

Object-Oriented Design Quality Adaptation: A System Dynamics Simulation

by

Asmae Mesbahi El Aouame

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

May 5, 2013

Keywords: Design quality adaptation, System dynamics simulation

Copyright 2013 by Asmae Mesbahi El Aouame

Approved by

David A. Umphress, Chair, Associate Professor of Computer Science & Software Engineering

James H. Cross II, Professor of Computer Science & Software Engineering

Dean. Hendrix, Associate Professor of Computer Science & Software Engineering

Lloyd S. Riggs, Professor of Electrical & Computer Engineering

ii

Abstract

 Despite the increasing interest of the software engineering research community in

assessing and improving quality at the early phases of the software development lifecycle such as

the design phase, less attention is devoted to adapting software quality to changing environment

conditions especially at the design stage. Design quality can be significantly impacted when

design decisions are modified due to changes in requirements or design strategies. This research

sheds light on possible adaptation mechanisms that can effectively mitigate any decrease in

object-oriented design quality due to a particular design change. To forecast the impact of design

changes and possible adaptations on design quality, a system dynamics simulation is developed

in Powersim
®
. The simulation variables are grouped into sub-models and represented by the

quality factors of the Quality Model for Object Oriented Design (QMOOD) developed by

Bansiya and Davis. Each sub-model simulates the interactions between a specific QMOOD

quality attribute and its corresponding design properties as well as design metrics. The

simulation is developed by following Pfahl and Ruhe’s System Dynamics Model. If after a

design change, the simulated design quality decreases below a defined reference value, designers

can apply one of the suggested adaptation equations that are extracted from the QMOOD quality

attributes equations.

 The simulation is validated by applying design changes and their adaptations on real

academic designs and computing correlations between the simulated and the real values of each

QMOOD quality attribute after adaptation. High correlations are obtained for all the quality

iii

attributes, which shows the effectiveness of the adaptation mechanisms in adjusting design

quality.

iv

Acknowledgments

 I am deeply grateful and thankful to God, my source of power and enlightenment. Thank

you God for your infinite blessings and opening the right doors in times of happiness and sorrow.

 After spending long days and nights working on this dissertation, I would like to thank all

the people who touched my life and helped me overcome all the encountered challenges.

 I am so thankful for being raised and surrounded by amazing parents and family. Mom,

dad, I am dedicating this dissertation to you. Thank you for believing in me and bearing my

craziness, sometimes. I hope that I was able to achieve what you taught me and to be your

source of pride. I am also dedicating my work to my beautiful sisters Salma and Aya as well as

my handsom brother Mohamad. Thank you my dear family. You have all showered me with love

and support.

 My deep thanks and gratitude go to my major professor and my advisory committee

members. Thank you Dr. Umphress for your support and enlightening guidance. Thank you for

believing in me and giving me the opportunity to complete my PhD. in good conditions. You are

and will be one of my inspiring role models as a professor, a mentor, an advisor, and above all as

a caring instructor towards all of his students. I would like also to thank my advisory committee

members. Thank you Dr. Cross and Dr. Hendrix for honoring my research with your valuable

feedback and support. I am also deeply thankful to Dr. Lloyd Riggs for honoring my research as

an outside reader with his valuable feedback and comments. My deep gratitude and thanks go

also to Dr. Yilmaz and Dr. Chapman for helping me in the validation of my research.

v

 Above all, I would like to thank all of my PCSE research group fellows and my friends

for their support and help. You were all inspiring models to me and allowed me to enjoy my

journey in Auburn.

vi

Table of Contents

Abstract ... ii

List of Tables ... viii

List of Illustrations .. x

Chapter 1: Introduction ... 1

 Statement of the problem and anticipated benefits ... 2

 Research approach .. 4

 Simulation-based Virtual Software Engineering Laboratories (VSEL) 4

Chapter 2: Literature Survey ... 9

 Simulation techniques and tools ... 9

 Software Process Simulation Modeling (SPSM) .. 11

 SPSM of design phase .. 21

 SPSM of adaptive systems .. 24

 The verification and validation of SPSM simulations .. 28

Chapter 3: Simulation development and verification ... 31

 Phase 0 of the SDM: Pre-study and research hypotheses definition 32

 Phase 1 of the SDM: initial model development .. 33

 Phase 2 of the SDM: Model enhancement .. 48

Chapter 4: Simulation validation .. 74

 Design 1 (D1): Library Information System (LIS) ... 75

vii

 Quality attributes correlation results ... 92

Chapter 5: Conclusions and future research work .. 96

 Conclusions .. 96

 Future research work .. 97

References ... 100

Appendix A: System dynamics concepts .. 113

Appendix B: Simulation source code ... 116

Appendix C: simulation validation on D2-D10 designs ... 166

viii

List of Tables

Table1: Discrete-event simulation process activities ... 6

Table 2: SDM role model .. 7

Table 3: Representative publications with their simulation techniques and

 treated software process topics .. 20

Table 4: Reusability adaptation equations ... 41

Table 5: Classification of reusability’s adaptation equations .. 41

Table 6: Flexibility adaptation equations ... 54

Table 7: Classification of flexibility’s adaptation equation .. 55

Table 8: Understandability adaptation equations .. 59

Table 9: Classification of understandability’s adaptation equation .. 59

Table 10: Functionality adaptation equations ... 61

Table 11: Classification of functionality’s adaptation equation ... 62

Table 12: Extendibility adaptation equations ... 64

Table 13: Classification of extendibility’s adaptation equation ... 65

Table 14: Effectiveness adaptation equations ... 68

Table 15: Classification of effectiveness’s adaptation equation ... 68

Table 16: QMOOD design metrics formula ... 78

ix

Table 17: The initial QMOOD design metrics values for the ten designs 91

Table 18: The reference values of the quality attributes for the ten designs 92

Table 19: Pearson’ r correlation degrees .. 93

Table 20: Correlation computations of understandability .. 94

Table 21: Correlation degrees of the QMOOD quality attributes ... 94

Table 22: Correlation computations of extendibility .. 274

Table 23: Correlation computations of flexibility .. 274

Table 24: Correlation computations of reusability ... 275

Table 25: Correlation computations of functionality .. 275

Table 26: Correlation computations of effectiveness ... 276

x

List of Illustrations

Figure 1: Sargent’s Simulation Modeling Process.. 5

Figure 2: SDM process model .. 8

Figure 3: SPSM goals ... 12

Figure 4: Design cycle for self-adaptive systems .. 25

Figure 5: Simulation verification techniques ... 30

Figure 6: Simulation validation techniques ... 30

Figure 7: The hierarchical structure of the QMOOD ... 34

Figure 8: QMOOD quality attributes .. 34

Figure 9: QMOOD quality attributes equations .. 35

Figure 10: Design properties definitions... 35

Figure 11: Design metrics and their corresponding design properties 36

Figure 12: Design metrics definitions ... 37

Figure 13: Reusability design properties and metrics ... 38

Figure 14: Reusability reference simulation model .. 42

Figure 15: A snapshot of the simulation interface .. 44

Figure 16: The reusability quality attribute and the design properties values

 before applying changes .. 45

Figure 17: Scenario 2 results without adaptation .. 46

Figure 18: Scenario 2 results with adaptation ... 46

Figure 19: Scenario 3 results without adaptation .. 47

xi

Figure 20: Scenario 3 results with adaptation ... 47

Figure 21: PowerSim
®
 workspace .. 50

Figure 22: Reusability sub-model ... 53

Figure 23: Flexibility design properties and metrics .. 54

Figure 24: Flexibility sub-model .. 57

Figure 25: Understandability design properties and metrics .. 58

Figure 26: Understandability sub-model .. 60

Figure 27: Functionality design properties and metrics .. 61

Figure 28: Functionality sub-model .. 63

Figure 29: Extendibility design properties and metrics .. 64

Figure 30: Extendibility sub-model .. 66

Figure 31: Effectiveness design properties and metrics ... 67

Figure 32: Effectiveness sub-model.. 69

Figure 33: The welcome page of the simulation ... 70

Figure 34: The input menu of the simulation.. 71

Figure 35: The simulation results page ... 72

Figure 36: The library server classes of LIS ... 76

Figure 37: The database server classes of LIS .. 77

Figure 38: Understandability adaptation results of D1 ... 80

Figure 39: The classes used in D1’s understandability design change 81

Figure 40: Extendibility adaptation results of D1 ... 83

Figure 41: Flexibility adaptation results of D1 ... 83

Figure 42: The changed parts of D1 for flexibility and extendibility adaptations 85

xii

Figure 43: Reusability adaptation results of D1 ... 87

Figure 44: Functionality adaptation results of D1 .. 87

Figure 45: Effectiveness adaptation results of D1 .. 89

Figure 46: The changed parts of D1 for reusability, functionality, and effectiveness

 adaptation ... 90

Figure 47: Pearson’r formula .. 92

Figure 48: A feedback loop that shows the relationships ... 114

Figure 49: Reinforcing feedback loop .. 114

Figure 50: Balancing feedback loop ... 114

Figure 51: level-rate diagram example ... 115

Figure 52: The banker system class diagram .. 168

Figure 53: Understandability adaptation results of D2 ... 169

Figure 54: D2’s understandability design change and adaptation .. 170

Figure 55: Flexibility adaptation results of D2 ... 172

Figure 56: Extendibility adaptation results of D2 ... 173

Figure 57: Flexibility and extendibility design change and adaptation in D2 174

Figure 58: Functionality adaptation results of D2 .. 175

Figure 59: Reusability adaptation results of D2 ... 176

Figure 60: Functionality and reusability design change and adaptation in D2 177

Figure 61: Effectiveness adaptation results of D2 .. 179

Figure 62: The workstation classes of D3... 180

Figure 63: The server classes of D3 .. 180

Figure 64: The monitoring device classes of D3 .. 181

Figure 65: Understandability adaptation results of D3 ... 182

xiii

Figure 66: Understandability design change and adaptation in D3 .. 184

Figure 67: Extendibility adaptation results of D3 ... 184

Figure 68: Flexibility adaptation results of D3 ... 185

Figure 69: Flexibility, extendibility, reusability, and functionality design changes with their

 adaptations in D3 ... 187

Figure 70: Reusability adaptation results of D3 ... 187

Figure 71: Functionality adaptation results of D3 .. 188

Figure 72: D4 class diagram ... 190

Figure 73: Understandability adaptation results of D4 ... 191

Figure 74: Understandability design change and adaptation in D4 .. 192

Figure 75: Understandability design change and adaptation in D4 .. 193

Figure 76: Flexibility adaptation results of D4 ... 194

Figure 77: Extendibility adaptation results of D4 ... 195

Figure 78: Flexibility and extendibility design change and adaptation in D4 196

Figure 79: Flexibility and extendibility design change and adaptation in D4 197

Figure 80: Reusability adaptation results of D4 ... 198

Figure 81: Functionality adaptation results of D4 .. 199

Figure 82: Reusability and functionality design change and adaptation in D4 200

Figure 83: Reusability and functionality design change and adaptation in D4 202

Figure 84: D5 class diagram ... 203

Figure 85: Understandability adaptation results of D5 ... 204

Figure 86: Understandability design change and adaptation in D5 .. 205

Figure 87: Flexibility adaptation results of D5 ... 206

Figure 88: Extendibility adaptation results of D5 ... 207

xiv

Figure 89: Extendibility and flexibility design change and adaptation in D5 209

Figure 90: Reusability adaptation results of D5 ... 209

Figure 91: Functionality adaptation results of D5 .. 210

Figure 92: Effectiveness adaptation results of D5 .. 211

Figure 93: Reusability, functionality, and effectiveness design change

 and adaptation in D5 .. 213

Figure 94: D6 class diagram ... 214

Figure 95: Understandability adaptation results of D6 ... 214

Figure 96: Understandability design change and adaptation in D6 .. 216

Figure 97: Flexibility adaptation results of D6 ... 216

Figure 98: Extendibility adaptation results of D6 ... 217

Figure 99: Extendibility and flexibility design change and adaptation in D6 219

Figure 100: Reusability adaptation results of D6 ... 219

Figure 101: Functionality adaptation results of D6 .. 220

Figure 102: Effectiveness adaptation results of D6 .. 220

Figure 103: Reusability, functionality, and effectiveness design change

 and adaptation in D6 .. 221

Figure 104: D7 class diagram (1).. 222

Figure 105: D7 class diagram (2).. 223

Figure 106: D7 class diagram (3).. 225

Figure 107: Understandability adaptation results of D7 ... 226

Figure 108: Understandability design change and adaptation in D7 (1) 227

Figure 109: Understandability design change and adaptation in D7 (2) 228

Figure 110: Understandability design change and adaptation in D7 (3) 229

xv

Figure 111: Extendibility adaptation results of D7 ... 230

Figure 112: Flexibility adaptation results of D7 .. 231

Figure 113: Extendibility and flexibility design change and adaptation in D7 (1) 233

Figure 114: Extendibility and flexibility design change and adaptation in D7 (2) 233

Figure 115: Extendibility and flexibility design change and adaptation in D7 (3) 234

Figure 116: Reusability adaptation results of D7 ... 234

Figure 117: Functionality adaptation results of D7 .. 235

Figure 118: Effectiveness adaptation results of D7 .. 236

Figure 119: Functionality, reusability, and effectiveness design changes

 and adaptations in D7 (1) ... 237

Figure 120: Functionality, reusability, and effectiveness design changes

 and adaptations in D7 (2) ... 239

Figure 121: Functionality, reusability, and effectiveness design changes

 and adaptations in D7 (3) ... 240

Figure 122: D8 class diagram ... 241

Figure 123: Understandability adaptation results of D8 ... 242

Figure 124: Understandability design changes and adaptations of D8 243

Figure 125: Extendibility adaptation results of D8 ... 244

Figure 126: Extendibility adaptation results of D8 ... 245

Figure 127: Extendibility and flexibility design changes and adaptations in D8 246

Figure 128: Reusability adaptation results of D8 ... 243

Figure 129: Functionality adaptation results of D8 .. 244

Figure 130: Reusability and functionality design changes and adaptations in D8 245

Figure 131: Effectiveness adaptation results of D8 .. 247

Figure 132: Effectiveness design change and adaptation in D8 ... 248

xvi

Figure 133: D9 Class diagram .. 250

Figure 134: Understandability adaptation results of D9 ... 251

Figure 135: Understandability design change and adaptation in D9 .. 252

Figure 136: Flexibility adaptation results of D9 ... 253

Figure 137: Extendibility adaptation results of D9 ... 254

Figure 138: Flexibility and extendibility design change and adaptation in D9 255

Figure 139: Second extendibility adaptation results of D9 ... 256

Figure 140: Second understandability adaptation results of D9 ... 257

Figure 141: Second extendibility and Understandability design change

 and adaptation in D9 .. 259

Figure 142: Reusability adaptation results of D9 ... 259

Figure 143: Functionality adaptation results of D9 .. 260

Figure 144: Effectiveness adaptation results of D9 .. 261

Figure 145: Reusability, functionality, and effectiveness design change

 and adaptation in D9 .. 262

Figure 146: D10 class diagram (1) .. 263

Figure 147: D10 class diagram (2) .. 264

Figure 148: D10 class diagram (3) .. 265

Figure 149: D10 class diagram (4) .. 266

Figure 150: D10 class diagram (5) .. 267

Figure 151: Understandability adaptation results of D10 ... 267

Figure 152: Understandability design change and adaptation of D10 268

Figure 153: Extendibility adaptation results of D10 ... 269

Figure 154: Flexibility adaptation results of D10 ... 270

xvii

Figure 155: Flexibility and extendibility design change and adaptation of D10 271

Figure 156: Reusability adaptation results of D10 ... 272

Figure 157: Functionality adaptation results of D10 .. 272

Figure 158: Effectiveness adaptation results of D10 .. 272

Figure 159: Reusability, functionality, and effectiveness design change

 and adaptation of D10 .. 273

1

Chapter 1: Introduction

 Defining practices that produce high quality software has been the focus of software

engineering research for many years. Researchers and practitioners have become conscious of

the importance of following a proven process and how it greatly affects product quality. Besides,

a myriad of studies (e.g. [Abreu et.al 1996], [Briand et.al 2000], and [Bansiya and Davis 2002])

show that quality improvement in the early phases of the development cycle, such as design, can

greatly boost the end product quality. Enhancing design quality by choosing the design

alternatives that minimize costs can also be a rewarding investment activity for software

organizations [Lazic et.al 2009]. Through design quality evaluation, designers can determine the

most profitable design decisions, reduce costs of maintenance, and minimize possible risks of

rework. Experience and economical investigations depict numerous benefits of investing on

design quality [Sullivan et. al 1998]:

1) Increase the flexibility of the whole development process through a well-structured

design.

2) Cancel unprofitable projects early in their lifecycles.

3) Increase the adaptability of design to changing market conditions.

4) Prevent possible uncertainties such as failures.

 From the literature, we can categorize design quality investment approaches into three

groups: analytical/static design quality evaluation, simulation-based design quality evaluation,

and design quality adaptation. Extensive design quality research was devoted to the first group

2

through the definition of quality metrics, quality attributes, and combining them in quality

models. Other quality tools depicted the required design activities that determine a specific

maturity level of a process such as in CMMI [CMMI 2011]. Further, some standards such as the

IEEE standard for developing software life cycle processes suggested a set of desired design

activities [IEEE Std 1074-2006]. As a part of software quality assurance activities, technical

reviews are also applied in assessing design quality. In the second group of design quality

investment options, some studies (see [Xu et.al 2006], [Bogado et. al 2010], [Chiang et.al 2002])

use simulations as a decision support tool that assists designers in evaluating and choosing

optimum design strategies. Finally, the quality of design is not only determined from its

assessment but also from its ability to adapt to changing environment conditions. This area of

research, which represents the third group of quality investment, is still immature despite the

vital role of adaptation in stabilizing high quality design.

1.1 Statement of the problem and anticipated benefits

 Since design is the blueprint of software, a high quality design is likely to produce a high

quality software product. On the one side, solving design problems early in the lifecycle and

sustaining high quality values in design attributes is a key success factor in improving not only

design quality but also the remaining process phases. Furthermore, it allows software engineers

to reduce defect amplification and the number of latent bugs. On the other side, various factors

may destabilize design quality. Changing design decisions because of continuous requirements

or design strategies alterations may lead to a possible decline in design quality. Other possible

reasons of quality change include quality reviews and design flaws. Under such conditions

design quality can be restored to its predetermined level at strategic points in the design phase by

identifying which design characteristics can be changed as a quality adaptation mechanism.

3

 Although run-time adaptation deals with applying specific quality attribute trade-offs at

the implementation phase to regulate a software product quality, it does not take into

consideration quality adaptation at design phase. In addition, adaptation strategies are applied at

run-time with no beforehand knowledge of their effectiveness or risks. Thus, choosing wrong

adaptation strategies or running several adaptations simultaneously can have a conflicting impact

and affect a system’s performance [Yang et. al 2009]. The main goal of this dissertation is to

shed light on OO design quality adaptation through cost-effective and safer techniques such as

System Dynamics (SD) simulations. Through design quality adaptation simulation, various

stakeholders such as software engineers, software architects, and software quality assurance

agents will also be able to benefit from the following additional research goals:

1) Extend the use of software process simulation to process lifecycle phases’ quality

adaptation.

2) Save cost: experiment design quality adaptation through simulation instead of costly real

time adaptation.

3) Save time: a simulation allows us to visualize the impact of changes quicker than in the

case of real experimentations.

4) Understand the interactions between OO design quality characteristics.

5) Depict and test feedback mechanisms for changes in design decisions.

6) Perform “what if” analysis of design decisions changes and forecast the needed quality

compensations for quality attributes disequilibrium.

7) Reduce the cost of new adaptation experimental scenarios through simulation.

8) Maximize OO design quality.

4

1.2 Research approach

1.2.1 Simulation-based Virtual Software Engineering Laboratories (VSEL)

 A simulation model is a simplification of a complex system that is hardly understood via

analytical methodologies [Muller and Pfahl 2008]. Simulations have been widely employed in a

plethora of disciplines such as business case-studies, sociology, physics, biology, and

engineering. The application of computer simulations in software process was first initiated by

[Abdel-Hamid and Madnick 1991]. Software process simulations can be applied to a specific life

cycle phase such as requirements or code testing. It can also model the whole development

project as well as multiple simultaneous projects. According to Kellner et.al, those simulations

can be used to explore six software process topics namely training and learning, strategic

management, process improvement and technology adoption, planning, control and operational

management, and understanding [Kellner et. al 1999]. Muller and Pfahl extend Kellner’s

simulation categories by adding the new trends of process simulation goals such as software

acquisition management and COTS, risk management, and product-lines [Muller and Pfahl

2008]. My research is part of software quality adaptation which is a new software process

simulation goal that extends Muller and Pfahl’s categories. My work is also founded upon the

concept of VSEL introduced by [Münch et.al 2005]. VSEL uses simulations to experiment with

software process policies or decisions, detect their possible problems, and test their corrective

procedures before they are applied in real projects. VSEL can help project managers in finding

trade-offs between project duration, needed effort, and product quality. In my research, SD

simulation is used to explore both the impact of changing design decisions on design quality and

the adaptation strategies that compensate for those quality changes.

5

1.2.2 Simulation development process

 Figure 1 illustrates one of the oldest Simulation Model Processes (SMPs) defined by

Sargent in order to link between simulation model development and validation [Sargent 1981,

2004]. Sargent’s SMP is composed of three main elements: a problem entity, a conceptual

model, and a computerized model. First, the problem entity or simulated system is identified.

Then, it is analyzed and represented through a mathematical or verbal conceptual model. Finally,

the conceptual model is transformed into a computerized program to experiment with the desired

scenarios of the given problem entity. To produce valid simulations, Sargent is integrating

verification and validation procedures in each of his three simulation process components.

Figure 1: Sargent’s Simulation Modeling Process [Sargent 2004]

6

 Rus et. al defined an SMP for discrete-event simulations based on the generic model of

Sargent [Rus et. al 2003]. Their process is not only composed of traditional engineering activities

such as model design and implementation but also from managerial activities (see table 1).

Engineering activities Managerial activities

Requirements identification and specification

for the model to be built.

Model development planning.

Analysis and specification of the modeled

process.

Model development tracking.

Design of the model. Measurement of the simulation model.

Implementation of the model. Measurement of the model development

process.

Verification and validation throughout

development.

Risk management of risk factors such as

changes in customer’s requirements and in the

description of the modeled process.

Table1: Discrete-event simulation process activities

 To achieve my research goals, I will apply SD simulation process such as in [Pfahl and

Ruhe 2002]. In Pfahl and Ruhe’s SMP, System Dynamics Model (SDM) can be produced with

the help of four models: phase, role, product, and process.

 The phase model defines four main stages in the development of an SD model: pre-study,

initial model development, model enhancement, and model application. In the pre-study stage,

the simulation modeler identifies the model goals and users. During the initial model

development, the behavior of a subset of the system’s parameters is illustrated through a

reference model to get an idea about the dynamics of the studied software process issues. Then,

the reference model is extended to include all system parameters and made ready for problem

analysis in the model enhancement stage. Improvement and maintenance of the produced SDM

are part of the last stage.

 The role model (table 2) identifies the set of stakeholders involved in the development of

SDM. According to Pfahl and Ruhe, six actors impact the production process of SDM: Customer

7

(C), User (U), Developer (D), Facilitator (F), Moderator (M), and SE subject matter Expert (E)

[Pfahl and Ruhe 2002].

Actor C U D F M E

Role Sponsor

of the

project.

Future

user of

SDM.

Responsible

of

producing

the SDM.

Plan and

arrange

project

meetings.

Guide

workshops

and

meetings

of D with

E.

Provide

managerial

and

technical

consultancy

for SDM

production.

Table 2: SDM role model

 The product model matches SDM process artifacts to their corresponding phases in the

phase model (e.g., technical briefing materials and minutes are delivered in the initial model

development phase of the phase model). Finally, the process model combines between all of the

previous models in a control-flow-oriented scheme (figure 2).

8

Figure 2: SDM process model [Pfahl and Ruhe 2002]

9

Chapter 2: Literature Survey

 Software processes can be modeled by applying several techniques (e.g. the discrete-

event (DE) and SD paradigms) to shed light on various process issues such as planning,

understanding, and improvement. This led to the emergence of a new field in simulation

modeling knows as software process simulation modeling (SPSM) devoted to track process

issues (table 3).

2.1 Simulation techniques and tools

2.1.1 Simulation techniques for software process

 Simulations are either modeled using deterministic or stochastic paradigms. In the case of

deterministic modeling, the simulation runs always lead the same results for given input

parameters [Müller and Pfahl 2008]. Stochastic modeling relies on random input parameters,

which vary the resulting output from one simulation run to another. Stochastic simulations are

also described as static simulations since they track models’ variables at a specific point of time.

On the other hand, deterministic simulations can be modeled statically such as stochastic

simulations or dynamically by tracing a model’s behavior over a specific period of time.

 There are two types of dynamic simulations: continuous and event-driven. Both groups

can be decomposed into quantitative and qualitative techniques. Simulation models’ variables are

updated at a fixed time step interval in continuous simulations and modified in Event-Driven

(ED) simulations when new events occur [Müller and Pfahl 2008]. Quantitative simulation

techniques are useful in depicting the complexities in a system’s behavior and require enough

10

historical data or experts’ estimation to run the model. Qualitative techniques overcome the lack

of historical data and simulate the general simple trend of a system’s behavior. Quantitative

continuous simulations apply System Dynamics (SD) technique, created by Jay Forrester in 1961

to model a system [Forrester 1961]. SD employs differential equations to describe the

cause-effect relationships in the feedback loops of a system [Martin and Raffo 2000] [De

Oliveira et.al 2011]. QUalitative Analysis of causal Feedback (QUAF) and Qualitative

SIMulation (QSIM) represent the qualitative continuous simulation paradigm [Müller and Pfahl

2008]. Instead of initializing the parameters’ simulation with numerical values, QUAF feeds the

model with the parameters’ relative values and QSIM uses the model’s functions polarity

(positive or negative) to specify the increase and decrease of variables.

 ED simulations can be modeled quantitatively or qualitatively if the simulation’s events

are based on non-quantitative conditions. The DE technique is one type of ED modeling

paradigm that represents a system’s activities as a linked set of stations whose statuses change

when events are altered [Martin and Raffo 2000]. Other types of ED simulation techniques such

as Petri-net, rule-based, state-based and agent-based modeling are employed respectively to

provide us with a description of distributed systems, define simulation models as a set of rules,

represent the significant events that drive the software process to progress, and show interactions

and actions between agents [Huang et.al 2010] [Drappa and Ledwig 1998] [Raffo et. al 1999]

[Phillips and Yilmaz 2006].

 To benefit from the advantages of more than one simulation technique, hybrid

simulations are created by combining the previously described modeling methods. For example,

a hybrid simulation can use both deterministic and stochastic techniques. Or, a hybrid simulation

can combine the benefits of both continuous and event-driven paradigms. Over all of the

11

described simulation modeling techniques, SD and DE (49% and 31% of the available Software

Process Simulation Modeling (SPSM) research respectively) are the most widely used ones for

process simulation [Zhang et.al 2008]. Table 3 presents representative publications with their

corresponding modeling techniques and software process coverage.

2.1.2 Simulation tools

 There exist several commercial tools that support most of the presented simulation

techniques. For example, Stella
®
/iThink

®
 specializes in modeling both static and continuous

simulations [Stella/iThink

1985]. @RISK

®
supports Monte Carlo stochastic modeling [@RISK

1987]. Extend
®
 enables modelers to create both DE and SD simulations through its graphical

modeling language ModL and VENSIM
®
 produces SD simulations [Extend 1988] [VENSIM

1985].

2.2 Software Process Simulation Modeling (SPSM)

 Software processes are complex systems whose description can be effectively simplified

through SPSM. One aspect of software processes’ complexity is their composite structure made

of several interrelated components through cause-effect relationships and feedback loops

[Sterman 1992]. Another characteristic of software process complexity is the influence of “soft”

qualitative variables such as team motivation on determining the quantitative attributes such as

project delivery date and cost. To effectively visualize those complex characteristics, SPSM

simulate software processes to understand them at cognitive, and tactical or strategic levels by

using the previously described simulation techniques (figure 3) [Zhang et.al 2008].

12

Figure 3: SPSM goals

2.2.1 SPSM through SD and continuous simulation techniques

 Abdelhamid and Madnick’s software projects dynamics research is the seminal

application of SD in software process [Abdelhamid and Madnick 1991]. Their SD process model

simulates management policies dealing with scheduling, project control, quality assurance,

productivity and staffing. The model is divided into 4 sections: human resource management,

software production, project planning, and software control.

1) The human resource management: illustrates activities related to developers participating on a

software development project. It handles personnel hiring, firing, and transferring to other

projects.

2) The software production: allocates available developers to several software development

activities such as training, designing, coding, testing, reworking, and quality assurance. It also

SPSM Goals

Cognitive Level

Understanding

Communicating

Investigating process

 training and learning

Tactical/Strategic Levels

Predicting & planning

control and operational
managing

 Managing risk

Improving process

Adopting technology

Analysing tradeoff and
optimizing

13

handles team motivation, developer’s exhaustion, and productivity overhead factors such as

communication and rework.

3) The software control: measures software production activities. This section controls overtime

work, schedule pressure, and project funding consumption.

4) The software planning: provides initial values for the software project parameters: project

size, initial underestimated factor, initial team size, expected conclusion date. It also controls

upper management willingness to hire new developers depending on project expected conclusion

date.

 Abdelhamid’s model variables were determined from field interviews, literature review,

and peer /expert reviews. The validity of the model was demonstrated by reviewing its behavior

when subjected to sensitivity analysis and comparing it with the actual characteristics of real

projects. The model can be used, for example, to estimate the optimal quality assurance effort

that avoids an increase in testing cost due to a low quality assurance level and minimizes any

unnecessary quality expenses.

 In their Software Engineering Process Simulation Model (SEPS), Lin and his colleagues

adopt the same simulation model structure applied by Abdelhamid and Madnick [Lin et. al

1997]. SD is employed to study the interactions between SEPS sub-models namely production,

staff/effort, scheduling, and budget. In addition, project managers can perform what-if –analysis

of their managerial policies through SEPS to detect trade-offs of cost, schedule, and

functionality.

 One of the drawbacks of Abdelhamid and Madnick’s software project dynamics model is

the huge number of variables that need to be initialized to run the simulation. To overcome this

limitation, Ruiz and his colleagues suggest a simplification of the software project dynamics

14

model by eliminating unnecessary feedback loops in the analysis of the needed behavior, which

reduces the number of initialized variables to half the quantity used by Abdelhamid [Ruiz et. al

2001]. Ruiz’s model can be used to train project managers in choosing appropriate strategies that

reduce a project’s development time and cost. The model was verified by reviewing its

equations’ consistency and validated by comparing its runs’ results to a real system’s behavior.

 Software process simulations can also help project managers in achieving higher CMMI

levels [Miller et.al 2002]. To increase the Organizational Process Performance process area of

the 4th CMMI maturity level, simulation is a useful analysis environment in detecting

appropriate performance measures for process cycle time, product quality, and development

time. Similarly, process simulations can improve the Organizational Innovation and Deployment

process area of the 5th CMMI maturity level by allowing the project managers to forecast the

impact of process changes on process performance such as new staffing policies and decision

rules.

 Ruiz’s simulation model can be used to analyze the impact of each key process area in

CMMI level 2 on productivity, product quality and ability to meet deadlines [Araujo et.al 2007].

Productivity is mainly impacted by software quality assurance process areas whereas scheduling

is affected by all the CMMI level 2 process areas. Product quality is also mostly impacted by all

process areas except the software project planning and software project tracking process areas.

Applying CMMI level 2 activities improves product quality by decreasing the number of errors

when compared to CMMI level 1.

 To study the impact of human resources allocation on the lead time of the project and

product quality, an SD simulation of the requirements and test phases was modeled [Andersson

et al. 2002]. The simulation runs show that product quality increases when the effort spent in the

15

requirements phase is increased. In addition, the lead time is decreased thanks to improved

specification accuracy when devoting more time to the requirements phase.

 SD paradigm is also used by Madachy to track error generation rates, defect amplification

between phases, staffing policies, schedule compression, and personnel experience in software

processes [Madachy 1996]. The simulation runs show that despite the 10% effort addition in the

design and coding phases due to inspections, testing and integration effort is reduced by 50%.

 Software evolution process, which is concerned with the adaptation and enhancement of

software systems, can be explored through SD simulation to balance progressive and anti-

regressive evolution policies [Kahen et. al 2001]. Progressive activities deal with system

functionality by adding or modifying code whereas anti-regressive activities cover dead code

removal, refactoring, system re-engineering, and system restructuring. The authors’ model

simulates the consequences of anti-regressive activities on long term system growth. The

simulation runs show that assigning 30% of resources to anti-regressive activities results in a

significant extension of a system’s life span. Moreover, the imbalance between progressive and

regressive activities is the main cause behind software evolution productivity.

 System dynamics simulations are useful in evaluating the business value of the applied

product and process strategies and their corresponding return on investment [Madachy et.al

2006]. By simulating software processes, marketing practices and financial measures over time,

both business analysts and software developers can determine the required process activities to

meet their business goals.

 Continuous simulations can be represented qualitatively by using QSIM, QUAF, and

Integrated Measurement, Modeling and Simulation (IMMoS). Unlike quantitative modeling that

requires precise data (e.g. SD); qualitative modeling can overcome the lack of accurate variables

16

quantities by applying abstract techniques such as model functions polarity [Zhang et.al 2009].

This technique allows simulation modelers to represent the increase or decrease in variables

through positive or negative polarity instead of specific numbers. IMMoS is another simulation

implementation methodology that can resolve the lack of accurate quantitative modeling data.

IMMOS combines between SD, static modeling techniques such as Process Modeling (used to

identify the variables of a simulation model) and measurement-based Quantitative Modeling

(establishes the functional relationships between a simulation’s variables) [Pfahl and Ruhe 2002]

[Pfahl and Lebsanft 1999].

2.2.2 SPSM through DE simulation technique

 One of the goals of developing software process simulations is to train future project

managers and improve their managerial skills. Drappa and his colleagues suggest a quality

assurance discrete-event simulation system that exposes project managers to real situations and

allows them to watch the consequences of their managerial decisions such as changing resource

allocation, and skipping requirements specification and reviews on the project’s quality [Drappa

et. al 1999]. The quality assurance model enables students and novice project managers to test

different managerial scenarios for small to medium-size projects. Managers can also plan and

control their simulated projects and assign tasks to their virtual developers. The simulation

system displays the expected results of the software project and suggests improvements to its

management.

 To analyze and improve a specific software process phase such as maintenance, Podnar

and his colleagues developed a discrete-event simulation based on decision tree representation

where entities are Modification Requests (MR) and their corresponding Technical Actions (TA)

17

[Podnar et.al 2001]. The goal of the simulation is to ensure high quality TAs from maintenance

administrators.

 Reliability can be simulated in all process phases by using discrete-event or continuous

paradigms [Rus et.al 1999]. Besides tracking defects and failures over the entire project,

reliability simulations can be used to predict acceptable defect levels at delivery. Furthermore,

this type of simulations allows managers to determine the tradeoffs between reliability strategies

such as defect detection and prevention techniques based on their impact on cost, staffing, and

ability to detect failures.

2.2.3 SPSM through hybrid simulation technique

 Since the software process can be represented as a set of DE phases implemented in a

continuously changing environment, a hybrid simulation that combines both of those discrete

and dynamic aspects is a more realistic representation of software process [Donzelli and Iazeolla

2001b]. Therefore, process activities are modeled by a DE queuing network where activities are

described with their interactions and artifacts. The environment is modeled using either an

analytical function such as COCOMO or a purely dynamic simulation paradigm such as SD or

both of them to illustrate the resources, time, and effort consumed during process activities. The

hybrid simulation model enables managers to analyze the impact of their various changing

requirements scenarios on effort, delivery time and productivity.

 In the Dynamic Capability Model (DCM) introduced by Donzelli and Iazeolla, the effect

of process management elements (e.g. reviews) on process quality factors (e.g. effort, delivery

time, and productivity) is analyzed by applying a hybrid modeling approach [Donzelli and

Iazeolla 2001a]. Since the waterfall process phases are sequential and their corresponding

18

artifacts are simultaneous, the DE paradigm is employed in the first category and analytical

techniques such as COCOMO as well as custom continuous functions are integrated in the

second category. DCM allows managers to test their defect detection policies either in the early

phases of the software process, in the middle or late in the process lifecycle. Simulation results

show that the early detection policy where defects are discovered and corrected in the same

injection phase reduces resources consumption, effort and delivery time.

 Hybrid simulations can be employed to model different kinds of software projects such as

Global Software Development (GSD), geographically distributed developed software. A GSD

simulation model illustrates the different interactions between fundamental factors such as

communication problems, strategic factors such as distribution overhead, and organizational

factors such as team formulation [Setamanit et. al 2006]. Project managers can test the impact of

their managerial decisions on effort, quality, and duration of GSD projects. Thus, managers can

depict appropriate planning and management tracking policies for offshore sites versus near-

shore projects.

 Simulation

 Techniques

Software

Process topics

SD DE Static/

Stochastic

Petri-net Rule-

based

State-

based

Hybrid

(DE and

SD)

Planning /

Process

engineering

[Rus et.al

1999]

[Pfahl and

Lebsanft

1999]

[Powell

et.al 1999]

[Williford

and Chang

1999]

 [Bandin-

elli et.al

1995]

 [Kellner

1991]

[Setaman

-it et. al

2006]

19

Process

improvement

& technology

adoption

[Araujo

et.al 2007]

[Abdelha

mid and

Madnick

1991]

[Lin et.al

1997]

[Ruiz et.al

2001]

[Madachy

1994]

[Pfahl and

Lefsanft

1999]

[Powell

et. al

1999]

[Andersso

n et. al

2002]

[Donzelli

& Iazeolla

2001a]

[Madachy

1996]

[Madachy

et.al 2006]

[Podnar

&Mikac

2001]

[Ferayor

ni et. al

2007]

[Bogado

et.al

2010]

[Chiang

and

Menzies

2002]

 [Raffo

1996]

[Raffo

et.al

1999]

[Sataman

-it et.al

2006]

[Donzelli

&

Iazeolla

2001b]

[Martin

and

Raffo

2000]

Understanding [Andersso

n et.al

2002]

[Donzelli

& Iazeolla

2001a]

[Madachy

1996]

[Powell

et. al

1999]

[Wernick

and

Lehman

1999]

 [Drappa

and

Ludewi

-g

1999]

[Raffo

et.al

1999]

[Kellner

1991]

[Setaman

-it et. al

2006]

20

Training &

learning

 [Drappa

&

Ludewig

1999]

 [Drappa

et.al

1995]

[Drappa

and

Ludewi

-g

1999]

Project

management

[Araujo

et.al 2007]

[Abdelha

mid and

Madnick

1991]

[Lin et.al

1997]

[Ruiz et.al

2001]

[Wiliford

and Chang

1999]

 [Pfahl

and Ruhe

1999]

Risk

management

[Rus et. al

1999]

[Rus et.

al 1999]

[Briand

and Pfahl

2000]

Quality

assurance &

management

[Ruiz et.

al 2001]

[Miller et.

al 2002]

[Araujo

et. al

2007]

[Andersso

n et. al

2002]

[Drappa

et. al

1999]

[Ferayor

ni at. Al

2007]

[Bogado

et. al

2010]

[Briand

and Pfahl

2000]

[Huang

et. al

2010]

Software

maintenance

& evolution

[Kahen

et.al 2001]

Table 3: Representative publications with their simulation techniques and treated software

process topics

21

 Besides modeling the impact of managerial decisions on the overall software project

time, effort, quality (errors percentage, errors detection, and rework effort), and size, SPSM

simulates also the characteristics of specific software process phases. For example, SPSM can

help in determining the design phase quality attributes tradeoffs (e.g. [Chiang et.al 2002]).

2.3 SPSM of design phase

 A software system that satisfies non functional requirements early in the design phase is

likely to minimize the cost of correcting them late in the software lifecycle. Xu and his

colleagues propose a simulation that experiments with design alternatives and how they achieve

the non functional requirements by taking into consideration their conflicting, crosscutting, and

open-ended nature [Xu et. al 2006]. Non functional requirements can have conflicting goals such

as in the case of implementing encryption that reduces a system’s responsiveness. They are also

crosscutting since integrating security in the system, for instance, require changes in different

locations including but not limited to the server and client modules. Furthermore, implementing

a specific quality attribute can have an open-ended set of possible solutions (e.g. security can be

implemented using authentication only or combined with encryption). Through Xu’s simulation,

software architects can choose their desired design alternatives that are modeled as state-charts.

Then, they can run the simulation and detect design alternatives that satisfy their non-functional

requirements.

 Resolving the conflicting nature of quality attributes yields high-quality software

architecture [Xu 2008]. Xu proposes a Multiple-Objective Decision Analysis (MODA)

methodology that relies on multiple-objective decision theory [Xu 2008]. Thus, the conjoint

scaling interview scheme from decision theory is applied to gather stakeholders’ judgments

22

about the system’s design alternatives and their quality attributes support. A high ranking is

assigned to the design alternative that supports most of the required quality attributes. Moreover,

value gaps are applied to forecast the most relevant quality attributes for future stages in the

design phase. Through a design simulation, stakeholders identify the value gap between the ideal

level of a specific quality attribute and its current value. Quality attributes that are characterized

by a high value gap are selected as the most important attributes for future design phases.

 Simulations can also assist software project managers in determining quality tradeoffs of

design decisions in the early phases of software development lifecycle. Chiang and his

colleagues present a soft goal simulation that support decision making during design phase

[Chiang et.al 2002]. In the case of projects where quality assurance is mandatory, the simulation

goal is to identify design alternatives that achieve optimum quality attributes. A soft goal model

is composed of three types of soft goals: Non-functional-Requirement (NFR), operationalizing,

and claim. NFR soft goals deal with quality requirements such as time performance.

Operationalizing soft goals represent possible design alternatives that implement the NFR soft

goals (e.g. incorporate java script in an online storefront). Claim soft goals explain the context

for a soft goal (e.g., a claim may argue that client-side scripting loads faster).

 According to Ferayorni and his colleagues, a design simulation helps architects in

improving their architecture’s quality and reduces the overall software development effort

especially if it integrates domain knowledge by including appropriate design patterns [Ferayorni

et.al 2007]. Discrete Event System Specification (DEVS) supports the modeling of complex

hierarchical interacting components. The authors extend this modeling and simulation

framework to support domain knowledge by adding design patterns suitable to a specific

application domain such as Composite, Façade, and Observer patterns. DEVS can also be

23

employed in simulating software architecture and determining design quality attributes at run

time [Bogado et.al 2010]. It decouples the conceptual model of the architecture from the

simulator. DEVS simulation allows designers to evaluate performance quality attribute design

scenarios.

 Real-time embedded multiprocessor systems’ design is classified as a complex structure

due to the interactions between many hardware and software elements. That is why Thuente

suggests the combination between rapid simulation and rapid prototyping to depict the optimum

design of embedded systems [Thuente 1991]. Rapid simulation is similar to rapid prototyping

since it relies on delivering high level simulations characterized by quick development and rapid

changes. The initial simulations can be extended as far as rapid prototyping produces additional

input for the simulation. Through rapid simulation, the hardware and software components go

through iterative refinements based on their performance.

 SPSM is also applied in modeling self-adaptive systems and how they adjust to changes

in requirements at run-time (e.g. [Yau et.al 2009], [Kumar et.al 2009], and [Beckmann et.al

2009]). An interesting extension of SPSM applications would be to simulate software design’s

adaptation at design phase instead of leaving it to run-time such as in [Yang et. al 2009].

Simulating adaptation at design stage is likely to minimize risks and ensure an early assessment

of adaptation strategies.

24

2.4 SPSM of adaptive systems

 Self-adaptive systems adjust their behaviors to face any changes in their environment

such as a decrease in response time, system failures, and new requirements [Oreizy et.al 1999].

Unlike closed adaptive systems, open-adaptive systems apply adaptations during run-time.

Conditional expressions are an example of open self-adaptive systems since an application’s

behavior changes based on the result of the evaluated expression. Oreizy and his colleagues

come up with a design cycle for self-adaptive systems [Oreizy et.al 1999]. It is composed of two

inter-connected cycles: adaptation management and evolution management (figure 4). The

evolution management cycle tracks possible changes to the application either in its architecture

or code. Then, those enacted changes are handled by the adaptation management cycle, which

plans their possible solutions before deploying them on the system.

25

Figure 4: Design cycle for self-adaptive systems [Oreizy et.al 1999]

 In self-adaptive systems, adaptation can be weak if it deals with minor low cost changes

such as changing parameters (e.g. bandwidth limit) whereas strong adaptation is concerned with

changing, adding/substituting, and removing system artifacts. In addition, self-adaptiveness has

several facets such as self-configuring, self-protecting, and self-healing adaptiveness [Salehie

and Tahvildari 2009]. To adapt to changes, self-configuring systems can decompose or update

system artifacts. Self-protecting systems defend the application against security breaches and

self-healing systems repair any dysfunction. According to the authors, self-adaptiveness facets

26

impact software quality factors. For instance, the self-configuring facet influences the

maintainability, the functionality, the portability, and the usability quality factors. Organic

computing (OC) systems are self-organized and can self-adapt to any changes in their

environment [Schmeck et.al 2010]. Thus, OC systems can maintain a specific robustness level

despite the variations in the environment’s variables without any external control. Digital

evolution is a design methodology where a population of self-replicating computer programs

known as digital organisms is subject to mutations and natural selection [Beckmann et.al 2009].

Those digital organisms optimize their resources to survive. Beckmann and his colleagues

employ digital evolution in the design of self-adaptive control software for mobile robots. Their

approach is composed of four phases: cultivation, translation, simulation, and deployment in

order to adapt the system to its environment. Digital Petri dishes where digital organisms

develop new computational behaviors to fit their environment are the main components of the

cultivation phase. Those evolved programs are translated into the programming language of the

target hardware platforms. The simulation and deployment phases are used to evaluate the

effectiveness of the evolved digital organisms.

 Design alternatives of design decisions can be analytically adapted and traced through a

design tree where the leaves are the completed designs and nodes are in-transition designs

[Noppen et.al 2011]. This methodology enables software engineers to evaluate design

alternatives and choose the ones that best fit the functional and non-functional requirements of

the system. On the other hand, a system’s performance model can facilitate the dynamic

adaptation of software systems to run-time changes in the host and network environments

[Kumar et.al 2009]. An example of a performance model for adaptive software processes is the

transactional user workload of request/ response such as HTTP workload. Adaptive Service-

27

Based Software (ASBS) systems identify tradeoffs among conflicting Quality of Service (QOS)

aspects and adapt service configurations to satisfy multiple QOS requirements simultaneously

through DEVS simulation [Yau et.al 2009]. Those services determine the runtime properties of

the service, such as authentication mechanism, priority, and maximum bandwidth. Zhang and his

colleagues apply dynamic adaptation to legacy systems by using aspect-oriented paradigm

[Zhang et. al 2007]. This approach ensures that adaptation code is separated from legacy code.

Then, to enable adaptation in legacy programs, the constructors of the non-adaptive classes are

replaced with those of the adaptive classes.

 Yang and his colleagues plan software non functional requirements (e.g. performance and

availability) adaptation strategies at design phase and apply the appropriate ones at runtime

[Yang et. al 2009]. Adaptive strategies can have conflicting effects. A security adaptive strategy

that applies encryption may decrease the impact of system responsiveness strategies. Although

planning adaptive strategies at design phase without experimenting them does not guarantee their

success at run-time, the author’s approach is novel in terms of integrating adaptive strategies at

design phase.

 To maximize SPSM simulations reliability, verification and validation procedures

(figures 5 and 6) are a key element in reducing errors and achieving simulations’ goals.

28

2.5 The verification and validation of SPSM simulations

 The credibility of a software process simulation model is defined as the level of

confidence in its results and is measured through its verification and validation results [Kleijnen

1995]. For example, the verification and validation of simulation models is part of NASA’s

credibility assessment scale described in the NASA-STD-7009 modeling and simulation standard

[Thomas et.al 2011]. Model verification ensures that the simulation program is error-free and

works correctly whereas model validation verifies that the implemented model is an accurate

representation of the real system and achieves the simulation goals [Sargent 1998]. On the one

hand, simulation verification techniques can be grouped into two categories: static testing and

dynamic testing. A simulation program can be verified statically by employing walk-throughs,

correctness proofs, and examining the structure properties of the program [Sargent 1998]. Code

tracing and analyzing execution samples are the main dynamic verification techniques. On the

other hand, validation techniques are either subjective relying on experts’ judgment or objective

applying statistical techniques. In the subjective validation approaches, the model’s validity is

either determined by the development team, the user of the model, or an independent third party.

Besides the objective validation techniques presented by Kleijmen in [Kleijmen 1995], Sargent

describes a detailed set of validation techniques such as the historical methods and the multistage

validation. There are three types of historical methods: rationalism, empiricism, and positive

economics. In the rationalism method, any validity judgments are based on the models accepted

assumptions. Empiricism is based on empirically validating the model’s assumptions and results.

Positive economics assesses the ability of the model to forecast the future. All of those historical

approaches are combined in a multistage process that represents the multistage validation

technique.

29

 Chwif and his colleagues suggest a verification and validation approach for Discrete-

event simulation whose core element is the causal influence matrix [Chwif et.al 2006]. The

influence matrix is composed of correlations between a simulation inputs and outputs described

as positive, negative, or neutral (e.g. airport check-in desk: higher times between customers’

arrivals imply lower waiting times in the queue). Although those relationships are biased by

experts’ judgments and difficult to track when several input variables are involved the authors’

method can overcome the lack of real parameters’ values.

 Heuristic search algorithms increase the effectiveness of verification and validation by

avoiding exhaustive simulation testing and targeting unusual parameters combinations that may

lead to exceptions. Scatter/tabu is a heuristic algorithm where the simulation modeler can input

her business rules and constraints [Wakeland et.al 2011]. Based on those rules, adequate unusual

parameter values, which can be fed on the simulation, are generated.

 A set of simulation verification and validation techniques are summarized in figures 5

and 6. To verify and validate software process simulations, each of the described techniques can

be used individually or combined with the other procedures. A simulation model’s verification

and validation are important phases in its development process since they increase the

correctness level of the simulation results.

30

Figure 5: Simulation verification techniques

Figure 6: Simulation validation techniques

Verification Techniques

Tracing:compare manual
simulation results with
intermediate outputs of
the simulation program.

Statistical testing: the
simulation response of the
simplified model equals
the expected steady state

mean (known solution of a
test case).

Animation: run dynamic
displays of the

simulation

Validation Techniques

Schruben-Turing and
t tests: compare

siumlated results to real
data.

Spectral analysis:
check the correlation of
simulated and real data.

Sensitivity analysis
(regression analysis, design

of experiments), risk
analysis, and Monte Carlo

sampling: generate the
simulation inputs.

31

Chapter 3: Simulation development and verification

 Object-oriented design quality can be affected by several factors throughout the software

development lifecycle, which requires the application of appropriate adaptation strategies that

can be tested through SD simulation. Several design quality attributes such as reusability,

flexibility and effectiveness can be negatively destabilized by the following possible reasons:

1) Changes in system requirements that affect the design structure, such as the addition or the

omission of components (e. g: classes, methods).

2) Deviating from good design principles such as increasing coupling between classes and

producing less cohesive components.

3) Changes in a system’s implementation such as in timing, storage, and input/output transfers

that can lead to major redesign actions [Royce 1970].

4) The addition of new functionalities and design modifications in an iterative development

process that can lead to changes in design decisions and quality at each iteration.

5) Modifications in design decisions issued after design reviews (Preliminary Design Review

(PDR) and Critical Design Review (CDR)/ Final Design Review (FDR)).

Since design quality can change over the software development lifecycle time, SD is the

appropriate modeling technique. Besides simulating the impact of those destabilizing factors on

design quality, the goal of the research is to show how a set of adaptation mechanisms, described

in the following sections, can counterbalance any possible quality decrease. The simulation of

32

OO design quality can be considered as a decision-support tool where software designers can

assess the impact of design changes and their corresponding adaptation mechanisms on design

quality before applying them on real designs. The simulation is created by following the phases

0-3 (application without maintenance) of the SDM process model (figure 2) and implemented by

using the academic version of PowerSim
®
 studio. PowerSim

®
is a simulation modeling

environment devoted to SD paradigm [PowerSim 1985].

3.1 Phase 0 of the SDM: Pre-study and research hypotheses definition

 The main tasks of this phase dealt with identifying the simulation model users and the

modeling goal represented by the research hypotheses (tasks ID 0.4 and 0.5 in figure 2).

3.1.1 Simulation model users

 The potential users of the simulation model are the software designers since they are

responsible of producing design and integrating any required changes into it.

3.1.2 Research hypotheses

 Besides the research goals defined in chapter 1, the simulation model is used to evaluate

the following research hypotheses:

H0: Design quality without adaptation mechanisms is the same as design quality with adaptation

mechanisms.

H1: Design quality with adaptation mechanisms is higher than design quality without adaptation

mechanisms.

33

The goal of the research is to reject the null hypothesis (H0) in favor of the alternative hypothesis

(H1).

3.2 Phase 1 of the SDM: initial model development

 The main product of this phase was a reference simulation model that illustrates the

impact of design changes on quality and the mechanisms of quality adaptation. The reference

model is the nucleus of the final simulation that is developed in phase 2 of the SDM.

3.2.1 Initial model creation

 By using the SD modeling paradigm (appendix A), OO design was modeled in terms of

its quality factors that are part of the hierarchical Quality Model for Object Oriented Design

(QMOOD) [Bansiya and Davis 2002]. Unlike McCall et.al, ISO 9126, and Dromey’ s quality

models, QMOOD (figure 7) establishes clear linkages between the high-level quality attributes

(e.g. reusability, flexibility) of a design and its sub-attributes or design properties (e.g. coupling,

cohesion) [McCall et.al 1977] [ISO 9126] [Dromey 1996] [Bansiya and Davis 2002]. In addition,

QMOOD provides software architects with a set of numerical equations that define the polarity

(positive or negative) and the weights of the design properties that characterize each quality

attribute (figure 9). The design quality attributes defined in the QMOOD are the main sensors of

quality (figure 8). According to Bansiya and Davis, design can be represented by six quality

attributes such as extendibility and flexibility that represent QMOOD’s first level (figure 7)

(figure 8) [Bansiya and Davis 2002]. Those quality attributes’ values are the outcome of specific

design properties such as abstraction and polymorphism that are combined in numerical

weighted equations based on an extensive review of existing literature and experience (figures 9

34

and 10) (second level in figure 7). The values of design properties are extracted from design

components such as classes and objects through a set of design metrics (figures 11 and 12).

Figure 7: The hierarchical structure of the QMOOD [Bansiya and Davis 2002]

Figure 8: QMOOD quality attributes [Bansiya and Davis 2002]

35

Figure 9: QMOOD quality attributes equations [Bansiya and Davis 2002]

Figure 10: Design properties definitions [Bansiya and Davis 2002]

36

Figure 11: Design metrics and their corresponding design properties

[Bansiya and Davis 2002]

37

Figure 12: Design metrics definitions [Bansiya and Davis 2002]

38

 The initial model simulates one quality attribute, namely reusability with its

corresponding design properties and metrics (figure 13). The remaining quality attributes are

modeled in Phase 2 of the SDM.

Figure 13: Reusability design properties and metrics

 By applying the principles of the SD paradigm (appendix A), reusability’s initial model

was developed in PowerSim
®
 (figure 14). The model is applying six types of constants

represented as diamonds. The first type of constants holds the values of design metrics such as

“DCC”, “CIS”, and “CAM”. The second type of constants represents the needed time to compute

each metric such as “DCC_ExecuteTime”, “CIS_ ExecuteTime”, and “CAM_ ExecuteTime”.

The third type of constants represents the possible changes in design metrics such as

“CISChange1” and “DSCChange2” . Designers can input up to three possible changes in one

simulation run. Those changes are executed at specific points of time in the simulation, which

are also represented as diamonds such as “CISTime Change1”, “DSCTimeChange2”, and

“CISTimeChange3”. The fifth type of constants, namely “DesignScenarios” receives the chosen

 Design properties Design metrics

 Design size DSC

 Reusability Coupling DCC

 Cohesion CAM

 Messaging CIS

39

changes scenario by the designer from the simulation interface (figure 15). The last type of

constants represents the reference values of quality attributes. The goal of quality adaptation is

to counterbalance any decrease in a quality attribute below its reference value. Those optimum

quality values are not defined on literature. In this research, reference values are either the initial

values of quality attributes before applying any changes or the quality attributes values after an

adaptation and before applying a new change. In the initial model, “InitialReusability” is the

reference value of reusability.

 Other variable types are applied in the initial simulation model to represent the reusability

quality attribute, its design properties, the design changes equations, and their corresponding

adaptations. Since design changes and adaptations are applied at specific points of time in the

simulation run, PowerSim
®
’s time step functions (appendix B) are applied and enclosed in

auxiliary clock-like variables such as “Computed DCC” and “Computed CIS” (figure 16). A

design change is applied to design properties through their design metrics. Therefore, a design

change is computed within the clock-like variable by either increasing or decreasing a specific

metric value at a specific point of time (change time) in the simulation (appendix B). To

overcome the decrease in reusability after applying a design change, one of reusability’s design

properties (apart from the changed design property) is increasingly accumulated by applying its

corresponding adaptation equation (table 4) through several simulation runs until the reference

value is reached. After applying a set of mathematical manipulations to the QMOOD’s

reusability equation, we came up with its corresponding adaptation equations (table 4). For each

design property change, reusability can reach its reference value when the best fit adaptation

equation is applied. If the design property of the best fit equation is already at its optimum level

in the studied design, an alternate adaptation equation can be applied (table 5). In this case,

40

reusability is slightly increased above its reference value. This classification of the adaptation

equations is obtained empirically from various simulation runs. The initial model’s simulation

enables designers to experiment specific combinations of changes and adaptations per simulation

run as it is described in the verification of the model.

 In the initial model, the reusability quality attribute is represented as an auxiliary variable

(circle) and fed with its corresponding quality equation from figure 9 whereas the design

properties are illustrated as levels (rectangles). The accumulation degree of levels (i.e. increase

or decrease) is controlled by rates (valves) such as “change in Messaging”. The rates determine

the difference between the design property before and after changing it through a differential

equation (appendix B) such as in the equation of the rate “change in Messaging : ‘Change in

Messaging = (Computed CIS-Messaging)/CIS_ExecuteTime’. Any sensed change is sent from

the rate to the design property through a quality flow represented by a double-lined arrow. Then,

the new design property value is sent to the quality attribute variable to update its equation. If the

newly computed reusability’s equation is lower than the reference value, the adaptation

equations in the clock-like variables are executed. The communication between the other model

variables is established through single-lined information arrows (figure 14). A variable that is

enclosed within brackets is a shortcut to an already existing variable in the diagram to avoid long

awkward links from the source variable (e.g. “Design size” and “Messaging” shortcut variables

in figure 14). The “StopCondition” auxiliary variable (circle) compares between the value of

reusability after applying an adaptation equation and its reference value (“InitialReusability”).

The simulation stops when those variables are equal.

41

Design property for

adaptation

Adaptation equation

Design size 2 * reusability + 0.5 *coupling -0.5 *cohesion – messaging.

Messaging 2* reusability + 0.5 * coupling -0.5 * cohesion – design size.

Cohesion 4* reusability + coupling -2 *messaging -2* design size.

Coupling - 4* reusability + cohesion + 2* messaging + 2* design size.

Table 4: Reusability adaptation equations

Design change/ Change in

design property

Best fit adaptation equation

from table 4

Alternate adaptation

equation from table 4

Decrease in messaging. Cohesion equation. Design size equation.

Decrease in design size. Cohesion equation. Messaging equation.

Decrease in cohesion. No best fit. Coupling, messaging, and

design size equations.

Increase in coupling. Cohesion equation. Messaging and design size

equations.

Change more than one design

property.

Cohesion equation. Any design property’s equation

except the changed one (s).

Table 5: Classification of reusability’s adaptation equations

42

Figure 14: Reusability reference simulation model

Coupling

Change in coupling

DCC

DCC_ExecuteTime

CIS_ExecuteTime

Messaging

Change in
Messaging

DSC_ExecuteTime

Design Size

Change in Design
Size

Reusability

Computed CIS

Computed CAM

CAM_ExecuteTime

Cohesion

Change in cohesion

CIS

CISChange1

CISChange2

CISChange3

CISTimeChange1

CISTimeChange2

CISTimeChange3

CAM

DesignScenarios

CISTimeChange3

StopCondition

InitialReusability

DesignScenarios

CAMChange

CAMChangeTime

DSC

DSCChange1

DSCTimeChange1

DSCChange2

DSCTimeChange2

Computed DSC
DesignScenarios

Computed DCC

Cohesion

Design Size

Messaging

Reusability

DSCTimeChange1

DSCTimeChange2

CAMChangeTime

DesignScenarios

Cohesion

Coupling

Design Size

Reusability

DSCTimeChange1

43

3.2.2 Initial model verification

 The goal of model verification is to show that the initial simulation model is working

correctly and that the adaptation equations bring back the value of reusability to its reference

value when design changes are applied. The initial model was expanded in Phase 2 of the SDM

and its validation is part of the final simulation model validation described in chapter 4.

 After inputting fictitious design metrics values, design changes and times of changes in

the simulation interface (figure 15), the following simulation scenarios were executed:

1) Simulate the initial reusability quality attribute before changing any design properties

(figure 14), which represents the reference value of reusability.

2) Decrease messaging at a specific time in the software development lifecycle and apply the

adaptation equation of cohesion (figures 17 and 18).

3) Decrease design size and cohesion at a specific time in the software development lifecycle

and apply the adaptation equation of messaging (figures 19 and 20).

Unlike the first simulation scenario that illustrates the initial design quality without any

changes, the remaining scenarios enable designers to experiment more than one design change at

different points of time in the software development lifecycle. In each scenario, the simulation

stops when reusability is completely adapted and at least equals the reference value

(InitialReusability). In PowerSim
®
, each variable value is characterized by a specific metric. In

figure 15, the metric of the quality attributes’ values is “qual” (i.e. quality) and the adopted

metric for the simulation steps is “da” as an abbreviation of day.

44

Figure 15: A snapshot of the simulation interface

 The results show the effectiveness of the feedback equations in adjusting the reusability

quality level. In the second simulation scenario, if the messaging changes are injected without

applying the cohesion adaptation equation, the reusability quality attribute keeps decreasing and

never reaches its reference value (the reference value is ‘38.98’ in this example from figure 17).

Figure 18 shows that adaptation through cohesion in the three changes of messaging value was

sufficient and effective in adjusting reusability to at least its reference value. According to this

simulation scenario, cohesion should be increased by a factor of ‘51’ to compensate for the

decrease in messaging in order for reusability to reach its reference value. The same observations

are depicted in the third simulation scenario (figures 19 and 20). In this particular example,

45

messaging should be increased by a factor of ‘60’ to compensate for the decrease in design size

and cohesion in order for reusability to reach its reference value. Since the change in cohesion

does not have a best-fit equation (table 5), adaptation through messaging increases the value of

reusability above its reference value.

Figure 16: The reusability quality attribute and the design properties values before

applying changes

46

Figure 17: Scenario 2 results without adaptation

Figure 18: Scenario 2 results with adaptation

47

Figure 19: Scenario 3 results without adaptation

Figure 20: Scenario 3 results with adaptation

48

3.3 Phase 2 of the SDM: Model enhancement

 The goal of model enhancement is to improve the initial simulation model and

incorporate the remaining QMOOD quality components. The application and validation of the

complete simulation model is described in chapter 4.

 In the PowerSim
®

workspace (figure 21), OO design quality was modeled as a set of

QMOOD quality attributes sub-models. In each sub-model, design quality is described in terms

of its quality components and quality flow. In addition, the quality sub-models, as well as their

input panel and simulation results can be accessed through a simulation interface that was also

produced in the PowerSim
®

workspace (figures 32, 33, and 34).

 A set of changes were applied to the initial model and adopted in the remaining quality

sub-models including the reusability sub-model. All of the variable types, definitions of

reference values, and the classification as well as the identification procedure of the adaptation

equations of phase 1 were adopted in phase 2 of the SDM except the following changes and

features:

1) Delete the “DesignScenarios” variable. Since the goal of creating the initial model is to

illustrate the research idea, a limited set of design changes and adaptations were adopted and

stored as design scenarios. In the updated version of the reusability sub-model and the other

quality sub-models, designers can experiment different combinations of design changes and

adaptations per simulation run. The maximum number of design properties that can be changed

in each quality attribute per simulation run equals the total number of design properties of that

attribute minus 1.

2) Omit the “StopCondition” variable. In phase 1, once the adapted quality attribute reaches its

reference value after applying all of the design changes, the simulation stops. To prove the

49

correctness of the simulation results, the enhanced model keeps running even after reaching the

reference values. Once the reference value is reached, it never decreases again throughout the

simulation run as long as no more design changes are applied.

3) Add new variables linked to each design property in the sub-models such as “DCC-

FirstChange” and “CIS- FirstChange” (figure 22). The function of those variables is to keep

track of each design property’s last value whether it is equal to the initial quality value, updated

after an adaptation, or after all adaptations. This procedure ensures that each design change is

applied on the correct value of its corresponding design property.

4) Add new variables linked to each design metric and property in the sub-models such as

“DSCInitial” and “CISInitial” (figure22). Design metrics values change from one simulation run

to another. To ensure the correctness of the simulation results, those variables keep track of the

input metrics in each run.

5) Apply PowerSim
®
’s sliced variables technique. A sliced variable is characterized by distinct

aspects in its definition so that each aspect is defined in a specific sub-model. Apart from the

complexity design property, each QMOOD design property is shared by more than one quality

attribute’s equation. To correctly implement the behavior of the design property that corresponds

to each quality attribute, PowerSim
®
’s sliced variables technique is adopted. A variable slice

distinguishes itself from an ordinary variable in a sub-model by a slice indicator () in the

upper left corner of the variable.

50

Figure 21: PowerSim® workspace

3.3.1 Reusability sub-model

3.3.1.1 Reusability quality components

 The reusability enhanced sub-model adopts the QMOOD design properties and metrics

described in figure 13. It also simulates the output of reusability’s adaptation equations and their

classifications (tables 4 and 5).

3.3.1.2 Reusability quality flow

 After entering the metrics, the combination of changes and the adaptation options of

reusability (figure 33), the sub-model assigns those values to their corresponding variables and

implements the reusability’s appropriate adaptation and quality equations (figure 22). In the

QMOOD, each design metric corresponds to a specific design property and the simulation

enables designers to change up to eleven design properties. However, the design properties that

51

impact a specific quality attribute cannot all be changed at once since one of them, at least,

should be applied as an adaptation option. In the case of reusability, the maximum number of

design properties that can be changed in one simulation run equals 3. Before running the

simulation, the designer enters the values of the metrics in the interface such as “DCC”, “CIS”,

and “CAM”. He also enters the amounts of changes of each metric such as “DCC_Change1” and

“CAM_Change2” (figures 22 and 33). Designers can enter up to three changes for each metric in

one simulation run. Then, the time of each change is entered and assigned to its corresponding

variable such as “DCC_TimeChange1”, “CIS_TimeChange2”, and “CAM_TimeChange3”. Once

the simulation runs, the initial quality value of reusability is computed and stored in the

“Reusability” auxiliary variable (figure 22 and appendix B). The initial value of reusability is

also stored in the “ReusabilityReference” variable (figure 22). If a design change is applied with

its corresponding adaptation, the updated values of design properties will be entered by the user

in the subsequent simulation run to compute the updated “ReusabilityReference” value.

 After computing the initial and the reference values of “Reusability”, the clock-like

auxiliary variables such as “Computed CAM” do not sense any change in the value of the design

properties. When a given time step of the simulation equals one of the entered change times, the

corresponding change amount of a specific metric is applied and stored in its corresponding

clock-like variable (e.g. at day 30 of the simulation, the value of CAM is decreased by 10 and

stored in the rate “Computed CAM”). That change (either an increase or a decrease) is sent to its

corresponding rate such as “Change in cohesion”. The role of the rate is to compute the

difference between the value of the design property (e.g. Cohesion) before and after any change.

The rate is like a valve that increases or decreases the level value of the design property (e.g.

“Cohesion”). The same quality flows are applied in all the level-rate variables in the sub–model

52

at each time step of the simulation (appendix B). When the design properties of reusability are

updated, their values are sent to the “Reusability” variable to re-compute its quality equation. If

the new “Reusability” value is lower than the stored “ReusabilityReference”, the corresponding

adaptation equations of the checked design properties in the interface are computed in the clock-

like variables (appendix B). Adaptation through design properties is implemented in a set of

slices that differs from one quality attribute to another. In the case of the reusability sub-model,

the adaptation slices are represented by the adaptation equations of coupling, cohesion,

messaging, and design size properties that are devoted to the reusability quality attribute (tables 4

and 5). Once the adaptation equations are computed, the new difference in the design properties

values is sensed by the rates (“Change in coupling”, “Change in cohesion”, “Change in

messaging”, and “Change in Design Size”) and sent again to the level design properties

(“Coupling”, “Cohesion”, “Messaging”, and “Design Size”) . Then, the updated values of the

design properties are sent to the “Reusability” quality attribute to compute its new adapted value.

The simulation keeps running and adapting any decrease in the reusability quality attribute until

the end of the simulation time. The detailed implementation of the reusability sub-model is

described in appendix B.

53

Figure 22: Reusability sub-model

54

3.3.2 Flexibility sub-model

3.3.2.1 Flexibility quality components

 In figure 24, flexibility is simulated with its corresponding design properties and metrics

(figure 23). After evaluating the values of the design properties, flexibility’s quality equation is

computed and stored in its variable (figures 9 and 24). In addition, design properties’ slices

implement flexibility’s adaptation equations (tables 6 and 7).

Figure 23: Flexibility design properties and metrics

Design property for

adaptation

Adaptation equation

Encapsulation 4 * flexibility + coupling - 2*composition - 2* polymorphism.

Coupling - 4* flexibility + encapsulation + 2* composition + 2* polymorphism.

Composition 2* flexibility - 0.5* encapsulation + 0.5*coupling - polymorphism.

Polymorphism 2*flexibility – 0.5*encapsulation + 0.5* coupling – composition.

Table 6: Flexibility adaptation equations

 Design properties Design metrics

 Encapsulation DAM

 Flexibility Coupling DCC

 Composition MOA

 Polymorphism NOP

55

Design change/ Change in

design property

Best fit adaptation equation

from table 6

Alternate adaptation

equation from table 6

Increase in coupling. Encapsulation equation. Composition & polymorphism

equations.

Decrease in composition. Encapsulation equation. Abstraction & polymorphism

equations.

Decrease in polymorphism. Encapsulation equation. Composition equation.

Change more than one design

property.

Encapsulation equation. Any design property’s equation

except the changed one (s).

Table 7: Classification of flexibility’s adaptation equation

3.3.2.2 Flexibility quality flow

 In the implementation of the flexibility sub-model (appendix B), the input metrics, the

design changes, and the adaptation options are assigned to their corresponding variables (figure

24). In the case of flexibility, the maximum number of design properties that can be changed in

one simulation run equals 3. After entering the simulation variables, the initial quality value of

flexibility is computed and stored in the “Flexibility” auxiliary variable (figure 24 and appendix

B). The initial value of flexibility is also stored in the “FlexibilityReference” variable (figure 24).

If a design change is applied with its corresponding adaptation, the updated values of design

properties will be entered by the user in the subsequent simulation run to compute the updated

“FlexibilityReference” value.

 Before running the simulation, the designer enters the values of the metrics in the

interface such as “DAM”, “DCC”, and “MOA”. He also enters the amounts of changes of each

metric such as “DAM_Change1” and “MOA_Change2” (figures 24 & 33). Then, the time of

each change is entered and assigned to its corresponding variable such as

“DAM_TimeChange1”, “MOA_TimeChange2”, and “DCC_TimeChange3”. Once the

simulation runs, the initial quality value of flexibility is computed and stored in the “Flexibility”

auxiliary variable (figure 24 and appendix B). The initial value of flexibility is also stored in the

56

“FlexibilityReference” variable (figure 24). If a design change is applied with its corresponding

adaptation, the updated values of design properties will be entered by the user in the subsequent

simulation run to compute the updated “FlexibilityReference” value. The same quality flow that

was implemented in the reusability sub-model was adopted in the flexibility sub-model and the

remaining sub-models of the simulation. In the case of the flexibility sub-model, the adaptation

slices are represented by the adaptation equations of coupling, encapsulation, composition, and

polymorphism properties that are devoted to the flexibility quality attribute (tables 6 and 7). The

detailed implementation of the flexibility sub-model is available in appendix B.

57

Figure 24: Flexibility sub-model

58

3.3.3 Understandability sub-model

3.3.3.1 Understandability quality components

 In figure 26, understandability is simulated with its corresponding design properties and

metrics (figure 25). After evaluating the values of the design properties, understandability’s

quality equation is computed and stored in its variable (figures 9 and 26). In addition, design

properties’ slices implement understandability’s adaptation equations (tables 8 and 9).

 Design properties Design metrics

 Abstraction ANA

 Encapsulation DAM

 Coupling DCC

Understandability Cohesion CAM

 Polymorphism NOP

 Complexity NOM

 Design size DSC

Figure 25: Understandability design properties and metrics

59

Design property for

adaptation

Adaptation equation

Abstraction -3.03 * understandability + encapsulation - coupling + cohesion –

polymorphism – complexity – design size.

Encapsulation 3.03* understandability + abstraction + coupling – cohesion +

polymorphism + complexity + design size.

Coupling -3.03 * understandability – abstraction + encapsulation + cohesion –

polymorphism – complexity – design size.

Cohesion 3.03 * understandability + abstraction – encapsulation + coupling +

polymorphism + complexity + design size.

Polymorphism -3.03 * understandability + abstraction + encapsulation – coupling +

cohesion – complexity – design size.

Complexity -3.03 * understandability – abstraction + encapsulation – coupling +

cohesion – polymorphism – design size.

Design size -3.03 * understandability – abstraction + encapsulation – coupling +

cohesion - polymorphism – complexity.

Table 8: Understandability adaptation equations

Design change/ Change in

design property

Best fit adaptation equation

from table 8

Alternate adaptation

equation from table 8

Increase in coupling. Encapsulation equation. No alternate.

Increase in complexity. Encapsulation equation. No alternate.

Increase in design size. Encapsulation equation. No alternate.

Change more than one design

property.

Encapsulation equation. Any design property’s equation

except the changed one (s).

Table 9: Classification of understandability’s adaptation equation

3.3.3.2 Understandability quality flow

 On the one hand, the understandability sub-model implements the same quality flows

described in the previous sub-models (figure 26). On the other hand, the maximum number of

design properties that can be changed in one simulation run equals 6. In addition, the adaptation

slices are represented by the adaptation equations of abstraction, cohesion, coupling,

encapsulation, complexity, design size, and polymorphism properties that are devoted to the

understandability quality attribute (tables 8 and 9). Appendix B describes the detailed

implementation of the understandability sub-model.

60

Figure 26: Understandability sub-model

61

3.3.4. Functionality sub-model

3.3.4.1. Functionality quality components

 In figure 28, functionality is simulated with its corresponding design properties and

metrics (figure 25). After evaluating the values of the design properties, functionality’s quality

equation is computed and stored in its variable (figures 9 and 28). In addition, design properties’

slices implement functionality’s adaptation equations (tables 10 and 11).

Design properties Design metrics

 Cohesion CAM

 Polymorphism NOP

Functionality Messaging CIS

 Design size DSC

 Hierarchies NOH

Figure 27: Functionality design properties and metrics

Table 10: Functionality adaptation equations

Design property for

adaptation

Adaptation equation

Cohesion 8.33 * functionality -1.83 * polymorphism – 1.83 * messaging – 1.83 *

design size – 1.83 * hierarchies.

Polymorphism 4.54* functionality – 0.54 * cohesion - messaging – design size -

hierarchies.

Messaging 4.54 * functionality – 0.54 * cohesion – polymorphism – design size –

hierarchies.

Design size 4.54 * functionality – 0.54 * cohesion – polymorphism – messaging -

hierarchies.

Hierarchies 4.54 * functionality – 0.54 * cohesion – polymorphism – messaging –

design size.

62

Design change/ Change in

design property

Best fit adaptation equation

from table 10

Alternate adaptation

equation from table 10

Decrease in polymorphism. Cohesion equation. Messaging, design size, and

hierarchies equations.

Decrease in messaging. Cohesion equation. Polymorphism, design size,

and hierarchies equations.

Decrease in design size. Cohesion equation. Polymorphism, messaging, and

hierarchies equations.

Change more than one design

property.

Cohesion equation. Any design property’s equation

except the changed one (s).

Table 11: Classification of functionality’s adaptation equation

3.3.4.2 Functionality quality flow

 Like the previous sub-models, functionality implements the same quality characteristics

(figure 28). However, the maximum number of design properties that can be changed in one

simulation run equals 4. Moreover, the adaptation slices are represented by the adaptation

equations of messaging, cohesion, design size, hierarchies, and polymorphism properties that are

devoted to the functionality quality attribute (tables 10 and 11). The detailed implementation of

the functionality sub-model is available in appendix B.

63

Figure 28: Functionality sub-model

64

3.3.5 Extendibility sub-model

3.3.5.1 Extendibility quality components

 In figure 29, extendibility is simulated with its corresponding design properties and

metrics (figure 29). After evaluating the values of the design properties, extendibility’s quality

equation is computed and stored in its variable (figures 9 and 29). In addition, design properties’

slices implement extendibility’s adaptation equations (tables 12 and 13). For each design change

in figure 13, all of the possible adaptation equations of extendibility were experimented.

However, no adaptation equation made extendibility equal to its reference value (i.e. no best fit).

 Design properties Design metrics

 Abstraction ANA

 Coupling DCC

Extendibility Inheritance MFA

 Polymorphism NOP

Figure 29: Extendibility design properties and metrics

Design property for

adaptation

Adaptation equation

Abstraction 2 * extendibility + coupling – inheritance – polymorphism.

Coupling -2 * extendibility – abstraction- inheritance – polymorphism.

Inheritance 2* extendibility – abstraction + coupling – polymorphism.

Polymorphism 2* extendibility – abstraction + coupling – inheritance.

Table 12: Extendibility adaptation equations

65

Design change/ Change in

design property

Best fit adaptation equation

from table 12

Alternate adaptation

equation from table 12

Decrease in abstraction. No best fit. Coupling and polymorphism

equations.

Increase in coupling. No best fit. Abstraction and polymorphism

equations.

Decrease in inheritance. No best fit. Polymorphism and abstraction

equations.

Decrease in polymorphism. No best fit. Abstraction and coupling

equations.

Change more than one design

property.

No best fit. Any design property’s equation

except the changed one (s).

Table 13: Classification of extendibility’s adaptation equation

3.3.5.2 Extendibility quality flow

 The quality flow in the extendibility sub-model is similar to the previous sub-models

(figure 30). Furthermore, the maximum number of design properties that can be changed in one

simulation run equals 3. In the case of the extendibility sub-model, the adaptation slices are

represented by the adaptation equations of abstraction, coupling, inheritance, and polymorphism

properties that are devoted to the extendibility quality attribute (tables 12 and 13). The complete

implementation of the extendibility sub-model is described in appendix B.

66

Figure 30: Extendibility sub-model

67

3.3.6 Effectiveness sub-model

3.3.6.1 Effectiveness quality components

 In figure 32, effectiveness is simulated with its corresponding design properties and

metrics (figure 31). After evaluating the values of the design properties, effectiveness’s quality

equation is computed and stored in its variable (figures 9 and 31). In addition, design properties’

slices implement effectiveness’s adaptation equations (tables 14 and 15).

 Design properties Design metrics

 Abstraction ANA

 Encapsulation DAM

Effectiveness Composition MOA

 Inheritance MFA

 Polymorphism NOP

Figure 31: Effectiveness design properties and metrics

68

Design property for

adaptation
Adaptation equation

Abstraction 5 * effectiveness – encapsulation – composition – inheritance –

polymorphism.

Encapsulation 5 * effectiveness – abstraction - composition – inheritance –

polymorphism.

Composition 5 * effectiveness – abstraction – encapsulation – inheritance –

polymorphism.

Inheritance 5 * effectiveness – abstraction – encapsulation – composition –

polymorphism.

Polymorphism 5 * effectiveness – abstraction – encapsulation – composition –

inheritance.

Table 14: Effectiveness adaptation equations

Design change/ Change in

design property

Best fit adaptation equation

from table 14

Alternate adaptation

equation from table 14

Decrease in abstraction. Encapsulation equation. Composition and

polymorphism equations.

Decrease in composition. Encapsulation equation. Abstraction and polymorphism

equations.

Decrease in inheritance. Encapsulation equation. Polymorphism, abstraction, and

composition equations.

Decrease in polymorphism. Encapsulation equation. Abstraction and composition

equations.

Change more than one design

property.

Encapsulation equation. Any design property’s equation

except the changed one (s).

Table 15: Classification of effectiveness’s adaptation equation

3.3.6.2 Effectiveness quality flow

 The effectiveness sub-model is applying the same quality characteristics of the previous

sub-models. In this case, the maximum number of design properties that can be changed in one

simulation run equals 4. In addition, the adaptation slices are represented by the adaptation

equations of abstraction, encapsulation, composition, inheritance, and polymorphism properties

that are devoted to the effectiveness quality attribute (tables 14 and 15). The detailed

implementation of the effectiveness sub-model is available in appendix B.

69

Figure 32: Effectiveness sub-model

70

Figure 33: The welcome page of the simulation

71

Figure 34: The input menu of the simulation

72

Figure 35: The simulation results page

73

 Chapter 3 was devoted to the creation of the different components of design quality’s

simulation by following phases 0-2 of the SDM. In PowerSim
®
, each QMOOD quality attribute

was developed in a separate sub-model that showed how its quality components interact with

each other to face any decrease in design quality. Instead of testing a limited set of scenarios, the

enhancement of the initial simulation model enables designers to experiment with all possible

combinations of design changes and adaptations. Therefore, the resulting simulation from Phase

2 of the SDM is ready to be applied and validated in a set of real OO designs as illustrated in

chapter 4.

74

Chapter 4: Simulation validation

 To validate the simulation sub-models and apply the suggested adaptations, ten academic

design class diagrams were studied (phases 2.2 and 3 of the SDM process in figure 2). To

illustrate the validation process and the application of the adaptation mechanisms, one design is

described thoroughly in this chapter and the remaining designs are discussed in appendix C. The

design documents were produced by students from two different classes offered by the Computer

Science and Software Engineering department at Auburn University: Software Modeling and

Design (COMP 3700) and the Senior Design Project (COMP 4710). The designs illustrate the

components of small to medium-sized systems in different application areas such as healthcare

and education. The design changes and their adaptations were validated by applying the

following steps in the designs:

1) Initial design quality measured: The QMOOD metrics, design properties and quality

equations were extracted manually and computed for each design class diagram before

applying any design changes. The initial values of the quality attributes in each design are

considered as the reference quality values for that particular design in both the simulation and

the real results.

2) Design changes and adaptations simulated: A set of design changes was experimentally

applied to each design through the simulation. It is assumed that changes on the

requirements from the client side trigger the design changes. The obtained results depicted

75

the affected QMOOD quality attributes by those changes. If the quality values were lower

than their initial values (i.e. the reference values of the quality attributes) the impact of the

selected design properties’ adaptation equation was also simulated. The main result of the

simulation is the adaptation amount of the selected design property (i.e. how much the

adaptation design property should be increased/ decreased to reach the reference value of the

affected quality attribute).

3) Design changes and adaptations applied on the designs’ class diagrams: The same simulated

changes were applied on the real designs as well as their corresponding simulated adaptation

amounts. The QMOOD quality attributes were also computed for the adapted class

diagrams.

4) Correlations between the simulated and the real quality attributes’ values from the

simulation and the class diagrams were computed: The correlations were calculated by

applying the Pearson product-moment coefficient or Pearson's r. Pearson's r determines the

linear relationship between two sets of values (e.g. set X and set Y) and can range from -1 to

1 [Jackson 2011]. In this research, X represents the set of all the adapted simulated values of

a specific quality attribute and Y represents the set of all the adapted values of the same

quality attribute that are computed from the class diagrams.

4.1 Design 1 (D1): Library Information System (LIS)

4.1.1 System description and reference quality values

 The class diagram in figures 36 and 37 represents the design components of a library

information system (LIS). The main goal of the LIS is to automate the operations of library

management such as checking books in and out; adding books to the library; and handling

76

outstanding fees. The initial values of the QMOOD metrics of this class diagram and the

remaining designs were extracted by applying the formula in table 16. Both values of the metrics

and their corresponding quality attributes’ reference values are recorded in tables 17 and 18.

Figure 36: The library server classes of LIS

77

Figure 37: The database server classes of LIS

78

Design metric Formula

Design Size in Classes (DSC) Σ of classes in the class diagram.

Number Of Hierarchies (NOH) Σ of class hierarchies in the class diagram.

Average Number of Ancestors (ANA)

 i= number of leaf classes

 Σ of ancestors

 i=1

 sum of leaf classes in the design

Average Data Access Metric (DAM)

 Total number of private

 (protected) attributes

 in a class

 Total number of attributes

 Total number of classes in the design

0≤ DAM ≤1 in each class

 Average Direct Class Coupling (DCC) Σ of classes a class is related to.

Average Cohesion Among Methods of

classes (CAM)

 i= number of parameters of

 all methods in a class.

 Σ number of methods that share i

 i=1

 total number of parameters in a class

 Total number of classes in the design

 0≤ CAM ≤1 in each class

Measure Of Aggregation (MOA)
The number of part-whole relationships in the

class diagram.

Average Measure of Functional

Abstraction (MFA)

 The number of methods

 inherited

 by a class

 Total number of methods

 accessible

Total number of classes in the design

0≤ MFA ≤1 in each class

Number Of Polymorphic methods

(NOP)

Σ of polymorphic methods in the class diagram.

Sum of Classes Interfaces Size (CIS) Σ of public methods in the class diagram.

Number Of Methods (NOM) Σ of all methods in the class diagram.

Table 16: QMOOD design metrics formula

79

4.1.2 Design changes

 After extracting the design metrics values from the class diagram in figures 36 and 37, a

set of design changes was applied to validate the results of the simulation. Each design change

affected at least one quality attribute and enabled us to validate its corresponding simulation sub-

model.

4.1.2.1 Design changes affecting the understandability quality attribute

 After entering D1’s design metrics values from table 16 in the simulation interface, the

initial understandability value (i.e. the targeted reference value) was evaluated (Table 17). One of

the new requirements received from the system’s client is to add new functionalities that deal

with books management, library events organization, amenities reservation, and complaints

management. Therefore, five new classes were added to D1’s class diagram: “Client service”,

“Books suggestion”, “Library events”, “Library amenities”, and “Post complaints” that deal with

new operations such as allowing users to suggest books and post complaints about any library

service. The impact of this design change on understandability and the adopted equation of

encapsulation were first experimentally simulated in Powersim
®

before applying them on D1’ s

class diagram.

1) Simulated results

 Increasing the DSC metric of D1 (table 15) by increasing the number of classes led to a

decrease in understandability below its reference value (table 17). To counterbalance the impact

of that design change, the adaptation equation of encapsulation from table 8 was applied as

illustrated in figure 38.

80

Figure 38: Understandability adaptation results of D1

 From figure 38, the decrease in understandability is counterbalanced when encapsulation

increases from its original value of 1 to 5, or a factor of five. The encapsulation of D1 can be

improved by increasing the DAM values to 1 in the following classes: Client service” “Books

suggestion”, “Library events”, “Post complaints”, and “Library amenities”.

2) Real results

 After experimenting the impact of the design change on understandability and the

effectiveness of the encapsulation adaptation equation through Powersim
®
, the same changes and

the obtained adaptation from the simulation were applied on D1’s class diagram (figure 39). The

encapsulation adaptation, which is based on increasing DAM in D1’s classes, is illustrated

through the UML minus symbol in front of the classes’ attributes. Before applying the simulation

Encapsulation

(adaptation)

Understandability

(quality attribute)

Design size (design

change)

The increase in design size (dark pink) led to a decrease in understandability (green)

below its reference value (blue). Understandability started to increase and reached its

reference value when the adaptation equation of encapsulation (brown) was applied.

81

results on the real design, the attributes of the classes in figure 39 were all public. The increase in

encapsulation as an adaptation mechanism is based on making those attributes private by adding

the minus sign in front of them.

Figure 39: The classes used in D1’s understandability design change

Library events

- event Topic: String

- event date: String

- newArrival: String

- specialEdition: String

+ exhibitBooks (newArrival: String,

specialEdition: String)

+ announceTalk (event date: String, event

Topic: String)

Client service

- service id : int

+ getService (serviceid: int)

Books suggestion

-title: String

-author: String

-bookid: int

- type: String

-availability: bool

+ addSuggestion (bookid: int, author: String, type: String, title: String)

+ updateSuggestion (bookid: int, availability: bool)

+ cancelSuggestion (bookid: int, title: String, author: String)

Library amenities

-reservationType: String

-date: String

+

postTalkRoomReservation

(date: String,

reservationType: String)

+ updateReservation (date:

String, reservationType:

String)

+ cancelReservation (date:

String, reservationType:

String)

Complaints

- type: String

-date: String

- content: String

- title: String

- id: int

+ postComplaint (id: int, type: String, date:

String, title: String, content: String)

+ updateComplaint (id: int, date: String,

title: String)

+ cancelComplaint (id: int)

The minus symbol indicates that

the attributes of the class are made

private which increases DAM to 1.

82

 After applying the encapsulation adaptation on D1’s design, the real QMOOD

understandability value was computed. Table 20 results show that the simulated value of

understandability after adaptation matches its real value.

4.1.2.2 Design changes affecting the extendibility and the flexibility quality attributes

 Additional design changes were simulated and then applied on the adapted version of D1

after the first design change. To illustrate the effect of design changes on extendibility and

flexibility, the “Client service” class from figure 39 was modified to be a subclass of

“PageItem”. In addition, each of the remaining four classes in figure 39 was modified to be a

specific client service. The impact of those design changes on extendibility and flexibility as well

as the adopted polymorphism adaptation mechanisms was first simulated in Powersim
®
 and then

applied on the real class diagram of D1.

1) Simulated results

 The described design changes led to an increase in the number of hierarchies, inheritance,

complexity, abstraction, messaging, complexity, and coupling design properties. Figures 40 and

41 show that both quality attributes decreased below their reference values before applying the

polymorphism adaptation equation (the blue and green lines represent the reference values of

extendibility and flexibility respectively. The reference values are also recorded in table 17).

From table 7, the best fit adaptation equation for flexibility is the equation of encapsulation.

However, encapsulation was already at its optimum level (DAM=1 in D1’s classes) and did not

need an additional increasing. In this case, the alternate adaptation equation of polymorphism

described in tables 6 and 7 was simulated. In the case of extendibility, table 13 shows that this

quality attribute has no best fit adaptation but can be adapted by applying the alternate equation

83

of polymorphism. From figures 40 and 41, the decrease in flexibility and extendibility was

counterbalanced when polymorphism was increased by a factor of ten.

Figure 40: Extendibility adaptation results of D1

Figure 41: Flexibility adaptation results of D1

Coupling (design change)

Polymorphism (adaptation)

Extendibility (quality

attribute)

Coupling (design

change)

Polymorphism

(adaptation)

Flexibility

(quality attribute)

84

2) Real results

 The simulated changes and their corresponding adaptations for extendibility and

flexibility were applied on D1 as shown in figure 42. The simulated adaptation was applied in

the “Books suggestion” class where the polymorphic forms of its methods are increased to nine.

Then, the computed values of extendibility and flexibility from D1 after adaptation were

compared to their simulated values. The results show a strong connection between the real and

the simulated values of both quality attributes (tables 22 and 23 in appendix C).

85

Figure 42: The changed parts of D1 for flexibility and extendibility adaptations

Library events

- event topic: String

- event date: String

- newArrival: String

- specialEdition: String

+ exhibitBooks

(newArrival: String,

specialEdition: String)

+ announceTalk (event

date: String, event

topic: String)

Client service

- service id : int

+ getService (serviceid:

int)

Books suggestion

-title: String

-author: String

-bookid: int

-type: String

-availability: String

+ addSuggestion

(bookid: int, author:

String, type: String,

title: String)

+ addSuggestion

(bookid: int)

+ addSuggestion

(bookid: int, author:

String)

+addSuggestion

(author: String)

+ updateSuggestion

(bookid: int,

availability: bool)

+ updateSuggestion

(bookid: int)

+ updateSuggestion

(availability: bool)

+ cancelSuggestion (id:

int)

+ cancelSuggestion

(bookid: int, title:

String)

+ cancelSuggestion

(bookid: int, title:

String, author: String)

+ cancelSuggestion

(author: String)

+ cancelSuggestion

(title: String, author:

String)

Library amenities

-reservationType:

String

-date: String

+

postTalkRoomReserv

ation (date: String,

reservationType:

String)

+ updateReservation

(date: String,

reservationType:

String)

+ cancelReservation

(date: String,

reservationType:

String)

Complaints

- type: String

-date: String

- content: String

- title: String

- id: int

+ postComplaint (id: int,

type: String, date: String,

title: String, content:

String)

+ updateComplaint (id:

int, date: String, title:

String)

+ cancelComplaint (id:

int)

PageItem

- title

86

4.1.2.3 Design changes affecting the reusability and the functionality quality attributes

 After adapting the values of the extendibility and the flexibility quality attributes,

additional design changes were experimented in the simulation then applied on D1’s class

diagram. The classes “CheckInPage”, “CheckOutBook”, and “FinePage” in figure 37 were

deleted from D1.

1) Simulated results

 The new design changes led to a decrease in the design size of D1 and two QMOOD

quality-attributes below their reference values: reusability and functionality (table 17, figures 43

and 44). The best-fit adaptation equation for reusability and functionality is the equation of

cohesion as it is described in tables 5 and 11. When the value of cohesion was increased after

applying its adaptation equation, the reusability and the functionality values increased and

reached their reference values as illustrated in figures 43 and 44. Furthermore, cohesion is

measured through the CAM metric, which represents the degree of relatedness among the

methods of a design’s classes. The simulation results in figures 43 and 44 suggested that

cohesion/ CAM should equal 1 in six classes of D1. The application of those simulated

suggestions in the real design was described in figure 46.

87

Figure 43: Reusability adaptation results of D1

Figure 44: Functionality adaptation results of D1

Design size

(design

change)

Reusability (quality

attribute)

Cohesion (adaptation)

Design size (design

change)

Functionality

(quality attribute)

Cohesion

(adaptation)

88

2) Real results

 The changes that affect reusability and functionality as well as the suggested adaptation

from the simulation were applied on D1. After applying the changes, the parameters in the

classes “Library events”, “Complaints”, and “Library amenities” were shared by most of their

methods, increasing the value of CAM from 0.8 to 1. This adaptation mechanism

counterbalances the decrease in both quality attributes and makes the real values nearly equal

their simulated counterparts (tables 24 and 25 in appendix C).

4.1.2.4 Design changes affecting the effectiveness quality attribute

 In the last design change to D1, the “Client service” class was deleted, leaving the

remaining classes to inherit characteristics directly from the “PageItem” class (figure 46). The

impact of this design change on effectiveness and the adopted adaptation equation was first

simulated in Powersim
®

 and then applied on the real class diagram of D1.

1) Simulated results

 This design change led to a decrease in the abstraction design property and the

effectiveness quality attribute. From table 15, the equation of encapsulation is the best fit

adaptation of effectiveness. However, encapsulation was already at its optimum level (i.e. DAM

= 1 in D1’s classes) and did not need to be increased. As a result, the alternate adaptation

equation of polymorphism described in tables 14 and 15 was simulated. Figure 45 illustrates that

polymorphism must increase from 9 to 18 to accommodate the design change. Thus, the

adaptation through NOP, the QMOOD measure of polymorphism, should be increased by nine

polymorphic methods in the D1’s class diagram.

89

Figure 45: Effectiveness adaptation results of D1

2) Real results

 The simulated changes and adaptations that affect effectiveness were applied on D1’s

class diagram. The polymorphic adaptation from the simulation was applied in the “Library

amenities” and “Complaints” classes where the polymorphic forms of its methods were increased

to eighteen (figure 46). The computed value of effectiveness from D1’s class diagram after

adaptation nearly equals its simulated value (table 26 in appendix C).

Abstraction

(design change)
Polymorphism

(adaptation)

Effectiveness

(quality attribute)

90

Figure 46: The changed parts of D1 for reusability, functionality, and effectiveness

adaptation

Library events

- event Topic: String

- event date: String

- newArrival: String

- specialEdition: String

+ exhibitBooks

(newArrival: String,

specialEdition: String,

event date: String, event

Topic: String)

+ announceTalk (event

date: String, event

Topic: String)

Books suggestion

-title: String

-author: String

- bookid: int

- type: String

- availability: bool

+ addSuggestion

(bookid: int, author:

String, type: String,

title: String)

+ addSuggestion

(bookid: int)

+ addSuggestion

(bookid: int, author:

String)

+addSuggestion

(author: String)

+ updateSuggestion

(bookid: int,

availability: bool)

+ updateSuggestion

(bookid: int)

+ updateSuggestion

(availability: bool)

+ cancelSuggestion

(bookid: int)

+ cancelSuggestion

(bookid: int, title:

String)

+ cancelSuggestion

(bookid: int, title:

String, author:

String)

+ cancelSuggestion

(author: String)

+ cancelSuggestion

(title: String, author:

String)

Library amenities

-reservationType: String

-date: String

+

postTalkRoomReservation

(date: String, event:

String, lecturer: String)

+

postTalkRoomReservation

(date: String)

+

postTalkRoomReservation

(date: String, event:

String)

+

postTalkRoomReservation

(date: String, lecturer:

String)

+ updateReservation (date:

String, event: String,

lecturer: String)

+ updateReservation (date:

String, event: String)

+ updateReservation (date:

String, lecturer: String)

+ updateReservation (date:

String)

+ cancelReservation (date:

String, event: String,

lecturer: String)

Complaints

- type: String

-date: String

- id: int

- title: String

- content: String

+ postComplaint (id: int,

type: String, date: String,

title: String, content: String)

+ postComplaint (id: int)

+ updateComplaint (id: int)

+ updateComplaint (id: int,

date: String, title: String,

type: String, content: String)

+ cancelComplaint (id: int,

date: String, title: String,

type: String, content: String)

+ cancelComplaint (id: int)

PageItem

- title

The intersection between the parameters of the methods and the overall class attributes

is high so that CAM =1. All of the class attributes are almost part of each method’s

parameters. Thus, the cohesion of the class that corrsponds to CAM is increased, which

adapts the values of reusability and functionality. Adding polymorphic methods, such

as “updateSuggestion (availability: bool)” in ‘Books suggestion” class, adapted the

value of effectiveness.

91

 The same validation process was applied in D2-D10 designs where the data in tables 17

and 18 were used in running the simulation and checking that the obtained quality attributes

reached their reference values after adaptation. The detailed description of design changes and

adaptations of D2-D10 is described in appendix C.

 Designs

QMOOD

Metrics

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

DSC 28 13 47 38 40 21 10 41 7 12

NOH 5 1 3 5 5 1 3 4 0 0

ANA 1 1 1 1.45 1 1 1.75 1.06 0 0

DAM 1 0.7 0.25 1 1 1 1 1 1 1

DCC 27 11 9 19 21 10 14 25 16 6

CAM 0.8 1 0.19 1 0.2 1 1 1 1 1

MOA 6 7 0 3 2 2 1 8 16 6

MFA 0.5 0.8 0 0 0.98 0.2 0.27 0.66 0 0

NOP 1 1 1 1 1 1 1 1 1 3

CIS 19 33 58 18 40 101 22 65 31 98

NOM 19 33 58 18 40 101 22 65 31 98

Table 17: The initial QMOOD design metrics values for the ten designs

92

 Designs

Reference

quality values

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Reusability 23.2 31.75 51.8 33 38.05 47.75 61.75 20 21.25 57.5

Flexibility

-

3

1.5

-

1.5

-

2.5

-

3.5

-

1.5

0.25

-

2.25

4.75

3.25

Understandabi

lity

-

24.4

9

-

18.9

-

38.13

-

24.90

-

33.59

-

43.25

-

43.56

-

15.43

-

17.49

-

38.61

Functionality 17.4

8

18.38 26.64 20.8 22.02 25.86 30.26 12.44 13.98 27.84

Extendibility
-

12.2

5

-

4.10

-

3.50

-

8.13

-

9.06

-

11.14

-

3.88

-

5.45

-

6.75

-

0.7

Effectiveness 3.6

8

4.12 0 0 2.18 3.34 2.45 1.82 6.5 2.92

Table 18: The reference values of the quality attributes for both the simulated and the real

results in the ten designs

4.2 Quality attributes correlation results

 After experimenting and applying a set of design changes and their adaptations on the

simulation and the real designs, the resulting simulated and real quality attributes were generated

and computed. Then, the Pearson product-moment correlation coefficient (Pearson's r) was

computed for each design quality attribute between its simulated and its real values. Pearson's r

coefficient determines the association level of two sets of variables X and Y [Jackson 2011]. It

can be computed by applying the following formula where n represents the population’s size

(e.g. size of X):

Figure 47: Pearson’r formula [Jackson 2011]

93

 Pearson’r value ranges from -1 to 1 with specific correlation strength (table 19). The sets

X and Y can be perfectly correlated when r =1/-1. Moreover, X and Y are considered not linearly

related or correlated when r =0. In the validation of this research, X represents the simulated

values of the quality attributes after adaptation while Y is the set of their corresponding real

values. A high or very high correlation between X and Y shows the effectiveness of the

adaptation equations in adjusting design quality (table 19). The detailed application of Pearson’s

r in each design quality attribute is illustrated in tables 19-24. Pearson’s r computes the

correlation between two sets of variables. Therefore, Pearson’s r is computed for each QMOOD

quality attribute between the set X of all its simulated values and the set Y of all its real values in

all the designs. Table 20 illustrates the computation of Pearson’s r for understandability between

the set X of its simulated values and the set Y of its real values over all designs. The correlations

of the remaining quality attributes are presented in appendix C.

Correlation

strength

Negative correlation

value

Positive correlation

value

Very low -0.3 < r < 0 0 < r < 0.3

Low -0.5 < r < - 0.3 0.3 < r < 0.5

Moderate -0.7 < r < - 0.5 0.5 < r < 0.7

High -0.9 < r < - 0.7 0.7 < r < 0.9

Very high -1 < r < - 0.9 0.9 < r < 1

Table 19: Pearson’r correlation degrees [Jackson 2011]

94

X: Simulated

understandability

in D1-D10

Y: Real

understandability

in D1-D10

XY X² Y²

-24.49 -24.47 599.27 599.76 598.78

-18.90 -18.89 357.19 357.55 356.83

-38.13 -38.13 1453.89 1453.89 1453.89

-24.90 -24.88 619.51 620.01 619.01

-33.59 -33.58 1127.95 1128.28 1127.61

-43.25 -43.24 1870.13 1870.56 1869.69

-43.56 -43.53 1896.16 1897.47 1894.86

-15.43 -15.42 237.93 238.08 237.77

-17.49 -17.49 305.90 305.90 305.90

-38.61 -38.60 1490.34 1490.73 1489.96

Σ X= -298.35 Σ Y= -298.23 Σ XY=

9958.27

Σ X²=

9962.23

Σ Y²= 9954.30

n =10

Table 20: Correlation computations of understandability

 10 (9958.27) – (-298.35) (-298.23)

rxy =

 √|10 (9962.23) – (- 298.359)²| * |10 (9954.30) – (-298.23)²|

 = 1 very high correlation

Quality attribute Correlation value Correlation

degree

Understandability 1 Very high

Extendibility 0.99 Very high

Flexibility 0.90 Very high

Functionality 0.99 Very high

Reusability 0.99 Very high

Effectiveness 0.97 Very high

Table 21: Correlation degrees of the QMOOD quality atributes

95

 From the obtained Pearson’r coefficient values in table 21, the simulated values of the six

quality attributes after adaptation highly correlate with their real values. Therefore, the

simulation results are valid and the suggested adaptation equations are effective. In addition, the

obtained results concretely reject the null hypothesis of this research in favor of the alternative

hypothesis.

96

Chapter 5: Conclusions and future research work

5.1 Conclusions

 The presented research extracted a set of adaptation equations from the QMOOD to face

any possible decrease in design quality due to changes in design decisions. Those adaptation

equations as well as the different components of the QMOOD were modeled as a system

dynamics simulation implemented in Powersim
®
. The simulation was an experimental

environment where designers can test the impact of changes before applying them on real

designs. The simulation was also useful in defining the appropriate adaptation equation for each

design change that decreased the value of a specific QMOOD quality attribute.

 The validation of the simulation showed that the suggested adaptations can be applied

effectively and smoothly in the real designs. After applying a set of design changes on the real

designs, design quality dropped below its defined reference values. Then, the obtained increase

in the adaptation design properties from the simulation was applied on the real designs. The

validation of the research showed that the simulated results highly correlated with the real

adaptations. Therefore, the suggested adaptations can effectively adjust design quality.

Moreover, the application of any of the adaptation equations for a specific quality attribute had

no side effect on the other quality attributes since they kept their high level and did not drop

below their reference values.

97

5.2 Future research work

 The simulation produced in this research can be extended to study more design quality

variables and adapt other phases of the software process. The current simulation uses only the

quality attributes defined in the QMOOD. However, software design can also be characterized

by other quality attributes such as reliability whose assessment and adaptation can improve

design quality. Moreover, design quality can also be impacted by other exogenous soft factors

such as the motivation of designers, their commitment and their organizational culture. The

simulation can help in defining the impact of those soft factors on QMOOD quality attributes

and depict the required adaptations in this case. In addition, a mapping catalog between each

quality attribute and its set of impacting soft factors can be defined. For example, the simulation

can define the organizational, the economic and the psychological factors impacting the

reusability quality attribute such as the required effort, the existing incentives and the job

security threats respectively. The simulation can also be extended to assess and adapt other

software process phases such as the requirements phase. Through the simulation of the complete

software process, software engineers will be able to determine the impact of a specific process

phase on the quality of other phases. Furthermore, software engineers will also be able to

evaluate the impact of skipping a process phase on the quality of the other phases and the

produced software.

 The current research defines local reference values for each particular design. The

reference values are defined as the initial values of the quality attributes before any design

change. As an improvement, those reference values can be determined statistically along many

sets of projects or from the history of projects in a company. The reference values can also be

updated from one simulation run to another or fixed from the first run. Similarly, the same

98

methodologies can determine the required initial values of the design properties to run the

simulation for any project type. Therefore, designers will be able to determine a uniform

proportion for each design property that can be run in any design’s simulation. For example,

statistical studies over a large set of designs may suggest that the third of any design should be

composed of hierarchies and then assign the value .3 to the hierarchies design property and its

corresponding metric in the simulation.

 Besides design quality evaluation and adaptation, the simulation can be extended to

include other options that will help designers in optimizing their designs’ quality and estimating

the costs of adaptations. To find realistic trade-offs between design decisions and the intended

quality attributes values, a quality optimization mechanism can effectively guide designers in

forecasting those trade-offs. Therefore, the simulation can be extended to provide designers with

the needed values of design properties to reach any targeted quality attributes levels. Another

interesting extension to the simulation is to run a cost-benefit analysis of the simulated design

changes and their corresponding adaptations. Hence, designers will be able to forecast the costs

of their design changes and adaptations before applying them in the real designs.

 To consolidate the obtained results from this research, more validations are required by

including other types of design deliverables and simulating industry-based software designs.

Besides the UML class diagrams that were studied in this research, the simulation will be

extended to evaluate and adapt other design data obtained from other types of design deliverables

such as the entity-relationship and the data flow diagrams. As an industrial validation to this

research, the simulation results will be applied in open-source software. This type of validation is

based on a long time consuming process and constitute by itself a research project. This type of

validation may specialize on one type of open source software such as android applications or

99

consider different types of software at the same time. Then, those applications should be reverse-

engineered to transform code to UML class diagrams. Design quality should be assessed from

one reverse-engineered release to another by applying QMOOD. The reverse-engineered

designs should also be thoroughly analyzed to detect any design changes from one release to

another. A decrease in design quality indicates that changes need to be counterbalanced by

applying one of the presented adaptation mechanisms in this research. All of this data should be

experimented in the simulation before applying the obtained adaptations on the real reversed

design. Then, a second QMOOD quality evaluation should be performed on the real adapted

design to check the effectiveness of adaptations. The same methodology is applied on the

different releases of an open-source project as well as in the remaining projects. By the end,

Pearson's r correlation factors are computed between the simulated and the real results.

100

References

ABDEL-HAMID, T. , AND MADNICK, S.E. 1991. Software project dynamics: an integrated

approach. Prentice-Hall, Inc., Upper Saddle River, NJ.

ABREU, F.B., AND MELO, W. 1996. Evaluating the impact of object-oriented design

on software quality. In Proceedings of the 3
rd

 International Software Metrics Symposium

(Metrics'96), Berlim, Alemanha.

ANDERSSON, C., KARLSSON, L., NEDSTAM, J., HOST, M., AND NILSSON, B. 2002.

Understanding software processes through system dynamics simulation: a case study. In

Proceedings of the 9
th

 Annual IEEE International Conference and Workshop on the Engineering

of Computer-Based Systems, Lund, Sweden, 41-48.

ARAUJO, E., CASSIVI, L., CLOUTIER, M. , AND ELIA, E. 2007. Improving the software

development process: a dynamic model using the capacity maturity model. In Proceedings of the

25
th

 International Conference of the System Dynamics Society, Boston, 1-19.

101

BANSIYA, J., DAVIS, D .C.G. 2002. A hierarchical model for object-oriented design

quality assessment. Journal of IEEE Transactions on Software Engineering, 28, 4-17.

BECKMANN, B.E., GRABOWSKI, L.M., MCKINLEY, P.K., AND OFRIA, C. 2009. Applying

digital evolution to the design of self-adaptive software. In Proceedings of the IEEE Symposium

on Artificial life, Nashville, TN, 100-107.

BOGADO, V., GONNET, S., AND HORACIO, L. 2010. An approach Based on DEVS for

Evaluating Quality Attributes. In Proceedings of the XXIX International Conference of the

Chilean Computer Science Society, Antofagasta, Chile, 110-118.

BRANDON, J. 2007. Similarity of temporal query logs. Doctoral dissertation. University of

California, Los Angeles.

BRIAND, L.C., WUST, J., DALY, J.W. , AND PORTER, D.V. 2000. Exploring the

relationships between design measures and software quality in object-oriented systems. The

Journal of Systems and Software, 51, 245-273.

CHIANG, E., AND MENZIES, T. 2003. Simulations for very early lifecycle quality

evaluations. Software Process: Improvement and Practice 7, 141-159.

102

CHWIF, L., MUNIZ SILVA, P.S., STURLINI, R.N., AND SHIMADA, L.M. 2006. A

prescriptive technique for V&V of simulation models when no real-life data are available. In

Proceedings of the 38
th

 Winter Simulation Conference, Monterey, Canada, 911-918.

DE OLIVEIRA, M. , LIMA WERNER, L.C., AND TRAVASSOS, G.H. 2000. Using process

modeling and dynamic simulation to support software process quality management. In

Proceedings of the 14
th

 Brazilian Symposium in Software Engineering, Paraíba, Brazil.

DIETMAR, P., AND LEBSANT, K. 1999. Integration of system dynamics modeling with

descriptive process modeling and goal-oriented measurement. Journal of Systems and Software,

46, 135-150.

DONZELLI, P., AND IAZEOLLA, G. 2001. A dynamic simulator of software processes to test

process assumptions. Journal of Systems and Software, 56, 81-90.

DONZELLI, P., AND IAZEOLLA, G. 2001. Hybrid simulation modeling of the software

process. Journal of Systems and Software 59, 227-235.

DOOLEY, J. 2011. Object-Oriented design principles. Journal of Software Development and

Professional Practice, 115-136.

103

DRAPPA, A., AND LUDEWIG, J. 1998. Simulation model development based on the

function point metric. In Proceedings of the European Measurement Conference FESMA Seite,

Antwerpen, 515-523.

DRAPPA, A., AND LUDEWIG, J. 1999. Quantitative modeling for the interactive simulation

of software projects. Journal of Systems and Software, 46, 113-122.

DROMEY, G.R. 1996. Cornering the chimera. Journal of IEEE software, 13, 33 – 43.

Extend
®
 corporation, 1988. http://www.extendsim.com/.

FERAYORNI, A.E., AND SARJOUGHIAN, H.S. 2007. Domain Driven Simulation Modeling

for Software Design. In Proceedings of the Summer Computer Simulation Conference, San

Diego, CA, July 2007, 297- 304.

FORRESTER, J.W. 1961. Industrial dynamics. MIT Press, Cambridge, MA.

HUANG, L., JIDONG, G., BOEHM, B., AND JIAN, L. 2010. Modeling the value-based

software process with object-petri nets. International Journal of Software Informatics, 4, 101-

119.

IEEE Standard for Developing a Software Project Life Cycle Process. IEEE Std 1074-2006

(Revision of IEEE Std 1074-1997), 0_1-104.

http://www.extendsim.com/

104

IOANA, R., COLLOFELLO, J., AND LAKEY, P. 1999. Software process simulation for

reliability management. Journal of Systems and Software, 46, 173-182.

ISO-9126, ISO/ IEC standard. 1991. Software product evaluation, quality characteristics and

guidelines for their use.

JACKSON, S.L. 2011. Research methods and statistics: a critical thinking approach. Cengage

learning, Belmont, CA.

KAHEN, G., LEHMAN, M., RAMIL, J.F., AND WERNICK, P. 2001. System dynamics

modeling of software evolution processes for policy investigation: approach and example.

Journal of Systems and Software, 59, 271-281.

KELLNER, M. 1991. Software process modeling support for management planning and control.

In Proceedings of the 1st International Conference on the Software Process, Los Alamitos,

California, 8-28.

KELLNER, M. , I., MADACHY, R.J., AND RAFFO, D.M. 1999. Software process simulation

modeling: why? what? How? , Journal of Systems and Software, 46, 91-105.

KLEIJNEN, J.P.C. 1995. Verification and validation of simulation models. European

Journal of Operational Research, 82, 145-162.

105

KUMAR, D., TANTAWI, A., and ZHANG, L. 2009. Real-time performance modeling for

adaptive software systems. ACM SIGMETRICS: ACM Special Interest Group on

Measurement and Evaluation, In Proceedings of the 4
th

 International Conference on

Performance Evaluation Methodologies and TOOLS, Pisa, Italy, 1-4.

LIN, C. Y, ABDEL-HAMID, T., AND SHERIF, J.S. 1997. Software engineering process

simulation model (SEPS). Journal of Systems and Software 38, 263-277.

LOSAVIO, F., CHIRINOS, L., AND PEREZ, M.A. 2001. Quality models to design software

architectures. In Proceedings of the Technology of Object-Oriented Languages and Systems,

Zurich, Switzerland, 123-135.

MADACHY, R., A. 1994. A Software project dynamics model for process cost, schedule and

risk assessment. Doctoral dissertation. University of Southern California, Los Angeles,

California.

MADACHY, R.J. 1996. System Dynamics modeling of an inspection-based process. In

Proceedings of the 18
th

 International Conference on Software Engineering (ICSE), Berlin,

Germany, 376-386.

106

MADACHY, R. 2006. Simulation for business value and software process/product trade-off

decisions. ACM SIGSOFT: ACM Special Interest Group on Software Engineering, In

proceedings of the 2006 International Workshop on Economics Driven Software Engineering

Research, 25-30.

MARINESCU, R., AND RATIU, D. 2004. Quantifying the quality of object-oriented design:

the factor-strategy model. In Proceedings of the 11
th

 Working Conference on Reverse

Engineering, Delft, The Netherlands, 192-201.

MARTIN, R. , AND RAFFO, D. 2000. A Model of the software development process using

both continuous and discrete models. International Journal of Software Process Improvement

and Practice 5, 147-157.

MCCALL, J.A., RICHARDS, P.K., AND WALTERS, G.F. 1977. Factors in Software Quality.

National Technical Information Service, 1, 2, 3, AD/A-049- 015/055.

MILLER, M.J., PULGAR-VIDAL, F., AND FERRIN, D.M. 2002. Achieving higher levels of

CMMI maturity using simulation. In Proceedings of the 34
th

 Winter Simulation Conference, San

Diego, CA, 1473-1478.

MȔLLER, M., AND PFAHL, D. 2008. Simulation Methods. In The Guide to Advanced

Empirical Software Engineering. J. Singer, F. Shull, D. SjØberg, Eds, Springer-Verlag, London,

117-152.

107

NOPPEN, J., VAN DEN BROEK, P. , AND AKSIT, M. 2005. A model for quality optimization

in software design processes. In Net.Objectdays, Erfurt, Germany, 529-541.

OREIZY, P., GORLICK, M.M., TAYLOR, R.N. , HEIMBIGNER, D., JOHNSON, G.,

MEDVIDOVIC, N., QUILICI, A., ROSENBLUM, D.S., AND WOLF, A.L. 1999. An

architecture-based approach to self-adaptive software. Journal of IEEE Intelligent Systems, 14,

54-62.

PFAHL, D., AND LEBSANFT, K. 1999. Integration of system dynamics modeling with

descriptive process modeling and goal-oriented measurement. Journal of Systems and Software,

46, 135-150.

PFAHL, D., AND RUHE, G. 2002. IMMoS: a methodology for integrated measurement,

modeling and simulation. Software Process: Improvement and Practice, 7, 189-210.

PHILLIPS, J., AND YILMAZ, L. 2006. An agent-based simulation study of cooperative team

behavior in software development with rational unified process. In Proceedings of the Agent-

Directed Simulation Symposium of the Spring Simulation Multi-conference, Huntsville,

Alabama, 73-80.

108

PODNAR, I. , AND MIKAC, B. 2001. Software maintenance process analysis using discrete-

event simulation. In Proceedings of the fifth European Conference on Software Maintenance

and Reengineering, Lisbon, Portugal, 192-195.

POWELL, A., MANDER, K., AND BROWN, D. 1999. Strategies for lifecycle concurrency

and iteration- A system dynamics approach. Journal of Systems and Software, 46, 151-161.

PowerSim
®
 corporation. 1993. http://www.powersim.com/.

RAFFO, D. 1996. Modeling software processes quantitatively and assessing the impact of

potential process changes on process performance. Doctoral dissertation. University of Carnegie

Mellon, Pittsburgh, Pennsylvania.

RAFFO, D., KALTIO, T., PARTRIDGE, D., PHALP, K., AND RAMIL, J, F. 1999. Empirical

studies applied to software process models. Journal of Empirical Software Engineering, 4, 353-

369.

RAFFO, D., M, VANDEVILLE, J.V., AND MARTIN, R, H. 1999. Software process

simulation to achieve higher CMM levels. Journal of Systems and Software, 46, 163-172.

ROYCE, W. 1970. Managing the development of large software systems. In Proceedings of

IEEE WESCON, Los Angeles, 1-9.

http://www.powersim.com/

109

RUIZ, M., RAMOS, I., TORO, M. 2001. A simplified model of software project dynamics.

Journal of Systems and Software, 59, 299-309.

RUS, I., COLLOFELLO, J., AND LAKEY, P. 1999. Software process simulation for reliability

management. Journal of Systems and Software, 46, 173-182.

RUS, I. , NEU, H., AND MȔNCH, J. 2003. A systematic methodology for developing discrete

event simulation models of software development processes. In Proceedings of the 4
th

 Workshop

on Software Process Simulation and Modeling, Portland, Oregon.

SALEHIE, M. AND TAHVILDARI, L. 2009. Self-adaptive software: landscape and research

challenges. Journal of ACM Transactions on Autonomous and Adaptive Systems, 4, 1-40.

SARGENT, R.G. Verification and validation of simulation models. 1998. In Proceedings of the

30
th

 conference on Winter Simulation, Washington, DC, 121-130.

SCHMECK, H. , MȔLLER-SCHLOER, C., ÇAKAR, E., MNIF, M. AND RICHTER, U. 2010.

Adaptivity and self-organization in organic computing systems. ACM Transactions On

Autonomous and Adaptive Systems, 5, 1-32.

110

SETAMANIT, S., WAKELAND, W., AND RAFFO, D. 2006. Planning and improving global

software development process using simulation. ACM SIGSOFT: ACM Special Interest Group

on Software Engineering, In Proceedings of the 2006 International Workshop on Global

software development for the practitioner, 8-14.

Stella
®
/iThink

®
 corporation. 1985. http://www.iseesystems.com/.

STERMAN, J.D. 1992. System dynamics modeling for project management. Technical Report.

MIT System Dynamics Group, Cambridge, MA.

THOMAS, D., JOINER, A., LIN, W., LOWRY, M., AND PRESSBURGER, T. 2010. The

unique aspects of simulation verification and validation. In Proceedings of the 2010 IEEE

Aerospace Conference, Big Sky, MT.

THUENTE, D.J. 1991. Rapid simulation and software prototyping for the architectural

Design of embedded multiprocessor systems. In Proceedings of the 19
th

 ACM Annual

Conference on Computer Science, San Antonio, Texas, 113-121.

VENSIM
®
 corporation. 1985. http://www.vensim.com/software.html.

http://www.iseesystems.com/
http://www.vensim.com/software.html

111

WAKELAND, W., SHERVAIS, S., AND RAFFO, D. 2004. Heuristic verification and

validation of software process simulation models. In Proceedings of the 5
th

 International

Workshop on Software Process Simulation and Modeling ProSim, Edinburg, Scotland, UK, 113-

119.

WERNICK, P., AND LEHMAN, M.M. 1999. Software process white box modeling for

FEAST/1. Journal of Systems and Software, 46, 193-201.

WILLIFORD, J., AND CHANG, A. 1999. Modeling the FedExIT division: a system dynamics

approach to strategic IT planning. Journal of Systems and Software, 46, 203-211.

XU, L., HENDRICKSON, S.A., HETTWER, E., ZIV, H., VAN DER HOEK, A., AND

RICHARDSON, D.J. 2006. Towards supporting the architecture design process through

evaluation of design alternatives. In Proceedings of the International Symposium of Software

Testing and Analysis, Portland, Maine, 81-87.

XU, L.2008. Moda - Multiple Objective Decision Analysis: balancing quality attributes in

software architectures. ACM Special Interest Group on Software Engineering: In Proceedings of

the 30
th

 International Conference on Software Engineering, Leipzig, Germany, 1019-1022.

YANG, J., HUANG, G., ZHU, W., CUI, X., AND MEI, H. 2009. Quality attributes tradeoff

 through adaptive architectures at runtime. Journal of Systems and Software, 82, 319-332.

112

YAU, S.S., YE, N., SARJOUGHIAN, H.S., HUANG, D., ROONTIVA, A., BAYDOGAN, M.,

AND MUQTISH, M.A. 2009. Toward development of adaptive service-based software

systems. IEEE Transactions on Services Computing, 2, 247-260.

ZHANG, J., AND CHENG, B.H.C. 2007. Towards re-engineering legacy systems for assured

dynamic adaptation. International Workshop on Modeling in Software Engineering,

Minneapolis, MN, 10.

ZHANG, H. , KITCHENHAM, B., AND PFAHL, D. 2008. Software process simulation

modeling: facts, trends and directions. In Proceedings of the 15
th

 Asia-Pacific Software

Engineering Conference, Beijing, China, 59-66.

ZHANG, H., KITCHENHAM, B., AND JEFFERY, R. 2009. Qualitative vs. Quantitative

software process simulation modeling: conversion and comparison. In Proceedings of the

2009 Australian Software Engineering Conference, Gold Coast, QLD, 345-354.

@RISK
®

corporation

, 1987. http://www.palisade.com/.

http://www.palisade.com/

113

Appendix A: System dynamics concepts

 System Dynamics (SD) is a computer-based simulation modeling methodology

developed at the Massachusetts Institute of Technology (MIT) in the 1950s as a tool for

managers to analyze complex problems. It is used to model systems’ behavior that changes over

time.

 System dynamics simulations are based on the principle of cause and effect relationships

between outputs that both respond and influence inputs in a closed feedback loop. There are two

types of feedback loops: positive and negative. Positive loops represent self-reinforcing systems

that are either growing or declining. Negative loops represent goal-seeking systems that keep

improving or get stabilized over time. The direction of causality between the variables in a

feedback loop is represented by a minus or a positive sign at the head of each arrow. The positive

sign indicates that the variable at the tail of each arrow causes a change in the variable at the

head of each arrow in the same direction and vice versa. The positive sign is also represented by

S (same direction) and the negative sign is represented by O (opposite direction). Figure 48

shows an example of a feedback loop where an increase in price leads to a decrease in sales.

114

Figure 48: A feedback loop that shows the relationships

between price, sales, and unit costs

 The overall polarity (positive or negative) of the feedback loop is determined by

multiplying all of its arrows’ signs. If the resulting sign is negative, the feedback loop describes a

balancing (B) or a counteracting (C) behavior to adjust and stabilize the status of a system. When

the resulting sign is positive, the feedback loop represents a reinforcing (R) behavior towards the

growth or the decline of a given system. Figure 49 illustrates a reinforcing feedback loop that

describes the growth of the national debt due to the compounding of interest payments. Figure 50

presents a balancing loop that stabilizes the rate of itching by applying regular scratching.

Figure 49: Reinforcing feedback loop Figure 50: Balancing feedback loop

115

 Besides the cause and effect relationships, dynamic systems’ variables accumulate over

time due to continuous flows of policies. Those accumulations are represented as levels such as

an inventory level that increases due to increasing production flows. To control the production, a

specific production rate is applied. Levels (rectangle symbol), flows (double arrows), and rates

(valve symbol) are the main representations of variables in SD. In addition, rates and levels can

be influenced by other external variables that are modeled as constants (diamond) or auxiliaries

(circle) linked by information links (single arrows). Figure 51 represents a simple simulation

model that helps us understand the interactions between the ordered merchandise from clients

(order rate), the available goods (inventory), and production rate (production). Those

interactions are computed numerically through a set of differential equations (e.g.; Production=

(Desired Inventory - Inventory)/Inventory Adjustment Time). The simulation can help business

managers in estimating the optimum level of inventory to cover their future market demands.

Figure 51: level-rate diagram example

116

Appendix B: Simulation source code

 The following appendix illustrates the implementation code of the simulation in the

Powersim
®
 environemt that uses a C-like syntax.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

Appendix C: simulation validation on D2-D10 designs

 This appendix presents the design changes and adaptations that were applied on D2-D10

designs. It also describes the correlations between the simulated and the real values of the

QMOOD quality attributes other than understandability.

C.1 Design 2 (D2): Banker system

C.1.1 System description and reference quality values

 The banker system handles all banking operations such as accounts management and

money withdrawals through two interfaces: clerk and administrator interfaces. On the one hand,

a clerk can manage loans, check balances, and handle account operations. On the other hand, an

administrator manages staff profiles (figure 56). The quality and reference values of the banker

system are illustrated in tables 17 and 18.

C.1.2 Design changes

C.1.2.1 Design changes affecting the understandability quality attribute

 The understandability quality attribute of D2 decreased below its reference value when

design size increased by seven classes. To counterbalance the impact of that design change,

encapsulation is the best fit adaptation mechanism both in the simulated and the real results

(tables 8 and 9).

167

1) Simulated results

 D2 simulation results show that encapsulation should be increased by a factor of seven to

compensate for the decrease in understandability (figure 53). Therefore, the “DAM” metric

should equal 1 in all the newly added seven classes.

2) Real results

 The simulated results were applied on D2’s class diagram as illustrated in figure 54.

Since encapsulation is maximized in all the seven classes (i.e. the ratio of private attributes to the

total number of attributes in each class equals 1), the real value of understandability after

adaptation equals its simulated value.

168

Figure 52: The banker system class diagram

169

Figure 53: Understandability adaptation results of D2

170

Figure 54: D2’s understandability design change and adaptation

Mortgages

- mortgageRate: String

- mortgageOption: String

+ createMortgage (clientID: String, rate:

String, option: String)

+ updateMortgage (clientID: String,

motgageNumber: String)

+ deleteMortgage (clientID: String,

motgageNumber: String)

Individual retirement account

- accountNumber : String

-accountType: String

+ getIRAtype (type: String)

+ manageIRA (type: String,

dateAccountCreation: String,

balance: String)

Banking services

-serviceType: String

+ getServiceType (type: String)

Credit cards

-cardType: String

-cardNumber: String

+ manageOptimizerCard

(cardNumber: String,

expirationDate: String,

securityCode: String)

+ manageVISASignatureCard

(cardNumber: String,

expirationDate: String,

securityCode: String)

+ clearPointsCreditCard

(cardNumber: String,

expirationDate: String,

securityCode: String)

+ cancelCard (cardNumber:

String, securityCode: String)

+ activateCard (cardNumber:

String, securityCode: String)

Mobile banking

- type: String

-date: String

+ processMobileTransaction

(textMessage: String, id: int)

+ cancelMobileTransaction (id: int)

Online banking

-title: String

-author: String

+ processOnlineBill (clientID: int,

billNumber: String)

+ cancelOnlineBill (billNumber:

String)

+ processFundsTransfer(clientID: int,

amount: String, accountNumber:

String)

ATM banking

-banking service: String

+ personalServices (type: String)

+ manageAccount (accountNumber:

String)

171

C.1.2.2 Design changes affecting the extendibility and the flexibility quality attributes

 After adding seven new classes to D2’s class diagram, new aggregation and inheritance

relationships were identified as illustrated in figure 57. The aggregation relationships are

represented by a diamond symbol. Since the “Banking services”, “Credit cards”, and

“Mortgages” classes’ responsibilities are part of the “Control bank” class, the defined

relationship between them is aggregation. The “individual retirement account” inherits the

characteristics of the “Account” class. Another inheritance relationship is defined between the

“banking services” class and three classes: “Online banking”, “Mobile banking”, and “ATM

banking”. Those new changes and their adaptation were both simulated and applied in D2’s class

diagram.

1) Simulated results

 The identification of new inheritance and aggregation relationships led to an increase in

coupling and a decrease in the flexibility and the extendibility quality attributes. After applying

the adaptation equation of polymorphism, the extendibility quality attribute reaches its reference

value and the decrease in flexibility is also counterbalanced (figures 55 and 56). The simulation

results show that the NOP metric should be increased by a factor of seven to effectively adapt the

flexibility and the extendibility values.

2) Real results

 The simulated design changes and adaptations were applied on D2. Seven polymorphic

methods were added to D2’s classes as suggested by the simulation (figure 57). The values of

flexibility and extendibility after integrating their adaptations on D2 nearly equal their simulated.

172

Figure 55: Flexibility adaptation results of D2

Figure 56: Extendibility adaptation results of D2

173

Figure 57: Flexibility and extendibility design change and adaptation in D2

Mortgages

- mortgageRate: String

- mortgageOption: String

+ createMortgage (clientID: String, rate:

String, option: String)

+ updateMortgage (clientID: String,

motgageNumber: String)

+ deleteMortgage (clientID: String,

motgageNumber: String)

Mortgages

- mortgageRate: String

- mortgageOption: String

+ createMortgage (clientID: String, rate:

String, option: String)

+ updateMortgage (clientID: String,

motgageNumber: String)

+ deleteMortgage (clientID: String,

motgageNumber: String)

Mortgages

- mortgageRate: String

- mortgageOption: String

+ createMortgage (clientID: String, rate: String,

option: String)

+ updateMortgage (clientID: String,

motgageNumber: String)

+ deleteMortgage (clientID: String,

motgageNumber: String)

+ deleteMortgage (clientID: String)

+ createMortgage (clientID: String)

Individual retirement account

- accountNumber : String

-accountType: String

+ getIRAtype (type: String)

+ manageIRA (type: String,

dateAccountCreation: String,

balance: String)

Banking services

-serviceType: String

+ getServiceType (type: String)

Credit cards

-cardType: String

-cardNumber: String

+ manageOptimizerCard (cardNumber:

String, expirationDate: String,

securityCode: String)

+ manageVISASignatureCard

(cardNumber: String, expirationDate:

String, securityCode: String)

+ clearPointsCreditCard (cardNumber:

String, expirationDate: String,

securityCode: String)

+ cancelCard (cardNumber: String,

securityCode: String)

+ activateCard (cardNumber: String,

securityCode: String)

+ manageOptimizerCard (cardNumber:

String)

+ manageVISASignatureCard

(cardNumber: String)

+ clearPointsCreditCard (cardNumber:

String)

+ cancelCard (cardNumber: String)

Mobile banking

- type: String

-date: String

+ processMobileTransaction

(textMessage: String, id: int)

+ cancelMobileTransaction

(id: int)

+ processMobileTransaction

(id: int)

Online banking

-title: String

-author: String

+ processOnlineBill (clientID: int,

billNumber: String)

+ cancelOnlineBill (billNumber: String)

+ processFundsTransfer(clientID: int,

amount: String, accountNumber: String)

ATM banking

-banking service: String

+ personalServices (type: String)

+ manageAccount (accountNumber: String)

Control bank

Account

174

C.1.2.3 Design changes affecting the reusability and the functionality quality attributes

 The third design change applied in D2 leads to a decrease in design size. The class

“policy” was deleted and its attributes were merged in the “Account” class. Furthermore, the

“checking” and the “savings” classes were deleted and their responsibilities were processed by

the “Account” class.

1) Simulated results

The simulation results of the third design change in Powersim
®
 show a decrease in the

reusability and the functionality quality attributes below their reference values (figures 58 and

59). This decrease is counterbalanced by applying the adaptation equation of cohesion. From the

simulation graph, cohesion should be increased by a factor of six. Therefore, the relatedness

among the methods of six classes in D2 should be maximized (i.e. CAM equals 1).

Figure 58: Functionality adaptation results of D2

175

Figure 59: Reusability adaptation results of D2

2) Real results

 The simulated adaptation through cohesion was applied in D2 to counterbalance the

effect of design size decrease. Hence, cohesion among the six following classes was maximized

by increasing the relatedness among their methods: “Individual retirement account”, “ATM

banking”, “Mobile banking”, “Online banking”, “Mortgages”, and “Banking services” (figure

60). The values of functionality and reusability after the real adaptation almost equal their

forecasted values in the simulation.

176

Figure 60: Functionality and reusability design change and adaptation in D2

Credit cards

-cardType: String

-cardNumber: String

+ manageOptimizerCard (cardNumber:

String, expirationDate: String,

securityCode: String)

+ manageVISASignatureCard

(cardNumber: String, expirationDate:

String, securityCode: String)

+ clearPointsCreditCard (cardNumber:

String, expirationDate: String,

securityCode: String)

+ cancelCard (cardNumber: String,

securityCode: String)

+ activateCard (cardNumber: String,

securityCode: String)

+ manageOptimizerCard (cardNumber:

String)

+ manageVISASignatureCard

(cardNumber: String)

+ clearPointsCreditCard (cardNumber:

String)

+ cancelCard (cardNumber: String)

Mortgages

- mortgageRate: String

- mortgageOption: String

+ createMortgage (clientID: String, rate: String,

option: String)

+ updateMortgage (clientID: String,

motgageNumber: String, rate: String, option:

String)

+ deleteMortgage (clientID: String,

motgageNumber: String, rate: String, option:

String)

+ deleteMortgage (clientID: String, rate: String,

option: String)

+ createMortgage (clientID: String, rate: String,

option: String)

Control bank

Banking services

-serviceType: String

+ getServiceType (type: String)

Mobile banking

- type: String

-date: String

+ processMobileTransaction

(textMessage: String, id: int)

+ cancelMobileTransaction

(id: int, textMessage: String)

+ processMobileTransaction

(id: int, textMessage: String)

ATM banking

-banking service: String

+ personalServices (type: String)

+ manageAccount (accountNumber:

String, type: String)

Online banking

-title: String

-author: String

+ processOnlineBill (clientID: int,

billNumber: String)

+ cancelOnlineBill (billNumber: String,

clientID: int)

+ processFundsTransfer(clientID: int,

amount: String, accountNumber: String,

billNumber: String)

Individual retirement account

- accountNumber : String

-accountType: String

+ getIRAtype (type: String,

dateAccountCreation: String, balance: String)

+ manageIRA (type: String,

dateAccountCreation: String, balance: Str)

Account

177

C.1.2.4 Design changes affecting the effectiveness quality attribute

 Composition is decreased by deleting two aggregation relationships from D2’s class

diagram. As a consequence, the effectiveness value dropped below its reference value. The

aggregation relationship between the “Mortgage” and the “Account” classes was deleted.

Instead, the “Mortgage” class becomes one of the children of the “Account” class. Moreover, the

“Menu” class was deleted and its methods were merged in the “Control Bank” class.

1) Simulated results

 According to the simulation results, polymorphism should be increased by a factor of

eight to adapt to the decrease in effectiveness (figure 61).

Figure 61: Effectiveness adaptation results of D2

178

2) Real results

 The same simulated results were noticed after applying the changes and their adaptations

in D2’s class diagram. The adaptation mechanism was applied in D2 by adding eight

polymorphic equations such as “+ activateCard (cardNumber: String)” in the “Credits cards”

class and “+ updateMortgage (clientID: String)” in the “Mortgages” class. The value of

effectiveness from D2 after its adaptation is similar to its simulated expectations.

C.2. Design 3 (D3): The Sol security system

C.2.1. System description and reference quality values

 The Sol security system allows users to control the security options of their homes such

as the cameras and the motion sensors remotely. Figures 62, 63, and 64 represent the different

components of the system class diagram. Moreover, the initial quality and reference values of D3

are illustrated in tables 17, 18.

179

Figure 62: The workstation classes of D3

180

Figure 63: The server classes of D3

Figure 64: The monitoring device classes of D3

181

C.2.2 Design changes

C.2.2.1 Design changes affecting the understandability quality attribute

 When design size increased by six classes, D3’s understandability decreased below its

reference value. The encapsulation adaptation equation effectively counterbalances the resulting

decrease in D3’s quality as it is depicted in the simulation and the real results of D3.

1) Simulated results

 As it is illustrated in figure 65, D3 overcomes the decrease in understandability when

encapsulation increases by a factor of six (i.e. DAM should equal 1 in all the newly added six

classes).

2) Real results

 After increasing the design size of D3 and applying the adaptation equation of

encapsulation, the obtained real understandability reaches again its reference and equals its

simulated value (figure 66).

Figure 65: Understandability adaptation results of D3

182

Figure 66: Understandability design change and adaptation in D3

Flood alarm

- waterLevel: String

- alarmStatus: String

-ring: String

+ launchAlarm (waterLevel: String,

alarmStatus: String, ring: String)

+ stopAlarm (ring: String, waterLevel: String)

Carbon monoxide alarm

- COLevel : String

-alarmStatus: String

-ring: String

+ launchAlarm (COlevel: String,

alarmStatus: String, ring: String)

+ stopAlarm (ring: String, COlevel:

String)

Carbon monoxide detector

- COLevel : String

- detectorStatus: String

- detector: String

+ launchDetector (COLevel:

String, detectorStatus: String,

detector: String)

+ stopDetector (COLevel: String,

detector: String)

Flood detector

- waterLevel: String

- detectorStatus: String

-ring: String

+ launchDetector (waterLevel: String,

detectorStatus: String, detector: String)

+ stopDetector (detector: String,

waterLevel: String)

Flood event

-floodEventStatus: String

-floodEventTime: String

+ scheduleEvent (floodEventTime:

String, detectedLevel: String)

+cancelEvent (floodEventTime: String,

detectedLevel: String

Carbon monoxide event

-carbonEventStatus: String

-carbonEventTime: String

+ scheduleEvent (carbonEventTime: String,

detectedLevel: String)

+cancelEvent (carbonEventTime: String,

detectedLevel: String

183

C.2.2.3 Design changes affecting the extendibility and the flexibility quality attributes

 The newly added classes in D3 from the previous design change were linked through

inheritance relationships, which increase the coupling rate in the design. In figure 69, The

“Alarm” class is the ancestor of the “Fire alarm” and the “Intrusion alarm” classes. In addition,

the “Carbon monoxide detector” and the “Flood detector” classes are inheriting the

characteristics of the “Monitoring device” class. Another inheritance relationship was established

between the “Event” class and its children: “Carbon monoxide event” and “Flood event” classes.

The impact of increasing coupling on D3’s quality and its corresponding adaptation was both

simulated and applied in the real design.

1) Simulated results

 From figures 67 and 68, the increase in coupling led to a decrease in both the flexibility

and the extendibility quality attributes. The simulation results show that polymorphism should be

increased by a factor of six to overcome the decrease in quality.

2) Real results

 Adding six polymorphic methods to D3 as suggested by the simulation counterbalances

the decrease in quality caused by the increase in coupling (figure 69). The real values of

extendibility and flexibility after adaptation nearly equal their simulated values.

184

Figure 67: Extendibility adaptation results of D3

Figure 68: Flexibility adaptation results of D3

185

Figure 69: Flexibility, extendibility, reusability, and functionality design changes with their

adaptations in D3

Carbon monoxide event

-carbonEventStatus: String

-carbonEventTime: String

+ scheduleEvent (carbonEventTime: String,

detectedLevel: String)

+cancelEvent (carbonEventTime: String,

detectedLevel: String)

Carbon monoxide detector

- COLevel : String

- detectorStatus: String

- detector: String

+ launchDetector (COLevel: String,

detectorStatus: String, detector: String)

+ launchDetector (COLevel: String)

+ launchDetector (detector: String)

+ stopDetector (COLevel: String, detector:

String, detectorStatus: String)

Flood detector

- waterLevel: String

- detectorStatus: String

-ring: String

+ launchDetector (waterLevel: String,

detectorStatus: String, detector: String)

+ stopDetector (detector: String,

waterLevel: String, detectorStatus: String)

Flood event

-floodEventStatus: String

-floodEventTime: String

+ scheduleEvent (floodEventTime:

String, detectedLevel: String)

+cancelEvent (floodEventTime: String,

detectedLevel: String)

Carbon monoxide alarm

- COLevel : String

-alarmStatus: String

-ring: String

+ launchAlarm (COlevel: String,

alarmStatus: String, ring: String)

+ launchAlarm (COlevel: String)

+ launchAlarm (ring: String)

+ stopAlarm (ring: String, COlevel:

String, alarmStatus: String)

Flood alarm

- waterLevel: String

- alarmStatus: String

-ring: String

+ launchAlarm (waterLevel: String, alarmStatus:

String, ring: String)

+ launchAlarm (waterLevel: String)

+ launchAlarm (alarmStatus: String)

+ stopAlarm (ring: String, waterLevel: String,

alarmStatus: String)

Alarm

Monitoring device

Event

186

C.2.2.3 Design changes affecting the reusability and the functionality quality attributes

 The values of the reusability and the functionality quality attributes decreased below their

reference values after dropping three classes from D3. Thus, the design size of D3 decreased

when the following classes were omitted from the class diagram in figures 62-64: “Schedule

Button”, “Edit Schedule”, and “Event Log Button”. Those design changes and their adaptations

were both simulated and applied in the real design of D3.

1) Simulated results

 The simulated results illustrated in figures 70 and 71 showed that cohesion should be

increased by a factor of six to counterbalance the decrease in functionality and reusability.

2) Real results

 Cohesion was maximized among six classes of D3 as suggested by the simulation to

adapt the quality levels of reusability and functionality (figure 69). The real quality values of

both quality attributes after adaptation almost equal their simulated values.

187

Figure 70: Reusability adaptation results of D3

Figure 71: Functionality adaptation results of D3

C.3 Design 4 (D4): Alexandria web-based library system

C.3.1 System description and reference quality values

188

 The Alexandria library system deals with the operations of its members, staff and

catalogue. Through D4’s system, a member can benefit from many options such as checkout

items, return items, and pay late fees. Staff members’ options are multiple such as collect late

fees, issuing, renewing, and cancelling memberships. The library catalogue can be managed

through several functionalities such as checkout status and item type. D4 class diagram is

represented in figure 72. Moreover, the reference values of D4 can be depicted in tables 16 and

17.

Figure 72: D4 class diagram

189

C.3.2 Design changes

C.3.2.1 Design changes affecting the understandability quality attribute

 After increasing D4 design size by adding ten new classes, understandability decreased

below its reference value. From both the simulation and the real results, encapsulation effectively

brings back the value of understandability to its reference value.

1) Simulated results

 According to the simulated results in figure 73, encapsulation should equal one in all the

newly added classes to counterbalance the decrease in understandability.

2) Real results

 Figures 74 and 75 illustrate the increase in D4’s design size and its corresponding

adaptation through encapsulation. The computed real value of understandability after adaptation

almost equals its simulated value.

190

Figure 73: Understandability adaptation results of D4

191

Figure 74: Understandability design change and adaptation in D4

Post complaints

- type: String

-date: String

+ postComplaint (id: int, type: String, date:

String, title: String, content: String)

+ updateComplaint (id: int, date: String, title:

String)

+ cancelComplaint (id: int)

Member service controller

- serviceType: String

+ getService (type: String)

Member service

- serviceType: String

+ transferService (type: String)

Library amenities

-reservationType: String

-date: String

+ postTalkRoomReservation (date: String,

event: String)

+ updateReservation (date: String, event:

String)

+ cancelReservation (date: String, event:

String)

Library events

- event Type: String

- event date: String

+ exhibitBooks (newArrival: String,

specialEdition: String)

+ announceTalk (date: String, topic:

String)

192

Figure 75: Understandability design change and adaptation in D4

C.3.2.2 Design changes affecting the extendibility and the flexibility quality attributes

 The eight added classes to D4 were linked together through two types of relationships:

aggregation and inheritance. An aggregation relationship is identified between the “Member

service controller” class and three classes namely “Post complaints”, “Library amenities”, and

“Library events”. The remaining classes are linked though inheritance. The “item” class is the

ancestor of the “Suggestions” class. The “Books”, the “Audio books”, the “Videos”, and the

“Periodicals” classes inherit the characteristics of the “Suggestions” class. The impacts of those

Videos

-title: String

-director: String

-Length: String

+ addVideo (title: String, director:

String, length: String)

+ updateVideo (title: String,

director: String)

+ cancelVideo (title: String,

director: String)

Periodicals

- type: String

- title: String

+ addPeriodical(type: String, title: String)

+ updatePeriodical (type: String, title:

String)

+ cancelPeriodical (type: String, title:

String)

Audio books

-title: String

-author: String

+ addAudioBook (title: String, author:

String)

+ updateAudioBook (title: String, author:

String)

+ cancelAudioBook (title: String, author:

String)

Books

-title: String

-author: String

+ addSuggestion (id: int, author: String,

type: String, title: String)

+ updateSuggestion (bookid: int,

availability: bool)

+ cancelSuggestion (id: int, title: String,

author: String)

Suggestions

-suggestionType: String

+ getSuggestionType (type: String)

193

design changes and their adaptations through polymorphism were experimented in the simulation

and in the real design of D4.

1) Simulated results

 After increasing coupling, flexibility and extendibility decreased below their reference

values (Figures 76 and 77). From the simulation results, polymorphism should be increased by

eight to compensate for the decrease in quality.

2) Real results

 The increase in coupling and the suggested polymorphism adaptation value from the

simulation were applied on the real class diagram of D4 (figures 78 and 79). The computed real

values of flexibility and extendibility after adaptation nearly equal their simulated values.

Figure 76: Flexibility adaptation results of D4

194

Figure 77: Extendibility adaptation results of D4

195

Figure 78: Flexibility and extendibility design change and adaptation in D4

Post complaints

- type: String

-date: String

+ postComplaint (id: int, type: String, date:

String, title: String, content: String)

+ postComplaint (id: int)

+ postComplaint (id: int, type: String)

+ postComplaint (id: int, type: String, date:

String)

+ postComplaint (title: String)

+ updateComplaint (id: int, date: String, title:

String)

+ cancelComplaint (id: int)

Member service

- serviceType: String

+ transferService (type: String)

Library amenities

-reservationType: String

-date: String

+ postTalkRoomReservation (date: String,

event: String)

+ updateReservation (date: String, event:

String)

+ updateReservation (event: String)

+ cancelReservation (date: String, event:

String)

+ cancelReservation (event: String)

Library events

- event Type: String

- event date: String

+ exhibitBooks (newArrival: String,

specialEdition: String)

+ exhibitBooks (newArrival: String)

+ exhibitBooks (specialEdition: String)

+ announceTalk (date: String, topic:

String)

Member service controller

- serviceType: String

+ getService (type: String)

196

Figure 79: Flexibility and extendibility design change and adaptation in D4

Videos

-title: String

-director: String

-Length: String

+ addVideo (title: String, director:

String, length: String)

+ updateVideo (title: String,

director: String)

+ cancelVideo (title: String,

director: String)

Periodicals

- type: String

- title: String

+ addPeriodical(type: String, title: String)

+ updatePeriodical (type: String, title:

String)

+ cancelPeriodical (type: String, title:

String)

Audio books

-title: String

-author: String

+ addAudioBook (title: String, author:

String)

+ updateAudioBook (title: String, author:

String)

+ cancelAudioBook (title: String, author:

String)

Books

-title: String

-author: String

+ addSuggestion (id: int, author: String,

type: String, title: String)

+ updateSuggestion (bookid: int,

availability: bool)

+ cancelSuggestion (id: int, title: String,

author: String)

Suggestions

-suggestionType: String

+ getSuggestionType (type: String)

Item

-title: String

-genre: String

+ getItemType (type: String)

197

C.3.2.3 Design changes affecting the reusability and the functionality quality attributes

 D4’s design size was decreased by dropping three classes namely “post complaints”,

“Library amenities”, and “Library events”. Then, the responsibilities of those classes were added

to the “Member” class. Consequently, reusability and functionality decreased below their

reference values and was effectively adapted by increasing cohesion as illustrated in the

simulated and the real results.

1) Simulated results

 D4’s cohesion should be maximized in six classes to bring back the value of reusability

and functionality to their reference levels (figures 80 and 81).

2) Real results

 The application of the design change in D4 and the suggested cohesion level by the

simulation make the real values of functionality and reusability identical to their simulated

values (figures 82 and 83).

Figure 80: Reusability adaptation results of D4

198

Figure 81: Functionality adaptation results of D4

199

Figure 82: Reusability and functionality design change and adaptation in D4

Member service controller

- event Type: String

- event date: String

- complaintType: String

-complaintDate: String

-reservationType: String

-date: String

+ exhibitBooks (newArrival: String, specialEdition: String)

+ exhibitBooks (newArrival: String)

+ exhibitBooks (specialEdition: String)

+ announceTalk (date: String, topic: String)

+ postComplaint (id: int, type: String, date: String, title: String, content: String)

+ postComplaint (id: int)

+ postComplaint (id: int, type: String)

+ postComplaint (id: int, type: String, date: String)

+ postComplaint (title: String)

+ updateComplaint (id: int, date: String, title: String)

+ cancelComplaint (id: int)

+ postTalkRoomReservation (date: String, event: String)

+ updateReservation (date: String, event: String)

+ updateReservation (event: String)

+ cancelReservation (date: String, event: String)

+ cancelReservation (event: String)

Member service

- serviceType: String

+ transferService (type: String)

200

Figure 83: Reusability and functionality design change and adaptation in D4

Videos

-title: String

-director: String

-Length: String

+ addVideo (title: String, director:

String, length: String)

+ updateVideo (title: String,

director: String)

+ cancelVideo (title: String,

director: String, Length: String)

Periodicals

- type: String

- title: String

+ addPeriodical(type: String, title: String)

+ updatePeriodical (type: String, title:

String)

+ cancelPeriodical (type: String, title:

String)

Audio books

-title: String

-author: String

+ addAudioBook (title: String, author:

String)

+ updateAudioBook (title: String, author:

String)

+ cancelAudioBook (title: String, author:

String)

Books

-title: String

-author: String

+ addSuggestion (id: int, author: String,

type: String, title: String)

+ updateSuggestion (bookid: int,

availability: bool, title: String, author:

String)

+ cancelSuggestion (id: int, title: String,

author: String)

Suggestions

-suggestionType: String

+ getSuggestionType (suggestionType:

String)

Item

-title: String

-genre: String

+ getItemType (type: String, title: String,

genre: String)

201

C.4. Design 5 (D5): Third eye Home security system

C.4.1. System description and reference quality values

 Third eye enables users to set up a remote security system for their homes or businesses.

The user can view streaming videos of his cameras while at work. The system can also take

snapshots of specific areas of the user’s home and email them to him. If an intruder is detected,

the user is notified through text messages and emails with a snapshot from the security camera.

Through third eye, the user can set up the notification option by choosing the type of events and

the means of contact when a threat is detected. The class diagram of D5 represents the different

options that are available in the system (figure 84). The reference quality values of D5 can be

accessed in tables 17 and 18.

202

Figure 84: D5 class diagram

C.4.2 Design changes

C.4.2.1 Design changes affecting the understandability quality attribute

 The class diagram of D5 was extended by adding four classes namely “Security options”,

“Fire alarm”, “Flood watch”, and “Carbon monoxide protection” (figure 86). This design change

led to a decrease in understandability that is adapted by increasing encapsulation as it is

described in the simulation and the real results.

203

1) Simulated results

 To compensate for the decrease in understandability after increasing the design size of

D5, encapsulation should be increased by a factor of 4 (figure 85).

2) Real results

 The simulated results of D5 were applied in its class diagram as illustrated in figure 86.

Encapsulation was maximized in the four classes (i.e. DAM = 1) and the real understandability

value after adaptation is identical to its simulated value.

Figure 85: Understandability adaptation results of D5

204

Figure 86: Understandability design change and adaptation in D5

C.4.2.2 Design changes affecting the flexibility and the extendibility quality attributes

 The value of coupling in D5 increased by a factor of four as it is represented in figure 89.

The “security options” class became the ancestor of four classes: “Camera”, “Fire alarm”, “Flood

watch”, and “Carbon monoxide protection”. As a consequence, the flexibility and the

extendibility quality attributes decrease below their reference values. Those design changes and

the applied adaptation strategies are described in the simulation and the real results of D5.

1) Simulated results

 To minimize the decrease in understandability after increasing the design size of D5,

polymorphism should be increased by a factor of 4 (figure 85).

Security options

-type: String

+ getOption(type: String)

Carbon monoxide protection

- COLevel : String

- detectorStatus: String

- detector: String

+ launchDetector (COLevel:

String, detectorStatus: String,

detector: String)

+ stopDetector (COLevel: String,

detector: String)

Flood watch

- waterLevel: String

- detectorStatus: String

-ring: String

+ launchDetector (waterLevel: String,

detectorStatus: String, detector: String)

+ stopDetector (detector: String,

waterLevel: String)

Fire alarm

- smokeLevel: String

- detectorStatus: String

-ring: String

+ launchFireAlarm (smokeLevel: String,

detectorStatus: String, ring: String)

+ stopFireAlarm (smokeLevel: String,

detectorStatus: String, ring: String)

205

2) Real results

 The simulated results of D5 were applied in its class diagram as illustrated in figure 89.

Four polymorphic methods were added to the class diagram of D5 such as “launchDetector

(waterLevel: String)”. Then, the computed real flexibility and extendibility values after

adaptation are similar to their simulated ones.

Figure 87: Flexibility adaptation results of D5

206

Figure 88: Extendibility adaptation results of D5

207

Figure 89: Extendibility and flexibility design change and adaptation in D5

Security options

-type: String

+ getOption(type: String)

Carbon monoxide protection

- COLevel : String

- detectorStatus: String

- detector: String

+ launchDetector (COLevel:

String, detectorStatus: String,

detector: String)

+ launchDetector (COLevel:

String)

+ launchDetector (COLevel:

String, detectorStatus: String)

+ stopDetector (COLevel: String,

detector: String)

Flood watch

- waterLevel: String

- detectorStatus: String

-ring: String

+ launchDetector (waterLevel: String,

detectorStatus: String, detector: String)

+ launchDetector (waterLevel: String)

+ launchDetector (waterLevel: String,

detectorStatus: String)

+ stopDetector (detector: String,

waterLevel: String)

Fire alarm

- smokeLevel: String

- detectorStatus: String

-ring: String

+ launchFireAlarm (smokeLevel: String,

detectorStatus: String, ring: String)

+ stopFireAlarm (smokeLevel: String,

detectorStatus: String, ring: String)

Camera

208

C.4.2.3 Design changes affecting the reusability, the functionality, and the effectiveness

quality attributes

 The design size of D5 was decreased by dropping two classes from its class diagram:

“MenuInterface” and “DropdownMenu”. This design change led also to a decrease in

composition since the omitted class diagrams are related to other classes through aggregation

relationships. Therefore, those design changes affect the reusability, the functionality, and the

effectiveness quality attributes as it is illustrated in the simulated and the real results.

1) Simulated results

 On the one hand, the decrease in design size leads to a drop in the values of the

reusability and the functionality quality attributes. In this case, cohesion should be increased by

four as an adaptation strategy (figures 91 and 92). On the other hand, the decrease in composition

drops the value of effectiveness below its reference value. To overcome this decrease,

polymorphism is increased by six (figure 93).

2) Real results

 The simulated design changes and adaptations were applied in the class diagram of D5 as

illustrated in figure 94. The computed real values of the quality attributes after adaptation nearly

equal their simulated ones.

209

Figure 90: Reusability adaptation results of D5

Figure 91: Functionality adaptation results of D5

210

Figure 92: Effectiveness adaptation results of D5

211

Figure 93: Reusability, functionality, and effectiveness design change and adaptation in D5

Security options

-type: String

+ getOption(type: String)

Carbon monoxide protection

- COLevel : String

- detectorStatus: String

- detector: String

+ launchDetector (COLevel:

String, detectorStatus: String,

detector: String)

+ launchDetector (COLevel:

String)

+ launchDetector (COLevel:

String, detectorStatus: String)

+ stopDetector (COLevel: String,

detector: String)

+ stopDetector (COLevel: String)

Flood watch

- waterLevel: String

- detectorStatus: String

-ring: String

+ launchDetector (waterLevel: String,

detectorStatus: String, detector: String)

+ launchDetector (waterLevel: String)

+ launchDetector (waterLevel: String,

detectorStatus: String)

+ stopDetector (detector: String,

waterLevel: String)

+ stopDetector (waterLevel: String)

+ stopDetector (detector: String)

Camera

Fire alarm

- smokeLevel: String

- detectorStatus: String

-ring: String

+ launchFireAlarm (smokeLevel: String,

detectorStatus: String, ring: String)

+ launchFireAlarm (smokeLevel: String)

+ launchFireAlarm (smokeLevel: String,

detectorStatus: String)

+ launchFireAlarm (detectorStatus: String)

+ stopFireAlarm (smokeLevel: String,

detectorStatus: String, ring: String)

212

C.5 Design 6 (D6): HAMK UNIVERSITY online registration system

C.5.1 System description and reference quality values

 HAMK is an online university registration system that can be used by students and staff

members. Students have access to many operations such as searching for a specific class,

viewing a listing of the taken classes, and checking time conflicts between classes. The different

operations and characteristics of the system are represented in the class diagram of figure 94 and

the reference values of D6 are illustrated in tables 17 and 18.

C.5.2 Design changes

C.5.2.1 Design changes affecting the understandability quality attribute

 Three new classes were added to D6, which increases the design size attribute and drops

the understandability quality attribute below its reference value. The three classes are:

“HAMKEntity”, “Transferred courses”, and “Registration holds” (figure 96). Adaptation through

encapsulation brings back understandability to its reference value both in the simulation and the

real results.

1) Simulated results

 Encapsulation should be maximized in the three newly added classes (i.e. DAM = 1)

(figure 95) to successfully adapt the value of understandability.

2) Real results

 After maximizing encapsulation in the new three classes as represented in figure 96, the

resulting value of understandability is similar to its simulated one.

213

Figure 94: D6 class diagram

214

Figure 95: Understandability adaptation results of D6

Figure 96: Understandability design change and adaptation in D6

Degree plan

- course: String

- studentId: String

-advisor: String

+ addCourse (course: String, studentId:

String)

+ updatePlan (studentId: String)

+ createPlan (studentId: String)

+ deletePlan (StudentId: String)

+ DeleteCourse (course: String, studentId:

String)

Transferred courses

- course: String

- studentId: String

-advisor: String

+ addCourse (course: String, studentId:

String)

+ DeleteCourse (course: String,

studentId: String)

Registration holds

- holdType: String

- studentId: String

-advisor: String

+ getHolds(holdType: String)

+ holdsStatus()

215

C.5.2.2 Design changes affecting the flexibility and the extendibility quality attributes

 Two new inheritance relationships were identified in D5 where the “HamkEntity” class is

the ancestor (figure 99). Those two relationships led to an increase in the coupling design

property and both the flexibility and the extendibility quality attributes. Flexibility was adapted

by increasing composition while extendibility was adjusted by increasing polymorphism as it is

illustrated in the simulation and real results.

1) Simulated results

 From the simulation graphs in figures 97 and 98, composition should be increased by a

factor of three and polymorphism should be increased by a factor of two to adapt the quality

values of flexibility and extendibility.

2) Real results

 From figure 99, the simulated adaptations were successfully applied in the real design and

the values of the resulting quality attributes nearly equal their simulated values. Two

polymorphic methods such as “holdsStatus(status: String)”were added to adapt the value of

extendibility. Three aggregation relationships (i.e. composition) were added such as the part-

whole relationship between the classes “Registration holds” and “Enrollment summary”, which

successfully adjusts the value of the flexibility attribute.

216

Figure 97: Flexibility adaptation results of D6

Figure 98: Extendibility adaptation results of D6

217

Figure 99: Extendibility and flexibility design change and adaptation in D6

Registration holds

- holdType: String

- studentId: String

-advisor: String

+ getHolds(holdType: String)

+ holdsStatus(status: String,

holdType: String)

+ holdsStatus(status: String)

Transferred courses

- course: String

- studentId: String

-advisor: String

+ addCourse (course: String,

studentId: String)

+ DeleteCourse (course: String,

studentId: String)

Degree plan

- course: String

- studentId: String

-advisor: String

+ addCourse (course: String, studentId:

String, advisor: String)

+ addCourse (course: String, studentId:

String)

+ updatePlan (studentId: String)

+ createPlan (studentId: String)

+ deletePlan (StudentId: String)

+ DeleteCourse (course: String,

studentId: String)

HamKEntity

Enrollment

summary

Course

218

C.5.2.3 Design changes affecting the reusability, the functionality, and the effectiveness

quality attributes

 The last design changes in D6 decreased the values of the reusability, the functionality,

and the effectiveness attributes below their reference values. The classes “Registration holds”

and “Transferred courses” were deleted and their functions were merged in the classes

“Registration” and “Course” respectively, which decreased the design size of D6 and its quality

attributes reusability and functionality. In this case, cohesion is increased as an adaptation mean.

The omission of classes from D6 led also to a deletion of their aggregation relationships, which

decreased the value of effectiveness. The polymorphism adaptation equation is applied in this

case to counterbalance the decrease in effectiveness.

1) Simulated results

 As it is illustrated in figures 100-102, cohesion and polymorphism should be increased by

factors of two and three respectively to compensate for the decrease in reusability, functionality,

and effectiveness.

2) Real results

 The simulated design changes and their corresponding adaptations were successfully

applied on the real design of D6 as it is represented in figure 103. The real values of the quality

attributes after adaptation are similar to their simulated ones.

219

Figure 100: Reusability adaptation results of D6

Figure 101: Functionality adaptation results of D6

220

Figure 102: Effectiveness adaptation results of D6

Figure 103: Reusability, functionality, and effectiveness design change and adaptation in

D6

Degree plan

- course: String

- studentId: String

-advisor: String

+ addCourse (course: String, studentId: String, advisor: String)

+ addCourse (course: String, studentId: String, advisor: String)

+ addCourse (course: String)

+ addCourse (course: String, studentId: String)

+ updatePlan (studentId: String, course: String)

+ updatePlan (studentId: String)

+ createPlan (studentId: String)

+ deletePlan (StudentId: String)

+ DeleteCourse (course: String, studentId: String)

+ DeleteCourse (course: String)

HamKEntity

221

C.6 Design 1 (D7): Music On the Brain (MOB)

C.6.1 System description and reference quality values

 MOB is an online web service allowing users to build their music playlists based on their

preferences. The site is also recommending songs to users and keeping track of their liked and

disliked music. The main components of D7 design are represented in figures 104-106. The

reference quality values of D7 are recorded in tables 17 and 18.

Figure 104: D7 class diagram (1)

222

Figure 105: D7 class diagram (2)

223

Figure 106: D7 class diagram (3)

224

C.6.2 Design changes

C.6.2.1 Design changes affecting the understandability quality attribute

 The design of D7 was extended by adding seven classes: “online purchase”,

“songsbasket”, “SongBasket”, “MusicVideosLibrary”, “MusicVideo”, “VideoLibrary”, and

“Video” (figures 109-111). As a result, the design size of D7 increased and its understandability

decreased below its reference value. The impact of this design change and the applied

encapsulation adaptation equation is illustrated in the following simulation and real results.

1) Simulated results

 From figure 107, encapsulation should be increased by seven to bring back

understandability to its reference value.

2) Real results

 Figures 108-110 show that the simulated encapsulation adaptation can be easily applied

on the real design of D7, which makes the resulting adapted understandability equal its simulated

value.

225

Figure 107: Understandability adaptation results of D7

Figure 108: Understandability design change and adaptation in D7 (1)

Controllers::onlinepurchase

- title: String

- artist: String

-genre: String

+ addSongToBasket (title: String, artist:

String, genre: String)

+ epay (basket:String, paymentamount:

String)

Controllers::musicvideoslibrary

- title: String

- artist: String

-genre: String

+ addSongToBasket (title: String,

artist: String, genre: String)

+ epay (basket:String,

paymentamount: String)

Controllers

226

Figure 109: Understandability design change and adaptation in D7 (2)

GUIComponents::songsBasket

- title: String

- artist: String

-genre: String

-basket: String

+ songsBasketForm (in

myonlinepurchase: onlinepurchase)

+ addSong (name: String, artist:

String)

+checkout (sessionId: String)

GUIComponents::musicVideo

- title: String

- artist: String

-genre: String

-videoID; String

+ addVideoForm (in myControllerin:

MOBController)

+ addVideo (videoId: String, artist:

String)

+ close (videoId: String, artist: String)

GUIComponents

cccomponenet

227

Figure 110: Understandability design change and adaptation in D7 (3)

C.6.2.2 Design changes affecting the extendibility and the flexibility quality attributes

 After adding seven classes to D7, four new relationships were identified. The first linkage

is an inheritance relationship between the “GUIComponent” and the “SongsBasket” classes.

Another inheritance relationship was depicted between the “GUIComponent” and the

“MusicVideo” classes. The remaining two relationships are aggregation relationships such as the

Classes::songBasket

- title: String

- artist: String

-genre: String

-basket: String

+ addSong (title: String, artist: String)

+ deleteSong (title: String, artist:

String)

+checkout (sessionId: String)

+computeBill ()

Classes::videoLibrary

- title: String

- artist: String

-type: String

-videoID; String

+ addVideo (in newVideo: Video)

+ removeVideo (in videoOut: Video):

bool

+ count (): int

+ getCompliment(): Library

+ chooseRandom(): Video

+ getEnumerator(): <unspecified>

+ contains (in video: Video): bool

+ copyTo() :: <unspecified>

+ clear()

+ isReadOnly (): bool

+ getIntersection (in liben: Library):

Library

Classes::video

- title: String

- artist: String

-genre: String

-year: String

+ getTitle (title: String, artist:String,

genre: String, year: String)

+ setTitle (title: String, artist:String,

genre: String, year: String)

+ getArtist (title: String, artist:String)

+ setArtist (title: String, artist:String)

+ getGenre (genre: String,

artist:String)

+ setGenre (genre: String, artist:String)

+ getYear (year: String, title:String)

+ setYear (year: String, title:String)

+ video (in tag)

Classes

cccomp

onenet

228

relationship between the “Song” and the “SongBasket” classes (figures 113-115). Those design

changes led to an increase in coupling and extendibility and flexibility quality attributes as it is

illustrated in the simulated and the real results.

1) Simulated results

 The obtained results from the simulation in figures 111 and 112 show that polymorphism

should be increased by four to adapt the values of extendibility and flexibility.

2) Real results

 Four polymorphic methods were added to D7 such as “deleteSong (title: String)” as

represented in figures 113-115. As a result, flexibility and reusability successfully increased to at

least their reference values. Moreover, the real values of the quality attributes almost equal their

simulated values.

Figure 111: Extendibility adaptation results of D7

229

Figure 112: Flexibility adaptation results of D7

Figure 113: Extendibility and flexibility design change and adaptation in D7 (1)

Controllers::onlinepurchase

- title: String

- artist: String

-genre: String

+ addSongToBasket (title: String, artist:

String, genre: String)

+ epay (basket:String, paymentamount:

String)

Controllers::musicvideoslibrary

- title: String

- artist: String

-genre: String

+ addSongToBasket (title: String,

artist: String, genre: String)

+ epay (basket:String,

paymentamount: String)

Controllers

230

Figure 114: Extendibility and flexibility design change and adaptation in D7 (2)

GUIComponents::songsBasket

- title: String

- artist: String

-genre: String

-basket: String

+ songsBasketForm (in

myonlinepurchase: onlinepurchase)

+ addSong (name: String, artist:

String)

+checkout (sessionId: String)

GUIComponents::musicVideo

- title: String

- artist: String

-genre: String

-videoID; String

+ addVideoForm (in myControllerin:

MOBController)

+ addVideo (videoId: String, artist:

String)

+ close (videoId: String, artist: String)

GUIComponents

cccomponenet

GUIComponents::GUIComponent

231

Figure 115: Extendibility and flexibility design change and adaptation in D7 (3)

Classes::songBasket

- title: String

- artist: String

-genre: String

-basket: String

+ addSong (title: String, artist: String)

+ addSong (title: String)

+ deleteSong (title: String, artist: String)

+ deleteSong (title: String)

+checkout (sessionId: String)

+computeBill ()

Classes::videoLibrary

- title: String

- artist: String

-type: String

-videoID; String

+ addVideo (in newVideo: Video)

+ removeVideo (in videoOut: Video):

bool

+ count (): int

+ getCompliment(): Library

+ chooseRandom(): Video

+ getEnumerator(): <unspecified>

+ contains (in video: Video): bool

+ copyTo() :: <unspecified>

+ clear()

+ isReadOnly (): bool

+ getIntersection (in liben: Library):

Library

Classes::video

- title: String

- artist: String

-genre: String

-year: String

+ getTitle (title: String, artist:String,

genre: String, year: String)

+ setTitle (title: String, artist:String,

genre: String, year: String)

+ getArtist (title: String, artist:String)

+ getArtist (artist:String)

+ setArtist (title: String, artist:String)

+ setArtist (artist:String)

+ getGenre (genre: String,

artist:String)

+ setGenre (genre: String, artist:String)

+ getYear (year: String, title:String)

+ setYear (year: String, title:String)

+ video (in tag)

Classes

cccomp

onenet

Classes::song

232

C.6.2.3 Design changes affecting the reusability, the functionality and the effectiveness

quality attributes

 The last design change in D7 led both to a decrease in design size and composition. The

classes “Song” and “Video” were deleted as well as their composition relationships. On the one

hand, the decrease in design size led to a decrease in the functionality and the reusability quality

attributes. On the other hand, the decrease in composition led to a decrease in the effectiveness

quality attribute. The simulated and the real results illustrate the impact of those changes and the

applied adaptation equations of cohesion and polymorphism.

1) Simulated results

 To counterbalance the values of reusability and functionality, cohesion should be

maximized (i.e. CAM =1) at least in two classes (figures 116 and 117). The value of

effectiveness can be adapted when polymorphism is increased by six (figure 118).

2) Real results

 Figures 119-121 illustrate the application of the simulated changes and their

corresponding adaptations. The cohesion adaptation mechanism was applied in the “songBasket”

and the “videoLibrary” classes. In addition, six polymorphic methods were added to D7 such as

“addVideo (title: String, artist: String)” to adapt the value of effectiveness. The resulting real

values of the quality attributes are nearly similar to their simulated ones.

233

Figure 116: Reusability adaptation results of D7

Figure 117: Functionality adaptation results of D7

234

Figure 118: Effectiveness adaptation results of D7

Figure 119: Functionality, reusability, and effectiveness design changes and adaptations in

D7 (1)

Controllers::onlinepurchase

- title: String

- artist: String

-genre: String

+ addSongToBasket (title: String, artist:

String, genre: String)

+ epay (basket:String, paymentamount:

String)

Controllers::musicvideoslibrary

- title: String

- artist: String

-genre: String

+ addSongToBasket (title: String,

artist: String, genre: String)

+ epay (basket:String,

paymentamount: String)

Controllers

235

Figure 120: Functionality, reusability, and effectiveness design changes and adaptations in

D7 (2)

GUIComponents::songsBasket

- title: String

- artist: String

-genre: String

-basket: String

+ songsBasketForm (in

myonlinepurchase: onlinepurchase)

+ addSong (name: String, artist:

String)

+checkout (sessionId: String)

GUIComponents::musicVideo

- title: String

- artist: String

-genre: String

-videoID; String

+ addVideoForm (in myControllerin:

MOBController)

+ addVideo (videoId: String, artist:

String)

+ close (videoId: String, artist: String)

GUIComponents

cccomponenet

GUIComponents::GUIComponent

236

Figure 121: Functionality, reusability, and effectiveness design changes and adaptations in

D7 (3)

Classes::songBasket

- title: String

- artist: String

-genre: String

-basket: String

+ addSong (title: String,

artist: String, genre:

String, basket: String)

+ addSong (title: String,

basket: String)

+ addSong (title: String,

artist: String, genre:

String)

+ addSong (title: String)

+ addSong (title: String,

artist: String)

+ deleteSong (title:

String, artist: String,

genre: String, basket:

String)

+ deleteSong (title:

String)

+ deleteSong (title:

String, artist: String)

+checkout (sessionId:

String)

+computeBill ()

Classes::videoLibrary

- title: String

- artist: String

-type: String

-videoID; String

-year: String

+ addVideo (in newVideo: Video, title: String, artist:

String, type: String, videoId: String, year: String)

+ addVideo (in newVideo: Video, title: String)

+ addVideo (title: String, artist: String)

+ removeVideo (in videoOut: Video, title: String,

artist: String, type: String, videoed: String, year:

String): bool

+ count (): int

+ getCompliment(): Library

+ chooseRandom(): Video

+ getEnumerator(): <unspecified>

+ contains (in video: Video, title: String, artist: String,

type: String, videoID: String, year: String): bool

+ copyTo() :: <unspecified>

+ clear()

+ isReadOnly (): bool

+ getIntersection (in liben: Library, title: String, artist:

String, type: String, videoID: String, year: String):

Library

+ getTitle (title: String, artist:String, genre: String,

year: String)

+ setTitle (title: String, artist:String, genre: String,

year: String)

+ getArtist (title: String, artist:String, type: String,

videoID: String, year: String)

+ getArtist (artist:String, title: String, type: String,

videoID: String, year: String)

+ setArtist (title: String, artist:String, type: String,

videoID: String, year: String)

+ setArtist (artist:String)

+ getGenre (genre: String, artist:String)

+ setGenre (genre: String, artist:String)

+ getYear (year: String, title:String)

+ setYear (year: String, title:String)

+ video (in tag)

Classes

cccomp

onenet

237

C.7 Design 8 (D8): Skye Net Home Security

C.7.1 System description and reference quality values

 Skye Net is a computerized home security system that is owned by the homeowner and

maintained remotely by the system’s producer. The protection offered by the system includes many

options such as door/window alarms, smoke detector, and carbon monoxide detector. In addition, the

system has different security modes such as the “away”, “vacation”, and “in home” modes (figure

122). The reference quality values of D8 are recorded in tables 17 and 18.

Figure 122: D8 class diagram

238

C.7.2 Design changes

C.7.2.1 Design changes affecting the understandability quality attribute

 To upgrade the capabilities of the system, four new classes were added to D8: “System

updates”, System feedback”, “System maintenance”, and “System expansion request” (figure

124). Consequently, the design size of D8 increased and its understandability decreased. The

simulated and the real results show the effectiveness of the encapsulation equation in adapting

understandability.

1) Simulated results

 To counterbalance the decrease in understandability, encapsulation should be maximized

in the four newly added classes (figure 123).

2) Real results

 The simulated changes and their corresponding adaptations were applied in the real

design of D8 as illustrated in figure 124. The obtained understandability from the real design of

D8 after adaptation equals its simulated value.

239

Figure 123: Understandability adaptation results of D8

240

Figure 124: Understandability design changes and adaptations of D8

C.7.2.2 Design changes affecting the extendibility and the flexibility quality attributes

 The newly added classes in the first design change were linked to the class “System”

through aggregation relationships, which increased the coupling property of D8 (figure 127).

Consequently, the flexibility and the extendibility quality attributes dropped below their

reference values as illustrated in the following simulated and real results.

1) Simulated results

 The decrease in extendibility and flexibility can be adapted by increasing polymorphism

to three polymorphic methods (figures 125 and 126).

System feedback

- level: String

- type: String

- date: String

- content: String

+ failureLevel (level: String)

+satisfaction (level: String)

+ critics (type: String, date: String,

content: String)

System updates

- name: String

+ buyOnline (name: String)

+activate (name: String)

+ cancel (name: String)

System maintenance

- type: String

- date: String

- content: String

+ sendRequest (type: String, date: String)

+deleteRequest (type: String, date:

String)

+ updateRequest (type: String, date:

String)

System expansion request

- type: String

- date: String

- content: String

+ suggestRequest (type: String, date:

String)

+deleteRequest (type: String, date:

String)

+ updateRequest (type: String, date:

String)

241

2) Real results

 As suggested in the simulated results, three polymorphic methods such as

“suggestRequest (type: String)” were added to D8 to adapt the values of extendibility and

flexibility (figure 127). The real computed values of the quality attributes after adaptation are

similar to their simulated values.

Figure 125: Extendibility adaptation results of D8

242

Figure 126: Extendibility adaptation results of D8

243

F

Figure 127: Extendibility and flexibility design changes and adaptations in D8

System feedback

- level: String

- type: String

- date: String

- content: String

+ failureLevel (level: String)

+satisfaction (level: String)

+ critics (type: String, date: String,

content: String)

System updates

- name: String

+ buyOnline (name: String)

+activate (name: String)

+ cancel (name: String)

System maintenance

- type: String

- date: String

- content: String

+ sendRequest (type: String, date: String)

+deleteRequest (type: String, date:

String)

+ updateRequest (type: String, date:

String)

System expansion request

- type: String

- date: String

- content: String

+ suggestRequest (type: String, date:

String)

+suggestRequest (type: String)

+deleteRequest (type: String, date: String)

+deleteRequest (type: String)

+ updateRequest (type: String, date:

String)

+ updateRequest (type: String)

System

Website

244

C.7.2.3 Design changes affecting the functionality and the reusability quality attributes

 After merging the “Vacation mode” functionalities in the “Away Mode” class, the design

size of D8 decreased as well as its reusability and functionality. The simulated and the real

results show the effectiveness of cohesion in adapting the values of reusability and functionality.

1) Simulated results

 The reusability and functionality of D8 can be adapted when cohesion is maximized in

two classes (figures 128 and 129).

2) Real results

 In figure 130, cohesion was maximized in the “System feedback” and the “System

maintenance” classes to adapt the values of the reusability and the functionality attributes. The

real values of the quality attributes after adaptation equal their simulated ones.

Figure 128: Reusability adaptation results of D8

245

Figure 129: Functionality adaptation results of D8

246

Figure 130: Reusability and functionality design changes and adaptations in D8

System feedback

- level: String

- type: String

- date: String

- content: String

+ failureLevel (level: String, type:

String, date: String, content: String)

+satisfaction (level: String, type:

String, date: String, content: String)

+ critics (type: String, date: String,

content: String, level: String)

System updates

- name: String

+ buyOnline (name: String)

+activate (name: String)

+ cancel (name: String)

System maintenance

- type: String

- date: String

- content: String

+ sendRequest (type: String, date: String,

content: String)

+deleteRequest (type: String, date: String,

content: String)

+ updateRequest (type: String, date:

String, content: String)

System expansion request

- type: String

- date: String

- content: String

+ suggestRequest (type: String, date:

String)

suggestRequest (type: String)

+deleteRequest (type: String, date: String)

+deleteRequest (type: String)

+ updateRequest (type: String, date:

String)

+ updateRequest (type: String)

System

Website

247

C.7.2.4 Design changes affecting the effectiveness quality attribute

 The last change in D8 decreased the composition property and the effectiveness quality

attribute. The “System expansion request” functionalities are merged in the “System feedback”

class, which suppressed its aggregation relationship and the effectiveness property of D8 (figure

132). The impact of those changes and the applied polymorphism adaptation is illustrated in the

simulated and the real results.

1) Simulated results

 Polymorphism should be increased by four to effectively adapt the value of effectiveness

(figure 131).

2) Real results

 After adding four polymorphic equations to D8 such as “deleteRequest (type: String)”,

the resulting effectiveness nearly equal its simulated value (figure 132).

Figure 131: Effectiveness adaptation results of D8

248

Figure 132: Effectiveness design change and adaptation in D8

System feedback

- level: String

- type: String

- date: String

- content: String

+ failureLevel (level: String, type:

String, date: String, content: String)

+satisfaction (level: String, type:

String, date: String, content: String)

+ critics (type: String, date: String,

content: String, level: String) +

suggestRequest (type: String, date:

String)

suggestRequest (type: String)

+deleteRequest (type: String, date:

String)

+deleteRequest (type: String)

+ updateRequest (type: String, date:

String)

+ updateRequest (type: String)

System updates

- name: String

+ buyOnline (name: String)

+activate (name: String)

+ cancel (name: String)

System maintenance

- type: String

- date: String

- content: String

+ sendRequest (type: String, date: String, content: String)

+ sendRequest (type: String)

+ sendRequest (type: String, content: String)

+ sendRequest (content: String)

+deleteRequest (type: String, date: String, content: String)

+deleteRequest (type: String, date: String, content: String)

+deleteRequest (date: String, content: String)

+ updateRequest (type: String, date: String, content: String)

System

Website

249

C.8 Design 3 (D9): Jabbler chat system

C.8.1 System description and reference quality values

 Jabbler is a text based online chat system that offers many options to users. Besides

viewing a list of chat rooms, a user can join a room, view its messages, send messages, and even

join multiple chat rooms simultaneously. Figure 133 illustrates the class diagram of D9. The

reference quality values of D9 for all the quality attributes can be accessed in tables 17 and 18.

250

Figure 133: D9 Class diagram

+OpenConnection()

+CloseConnection()

+CloseNetLibrary()

+SendData()

+ReceiveData() : char

+GetServerConnectionInfo() : bool

Connection

+Server(Connection)()

+LogIn() : bool

+LogOut() : bool

+GetRooms() : <unspecified>

+JoinRoom()

+LeaveRoom()

+RegisterNewUser()

+CreateRoom()

Server

+ChatRoom(Connection)()

+SendMessage()

+GetUpdatedContent()

+GetUserList()

ChatRoom

+Command(Char* unparsedCommand)()

+Command(UInt16 cmdCode, Parameter)()

+Command(UInt16 cmdCode, Parameter, Parameter)()

+Command(UInt16 cmdCode, Parameter, Parameter, Parameter)()

+ToString() : char

+HasMoreParameters() : bool

+GetNextParameter() : Parameter

Command

+Parameter(Char* paramTitle, Char* paramData)()

+GetParameterTitle()() : char

+GetParameterData()() : char

+ToString()() : char

Parameter

Jabbler

+ProcessReceivedCommands(Char* receivedData)() : char

+GetFieldText(UInt16 fieldID)() : int

Command Handler

251

C.8.2 Design changes

C.8.2.1 Design changes affecting the understandability quality attribute

 D9 was extended by adding two new options that enable users to share videos and

pictures as it is illustrated in the classes: “Video share” and “Picture share” (figure 135).

Increasing D9’s design size led to a decrease in understandability that was adapted by increasing

encapsulation.

1) Simulated results

 The observed decrease in understandability after increasing design size is effectively

adapted by increasing encapsulation by two (figure 134).

2) Real results

 Encapsulation was maximized in two classes of D9 as it is illustrated in figure 135. As a

result, the obtained real understandability equals its simulated value.

Figure 134: Understandability adaptation results of D9

252

Figure 135: Understandability design change and adaptation in D9

C.8.2.2 Design changes affecting the extendibility and the flexibility quality attributes

 The newly added classes were linked to the “ChatRoom” class through aggregation

relationships, which increased the rate of coupling in D9 (figure 138). Consequently, Both the

flexibility and the extendibility quality attributes dropped below their reference values as it is

illustrated and adapted in the simulated and the real results.

1) Simulated results

 To counterbalance the decrease in flexibility and extendibility, polymorphism should be

increased by one (figures 136 and 137).

2) Real results

 The class diagram of D9 was updated by adding one polymorphic method namely

“sendVideo (videoID: String)”, which made the resulting real flexibility and extendibility

attributes nearly equal their simulated values (figure 138).

Video share

- videoName: String

+ sendVideo (videoID: String,

videoName: String)

+ cancelShare (videoID: String,

videoName: String)

Picture share

- pictureName: String

+ sendPicture (pictureName: String)

+ cancelShare (pictureName: String)

253

Figure 136: Flexibility adaptation results of D9

Figure 137: Extendibility adaptation results of D9

254

Figure 138: Flexibility and extendibility design change and adaptation in D9

C.8.2.3 Design changes affecting the extendibility and the understandability quality

attributes

 The chat capabilities of “Jabbler” were improved by adding the “Video chat” and the

“Voice chat” classes (figure 141). Those newly added classes were linked to the existing classes

of D9 through aggregation relationships. As a result, the understandability and the extendibility

quality attributes dropped below their reference values as it is described in the simulated and real

results.

1) Simulated results

 On the one hand, extendibility can be adapted by increasing polymorphism to six (figure

139). On the other hand, understandability can be adapted by maximizing encapsulation in the

two newly added classes (figure 140).

Video share

- videoName: String

+ sendVideo (videoID: String,

videoName: String)

+ sendVideo (videoID: String)

+ cancelShare (videoID: String,

videoName: String)

Picture share

- pictureName: String

+ sendPicture (pictureName: String)

+ cancelShare (pictureName: String)

ChatRoom

255

2) Real results

 From figure 141, encapsulation was maximized in the “Video chat” and the “Voice chat”

classes. In addition, six polymorphic methods were added such as “sendVideo (videoID:

String)”. Consequently, the resulting extendibility and understandability nearly equal their

simulated values.

Figure 139: Second extendibility adaptation results of D9

256

Figure 140: Second understandability adaptation results of D9

257

Figure 141: Second extendibility and Understandability design change and adaptation in

D9

Video share

- videoName: String

+ sendVideo (videoID: String,

videoName: String)

+ sendVideo (videoName: String)

+ sendVideo (videoID: String)

+ cancelShare (videoID: String,

videoName: String)

+ cancelShare (videoID: String)

+ cancelShare (videoName: String)

Picture share

- pictureName: String

+ sendPicture (pictureName: String)

+ cancelShare (pictureName: String)

ChatRoom

Voice chat

- voiceMessage: String

-messageID: String

+ sendVoiceMessage (voiceMessage:

String, messageID: String)

+ sendVoiceMessage (voiceMessage:

String)

+ sendVoiceMessage (messageID:

String)

+ launchLiveVoiceChat (voiceMessage:

String)

+ shareMedia (type: String, name:

String)

+ cancelMediaShare (type: String,

name: String)

+ cancelMediaShare (name: String)

Video chat

- videoID: String

+ sendVideoMessage (videoID:

String)

+ launchVideoChat (videoID: String)

+ cancelChat ()

+ shareMedia (type: String, name:

String)

+ cancelMediaShare (type: String,

name: String)

258

C.8.2.4 Design changes affecting the reusability, the functionality and the effectiveness

quality attributes

 The class diagrams “Video share” and “Picture share” were deleted from D9 as well as

their corresponding aggregation relationships (figure 145). Thus, the reusability, the

functionality, and the effectiveness of D9 decreased significantly. To face the impact of those

design changes, the equations of cohesion and polymorphism were applied.

1) Simulated results

 From figures 142 and 143, reusability and functionality can be adapted by maximizing

cohesion in one class. Effectiveness can be adapted by increasing polymorphism to eight (figure

144).

2) Real results

 Cohesion was maximized in the “Video chat” class, which adapted the values of

reusability and functionality. Eight polymorphic methods such as “cancelShare (videoID:

String)” were added to D9 to adapt the value of effectiveness (figure 145). The obtained real

values of the quality attributes almost equal their simulated values.

259

Figure 142: Reusability adaptation results of D9

Figure 143: Functionality adaptation results of D9

260

Figure 144: Effectiveness adaptation results of D9

261

Figure 145: Reusability, functionality, and effectiveness design change and adaptation in

D9

ChatRoom

- videoName: String

- pictureName: String

+ sendVideo (videoID: String, videoName: String)

+ sendVideo (videoName: String)

+ sendVideo (videoID: String)

+ cancelShare (videoID: String, videoName: String)

+ cancelShare (videoID: String)

+ cancelShare (videoName: String)

+ sendPicture (pictureName: String)

+ cancelShare (pictureName: String)

Voice chat

- voiceMessage: String

-messageID: String

+ sendVoiceMessage (voiceMessage:

String, messageID: String)

+ sendVoiceMessage (voiceMessage:

String)

+ sendVoiceMessage (messageID: String)

+ launchLiveVoiceChat (voiceMessage:

String)

+ shareMedia (type: String, name: String)

+ shareMedia (type: String)

+ shareMedia (name: String)

+ cancelMediaShare (type: String, name:

String)

+ cancelMediaShare (name: String)

Video chat

- videoID: String

+ sendVideoMessage (videoID: String)

+ launchVideoChat (videoID: String)

+ cancelChat ()

+ shareMedia (type: String, name: String,

videoID: String)

+ shareMedia (type: String, videoID)

+ shareMedia (name: String, videoID)

+ cancelMediaShare (type: String, name:

String, videoID)

+ cancelMediaShare (type: String, videoID)

+ cancelMediaShare (name: String,

videoID)

262

C.9 Design 10 (D10): Darden wellness center

C.9.1 System description and reference quality values

 The Darden wellness system allows nurses to input patients’ information into electronic

forms, add new patients as well as generate their records. The class diagram of D10 is

represented in figures 146-150. The reference quality values are recorded in tables 17 and 18.

Figure 146: D10 class diagram (1)

263

Figure 147: D10 class diagram (2)

264

Figure 148: D10 class diagram (3)

265

Figure 149: D10 class diagram (4)

266

Figure 150: D10 class diagram (5)

C.9.2 Design changes

C.9.2.1 Design changes affecting the understandability quality attribute

 The computerized system of the Darden center was extended by adding three options

dealing with insurance, vaccination, and pharmacy (figure 152). This increase in the design size

of D10 led to a decrease in understandability that was adapted by increasing encapsulation.

1) Simulated results

 From the simulation results in figure 151, encapsulation should be increased by three to

counterbalance the decrease in understandability.

2) Real results

 In figure 152, encapsulation was maximized in the three new added classes, which makes

the value of the real understandability equal its simulated value.

267

Figure 151: Understandability adaptation results of D10

Figure 152: Understandability design change and adaptation of D10

Insurance counselling

- patientID: String

+ bookCouncellingSession

(patientID: String, patientName: String,

date: String)

+ cancelSession (patientID: String,

patientName: String, date: String)

Vaccination department

- type: String

- name: String

+ addVaccinationItem (type: String,

name: String, date: String, number:

String)

+ deleteItems (type: String, name:

String)

+ orderItems (type: String, name:

String, date: String, number: String)

Local pharmacy

- type: String

- name: String

+ addMedicine (type: String, name:

String, date: String, number: String)

+ deleteMedicine (type: String, name:

String, date: String, number: String)

+ ordermedicine (type: String, name:

String, date: String, number: String)

268

C.9.2.2 Design changes affecting the extendibility and the flexibility quality attributes

 The coupling level of D10 was increased by linking the newly added classes to the

existing classes through aggregation relationships (figure 155). As a result, extendibility and

flexibility dropped below their reference values. Those design changes and the applied

adaptation through polymorphism is illustrated in the real and the simulated results.

1) Simulated results

 Extendibility and flexibility are effectively adapted when polymorphism is increased by

three (figures 153 and 154).

2) Real results

 After adding three polymorphic methods to D10 such as “bookCouncellingSession

(patientID: String)”, the obtained extendibility and flexibility are similar to their simulated

values (figure 155).

Figure 153: Extendibility adaptation results of D10

269

Figure 154: Flexibility adaptation results of D10

270

Figure 155: Flexibility and extendibility design change and adaptation of D10

C.9.2.3 Design changes affecting the reusability, the functionality and the effectiveness

quality attributes

 The last design change in D10 dealt with deleting the class “Insurance counseling” as

well as its corresponding aggregation relationship (figure 159). Thus, the reusability, the

functionality, and the effectiveness quality attributes dropped below their reference values and

were adapted through cohesion and polymorphism.

Insurance counselling

- patientID: String

+ bookCouncellingSession

(patientID: String, patientName: String,

date: String)

+ bookCouncellingSession

(patientID: String)

+ cancelSession (patientID: String,

patientName: String, date: String)

+ cancelSession (patientID: String)

Vaccination department

- type: String

- name: String

+ addVaccinationItem (type: String,

name: String, date: String, number:

String)

+ addVaccinationItem (type: String)

+ deleteItems (type: String, name:

String)

+ orderItems (type: String, name: String,

date: String, number: String)

Local pharmacy

- type: String

- name: String

+ addMedicine (type: String, name:

String, date: String, number: String)

+ deleteMedicine (type: String, name:

String, date: String, number: String)

+ ordermedicine (type: String, name:

String, date: String, number: String)

Transition layer

271

1) Simulated results

 Reusability and functionality were adapted by maximizing cohesion in one class (figures

156 and 157). Effectiveness is adapted when polymorphism increases by six (figure 158).

2) Real results

 The simulated design changes and adaptations were applied in D10’s class diagram.

Cohesion was maximized in the “Local pharmacy” class and six polymorphic methods were

added to D10 such as “addVaccinationItem (type: String)”. The computed quality attributes after

adaptation almost equal their simulated values.

Figure 156: Reusability adaptation results of D10

272

Figure 157: Functionality adaptation results of D10

Figure 158: Effectiveness adaptation results of D10

273

Figure 159: Reusability, functionality, and effectiveness design change and adaptation of

D10

 As it was described in chapter 4, Pearson’s r was also computed for the remaining

QMOOD quality attributes namely reusability, flexibility, functionality, extendibility, and

effectiveness in the following tables.

Vaccination department

- type: String

- name: String

+ addVaccinationItem (type: String, name: String, date: String, number:

String)

+ addVaccinationItem (type: String)

+ addVaccinationItem (name: String)

+ addVaccinationItem (number: String)

+ addVaccinationItem (type: String, name: String)

+ deleteItems (type: String, name: String)

+ deleteItems (type: String)

+ deleteItems (name: String)

+ orderItems (type: String)

+ orderItems (type: String, name: String, date: String, number: String)

Local pharmacy

- type: String

- name: String

+ addMedicine (type: String, name:

String, date: String, number: String)

+ deleteMedicine (type: String, name:

String, date: String, number: String)

+ ordermedicine (type: String, name:

String, date: String, number: String)

Transition layer

274

X: Simulated

extendibility

in D1-D10

Y: Real

extendibility

in D1-D10

XY X² Y²

-12.25 -11.80 144.55 150.06 139.24

-4.10 -4.10 16.81 16.81 16.81

-3.50 -3.50 12.25 12.25 12.25

-8.13 -8.13 66.09 66.09 66.09

-9.06 -9.06 82.08 82.08 82.08

-11.14 -11.14 124.09 124.09 124.09

-3.88 -3.88 15.05 15.05 15.05

-5.45 -5.45 29.70 29.7 29.70

-6.75 -6.75 45.56 45.56 45.56

-0.7 -0.7 0.49 0.49 0.49

Σ X= -64.96 Σ Y= -64.51 Σ XY= 536.67 Σ X²= 542.18 Σ Y²= 531.36

n =10

Table 22: Correlation computations of extendibility

 10 (536.67) – (-64.96) (-64.51)

rxy =

 √|10 (542.18) – (- 64.96)²| * |10 (531.36) – (-64.51)²|

 = 0.99 very high correlation

X: Simulated

flexibility

 in D1-D10

Y: Real flexibility

in D1-D10 XY X² Y²

-3 -0.75 2.25 9 0.562

-1.5 6.75 10.12 2.25 45.56

-1.5 0 0 2.25 0

-2.5 -0.5 1.25 6.25 0.25

-3.5 -2.75 9.62 12.25 7.56

-1.5 -1 1.5 2.25 1

0.25 1.25 0.31 0.06 1.56

-2.25 -1.5 3.37 5.06 2.25

4.75 5.25 24.93 22.56 27.56

3.25 4 13 10.56 16

Σ X= -7.5 Σ Y= 10.75 Σ XY= 66.35 Σ X²= 72.49 Σ Y²= 102.3

n =10

Table 23: Correlation computations of flexibility

275

 10 (66.35) – (-7.5) (10.75)

rxy =

 √|10 (72.49) – (-7.5)²| * |10 (102.3) – (10.75)²|

 = 0.95 very high correlation

X: Simulated

reusability

Y: Real

reusability
XY X² Y²

23.20 23.30 538.24 538.24 538.24

31.75 31.75 1008.06 1008.06 1008.06

51.80 51.82 2684.27 2683.24 2685.31

33 33 1089 1089 1089

38.05 37.05 1409.75 1447.80 1372.70

47.75 47.75 2280.06 2280.06 2280.06

61.75 61.75 3813.06 3813.06 3813.06

20 20 400 400 400

21.25 21.75 462.18 451.56 473.06

57.50 57.50 3306.25 3306.25 3306.25

Σ X= 386.05 Σ Y= 385.57 Σ XY= 16990.87 Σ X²= 17017.27 Σ Y²= 16965.74

n =10

Table 24: Correlation computations of reusability

 10 (16990.87) – (386.05) (385.57)

rxy =

 √|10(17017.27) – (386.05)²| * |10 (16965.74) – (385.57)²|

 = 0.99 very high correlation

X: Simulated

functionality

Y: Real

functionality
XY X² Y²

17.48 17.08 298.55 305.55 291.72

18.38 18.08 332.31 337.82 326.88

26.64 26.71 711.55 709.68 713.42

20.8 20.86 433.88 432.64 435.13

22.02 23.38 514.82 484.88 546.62

25.86 26.32 680.63 668.73 692.74

30.26 31.38 949.55 915.66 984.70

12.44 12.46 155 154.75 155.25

13.98 15.30 213.89 195.44 234.09

27.84 28.96 806.24 775.06 838.68

Σ X= 215.7 Σ Y= 220.53 Σ XY= 5096.42 Σ X²= 4980.21 Σ Y²= 5219.23

n =10

Table 25: Correlation computations of functionality

276

 10 (5096.42) – (215.7) (220.53)

rxy =

 √|10(4980.21) – (215.7)²| * |10 (5219.23) – (220.53)²|

 = 0.99 very high correlation

X: Simulated

effectiveness

Y: Real

effectiveness
XY X² Y²

3.68 5.38 19.79 13.54 28.94

4.12 5.52 22.74 16.97 30.47

0 0 0 0 0

0 0 0 0 0

2.18 3.18 6.93 4.75 10.11

3.34 3.54 11.82 11.15 12.53

2.45 3.25 7.96 6 10.56

1.82 2.42 4.40 3.31 5.85

6.5 6.9 44.85 42.25 47.61

2.92 3.92 11.44 8.52 15.36

Σ X= 27.01 Σ Y= 34.11 Σ XY= 129.93 Σ X²= 106.49 Σ Y²= 161.43

n =10

Table 26: Correlation computations of effectiveness

 10 (129.93) – (27.01) (34.11)

rxy =

 √|10 (106.49) – (27.01)²| * |10 (161.43) – (34.11)²|

 = 0.97 very high correlation

