 = 0 <<qual>>), MOAChange2,IF((TIME >=
(STARTTIME + MOA_TimeChange1)) AND (TIME <(STARTTIME + MOA_TimeChange3)) AND
(MOAChange2 = 0 <<qual>>),MOAChange1, IF((TIME >=(STARTTIME + MOA_TimeChange2)) AND
(MOAChange3 = 0 <<qual>>) MOAChange2,

IF((TIME >=(STARTTIME + MOA_TimeChange3)), MOAChange3))))))).

IF(ComposAdaptationF =1,

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME >={STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- MOA) + MOAFirstFlexibility),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- MOA) + MOAFirstFlexibility), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3 + 5<<da>>))) AND (Flexibility < FlexibilityReference)) , ((2"Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- MOA) + MOAFirstFlexibility), IF(((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da>>))) AND (Flexibility< FlexibilityReference)) .((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Polymorphism),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME >=({STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND (Flexibility >=

144

FlexibilityReference), ((- MOA) + MOAFirstFlexibility),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da=>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME ==(STARTTIME + (DAM_TimeChange2+ 5 <<da>=>))) AND (Flexibility >=
FlexibilityReference), ({(- MOA) + MOAFirstFlexibility), IF(((TIME >=(STARTTIME +
(DAM_TimeChange3+ 5<<da>>))) AND (Flexibility <= FlexibilityReference)) , ((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange3+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- MOA) + MOAFirstFlexibility), IF(((TIME >=(STARTTIME +
(DAM_TimeChange1 + 5<=da>>))) AND (Flexibility= FlexibilityReference)) ,((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Polymorphism),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da=>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Polymorphism).

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- MOA) + MOAFirstFlexibility),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da=>>))) AND (Flexibility <
FlexibilityReference)) , ((2"Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- MOA) + MOAFirstFlexibility), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da=>>))) AND (Flexibility < FiexibilityReference)) , ((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da=>>))) AND (Flexibility >=
FiexibilityReference), ((- MOA) + MOAFirstFlexibility), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + 5<<da>>))) AND (Flexibility< FlexibilityReference)) ,((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Polymorphism))))NN)NNNIMY),

IF(ComposAdaptationEffect =1,

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((-MOA) + MOAFirstEffect),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da=>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Absfraction - Encapsulation - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((-MOA) + MOAFirstEffect), IF(((TIME >=(STARTTIME +
(ANATIimeChange3 + 5<<da=>>))) AND (Effectiveness < EffectivenessReference)) , ((5*Effectiveness)
- Abstraction - Encapsulation - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (ANATimeChange3)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((-MOA) + MOAFirstEffect), IF(((TIME >=(STARTTIME +
(ANATIimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ,((5*Effectiveness) -
Abstraction - Encapsulation - Inheritance - Polymorphism),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Effectiveness >
= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Inheritance -
Polymorphism),

IF((TIME ==(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Effectiveness>=
EffectivenessReference), ((-MOA) + MOAFirstEffect),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND (Effectiveness >
= EffectivenessReference)) , ((5°Effectiveness) - Abstraction - Encapsulation - Inheritance -
Polymorphism),

IF{ (TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da>>))) AND (Effectiveness >
= EffectivenessReference), ((-MOA) + MOAFirstEffect), IF(((TIME >=(STARTTIME +
(NOPTimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((6*Effectiveness)
- Abstraction - Encapsulation - Inheritance - Polymorphism),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da>>))) AND (Effectiveness >
=EffectivenessReference), ((-MOA) + MOAFirstEffect), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + 5<<da=>=))) AND (Effectiveness< EffectivenessReference)) ,((5Effectiveness) -
Abstraction - Encapsulation - Inheritance - Polymorphism),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND (Effectiveness
>= EffectivenessReference)) , ((5"Effectiveness) - Abstraction - Encapsulation - Inheritance -
Polymorphism),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da=>=)) AND (Effectiveness
>= EffectivenessReference), ((-MOA) + MOAFirstEffect),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da=>>))) AND
(Effectiveness=>= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation -
Inheritance - Polymorphism),

145

IF((TIME >»(STARTTIME + (DAM_TimeChange2+ 5 <<da>>})) AND (Effactiveness
>= EffectivenessReference), {(-MOA) + MOAFirstEfect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange3+ S<<da>>))) AND (Em < EffectivenessReference)) , (5
Efecliveness) - Abstraction - Encapsulation - inhertance - Polymorphism).

IF{ (TIME >={STARTTIME + (DAM_TimeChange3+ 5§ <<da>>))) AND (Eftactiveness
>= EffectivenessReference), (-MOA) + MOAFirstENect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange1 + S<<da>>))) AND (Effectiveness< EffectivenessReference)) ((5'Effectiveness)

« Abstraction - Encapsulation - Inheritance -

- Polymorphism),
IF(((TIME >=({STARTTIME + (MFATimeChange1 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectivenass) - Abstraction - Encapsuiation - Inheritance -

Pol

l-'((TIME >=(STARTTIME + (MFATimeChange1)+ 5 <<da>>)) AND {Effectiveness >
= EffectivenessReference), (-MOA) + MOAFirstEfect),

IF(((TIME >=(STARTTIME + (MFAW + §<<dg>>))) AND (Effectiveness <
Elndnm:::dum)) , ((5°Effectiveness) - Abstraction - Encapsulation - Inheritance -

IF{ (TIME >=(STARTTIME + (MFATImeChange2)+ 5§ <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((-MOA) + MOAFirstEffect), IF{ ((TIME >={STARTTIME +
(MFATimeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ({5*Effectiveness)
- Abstraction - Encapsulation - Inheritance -

Polymorphésm),
IF((TIME >=(STARTTIME + (MFATimeChange3)+ 5 <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((MOA) + MOAFirstEffect), IF(((TIME >=(STARTTIME +
(MFATImeChange! + 5<<da>>))) AND (Effeciiveness< EffectivenessReference)) ,((5*Effectiveness) -
Abstraction - Encapsulation - Inheritance - Polymorphism)))M

(STARTTIME + NOHTimeChange2)),NOHChange1, IF((TIME >=(STARTTIME + NOHTimeChange1)

NOHTimeChange3)) NOHChange2, IF((TIME >=(STARTTIME + NOHTimeChanga2)) AND
(NOHChange1 = 0 <<quai>>) AND (NOHChange3 = 0 <<qual>>) NOHChange2, IF((TIME >=
(STARTTIME + NOHTimeChange1)) AND (TIME <(STARTTIME + NOHTimeChange3)) AND
(NOHChange2 = 0 <<quai>>) NOHChange1, IF((TIME >=(STARTTIME + NOHTimeChange2)) AND
(NOHChange3 = 0 <<qual>>) NOHChange2,

IF{ (TIME >=(STARTTIME + NOHTmeChange3)) NOHChange3)))))),

unct =1,
IF(((TIME >=(STARTTIME + (CISTimeChange1 + S<<da>>))) AND (Fmdondfy
Fumsn‘;)ﬁderm)) . ((4 54" Functionality} - (0.54* Cobesion) - Polymorphism - Messagi

" IF((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>}) AND (Functionality >=

. ((- NOH)
(W»MAWNE'(CW*MW)))M(FM
uncﬂmohum)) ((4 54 Functionality) - (0.54* Cohesion) - Polymorphism - Messaging

" IF((TIME >=(STARTTIME + (CISTimeChange2)+ 5 <<da>>)) AND (Funcionality >=
FunclionaltyReference), ((- NOH) + NOHFirstFunce), IF(((TIME >=(STARTTIME + (CISTimeChange3
+ 5<<da>>))) AND (Functionality < Fumm» {(4.54"Functionality) - (0.54" Cohesion)

-P - Messaging - Design See),
IF((TIME MSTMTTIE + (CISTimeChange3)+ 5 <<da>>}) AND (Functionality >=
FunctionalityReference), (- NOH) + NOHFirstFunct), IF(((TIME >=(STARTTIME +
(CISTimeChange1 + s«u.»)» AND (Functionality< FuncionalityReference)) .((4.54*Functionality) -
(0.54° Cohesion) - Polymorphism - Messaging - 'Design Szz'),
IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>})) AND (Functionality >
= Funwmm» , ((4.54*Functionality) - (0.54" Cohesion) - Polymorphism - Messaging -

IF((TIME >={STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionafityReference), ((- NOH) + NOHFirstFunct),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

"Design Size").

IF((TIME >={STARTTIME + (CAMTimeChange2+ 5 <<da>>})) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct), IF(((TIME >=(STARTTIME +
(CAMTimeChange3+ 5<<da>>))) AND (Functionality < FunctionalityReference)) , ((4.54*
Functionality) - (0.54* Cohesion) - Polymorphism - Messaging - 'Design Size’),

IF((TIME >=(STARTTIME + (CAMTimeChange3+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct), IF((TIME >=(STARTTIME +
(CAMTimeChange + §<<da>>))) AND {Functionality< FunctionalityReference)) ,((4.54 Functionality)

- (0.54* Cohesion) - Polymorphism - Messaging - 'Design Size'),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Functionality >

= Furm:altmm» ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

e IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct),
IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND (Functionality>=
FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

‘Design Size’),

IF((TIME >=(STARTTIME + (DSCTimeChange2+ § <<da>>))) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct), IF(((TIME >=(STARTTIME +
(DSCTimeChange3+ 5<<da>>))) AND (Functionality < FunctionalityReferenca)) , ((4.54*Functionality)
- (0,54* Cohasion) - Polymorphism - Messaging - 'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange3+ 5§ <<da>>))) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct), IF(((TIME >=(STARTTIME +
(DSCTimeChange1 + 5<<da>>))) AND (Functionality< FunctionalityReference)) ,((4.54*Functionality)

- (0.54* Cohesion) - Polymorphism - Messaging - ‘Design Siza'),

IF(((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da>>))) AND (Functionality <

FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Polymorphism - Messaging -

‘Design Sze'),

IF((TIME >={STARTTIME + (NOPTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct),

IF(((TIME >=(STARTTIME + (NOPTimeChanga2 + 5<<da>>))) AND (Functionality <
W)) , ((4 54*Functionality) - {0.54* Cohesion) - Polymorphism - Messaging -

IF((TIME >={STARTTIME + (NOPTimeChange2)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct), IF(((TIME >=(STARTTIME +
(NOPTimeChange3 + 5<<da>>))) AND (Functionality < FunctionaityReference)) , ((4.54*
Functionality) - (0.54* Cobesion) - Polymorphism - Messaging - 'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange3)+ 5 «da»)) AND (Functionality >=
FunctionalityReference), ((- NOH) + NOHFirstFunct), IF(((TIME >=(STARTTIME +
(NOPTimeChange1 + S<<da>>))) AND (Functionality< FunctionalityReferance)) ,((4.54
- {0.54* Cohesion) - Polymorphism - Messaging - Design Size)))M

}
aux Computed NOM {
autotype Real
autounit qual
def NOM +
IF(CheckedComplexity =1, IF((TIME >=(STARTTIME + NOMTimeChange1)) AND (TIME <
(STARTTIME + NOMTimeChange2)) NOMChange1, IF((TIME >=(STARTTIME +
NOMTimeChange1)) AND (NOMChange2 = 0 <<qual>>) AND (NOMChange3 = 0 <<qual>>),
NOMChange1,

IF((TIME >=(STARTTIME + NOMTimeChange2)) AND (TIME <(STARTTIME +
NOMTimeChange3)) NOMChange2, IF((TIME >=(STARTTIME + NOMTimeChange2)) AND
(NOMChange1 = 0 <<qual>>) AND (NOMChange3 = 0 <<qual>>) NOMChange2,IF((TIME >=
(STARTTIME + NOMTimeChange1)) AND (TIME <(STARTTIME + NOMTimeChange3)) AND

147

(NOMChange2 = 0 =<qual>=), NOMChange1, IF((TIME >=(STARTTIME +NOMTimeChange2)) AND
(NOMChange3 = 0 <=<=qual>>) NOMChange2,
IF((TIME >=(STARTTIME + NOMTimeChange3)), NOMChange3))))))).

IF(ComplexAdaptation =1,

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>=>))) AND
(Understandability < UnderstandReference)) , ((-3.03"Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - 'Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - 'Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da==)) AND
(Understandability == UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (DCC_TimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))
. ((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
'‘Design Size"),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME ==
(STARTTIME + (DCC_TimeChange1 + 5<=<da=>))) AND (Understandability< UnderstandReference))
[((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
'Design Size"),

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03*Understandability) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - '‘Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND
(Understandability == UnderstandReference), ((- NOM) + NOMFirstUnderst),

IF{ ((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND
(Understandability == UnderstandReference)) , ((-3.03*Understandability) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - 'Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange2+ 5§ <<da>>))) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange3+ 5<<da=>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
‘Design Size"),

IF((TIME >=(STARTTIME + (CAMTimeChange3+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) ,(
(~3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
‘Design Size"),

IF{ ((TIME >=(STARTTIME + (NOPTimeChange1 + 5<<da=>))) AND
(Understandability >= UnderstandReference)) , ((-3.03*Understandability) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - 'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange1)+ 5§ <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst),

IF(((TIME >=(STARTTIME + (NOPTimeChange2 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03*Understandability) -Abstraction +
Encapsulation - Coupling + Cohesion - Polymorphism - 'Design Size'),

IF((TIME >=(STARTTIME + (NOPTimeChange2+ 5 <<da=>=>))) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (NOPTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
‘Design Size"),

IF((TIME >=(STARTTIME + (NOPTimeChange3+ 5 <<da=>))) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (NOPTimeChange1 + 5<<da>=))) AND (Understandability< UnderstandReference)) (
(-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
'‘Design Size'),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - 'Design Size'),

IF((TIME >==(STARTTIME + (DAM_TimeChange1)+ 5 <<da=>)) AND
(Understandability == UnderstandReference), ((- NOM) + NOMFirstUnderst),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<=da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation

148

- Coupling + Cohesion - Polymorphism - 'Design Sze'),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))

, ((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

Design Size),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ § <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange1 + 6<<da>>))) AND (Understandability< UnderstandReference))
.((-Q,OSW -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
Design),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03"Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - 'Design Size’),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>})) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - 'Design Size),

IF{ (TIME >=(STARTTIME + (DSCTimeChange2)+ 5 <<da>>}) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (DSCTimeChange3 + S5<<da>>))) AND (Understandability < UnderstandReference)) ,
({-3.03"Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

'‘Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (DSCTimeChange1 + 6<<da>>))) AND (Understandability< UnderstandReference)) ,(
(-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

'Design Size'),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 6<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03"Understandabiiity) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - ‘Design Size'),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND

>= UnderstandReference), ((- NOM) + NOMFirstUnderst),

IF(((TIME >={STARTTIME + (ANATimeChange2 + 6<<da>>))) AND
(Understandabllity < UnderstandReference)) , ((-3.03*Understandability) -Abstraction + Encapsulation
- Coupling + Cohesion - Polymorphism - ‘Design Size"),

IF{ (TIME >=(STARTTIME + (ANATimeChange2)+ 5 <<da>>)) AND

(Understandability >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -

‘Design Size),

IF((TIME >=(STARTTIME + (ANATimeChange3)+ § <<da>>)) AND
(U >= UnderstandReference), ((- NOM) + NOMFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) (
(-3.03*Understandability) -Abstraction + Encapsulation - Coupling + Cohesion - Polymorphism -
‘Design Size')

IIIIDIMINIIMIMNMNNNN)

)
aux Computed NOP {
autotype Real
autounit qual
def NOP +
IF(CheckedPolymo =1, IF((TIME >=(STARTTIME + NOPTimeChange1)) AND (TIME <(STARTTIME
+ NOPTimeChange2)), NOPChange1, IF((TIME >=(STARTTIME + NOPTimeChange1)) AND
(NOPChange2 = 0 <<quai>>) AND (NOPChange3 = 0 <<qual>>) NOPChange1,
IF((TIME >={STARTTIME + NOPTimeChange2)) AND (TIME <(STARTTIME +
NOPTimeChange3)) NOPChange2, IF((TIME >=(STARTTIME + NOPTimeChange2)) AND
(NOPChange1 = 0 <<quai>>) AND (NOPChange3 = 0 <<qual>>) NOPChange2 IF((TIME >=
(STARTTIME + NOPTimeChange1)) AND (TIME <(STARTTIME + NOPTimeChange3)) AND
(NOPChange2 = 0 <<qual>>) NOPChange1, IF((TIME >=(STARTTIME + MOA_TimeChange2)) AND

149

(NOPChange3 = 0 <<qual>>) . NOPChange2,
IF((TIME >=(STARTTIME + NOPTimeChange3)), NOPChange3))))))),

IF(PolymoAdaptationF =1,

IF(((TIME >={STARTTIME + (DCC_TimeChangel + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) . ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND (Flexibiiity >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) . ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3 + 5<<da>>))) AND (Flexibility < FlexibilityReference)) , ((2*Flexibility) (0.5
Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility), 1F(((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da>>))) AND (Flexibility< FlexibilityReference)) ,((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Compaosition),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + S<<da>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (DAM_TimeChange2+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility), IF(((TIME >=(STARTTIME +
(DAM_TimeChange3+ 5<<da>>))) AND (Flexibility < FlexibilityReference)) , ((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Compaosition),

IF((TIME >=(STARTTIME + (DAM_TimeChange3+ 5§ <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility), IF(((TIME >=(STARTTIME +
(DAM_TimeChange1 + S<<da>>))) AND (Flexibility< FlexibilityReference)) ,((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Composition),

IF(((TIME >=(STARTTIME + (MOA_TimeChange1 + 5<<da>>))) AND (Flexibility <
FlexibilityReference)) ., ((2*Flexibility) -(0.5*Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)) AND (Flexibility >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility),

IF(((TIME >=(STARTTIME + (MOA_TimeChange2 + S<<da>>))) AND (Flexibility <
FlexibilityReference)) , ((2*Flexibility) «(0.5"Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (MOA_TimeChange2+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((-NOP) + NOPFirstFlexibility), IF(((TIME >=(STARTTIME +
(MOA_TimeChange3+ 5<<da>>))) AND (Flexibility < FlexibilityReference)) , ((2*Flexibility) -(0.5*
Encapsulation) + (0.5* Coupling) - Composition),

IF((TIME >=(STARTTIME + (MOA_TimeChange3+ 5 <<da>>))) AND (Flexibility >=
FlexibilityReference), ((- NOP) + NOPFirstFlexibility), 1F(((TIME >=(STARTTIME +
(MOA_TimeChange1 + 5<<da>>))) AND (Flexibility< FlexibilityReference)) ,((2*Flexibility) -(0.5°
Encapsulation) + (0.5" Coupling) - Composition))))))))))MNN.

IF(PolymoAdaptationU =1,

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Compilexity - 'Design Size"),

IF((TIME >=(STARTTIME + (DCC_TimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst),

IF(((TIME >=(STARTTIME + (DCC_TimeChange?2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - '‘Design Size'),

IF((TIME >=({STARTTIME + (DCC_TimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (DCC_TimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))
. ((-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity -
'‘Design Size'),

IF((TIME >=(STARTTIME + (DCC_TimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference))
((-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity -
‘Design Size'),

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND

150

(Understandability >= UnderstandReference)) , ((-3.03"Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - ‘Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03"Understandability) + Abstraction +
Encapsutation - Coupling + Cohesion - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (CAMTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity -

‘Design Size'),

IF((TIME >=(STARTTIME + (CAMTimeChange3+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), |F(((TIME >=
(STARTTIME + (CAMTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) ,(
(-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity - "Design

Size'),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03*Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND
(Understandability == UnderstandReference), ((- NOP) + NOPFirstUnderst),

IF(((TIME >=(STARTTIME + (DSCTimeChange2 + 5<<da>>))) AND
(Understandability >= UnderstandReference)) , ((-3.03"Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (DSCTimeChange2+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (DSCTimeChange3+ 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity -
‘Design Size"),

IF((TIME >=(STARTTIME + (DSCTimeChange3+ 5 <<da>>))) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (DSCTimeChange1 + 5<<da>>))) AND (Understandability< UnderstandReference)) (
(-3.03"Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity - ‘Design
Size'),

IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandabillity) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Abstraction +
Encapsutation - Coupling + Cohesion - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference))
, ((-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexty -
‘Design Size'),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5 <<da>>)) AND
{Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (DAM_TimeChange1 + S<<da>=>))) AND (Understandability< UnderstandReference))
{(-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity -
‘Design Size'),

IF(((TIME >=(STARTTIME + (NOMTimeChange1 + 5<<da>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - 'Design Size'),

IF((TIME >=(STARTTIME + (NOMTimeChange1)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst),

IF(((TIME >=(STARTTIME + (NOMTimeChange2 + 5<<da>>))) AND
(Understandability < UnderstandReference)) . ((-3.03*Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - ‘Design Size'),

IF((TIME >=(STARTTIME + (NOMTimeChange2)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity -
‘Design Size"),

151

IF((TIME >=(STARTTIME + (NOMTimeChange3)+ 5 <<da>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (NOMTimeChange1 + 5<<=da=>))) AND (Understandability< UnderstandReference)) ,(
(-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity - 'Design
Size"),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da=>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - '‘Design Size’),

IF((TIME >==(STARTTIME + (ANATimeChange1)+ 5 <=<da=>>)) AND
(Understandability >= UnderstandReference), ({(- NOP) + NOPFirstUnderst),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + 5<<da=>>))) AND
(Understandability < UnderstandReference)) , ((-3.03*Understandability) + Abstraction +
Encapsulation - Coupling + Cohesion - Complexity - '‘Design Size’),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5 <<da>>)) AND
(Understandability == UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME ==
(STARTTIME + (ANATimeChange3 + 5<<da>>))) AND (Understandability < UnderstandReference)) ,
((-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity -
‘Design Size"),

IF((TIME >=(STARTTIME + (ANATimeChange3)+ 5 <<da=>>)) AND
(Understandability >= UnderstandReference), ((- NOP) + NOPFirstUnderst), IF(((TIME >=
(STARTTIME + (ANATimeChange1 + 5<<=da=>=>))) AND (Understandability<= UnderstandReference)) .(
(-3.03*Understandability) + Abstraction + Encapsulation - Coupling + Cohesion - Complexity - 'Design
Size)))NMMMMNINMMIMMMINIININNIND.

IF(PolymoAdaptationFunct =1,

IF(((TIME >=(STARTTIME + (CISTimeChange1 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Messaging - '‘Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct),

IF(((TIME >=(STARTTIME + (CISTimeChange2 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (CISTimeChange2)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF(((TIME >=(STARTTIME + (CISTimeChange3
+ 5==da=>))) AND (Functionality < FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion)
- Messaging- 'Design Size' - Hierarchies),

IF((TIME >=(STARTTIME + (CISTimeChange3)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF(((TIME >=(STARTTIME +
(CISTimeChange1 + 5=<da>>))) AND (Functionality< FunctionalityReference)) ,((4.54*Functionality) -
(0.54* Cohesion) - Messaging - 'Design Size' - Hierarchies),

IF(((TIME >=(STARTTIME + (CAMTimeChange1 + 5<<da>=>))) AND (Functionality >
= FunctionalityReference)) , ({(4.54*Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <=<da>>)) AND (Functionality ==
FunctionalityReference), ((- NOP) + NOPFirstFunct),

IF(((TIME >=(STARTTIME + (CAMTimeChange2 + 5<<da>>))) AND (Functionality >
= FunctionalityReference)) , ((4.54"Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (CAMTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF((TIME >=(STARTTIME +
(CAMTimeChange3+ 5<<da=>))) AND (Functionality < FunctionalityReference)) , ((4.54*
Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' - Hierarchies),

IF((TIME >=(STARTTIME + (CAMTimeChange3+ 5 <=<da=>))) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF(((TIME >=(STARTTIME +
(CAMTimeChange1 + 5<<da>>))) AND (Functionality< FunctionalityReference)) ,((4.54*Functionality)
- (0.54* Cohesion) - Messaging - 'Design Size' - Hierarchies),

IF(((TIME >=(STARTTIME + (DSCTimeChange1 + 5<<da=>>))) AND (Functionality >
= FunctionalityReference)) , ((4.54 Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct),

IF(((TIME >=(STARTTIME + (DSCTimeChangeZ2 + 5<<da>>))) AND (Functionality==
FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (DSCTimeChange2+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF(((TIME >=(STARTTIME +

152

(DSCTimeChange3+ 5<<da>>))) AND (Functionality < FunctionalityReference)) , ((4 54*Funclionality)
- (0.54" Cohesion) - Messaging - 'Design Size’ - Hierarchies),

IF((TIME >=(STARTTIME + (DSCTimeChange3+ 5 <<da>>))) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF(((TIME >=(STARTTIME +
(DSCTimeChange1 + S<<da>>))) AND (Functionality< FunctionalityReference)) .((4.54*Functionality)
- (0.54* Cohesion) - Messaging - "Design Size’ - Hierarchies),

IF(((TIME >=(STARTTIME + (NOHTimeChange1 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ((4.54*Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' -

Hierarchies),

IF((TIME >=(STARTTIME + (NOHTimeChange1)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct),

IF(((TIME >=(STARTTIME + (NOHTIimeChange2 + 5<<da>>))) AND (Functionality <
FunctionalityReference)) , ((4 54 Functionality) - (0.54* Cohesion) - Messaging - 'Design Size' -
Hierarchies),

IF((TIME >=(STARTTIME + (NOHTimeChange2)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF(((TIME >=(STARTTIME +
(NOHTimeChange3 + 5<<da=>>))) AND (Functionality < FunctionalityReference)) , ((4.54*
Functionality) - (0.54" Cohesion) - Messaging - ‘Design Size' - Hierarchies),

IF((TIME >=(STARTTIME + (NOHTimeChange3)+ 5 <<da>>)) AND (Functionality >=
FunctionalityReference), ((- NOP) + NOPFirstFunct), IF(((TIME >=(STARTTIME +
(NOHTIimeChange1 + 5<<da>>))) AND (Functionality< FunctionalityReference)) .((4.54*Functionality)
- (0.54" Cohesion) - Messaging - ‘Design Size’ - Hierarchies)))))NMMMNNHNNINN).

IF(PolymoAdaptationExt =1,

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Extendibility <
ExtendibilityReference)) , ((2"Extendibility) - Abstraction + Coupling -Inheritance),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) AND (Extendibility>=
ExtendibilityReference), ((- NOP) + NOPFirstExt),

IF(((TIME >=(STARTTIME + (ANATIimeChange2 + 5<<da>>))) AND (Extendibility <
ExtendibllityReference)) , ((2*Extendibility) - Abstraction + Coupling -Inherntance),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ 5 <<da>>)) AND (Extendibility >=
ExtendibllityReference). ((- NOP) + NOPFirstExt), IF(((TIME >=(START IIME + (ANATimeChange3 +
S<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling -
Inheritance),

IF((TIME >=(STARTTIME + (ANATImeChange3)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- NOP) + NOPFirstExt), IF(((TIME >=(STARTTIME + (ANATimeChange1
+ 5<<da>>))) AND (Extendibility< ExtendibilityReference)) ((2"Extendibility) - Abstraction + Coupling
-inheritance),

IF(((TIME >=(STARTTIME + (MFATimeChange1 + 5<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling -Inheritance),

IF((TIME >=(STARTTIME + (MFATimeChange1)+ 5 <<da>>)) AND (Extendibility >=
ExtendibilityReference), ((- NOP) + NOPFirstExt),

IF(((TIME >=(STARTTIME + (MFATimeChange2 + S<<da>>))) AND (Extendibility >=
ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling -Inheritance),

IF((TIME >==(STARTTIME + (MFATimeChange2+ 5 <<da>>))) AND (Extendibility >=
ExtendibilityReferance), ((- NOP) + NOPFirstExt), IF(((TIME >=(STARTTIME + (MFATimeChange3+
S<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling -
Inheritance),

IF((TIME >=(STARTTIME + (MFATimeChange3+ 5 <<da>>))) AND (Extendibility >=
ExtendibilityReference), ((- NOP) + NOPFirstExt), IF(((TIME >=(STARTTIME + (MFATIimeChange1
+ S5<<da>>))) AND (Extendibility< ExtendibilityReference)) .((2*Extendibility) - Abstraction + Coupling
-inhentance),

IF(((TIME >=(STARTTIME + (DCC_TimeChange1 + 5<<da>>))) AND (Extendibility >
= ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling -Inheritance),

IF((TIME >==(STARTTIME + (DCC_TimeChange1)+ 5§ <<da>>)) AND (Extendibility >
= ExtendibilityReference), ((- NOP) + NOPFirstExt),

IF(((TIME >=(STARTTIME + (DCC_TimeChange2 + 5<<da>>))) AND (Extendibility >
= ExtendibilityReference)) , ((2*Extendibility) - Abstraction + Coupling -Inheritance),

IF((TIME >=(STARTTIME + (DCC_TimeChange2+ 5 <<da>>))) AND (Extendibility>=
ExtendibilityReference), ((- NOP) + NOPFirstExt), IF(((TIME >=(STARTTIME +
(DCC_TimeChange3d+ S<<da>>))) AND (Extendibility < ExtendibilityReference)) , ((2*Extendibility) -
Abstraction + Coupling -Inheritance),

IF((TIME >=(STARTTIME + (DCC_TimeChange3+ 5 <<da>>))) AND (Extendibility >
= ExtendibilityReference), ((- NOP) + NOPFirstExt), IF((TIME >=(STARTTIME +
(DCC_TimeChange1 + 5<<da>>))) AND (Extendibility< ExtendibilityReference)) ,((2*Extendibility) -
Abstraction + Coupling -Inheritance)))))N)NNNNNM).

153

IF(PolymoAdaptationEffect =1,
IF(((TIME >=(STARTTIME + (DAM_TimeChange1 + 5<<da>>))) AND (Effectiveness
< EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -

Inheritance),

IF{ (TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- NOP) + NOPFirstEffect),

IF(((TIME >=(STARTTIME + (DAM_TimeChange2 + 5<<da>>))) AND (Effectiveness
< EffectivenessReference)) , ((5°Effectiveness) - Abstraction - Encapsulation - Composition -
Inheritance),

IF((TIME >=(STARTTIME + (DAM_TimeChange2)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- NOP) + NOPFirstEffect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange3 + 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*
Effectiveness) - Abstraction - Encapsulation - Composition - Inheritance),

IF((TIME >=(STARTTIME + (DAM_TimeChange3)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReference), ((- NOP) + NOPFirstEffect), IF(((TIME >=(STARTTIME +
(DAM_TimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ((5*Effectiveness)
- Abstraction - Encapsulation - Composition - Inheritance),

IF(((TIME >=(STARTTIME + (MFATimeChange1 + 5<<da>>))) AND (Effectiveness >
= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Inheritance),

IF((TIME >=(STARTTIME + (MFATimeChange1)+ 5 <<da>>)) AND (Effectiveness>=
EffectivenessReference), ((- NOP) + NOPFirstEffect),

IF((TIME >=(STARTTIME + (MFATimeChange2 + S<<da>>))) AND (Effectiveness >
= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Inheritance),

IF((TIME >=(STARTTIME + (MFATimeChange2+ 5 <<da>>))) AND (Effectiveness >
= EffectivenessReference), ((- NOP) + NOPFirstEffect), IF(((TIME >=(STARTTIME +
(MFATimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*Effectiveness)
- Abstraction - Encapsulation - Composition - Inheritance),

IF((TIME >=(STARTTIME + (MFATimeChange3+ 5 <<da>>))) AND (Effectiveness >
=EffectivenessReference), ((- NOP) + NOPFirstEffect), IF(((TIME >=(STARTTIME +
(MFATimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) .((5'Effectiveness) -
Abstraction - Encapsulation - Composition - Inheritance),

IF(((TIME >=(STARTTIME + (MOA_TimeChange1 + 5<<da>>))) AND (Effectiveness
>= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Inheritance),

IF((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)) AND (Effectiveness
>= EffectivenessReferance), ((- NOP) + NOPFirstEffect),

IF(((TIME >=(STARTTIME + (MOA_TimeChange2 + 5<<da>>))) AND
(Effectiveness>= EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation -
Composition - Inheritance),

IF((TIME >=(STARTTIME + (MOA_TimeChange2+ 5 <<da>>))) AND (Effectiveness
>= EffectivenessReference), ((- NOP) + NOPFirstEffect), IF(((TIME >=(STARTTIME +
(MOA_TimeChange3+ 5<<da>>))) AND (Effectiveness < EffectivenessReference)) , ((5*
Effectiveness) - Abstraction - Encapsulation - Composition - Inheritance),

IF((TIME >=(STARTTIME + (MOA_TimeChange3+ 5 <<da>>))) AND (Effectiveness
>= EffectivenessReference), ((- NOP) + NOPFirstEffect), IF(((TIME >=(STARTTIME +
(MOA_TimeChange1 + 5<<da>>))) AND (Effectiveness< EffectivenessReference)) ((5°
Effectiveness) - Abstraction - Encapsulation - Composition - Inheritance),

IF(((TIME >=(STARTTIME + (ANATimeChange1 + 5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Inheritance),

IF((TIME >=(STARTTIME + (ANATimeChange1)+ § <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- NOP) + NOPFirstEffect),

IF(((TIME >=(STARTTIME + (ANATimeChange2 + S5<<da>>))) AND (Effectiveness <
EffectivenessReference)) , ((5*Effectiveness) - Abstraction - Encapsulation - Composition -
Inheritance),

IF((TIME >=(STARTTIME + (ANATimeChange2)+ § <<da>>)) AND (Effectiveness >
= EffectivenessReference), ((- NOP) + NOPFirstEffect), IF(((TIME >=(STARTTIME +
(ANATImaChanne3 + 5<<da>>1)1 AND (Fifactiveness < FifectivenessReference)) . ((5*Effectiveness)

154

level Coupling {

autotype Real

autounit qual

init DCCinitial

inflow { autodef 'Change in coupling' }
}
const CouplingAdaptationEx {

autotype Real

init O

}

const CouplingAdaptationF {
autotype Real
init O

¥

const CouplingAdaptationR {
autotype Real
init O

}

const CouplingAdaptationU {
autotype Real
init O

}

const DAM {
autotype Real
autounit qual
init 0.9 ==qual>>

}

const DAM_Change1 {
autotype Real
autounit qual
init - 0.3 =<qual>=>

}

const DAM_ChangeZ2 {
autotype Real
autounit qual
init -0.5=<=qual=>

}

const DAM_Change3 {
autotype Real
autounit qual
init -0.7 <==qual>=>

const DAM_ExecuteTime {
autotype Real
autounit da
init 1=<da==>

}

const DAM_TimeChange1 {
autotype Real
autounit da
init 30 =<=da=>>

}

const DAM_TimeChange2 {
autotype Real
autounit da
init 60 =<=da==>

}
const DAM_TimeChange3 {
autotype Real

155

autounit da
init 90<<da>>

}
const DAMFirstEncapsu
autotype Real
autounit qual
Init INITIF((((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(MFATImeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)))) AND (Effectiveness >=
\ EffectivenessReference)), Encapsulation)

const DAMFirstFlexbility {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DCC_TimeChange1) + 5 <<da>>)) OR ((TIME >=(STARTTIME +
(MOA_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>))))
AND (Flexibility >= FlexibilityReference)), Encapsulation)

}
const DAMFirstUnderstand {
autotype Real

autounit qual
init INITIF((((TIME >=(STARTTIME + (CAMTimeChange1) + 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DCC_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (ANATimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME +
(NOMTimeth\get)+ 5 <<da>>)))OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>))))
’ AND (Understandabiiity >= UnderstandReference)), Encapsulation)
const DAMInitial {
autotype Real
autounit qual
Init INITIF(TIME = STARTTIME, DAM)

}

const DCC {
autotype Real
unit qual
init S5<<qual>>

}
const DCC-FirstChange {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(CAMTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>))))
AND (Reusability >= ReusabilityReference)), Coupling)
}

const DCC_Change1 {
autotype Real

autounit qual
Init 5<<qual>>

}

const DCC_Change2 {
autotype Real
autounit qual
Init 10<<qual>>

}

const DCC_Change3 {
autotype Real
autounit qual
init 15<<qual>>

qual
Init INITIF(({(TIME >=(STARTTIME + (ANATimeChange1) + § <<ga>>)) OR ((TIME >=(STARTTIME +
(MFATImeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ § <<du>>))))
ExtendibilityReference)), Coupling)

qual
Inlt INITIF((((TIME >=(STARTTIME + (DAM_TimeChange1) + § «da»)) OR ((TIME >=(STARTTIME +
(MOA_TimeChange1)+ 5 <<da>>))) G‘;)(M >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>))))
FlexibistyReference)), Coupling)

autounit qual
Init INITIF((((TIME >=(STARTTIME + (CAMTimeChange1) + 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DAM_TimeChange1)+ 6 <<da>>))) OR ({TIME >=(STARTTIME + (ANATimeChange 1)+ 5§ <<da>>)))
OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>})) OR ((TIME >=(STARTTIME +
(NOHTimChml)v § <<da>>))JOR ((TIME >=(STARTTIME + (NOPTImeChange1)+ 5 <<da>>))))
AND (Understandabiiity >= UnderstandReference)), Coupling)

)
const DCCindtial {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, DCC)

)
level Design Size {

autotype Real

autounit gual

Init DSCinitial

inflow { autode! ‘Change in Design Size' }
]

const DesignSizaAdaptationFunct (
autotype Roal
nit0

)

const DesignSzeAdaptationR {
autotype Real

i init 0

const DesignSizeAdaptationU {
autotype Real
Init 0

)

const DSC {
autotype Real
autounit qual
Init 50<<qual>>

}
const DSC-FirstChange {
autotype Real

157

autounit qual

Init INITIF(((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DCC_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (CiSTimeChange1)+ 5 <<da>>))))
AND (Reusability >= ReusabilityReference)), Design Size')

}

const DSC_ExecuteTime {
autotype Real
autounit da
init 1<<da>>

}

const DSCChange1 {
autotype Real
autounit qual
Init (-20)<<qual=>>

}

const DSCChange?2 {
autotype Real
autounit qual
Init (-40)<<qual>>

}

const DSCChange3 {
autotype Real
autounit qual
init (-45)<<qual>>

const DSCFirstFunct {
autotype Real
autounit qual
Init INITIF(((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(NOPTimeChange1)+ 5 <<da>>))) OR ((TIME >={STARTTIME + (CISTimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (NOHTimeChange1)+ 5 <<da>>}))) AND (Functionality >=
FunctionalityReference)), 'Design Size’)

}
const DSCFirstUnderst {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DCC_TimeChange1) + 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DAM_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (NOMTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME +
(ANATimeChmgﬂh § <<da>>)))OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>))))
ND (Understandability >= UnderstandReference)), ‘Design Size')

}
const DSCinitial {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, DSC)

}

const DSCTimeChange1 {
autotype Real
autounit da
init 30<<da>>

}

const DSCTimeChange2 {
autotype Real
autounit da
init 60<<da>>

}

const DSCTimeChange3 {
autotype Real
autounit da
init 90<<da>>

)aux Effectiveness {

autotype Real
autounit qual
def ((0.2*Encapsulation)+(0.2*Abstraction)+(0.2*Composition)+(0.2*Polymorphism)+(0.2* Inheritance))

158

}
const EffectivenessReference {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, Effectiveness)

}

const EncapsuAdaptationEffect {
autotype Real
init0

}

const EncapsuAdaptationF {
autotype Real
init0

)

const EncapsuAdaptationU {
autotype Real
init 0

}
level Encapsulation {
autotype Real
autounit qual
init DAMInitial
inflow { autodef 'Change in Encapsulation' }

}
aux Extendibility {
autotype Real
autounit qual
def (((0.5)*Abstraction) + ((-0.5)*Coupling) + ((0.5)"Inheritance) + ((0.5)*Polymorphism))

const ExtendibilityReference {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, Extendibility)

}
aux Flexibility {
autotype Real
autounit qual
def ((0.25*Encapsulation)-(0.25"Coupling) +(0.5*Composition) +(0.5*Polymorphism))

)
const FlexibilityReference {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, Flexibility)

def (((0.22)"Polymorphism) + ((0.12)*Cohesion) + ((0.22)*Messaging)+ ((0.22)"Design Size')+ ((0.22)*
Hierarchies))

}
const FunctionalityReference {
autotype Real
autounit qual
Init INITIF(TIME = STARTTIME, Functionality)

}
level Hierarchies {
autotype Real
autounit qual
init NOHInitial
inflow { autodef 'Change in Hierarchies'}

}

const HierarchiesAdaptationFunct {
autotype Real
init0

{ovollnheritanee{

159

autotype Real

unit qual

init MFAInitial

inflow { autodef ‘Change in inheritance’)

}
const InheritanceAdaptationEffect {

autotype Real
init0

}

const InhertanceAdaptationExt {
autotype Real
init 0

}
level Messaging {
autotype Real
autounit qual
init CISinitial
inflow { autodef ‘Change in Messaging' }

}

const MessagingAdaptationFunct {
autotype Real
init 0

}

const MessagingAdaptationR {
autotype Real
init 0

}

const MFA {
autotype Real
autounit qual
init 0.9 <<qual>>

}

const MFA_ExecuteTime {
autotype Real
unit da
init 1

}

const MFAChange1 {
autotype Real
autounit qual
init -0.3<<qual>>

}
const MFAChange2 {

}

const MFAChange3 {
autotype Real
autounit qual
init -0.7<<qual>>

}
const MFAFirstEffect {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(ANATIimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5§ <<da>>)))
OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)))) AND (Effectiveness >=
EffectivenessReference)), Inheritance)

}
const MFAFirstExt {
autotype Real
autounit qual
Init INITIF(({((TIME >=(STARTTIME + (DCC_TimeChange1) + § <<da>>)) OR ((TIME >=(STARTTIME +
(ANATImeChange1)+ 5§ <<da>>))) OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)))}
AND (Extendibility >= ExtendibilityReference)), Inheritance)

160

}
const MFAInital
autotype Real
autounit qual
init INITIF(TIME = STARTTIME MFA)

}

const MFATimeChange1 {
autotype Real
autounit da
Init 30<<da>>

init 30<<da>>

)

const MOA_TimeChange2 {
autotype Real
autounit da
Init 60<<da>>

autotype Real
autounit qual
init -15<<quai>>
}
const MOAFirstEflect (
autotype Real
autounit gual
Init INITIF((((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) OR ((TIME >(STARTTIME +
(MFATImeChange1)+ 5 <<da>>))) OR ((TIME >={STARTTIME + (ANATimeChange1)+ 5 <<da>>)))

161

OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>)))) AND (Effectiveness >=
EffectivenessReference)), Composition)

}
const MOAFirstFlexibility {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DCC_TimeChange1) + 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DAM_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ 5 <<da>>))))
AND (Flexibility >= FlexibilityReference)), Composition)

}
const MOAInitial {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, MOA)

)

const NOH {
autotype Real
autounit qual
init 20<<qual>>

}

const NOH_ExecuteTime {
autotype Real
autounit da
init 1<<da>>

}

const NOHChange1 {
autotype Real
autounit qual
init -5<<qual>>

}

const NOHChange2 {
autotype Real
autounit qual
Init -10<<qual>>

}

const NOHChange3 {
autotype Real
autounit qual
init -15<<qual>>

}
const NOHFirstFunct {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(NOPTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5§ <<da>>)))) AND (Functionality >=
FunctionalityReference)), Hierarchies)

}
const NOHInitial {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, NOH)

}

const NOHTIimeChange1 {
autotype Real
autounit da
init 30<<da>>

}

const NOHTimeChange2 {
autotype Real
autounit da
init 60<<da>>

}
const NOHTimeChange3 {

autotype Real
autounit da

162

init 1<<da>>

)

const NOMChange1 {
autotype Real
autounit qual
init 5<<qual>>

}

const NOMChange2 {
autotype Real
autounit

inkt mrnrmmue >=(STARTTIME + (DCC_TimeChange1) + 5 <<da>>)) OR ((TIME >={STARTTIME +
(DAM_TimeChange 1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (CAMTimeChange 1)+ § <<da>>)))
OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ § <<da>>})) OR ((TIME >=(STARTTIME +
(ANATImeChange 1)+ 5 <<da>>)))OR ((TIME >=(STARTTIME + (NOPTimeChange1)+ & <<da>>))))

; AND (Understandabilty >= UnderstandReference)), Complexity)

const NOMinitial {

-m Real

Ink MF(M = STARTTIME, NOM)

)

const NOMTimeChange1 {
autotype Real
autounit da
init 30<<da>>

)

const NOMTimeChange2 (
autotype Real
autounit da
init 60<<da>>

}
const NOMTimeChange3 {
Real

autotype
autounit da
Init 80<<da>>

163

const NOPChange1 {
autotype Real
autounit qual
init -5<<qual>>

}

const NOPChange2 {
autotype Real
autounit qual
init -10<<=qual>>

}

const NOPChange3 {
autotype Real
autounit qual
init -15<<qual>>

}
const NOPFirstEffect {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DAM_TimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(MFATImeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (ANATimeChange 1)+ 5 <<da>>)))) AND (Effectiveness >=
EffectivenessReference)), Polymorphism)

}
const NOPFirstExt {
autotype Real
autounit qual
init INITIF((((TIME >=(STARTTIME + (DCC_TimeChange1) + 5§ <<da>>)) OR ((TIME >=(STARTTIME +
(MFATimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (ANATimeChange1)+ 5§ <<da>>))))
AND (Extendibility >= ExtendibilityReference)), Polymorphism)

}
const NOPFirstFlexibility {
autotype Real
autounit qual
Init INITIF((((TIME >={STARTTIME + (DCC_TimeChange1) + § <<da>>)) OR ((TIME >=(STARTTIME +
(DAM_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (MOA_TimeChange1)+ 5 <<da>>))
)) AND (Flexibility >= FlexibilityReference)), Polymorphism)

}
const NOPFirstFunct {
autotype Real
autounit qual
nit INITIF((((TIME >=(STARTTIME + (CISTimeChange1)+ 5 <<da>>)) OR ((TIME >=(STARTTIME +
(CAMTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (NOHTimeChange1)+ 5 <<da>>)))) AND (Functionality >=
FunctionalityReference)), Polymorphism)

}
const NOPFirstUnderst {
autotype Real
autounit qual
Init INITIF((((TIME >=(STARTTIME + (DCC_TimeChange1) + 5 <<da>>)) OR ((TIME >=(STARTTIME +
(DAM_TimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME + (CAMTimeChange1)+ 5 <<da>>)))
OR ((TIME >=(STARTTIME + (NOMTimeChange1)+ 5 <<da>>))) OR ((TIME >=(STARTTIME +
(ANATIimeChange1)+ 5§ <<da>>)))OR ((TIME >=(STARTTIME + (DSCTimeChange1)+ 5 <<da>>))))
AND (Understandability >= UnderstandReference)), Polymorphism)

}
const NOPInitial {
autotype Real
autounit qual
init INITIF(TIME = STARTTIME, NOP)
}
const NOPTimeChange1 {
autotype Real
autounit da
Init 30<<da>>

}
const NOPTimeChange2 {
autotype Real

164

autounit da
init 60<<da>>

}

const NOPTimeChange3 {
autotype Real
autounit da
init 90<<da>>

LomPoiymoAdaptaﬁonEﬂau(
autotype Real
init0

}
const PolymoAdaptationExt {

autotype Real
init0

)

const PolymoAdaptationF {
autotype Real
init 0

}

const PolymoAdaptationFunct {
autotype Real
init 0

)

const PolymoAdaptationU {
autotype Real
init0

)
level Polymorphism {

autotype Real

autounit qual

Init NOPInitial

inflow { autodel ‘Change in polymorphism’ }
}

aux Reusability {
autotype Real
autounit qual
def (((-0.25)"Coupling)+((0 5)*"Messaging)+ ((0.5)"Design Sze’)+ ((0.25)"Cohesion))

}
const ReusabilityReference {
autotype Real
autounit qual
Init INITIF(TIME = STARTTIME, Reusability)
}
aux Understandability {
autotype Real
autounit

qual
dof ((O.aa'EnapuMon)—(O.MHO.&‘AMHO.&’PWMMO.MWHO.
33*Compiexity)-(0.33*Design Size")

165

Appendix C: simulation validation on D2-D10 designs

This appendix presents the design changes and adaptations that were applied on D2-D10
designs. It also describes the correlations between the simulated and the real values of the

QMOOD quality attributes other than understandability.

C.1 Design 2 (D2): Banker system
C.1.1 System description and reference quality values

The banker system handles all banking operations such as accounts management and
money withdrawals through two interfaces: clerk and administrator interfaces. On the one hand,
a clerk can manage loans, check balances, and handle account operations. On the other hand, an
administrator manages staff profiles (figure 56). The quality and reference values of the banker

system are illustrated in tables 17 and 18.

C.1.2 Design changes
C.1.2.1 Design changes affecting the understandability quality attribute

The understandability quality attribute of D2 decreased below its reference value when
design size increased by seven classes. To counterbalance the impact of that design change,
encapsulation is the best fit adaptation mechanism both in the simulated and the real results

(tables 8 and 9).

166

1) Simulated results
D2 simulation results show that encapsulation should be increased by a factor of seven to
compensate for the decrease in understandability (figure 53). Therefore, the “DAM” metric

should equal 1 in all the newly added seven classes.

2) Real results

The simulated results were applied on D2’s class diagram as illustrated in figure 54.
Since encapsulation is maximized in all the seven classes (i.e. the ratio of private attributes to the
total number of attributes in each class equals 1), the real value of understandability after

adaptation equals its simulated value.

167

Control Bank

Emplayees : Employee Vector >
Accounts © Account Vector |
} Clients : Gient Vector

o»mu.Menu

14

S

1

Client Vector
Oients - VectorsCliont>
sclientVector()()
1 *addClent()()
1 1 saditChent{)|)
foll)
Menu
Employee Vector Account Vector §
-empioyees | vector <Employees> Accounts : Vector <Accoent> inactiveMenuD)
«tmployeeVector() +AccountVector() viogonMents)
+acdemplayeeiin booal) +addAccounty() +adminMena()
sdeletetmployee(in bool) +marageAccountl() vstaffMeny|)
sdisplayEmployees{in booll +saveinfol) schentMienul)
1 1 o.*
4 Has Chont
0.* Name : string
1+ 1 raddress | string
it o i
-employer : strin
Employes Qwner : Qlent income : Int
«Name : string balance : couble
Fassword @ string otTypo acctNumber : int 1 g ﬂ;ﬁuﬂn?rxﬁ instring e, I siring, In Infj
“Admin : bool AnterestRate : float -
+Employee|in string, In string, in bool) +update()
rgetNamey) 1 +toSening|)
sauthenticate{in string) : bool rAccoutny) Q—
+changePassword(in string, In strng) +withdraw()
sizAdmin(| : bool +despositl)
AN
policy
: ficat
type : Account
1
Savings
Checking
Loan
 APR :fioat
_taxRate : float
+rnadAPR()
+Loan(n aninfRate : float, In aPrinciple - foat, » anOwner : String)
)
_APR: float
sradAPR(}

168

+CDfim aninfRate : float, in aTaxRate : float, In aPrincipie : ficat, in anOwner - String|

Figure 52: The banker system class diagram

Understandability and design properties

levels

Understandability Adaptation to Changes in Design Quality properties

qual

204

204

— Polymorphism

— Encapsulation

104

-104

— Coupling

— Abstraction
Cohesion
Complexity

— Design Size
— Understandability

— UnderstandReference

-204

1st gt 2nd gt 3rd gt 4th gt

Understandability adaptation time

Figure 53: Understandability adaptation results of D2

169

Individual retirement account

- accountNumber : String
-accountType: String

+ getIRAtype (type: String)
+ managelRA (type: String,
dateAccountCreation: String,
balance: String)

Credit cards

-cardType: String
-cardNumber: String

+ manageOptimizerCard
(cardNumber: String,
expirationDate: String,
securityCode: String)

+ manageVISASignatureCard
(cardNumber: String,
expirationDate: String,
securityCode: String)

+ clearPointsCreditCard
(cardNumber: String,
expirationDate: String,
securityCode: String)

+ cancelCard (cardNumber:
String, securityCode: String)
+ activateCard (cardNumber:
String, securityCode: String)

Mortgages

- mortgageRate: String
- mortgageOption: String

Online banking

-title: String
-author: String

+ processOnlineBill (clientID: int,
billNumber: String)

+ cancelOnlineBill (billNumber:
String)

+ processFundsTransfer(clientID: int,
amount: String, accountNumber:
String)

+ createMortgage (clientID: String, rate:
String, option: String)

+ updateMortgage (clientID: String,
motgageNumber: String)

+ deleteMortgage (clientID: String,
motgageNumber: String)

Mobile banking

- type: String
-date: String

+ processMobileTransaction
(textMessage: String, id: int)
+ cancelMobileTransaction (id: int)

Banking services

-serviceType: String

+ getServiceType (type: String)

ATM banking

-banking service: String

+ personalServices (type: String)
+ manageAccount (accountNumber:
String)

Figure 54: D2’s understandability design change and adaptation

170

C.1.2.2 Design changes affecting the extendibility and the flexibility quality attributes

After adding seven new classes to D2’s class diagram, new aggregation and inheritance
relationships were identified as illustrated in figure 57. The aggregation relationships are
represented by a diamond symbol. Since the “Banking services”, “Credit cards”, and
“Mortgages” classes’ responsibilities are part of the “Control bank” class, the defined
relationship between them is aggregation. The “individual retirement account” inherits the
characteristics of the “Account” class. Another inheritance relationship is defined between the
“banking services” class and three classes: “Online banking”, “Mobile banking”, and “ATM
banking”. Those new changes and their adaptation were both simulated and applied in D2’s class
diagram.
1) Simulated results

The identification of new inheritance and aggregation relationships led to an increase in
coupling and a decrease in the flexibility and the extendibility quality attributes. After applying
the adaptation equation of polymorphism, the extendibility quality attribute reaches its reference
value and the decrease in flexibility is also counterbalanced (figures 55 and 56). The simulation
results show that the NOP metric should be increased by a factor of seven to effectively adapt the
flexibility and the extendibility values.
2) Real results

The simulated design changes and adaptations were applied on D2. Seven polymorphic
methods were added to D2’s classes as suggested by the simulation (figure 57). The values of

flexibility and extendibility after integrating their adaptations on D2 nearly equal their simulated.

171

Flexibility Adaptation to Changes in Design Quality properties

qual
n
]
- 154
g
[
2
T
L]
=8
(=]
& 4ol — Flesibility
= — FlexibilityReference
g — Polymorphism
g — Encapsulation
= — Coupling
E Composition
z st
.
=
o
- |
)
o } } } |
ist gt 2nd gt 3rd gt 4th gt
Flexibility adaptation time
Figure 55: Flexibility adaptation results of D2
Extendibility Adaptation to Changes in Design Quality properties
qual
n
1]
- 15—+
£
w
g
T
2 tot
[=]
e
2‘ — Polymorphism
o — Abstraction
ﬁ 5T — Coupling
= — Inheritance
-E — Extendibility
o ExtendibilityReferance
]
-
=
£ st
w

2nd gt
Extendibility adaptation time

3rd gt 4th gt

Figure 56: Extendibility adaptation results of D2

172

Mortgages

Credit cards

- mortgageRate: String

-cardType: String
-cardNumber: String

- mortgageOption: String

+ createMortgage (clientID: String, rate: String,

+ manageOptimizerCard (cardNumber:
String, expirationDate: String,
securityCode: String)

+ manageVISASignatureCard
(cardNumber: String, expirationDate:
String, securityCode: String)

+ clearPointsCreditCard (cardNumber:
String, expirationDate: String,
securityCode: String)

+ cancelCard (cardNumber: String,
securityCode: String)

+ activateCard (cardNumber: String,
securityCode: String)

+ manageOptimizerCard (cardNumber:
String)

+ manageVISASignatureCard
(cardNumber: String)

+ clearPointsCreditCard (cardNumber:
String)

+ cancelCard (cardNumber: Strina)

option: String)

+ updateMortgage (clientID: String,
motgageNumber: String)

+ deleteMortgage (clientID: String,
motgageNumber: String)

+ deleteMortgage (clientID: String)
+ createMortgage (clientID: String)

<> Control bank

Banking services

-serviceType: String

+ getServiceType (type: String)

Online banking

Mobile banking

-title: String
-author: String

4 - type: String
-date: String

+ processOnlineBill (clientID: int,
billNumber: String)

+ processMobileTransaction
(textMessage: String, id: int)

- accountNumber : String
-accountType: String

+ getiRAtype (type: String)
+ managelRA (type: String,
dateAccountCreation: String,

+ cancelOnlineBill (billNumber: String) + cancelMobileTransaction
+ processFundsTransfer(clientID: int, (id: int) _ .
amount: String, accountNumber: String) z-_(|jorp<:t(;ssMob|IeTransactlon
id: in
Individual retirement account ATM banking

-banking service: String

+ personalServices (type: String)
+ manageAccount (accountNumber: String)

balance: Strin
9 — Account

Figure 57: Flexibility and extendibility design change and adaptation in D2

173

C.1.2.3 Design changes affecting the reusability and the functionality quality attributes
The third design change applied in D2 leads to a decrease in design size. The class

“policy” was deleted and its attributes were merged in the “Account” class. Furthermore, the
“checking” and the “savings” classes were deleted and their responsibilities were processed by
the “Account” class.
1) Simulated results

The simulation results of the third design change in Powersim® show a decrease in the
reusability and the functionality quality attributes below their reference values (figures 58 and
59). This decrease is counterbalanced by applying the adaptation equation of cohesion. From the
simulation graph, cohesion should be increased by a factor of six. Therefore, the relatedness

among the methods of six classes in D2 should be maximized (i.e. CAM equals 1).

Functionality Adaptation to Changes in Design Quality properties

qual

S0+

— Polymaorphism
304 Cohesion

— Diesign Size
— Hierarchies

Functionality and design properties levels

— Messaging
21T/ — Functionality
= FunctionalityReferance
104
} } } |
ist gt 2nd gt 3rd gt 4th gt

Functionality adaptation time

Figure 58: Functionality adaptation results of D2

174

Reusability Adaptation to Changes in Design Quality properties

gqual

40+

v — ,
S04 Cohesion
Coupling
— Design Size
— Messaging
— Reusability
20+
|| ReusabilityReference

104

Reusability and design properties levels

| | | |

ist gt 2nd gt 3rd gt 4th gt

Reusability adaptation time

Figure 59: Reusability adaptation results of D2

2) Real results

The simulated adaptation through cohesion was applied in D2 to counterbalance the
effect of design size decrease. Hence, cohesion among the six following classes was maximized
by increasing the relatedness among their methods: “Individual retirement account”, “ATM
banking”, “Mobile banking”, “Online banking”, “Mortgages”, and “Banking services” (figure
60). The values of functionality and reusability after the real adaptation almost equal their

forecasted values in the simulation.

175

Credit cards

-cardType: String
-cardNumber: String

+ manageOptimizerCard (cardNumber:
String, expirationDate: String,
securityCode: String)

+ manageVISASignatureCard
(cardNumber: String, expirationDate:
String, securityCode: String)

+ clearPointsCreditCard (cardNumber:
String, expirationDate: String,
securityCode: String)

+ cancelCard (cardNumber: String,
securityCode: String)

+ activateCard (cardNumber: String,

Mortgages

- mortgageRate: String
- mortgageOption: String

+ createMortgage (clientID: String, rate: String,
option: String)

+ updateMortgage (clientID: String,
motgageNumber: String, rate: String, option:
String)

+ deleteMortgage (clientID: String,
motgageNumber: String, rate: String, option:
String)

+ deleteMortgage (clientID: String, rate: String,
option: String)

+ createMortgage (clientID: String, rate: String,
option: String)

securityCode: String)

+ manageOptimizerCard (cardNumber:
String)

+ manageVISASignatureCard
(cardNumber: String)

+ clearPointsCreditCard (cardNumber:
String)

+ cancelCard (cardNumber: String)

Online banking

<> [Control bank

7

Banking services
-serviceType: String
+ getServiceType (type: String)

Mobile banking
- type: String

-title: String
-author: String

-date: String
+ processMobileTransaction

+ processOnlineBill (clientID: int,
billNumber: String)

+ cancelOnlineBill (billNumber: String,
clientlD: int)

+ processFundsTransfer(clientID: int,
amount: String, accountNumber: String,
billNumber: String)

(textMessage: String, id: int)
+ cancelMobileTransaction

(id: int, textMessage: String)
+ processMobileTransaction
(id: int, textMessage: String)

|

ATM banking

Individual retirement account

-banking service: String

- accountNumber : String
-accountType: String

+ personalServices (type: String)
+ manageAccount (accountNumber:

+ getIRAtype (type: String,

dateAccountCreation: String, balance: String)

+ managelRA (type: String,
dateAccountCreation: String, balance: Str)

String, type: String)

:1> Account |

Figure 60: Functionality and reusability design change and adaptation in D2

176

C.1.2.4 Design changes affecting the effectiveness quality attribute

Composition is decreased by deleting two aggregation relationships from D2’s class
diagram. As a consequence, the effectiveness value dropped below its reference value. The
aggregation relationship between the “Mortgage” and the “Account” classes was deleted.
Instead, the “Mortgage” class becomes one of the children of the “Account” class. Moreover, the
“Menu” class was deleted and its methods were merged in the “Control Bank™ class.
1) Simulated results

According to the simulation results, polymorphism should be increased by a factor of

eight to adapt to the decrease in effectiveness (figure 61).

Effectiveness Adaptation to Changes in Design Quality properties

gqual

154

o — Polymaorphism
— Abstraction

Composition

— Encapsulation
— Inheritance
Effectiveness

3T — EffectivenessReferance

Effectiveness and design properties levels

D : : T 1
ist gt 2nd gt 3rd gt 4th gt

Effectiveness adaptation time

Figure 61: Effectiveness adaptation results of D2

177

2) Real results

The same simulated results were noticed after applying the changes and their adaptations
in D2’s class diagram. The adaptation mechanism was applied in D2 by adding eight
polymorphic equations such as “+ activateCard (cardNumber: String)” in the “Credits cards”
class and “+ updateMortgage (clientID: String)” in the “Mortgages” class. The value of

effectiveness from D2 after its adaptation is similar to its simulated expectations.

C.2. Design 3 (D3): The Sol security system
C.2.1. System description and reference quality values

The Sol security system allows users to control the security options of their homes such
as the cameras and the motion sensors remotely. Figures 62, 63, and 64 represent the different
components of the system class diagram. Moreover, the initial quality and reference values of D3

are illustrated in tables 17, 18.

178

Wodkstaton Desage Oass Dingran

P B—f—-1

Figure 62: The workstation classes of D3

179

b \
= ' |]
: pe o
— P . o 2 < f “id®
= o ke ' : a
= — ,
i E— .- ..‘;. P ——— 1 [>
E‘ ' T ; \ EF—F—
1 : T ' I : Ea
e
| “an L T ¥ -
) .) 1 fere ' ' ’
g ! ‘ T poss i h‘\ ——
e } é rates s 1 (=
‘ . .
mtmey e :
L
e |
" Pom —r .
> 2 iax
S
: o ! —. - ' ‘
e
= s

Server Design Class Diagram

OutaRepository e 1 HandleEventController esai Alarm
s -state - int
Hprocess(in id) strigger(in type)
+getevent(in (d) +eventHandled(in status) turnOffiin type)
i
not|fies
1
Owner contacts 1 Company contacts Authorities
+contact() +notify{in event) tcontact()
Figure 63: The server classes of D3
Monitoring Device Design Class Diagram
Monitoragtevice contacts L |GenerateEventController| 1 pjstes 1 DataRepository
events
+engaged|) Fprocess +addEvent({in evnt
+disengagef) creates [P Y notifies (i
1 1
1
Event
amt HandleEventController
Aime : int
type : string +processiin id)

Figure 64: The monitoring device classes of D3

180

C.2.2 Design changes

C.2.2.1 Design changes affecting the understandability quality attribute

When design size increased by six classes, D3’s understandability decreased below its

reference value. The encapsulation adaptation equation effectively counterbalances the resulting

decrease in D3’s quality as it is depicted in the simulation and the real results of D3.

1) Simulated results

As it is illustrated in figure 65, D3 overcomes the decrease in understandability when

encapsulation increases by a factor of six (i.e. DAM should equal 1 in all the newly added six

classes).

2) Real results

After increasing the design size of D3 and applying the adaptation equation of

encapsulation, the obtained real understandability reaches again its reference and equals its

simulated value (figure 66).

qual

404+

20+

Understandability Adaptation to Changes in Design Quality properties

-

— Polymorphism
— Encapsulation
— Coupling

— Abstraction

Cohesion

-0+

Understandability and design properties

levels

Complexity
— Diesign Size
— Understandability

— UnderstandReference

-40

ist gt 2nd gt 3rd gt 4th gt

Understandability adaptation time

Figure 65: Understandability adaptation results of D3

181

Carbon monoxide alarm

Flood alarm

- COLevel : String
-alarmStatus: String
-ring: String

- waterLevel: String
- alarmStatus: String
-ring: String

+ launchAlarm (COlevel: String,
alarmStatus: String, ring: String)

+ stopAlarm (ring: String, COlevel:

String)

+ launchAlarm (waterLevel: String,
alarmStatus: String, ring: String)
+ stopAlarm (ring: String, waterLevel: String)

Carbon monoxide detector

- COLevel : String
- detectorStatus: String
- detector: String

+ launchDetector (COLevel:
String, detectorStatus: String,
detector: String)

+ stopDetector (COLevel: String,
detector: String)

Flood detector

- waterLevel: String
- detectorStatus: String
-ring: String

+ launchDetector (waterLevel: String,
detectorStatus: String, detector: String)
+ stopDetector (detector: String,
waterLevel: String)

Flood event

Carbon monoxide event

-carbonEventStatus: String

-floodEventStatus: String
-floodEventTime: String

-carbonEventTime: String

+ scheduleEvent (carbonEventTime: String,

+ scheduleEvent (floodEventTime:

String, detectedLevel: String)

+cancelEvent (floodEventTime: String,

detectedLevel: String

detectedLevel: String)
+cancelEvent (carbonEventTime: String,
detectedLevel: String

Figure 66: Understandability design change and adaptation in D3

182

C.2.2.3 Design changes affecting the extendibility and the flexibility quality attributes

The newly added classes in D3 from the previous design change were linked through
inheritance relationships, which increase the coupling rate in the design. In figure 69, The
“Alarm” class is the ancestor of the “Fire alarm” and the “Intrusion alarm” classes. In addition,
the “Carbon monoxide detector” and the “Flood detector” classes are inheriting the
characteristics of the “Monitoring device” class. Another inheritance relationship was established
between the “Event” class and its children: “Carbon monoxide event” and “Flood event” classes.
The impact of increasing coupling on D3’s quality and its corresponding adaptation was both
simulated and applied in the real design.
1) Simulated results

From figures 67 and 68, the increase in coupling led to a decrease in both the flexibility
and the extendibility quality attributes. The simulation results show that polymorphism should be
increased by a factor of six to overcome the decrease in quality.
2) Real results

Adding six polymorphic methods to D3 as suggested by the simulation counterbalances
the decrease in quality caused by the increase in coupling (figure 69). The real values of

extendibility and flexibility after adaptation nearly equal their simulated values.

183

Extendibility Adaptation to Changes in Design Quality properties

qual
154
i
T
-
gz
o
- 1_0__
t
L]
o
Q
e
o — Polymaoarphism
51 54 — Abstraction
ﬁ — Coupling
- — Inheritance
'E — Extendibility
m ExtendibilityReference
-~ o
=
]
)
=
L]
%
m _5__ lK
1st gt I 2nd gt I 3rd gt I 4th gt I
Extendibility adaptation time
Figure 67: Extendibility adaptation results of D3
Flexibility Adaptation to Changes in Design Quality properties
qual
15—+

1
1]
-
2z
a
—— lD_—
T
1]
=1
0 —
& — Flexibility
c — FlexibilityReference
E — Polymorphism
T 51 — Encapsulation
= — Coupling
=
= Composition
m
-
=
]
= 0
<
. [

ist gt 2nd gt 3rd gt 4th gt

Flexibility adaptation time

Figure 68: Flexibility adaptation results of D3

184

Alarm

Carbon monoxide alarm

- COLevel : String

-alarmStatus: String

-ring: String

+ launchAlarm (COlevel: String,
alarmStatus: String, ring: String)

+ launchAlarm (COlevel: String)

+ launchAlarm (ring: String)

+ stopAlarm (ring: String, COlevel:
String, alarmStatus: String)

Flood alarm

- waterLevel: String
- alarmStatus: String
-ring: String

+ launchAlarm (waterLevel: String, alarmStatus:
String, ring: String)

+ launchAlarm (waterLevel: String)

+ launchAlarm (alarmStatus: String)

+ stopAlarm (ring: String, waterLevel: String,
alarmStatus: String)

Monitoring device

J

AN

Flood detector

Carbon monoxide detector

- waterLevel: String
- detectorStatus: String

- COLevel : String
- detectorStatus: String
- detector: String

-ring: String

+ launchDetector (waterLevel: String,
detectorStatus: String, detector: String)

+ launchDetector (COLevel: String,
detectorStatus: String, detector: String)
+ launchDetector (COLevel: String)

+ launchDetector (detector: String)

String, detectorStatus: String)

+ stopDetector (COLevel: String, detector:

+ stopDetector (detector: String,
waterLevel: String, detectorStatus: String)

—

Event

Flood event

AN

-floodEventStatus: String
-floodEventTime: String

Carbon monoxide event

-carbonEventStatus: String

+ scheduleEvent (floodEventTime:
String, detectedLevel: String)
+cancelEvent (floodEventTime: String,
detectedLevel: String)

-carbonEventTime: String

+ scheduleEvent (carbonEventTime: String,
detectedLevel: String)

+cancelEvent (carbonEventTime: String,
detectedLevel: String)

Figure 69: Flexibility, extendibility, reusability, and functionality design changes with their

adaptations in D3

185

C.2.2.3 Design changes affecting the reusability and the functionality quality attributes

The values of the reusability and the functionality quality attributes decreased below their
reference values after dropping three classes from D3. Thus, the design size of D3 decreased
when the following classes were omitted from the class diagram in figures 62-64: “Schedule
Button”, “Edit Schedule”, and “Event Log Button”. Those design changes and their adaptations
were both simulated and applied in the real design of D3.
1) Simulated results

The simulated results illustrated in figures 70 and 71 showed that cohesion should be
increased by a factor of six to counterbalance the decrease in functionality and reusability.
2) Real results

Cohesion was maximized among six classes of D3 as suggested by the simulation to
adapt the quality levels of reusability and functionality (figure 69). The real quality values of

both quality attributes after adaptation almost equal their simulated values.

186

Reusability Adaptation to Changes in Design Quality properties
qual
w
]
> S0+ "
gz
w
z
t
o 404
o
o
1
o — Cohesion
£ Couplin
S ozo+ pling
[T — Diesign Size
% — Messaging
'E — Reusability
m 204+ ReusabilityReference
=
=
B
@
8 10t
7]
13
1st gt I 2nd gt I 3rd gt I 4th gt I
Reusability adaptation time
Figure 70: Reusability adaptation results of D3
Functionality Adaptation to Changes in Design Quality properties
gqual
2
s —
2 so+
L7
2
£
o
o 40
o
e
[=% — Polymorphism
E' Cohesion
0 30—+ — Design Size
g — Hierarchies
- _— — Messaging
E 204 — Functionality
- FunctionalityReference
=
[
£
2 ot
T
c
3
[IS
0 f ! f i
ist gt 2nd gt 3rd gt 4th gt
Functionality adaptation time

Figure 71: Functionality adaptation results of D3

C.3 Design 4 (D4): Alexandria web-based library system

C.3.1 System description and reference quality values

187

The Alexandria library system deals with the operations of its members, staff and

catalogue. Through D4’s system, a member can benefit from many options such as checkout

items, return items, and pay late fees. Staff members’ options are multiple such as collect late

fees, issuing, renewing, and cancelling memberships. The library catalogue can be managed

through several functionalities such as checkout status and item type. D4 class diagram is

represented in figure 72. Moreover, the reference values of D4 can be depicted in tables 16 and

MemberAccess StaffAcress
MainFage CheclkoutFarm Che ckoutController
LopinCantraller
LoginForm T heckinForm CheckinCordroller
Slals Controllar
StatusPage AddremFarm Addiemconirolier
Cancellgtion Cordroller ™,
CancellationForm
TearchConraller ronmarnber Avcess
TEeachrorm | Calalogue Member SignupfForm || ErowseFage
HaglaleFees Boolean
RasarvatinnConiroller MumberdRerediens | IMecer
LataFeashiue [nieger - i
1 checkedoutlierms - llermlist Sonupcantoler | | Broszerage
i Diayslrt e & rshiplapse © Inbagar
Hem
Tile : String 1 -i_/
Repart : —
1 1.~ [Zenre . String I —
0.x Chackoui
J Dunlrats - Bhing
. - S
1 1
Checkaut-able Har-Checknut-ahle
fernList | larnstatis 1
Chackad Dt In Eiock Lale Laost Bonk Audinbonk Yidan Ferindical
Author : Etring Suthok: Sting Director : String | | Editor: Srng

I

Rasarvad

Figure 72: D4 class diagram

188

Reatar: Biring

C.3.2 Design changes
C.3.2.1 Design changes affecting the understandability quality attribute

After increasing D4 design size by adding ten new classes, understandability decreased
below its reference value. From both the simulation and the real results, encapsulation effectively
brings back the value of understandability to its reference value.
1) Simulated results

According to the simulated results in figure 73, encapsulation should equal one in all the

newly added classes to counterbalance the decrease in understandability.

2) Real results
Figures 74 and 75 illustrate the increase in D4’s design size and its corresponding
adaptation through encapsulation. The computed real value of understandability after adaptation

almost equals its simulated value.

189

Understandability and design properties

levels

Understandability Adaptation to Changes in Design Quality properties

gqual
30+
— Polymaorphism
— Encapsulation
— Coupling
/ — Abstraction
Cohesion
01 Complexity
— Design Size
— Understandability
— UnderstandReference
30-
| } } } {

ist gt 2nd gt 3rd gt 4th gt

Understandability adaptation time

Figure 73: Understandability adaptation results of D4

190

Member service controller

Post complaints

- serviceType: String

+ getService (type: String)

- type: String
-date: String

Member service

- serviceType: String

+ postComplaint (id: int, type: String, date:
String, title: String, content: String)

+ updateComplaint (id: int, date: String, title:
String)

+ cancelComplaint (id: int)

+ transferService (type: String)

Library events

- event Type: String
- event date: String

+ exhibitBooks (newArrival: String,
specialEdition: String)

+ announceTalk (date: String, topic:
String)

Library amenities

-reservationType: String
-date: String

+ postTalkRoomReservation (date: String,
event: String)

+ updateReservation (date: String, event:
String)

+ cancelReservation (date: String, event:
String)

Figure 74: Understandability design change and adaptation in D4

191

Videos

-title: String
-director: String
-Length: String

+ addVideo (title: String, director:
String, length: String)

+ updateVideo (title: String,
director: String)

+ cancelVideo (title: String,
director: String)

Periodicals

- type: String
- title: String

+ addPeriodical(type: String, title: String)
+ updatePeriodical (type: String, title:
String)

+ cancelPeriodical (type: String, title:
String)

Audio books

Books

-title: String
-author: String

-title: String
-author: String

+ addAudioBook (title: String, author:

+ addSuggestion (id: int, author: String,
type: String, title: String)

+ updateSuggestion (bookid: int,
availability: bool)

+ cancelSuggestion (id: int, title: String,
author: String)

String)

String)

String)

Suggestions

-suggestionType: String

+ getSuggestionType (type: String)

Figure 75: Understandability design change and adaptation in D4

The eight added classes to D4 were linked together through two types of relationships:

C.3.2.2 Design changes affecting the extendibility and the flexibility quality attributes

aggregation and inheritance. An aggregation relationship is identified between the “Member
service controller” class and three classes namely “Post complaints”, “Library amenities”, and
“Library events”. The remaining classes are linked though inheritance. The “item” class is the
ancestor of the “Suggestions” class. The “Books”, the “Audio books”, the “Videos”, and the

“Periodicals” classes inherit the characteristics of the “Suggestions” class. The impacts of those

192

+ updateAudioBook (title: String, author:

+ cancelAudioBook (title: String, author:

design changes and their adaptations through polymorphism were experimented in the simulation
and in the real design of D4.
1) Simulated results

After increasing coupling, flexibility and extendibility decreased below their reference
values (Figures 76 and 77). From the simulation results, polymorphism should be increased by
eight to compensate for the decrease in quality.
2) Real results

The increase in coupling and the suggested polymorphism adaptation value from the
simulation were applied on the real class diagram of D4 (figures 78 and 79). The computed real

values of flexibility and extendibility after adaptation nearly equal their simulated values.

Flexibility Adaptation to Changes in Design Quality properties

qual

1
1)
-
gz
w
2
£
L1}
=1
o
& — Flexibility
= FlexibilityR eference
g 1oL — Polymaorphism
@ — Encapsulation
u .
- — Coupling
5 Composition
-
=
2 |
E]
g ot
- /
\}‘ 1 1 1]
T T T 1
ist gt Znd gt 3rd gt 4th gt

Flexibility adaptation time

Figure 76: Flexibility adaptation results of D4

193

Extendibility and design properties levels

qual

20

10

Extendibility Adaptation to Changes in Design Quality properties

— Polymaorphism
— Abstraction
Coupling

— Inheritance
— Extendibility

ExtendibilityReference

-104

V. . . .

1st gt 2nd gt 3rd gt 4th gt
Extendibility adaptation time

Figure 77: Extendibility adaptation results of D4

194

Member service

- serviceType: String

+ transferService (type: String)

Member service controller
- serviceType: String

+ getService (type: String)

Post complaints

- type: String
-date: String

+ postComplaint (id: int, type: String, date:
String, title: String, content: String)
+ postComplaint (id: int)

= + postComplaint (id: int, type: String)

+ postComplaint (id: int, type: String, date:
String)

+ postComplaint (title: String)

+ updateComplaint (id: int, date: String, title:

' String)
l \ + cancelComplaint (id: int)

Library events

- event Type: String
- event date: String

X Library amenities

-reservationType: String

+ exhibitBooks (newArrival: String,
specialEdition: String)

+ exhibitBooks (newArrival: String)

+ exhibitBooks (specialEdition: String)
+ announceTalk (date: String, topic:
String)

-date: String

+ postTalkRoomReservation (date: String,
event: String)

+ updateReservation (date: String, event:
String)

+ updateReservation (event: String)

+ cancelReservation (date: String, event:

String)
+ cancelReservation (event: String)

Figure 78: Flexibility and extendibility design change and adaptation in D4

195

Item

-title: String
-genre: String
+ getltemType (type: String)

I

Suggestions
-suggestionType: String
+ getSuggestionType (type: String)

| I

Videos Periodicals

_ _ - type: String
-title: String - title: String
-director: String
-Length: String - + addPeriodical(type: String, title: String)
+ addVideo (title: String, director: + updatePeriodical (type: String, title:
String, length: String) String)
+ updateVideo (title: String, + cancelPeriodical (type: String, title:
director: String) String)
+ cancelVideo (title: String,
director: String)

Books Audio books

-title: String -title: String
-author: String -author: String
+ addSuggestion (id: int, author: String, + addAudioBook (title: String, author:
type: String, title: String) String)
+ updateSuggestion (bookid: int, + updateAudioBook (title: String, author:
availability: bool) String)
+ cancelSuggestion (id: int, title: String, + cancel AudioBook (title: String, author:
author: String) String)

Figure 79: Flexibility and extendibility design change and adaptation in D4

196

C.3.2.3 Design changes affecting the reusability and the functionality quality attributes

D4’s design size was decreased by dropping three classes namely “post complaints”,
“Library amenities”, and “Library events”. Then, the responsibilities of those classes were added
to the “Member” class. Consequently, reusability and functionality decreased below their
reference values and was effectively adapted by increasing cohesion as illustrated in the
simulated and the real results.
1) Simulated results

D4’s cohesion should be maximized in six classes to bring back the value of reusability
and functionality to their reference levels (figures 80 and 81).
2) Real results

The application of the design change in D4 and the suggested cohesion level by the
simulation make the real values of functionality and reusability identical to their simulated

values (figures 82 and 83).

Reusability Adaptation to Changes in Design Quality properties

qual

i
L]
-
2 a0+
w
g
T
2 e
e =0+
= — Cohesion
5, Coupling
w — Design Size
L] .
v] — Massaging
'g 20 — Reusability
m ReusabilityReference
-
=
z
m 10+
w
3
L1}
o

1 1 1]

T T T 1

ist gt 2nd gt 3rd gt 4th gt

Reusability adaptation time

Figure 80: Reusability adaptation results of D4
197

Functionality and design properties levels

gqual

401

Functionality Adaptation to Changes in Design Quality properties

20+

204

10

— Polymorphism
— Cohesion
— Design Size

— Hierarchies

— Messaging

— Functionality

FunctionalityReference

ist gt 2nd gt 3rd gt 4th gt

Functionality adaptation time

Figure 81: Functionality adaptation results of D4

198

Member service

- serviceType: String

+ transferService (type: String)

Member service controller

- event Type: String

- event date: String

- complaintType: String
-complaintDate: String
-reservationType: String
-date: String

+ exhibitBooks (newArrival: String, specialEdition: String)
+ exhibitBooks (newArrival: String)

+ exhibitBooks (specialEdition: String)

+ announceTalk (date: String, topic: String)

+ postComplaint (id: int, type: String, date: String, title: String, content: String)
+ postComplaint (id: int)

+ postComplaint (id: int, type: String)

+ postComplaint (id: int, type: String, date: String)

+ postComplaint (title: String)

+ updateComplaint (id: int, date: String, title: String)

+ cancelComplaint (id: int)

+ postTalkRoomReservation (date: String, event: String)

+ updateReservation (date: String, event: String)

+ updateReservation (event: String)

+ cancelReservation (date: String, event: String)

+ cancelReservation (event: String)

Figure 82: Reusability and functionality design change and adaptation in D4

199

Item

-title: String

-genre: String

+ getltemType (type: String, title: String,
genre: String)

Suggestions
-suggestionType: String
+ getSuggestionType (suggestionType:

String) .
Videos Periodicals

_ _ - type: String
-title: String - title: String
-director: String
-Length: String - + addPeriodical(type: String, title: String)
+ addVideo (title: String, director: + updatePeriodical (type: String, title:
String, length: String) String)
+ updateVideo (title: String, + cancelPeriodical (type: String, title:
director: String) String)
+ cancelVideo (title: String,
director: String, Length: String)

Books Audio books

-title: String -title: String
-author: String -author: String
+ addSuggestion (id: int, author: String, + addAudioBook (title: String, author:
type: String, title: String) String)
+ updateSuggestion (bookid: int, + updateAudioBook (title: String, author:
availability: bool, title: String, author: String)
String) + cancelAudioBook (title: String, author:
+ cancelSuggestion (id: int, title: String, String)
author: String)

Figure 83: Reusability and functionality design change and adaptation in D4

200

C.4. Design 5 (D5): Third eye Home security system
C.4.1. System description and reference quality values

Third eye enables users to set up a remote security system for their homes or businesses.
The user can view streaming videos of his cameras while at work. The system can also take
snapshots of specific areas of the user’s home and email them to him. If an intruder is detected,
the user is notified through text messages and emails with a snapshot from the security camera.
Through third eye, the user can set up the notification option by choosing the type of events and
the means of contact when a threat is detected. The class diagram of D5 represents the different
options that are available in the system (figure 84). The reference quality values of D5 can be

accessed in tables 17 and 18.

201

L —

Camera | Duskiop Applicavon
isArmed : boolean ||

[makmacobfuiriviidat i § (RPN

Andeoid Applicaton

messagelaceived) {sendvidest)
senFram() {armi) >
y | = [sheckArmi) | AccowmsComtrolles
| VideoCoearcllar | |00 o I |
-_— . |
S=—————— % 1 Email Accownt | getUsermamen
compareframl) —_— —] gePassword)
campareThraskaldi) Account f | gePhoneNumbest)
= |dsermame | Siring getAddressi) yetEmisiAddeeis
Preference: ot aacoword - String) SRIA 50 rresteArcoumtiusemana, pas sword ohone.email)
snapshorinterysl ! phoneNwmber © S7ing b O —— validatelusername, password)
amailAddress © String Netification Histary natifyl)
setSaapshotietenyadjer) — logied)
seDetectionThresholdiing YeProea()
getfreferencesi) . |gebmalld |gettindex)
. E \ o L —_—
Alert te v TextinpesForm
otfications Manager
description : Strng Notficaton
dete Dare
candl) < ficationl Dpa 1t
gesPreferences(I getTyped
~oon & Sl Ll gesPreferences()
= 1 !‘ ["NouficatenPadeences ~)
‘ | | Text Notficanon | Emalf Nexificaton
| | setTextNotficaionsibooll
1! |
|
MessageControl o
Message SRR MR
Q newd
by newl)) sendiMessage)
XA A] chackForTimeOutd)
ROQuet 1RO CQivedM s s age nrudeeMessage Popi) pMessage | ArMessage DrvsarmMessage | AluntMessage
PreferencesControlier | UpdateRoguestMes s age
| Sutton
EOUSR— >
[~ eiieka 4
1 ,\ . -
| ArmBaton | Dvsarmiution LogeRunton CreareAccountBunion VicoRuton DetareBution | SarringsButton
|
| [Wersdeteface | . \ideoFeedContraller NotificabonComtrofier Srood -
—_—
[requestVidecd cesplayVideol) showOptonsinotification) vy
v deleteinotification

Figure 84: D5 class diagram

C.4.2 Design changes
C.4.2.1 Design changes affecting the understandability quality attribute

The class diagram of D5 was extended by adding four classes namely “Security options”,
“Fire alarm”, “Flood watch”, and “Carbon monoxide protection” (figure 86). This design change
led to a decrease in understandability that is adapted by increasing encapsulation as it is

described in the simulation and the real results.

202

1) Simulated results
To compensate for the decrease in understandability after increasing the design size of

D5, encapsulation should be increased by a factor of 4 (figure 85).

2) Real results
The simulated results of D5 were applied in its class diagram as illustrated in figure 86.
Encapsulation was maximized in the four classes (i.e. DAM = 1) and the real understandability

value after adaptation is identical to its simulated value.

Understandability Adaptation to Changes in Design Quality properties
qual
40— 1
L7
2
T
L]
=8
(=]
et
=8
c 20+
o — Polymorphism
3 — Encapsulation
E — Coupling
= / — Abstraction
m .
- = Cohesion
= Complexity
._E — Design Size
g — Understandability
E — UnderstandReference
et
(] - 4
5o °°
- o
5%
ist gt 2nd gt 3rd gt 4th gt
Understandability adaptation time

Figure 85: Understandability adaptation results of D5

203

Security options Fire alarm

- - smokeLevel: String

-type: String - detectorStatus: String

+ getOption(type: String) -ring: String

+ launchFireAlarm (smokeLevel: String,
detectorStatus: String, ring: String)

_ _ + stopFireAlarm (smokeLevel: String,
Carbon monoxide protection detectorStatus: String, ring: String)

- COLevel : String

- detectorStatus: String

- detector: String

+ launchDetector (COLevel:
String, detectorStatus: String,
detector: String)

+ stopDetector (COLevel: String,
detector: String)

Flood watch
- waterLevel: String
- detectorStatus: String
-ring: String
+ launchDetector (waterLevel: String,
detectorStatus: String, detector: String)
+ stopDetector (detector: String,
waterLevel: String)

Figure 86: Understandability design change and adaptation in D5

C.4.2.2 Design changes affecting the flexibility and the extendibility quality attributes

The value of coupling in D5 increased by a factor of four as it is represented in figure 89.
The “security options” class became the ancestor of four classes: “Camera”, “Fire alarm”, “Flood
watch”, and “Carbon monoxide protection”. As a consequence, the flexibility and the
extendibility quality attributes decrease below their reference values. Those design changes and
the applied adaptation strategies are described in the simulation and the real results of D5.
1) Simulated results

To minimize the decrease in understandability after increasing the design size of D5,

polymorphism should be increased by a factor of 4 (figure 85).

204

2) Real results

The simulated results of D5 were applied in its class diagram as illustrated in figure 89.
Four polymorphic methods were added to the class diagram of D5 such as “launchDetector
(waterLevel: String)”. Then, the computed real flexibility and extendibility values after

adaptation are similar to their simulated ones.

Flexibility Adaptation to Changes in Design Quality properties

gqual

— Flexibility
FlexibilityR efarence

— Polymorphism

— Encapsulation

— Coupling

54 Composition

Flexibility and design properties levels
8

1y ! | ! |

ist gt 2nd gt 3rd gt 4th gt

Flexibility adaptation time

Figure 87: Flexibility adaptation results of D5

205

Extendibility and design properties levels

qual

204

104

Extendibility Adaptation to Changes in Design Quality properties

— Polymorphism

— Abstraction
Coupling

— Inheritance

/ — Extendibility

-104

ExtendibilityReference

lln }f ! ! ! |

ist gt 2nd gt 3rd gt 4th gt
Extendibility adaptation time

Figure 88: Extendibility adaptation results of D5

206

Camera

ll

Fire alarm

- smokeLevel: String
- detectorStatus: String
-ring: String

+ launchFireAlarm (smokeLevel: String,
detectorStatus: String, ring: String)

+ stopFireAlarm (smokeLevel: String,
detectorStatus: String, ring: String)

Security options

-type: String

+ getOption(type: String)

ﬁ

Carbon monoxide protection

Flood watch

- COLevel : String
- detectorStatus: String
- detector: String

- waterLevel: String
- detectorStatus: String
-ring: String

+ launchDetector (COLevel:
String, detectorStatus: String,
detector: String)

+ launchDetector (COLevel:
String)

+ launchDetector (COLevel:
String, detectorStatus: String)

+ stopDetector (COLevel: String,
detector: String)

+ launchDetector (waterLevel: String,
detectorStatus: String, detector: String)
+ launchDetector (waterLevel: String)
+ launchDetector (waterLevel: String,
detectorStatus: String)

+ stopDetector (detector: String,
waterLevel: String)

Figure 89: Extendibility and flexibility design change and adaptation in D5

207

C.4.2.3 Design changes affecting the reusability, the functionality, and the effectiveness
quality attributes

The design size of D5 was decreased by dropping two classes from its class diagram:
“Menulnterface” and “DropdownMenu”. This design change led also to a decrease in
composition since the omitted class diagrams are related to other classes through aggregation
relationships. Therefore, those design changes affect the reusability, the functionality, and the
effectiveness quality attributes as it is illustrated in the simulated and the real results.
1) Simulated results

On the one hand, the decrease in design size leads to a drop in the values of the
reusability and the functionality quality attributes. In this case, cohesion should be increased by
four as an adaptation strategy (figures 91 and 92). On the other hand, the decrease in composition
drops the value of effectiveness below its reference value. To overcome this decrease,
polymorphism is increased by six (figure 93).
2) Real results

The simulated design changes and adaptations were applied in the class diagram of D5 as
illustrated in figure 94. The computed real values of the quality attributes after adaptation nearly

equal their simulated ones.

208

Reusability Adaptation to Changes in Design Quality properties

qual
n
E 40
2 "
w
2
£
L1
o 30+
Q
et
o — Cohesion
E.. Coupling
W — Diesign Size
g 204 — Masszaging
'E — Reusability
m ReusabilityReference
-
=
4 104
W
=
L]
13
ist gt I 2nd gt I 3rd gt I 4th gt I
Reusability adaptation time
Figure 90: Reusability adaptation results of D5
Functionality Adaptation to Changes in Design Quality properties
qual

n
1] ||
2 a0t
w
g
T
L1}
o
E 304
o — Polymaorphism
5.. Cohesion
- — Desian Si
ﬁ o - Hjaslgn .|ze
- ierarchies

201
= — Messaging
5 — Functionality
- FunctionalityReferance
H
m
c 10+
.8
L
=
=]
™

ist gt I 2nd gt I 3rd gt I 4th gt I

Functionality adaptation time

Figure 91: Functionality adaptation results of D5

209

Effectiveness and design properties levels

qual

10

Effectiveness Adaptation to Changes in Design Quality properties

— Polymaorphism
— Abstraction
Composition

— Encapsulation
— Inheritance
Effectiveness

— EffectivenessReference

ist gt 2nd gt 3rd gt 4th gt

Effectiveness adaptation time

Figure 92: Effectiveness adaptation results of D5

210

Fire alarm

Camera

- smokeLevel: String
- detectorStatus: String
-ring: String

\

+ launchFireAlarm (smokeLevel: String,
detectorStatus: String, ring: String)

+ launchFireAlarm (smokeLevel: String)
+ launchFireAlarm (smokeLevel: String,
detectorStatus: String)

+ launchFireAlarm (detectorStatus: String)
+ stopFireAlarm (smokeLevel: String,
detectorStatus: String, ring: String)

Security options

-type: String

+ getOption(type: String)

Carbon monoxide protection

- COLevel : String
- detectorStatus: String
- detector: String

Flood watch

+ launchDetector (COLevel:
String, detectorStatus: String,
detector: String)

+ launchDetector (COLevel:
String)

+ launchDetector (COLevel:
String, detectorStatus: String)

+ stopDetector (COLevel: String,
detector: String)

+ stopDetector (COLevel: String)

- waterLevel: String
- detectorStatus: String
-ring: String

+ launchDetector (waterLevel: String,
detectorStatus: String, detector: String)
+ launchDetector (waterLevel: String)
+ launchDetector (waterLevel: String,
detectorStatus: String)

+ stopDetector (detector: String,
waterLevel: String)

+ stopDetector (waterLevel: String)

+ stopDetector (detector: String)

Figure 93: Reusability, functionality, and effectiveness design change and adaptation in D5

211

C.5 Design 6 (D6): HAMK UNIVERSITY online registration system
C.5.1 System description and reference quality values

HAMK is an online university registration system that can be used by students and staff
members. Students have access to many operations such as searching for a specific class,
viewing a listing of the taken classes, and checking time conflicts between classes. The different
operations and characteristics of the system are represented in the class diagram of figure 94 and

the reference values of D6 are illustrated in tables 17 and 18.

C.5.2 Design changes
C.5.2.1 Design changes affecting the understandability quality attribute

Three new classes were added to D6, which increases the design size attribute and drops
the understandability quality attribute below its reference value. The three classes are:
“HAMKEntity”, “Transferred courses”, and “Registration holds” (figure 96). Adaptation through
encapsulation brings back understandability to its reference value both in the simulation and the
real results.
1) Simulated results

Encapsulation should be maximized in the three newly added classes (i.e. DAM = 1)
(figure 95) to successfully adapt the value of understandability.
2) Real results

After maximizing encapsulation in the new three classes as represented in figure 96, the

resulting value of understandability is similar to its simulated one.

212

L
oo ot

P

hascm s

koot
F%. P
S Feem
. o (e " el (oes
SE—
e
B wwcmi s rndhae s
g v
At 1or ww e e
S
v Ui o e w4 |
[TV s Jrovey
Hmawiv i hoetun | < ro—
) Wi
MGl Foes]
B T TN ST
lw.t‘j.«-
|I ll"llllt-l A O T o
S | B e T
T CPR e
el sy
e
(s rean
. ~ (X
wavaer s

Figure 94:

213

D6 class diagram

Understandability and design properties

levels

Understandability Adaptation to Changes in Design Quality properties

qual

S0

— Polymorphism

— Encapsulation

— Coupling

— Abstraction
Cohesion

Complexity
— Design Size

— Understandability
— UnderstandReference

ist gt 2nd gt

3rd gt 4th gt

Understandability adaptation time

Figure 95: Understandability adaptation results of D6

Transferred courses

Degree plan

- course: String
- studentld: String
-advisor: String

- course: String
- studentld: String
-advisor: String

+ addCourse (course: String, studentld:
String)

+ DeleteCourse (course: String,
studentld: String)

+ addCourse (course: String, studentld:
String)

+ updatePlan (studentld: String)

+ createPlan (studentld: String)

+ deletePlan (Studentld: String)

+ DeleteCourse (course: String, studentld:
String)

Registration holds

- holdType: String
- studentld: String
-advisor: String

+ holdsStatus()

+ getHolds(holdType: String)

Figure 96: Understandability design change and adaptation in D6

214

C.5.2.2 Design changes affecting the flexibility and the extendibility quality attributes

Two new inheritance relationships were identified in D5 where the “HamkEntity” class is
the ancestor (figure 99). Those two relationships led to an increase in the coupling design
property and both the flexibility and the extendibility quality attributes. Flexibility was adapted
by increasing composition while extendibility was adjusted by increasing polymorphism as it is
illustrated in the simulation and real results.
1) Simulated results

From the simulation graphs in figures 97 and 98, composition should be increased by a
factor of three and polymorphism should be increased by a factor of two to adapt the quality
values of flexibility and extendibility.
2) Real results

From figure 99, the simulated adaptations were successfully applied in the real design and
the values of the resulting quality attributes nearly equal their simulated values. Two
polymorphic methods such as “holdsStatus(status: String)”were added to adapt the value of
extendibility. Three aggregation relationships (i.e. composition) were added such as the part-
whole relationship between the classes “Registration holds” and “Enrollment summary”, which

successfully adjusts the value of the flexibility attribute.

215

Flexibility Adaptation to Changes in Design Quality properties

qual
25-—||
i
)
-
2
W 20—+
2
T
[
=9
o
& T — Flexibility
c FlexibilityReference
L=2] .
m — Polymorphism
o _)
= 104 Em:ap.sulatlon
= — Coupling
E Composition
-
=
= 3T
=2
]
E |
L
L
= } } } {
ist gt 2nd gt 3rd gt 4th gt
Flexibility adaptation time
Figure 97: Flexibility adaptation results of D6
Extendibility Adaptation to Changes in Design Quality properties
qual
n
1)
-
Q2
w204
g
£
[}
o
[=]
=
g- 10—+ — Palymorphism
o — Abstraction
3 Coupling
o — Inheritance
-E ,II — Extendibility
o ExtendibilityReference
-~ 0
=
=
b
c
1]
e
L]
w -i0+
L : : : |
ist gt 2nd gt 3rd gt 4th gt

Extendibility adaptation time

Figure 98: Extendibility adaptation results of D6

216

Registration holds
- holdType: String Enrollment
- studentld: String summary
-advisor: String
+ getHolds(holdType: String)
+ holdsStatus(status: String,
holdType: String)
+ holdsStatus(status: String)
HamKEntity
— Degree plan
Transferred courses - CSUJSQ;I?”SQQ_
- course: Strin - stugentid. String
- studentld: St?ing -advisor: String _
-advisor: String —{ + addCourse (course: String, studentld:
+ addCourse (course: String, String, advisor: String)
studentld: String) ;ta_ddc)iourse (course: String, studentld:
+ DeleteCourse (course: Strin rng
studentld: String() 9 + updatePlan (studentld: String)
+ createPlan (studentld: String)
+ deletePlan (Studentld: String)
+ DeleteCourse (course: String,
studentld: String)
O
Course

Figure 99: Extendibility and flexibility design change and adaptation in D6

217

C.5.2.3 Design changes affecting the reusability, the functionality, and the effectiveness
quality attributes

The last design changes in D6 decreased the values of the reusability, the functionality,
and the effectiveness attributes below their reference values. The classes “Registration holds”
and “Transferred courses” were deleted and their functions were merged in the classes
“Registration” and “Course” respectively, which decreased the design size of D6 and its quality
attributes reusability and functionality. In this case, cohesion is increased as an adaptation mean.
The omission of classes from D6 led also to a deletion of their aggregation relationships, which
decreased the value of effectiveness. The polymorphism adaptation equation is applied in this
case to counterbalance the decrease in effectiveness.
1) Simulated results

As it is illustrated in figures 100-102, cohesion and polymorphism should be increased by
factors of two and three respectively to compensate for the decrease in reusability, functionality,
and effectiveness.
2) Real results

The simulated design changes and their corresponding adaptations were successfully
applied on the real design of D6 as it is represented in figure 103. The real values of the quality

attributes after adaptation are similar to their simulated ones.

218

Reusability Adaptation to Changes in Design Quality properties

Functionality and design properties levels

S0

404

30

20

10

ist gt 2nd gt 3rd gt 4th gt

Functionality adaptation time

qual
5 50T
>
9
w
2 sot
£ =
a
] \
E- 40T — Cohesion
E-. Coupling
0 — Design Size
g 30+ — Messaging
'E — Reusability
m ReusabilityReference
Z 2ot
E
m
w
3 10+
14
ist gt I 2nd gt I 3rd gt I 4th gt I
Reusability adaptation time
Figure 100: Reusability adaptation results of D6
Functionality Adaptation to Changes in Design Quality properties
qual
50

— Polymorphism
Cohesion

— Design Size

— Hierarchies

— Messaging

— Functionality

FunctionalityReference

Figure 101: Functionality adaptation results of D6

219

Effectiveness Adaptation to Changes in Design Quality properties

gqual

104

— Polymorphism
— Abstraction

Composition

54 — Encapsulation
— Inheritance

Effectiveness

— EffectivenessReference

Effectiveness and design properties levels

o } } } |
ist gt 2nd gt 3rd gt 4th gt

Effectiveness adaptation time

Figure 102: Effectiveness adaptation results of D6

HamKEntity

Degree plan

- course: String

- studentld: String

-advisor: String

+ addCourse (course: String, studentld: String, advisor: String)
+ addCourse (course: String, studentld: String, advisor: String)
+ addCourse (course: String)

+ addCourse (course: String, studentld: String)

+ updatePlan (studentld: String, course: String)

+ updatePlan (studentld: String)

+ createPlan (studentld: String)

+ deletePlan (Studentld: String)

+ DeleteCourse (course: String, studentld: String)

+ DeleteCourse (course: String)

Figure 103: Reusability, functionality, and effectiveness design change and adaptation in
D6

220

C.6 Design 1 (D7): Music On the Brain (MOB)

C.6.1 System description and reference quality values

MOB is an online web service allowing users to build their music playlists based on their

preferences. The site is also recommending songs to users and keeping track of their liked and

disliked music. The main components of D7 design are represented in figures 104-106. The

reference quality values of D7 are recorded in tables 17 and 18.

Design Class Diagram

Controllers
j Controllers:: RecommenderController
G easiRecommenderPrellin recommender : Racommender)
HindNewRecommenders{in myiD : int, in song : Song, in mytiked : Library in myDisliked : Library)
Ji <Ury {fed>
it ! i Controllers::AccountController
bsetPref(in pref : int)
+AcoountControlier()
start|)

Controllers::MOBController Controllers: NewAcctController Hoginin user : User, i ibFoem : LibForm)
userlD: int +changePWiin old : string, in new : string, in wserlD: int)
iy Disiiked : Ubrary 4 olin e - U
myLiked : Libeary scheckCreddin user : User) : bool
myRecommenders sereateNewAccount]]
cutRecommender : Recommender
+MoBController(in useriD) Controliers::LibController
Hmanagel b i mobController : MOBController
fogout{in mobForm : MOBF
;f:‘ ‘mmf:” i s ibControllesfin mobControer - MOBController)
Agctﬁ?wﬁor-[}() ! S.ang addSang(in library, in song : Song, In userlD, in pref : bool)
Lsorth c(nrr; enders) tremoveSong(in lbeary, in song : Song, in userlD, in pref : bool)

+dislikeSonglin curSong : Song)
I+1ikeSong(in song ; Song)

reonfirmLogout()

+gethMoB() : MOBControtier

tmanageliblin [iked : Library, In diskied : Ubrary)

tcakPref{in userliked : Libeary, in userDisliked : Ubraty, in recLiked : Ubrasy, in recDisliked - Libraty) : int

Figure 104: D7 class diagram (1)

221

GUI Components

—

GUompenents

GUComponents:-AddSongFarm

smyControler : MOBControber

velose)

vlogoutNotice(in controlier : MOBController)

GUaCamponents: AddSongForm

\myController : MORControter

+addiong|)
relasel)

vAdaSangForm(in myCantrolleria : MORControfler)

vARvARY/

vinterfaces

-

0 GEUomponents-GUIComponeat

GUIComponents..LogOutNotice

myControlier : MOBController

sLogOutNotice|in myControber : MOBController)
]

GUiComponents. LoginForm

myControliee ; AccountControties

rinwalidCreds|)|
o)

+LoginFormyin myControber : AccounControber|

- \vdasey)

i

G amamweer: Dy sgeiFem GUICompons. BadPWNotice
LevyCortratior: MORConeroier
m-ﬂ [+ BadPWNotice|)
Pty s} :
preoen| |
|
|
|
|
| |
: i GUCamponents: NewcctForm
|
; : myControber : NewAcctControber
: +NewAcctForm(ia NewAcctCont)
| wereatelser)
_{ R e s] PpasswordNEsMatchy])
: I ruserNameTaken()
.......... | \ | PR ——————— T
I ! I vpasswordinvalid|)
. ok
| | |

el

GUIComponents. MOBForm

phayer : Music Player
myControtler | MOBControfier

song: Song

|#MoBForm{in myController : MOBController)
valose()

playSogl)

ietNewSong () Song

diaikeSong()|

1hesong])

GUIComponents:Music Player

tplaySenglin Parameter] . Song)

GUICamponents..LibFarm

anyControfier : LaControlier
fiked : Library
sllked | Library

wLibFormiin myControfler : LibController, in liked : Library, in disiked : Library)
smanagelib(in useriD, in liked : Library, In dislied : Lvary)

rdose])

ruploadiocal)

Figure 105: D7 class diagram (2)

222

Classes

MollinfoCoordinator

+checkCreds{in user : User) : bool

+login{in user - User) : Int

#guttiblin userlD, in pref : bool) : Libraty
=getecommender(in yserlD) - cunspecified>

=confirmPW(in old : string, in useriD - int) : bool
+changePW(in new : string In userD - Int) : bool

T ICollection<Song>

Libeary

SIngs

+add(in newSong : Song)
+remave(in songOut : Song) : bool
+count() : Int

+getCompliment() : Library
+«chooseRandom() : Song
+getEnumeratar() : <unspecified>
+contalns(in song : Song) : bool
+CopyTol) : <unspecified>
«Clear()

+lsReadOnly() : bool
+getintersection(in libin : Ubrary) : Ubrary

+findListeners(in sang : Song) : cunspacified>
1
confains
é
3
User 0.*
Recommender 1 [Password :string 4]
«wserdD ; int bt — Sang
«preference - int [P e | FUser(in userfs 5 A J Tithe - seri
~getName() : string Wbt
+setPreference]in newPref : int)) «Artist - string
s 1 +getPassword() ; string 5
+getiO]) : ssetPass() -Genre : string
setPass() Year :int
+getTitle]) : string
| -gethrtist) string
+getGenre(} : string
+getYear() : int
Searchet

+setTitle(in newTitle - string)

+setArtist(in newArtist : string}

+setGenre{in newGente : string]

ssetYear(in newYear : Int)

+Song(in title : string, In artist : string, in genre ; string, in year ; string)

+Song(in tag]

Figure 106: D7 class diagram (3)

223

C.6.2 Design changes
C.6.2.1 Design changes affecting the understandability quality attribute

The design of D7 was extended by adding seven classes: “online purchase”,
“songsbasket”, “SongBasket”, “MusicVideosLibrary”, “MusicVideo”, “VideoLibrary”, and
“Video” (figures 109-111). As a result, the design size of D7 increased and its understandability
decreased below its reference value. The impact of this design change and the applied

encapsulation adaptation equation is illustrated in the following simulation and real results.

1) Simulated results
From figure 107, encapsulation should be increased by seven to bring back

understandability to its reference value.

2) Real results
Figures 108-110 show that the simulated encapsulation adaptation can be easily applied
on the real design of D7, which makes the resulting adapted understandability equal its simulated

value.

224

Understandability and design properties

levels

Understandability Adaptation to Changes in Design Quality properties

gqual
100+

— Polymorphism
— Encapsulation
— Coupling

— Abstraction

Cohesion

Complexity

— Design Size
— Understandability

— UnderstandReference

ist gt 2nd gt

3rd gt 4th gt

Understandability adaptation time

Figure 107: Understandability adaptation results of D7

Controllers

Controllers::onlinepurchase

Controllers::musicvideoslibrary

- title: String
- artist: String
-genre: String

- title: String
- artist: String
-genre: String

+ addSongToBasket (title: String, artist:
String, genre: String)

+ epay (basket:String, paymentamount:
String)

+ addSongToBasket (title: String,
artist: String, genre: String)

+ epay (basket:String,
paymentamount: String)

Figure 108: Understandability design change and adaptation in D7 (1)

225

GUIComponents

GUIComponents::songsBasket

- title: String

- artist: String
-genre: String
-basket: String

+ songsBasketForm (in
myonlinepurchase: onlinepurchase)
+ addSong (name: String, artist:
String)

+checkout (sessionld: String)

GUIComponents::musicVideo

- title: String

- artist: String
-genre: String
-videolD; String

+ addVideoForm (in myControllerin:
MOBCaontroller)

+ addVideo (videold: String, artist:
String)

+ close (videold: String, artist: String)

Figure 109: Understandability design change and adaptation in D7 (2)

226

Classes

Classes::songBasket

- title: String

- artist: String
-genre: String
-basket: String

+ addSong (title: String, artist: String)
+ deleteSong (title: String, artist:
String)

+checkout (sessionld: String)
+computeBill ()

Classes::videoLibrary

- title: String

- artist: String
-type: String
-videolD; String

Classes::video

- title: String
- artist: String
-genre: String
-year: String

+ getTitle (title: String, artist:String,
genre: String, year: String)

+ setTitle (title: String, artist:String,
genre: String, year: String)

+ getArtist (title: String, artist:String)
+ setArtist (title: String, artist:String)
+ getGenre (genre: String,
artist:String)

+ setGenre (genre: String, artist:String)
+ getYear (year: String, title:String)
+ setYear (year: String, title:String)
+ video (in tag)

+ addVideo (in newVideo: Video)
+ removeVideo (in videoOut: Video):
bool

+ count (): int

+ getCompliment(): Library

+ chooseRandom(): Video

+ getEnumerator(): <unspecified>
+ contains (in video: Video): bool

+ copyTo() :: <unspecified>

+ clear()

+ isReadOnly (): bool

+ getintersection (in liben: Library):
Library

Figure 110: Understandability design change and adaptation in D7 (3)

C.6.2.2 Design changes affecting the extendibility and the flexibility quality attributes

After adding seven classes to D7, four new relationships were identified. The first linkage
is an inheritance relationship between the “GUIComponent” and the “SongsBasket” classes.
Another inheritance relationship was depicted between the “GUIComponent” and the

“MusicVideo” classes. The remaining two relationships are aggregation relationships such as the

227

relationship between the “Song” and the “SongBasket” classes (figures 113-115). Those design
changes led to an increase in coupling and extendibility and flexibility quality attributes as it is
illustrated in the simulated and the real results.
1) Simulated results

The obtained results from the simulation in figures 111 and 112 show that polymorphism
should be increased by four to adapt the values of extendibility and flexibility.
2) Real results

Four polymorphic methods were added to D7 such as “deleteSong (title: String)” as
represented in figures 113-115. As a result, flexibility and reusability successfully increased to at
least their reference values. Moreover, the real values of the quality attributes almost equal their

simulated values.

Extendibility Adaptation to Changes in Design Quality properties

qual

10+

— Polymorphism
— Abstraction
Coupling

— Inheritance
— Extendibility
ExtendibilityReferance

Extendibility and design properties levels

A . . .

1st gt 2nd gt 3rd gt 4th gt

Extendibility adaptation time

Figure 111: Extendibility adaptation results of D7

228

Flexibility and design properties levels

Flexibility Adaptation to Changes in Design Quality properties

qual

i0

— Flexibility
FlexibilityReference
— Polymorphism

— Encapsulation

— Coupling
Composition

Tl . .

1st gt 2nd gt 3rd gt 4th gt
Flexibility adaptation time
Figure 112: Flexibility adaptation results of D7
Controllers

Controllers::onlinepurchase

Controllers::musicvideoslibrary

- title: String
- artist: String
-genre: String

- title: String
- artist: String
-genre: String

+ addSongToBasket (title: String, artist:
String, genre: String)

+ epay (basket:String, paymentamount:
String)

+ addSongToBasket (title: String,
artist: String, genre: String)

+ epay (basket:String,
paymentamount: String)

Figure 113: Extendibility and flexibility design change and adaptation in D7 (1)

229

GUIComponents

GUIComponents::GUIComponent

GUIComponents::songsBasket GUIComponents::musicVideo
- title: String - title: String
- artist: String - artist: String
-genre: String -genre: String
-basket: String -videolD; String
+ songsBasketForm (in + addVideoForm (in myControllerin:
myonlinepurchase: onlinepurchase) MOBCaontroller)
+ addSong (name: String, artist: + addVideo (videold: String, artist:
String) String)
+checkout (sessionld: String) + close (videold: String, artist: String)

Figure 114: Extendibility and flexibility design change and adaptation in D7 (2)

230

Classes

Classes::songBasket

- title: String

- artist: String
-genre: String
-basket: String

Classes::song

+ addSong (title: String, artist: String)

+ addSong (title: String)

+ deleteSong (title: String, artist: String)
+ deleteSong (title: String)

+checkout (sessionld: String)
+computeBill ()

Classes::video

- title: String
- artist: String
-genre: String
-year: String

+ getTitle (title: String, artist:String,
genre: String, year: String)

+ setTitle (title: String, artist:String,
genre: String, year: String)

+ getArtist (title: String, artist:String)
+ getArtist (artist:String)

+ setArtist (title: String, artist:String)
+ setArtist (artist:String)

+ getGenre (genre: String,
artist:String)

+ setGenre (genre: String, artist:String)
+ getYear (year: String, title:String)
+ setYear (year: String, title:String)
+ video (in tag)

Classes::videoL.ibrary

- title: String

- artist: String
-type: String
-videolD; String

+ addVideo (in newVideo: Video)
+ removeVideo (in videoOut: Video):
bool

+ count (): int

+ getCompliment(): Library

+ chooseRandom(): Video

+ getEnumerator(): <unspecified>
+ contains (in video: Video): bool

+ copyTo() :: <unspecified>

+ clear()

+ isReadOnly (): bool

+ getintersection (in liben: Library):
Library

Figure 115: Extendibility and flexibility design change and adaptation in D7 (3)

231

C.6.2.3 Design changes affecting the reusability, the functionality and the effectiveness
quality attributes

The last design change in D7 led both to a decrease in design size and composition. The
classes “Song” and “Video” were deleted as well as their composition relationships. On the one
hand, the decrease in design size led to a decrease in the functionality and the reusability quality
attributes. On the other hand, the decrease in composition led to a decrease in the effectiveness
quality attribute. The simulated and the real results illustrate the impact of those changes and the
applied adaptation equations of cohesion and polymorphism.
1) Simulated results

To counterbalance the values of reusability and functionality, cohesion should be
maximized (i.e. CAM =1) at least in two classes (figures 116 and 117). The value of
effectiveness can be adapted when polymorphism is increased by six (figure 118).
2) Real results

Figures 119-121 illustrate the application of the simulated changes and their
corresponding adaptations. The cohesion adaptation mechanism was applied in the “songBasket”
and the “videoLibrary” classes. In addition, six polymorphic methods were added to D7 such as
“addVideo (title: String, artist: String)” to adapt the value of effectiveness. The resulting real

values of the quality attributes are nearly similar to their simulated ones.

232

Reusability Adaptation to Changes in Design Quality properties

qual
100+

1st gt 2nd gt 3rd gt 4th gt

Functionality adaptation time

n
L
-
i)
L7
2
T
L1
o
Q
et
o — Cohesion
E.. Coupling
W S0+ — Design Size
g — Messaging
'E — Reusability
m ReusabilityRefarence
-
et
= 1
a]
m
W
=
L]
13
£ } } } {
ist gt 2nd gt 3rd gt 4th gt
Reusability adaptation time
Figure 116: Reusability adaptation results of D7
Functionality Adaptation to Changes in Design Quality properties
gqual
@ 100+
]
-
o
L]
2
£
L1
o
Q
et
[=% — Polymorphism
E' Cohesion
E sod —_ Dfasign S-ize
= — Hierarchies
- — Messaging
E — Functionality
3'- _ FunctionalityR eference
= !
m
=
2
L :
E
u} t t t 1

Figure 117: Functionality adaptation results of D7

233

Effectiveness Adaptation to Changes in Design Quality properties

gqual

104

— Polymorphism
— Abstraction

Composition

— Encapsulation
5T — Inheritance

Effectiveness

— EffectivenessReference

Effectiveness and design properties levels

D : : T 1
ist gt 2nd gt 3rd gt 4th gt

Effectiveness adaptation time

Figure 118: Effectiveness adaptation results of D7

Controllers
Controllers::onlinepurchase Controllers::musicvideoslibrary
- title: String - title: String
- artist: String - artist: String
-genre: String -genre: String
+ addSongToBasket (title: String, artist: + addSongToBasket (title: String,
String, genre: String) artist: String, genre: String)
+ epay (basket:String, paymentamount: + epay (basket:String,
String) paymentamount: String)

Figure 119: Functionality, reusability, and effectiveness design changes and adaptations in
D7 (1)

234

GUIComponents

GUIComponents::GUIComponent

GUIComponents::songsBasket GUIComponents::musicVideo
- title: String - title: String
- artist: String - artist: String
-genre: String -genre: String
-basket: String -videolD; String
+ songsBasketForm (in + addVideoForm (in myControllerin:
myonlinepurchase: onlinepurchase) MOBController)
+ addSong (name: String, artist: + addVideo (videold: String, artist:
String) String)
+checkout (sessionld: String) + close (videold: String, artist: String)

Figure 120: Functionality, reusability, and effectiveness design changes and adaptations in
D7 (2)

235

Classes

Classes::songBasket

Classes::videoLibrary

- title: String

- artist: String
-genre: String
-basket: String

+ addSong (title: String,
artist: String, genre:
String, basket: String)
+ addSong (title: String,
basket: String)

+ addSong (title: String,
artist: String, genre:
String)

+ addSong (title: String)
+ addSong (title: String,
artist: String)

+ deleteSong (title:
String, artist: String,
genre: String, basket:
String)

+ deleteSong (title:
String)

+ deleteSong (title:
String, artist: String)
+checkout (sessionld:
String)

+computeBill ()

- title: String

- artist: String
-type: String
-videolD; String
-year: String

+ addVideo (in newVideo: Video, title: String, artist:
String, type: String, videold: String, year: String)
+ addVideo (in newVideo: Video, title: String)

+ addVideo (title: String, artist: String)

+ removeVideo (in videoOut: Video, title: String,
artist: String, type: String, videoed: String, year:
String): bool

+ count (): int

+ getCompliment(): Library

+ chooseRandom(): Video

+ getEnumerator(): <unspecified>

+ contains (in video: Video, title: String, artist: String,
type: String, videolD: String, year: String): bool

+ copyTo() :: <unspecified>

+ clear()

+ isReadOnly (): bool

+ getintersection (in liben: Library, title: String, artist:
String, type: String, videolD: String, year: String):
Library

+ getTitle (title: String, artist:String, genre: String,
year: String)

+ setTitle (title: String, artist:String, genre: String,
year: String)

+ getArtist (title: String, artist:String, type: String,
videolD: String, year: String)

+ getArtist (artist:String, title: String, type: String,
videolD: String, year: String)

+ setArtist (title: String, artist:String, type: String,
videolD: String, year: String)

+ setAvrtist (artist:String)

+ getGenre (genre: String, artist:String)

+ setGenre (genre: String, artist:String)

+ getYear (year: String, title:String)

+ setYear (year: String, title:String)

+ video (in tag)

Figure 121: Functionality, reusability, and effectiveness design changes and adaptations in

D7 (3)

236

C.7

Design 8 (D8): Skye Net Home Security

C.7.1 System description and reference quality values

Skye Net is a computerized home security system that is owned by the homeowner and

maintained remotely by the system’s producer. The protection offered by the system includes many

options such as door/window alarms, smoke detector, and carbon monoxide detector. In addition, the

system has different security modes such as the “away”, “vacation”, and “in home” modes (figure

122). The reference quality values of D8 are recorded in tables 17 and 18.

Design Class Diagram

Webslte

usermame : string
password : string

tchangeAlarmiViode|)
+HillOutVacationForm()
+accessRecords|)

+accesstiveFeed|)

A

Server

+getDatal)
tsaveDatal)

A

Live Feed

feed

pstreamFeed||
+selectCamera|)

Records

dogs

oldFeed

System Sups
mode:int |-
snotifyEmergencyServices()
snotifyHomeowner()

Home Mode Vacation Mode Away Mode Deactivated
«doorAlarm : bool HdoorAlarm ; hool -doorAlarm ; bool doorAlarm : bool
«doorAlert : bool doorAlert : bool doorAlert : bool «doorAlert : bool
‘windowalarm ; bool | PwindowAlarm : bool | |.windowalarm ; bool | [-windowAlarm ; bool
windowAlert : bool | Pwindowalert ; beol windowAlert : bool | [windowAlert | bool
-motionDetector : bool | FmationDetector : bool | [-motionDetectar : bool | |-motionDetector ! bool
tactvate() pactivate() ractivate() Factivate()
+deactivate() Hdeactivate() sdeactivate() +deactivate()
Wrigger() Hrigger() wrigger| Hriggen|)

Figure 122: D8 class diagram

237

C.7.2 Design changes
C.7.2.1 Design changes affecting the understandability quality attribute

To upgrade the capabilities of the system, four new classes were added to DS: “System
updates”, System feedback”, “System maintenance”, and “System expansion request” (figure
124). Consequently, the design size of D8 increased and its understandability decreased. The
simulated and the real results show the effectiveness of the encapsulation equation in adapting
understandability.
1) Simulated results

To counterbalance the decrease in understandability, encapsulation should be maximized
in the four newly added classes (figure 123).
2) Real results

The simulated changes and their corresponding adaptations were applied in the real
design of D8 as illustrated in figure 124. The obtained understandability from the real design of

D8 after adaptation equals its simulated value.

238

Understandability and design properties

levels

Understandability Adaptation to Changes in Design Quality properties

qual

20—+

o]

— Polymaorphism
— Encapsulation
— Coupling

/ — Abstraction

i Cohesion

Complexity
— Design Size
— Understandability
— UnderstandReference

-1i0+

! ! ! ! |

ist gt 2nd gt 3rd gt 4th gt

Understandability adaptation time

Figure 123: Understandability adaptation results of D8

239

System feedback
~Tevel: String _ System updates
- type: String - name: String
- date: String + buyOnline (name: String)
- content: String +activate (name: String)
+ failureLevel (level: String) + cancel (name: String)
+satisfaction (level: String)
+ critics (type: String, date: String, i
content: String) _System maintenance
- type: String
- date: String
System expansion request - content: String
- type: String + sendRequest (type: String, date: String)
- date: String +deleteRequest (type: String, date:
- content: String String) _
+ suggestRequest (type: String, date: + updateRequest (type: String, date:
String) String)
+deleteRequest (type: String, date:
String)
+ updateRequest (type: String, date:
String)

Figure 124: Understandability design changes and adaptations of D8

C.7.2.2 Design changes affecting the extendibility and the flexibility quality attributes
The newly added classes in the first design change were linked to the class “System”
through aggregation relationships, which increased the coupling property of D8 (figure 127).
Consequently, the flexibility and the extendibility quality attributes dropped below their
reference values as illustrated in the following simulated and real results.
1) Simulated results
The decrease in extendibility and flexibility can be adapted by increasing polymorphism

to three polymorphic methods (figures 125 and 126).

240

2) Real results

As suggested in the simulated results, three polymorphic methods such as
“suggestRequest (type: String)” were added to D8 to adapt the values of extendibility and
flexibility (figure 127). The real computed values of the quality attributes after adaptation are

similar to their simulated values.

Extendibility Adaptation to Changes in Design Quality properties

qual

— Paolymaorphism
— Abstraction
Coupling

— Inheritance
— Extendibility
— ExtendibilityReference

Extendibility and design properties levels
o

¥

ist gt 2nd gt 3rd gt 4th gt
Extendibility adaptation time

Figure 125: Extendibility adaptation results of D8

241

Flexibility and design properties levels

qual

154

10

Flexibility Adaptation to Changes in Design Quality properties

|

— Flexibility
FlexibilityReference

— Polymorphism

— Encapsulation

— Coupling

Composition

ist gt 2nd gt 3rd gt 4th gt
Flexibility adaptation time
Figure 126: Extendibility adaptation results of D8

242

System feedback

- level: String
- type: String
- date: String
- content: String

+ failureLevel (level: String)
+satisfaction (level: String)

+ critics (type: String, date: String,
content: String)

System updates

- name: String

+ buyOnline (hame: String)
+activate (name: String)
+ cancel (name: String)

Website
System
/<> \
System expansion request System maintenance
- type: String - type: String
- date: String - date: String

- content: String

+ suggestRequest (type: String, date:
String)

+suggestRequest (type: String)
+deleteRequest (type: String, date: String)
+deleteRequest (type: String)

+ updateRequest (type: String, date:
String)

+ updateRequest (type: String)

- content: String

+ sendRequest (type: String, date: String)
+deleteRequest (type: String, date:
String)

+ updateRequest (type: String, date:
String)

Figure 127: Extendibility and flexibility design changes and adaptations in D8

243

C.7.2.3 Design changes affecting the functionality and the reusability quality attributes

After merging the “Vacation mode” functionalities in the “Away Mode” class, the design
size of D8 decreased as well as its reusability and functionality. The simulated and the real
results show the effectiveness of cohesion in adapting the values of reusability and functionality.
1) Simulated results

The reusability and functionality of D8 can be adapted when cohesion is maximized in
two classes (figures 128 and 129).
2) Real results

In figure 130, cohesion was maximized in the “System feedback” and the “System
maintenance” classes to adapt the values of the reusability and the functionality attributes. The

real values of the quality attributes after adaptation equal their simulated ones.

Reusability Adaptation to Changes in Design Quality properties

qual

20+

n
1]
-
gz
w
g
T
L1}
o
[=]
e
E- 204 - — Cohesion
o Coupling
E — Design Size
v] — Massaging
o — Reusabilit
c 1 . ¥
m ReusabilityReference
oy
£ 104
0
m
w
3
L]
14
‘lr } } } {
1st gt 2nd gt 3rd gt 4th gt

Reusability adaptation time

Figure 128: Reusability adaptation results of D8

244

Functionality and design properties levels

qual

Functionality Adaptation to Changes in Design Quality properties

30+

20+

10

— Polymorphism
Cohesion

— Design Size

— Hierarchies

— Messaging

— Functionality

FunctionalityReference

1st gt 2nd gt 3rd gt 4th gt

Functionality adaptation time

Figure 129: Functionality adaptation results of D8

245

System feedback
- level: String
- type: String
- date: String
- content: String
+ failureLevel (level: String, type:
String, date: String, content: String)
+satisfaction (level: String, type:
String, date: String, content: String)
+ critics (type: String, date: String,
content: String, level: String)

System updates

- name: String

+ buyOnline (name: String)
+activate (name: String)
+ cancel (name: String)

Website

]

- content: String

System
System expansion request System maintenance
- type: String - type: String
- date: String - date: String

- content: String

+ suggestRequest (type: String, date:
String)

suggestRequest (type: String)
+deleteRequest (type: String, date: String)
+deleteRequest (type: String)

+ updateRequest (type: String, date:
String)

+ updateRequest (type: String)

+ sendRequest (type: String, date: String,
content: String)

+deleteRequest (type: String, date: String,
content: String)

+ updateRequest (type: String, date:
String, content: String)

Figure 130: Reusability and functiona

lity design changes and adaptations in D8

246

C.7.2.4 Design changes affecting the effectiveness quality attribute

The last change in D8 decreased the composition property and the effectiveness quality
attribute. The “System expansion request” functionalities are merged in the “System feedback”
class, which suppressed its aggregation relationship and the effectiveness property of D8 (figure
132). The impact of those changes and the applied polymorphism adaptation is illustrated in the
simulated and the real results.
1) Simulated results

Polymorphism should be increased by four to effectively adapt the value of effectiveness
(figure 131).
2) Real results

After adding four polymorphic equations to D8 such as “deleteRequest (type: String)”,

the resulting effectiveness nearly equal its simulated value (figure 132).

Effectiveness Adaptation to Changes in Design Quality properties

qual

— Paolymaorphism
— Abstraction
Composition

— Encapsulation
— Inheritance
BT Effactivenass

— EffectivenessReferance

Effectiveness and design properties levels

] t t f {

ist gt 2nd gt 3rd gt 4th gt

Effectiveness adaptation time

Figure 131: Effectiveness adaptation results of D8

247

System feedback

- level: String _System updates
- type: String - name: String

- date: String + buyOnline (hame: String)
- content: String +activate (name: String)

+ failureLevel (level: String, type: + cancel (name: String)

String, date: String, content: String)
+satisfaction (level: String, type:
String, date: String, content: String)
+ critics (type: String, date: String,
content: String, level: String) +
suggestRequest (type: String, date:
String)

suggestRequest (type: String) Website
+deleteRequest (type: String, date:
String)

+deleteRequest (type: String)
+ updateRequest (type: String, date: ﬁ

String)
K System

+ updateRequest (type: String)

System maintenance

- type: String
- date: String
- content: String

+ sendRequest (type: String, date: String, content: String)
+ sendRequest (type: String)

+ sendRequest (type: String, content: String)

+ sendRequest (content: String)

+deleteRequest (type: String, date: String, content: String)
+deleteRequest (type: String, date: String, content: String)
+deleteRequest (date: String, content: String)

+ updateRequest (type: String, date: String, content: String)

Figure 132: Effectiveness design change and adaptation in D8

248

C.8 Design 3 (D9): Jabbler chat system
C.8.1 System description and reference quality values

Jabbler is a text based online chat system that offers many options to users. Besides
viewing a list of chat rooms, a user can join a room, view its messages, send messages, and even
join multiple chat rooms simultaneously. Figure 133 illustrates the class diagram of D9. The

reference quality values of D9 for all the quality attributes can be accessed in tables 17 and 18.

249

Command Handler

+ProcessReceivedCommands(Char* receivedData)() : char

+GetFieldText(UIntL6 fieldID)() : int

Jabbler Connection Server ChatRoom
+OpenConnection() +Server(Connection)() +ChatRoom(Connection)()
+CloseConnection() +LogIn() : bool +SendMessage()
+CloseNetLibrary() +LogOut() : bool +GetUpdatedContent()
+SendData() +GetRooms() : <unspecified> +GetUserList()
+ReceiveData() : char +JoinRoom()
+GetServerConnectionlnfo() : bool +LeaveRoom()

+RegisterNewUser()
- +CreateRoom()

Command

+Command
+Command

Char* unparsedCommand)()

UInt16 cmdCode, Parameter)()

+Command(UInt16 cmdCode, Parameter, Parameter)()
+Command(UInt16 cmdCode, Parameter, Parameter, Parameter)()
+ToString() : char

+HasMoreParameters() : bool

+GetNextParameter() : Parameter

—_— ==~ =

]

Parameter

+Parameter(Char* paramTitle, Char* paramData)()
+GetParameterTitle()() : char
+GetParameterData()() : char

+ToString()() : char

Figure 133: D9 Class diagram

250

C.8.2 Design changes
C.8.2.1 Design changes affecting the understandability quality attribute

D9 was extended by adding two new options that enable users to share videos and
pictures as it is illustrated in the classes: “Video share” and “Picture share” (figure 135).
Increasing D9’s design size led to a decrease in understandability that was adapted by increasing
encapsulation.
1) Simulated results

The observed decrease in understandability after increasing design size is effectively
adapted by increasing encapsulation by two (figure 134).
2) Real results

Encapsulation was maximized in two classes of D9 as it is illustrated in figure 135. As a

result, the obtained real understandability equals its simulated value.

Understandability Adaptation to Changes in Design Quality properties

qual

20+

20—

— Polymorphism

— Encapsulation

10+ — Coupling
—II — Abstraction
Cohesion
[Complexity
u] — Design Size

— Understandability

— UnderstandReference

-i04

Understandability and design properties

levels

ist gt 2nd gt 3rd gt 4th gt

Understandability adaptation time

Figure 134: Understandability adaptation results of D9

251

Video share Picture share
- videoName: String - pictureName: String
+ sendVideo (videolD: String, + sendPicture (pictureName: String)
videoName: String) + cancelShare (pictureName: String)

+ cancelShare (videolD: String,
videoName: String)

Figure 135: Understandability design change and adaptation in D9

C.8.2.2 Design changes affecting the extendibility and the flexibility quality attributes
The newly added classes were linked to the “ChatRoom” class through aggregation
relationships, which increased the rate of coupling in D9 (figure 138). Consequently, Both the
flexibility and the extendibility quality attributes dropped below their reference values as it is
illustrated and adapted in the simulated and the real results.
1) Simulated results
To counterbalance the decrease in flexibility and extendibility, polymorphism should be
increased by one (figures 136 and 137).
2) Real results
The class diagram of D9 was updated by adding one polymorphic method namely
“sendVideo (videolD: String)”, which made the resulting real flexibility and extendibility

attributes nearly equal their simulated values (figure 138).

252

qual

Flexibility Adaptation to Changes in Design Quality properties

n
1]
- 15+
gz
w
g
T
L1}
o
2 I
& ol — Flexibility
c FlexibilityReference
o R
= — Polymarphism
% — En:ap.sulation
- — Coupling
5 Composition
£ T
2
=
£
[
o } } } !
ist gt 2nd gt 3rd gt 4th gt
Flexibility adaptation time
Figure 136: Flexibility adaptation results of D9
Extendibility Adaptation to Changes in Design Quality properties
gual
A
L]
> 154
2
w
g2
£
g 101
Q
bl
E‘ — Palymarphism
o — Abstraction
3 37 Coupling
= — Inheritance
-E l — Extendibility
T ExtendibilityReference
fed 0
=
3
o
=)
2 -5
Ed
1]

U | | | |

ist gt 2nd gt 3rd gt 4th gt
Extendibility adaptation time

Figure 137: Extendibility adaptation results of D9

253

Video share
- videoName: String Picture share

+ sendVideo (videolD: String, - pictureName: String
videoName: String)

+ sendVideo (videolD: String)
+ cancelShare (videolD: String,
videoName: String)

+ sendPicture (pictureName: String)
+ cancelShare (pictureName: String)

" ChatRoom

Figure 138: Flexibility and extendibility design change and adaptation in D9

C.8.2.3 Design changes affecting the extendibility and the understandability quality
attributes

The chat capabilities of “Jabbler” were improved by adding the “Video chat” and the
“Voice chat” classes (figure 141). Those newly added classes were linked to the existing classes
of D9 through aggregation relationships. As a result, the understandability and the extendibility
quality attributes dropped below their reference values as it is described in the simulated and real
results.
1) Simulated results

On the one hand, extendibility can be adapted by increasing polymorphism to six (figure
139). On the other hand, understandability can be adapted by maximizing encapsulation in the

two newly added classes (figure 140).

254

2) Real results

From figure 141, encapsulation was maximized in the “Video chat” and the “Voice chat”
classes. In addition, six polymorphic methods were added such as “sendVideo (videolD:
String)”. Consequently, the resulting extendibility and understandability nearly equal their

simulated values.

Extendibility Adaptation to Changes in Design Quality properties

qual

204

0 — Polymorphism

— Abstraction
Coupling
— Inheritance
— Extendibility

ExtendibilityRefarence

Extendibility and design properties levels

S . . .

ist gt 2nd gt 3rd gt 4th gt
Extendibility adaptation time

Figure 139: Second extendibility adaptation results of D9

255

Understandability and design properties

levels

U

qual
40

30

20+

10+

-104

-20

nderstandability Adaptation to Changes in Design Quality properties

-—{ — Polymorphism

! — Encapsulation
— Coupling
"J — Abstraction

II:'J Cohesion
Complexity

— Design Size
— Understandability

— UnderstandReference

L

ist gt 2nd gt 3rd gt 4th gt

Understandability adaptation time

Figure 140: Second understandability adaptation results of D9

256

Video share

- videoName: String

Picture share

+ sendVideo (videolD: String,
videoName: String)

+ sendVideo (videoName: String)
+ sendVideo (videolD: String)

+ cancelShare (videolD: String,
videoName: String)

+ cancelShare (videolD: String)

+ cancelShare (videoName: String)

- pictureName: String

+ sendPicture (pictureName: String)
+ cancelShare (pictureName: String)

\%

ChatRoom

N

Q ||

B i

Voice chat

Video chat

- voiceMessage: String
-messagelD: String

+ sendVoiceMessage (voiceMessage:
String, messagelD: String)

+ sendVoiceMessage (voiceMessage:
String)

+ sendVoiceMessage (messagelD:
String)

+ launchLiveVoiceChat (voiceMessage:
String)

+ shareMedia (type: String, name:
String)

+ cancelMediaShare (type: String,
name: String)

+ cancelMediaShare (hame: String)

- videolD: String

+ sendVideoMessage (videolD:
String)

+ launchVideoChat (videolD: String)
+ cancelChat ()

+ shareMedia (type: String, name:
String)

+ cancelMediaShare (type: String,
name: String)

Figure 141: Second extendibility and Understandability design change and adaptation in

D9

257

C.8.2.4 Design changes affecting the reusability, the functionality and the effectiveness
quality attributes

The class diagrams “Video share” and “Picture share” were deleted from D9 as well as
their corresponding aggregation relationships (figure 145). Thus, the reusability, the
functionality, and the effectiveness of D9 decreased significantly. To face the impact of those
design changes, the equations of cohesion and polymorphism were applied.
1) Simulated results

From figures 142 and 143, reusability and functionality can be adapted by maximizing
cohesion in one class. Effectiveness can be adapted by increasing polymorphism to eight (figure
144).
2) Real results

Cohesion was maximized in the “Video chat” class, which adapted the values of
reusability and functionality. Eight polymorphic methods such as “cancelShare (videolD:
String)” were added to D9 to adapt the value of effectiveness (figure 145). The obtained real

values of the quality attributes almost equal their simulated values.

258

Reusability and design properties levels

qual

Reusability Adaptation to Changes in Design Quality properties

404

304

204

10+

— Cohesion
— Coupling
— Design Size
— Messaging

— Reusability

ReusabilityReference

[| . .

ist gt 2nd gt 3rd gt 4th gt

Reusability adaptation time

Figure 142: Reusability adaptation results of D9

Functionality and design properties levels

Functionality Adaptation to Changes in Design Quality properties

qual
40+
30+
— Polymaoarphism
— Cohesion
— Design Size
20—+ — Hierarchies
— Messaging
r — Functionality
FunctionalityReferance
10 J
I |
0 / } } } |
ist gt 2nd gt 3rd gt 4th gt

Functionality adaptation time

Figure 143: Functionality adaptation results of D9

259

Effectiveness and design properties levels

qual

154

10+

Effectiveness Adaptation to Changes in Design Quality properties

— Polymorphism
— Abstraction
Composition
— Encapsulation
— Inheritance
Effectiveness

— EffectivenessReferance

1st gt 2nd gt 3rd gt 4th gt

Effectiveness adaptation time

Figure 144: Effectiveness adaptation results of D9

260

ChatRoom

- videoName: String
- pictureName: String

+ sendVideo (videoName: String)
+ sendVideo (videolD: String)

+ cancelShare (videolD: String)
+ cancelShare (videoName: String)
+ sendPicture (pictureName: String)

+ sendVideo (videolD: String, videoName: String)

+ cancelShare (videolD: String, videoName: String)

Voice chat

+ cancelShare (pictureName: String)
- voiceMessage: String

-messagelD: String

+ sendVoiceMessage (voiceMessage:
String, messagelD: String)

+ sendVoiceMessage (voiceMessage:
String)

+ sendVoiceMessage (messagelD: String)
+ launchLiveVoiceChat (voiceMessage:
String)

+ shareMedia (type: String, name: String)
+ shareMedia (type: String)

+ shareMedia (name: String)

+ cancelMediaShare (type: String, name:
String)

+ cancelMediaShare (name: String)

Video chat

- videolD: String

+ sendVideoMessage (videolD: String)

+ launchVideoChat (videolD: String)

+ cancelChat ()

+ shareMedia (type: String, name: String,
videolD: String)

+ shareMedia (type: String, videolD)

+ shareMedia (name: String, videolD)

+ cancelMediaShare (type: String, name:
String, videolD)

+ cancelMediaShare (type: String, videolD)
+ cancelMediaShare (name: String,
videolD)

Figure 145: Reusability, functionality, and effectiveness design change and adaptation in

D9

261

C.9 Design 10 (D10): Darden wellness center
C.9.1 System description and reference quality values

The Darden wellness system allows nurses to input patients’ information into electronic
forms, add new patients as well as generate their records. The class diagram of D10 is

represented in figures 146-150. The reference quality values are recorded in tables 17 and 18.

&«

| Form1 ' Nurselogln ® | ' AddNewPatientWizard ® |
Class Class Class
- Form - Form - Form
< 1 1 .
Nurse ¥ |
Class
1)
- - 1
| Patient ¥ | 1
Class ‘ e = (o %))
| TransitionLayer ¥ Printer ¥ |
Class f——————— Class
1 1
/£ - - O“’ \ 1 1 1
KeyValue ¥ | |
Class 1 1
0.*
1
1
Datalayer ¥
Class
e R —
j Program ¥ :
I StaticClass I
I
S i o ot . . o s ./l
' Resources ¥ |
Class
Settings ¥
Sealed Class

= ApplicationSettingsBase

Figure 146: D10 class diagram (1)

262

Vi

Form1

Class

= Form

* Fields
= Metheds

@
QV

buttonl_Click(object sender, EventArgs €) : void

buttonl_MouseEnter{cbject sender, EventArgs €) : void
buttonl_Mouseleave(cbject sender, EventArgs €) : void

buttonl13_Click(cbject sender, EventArgs €) : void

buttenl4_Click(object sender. EventArgs €) : void

button16_Click{cbject sender, EventArgs €) : void

buttonl7_Click{object sender, Eventirgs €) : void

button2_Click(object sender, EventArgs €) : void

button3_Click(object sender, EventArgs €) : void

button3_MouseEnter{cbject sender, EventArgs) : void
button3_Mouseleave(object sender, EventArgs €) : void

buttond_Click(object sender, EventArgs) : void

buttond_MouseEnter{object sender, EventArgs €) : void

buttond_Mousel eave(object sender, EventArgs €) : void

butten5_Click(object sender, EventArgs €) : void

button5_MouseEnter{object sender, EventArgs €) : void
button5_Mouseleave{object sender, EventArgs €) : void
buttonb_MouseEnter(cbject sender, EventArgs €) : void
buttonb_Mouseleave(object sender, EventArgs €) : void

Dispose{bocl disposing) : void

Forml{int input, TransitionLayer newTlayer)
FullPatientinfoPanel_MedicationTab_AddBin_Click(object sender, EventArgs €) : void
FullPatientInfoPanel_PrintBtn_Click{cbkject sender, EventArgs e) : void
FullPatientinfoPanel_SaveBtn_Click(object sender, EventArgs €) : void
FullPatientinfoPanel_ScreeningTak_AddBtn_Click(object sender, EventArgs €) : void
InitializeComponent() : void

listBox12_MouseEnter(cbject sender, EventArgs €) : void
listBox12_Mouseleave{object sender, EventArgs €) : void

loadControls{ref Control rootContrel) : void

loadContrels2(Control controlToload) : void

loadDataToUl) : void
patientAssessmentlWillNcRadicBtn_CheckedChanged(object sender, EventArgs €) : void
patientAssessmentlWillYesRadicBtn_CheckedChanged(object sender, EventArgs €) : void
savelnformation(Centrol roctControl) : void
SearchPanel_SearchButton_Click{cbject sender, EventArgs €) : veid
textBox32_TextChanged(object sender, EventArgs e) : void
textBox33_TextChanged(cbject sender, EventArgs €) : void

)

Figure 147: D10 class diagram (2)

263

(

Patient

Class

2 Printer
Class

= Fields = Fields

%% %% %%

=l Properties

b

G b

= Methods

% addKeyValue(KeyValue newKV) : void
@
‘9 getKeyValues() : List<KeyValue>
‘@ Patient()

dob : string #4? printerPatient : Patient
fName: string = Methods
IName : string ‘@ Printer{)

patientlD : int “& setPatient{Patient newPatient) : void

patientKeyValues : List<KeyValue>

“@ writeToFilel) : void
ssMNumber ; int _

dateCfBirth { get; set; } ! string
firstName { get; set; } : string
lastName { get; set; } : string
pID{get set; }:int

ssn{get set }:int

clearKVs() : void

(

TransitionLayer

Class

Fields
= Methods

10

ih

beebbebeé

26666666

addVisit() : void

clearKVList() : void

createNewPatient(string firstName. string lastName, string dateCfBirth, int ssn)
deletePatient() : void

flushToDatabase() : void

getNurseFirstName(] : string

getNurselastName() : string

loadTable() : void

lcadTeContrel(ref Contrel loadControl) : void
loadToControl(ref cbject loadCentrol) : void
lcadToPatient() : void

nurseLogln(string name, int pin) : bool
printPatient() : void

saveloPatient(Control saveControl) : void
searchForPatient{string searchCriteria) : List<string>
setPatient(int pID) : bool

TransitionLayerf{)

int

Figure 148: D10 class diagram (3)

264

6 AddNewPatientWizard
Class
-+ Form

Fields
= Methods

-

"% AddNewPatientWizard()

;.-_3,"' Back_Btn_Click(object sender, EventArgs e) : void

a}“ Cancel_Btn_Click{ckject sender, EventArgs €) : void

,',9 dateCfBirth_MaskTB_MouseUp(chject sender, MouseEventArgs €) : void

Dispose(bool disposing) : void
emergencyContact_phoneNumber_MaskedTB_MouseUp(object sender, MouseEventArgs €) : void
ErrorMessage(Control errorTestedControl) : bool

ErrorMessage{RadicButton errorTestedCentrell, RadicButten errorTestedCentrol2) @ beol
firstName_TB_KeyPress(object sender, KeyPressEventArgs €) : void

a9 InitializeComponent() : void

29 lastName_TB_KeyPress{object sender, KeyPressEventArgs €} : void

,;,V LegalAndInsurance_Groupbox_Enter(cbject sender, EventArgs €) : void

_,59 maskedTextBox1l_MouseUp(cbject sender, MouseEventArgs €) : void

5% maskedTextBoxd_MouseUp{cbject sender, MouseEventArgs €) : void

_._4,9 maskedTextBox5_MouseUp(cbject sender, MouseEventArgs €) : void

% 6 6% %

4% maskedTexiBox6_MouseUp{cobject sender, MouseEventArgs €) : void

§° memberl_Birthday_MaskTB_MouseUp(cbject sender, MouseEventArgs €) : void
5,9 member2_Birthday_MaskTB_MouseUp{cbject sender, MouseEventArgs e) : void
4% member3_Birthday_MaskTB_MouseUp(object sender, MouseEventArgs &) : void
;,3"9 memberd_Birthday_MaskTB_MouseUp(object sender, MouseEventArgs €) : void
5,'9 member5_Birthday_MaskTB_MouseUp(object sender, MouseEventArgs €) : void
,j" member6_Birthday_MaskTB_MouseUp(object sender, MouseEventArgs €) : void
;,-59 midName_TB_KeyPress{cbject sender. KeyPressEventArgs €) : void

29 Next_Bin_Click(cbject sender, EventArgs e) : void

29 phoneNumber_maskedTB_MouseUp{object sender, MouseEventArgs €} : void
_,50 savelnformation(Control roctControl) : void

»)

(Datalayer
Class

= Methods

addNewPatient(string firstName, string lastName, string dateCfBirth, int ssn) ! int
createDBConnection() : SglConnecticn

DatalLayer()

getNonUniqueAddString(string ParatableName, int id, int paraPid, string Parakey, string Paravalue) : string
getTableLength(string tableName) : int

getUniqueAddString(string ParatableName, int id, int paraPid, string Parakey, string Paravalue) : string
grabKVFromTables(string tableName, int pID) : List<KeyValue»

searchForPatient(int searchlD) : List<string>

searchForPatient(string searchlnput) : List<string>

validateNurse(string firstname, string lastname, int pin) : int

writeKVToDatabase(KeyValue kvToWrite, int pID) : void

EEERE R A R AR

)

Figure 149: D10 class diagram (4)

265

«)

Settings
Sealed Class
= ApplicationSettingsBase

«) |

| Resources
Class

Figure 150: D10 class diagram (5)

C.9.2 Design changes
C.9.2.1 Design changes affecting the understandability quality attribute

The computerized system of the Darden center was extended by adding three options
dealing with insurance, vaccination, and pharmacy (figure 152). This increase in the design size
of D10 led to a decrease in understandability that was adapted by increasing encapsulation.
1) Simulated results

From the simulation results in figure 151, encapsulation should be increased by three to
counterbalance the decrease in understandability.
2) Real results

In figure 152, encapsulation was maximized in the three new added classes, which makes

the value of the real understandability equal its simulated value.

266

Understandability and design properties

levels

Understandability Adaptation to Changes in Design Quality properties

qual

— Polymaorphism

— Encapsulation

— Coupling

— Abstraction
Cohesion
Complexity

— Design Size

— Understandability

— UnderstandReferance

ist gt 2nd gt

3rd gt

4th qt

Understandability adaptation time

Figure 151: Understandability adaptation results of D10

Insurance counselling

- patientID: String

+ bookCouncellingSession

(patientID: String, patientName: String,
date: String)

+ cancelSession (patientID: String,
patientName: String, date: String)

Vaccination department

- type: String
- name: String

+ addVaccinationltem (type: String,
name: String, date: String, number:
String)

+ deleteltems (type: String, name:
String)

+ orderltems (type: String, name:
String, date: String, number: String)

Local pharmacy

- type: String
- name: String

+ addMedicine (type: String, name:
String, date: String, number: String)
+ deleteMedicine (type: String, name:
String, date: String, number: String)
+ ordermedicine (type: String, name:
String, date: String, number: String)

267

Figure 152: Understandability design change and adaptation of D10

C.9.2.2 Design changes affecting the extendibility and the flexibility quality attributes
The coupling level of D10 was increased by linking the newly added classes to the
existing classes through aggregation relationships (figure 155). As a result, extendibility and
flexibility dropped below their reference values. Those design changes and the applied
adaptation through polymorphism is illustrated in the real and the simulated results.
1) Simulated results
Extendibility and flexibility are effectively adapted when polymorphism is increased by
three (figures 153 and 154).
2) Real results
After adding three polymorphic methods to D10 such as “bookCouncellingSession
(patientID: String)”, the obtained extendibility and flexibility are similar to their simulated

values (figure 155).

Extendibility Adaptation to Changes in Design Quality properties

qual

— Palymarphism

— Abstraction
Coupling

— Inheritance

— Extendibility
ExtendibilityReference

Extendibility and design properties levels

T T T
ist gt 2nd gt 3rd gt 4th gt

Extendibility adaptation time

Figure 153: Extendibility adaptation results of D10

268

Flexibility and design properties levels

Flexibility Adaptation to Changes in Design Quality properties

gqual
9__

— Flexibility
— FlexibilityReference

— Polymorphism

— Encapsulation
— Coupling

Compaosition

0 t } } |
ist gt 2nd gt 3rd gt 4th gt

Flexibility adaptation time

Figure 154: Flexibility adaptation results of D10

269

Insurance counselling Vaccination department
- patientID: String - type: String
+ bookCouncellingSession - name: String
(patientID: String, patientName: String, + addVaccinationltem (type: String,
date: String) name: String, date: String, number:
+ bookCouncellingSession String)
(patientID: String) + addVaccinationltem (type: String)
+ cancelSession (patientID: String, + deleteltems (type: String, name:
patientName: String, date: String) String) _ _
+ cancelSession (patientlD; String) + orderltems (type: String, name: String,

Transition layer

7

Local pharmacy
- type: String
- name: String
+ addMedicine (type: String, name:
String, date: String, number: String)
+ deleteMedicine (type: String, name:
String, date: String, number: String)
+ ordermedicine (type: String, name:
String, date: String, number: String)

Figure 155: Flexibility and extendibility design change and adaptation of D10

C.9.2.3 Design changes affecting the reusability, the functionality and the effectiveness
quality attributes

The last design change in D10 dealt with deleting the class “Insurance counseling” as
well as its corresponding aggregation relationship (figure 159). Thus, the reusability, the
functionality, and the effectiveness quality attributes dropped below their reference values and

were adapted through cohesion and polymorphism.

270

1) Simulated results

Reusability and functionality were adapted by maximizing cohesion in one class (figures
156 and 157). Effectiveness is adapted when polymorphism increases by six (figure 158).
2) Real results

The simulated design changes and adaptations were applied in D10’s class diagram.
Cohesion was maximized in the “Local pharmacy” class and six polymorphic methods were
added to D10 such as “addVaccinationltem (type: String)”. The computed quality attributes after

adaptation almost equal their simulated values.

Reusability Adaptation to Changes in Design Quality properties

qual

1001

— Cohesion
Coupling
so04 — Design Size
— Messaging
— Reusability

ReusabilityRefarance

Reusability and design properties levels

f | ! | |

ist gt 2nd gt 3rd gt 4th gt

Reusability adaptation time

Figure 156: Reusability adaptation results of D10

271

Functionality Adaptation to Changes in Design Quality properties

ist gt 2nd gt 3rd gt

Effectiveness adaptation time

gual
w100+
a
-
2
L]
2
£
L]
o
Q
1
o — Palymarphism
E.. Cohesion
0 — Design Size
% 50T — Hierarchies
- — Messaging
E — Functionality
3'* FunctionalityReferance
5 -
=
L
T .
=)
R
u] T T
ist gt 2nd gt 3rd gt
Functionality adaptation time
Figure 157: Functionality adaptation results of D10
Effectiveness Adaptation to Changes in Design Quality properties
quazl
i
1]
-
9
w10
z
t
L]
o
Q
=
o — Polymorphism
51 — Abstraction
E - Compaosition
o — Encapsulation
'E ST — Inheritance
m Effectiveness
ﬁ — EffectivenessReference
L]
=
L]
2
T
L1
b
w
0 f f

Figure 158: Effectiveness adaptation results of D10

272

Vaccination department

- type: String

- name: String

+ addVaccinationltem (type: String, name: String, date: String, number:
String)

+ addVaccinationltem (type: String)

+ addVaccinationltem (name: String)

+ addVaccinationltem (number: String)

+ addVaccinationltem (type: String, name: String)

+ deleteltems (type: String, name: String)

+ deleteltems (type: String)

+ deleteltems (name: String)

+ orderltems (type: String)

+ orderltems (type: String, name: String, date: String, number: String)

Transition layer

T

Local pharmacy
- type: String
- name: String
+ addMedicine (type: String, name:
String, date: String, number: String)
+ deleteMedicine (type: String, name:
String, date: String, number: String)
+ ordermedicine (type: String, name:
String, date: String, number: String)

Figure 159: Reusability, functionality, and effectiveness design change and adaptation of
D10

As it was described in chapter 4, Pearson’s r was also computed for the remaining
QMOOD quality attributes namely reusability, flexibility, functionality, extendibility, and

effectiveness in the following tables.

273

X: Simulated Y: Real
extendibility extendibility XY x? Y2
in D1-D10 in D1-D10
-12.25 -11.80 144.55 150.06 139.24
-4.10 -4.10 16.81 16.81 16.81
-3.50 -3.50 12.25 12.25 12.25
-8.13 -8.13 66.09 66.09 66.09
-9.06 -9.06 82.08 82.08 82.08
-11.14 -11.14 124.09 124.09 124.09
-3.88 -3.88 15.05 15.05 15.05
-5.45 -5.45 29.70 29.7 29.70
-6.75 -6.75 45.56 45.56 45.56
-0.7 -0.7 0.49 0.49 0.49
Y X=-64.96 Y Y=-64.51 2 XY=1536.67 Y X*=542.18 2 Y?=531.36
n =10
Table 22: Correlation computations of extendibility
10 (536.67) — (-64.96) (-64.51)
My =
V|10 (542.18) — (- 64.96)? * |10 (531.36) — (-64.51)?|
= 0.99 very high correlation
X: Simulated Y: Real flexibility
flexibility in D1-D10 XY X2 Y2
in D1-D10
-3 -0.75 2.25 9 0.562
-1.5 6.75 10.12 2.25 45.56
-1.5 0 0 2.25 0
-2.5 -0.5 1.25 6.25 0.25
-3.5 -2.75 9.62 12.25 7.56
-1.5 -1 1.5 2.25 1
0.25 1.25 0.31 0.06 1.56
-2.25 -1.5 3.37 5.06 2.25
4.75 5.25 24.93 22.56 27.56
3.25 4 13 10.56 16
XX=-75 X Y=10.75 2 XY=66.35 2 X*>=172.49 2 Y*=102.3
n =10

Table 23: Correlation computations of flexibility

274

10 (66.35) — (-7.5) (10.75)

rxy =

V|10 (72.49) — (-7.5)7 * |10 (102.3) — (10.75)?

= 0.95 very high correlation

X: Simulated Y: Real XY X2 y2
reusability reusability

23.20 23.30 538.24 538.24 538.24
31.75 3175 1008.06 1008.06 1008.06
51.80 51.82 2684.27 2683.24 2685.31
33 33 1089 1089 1089
38.05 37.05 1409.75 1447.80 1372.70
47.75 47.75 2280.06 2280.06 2280.06
61.75 61.75 3813.06 3813.06 3813.06
20 20 400 400 400
21.25 21.75 462.18 451.56 473.06
57.50 57.50 3306.25 3306.25 3306.25
X X=386.05 X Y=385.57 2 XY=16990.87 | X X*=17017.27 2 Y?*=16965.74
n =10

Table 24: Correlation computations of reusability

10 (16990.87) — (386.05) (385.57)

rxy =

= 0.99 very high correlation

V|10(17017.27) — (386.05)2] * |10 (16965.74) — (385.57)?]

X: Simulated Y: Real

functionality functionality XY X \§
17.48 17.08 298.55 305.55 291.72
18.38 18.08 332.31 337.82 326.88
26.64 26.71 711.55 709.68 713.42
20.8 20.86 433.88 432.64 435.13
22.02 23.38 514.82 484.88 546.62
25.86 26.32 680.63 668.73 692.74
30.26 31.38 949.55 915.66 984.70
12.44 12.46 155 154.75 155.25
13.98 15.30 213.89 195.44 234.09
27.84 28.96 806.24 775.06 838.68
X X=215.7 X Y=220.53 X XY=5096.42 X X2=4980.21 2 Y?>=5219.23
n =10

Table 25: Correlation computations of functionality

275

10 (5096.42) — (215.7) (220.53)

rxy =
V|10(4980.21) — (215.7)2| * |10 (5219.23) — (220.53)?
= 0.99 very high correlation

X: Simulated Y: Real))

effectiveness effectiveness XY X Y
3.68 5.38 19.79 13.54 28.94
4,12 5.52 22.74 16.97 30.47
0 0 0 0 0
0 0 0 0 0
2.18 3.18 6.93 4.75 10.11
3.34 3.54 11.82 11.15 12.53
2.45 3.25 7.96 6 10.56
1.82 2.42 4.40 3.31 5.85
6.5 6.9 44.85 42.25 47.61
2.92 3.92 11.44 8.52 15.36
2 X=27.01 Y Y=34.11 2 XY=129.93 2 X*=106.49 2 Y?>=161.43
n =10

Table 26: Correlation computations of effectiveness
10 (129.93) — (27.01) (34.11)

= 0.97 very high correlation

) V|10 (106.49) — (27.01)7 * |10 (161.43) — (34.11)?|

276

