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Abstract 

 

 

 Despite the increasing interest of the software engineering research community in 

assessing and improving quality at the early phases of the software development lifecycle such as 

the design phase, less attention is devoted to adapting software quality to changing environment 

conditions especially at the design stage. Design quality can be significantly impacted when 

design decisions are modified due to changes in requirements or design strategies. This research 

sheds light on possible adaptation mechanisms that can effectively mitigate any decrease in 

object-oriented design quality due to a particular design change. To forecast the impact of design 

changes and possible adaptations on design quality, a system dynamics simulation is developed 

in Powersim
®
. The simulation variables are grouped into sub-models and represented by the 

quality factors of the Quality Model for Object Oriented Design (QMOOD) developed by 

Bansiya and Davis. Each sub-model simulates the interactions between a specific QMOOD 

quality attribute and its corresponding design properties as well as design metrics. The 

simulation is developed by following Pfahl and Ruhe’s System Dynamics Model. If after a 

design change, the simulated design quality decreases below a defined reference value, designers 

can apply one of the suggested adaptation equations that are extracted from the QMOOD quality 

attributes equations.  

 The simulation is validated by applying design changes and their adaptations on real 

academic designs and computing correlations between the simulated and the real values of each 

QMOOD quality attribute after adaptation. High correlations are obtained for all the quality 
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attributes, which shows the effectiveness of the adaptation mechanisms in adjusting design 

quality.    
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Chapter 1: Introduction 

 

 

 Defining practices that produce high quality software has been the focus of software 

engineering research for many years. Researchers and practitioners have become conscious of 

the importance of following a proven process and how it greatly affects product quality. Besides, 

a myriad of studies (e.g. [Abreu et.al 1996], [Briand et.al 2000], and [Bansiya and Davis 2002]) 

show that quality improvement in the early phases of the development cycle, such as design, can 

greatly boost the end product quality. Enhancing design quality by choosing the design 

alternatives that minimize costs can also be a rewarding investment activity for software 

organizations [Lazic et.al 2009]. Through design quality evaluation, designers can determine the 

most profitable design decisions, reduce costs of maintenance, and minimize possible risks of 

rework. Experience and economical investigations depict numerous benefits of investing on 

design quality [Sullivan et. al 1998]: 

1) Increase the flexibility of the whole development process through a well-structured 

design. 

2) Cancel unprofitable projects early in their lifecycles. 

3) Increase the adaptability of design to changing market conditions. 

4) Prevent possible uncertainties such as failures.        

 From the literature, we can categorize design quality investment approaches into three 

groups: analytical/static design quality evaluation, simulation-based design quality evaluation, 

and design quality adaptation.  Extensive design quality research was devoted to the first group 
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through the definition of quality metrics, quality attributes, and combining them in quality 

models. Other quality tools depicted the required design activities that determine a specific 

maturity level of a process such as in CMMI [CMMI 2011].  Further, some standards such as the 

IEEE standard for developing software life cycle processes suggested a set of desired design 

activities [IEEE Std 1074-2006]. As a part of software quality assurance activities, technical 

reviews are also applied in assessing design quality.  In the second group of design quality 

investment options, some studies (see [Xu et.al 2006], [Bogado et. al 2010], [Chiang et.al 2002]) 

use simulations as a decision support tool that assists designers in evaluating and choosing 

optimum design strategies. Finally, the quality of design is not only determined from its 

assessment but also from its ability to adapt to changing environment conditions. This area of 

research, which represents the third group of quality investment, is still immature despite the 

vital role of adaptation in stabilizing high quality design.  

1.1       Statement of the problem and anticipated benefits 

 Since design is the blueprint of software, a high quality design is likely to produce a high 

quality software product. On the one side, solving design problems early in the lifecycle and 

sustaining high quality values in design attributes is a key success factor in improving not only 

design quality but also the remaining process phases. Furthermore, it allows software engineers 

to reduce defect amplification and the number of latent bugs. On the other side, various factors 

may destabilize design quality. Changing design decisions because of continuous requirements 

or design strategies alterations may lead to a possible decline in design quality. Other possible 

reasons of quality change include quality reviews and design flaws. Under such conditions 

design quality can be restored to its predetermined level at strategic points in the design phase by 

identifying which design characteristics can be changed as a quality adaptation mechanism.   
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 Although run-time adaptation deals with applying specific quality attribute trade-offs at 

the implementation phase to regulate a software product quality, it does not take into 

consideration quality adaptation at design phase. In addition, adaptation strategies are applied at 

run-time with no beforehand knowledge of their effectiveness or risks. Thus, choosing wrong 

adaptation strategies or running several adaptations simultaneously can have a conflicting impact 

and affect a system’s performance [Yang et. al 2009]. The main goal of this dissertation is to 

shed light on OO design quality adaptation through cost-effective and safer techniques such as 

System Dynamics (SD) simulations. Through design quality adaptation simulation, various 

stakeholders such as software engineers, software architects, and software quality assurance 

agents will also be able to benefit from the following additional research goals: 

1) Extend the use of software process simulation to process lifecycle phases’ quality 

adaptation.  

2) Save cost: experiment design quality adaptation through simulation instead of costly real 

time adaptation. 

3) Save time: a simulation allows us to visualize the impact of changes quicker than in the 

case of real experimentations.    

4) Understand the interactions between OO design quality characteristics. 

5) Depict and test feedback mechanisms for changes in design decisions. 

6) Perform “what if” analysis of design decisions changes and forecast the needed quality 

compensations for quality attributes disequilibrium.   

7) Reduce the cost of new adaptation experimental scenarios through simulation.  

8) Maximize OO design quality. 
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1.2      Research approach 

1.2.1   Simulation-based Virtual Software Engineering Laboratories (VSEL) 

 A simulation model is a simplification of a complex system that is hardly understood via 

analytical methodologies [Muller and Pfahl 2008]. Simulations have been widely employed in a 

plethora of disciplines such as business case-studies, sociology, physics, biology, and 

engineering. The application of computer simulations in software process was first initiated by 

[Abdel-Hamid and Madnick 1991]. Software process simulations can be applied to a specific life 

cycle phase such as requirements or code testing. It can also model the whole development 

project as well as multiple simultaneous projects. According to Kellner et.al, those simulations 

can be used to explore six software process topics namely training and learning, strategic 

management, process improvement and technology adoption, planning, control and operational 

management, and understanding [Kellner et. al 1999]. Muller and Pfahl extend Kellner’s 

simulation categories by adding the new trends of process simulation goals such as software 

acquisition management and COTS, risk management, and product-lines [Muller and Pfahl 

2008].  My research is part of software quality adaptation which is a new software process 

simulation goal that extends Muller and Pfahl’s categories. My work is also founded upon the 

concept of VSEL introduced by [Münch et.al 2005]. VSEL uses simulations to experiment with 

software process policies or decisions, detect their possible problems, and test their corrective 

procedures before they are applied in real projects. VSEL can help project managers in finding 

trade-offs between project duration, needed effort, and product quality.  In my research, SD 

simulation is used to explore both the impact of changing design decisions on design quality and 

the adaptation strategies that compensate for those quality changes. 
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1.2.2   Simulation development process 

 Figure 1 illustrates one of the oldest Simulation Model Processes (SMPs) defined by 

Sargent in order to link between simulation model development and validation [Sargent 1981, 

2004].  Sargent’s SMP is composed of three main elements: a problem entity, a conceptual 

model, and a computerized model. First, the problem entity or simulated system is identified. 

Then, it is analyzed and represented through a mathematical or verbal conceptual model. Finally, 

the conceptual model is transformed into a computerized program to experiment with the desired 

scenarios of the given problem entity. To produce valid simulations, Sargent is integrating 

verification and validation procedures in each of his three simulation process components.    

 

 
 

Figure 1: Sargent’s Simulation Modeling Process [Sargent 2004] 

 

 

 



6 

 

 

 Rus et. al defined an SMP for discrete-event simulations based on the generic model of 

Sargent [Rus et. al 2003]. Their process is not only composed of traditional engineering activities 

such as model design and implementation but also from managerial activities (see table 1). 

Engineering activities Managerial activities 

Requirements identification and specification 

for the model to be built. 

Model development planning. 

Analysis and specification of the modeled 

process. 

Model development tracking. 

Design of the model. Measurement of the simulation model.  

Implementation of the model. Measurement of the model development 

process. 

Verification and validation throughout 

development. 

Risk management of risk factors such as 

changes in customer’s requirements and in the 

description of the modeled process. 

Table1: Discrete-event simulation process activities 

 

 To achieve my research goals, I will apply SD simulation process such as in [Pfahl and 

Ruhe 2002].  In Pfahl and Ruhe’s SMP, System Dynamics Model (SDM) can be produced with 

the help of four models: phase, role, product, and process.  

 The phase model defines four main stages in the development of an SD model: pre-study, 

initial model development, model enhancement, and model application. In the pre-study stage, 

the simulation modeler identifies the model goals and users. During the initial model 

development, the behavior of a subset of the system’s parameters is illustrated through a 

reference model to get an idea about the dynamics of the studied software process issues. Then, 

the reference model is extended to include all system parameters and made ready for problem 

analysis in the model enhancement stage. Improvement and maintenance of the produced SDM 

are part of the last stage. 

 The role model (table 2) identifies the set of stakeholders involved in the development of 

SDM. According to Pfahl and Ruhe, six actors impact the production process of SDM: Customer 
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(C), User (U), Developer (D), Facilitator (F), Moderator (M), and SE subject matter Expert (E) 

[Pfahl and Ruhe 2002].  

 

Actor C U D F M E 

Role Sponsor 

of the 

project. 

Future 

user of 

SDM. 

Responsible 

of 

producing 

the SDM. 

Plan and 

arrange 

project 

meetings. 

Guide 

workshops 

and 

meetings 

of D with 

E. 

Provide 

managerial 

and 

technical 

consultancy 

for SDM 

production. 

Table 2: SDM role model 

 

 The product model matches SDM process artifacts to their corresponding phases in the 

phase model (e.g., technical briefing materials and minutes are delivered in the initial model 

development phase of the phase model). Finally, the process model combines between all of the 

previous models in a control-flow-oriented scheme (figure 2). 
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Figure 2: SDM process model [Pfahl and Ruhe 2002] 
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Chapter 2: Literature Survey 

 

 

  Software processes can be modeled by applying several techniques (e.g. the discrete-

event (DE) and SD paradigms) to shed light on various process issues such as planning, 

understanding, and improvement. This led to the emergence of a new field in simulation 

modeling knows as software process simulation modeling (SPSM) devoted to track process 

issues (table 3).     

2.1      Simulation techniques and tools 

2.1.1   Simulation techniques for software process 

 Simulations are either modeled using deterministic or stochastic paradigms. In the case of 

deterministic modeling, the simulation runs always lead the same results for given input 

parameters [Müller and Pfahl 2008]. Stochastic modeling relies on random input parameters, 

which vary the resulting output from one simulation run to another. Stochastic simulations are 

also described as static simulations since they track models’ variables at a specific point of time. 

On the other hand, deterministic simulations can be modeled statically such as stochastic 

simulations or dynamically by tracing a model’s behavior over a specific period of time.  

 There are two types of dynamic simulations: continuous and event-driven. Both groups 

can be decomposed into quantitative and qualitative techniques. Simulation models’ variables are 

updated at a fixed time step interval in continuous simulations and modified in Event-Driven 

(ED) simulations when new events occur [Müller and Pfahl 2008]. Quantitative simulation 

techniques are useful in depicting the complexities in a system’s behavior and require enough 
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historical data or experts’ estimation to run the model. Qualitative techniques overcome the lack 

of historical data and simulate the general simple trend of a system’s behavior. Quantitative 

continuous simulations apply System Dynamics (SD) technique, created by Jay Forrester in 1961 

to model a system [Forrester 1961]. SD employs differential equations to describe the  

cause-effect relationships in the feedback loops of a system [Martin and Raffo 2000] [De 

Oliveira et.al 2011]. QUalitative Analysis of causal Feedback (QUAF) and Qualitative 

SIMulation (QSIM) represent the qualitative continuous simulation paradigm [Müller and Pfahl 

2008]. Instead of initializing the parameters’ simulation with numerical values, QUAF feeds the 

model with the parameters’ relative values and QSIM uses the model’s functions polarity 

(positive or negative) to specify the increase and decrease of variables.  

 ED simulations can be modeled quantitatively or qualitatively if the simulation’s events 

are based on non-quantitative conditions. The DE technique is one type of ED modeling 

paradigm that represents a system’s activities as a linked set of stations whose statuses change 

when events are altered [Martin and Raffo 2000]. Other types of ED simulation techniques such 

as Petri-net, rule-based, state-based and agent-based modeling are employed respectively to 

provide us with a description of distributed systems, define simulation models as a set of rules, 

represent the significant events that drive the software process to progress, and show interactions 

and actions between agents [Huang et.al 2010] [Drappa and Ledwig 1998] [Raffo et. al 1999] 

[Phillips and Yilmaz 2006].     

 To benefit from the advantages of more than one simulation technique, hybrid 

simulations are created by combining the previously described modeling methods. For example, 

a hybrid simulation can use both deterministic and stochastic techniques. Or, a hybrid simulation 

can combine the benefits of both continuous and event-driven paradigms. Over all of the 
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described simulation modeling techniques, SD and DE (49% and 31% of the available Software 

Process Simulation Modeling (SPSM) research respectively) are the most widely used ones for 

process simulation [Zhang et.al 2008]. Table 3 presents representative publications with their 

corresponding modeling techniques and software process coverage.  

 

2.1.2   Simulation tools  

 There exist several commercial tools that support most of the presented simulation 

techniques. For example, Stella
®
/iThink

®
 specializes in modeling both static and continuous 

simulations [Stella/iThink
 
1985]. @RISK

® 
supports Monte Carlo stochastic modeling [@RISK 

1987]. Extend
®
 enables modelers to create both DE and SD simulations through its graphical 

modeling language ModL and VENSIM
®
 produces SD simulations [Extend 1988] [VENSIM 

1985].  

 

2.2       Software Process Simulation Modeling (SPSM) 

 Software processes are complex systems whose description can be effectively simplified 

through SPSM. One aspect of software processes’ complexity is their composite structure made 

of several interrelated components through cause-effect relationships and feedback loops 

[Sterman 1992]. Another characteristic of software process complexity is the influence of “soft” 

qualitative variables such as team motivation on determining the quantitative attributes such as 

project delivery date and cost. To effectively visualize those complex characteristics, SPSM 

simulate software processes to understand them at cognitive, and tactical or strategic levels by 

using the previously described simulation techniques (figure 3) [Zhang et.al 2008].  
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Figure 3: SPSM goals 

 

 

2.2.1   SPSM through SD and continuous simulation techniques  

 Abdelhamid and Madnick’s software projects dynamics research is the seminal 

application of SD in software process [Abdelhamid and Madnick 1991]. Their SD process model 

simulates management policies dealing with scheduling, project control, quality assurance, 

productivity and staffing. The model is divided into 4 sections: human resource management, 

software production, project planning, and software control.  

1) The human resource management: illustrates activities related to developers participating on a 

software development project. It handles personnel hiring, firing, and transferring to other 

projects.  

2) The software production: allocates available developers to several software development 

activities such as training, designing, coding, testing, reworking, and quality assurance. It also 
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handles team motivation, developer’s exhaustion, and productivity overhead factors such as 

communication and rework.  

3) The software control: measures software production activities. This section controls overtime 

work, schedule pressure, and project funding consumption.    

4) The software planning: provides initial values for the software project parameters: project 

size, initial underestimated factor, initial team size, expected conclusion date. It also controls 

upper management willingness to hire new developers depending on project expected conclusion 

date. 

 Abdelhamid’s model variables were determined from field interviews, literature review, 

and peer /expert reviews.  The validity of the model was demonstrated by reviewing its behavior 

when subjected to sensitivity analysis and comparing it with the actual characteristics of real 

projects. The model can be used, for example, to estimate the optimal quality assurance effort 

that avoids an increase in testing cost due to a low quality assurance level and minimizes any 

unnecessary quality expenses.  

 In their Software Engineering Process Simulation Model (SEPS), Lin and his colleagues 

adopt the same simulation model structure applied by Abdelhamid and Madnick [Lin et. al 

1997].  SD is employed to study the interactions between SEPS sub-models namely production, 

staff/effort, scheduling, and budget. In addition, project managers can perform what-if –analysis 

of their managerial policies through SEPS to detect trade-offs of cost, schedule, and 

functionality.  

 One of the drawbacks of Abdelhamid and Madnick’s software project dynamics model is 

the huge number of variables that need to be initialized to run the simulation. To overcome this 

limitation, Ruiz and his colleagues suggest a simplification of the software project dynamics 
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model by eliminating unnecessary feedback loops in the analysis of the needed behavior, which 

reduces the number of initialized variables to half the quantity used by Abdelhamid [Ruiz et. al 

2001]. Ruiz’s model can be used to train project managers in choosing appropriate strategies that 

reduce a project’s   development time and cost. The model was verified by reviewing its 

equations’ consistency and validated by comparing its runs’ results to a real system’s behavior.       

 Software process simulations can also help project managers in achieving higher CMMI 

levels [Miller et.al 2002]. To increase the Organizational Process Performance process area of 

the 4th CMMI maturity level, simulation is a useful analysis environment in detecting 

appropriate performance measures for process cycle time, product quality, and development 

time. Similarly, process simulations can improve the Organizational Innovation and Deployment 

process area of the 5th CMMI maturity level by allowing the project managers to forecast the 

impact of process changes on process performance such as new staffing policies and decision 

rules. 

 Ruiz’s simulation model can be used to analyze the impact of each key process area in 

CMMI level 2 on productivity, product quality and ability to meet deadlines [Araujo et.al 2007].  

Productivity is mainly impacted by software quality assurance process areas whereas scheduling 

is affected by all the CMMI level 2 process areas. Product quality is also mostly impacted by all 

process areas except the software project planning and software project tracking process areas. 

Applying CMMI level 2 activities improves product quality by decreasing the number of errors 

when compared to CMMI level 1.     

 To study the impact of human resources allocation on the lead time of the project and 

product quality, an SD simulation of the requirements and test phases was modeled [Andersson 

et al. 2002]. The simulation runs show that product quality increases when the effort spent in the 
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requirements phase is increased. In addition, the lead time is decreased thanks to improved 

specification accuracy when devoting more time to the requirements phase. 

 SD paradigm is also used by Madachy to track error generation rates, defect amplification 

between phases, staffing policies, schedule compression, and personnel experience in software 

processes [Madachy 1996]. The simulation runs show that despite the 10% effort addition in the 

design and coding phases due to inspections, testing and integration effort is reduced by 50%. 

 Software evolution process, which is concerned with the adaptation and enhancement of 

software systems, can be explored through SD simulation to balance progressive and anti-

regressive evolution policies [Kahen et. al 2001]. Progressive activities deal with system 

functionality by adding or modifying code whereas anti-regressive activities cover dead code 

removal, refactoring, system re-engineering, and system restructuring. The authors’ model 

simulates the consequences of anti-regressive activities on long term system growth. The 

simulation runs show that assigning 30% of resources to anti-regressive activities results in a 

significant extension of a system’s life span. Moreover, the imbalance between progressive and 

regressive activities is the main cause behind software evolution productivity.        

 System dynamics simulations are useful in evaluating the business value of the applied 

product and process strategies and their corresponding return on investment [Madachy et.al 

2006]. By simulating software processes, marketing practices and financial measures over time, 

both business analysts and software developers can determine the required process activities to 

meet their business goals.  

 Continuous simulations can be represented qualitatively by using QSIM, QUAF, and 

Integrated Measurement, Modeling and Simulation (IMMoS). Unlike quantitative modeling that 

requires precise data (e.g. SD); qualitative modeling can overcome the lack of accurate variables 
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quantities by applying abstract techniques such as model functions polarity [Zhang et.al 2009]. 

This technique allows simulation modelers to represent the increase or decrease in variables 

through positive or negative polarity instead of specific numbers. IMMoS is another simulation 

implementation methodology that can resolve the lack of accurate quantitative modeling data.  

IMMOS combines between SD, static modeling techniques such as Process Modeling (used to 

identify the variables of a simulation model) and measurement-based Quantitative Modeling 

(establishes the functional relationships between a simulation’s variables) [Pfahl and Ruhe 2002] 

[Pfahl and Lebsanft 1999].  

 

2.2.2    SPSM through DE simulation technique 

 One of the goals of developing software process simulations is to train future project 

managers and improve their managerial skills.  Drappa and his colleagues suggest a quality 

assurance discrete-event simulation system that exposes project managers to real situations and 

allows them to watch the consequences of their managerial decisions such as changing resource 

allocation, and skipping requirements specification and reviews on the project’s quality [Drappa 

et. al 1999]. The quality assurance model enables students and novice project managers to test 

different managerial scenarios for small to medium-size projects. Managers can also plan and 

control their simulated projects and assign tasks to their virtual developers. The simulation 

system displays the expected results of the software project and suggests improvements to its 

management.   

 To analyze and improve a specific software process phase such as maintenance, Podnar 

and his colleagues developed a discrete-event simulation based on decision tree representation 

where entities are Modification Requests (MR) and their corresponding Technical Actions (TA) 
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[Podnar et.al 2001]. The goal of the simulation is to ensure high quality TAs from maintenance 

administrators.  

 Reliability can be simulated in all process phases by using discrete-event or continuous 

paradigms [Rus et.al 1999]. Besides tracking defects and failures over the entire project, 

reliability simulations can be used to predict acceptable defect levels at delivery. Furthermore, 

this type of simulations allows managers to determine the tradeoffs between reliability strategies 

such as defect detection and prevention techniques based on their impact on cost, staffing, and 

ability to detect failures.     

 

2.2.3    SPSM through hybrid simulation technique 

 Since the software process can be represented as a set of DE phases implemented in a 

continuously changing environment, a hybrid simulation that combines both of those discrete 

and dynamic aspects is a more realistic representation of software process [Donzelli and Iazeolla 

2001b]. Therefore, process activities are modeled by a DE queuing network where activities are 

described with their interactions and artifacts. The environment is modeled using either an 

analytical function such as COCOMO or a purely dynamic simulation paradigm such as SD or 

both of them to illustrate the resources, time, and effort consumed during process activities. The 

hybrid simulation model enables managers to analyze the impact of their various changing 

requirements scenarios on effort, delivery time and productivity.  

 In the Dynamic Capability Model (DCM) introduced by Donzelli and Iazeolla, the effect 

of process management elements (e.g. reviews) on process quality factors (e.g. effort, delivery 

time, and productivity) is analyzed by applying a hybrid modeling approach [Donzelli and 

Iazeolla 2001a]. Since the waterfall process phases are sequential and their corresponding 
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artifacts are simultaneous, the DE paradigm is employed in the first category and analytical 

techniques such as COCOMO as well as custom continuous functions are integrated in the 

second category. DCM allows managers to test their defect detection policies either in the early 

phases of the software process, in the middle or late in the process lifecycle. Simulation results 

show that the early detection policy where defects are discovered and corrected in the same 

injection phase reduces resources consumption, effort and delivery time.    

 Hybrid simulations can be employed to model different kinds of software projects such as 

Global Software Development (GSD), geographically distributed developed software. A GSD 

simulation model illustrates the different interactions between fundamental factors such as 

communication problems, strategic factors such as distribution overhead, and organizational 

factors such as team formulation [Setamanit et. al 2006]. Project managers can test the impact of 

their managerial decisions on effort, quality, and duration of GSD projects. Thus, managers can 

depict appropriate planning and management tracking policies for offshore sites versus near-

shore projects.   
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 Besides modeling the impact of managerial decisions on the overall software project 

time, effort, quality (errors percentage, errors detection, and rework effort), and size, SPSM 

simulates also the characteristics of specific software process phases. For example, SPSM can 

help in determining the design phase quality attributes tradeoffs (e.g. [Chiang et.al 2002]). 

 

2.3      SPSM of design phase 

 A software system that satisfies non functional requirements early in the design phase is 

likely to minimize the cost of correcting them late in the software lifecycle.   Xu and his 

colleagues propose a simulation that experiments with design alternatives and how they achieve 

the non functional requirements by taking into consideration their conflicting, crosscutting, and 

open-ended nature [Xu et. al 2006]. Non functional requirements can have conflicting goals such 

as in the case of implementing encryption that reduces a system’s responsiveness. They are also 

crosscutting since integrating security in the system, for instance, require changes in different 

locations including but not limited to the server and client modules. Furthermore, implementing 

a specific quality attribute can have an open-ended set of possible solutions (e.g. security can be 

implemented using authentication only or combined with encryption). Through Xu’s simulation, 

software architects can choose their desired design alternatives that are modeled as state-charts. 

Then, they can run the simulation and detect design alternatives that satisfy their non-functional 

requirements.  

 Resolving the conflicting nature of quality attributes yields high-quality software 

architecture [Xu  2008]. Xu proposes a Multiple-Objective Decision Analysis (MODA) 

methodology that relies on multiple-objective decision theory [Xu 2008]. Thus, the conjoint 

scaling interview scheme from decision theory is applied to gather stakeholders’ judgments 
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about the system’s design alternatives and their quality attributes support. A high ranking is 

assigned to the design alternative that supports most of the required quality attributes. Moreover, 

value gaps are applied to forecast the most relevant quality attributes for future stages in the 

design phase. Through a design simulation, stakeholders identify the value gap between the ideal 

level of a specific quality attribute and its current value. Quality attributes that are characterized 

by a high value gap are selected as the most important attributes for future design phases. 

 Simulations can also assist software project managers in determining quality tradeoffs of 

design decisions in the early phases of software development lifecycle. Chiang and his 

colleagues present a soft goal simulation that support decision making during design phase 

[Chiang et.al 2002]. In the case of projects where quality assurance is mandatory, the simulation 

goal is to identify design alternatives that achieve optimum quality attributes. A soft goal model 

is composed of three types of soft goals: Non-functional-Requirement (NFR), operationalizing, 

and claim. NFR soft goals deal with quality requirements such as time performance.  

Operationalizing soft goals represent possible design alternatives that implement the NFR soft 

goals (e.g. incorporate java script in an online storefront). Claim soft goals explain the context 

for a soft goal (e.g., a claim may argue that client-side scripting loads faster). 

 According to Ferayorni and his colleagues, a design simulation helps architects in 

improving their architecture’s quality and reduces the overall software development effort 

especially if it integrates domain knowledge by including appropriate design patterns [Ferayorni 

et.al 2007]. Discrete Event System Specification (DEVS) supports the modeling of complex 

hierarchical interacting components. The authors extend this modeling and simulation 

framework to support domain knowledge by adding design patterns suitable to a specific 

application domain such as Composite, Façade, and Observer patterns. DEVS can also be 
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employed in simulating software architecture and determining design quality attributes at run 

time [Bogado et.al 2010]. It decouples the conceptual model of the architecture from the 

simulator. DEVS simulation allows designers to evaluate performance quality attribute design 

scenarios. 

 Real-time embedded multiprocessor systems’ design is classified as a complex structure 

due to the interactions between many hardware and software elements. That is why Thuente 

suggests the combination between rapid simulation and rapid prototyping to depict the optimum 

design of embedded systems [Thuente 1991]. Rapid simulation is similar to rapid prototyping 

since it relies on delivering high level simulations characterized by quick development and rapid 

changes. The initial simulations can be extended as far as rapid prototyping produces additional 

input for the simulation. Through rapid simulation, the hardware and software components go 

through iterative refinements based on their performance.      

 SPSM is also applied in modeling self-adaptive systems and how they adjust to changes 

in requirements at run-time (e.g. [Yau et.al 2009], [Kumar et.al 2009], and [Beckmann et.al 

2009]). An interesting extension of SPSM applications would be to simulate software design’s 

adaptation at design phase instead of leaving it to run-time such as in [Yang et. al 2009]. 

Simulating adaptation at design stage is likely to minimize risks and ensure an early assessment 

of adaptation strategies.  
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2.4       SPSM of adaptive systems  

 Self-adaptive systems adjust their behaviors to face any changes in their environment 

such as a decrease in response time, system failures, and new requirements [Oreizy et.al 1999]. 

Unlike closed adaptive systems, open-adaptive systems apply adaptations during run-time. 

Conditional expressions are an example of open self-adaptive systems since an application’s 

behavior changes based on the result of the evaluated expression. Oreizy and his colleagues 

come up with a design cycle for self-adaptive systems [Oreizy et.al 1999]. It is composed of two 

inter-connected cycles: adaptation management and evolution management (figure 4). The 

evolution management cycle tracks possible changes to the application either in its architecture 

or code. Then, those enacted changes are handled by the adaptation management cycle, which 

plans their possible solutions before deploying them on the system.  
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Figure 4: Design cycle for self-adaptive systems [Oreizy et.al 1999] 

 

 In self-adaptive systems, adaptation can be weak if it deals with minor low cost changes 

such as changing parameters (e.g. bandwidth limit) whereas strong adaptation is concerned with 

changing, adding/substituting, and removing system artifacts. In addition, self-adaptiveness has 

several facets such as self-configuring, self-protecting, and self-healing adaptiveness [Salehie 

and Tahvildari 2009]. To adapt to changes, self-configuring systems can decompose or update 

system artifacts. Self-protecting systems defend the application against security breaches and 

self-healing systems repair any dysfunction. According to the authors, self-adaptiveness facets 
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impact software quality factors. For instance, the self-configuring facet influences the 

maintainability, the functionality, the portability, and the usability quality factors. Organic 

computing (OC) systems are self-organized and can self-adapt to any changes in their 

environment [Schmeck et.al 2010]. Thus, OC systems can maintain a specific robustness level 

despite the variations in the environment’s variables without any external control. Digital 

evolution is a design methodology where a population of self-replicating computer programs 

known as digital organisms is subject to mutations and natural selection [Beckmann et.al 2009]. 

Those digital organisms optimize their resources to survive. Beckmann and his colleagues 

employ digital evolution in the design of self-adaptive control software for mobile robots. Their 

approach is composed of four phases: cultivation, translation, simulation, and deployment in 

order to adapt the system to its environment. Digital Petri dishes where digital organisms 

develop new computational behaviors to fit their environment are the main components of the 

cultivation phase. Those evolved programs are translated into the programming language of the 

target hardware platforms. The simulation and deployment phases are used to evaluate the 

effectiveness of the evolved digital organisms. 

 Design alternatives of design decisions can be analytically adapted and traced through a 

design tree where the leaves are the completed designs and nodes are in-transition designs 

[Noppen et.al 2011]. This methodology enables software engineers to evaluate design 

alternatives and choose the ones that best fit the functional and non-functional requirements of 

the system. On the other hand, a system’s performance model can facilitate the dynamic 

adaptation of software systems to run-time changes in the host and network environments 

[Kumar et.al 2009].  An example of a performance model for adaptive software processes is the 

transactional user workload of request/ response such as HTTP workload.  Adaptive Service-
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Based Software (ASBS) systems identify tradeoffs among conflicting Quality of Service (QOS) 

aspects and adapt service configurations to satisfy multiple QOS requirements simultaneously 

through DEVS simulation [Yau et.al 2009]. Those services determine the runtime properties of 

the service, such as authentication mechanism, priority, and maximum bandwidth. Zhang and his 

colleagues apply dynamic adaptation to legacy systems by using aspect-oriented paradigm 

[Zhang et. al 2007]. This approach ensures that adaptation code is separated from legacy code. 

Then, to enable adaptation in legacy programs, the constructors of the non-adaptive classes are 

replaced with those of the adaptive classes. 

 Yang and his colleagues plan software non functional requirements (e.g. performance and 

availability) adaptation strategies at design phase and apply the appropriate ones at runtime 

[Yang et. al 2009]. Adaptive strategies can have conflicting effects. A security adaptive strategy 

that applies encryption may decrease the impact of system responsiveness strategies.  Although 

planning adaptive strategies at design phase without experimenting them does not guarantee their 

success at run-time, the author’s approach is novel in terms of integrating adaptive strategies at 

design phase. 

 To maximize SPSM simulations reliability, verification and validation procedures 

(figures 5 and 6) are a key element in reducing errors and achieving simulations’ goals.  
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2.5       The verification and validation of SPSM simulations  

 The credibility of a software process simulation model is defined as the level of 

confidence in its results and is measured through its verification and validation results [Kleijnen 

1995]. For example, the verification and validation of simulation models is part of NASA’s 

credibility assessment scale described in the NASA-STD-7009 modeling and simulation standard 

[Thomas et.al 2011]. Model verification ensures that the simulation program is error-free and 

works correctly whereas model validation verifies that the implemented model is an accurate 

representation of the real system and achieves the simulation goals [Sargent 1998]. On the one 

hand, simulation verification techniques can be grouped into two categories: static testing and 

dynamic testing. A simulation program can be verified statically by employing walk-throughs, 

correctness proofs, and examining the structure properties of the program [Sargent 1998]. Code 

tracing and analyzing execution samples are the main dynamic verification techniques. On the 

other hand, validation techniques are either subjective relying on experts’ judgment or objective 

applying statistical techniques. In the subjective validation approaches, the model’s validity is 

either determined by the development team, the user of the model, or an independent third party.  

Besides the objective validation techniques presented by Kleijmen in [Kleijmen 1995], Sargent 

describes a detailed set of validation techniques such as the historical methods and the multistage 

validation. There are three types of historical methods: rationalism, empiricism, and positive 

economics. In the rationalism method, any validity judgments are based on the models accepted 

assumptions. Empiricism is based on empirically validating the model’s assumptions and results.  

Positive economics assesses the ability of the model to forecast the future. All of those historical 

approaches are combined in a multistage process that represents the multistage validation 

technique.  
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 Chwif and his colleagues suggest a verification and validation approach for Discrete-

event simulation whose core element is the causal influence matrix [Chwif et.al 2006]. The 

influence matrix is composed of correlations between a simulation inputs and outputs described 

as positive, negative, or neutral (e.g. airport check-in desk: higher times between customers’ 

arrivals imply lower waiting times in the queue). Although those relationships are biased by 

experts’ judgments and difficult to track when several input variables are involved the authors’ 

method can overcome the lack of real parameters’ values.   

 Heuristic search algorithms increase the effectiveness of verification and validation by 

avoiding exhaustive simulation testing and targeting unusual parameters combinations that may 

lead to exceptions. Scatter/tabu is a heuristic algorithm where the simulation modeler can input 

her business rules and constraints [Wakeland et.al 2011]. Based on those rules, adequate unusual 

parameter values, which can be fed on the simulation, are generated.    

 A set of simulation verification and validation techniques are summarized in figures 5 

and 6. To verify and validate software process simulations, each of the described techniques can 

be used individually or combined with the other procedures. A simulation model’s verification 

and validation are important phases in its development process since they increase the 

correctness level of the simulation results. 
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Figure 5: Simulation verification techniques 

 

 

 

 

 

 

 
 

Figure 6: Simulation validation techniques 
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Chapter 3: Simulation development and verification 

 

  

 Object-oriented design quality can be affected by several factors throughout the software 

development lifecycle, which requires the application of appropriate adaptation strategies that 

can be tested through SD simulation. Several design quality attributes such as reusability, 

flexibility and effectiveness can be negatively destabilized by the following possible reasons: 

1) Changes in system requirements that affect the design structure, such as the addition or the 

omission of components (e. g:  classes, methods). 

2) Deviating from good design principles such as increasing coupling between classes and 

producing less cohesive components.  

3) Changes in a system’s implementation such as in timing, storage, and input/output transfers 

that can lead to major redesign actions [Royce 1970].  

4) The addition of new functionalities and design modifications in an iterative development 

process that can lead to changes in design decisions and quality at each iteration. 

5) Modifications in design decisions issued after design reviews (Preliminary Design Review 

(PDR) and Critical Design Review (CDR)/ Final Design Review (FDR)).   

Since design quality can change over the software development lifecycle time, SD is the 

appropriate modeling technique. Besides simulating the impact of those destabilizing factors on 

design quality, the goal of the research is to show how a set of adaptation mechanisms, described 

in the following sections, can counterbalance any possible quality decrease. The simulation of 
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OO design quality can be considered as a decision-support tool where software designers can 

assess the impact of design changes and their corresponding adaptation mechanisms on design 

quality before applying them on real designs. The simulation is created by following the phases 

0-3 (application without maintenance) of the SDM process model (figure 2) and implemented by 

using the academic version of PowerSim
®
 studio. PowerSim

® 
is a simulation modeling 

environment devoted to SD paradigm [PowerSim 1985]. 

 

3.1       Phase 0 of the SDM: Pre-study and research hypotheses definition 

 The main tasks of this phase dealt with identifying the simulation model users and the 

modeling goal represented by the research hypotheses (tasks ID 0.4 and 0.5 in figure 2). 

 

3.1.1    Simulation model users 

 The potential users of the simulation model are the software designers since they are 

responsible of producing design and integrating any required changes into it.  

 

3.1.2    Research hypotheses 

 Besides the research goals defined in chapter 1, the simulation model is used to evaluate 

the following research hypotheses: 

H0: Design quality without adaptation mechanisms is the same as design quality with adaptation 

mechanisms. 

H1: Design quality with adaptation mechanisms is higher than design quality without adaptation 

mechanisms.  
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The goal of the research is to reject the null hypothesis (H0) in favor of the alternative hypothesis 

(H1). 

 

3.2       Phase 1 of the SDM: initial model development 

 The main product of this phase was a reference simulation model that illustrates the 

impact of design changes on quality and the mechanisms of quality adaptation. The reference 

model is the nucleus of the final simulation that is developed in phase 2 of the SDM. 

 

3.2.1   Initial model creation 

 By using the SD modeling paradigm (appendix A), OO design was modeled in terms of 

its quality factors that are part of the hierarchical Quality Model for Object Oriented Design 

(QMOOD) [Bansiya and Davis 2002]. Unlike McCall et.al, ISO 9126, and Dromey’ s quality 

models, QMOOD (figure 7) establishes clear linkages between the high-level quality attributes 

(e.g. reusability, flexibility) of a design and its sub-attributes or design properties (e.g. coupling, 

cohesion) [McCall et.al 1977] [ISO 9126] [Dromey 1996] [Bansiya and Davis 2002]. In addition, 

QMOOD provides software architects with a set of numerical equations that define the polarity 

(positive or negative) and the weights of the design properties that characterize each quality 

attribute (figure 9). The design quality attributes defined in the QMOOD are the main sensors of 

quality (figure 8).  According to Bansiya and Davis, design can be represented by six quality 

attributes such as extendibility and flexibility that represent QMOOD’s first level (figure 7) 

(figure 8) [Bansiya and Davis 2002]. Those quality attributes’ values are the outcome of specific 

design properties such as abstraction and polymorphism that are combined in numerical 

weighted equations based on an extensive review of existing literature and experience (figures 9 
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and 10) (second level in figure 7).  The values of design properties are extracted from design 

components such as classes and objects through a set of design metrics (figures 11 and 12).  

     

Figure 7: The hierarchical structure of the QMOOD [Bansiya and Davis 2002] 

 

 

Figure 8: QMOOD quality attributes [Bansiya and Davis 2002] 
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Figure 9: QMOOD quality attributes equations [Bansiya and Davis 2002] 

 

 

Figure 10: Design properties definitions [Bansiya and Davis 2002] 
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Figure 11: Design metrics and their corresponding design properties  

[Bansiya and Davis 2002] 
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Figure 12: Design metrics definitions [Bansiya and Davis 2002] 
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 The initial model simulates one quality attribute, namely reusability with its 

corresponding design properties and metrics (figure 13). The remaining quality attributes are 

modeled in Phase 2 of the SDM.   

 

 

 

Figure 13: Reusability design properties and metrics 

 

 By applying the principles of the SD paradigm (appendix A), reusability’s initial model 

was developed in PowerSim
®
 (figure 14).  The model is applying six types of constants 

represented as diamonds. The first type of constants holds the values of design metrics such as 

“DCC”, “CIS”, and “CAM”. The second type of constants represents the needed time to compute 

each metric such as “DCC_ExecuteTime”, “CIS_ ExecuteTime”, and “CAM_ ExecuteTime”. 

The third type of constants represents the possible changes in design metrics  such as 

“CISChange1” and “DSCChange2” . Designers can input up to three possible changes in one 

simulation run. Those changes are executed at specific points of time in the simulation, which 

are also represented as diamonds such as “CISTime Change1”, “DSCTimeChange2”, and 

“CISTimeChange3”. The fifth type of constants, namely “DesignScenarios” receives the chosen   

      Design properties       Design metrics 

   

               Design size               DSC 

                         Reusability                 Coupling              DCC 

                Cohesion              CAM 

                Messaging              CIS 
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changes scenario by the designer from the simulation interface (figure 15). The last type of 

constants represents the reference values of quality attributes.  The goal of quality adaptation is 

to counterbalance any decrease in a quality attribute below its reference value. Those optimum 

quality values are not defined on literature. In this research, reference values are either the initial 

values of quality attributes before applying any changes or the quality attributes values after an 

adaptation and before applying a new change.  In the initial model, “InitialReusability” is the 

reference value of reusability.   

 Other variable types are applied in the initial simulation model to represent the reusability 

quality attribute, its design properties, the design changes equations, and their corresponding 

adaptations. Since design changes and adaptations are applied at specific points of time in the 

simulation run, PowerSim
®
’s time step functions (appendix B) are applied and enclosed in 

auxiliary clock-like variables such as “Computed DCC” and “Computed CIS” (figure 16). A 

design change is applied to design properties through their design metrics. Therefore, a design 

change is computed within the clock-like variable by either increasing or decreasing a specific 

metric value at a specific point of time (change time) in the simulation (appendix B). To 

overcome the decrease in reusability after applying a design change, one of reusability’s design 

properties (apart from the changed design property) is increasingly accumulated by applying its 

corresponding adaptation equation (table 4) through several simulation runs until the reference 

value is reached. After applying a set of mathematical manipulations to the QMOOD’s 

reusability equation, we came up with its corresponding adaptation equations (table 4). For each 

design property change, reusability can reach its reference value when the best fit adaptation 

equation is applied.  If the design property of the best fit equation is already at its optimum level 

in the studied design, an alternate adaptation equation can be applied (table 5). In this case, 



40 

 

reusability is slightly increased above its reference value. This classification of the adaptation 

equations is obtained empirically from various simulation runs. The initial model’s simulation 

enables designers to experiment specific combinations of changes and adaptations per simulation 

run as it is described in the verification of the model.  

 In the initial model, the reusability quality attribute is represented as an auxiliary variable 

(circle) and fed with its corresponding quality equation from figure 9 whereas the design 

properties are illustrated as levels (rectangles). The accumulation degree of levels (i.e. increase 

or decrease) is controlled by rates (valves) such as “change in Messaging”. The rates determine 

the difference between the design property before and after changing it through a differential 

equation (appendix B) such as in the equation of the rate “change in Messaging : ‘Change in 

Messaging = (Computed CIS-Messaging)/CIS_ExecuteTime’. Any sensed change is sent from 

the rate to the design property through a quality flow represented by a double-lined arrow. Then, 

the new design property value is sent to the quality attribute variable to update its equation. If the 

newly computed reusability’s equation is lower than the reference value, the adaptation 

equations in the clock-like variables are executed. The communication between the other model 

variables is established through single-lined information arrows (figure 14). A variable that is 

enclosed within brackets is a shortcut to an already existing variable in the diagram to avoid long 

awkward links from the source variable (e.g. “Design size” and “Messaging” shortcut variables 

in figure 14). The “StopCondition” auxiliary variable (circle) compares between the value of 

reusability after applying an adaptation equation and its reference value (“InitialReusability”). 

The simulation stops when those variables are equal.    
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Design property for 

adaptation 

Adaptation equation 

Design size 2 * reusability + 0.5 *coupling -0.5 *cohesion – messaging. 

Messaging 2* reusability + 0.5 * coupling -0.5 * cohesion – design size. 

Cohesion  4* reusability + coupling -2 *messaging -2* design size. 

Coupling - 4* reusability + cohesion + 2* messaging + 2* design size. 

Table 4: Reusability adaptation equations 

 

Design change/ Change in 

design property 

Best fit adaptation equation 

from table 4 

Alternate adaptation 

equation from table 4 

Decrease in messaging. Cohesion equation. Design size equation. 

Decrease in design size. Cohesion equation. Messaging equation. 

Decrease in cohesion. No best fit. Coupling, messaging, and 

design size equations. 

Increase in coupling. Cohesion equation. Messaging and design size 

equations. 

Change more than one design 

property. 

Cohesion equation. Any design property’s equation 

except the changed one (s).  

Table 5: Classification of reusability’s adaptation equations 
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Figure 14: Reusability reference simulation model 
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3.2.2    Initial model verification  

 The goal of model verification is to show that the initial simulation model is working 

correctly and that the adaptation equations bring back the value of reusability to its reference 

value when design changes are applied. The initial model was expanded in Phase 2 of the SDM 

and its validation is part of the final simulation model validation described in chapter 4. 

  After inputting fictitious design metrics values, design changes and times of changes in 

the simulation interface (figure 15), the following simulation scenarios were executed: 

1)  Simulate the initial reusability quality attribute before changing any design properties  

(figure 14), which represents the reference value of reusability.  

2)  Decrease messaging at a specific time in the software development lifecycle and apply the 

adaptation equation of cohesion (figures 17 and 18).  

3)  Decrease design size and cohesion at a specific time in the software development lifecycle 

and apply the adaptation equation of messaging (figures 19 and 20).  

Unlike the first simulation scenario that illustrates the initial design quality without any 

changes, the remaining scenarios enable designers to experiment more than one design change at 

different points of time in the software development lifecycle. In each scenario, the simulation 

stops when reusability is completely adapted and at least equals the reference value 

(InitialReusability). In PowerSim
®
, each variable value is characterized by a specific metric. In 

figure 15, the metric of the quality attributes’ values is “qual” (i.e. quality) and the adopted 

metric for the simulation steps is “da” as an abbreviation of day.      



44 

 

        

 

Figure 15: A snapshot of the simulation interface 
 

 The results show the effectiveness of the feedback equations in adjusting the reusability 

quality level. In the second simulation scenario, if the messaging changes are injected without 

applying the cohesion adaptation equation, the reusability quality attribute keeps decreasing and 

never reaches its reference value (the reference value is ‘38.98’ in this example from figure 17). 

Figure 18 shows that adaptation through cohesion in the three changes of messaging value was 

sufficient and effective in adjusting reusability to at least its reference value. According to this 

simulation scenario, cohesion should be increased by a factor of ‘51’ to compensate for the 

decrease in messaging in order for reusability to reach its reference value. The same observations 

are depicted in the third simulation scenario (figures 19 and 20). In this particular example, 
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messaging should be increased by a factor of ‘60’ to compensate for the decrease in design size 

and cohesion in order for reusability to reach its reference value. Since the change in cohesion 

does not have a best-fit equation (table 5), adaptation through messaging increases the value of 

reusability above its reference value.     

 

 

Figure 16: The reusability quality attribute and the design properties values before 

applying changes 
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Figure 17: Scenario 2 results without adaptation 

Figure 18: Scenario 2 results with adaptation 
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Figure 19: Scenario 3 results without adaptation 

Figure 20: Scenario 3 results with adaptation 
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3.3       Phase 2 of the SDM: Model enhancement  

 The goal of model enhancement is to improve the initial simulation model and 

incorporate the remaining QMOOD quality components. The application and validation of the 

complete simulation model is described in chapter 4.  

 In the PowerSim
® 

workspace (figure 21), OO design quality was modeled as a set of 

QMOOD quality attributes sub-models. In each sub-model, design quality is described in terms 

of its quality components and quality flow. In addition, the quality sub-models, as well as their 

input panel and simulation results can be accessed through a simulation interface that was also 

produced in the PowerSim
® 

workspace (figures 32, 33, and 34).    

 A set of changes were applied to the initial model and adopted in the remaining quality 

sub-models including the reusability sub-model.  All of the variable types, definitions of 

reference values, and the classification as well as the identification procedure of the adaptation 

equations of phase 1 were adopted in phase 2 of the SDM except the following changes and 

features: 

1)  Delete the “DesignScenarios” variable. Since the goal of creating the initial model is to 

illustrate the research idea, a limited set of design changes and adaptations were adopted and 

stored as design scenarios. In the updated version of the reusability sub-model and the other 

quality sub-models, designers can experiment different combinations of design changes and 

adaptations per simulation run. The maximum number of design properties that can be changed 

in each quality attribute per simulation run equals the total number of design properties of that 

attribute minus 1. 

2)  Omit the “StopCondition” variable. In phase 1, once the adapted quality attribute reaches its 

reference value after applying all of the design changes, the simulation stops. To prove the 
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correctness of the simulation results, the enhanced model keeps running even after reaching the 

reference values. Once the reference value is reached, it never decreases again throughout the 

simulation run as long as no more design changes are applied.  

3)  Add new variables linked to each design property in the sub-models such as “DCC-

FirstChange” and “CIS- FirstChange” (figure 22). The function of those variables is to keep 

track of each design property’s last value whether it is equal to the initial quality value, updated 

after an adaptation, or after all adaptations. This procedure ensures that each design change is 

applied on the correct value of its corresponding design property. 

4)  Add new variables linked to each design metric and property in the sub-models such as 

“DSCInitial” and “CISInitial” (figure22). Design metrics values change from one simulation run 

to another. To ensure the correctness of the simulation results, those variables keep track of the 

input metrics in each run.  

5) Apply PowerSim
®
’s sliced variables technique. A sliced variable is characterized by distinct 

aspects in its definition so that each aspect is defined in a specific sub-model. Apart from the 

complexity design property, each QMOOD design property is shared by more than one quality 

attribute’s equation. To correctly implement the behavior of the design property that corresponds 

to each quality attribute, PowerSim
®
’s sliced variables technique is adopted. A variable slice 

distinguishes itself from an ordinary variable in a sub-model by a slice indicator ( ) in the 

upper left corner of the variable. 
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Figure 21: PowerSim® workspace 

 

 

3.3.1    Reusability sub-model  

3.3.1.1   Reusability quality components  

 The reusability enhanced sub-model adopts the QMOOD design properties and metrics 

described in figure 13. It also simulates the output of reusability’s adaptation equations and their 

classifications (tables 4 and 5).    

3.3.1.2   Reusability quality flow 

 After entering the metrics, the combination of changes and the adaptation options of 

reusability (figure 33), the sub-model assigns those values to their corresponding variables and 

implements the reusability’s appropriate adaptation and quality equations (figure 22). In the 

QMOOD, each design metric corresponds to a specific design property and the simulation 

enables designers to change up to eleven design properties. However, the design properties that 
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impact a specific quality attribute cannot all be changed at once since one of them, at least, 

should be applied as an adaptation option.  In the case of reusability, the maximum number of 

design properties that can be changed in one simulation run equals 3. Before running the 

simulation, the designer enters the values of the metrics in the interface such as “DCC”, “CIS”, 

and “CAM”. He also enters the amounts of changes of each metric such as “DCC_Change1” and 

“CAM_Change2” (figures 22 and 33). Designers can enter up to three changes for each metric in 

one simulation run. Then, the time of each change is entered and assigned to its corresponding 

variable such as “DCC_TimeChange1”, “CIS_TimeChange2”, and “CAM_TimeChange3”. Once 

the simulation runs, the initial quality value of reusability is computed and stored in the 

“Reusability” auxiliary variable (figure 22 and appendix B). The initial value of reusability is 

also stored in the “ReusabilityReference” variable (figure 22). If a design change is applied with 

its corresponding adaptation, the updated values of design properties will be entered by the user 

in the subsequent simulation run to compute the updated “ReusabilityReference” value.  

 After computing the initial and the reference values of “Reusability”, the clock-like 

auxiliary variables such as “Computed CAM” do not sense any change in the value of the design 

properties. When a given time step of the simulation equals one of the entered change times, the 

corresponding change amount of a specific metric is applied  and stored in its corresponding 

clock-like variable (e.g. at day 30 of the simulation, the value of CAM is decreased by 10 and 

stored in the rate “Computed CAM”). That change (either an increase or a decrease) is sent to its 

corresponding rate such as “Change in cohesion”. The role of the rate is to compute the 

difference between the value of the design property (e.g. Cohesion) before and after any change. 

The rate is like a valve that increases or decreases the level value of the design property (e.g. 

“Cohesion”). The same quality flows are applied in all the level-rate variables in the sub–model 
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at each time step of the simulation (appendix B). When the design properties of reusability are 

updated, their values are sent to the “Reusability” variable to re-compute its quality equation. If 

the new “Reusability” value is lower than the stored “ReusabilityReference”, the corresponding 

adaptation equations of the checked design properties in the interface are computed in the clock-

like variables (appendix B).  Adaptation through design properties is implemented in a set of 

slices that differs from one quality attribute to another.  In the case of the reusability sub-model, 

the adaptation slices are represented by the adaptation equations of coupling, cohesion, 

messaging, and design size properties that are devoted to the reusability quality attribute (tables 4 

and 5). Once the adaptation equations are computed, the new difference in the design properties 

values is sensed by the rates (“Change in coupling”, “Change in cohesion”, “Change in 

messaging”, and “Change in Design Size”) and sent again to the level design properties 

(“Coupling”, “Cohesion”, “Messaging”, and “Design Size”) . Then, the updated values of the 

design properties are sent to the “Reusability” quality attribute to compute its new adapted value. 

The simulation keeps running and adapting any decrease in the reusability quality attribute until 

the end of the simulation time. The detailed implementation of the reusability sub-model is 

described in appendix B.     
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Figure 22: Reusability sub-model 
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3.3.2     Flexibility sub-model 

3.3.2.1   Flexibility quality components 

 In figure 24, flexibility is simulated with its corresponding design properties and metrics 

(figure 23). After evaluating the values of the design properties, flexibility’s quality equation is 

computed and stored in its variable (figures 9 and 24). In addition, design properties’ slices 

implement flexibility’s adaptation equations (tables 6 and 7).     

   

Figure 23: Flexibility design properties and metrics 
 

 

Design property for 

adaptation 

Adaptation equation 

Encapsulation 4 * flexibility + coupling - 2*composition - 2* polymorphism. 

Coupling - 4* flexibility + encapsulation + 2* composition + 2* polymorphism. 

Composition 2* flexibility - 0.5* encapsulation + 0.5*coupling - polymorphism. 

Polymorphism 2*flexibility – 0.5*encapsulation + 0.5* coupling – composition. 

Table 6: Flexibility adaptation equations 

 

 

 

 

 

 

 

 

      Design properties       Design metrics 

   

             Encapsulation                 DAM 

                          Flexibility                   Coupling               DCC 

              Composition               MOA 

            Polymorphism                NOP 
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Design change/ Change in 

design property 

Best fit adaptation equation 

from table 6 

Alternate adaptation 

equation from table 6 

Increase in coupling. Encapsulation equation. Composition & polymorphism 

equations. 

Decrease in composition. Encapsulation equation. Abstraction & polymorphism 

equations. 

Decrease in polymorphism. Encapsulation equation. Composition equation. 

Change more than one design 

property. 

Encapsulation equation. Any design property’s equation 

except the changed one (s).  

Table 7: Classification of flexibility’s adaptation equation 

 

3.3.2.2   Flexibility quality flow   

 In the implementation of the flexibility sub-model (appendix B), the input metrics, the 

design changes, and the adaptation options are assigned to their corresponding variables (figure 

24).  In the case of flexibility, the maximum number of design properties that can be changed in 

one simulation run equals 3. After entering the simulation variables, the initial quality value of 

flexibility is computed and stored in the “Flexibility” auxiliary variable (figure 24 and appendix 

B). The initial value of flexibility is also stored in the “FlexibilityReference” variable (figure 24). 

If a design change is applied with its corresponding adaptation, the updated values of design 

properties will be entered by the user in the subsequent simulation run to compute the updated 

“FlexibilityReference” value. 

 Before running the simulation, the designer enters the values of the metrics in the 

interface such as “DAM”, “DCC”, and “MOA”. He also enters the amounts of changes of each 

metric such as “DAM_Change1” and “MOA_Change2” (figures 24 & 33). Then, the time of 

each change is entered and assigned to its corresponding variable such as 

“DAM_TimeChange1”, “MOA_TimeChange2”, and “DCC_TimeChange3”. Once the 

simulation runs, the initial quality value of flexibility is computed and stored in the “Flexibility” 

auxiliary variable (figure 24 and appendix B). The initial value of flexibility is also stored in the 
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“FlexibilityReference” variable (figure 24). If a design change is applied with its corresponding 

adaptation, the updated values of design properties will be entered by the user in the subsequent 

simulation run to compute the updated “FlexibilityReference” value. The same quality flow that 

was implemented in the reusability sub-model was adopted in the flexibility sub-model and the 

remaining sub-models of the simulation. In the case of the flexibility sub-model, the adaptation 

slices are represented by the adaptation equations of coupling, encapsulation, composition, and 

polymorphism properties that are devoted to the flexibility quality attribute (tables 6 and 7). The 

detailed implementation of the flexibility sub-model is available in appendix B.     
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Figure 24: Flexibility sub-model 
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3.3.3      Understandability sub-model 

3.3.3.1   Understandability quality components 

 In figure 26, understandability is simulated with its corresponding design properties and 

metrics (figure 25). After evaluating the values of the design properties, understandability’s 

quality equation is computed and stored in its variable (figures 9 and 26). In addition, design 

properties’ slices implement understandability’s adaptation equations (tables 8 and 9).     

 

 Design properties Design metrics 

   

       Abstraction       ANA 

          Encapsulation       DAM 

      Coupling       DCC 

Understandability      Cohesion       CAM 

         Polymorphism       NOP 

        Complexity       NOM 

        Design size       DSC 

Figure 25: Understandability design properties and metrics 
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Design property for 

adaptation 

Adaptation equation 

Abstraction -3.03 * understandability + encapsulation - coupling + cohesion – 

polymorphism – complexity – design size. 

Encapsulation 3.03* understandability + abstraction + coupling – cohesion + 

polymorphism + complexity + design size. 

Coupling -3.03 * understandability – abstraction + encapsulation + cohesion – 

polymorphism – complexity – design size. 

Cohesion 3.03 * understandability + abstraction – encapsulation + coupling + 

polymorphism + complexity + design size. 

Polymorphism -3.03 * understandability + abstraction + encapsulation – coupling + 

cohesion – complexity – design size. 

Complexity -3.03 * understandability – abstraction + encapsulation – coupling + 

cohesion – polymorphism – design size. 

Design size -3.03 * understandability – abstraction + encapsulation – coupling + 

cohesion - polymorphism – complexity. 

Table 8: Understandability adaptation equations 

 

Design change/ Change in 

design property 

Best fit adaptation equation 

from table 8 

Alternate adaptation 

equation from table 8 

Increase in coupling. Encapsulation equation. No alternate.  

Increase in complexity. Encapsulation equation. No alternate. 

Increase in design size. Encapsulation equation. No alternate. 

Change more than one design 

property. 

Encapsulation equation. Any design property’s equation 

except the changed one (s).  

Table 9: Classification of understandability’s adaptation equation 

 

3.3.3.2   Understandability quality flow  

 On the one hand, the understandability sub-model implements the same quality flows 

described in the previous sub-models (figure 26). On the other hand, the maximum number of 

design properties that can be changed in one simulation run equals 6. In addition, the adaptation 

slices are represented by the adaptation equations of abstraction, cohesion, coupling, 

encapsulation, complexity, design size, and polymorphism properties that are devoted to the 

understandability quality attribute (tables 8 and 9). Appendix B describes the detailed 

implementation of the understandability sub-model. 
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Figure 26: Understandability sub-model 
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3.3.4. Functionality sub-model 

3.3.4.1. Functionality quality components 

 In figure 28, functionality is simulated with its corresponding design properties and 

metrics (figure 25). After evaluating the values of the design properties, functionality’s quality 

equation is computed and stored in its variable (figures 9 and 28). In addition, design properties’ 

slices implement functionality’s adaptation equations (tables 10 and 11).     

 

Design properties Design metrics 

   

       Cohesion      CAM 

          Polymorphism      NOP 

Functionality         Messaging      CIS 

          Design size      DSC 

           Hierarchies      NOH 

Figure 27: Functionality design properties and metrics 

 

 

Table 10: Functionality adaptation equations 

 

Design property for 

adaptation 

Adaptation equation 

Cohesion 8.33 * functionality -1.83 * polymorphism – 1.83 * messaging – 1.83 * 

design size – 1.83 * hierarchies. 

Polymorphism 4.54* functionality – 0.54 * cohesion - messaging – design size - 

hierarchies. 

Messaging 4.54 * functionality – 0.54 * cohesion – polymorphism – design size – 

hierarchies. 

Design size 4.54 * functionality – 0.54 * cohesion – polymorphism – messaging - 

hierarchies. 

Hierarchies 4.54 * functionality – 0.54 * cohesion – polymorphism – messaging – 

design size. 
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Design change/ Change in 

design property 

Best fit adaptation equation 

from table 10 

Alternate adaptation 

equation from table 10 

Decrease in polymorphism. Cohesion equation. Messaging, design size, and 

hierarchies equations. 

Decrease in messaging. Cohesion equation. Polymorphism, design size, 

and hierarchies equations. 

Decrease in design size. Cohesion equation. Polymorphism, messaging, and 

hierarchies equations. 

Change more than one design 

property. 

Cohesion equation. Any design property’s equation 

except the changed one (s).  

Table 11: Classification of functionality’s adaptation equation 

 

 

3.3.4.2   Functionality quality flow   

 Like the previous sub-models, functionality implements the same quality characteristics 

(figure 28). However, the maximum number of design properties that can be changed in one 

simulation run equals 4. Moreover, the adaptation slices are represented by the adaptation 

equations of messaging, cohesion, design size, hierarchies, and polymorphism properties that are 

devoted to the functionality quality attribute (tables 10 and 11). The detailed implementation of 

the functionality sub-model is available in appendix B. 
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Figure 28: Functionality sub-model 
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3.3.5      Extendibility sub-model 

3.3.5.1   Extendibility quality components 

 In figure 29, extendibility is simulated with its corresponding design properties and 

metrics (figure 29). After evaluating the values of the design properties, extendibility’s quality 

equation is computed and stored in its variable (figures 9 and 29). In addition, design properties’ 

slices implement extendibility’s adaptation equations (tables 12 and 13). For each design change 

in figure 13, all of the possible adaptation equations of extendibility were experimented. 

However, no adaptation equation made extendibility equal to its reference value (i.e. no best fit).    

 

 Design properties Design metrics 

   

       Abstraction       ANA 

       Coupling       DCC 

Extendibility        Inheritance       MFA 

          Polymorphism       NOP 

Figure 29: Extendibility design properties and metrics 

 

 

Design property for 

adaptation 

Adaptation equation 

Abstraction 2 * extendibility   + coupling – inheritance – polymorphism. 

Coupling -2 * extendibility – abstraction- inheritance – polymorphism.  

Inheritance 2* extendibility – abstraction + coupling – polymorphism.  

Polymorphism 2* extendibility – abstraction + coupling – inheritance. 

Table 12: Extendibility adaptation equations 
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Design change/ Change in 

design property 

Best fit adaptation equation 

from table 12 

Alternate adaptation 

equation from table 12 

Decrease in abstraction. No best fit. Coupling and polymorphism 

equations. 

Increase in coupling. No best fit. Abstraction and polymorphism 

equations. 

Decrease in inheritance. No best fit. Polymorphism and abstraction 

equations. 

Decrease in polymorphism. No best fit. Abstraction and coupling 

equations. 

Change more than one design 

property. 

No best fit. Any design property’s equation 

except the changed one (s).  

Table 13: Classification of extendibility’s adaptation equation 

 

 

 

3.3.5.2   Extendibility quality flow  

 The quality flow in the extendibility sub-model is similar to the previous sub-models 

(figure 30). Furthermore, the maximum number of design properties that can be changed in one 

simulation run equals 3. In the case of the extendibility sub-model, the adaptation slices are 

represented by the adaptation equations of abstraction, coupling, inheritance, and polymorphism 

properties that are devoted to the extendibility quality attribute (tables 12 and 13). The complete 

implementation of the extendibility sub-model is described in appendix B.    
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Figure 30: Extendibility sub-model 
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3.3.6   Effectiveness sub-model 

3.3.6.1 Effectiveness quality components 

 In figure 32, effectiveness is simulated with its corresponding design properties and 

metrics (figure 31). After evaluating the values of the design properties, effectiveness’s quality 

equation is computed and stored in its variable (figures 9 and 31). In addition, design properties’ 

slices implement effectiveness’s adaptation equations (tables 14 and 15).     

 

 Design properties Design metrics 

   

       Abstraction       ANA 

       Encapsulation       DAM 

Effectiveness        Composition       MOA 

         Inheritance       MFA 

         Polymorphism       NOP 

   

Figure 31: Effectiveness design properties and metrics 
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Design property for 

adaptation 
Adaptation equation 

Abstraction 5 * effectiveness – encapsulation – composition – inheritance – 

polymorphism. 

Encapsulation 5 * effectiveness – abstraction - composition – inheritance – 

polymorphism.  

Composition 5 * effectiveness – abstraction – encapsulation – inheritance – 

polymorphism. 

Inheritance 5 * effectiveness – abstraction – encapsulation – composition – 

polymorphism. 

Polymorphism 5 * effectiveness – abstraction – encapsulation – composition – 

inheritance. 

Table 14: Effectiveness adaptation equations 

 

 

Design change/ Change in 

design property 

Best fit adaptation equation 

from table 14 

Alternate adaptation 

equation from table 14 

Decrease in abstraction. Encapsulation equation. Composition and 

polymorphism equations. 

Decrease in composition. Encapsulation equation. Abstraction and polymorphism 

equations. 

Decrease in inheritance. Encapsulation equation. Polymorphism, abstraction, and 

composition equations. 

Decrease in polymorphism. Encapsulation equation. Abstraction and composition 

equations. 

Change more than one design 

property. 

Encapsulation equation. Any design property’s equation 

except the changed one (s).  

Table 15: Classification of effectiveness’s adaptation equation 

 

3.3.6.2   Effectiveness quality flow 

 The effectiveness sub-model is applying the same quality characteristics of the previous 

sub-models. In this case, the maximum number of design properties that can be changed in one 

simulation run equals 4. In addition, the adaptation slices are represented by the adaptation 

equations of abstraction, encapsulation, composition, inheritance, and polymorphism properties 

that are devoted to the effectiveness quality attribute (tables 14 and 15). The detailed 

implementation of the effectiveness sub-model is available in appendix B. 
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Figure 32: Effectiveness sub-model 
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Figure 33: The welcome page of the simulation 
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Figure 34: The input menu of the simulation 
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Figure 35: The simulation results page 
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 Chapter 3 was devoted to the creation of the different components of design quality’s 

simulation by following phases 0-2 of the SDM.  In PowerSim
®
, each QMOOD quality attribute 

was developed in a separate sub-model that showed how its quality components interact with 

each other to face any decrease in design quality. Instead of testing a limited set of scenarios, the 

enhancement of the initial simulation model enables designers to experiment with all possible 

combinations of design changes and adaptations. Therefore, the resulting simulation from Phase 

2 of the SDM is ready to be applied and validated in a set of real OO designs as illustrated in 

chapter 4.   
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Chapter 4: Simulation validation  

 

  

 To validate the simulation sub-models and apply the suggested adaptations, ten academic 

design class diagrams were studied (phases 2.2 and 3 of the SDM process in figure 2). To 

illustrate the validation process and the application of the adaptation mechanisms, one design is 

described thoroughly in this chapter and the remaining designs are discussed in appendix C. The 

design documents were produced by students from two different classes offered by the Computer 

Science and Software Engineering department at Auburn University: Software Modeling and 

Design (COMP 3700) and the Senior Design Project (COMP 4710). The designs illustrate the 

components of small to medium-sized systems in different application areas such as healthcare 

and education. The design changes and their adaptations were validated by applying the 

following steps in the designs: 

1) Initial design quality measured: The QMOOD metrics, design properties and quality 

equations were extracted manually and computed for each design class diagram before 

applying any design changes. The initial values of the quality attributes in each design are 

considered as the reference quality values for that particular design in both the simulation and 

the real results.  

2) Design changes and adaptations simulated: A set of design changes was experimentally 

applied to each design through the simulation. It is assumed that changes on the 

requirements from the client side trigger the design changes.  The obtained results depicted 
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the affected QMOOD quality attributes by those changes. If the quality values were lower 

than their initial values (i.e. the reference values of the quality attributes) the impact of the 

selected design properties’ adaptation equation was also simulated. The main result of the 

simulation is the adaptation amount of the selected design property (i.e. how much the 

adaptation design property should be increased/ decreased to reach the reference value of the 

affected quality attribute).  

3) Design changes and adaptations applied on the designs’ class diagrams: The same simulated 

changes were applied on the real designs as well as their corresponding simulated adaptation 

amounts. The QMOOD quality attributes were also computed for the adapted class 

diagrams. 

4) Correlations between the simulated and the real quality attributes’ values from the 

simulation and the class diagrams were computed: The correlations were calculated by 

applying the Pearson product-moment coefficient or Pearson's r. Pearson's r determines the 

linear relationship between two sets of values (e.g. set X and set Y) and can range from -1 to 

1 [Jackson 2011]. In this research, X represents the set of all the adapted simulated values of 

a specific quality attribute and Y represents the set of all the adapted values of the same 

quality attribute that are computed from the class diagrams. 

 

4.1   Design 1 (D1): Library Information System (LIS) 

4.1.1 System description and reference quality values 

 The class diagram in figures 36 and 37 represents the design components of a library 

information system (LIS). The main goal of the LIS is to automate the operations of library 

management such as checking books in and out; adding books to the library; and handling 
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outstanding fees.  The initial values of the QMOOD metrics of this class diagram and the 

remaining designs were extracted by applying the formula in table 16. Both values of the metrics 

and their corresponding quality attributes’ reference values are recorded in tables 17 and 18.    

 

 
 

Figure 36: The library server classes of LIS 
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Figure 37: The database server classes of LIS 
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Design metric Formula 

Design Size in Classes (DSC) Σ of classes in the class diagram. 

Number Of Hierarchies (NOH) Σ of class hierarchies in the class diagram. 

 

 

Average Number of Ancestors (ANA) 

          i= number of leaf classes 

            Σ    of ancestors  

          i=1 

 

        sum of leaf classes in the design 

 

 

Average Data Access Metric (DAM) 

 

             Total number of private 

              (protected) attributes 

                                                          in a class 

            Total number of attributes 

   

      Total number of classes in the design 

 

0≤ DAM ≤1 in each class 

 Average Direct Class Coupling (DCC) Σ of classes a class is related to. 

 

 

 

Average Cohesion Among Methods of 

classes (CAM) 

          i= number of parameters of  

               all methods in a class. 

         Σ    number of methods that share i 

         i=1 

 

        total number of parameters in a class 

 

        Total number of classes in the design 

 

  0≤ CAM ≤1 in each class 

Measure Of Aggregation (MOA) 
The number of part-whole relationships in the 

class diagram. 

 

 

Average Measure of Functional 

Abstraction (MFA) 

 

      The number of methods 

                  inherited 

                                                        by a class 

     Total number of methods  

                accessible 

   

Total number of classes in the design 

 

0≤ MFA ≤1 in each class 

Number Of Polymorphic methods 

(NOP) 

Σ of polymorphic methods in the class diagram.  

Sum of Classes Interfaces Size (CIS) Σ of public methods in the class diagram. 

Number Of Methods (NOM) Σ of all methods in the class diagram. 

Table 16: QMOOD design metrics formula 
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4.1.2    Design changes 

 After extracting the design metrics values from the class diagram in figures 36 and 37, a 

set of design changes was applied to validate the results of the simulation. Each design change 

affected at least one quality attribute and enabled us to validate its corresponding simulation sub-

model. 

4.1.2.1   Design changes affecting the understandability quality attribute 

  After entering D1’s design metrics values from table 16 in the simulation interface, the 

initial understandability value (i.e. the targeted reference value) was evaluated (Table 17). One of 

the new requirements received from the system’s client is to add new functionalities that deal 

with books management, library events organization, amenities reservation, and complaints 

management.  Therefore, five new classes were added to D1’s class diagram: “Client service”, 

“Books suggestion”, “Library events”, “Library amenities”, and “Post complaints” that deal with 

new operations such as allowing users to suggest books and post complaints about any library 

service. The impact of this design change on understandability and the adopted equation of 

encapsulation were first experimentally simulated in Powersim
® 

before applying them on D1’ s 

class diagram. 

1) Simulated results 

 Increasing the DSC metric of D1 (table 15) by increasing the number of classes led to a 

decrease in understandability below its reference value (table 17). To counterbalance the impact 

of that design change, the adaptation equation of encapsulation from table 8 was applied as 

illustrated in figure 38.    
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Figure 38: Understandability adaptation results of D1 

   

 

 From figure 38, the decrease in understandability is counterbalanced when encapsulation 

increases from its original value of 1 to 5, or a factor of five.  The encapsulation of D1 can be 

improved by increasing the DAM values to 1 in the following classes: Client service” “Books 

suggestion”, “Library events”, “Post complaints”, and “Library amenities”.  

2) Real results 

 After experimenting the impact of the design change on understandability and the 

effectiveness of the encapsulation adaptation equation through Powersim
®
, the same changes and 

the obtained adaptation from the simulation were applied on D1’s class diagram (figure 39). The 

encapsulation adaptation, which is based on increasing DAM in D1’s classes, is illustrated 

through the UML minus symbol in front of the classes’ attributes. Before applying the simulation 

Encapsulation 

(adaptation) 

Understandability 

(quality attribute) 

Design size (design 

change) 

The increase in design size (dark pink) led to a decrease in understandability (green) 

below its reference value (blue). Understandability started to increase and reached its 

reference value when the adaptation equation of encapsulation (brown) was applied.   
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results on the real design, the attributes of the classes in figure 39 were all public. The increase in 

encapsulation as an adaptation mechanism is based on making those attributes private by adding 

the minus sign in front of them. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: The classes used in D1’s understandability design change 

Library events 

- event Topic: String 

- event date: String 

- newArrival: String 

- specialEdition: String 

+ exhibitBooks (newArrival: String,  

specialEdition: String) 

+ announceTalk (event date: String, event 

Topic: String) 

 

 

Client service 

- service id : int 

+ getService (serviceid: int) 

 

 

Books suggestion 

-title: String 

-author: String   

-bookid: int 

- type: String 

-availability: bool 

+ addSuggestion (bookid: int, author: String, type: String, title: String) 

+ updateSuggestion (bookid: int, availability: bool) 

+ cancelSuggestion (bookid: int, title: String, author: String) 

 

 

Library amenities 

-reservationType: String 

-date: String 

+ 

postTalkRoomReservation 

(date: String, 

reservationType: String) 

+ updateReservation (date: 

String, reservationType: 

String) 

+ cancelReservation (date: 

String, reservationType: 

String) 

 

 

Complaints 

- type: String 

-date: String  

- content: String  

- title: String 

- id: int 

+ postComplaint (id: int, type: String, date: 

String, title: String, content: String) 

+ updateComplaint (id: int, date: String, 

title: String) 

+ cancelComplaint (id: int) 

 

The minus symbol indicates that 

the attributes of the class are made 

private which increases DAM to 1. 
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 After applying the encapsulation adaptation on D1’s design, the real QMOOD 

understandability value was computed. Table 20 results show that the simulated value of 

understandability after adaptation matches its real value. 

 

4.1.2.2 Design changes affecting the extendibility and the flexibility quality attributes 

  Additional design changes were simulated and then applied on the adapted version of D1 

after the first design change. To illustrate the effect of design changes on extendibility and 

flexibility, the “Client service” class from figure 39 was modified to be a subclass of 

“PageItem”. In addition, each of the remaining four classes in figure 39 was modified to be a 

specific client service. The impact of those design changes on extendibility and flexibility as well 

as the adopted polymorphism adaptation mechanisms was first simulated in Powersim
®
 and then 

applied on the real class diagram of D1.     

1) Simulated results 

 The described design changes led to an increase in the number of hierarchies, inheritance, 

complexity, abstraction, messaging, complexity, and coupling design properties. Figures 40 and 

41 show that both quality attributes decreased below their reference values before applying the 

polymorphism adaptation equation (the blue and green lines represent the reference values of 

extendibility and flexibility respectively. The reference values are also recorded in table 17). 

From table 7, the best fit adaptation equation for flexibility is the equation of encapsulation. 

However, encapsulation was already at its optimum level (DAM=1 in D1’s classes) and did not 

need an additional increasing. In this case, the alternate adaptation equation of polymorphism 

described in tables 6 and 7 was simulated. In the case of extendibility, table 13 shows that this 

quality attribute has no best fit adaptation but can be adapted by applying the alternate equation 
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of polymorphism. From figures 40 and 41, the decrease in flexibility and extendibility was 

counterbalanced when polymorphism was increased by a factor of ten.   

Figure 40: Extendibility adaptation results of D1 

 
Figure 41: Flexibility adaptation results of D1 

 

Coupling (design change) 

Polymorphism (adaptation) 

Extendibility (quality 

attribute) 

Coupling (design 

change) 

Polymorphism 

(adaptation) 

Flexibility 

(quality attribute) 
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2) Real results 

 The simulated changes and their corresponding adaptations for extendibility and 

flexibility were applied on D1 as shown in figure 42. The simulated adaptation was applied in 

the “Books suggestion” class where the polymorphic forms of its methods are increased to nine. 

Then, the computed values of extendibility and flexibility from D1 after adaptation were 

compared to their simulated values. The results show a strong connection between the real and 

the simulated values of both quality attributes (tables 22 and 23 in appendix C). 
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Figure 42: The changed parts of D1 for flexibility and extendibility adaptations 

 

 

Library events 

- event topic: String 

- event date: String 

- newArrival: String 

- specialEdition: String 

+ exhibitBooks 

(newArrival: String,  

specialEdition: String) 

+ announceTalk ( event 

date: String, event 

topic: String) 

 

 

Client service 

- service id : int 

+ getService (serviceid: 

int) 

 

 

Books suggestion 

-title: String 

-author: String   

-bookid: int 

-type: String 

-availability: String 

+ addSuggestion 

(bookid: int, author: 

String, type: String, 

title: String)  

+ addSuggestion 

(bookid: int) 

+ addSuggestion 

(bookid: int, author: 

String) 

+addSuggestion 

(author: String)  

+ updateSuggestion 

(bookid: int, 

availability: bool) 

+ updateSuggestion 

(bookid: int) 

+ updateSuggestion 

(availability: bool) 

+ cancelSuggestion (id: 

int) 

+ cancelSuggestion 

(bookid: int, title: 

String) 

+ cancelSuggestion 

(bookid: int, title: 

String, author: String) 

+ cancelSuggestion 

(author: String) 

+ cancelSuggestion 

(title: String, author: 

String) 

 

 

 

 

Library amenities 

-reservationType: 

String 

-date: String 

+ 

postTalkRoomReserv

ation (date: String, 

reservationType: 

String) 

+ updateReservation 

(date: String, 

reservationType: 

String) 

+ cancelReservation 

(date: String, 

reservationType: 

String) 

 

 

Complaints 

- type: String 

-date: String 

- content: String 

- title: String 

- id: int   

+ postComplaint (id: int, 

type: String, date: String, 

title: String, content: 

String) 

+ updateComplaint (id: 

int, date: String, title: 

String) 

+ cancelComplaint (id: 

int) 

 

 

PageItem 

- title 
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4.1.2.3 Design changes affecting the reusability and the functionality quality attributes 

 After adapting the values of the extendibility and the flexibility quality attributes, 

additional design changes were experimented in the simulation then applied on D1’s class 

diagram.  The classes “CheckInPage”, “CheckOutBook”, and “FinePage” in figure 37 were 

deleted from D1.  

1) Simulated results 

 The new design changes led to a decrease in the design size of D1 and two QMOOD 

quality-attributes below their reference values: reusability and functionality (table 17, figures 43 

and 44). The best-fit adaptation equation for reusability and functionality is the equation of 

cohesion as it is described in tables 5 and 11.  When the value of cohesion was increased after 

applying its adaptation equation, the reusability and the functionality values increased and 

reached their reference values as illustrated in figures 43 and 44. Furthermore, cohesion is 

measured through the CAM metric, which represents the degree of relatedness among the 

methods of a design’s classes. The simulation results in figures 43 and 44 suggested that 

cohesion/ CAM should equal 1 in six classes of D1. The application of those simulated 

suggestions in the real design was described in figure 46.          
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Figure 43: Reusability adaptation results of D1 

 

 
Figure 44: Functionality adaptation results of D1 

 

 

 

 

 

Design size 

(design 

change)   

Reusability (quality 

attribute) 

Cohesion (adaptation) 

Design size (design 

change) 

Functionality 

(quality attribute) 

Cohesion 

(adaptation) 
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2) Real results 

 The changes that affect reusability and functionality as well as the suggested adaptation 

from the simulation were applied on D1. After applying the changes, the parameters in the 

classes “Library events”, “Complaints”, and “Library amenities” were shared by most of their 

methods, increasing the value of CAM from 0.8 to 1. This adaptation mechanism 

counterbalances the decrease in both quality attributes and makes the real values nearly equal 

their simulated counterparts (tables 24 and 25 in appendix C).   

 

4.1.2.4   Design changes affecting the effectiveness quality attribute 

 In the last design change to D1, the “Client service” class was deleted, leaving the 

remaining classes to inherit characteristics directly from the “PageItem” class (figure 46). The 

impact of this design change on effectiveness and the adopted adaptation equation was first 

simulated in Powersim
®

 and then applied on the real class diagram of D1.  

1) Simulated results 

 This design change led to a decrease in the abstraction design property and the 

effectiveness quality attribute. From table 15, the equation of encapsulation is the best fit 

adaptation of effectiveness. However, encapsulation was already at its optimum level (i.e. DAM 

= 1 in D1’s classes) and did not need to be increased. As a result, the alternate adaptation 

equation of polymorphism described in tables 14 and 15 was simulated. Figure 45 illustrates that 

polymorphism must increase from 9 to 18 to accommodate the design change. Thus, the 

adaptation through NOP, the QMOOD measure of polymorphism, should be increased by nine 

polymorphic methods in the D1’s class diagram.       
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Figure 45: Effectiveness adaptation results of D1 

 

 

2) Real results 

 The simulated changes and adaptations that affect effectiveness were applied on D1’s 

class diagram. The polymorphic adaptation from the simulation was applied in the “Library 

amenities” and “Complaints” classes where the polymorphic forms of its methods were increased 

to eighteen (figure 46). The computed value of effectiveness from D1’s class diagram after 

adaptation nearly equals its simulated value (table 26 in appendix C). 

 

 

 

 

 

 

Abstraction 

(design change) 
Polymorphism 

(adaptation) 

Effectiveness 

(quality attribute) 
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Figure 46: The changed parts of D1 for reusability, functionality, and effectiveness 

adaptation 

Library events 

- event Topic: String 

- event date: String 

- newArrival: String 

- specialEdition: String 

+ exhibitBooks 

(newArrival: String,  

specialEdition: String, 

event date: String, event  

Topic: String) 

+ announceTalk ( event 

date: String,  event 

Topic: String) 

 

 

Books suggestion 

-title: String 

-author: String 

- bookid: int  

- type: String 

- availability: bool  

+ addSuggestion 

(bookid: int, author: 

String, type: String, 

title: String)  

+ addSuggestion 

(bookid: int) 

+ addSuggestion 

(bookid: int, author: 

String) 

+addSuggestion 

(author: String)  

+ updateSuggestion 

(bookid: int, 

availability: bool) 

+ updateSuggestion 

(bookid: int) 

+ updateSuggestion 

(availability: bool) 

+ cancelSuggestion 

(bookid: int) 

+ cancelSuggestion 

(bookid: int, title: 

String) 

+ cancelSuggestion 

(bookid: int, title: 

String, author: 

String) 

+ cancelSuggestion 

(author: String) 

+ cancelSuggestion 

(title: String, author: 

String) 

 

 

 

 

Library amenities 

-reservationType: String 

-date: String 

+ 

postTalkRoomReservation 

(date: String, event: 

String, lecturer: String) 

+ 

postTalkRoomReservation 

(date: String) 

+ 

postTalkRoomReservation 

(date: String, event: 

String) 

+ 

postTalkRoomReservation 

(date: String, lecturer: 

String) 

+ updateReservation (date: 

String, event: String, 

lecturer: String) 

+ updateReservation (date: 

String, event: String) 

+ updateReservation (date: 

String, lecturer: String) 

+ updateReservation (date: 

String) 

+ cancelReservation (date: 

String, event: String, 

lecturer: String) 

 

 

Complaints 

- type: String 

-date: String  

- id: int  

- title: String 

- content: String 

+ postComplaint (id: int, 

type: String, date: String, 

title: String, content: String) 

+ postComplaint (id: int) 

+ updateComplaint (id: int) 

+ updateComplaint (id: int, 

date: String, title: String, 

type: String, content: String) 

+ cancelComplaint (id: int, 

date: String, title: String, 

type: String, content: String) 

+ cancelComplaint (id: int) 

 

 

PageItem 

- title 

 

 

The intersection between the parameters of the methods and the overall class attributes 

is high so that CAM =1. All of the class attributes are almost part of each method’s 

parameters. Thus, the cohesion of the class that corrsponds to CAM is increased, which 

adapts the values of reusability and functionality. Adding polymorphic methods, such 

as “updateSuggestion (availability: bool)” in ‘Books suggestion” class, adapted the 

value of effectiveness. 
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 The same validation process was applied in D2-D10 designs where the data in tables 17 

and 18 were used in running the simulation and checking that the obtained quality attributes 

reached their reference values after adaptation. The detailed description of design changes and 

adaptations of D2-D10 is described in appendix C.  

 

           Designs  

 

QMOOD  

Metrics 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

DSC 28 13 47 38 40 21 10 41 7 12 

NOH 5 1 3 5 5 1 3 4 0 0 

ANA 1 1 1 1.45 1 1 1.75 1.06 0 0 

DAM 1 0.7 0.25 1 1 1 1 1 1 1 

DCC 27 11 9 19 21 10 14 25 16 6 

CAM 0.8 1 0.19 1 0.2 1 1 1 1 1 

MOA 6 7 0 3 2 2 1 8 16 6 

MFA 0.5 0.8 0 0 0.98 0.2 0.27 0.66 0 0 

NOP 1 1 1 1 1 1 1 1 1 3 

CIS 19 33 58 18 40 101 22 65 31 98 

NOM 19 33 58 18 40 101 22 65 31 98 

Table 17: The initial QMOOD design metrics values for the ten designs 
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       Designs  

 

 

Reference  

quality values 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Reusability 23.2 31.75 51.8 33 38.05 47.75 61.75 20 21.25 57.5 

 

Flexibility 

-  

3 

 

 

1.5 

 

- 

1.5 

- 

2.5 

- 

3.5 

- 

1.5 

 

0.25 

 

- 

2.25 

 

4.75 

 

 

3.25 

Understandabi

lity 

- 

24.4

9 

- 

18.9 

- 

38.13 

- 

24.90 

- 

33.59 

- 

43.25 

- 

43.56 

- 

15.43 

- 

17.49 

- 

38.61 

Functionality 17.4

8 

18.38 26.64 20.8 22.02 25.86 30.26 12.44 13.98 27.84 

Extendibility 
- 

12.2

5 

- 

4.10 

- 

3.50 

- 

8.13 

- 

9.06 

- 

11.14 

- 

3.88 

- 

5.45 

- 

6.75 

- 

0.7 

Effectiveness 3.6

8 

4.12 0 0 2.18 3.34 2.45 1.82 6.5 2.92 

Table 18: The reference values of the quality attributes for both the simulated and the real 

results in the ten designs 

 

 

4.2      Quality attributes correlation results  

 After experimenting and applying a set of design changes and their adaptations on the 

simulation and the real designs, the resulting simulated and real quality attributes were generated 

and computed. Then, the Pearson product-moment correlation coefficient (Pearson's r) was 

computed for each design quality attribute between its simulated and its real values. Pearson's r 

coefficient determines the association level of two sets of variables X and Y [Jackson 2011]. It 

can be computed by applying the following formula where n represents the population’s size 

(e.g. size of X):     

 

Figure 47: Pearson’r formula [Jackson 2011] 
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 Pearson’r value ranges from -1 to 1 with specific correlation strength (table 19).  The sets 

X and Y can be perfectly correlated when r =1/-1. Moreover, X and Y are considered not linearly 

related or correlated when r =0.  In the validation of this research, X represents the simulated 

values of the quality attributes after adaptation while Y is the set of their corresponding real 

values. A high or very high correlation between X and Y shows the effectiveness of the 

adaptation equations in adjusting design quality (table 19).  The detailed application of Pearson’s 

r in each design quality attribute is illustrated in tables 19-24. Pearson’s r computes the 

correlation between two sets of variables. Therefore, Pearson’s r is computed for each QMOOD 

quality attribute between the set X of all its simulated values and the set Y of all its real values in 

all the designs. Table 20 illustrates the computation of Pearson’s r for understandability between 

the set X of its simulated values and the set Y of its real values over all designs. The correlations 

of the remaining quality attributes are presented in appendix C.    

           

Correlation 

strength 

Negative correlation 

value 

Positive correlation 

value 

Very low -0.3 < r < 0 0    < r <  0.3 

Low -0.5 < r < - 0.3 0.3 < r <  0.5 

Moderate -0.7 < r < - 0.5 0.5 < r <  0.7 

High -0.9 < r < - 0.7 0.7 < r <  0.9 

Very high -1   < r < - 0.9 0.9 < r <   1 

Table 19: Pearson’r correlation degrees [Jackson 2011] 
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X: Simulated 

understandability 

in D1-D10 

Y: Real 

understandability 

in D1-D10 

XY X² Y² 

-24.49 -24.47 599.27 599.76 598.78 

-18.90 -18.89 357.19 357.55 356.83 

-38.13 -38.13 1453.89 1453.89 1453.89 

-24.90 -24.88 619.51 620.01 619.01 

-33.59 -33.58 1127.95 1128.28 1127.61 

-43.25 -43.24 1870.13 1870.56 1869.69 

-43.56 -43.53 1896.16 1897.47 1894.86 

-15.43 -15.42 237.93 238.08 237.77 

-17.49 -17.49 305.90 305.90 305.90 

-38.61 -38.60 1490.34 1490.73 1489.96 

Σ X= -298.35 Σ Y= -298.23 Σ XY= 

9958.27 

Σ X²= 

9962.23 

Σ Y²= 9954.30 

n =10     

Table 20: Correlation computations of understandability 

 

 

 

 

                            10 (9958.27) – (-298.35) (-298.23) 

rxy =    

         √|10 (9962.23) – (- 298.359)²| * |10 (9954.30) – (-298.23)²| 

 

     = 1   very high correlation  
 

 

 

 

 

Quality attribute Correlation value Correlation 

degree 

Understandability 1 Very high 

Extendibility 0.99 Very high 

Flexibility 0.90 Very high 

Functionality 0.99 Very high 

Reusability 0.99 Very high 

Effectiveness 0.97 Very high 

Table 21: Correlation degrees of the QMOOD quality atributes 
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 From the obtained Pearson’r coefficient values in table 21, the simulated values of the six 

quality attributes after adaptation highly correlate with their real values. Therefore, the 

simulation results are valid and the suggested adaptation equations are effective. In addition, the 

obtained results concretely reject the null hypothesis of this research in favor of the alternative 

hypothesis.      
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Chapter 5: Conclusions and future research work 

 

 

5.1      Conclusions 

 The presented research extracted a set of adaptation equations from the QMOOD to face 

any possible decrease in design quality due to changes in design decisions. Those adaptation 

equations as well as the different components of the QMOOD were modeled as a system 

dynamics simulation implemented in Powersim
®
. The simulation was an experimental 

environment where designers can test the impact of changes before applying them on real 

designs. The simulation was also useful in defining the appropriate adaptation equation for each 

design change that decreased the value of a specific QMOOD quality attribute.    

 The validation of the simulation showed that the suggested adaptations can be applied 

effectively and smoothly in the real designs. After applying a set of design changes on the real 

designs, design quality dropped below its defined reference values. Then, the obtained increase 

in the adaptation design properties from the simulation was applied on the real designs.  The 

validation of the research showed that the simulated results highly correlated with the real 

adaptations. Therefore, the suggested adaptations can effectively adjust design quality. 

Moreover, the application of any of the adaptation equations for a specific quality attribute had 

no side effect on the other quality attributes since they kept their high level and did not drop 

below their reference values. 
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5.2       Future research work 

 The simulation produced in this research can be extended to study more design quality 

variables and adapt other phases of the software process. The current simulation uses only the 

quality attributes defined in the QMOOD. However, software design can also be characterized 

by other quality attributes such as reliability whose assessment and adaptation can improve 

design quality. Moreover, design quality can also be impacted by other exogenous soft factors 

such as the motivation of designers, their commitment and their organizational culture. The 

simulation can help in defining the impact of those soft factors on QMOOD quality attributes 

and depict the required adaptations in this case. In addition, a mapping catalog between each 

quality attribute and its set of impacting soft factors can be defined.  For example, the simulation 

can define the organizational, the economic and the psychological factors impacting the 

reusability quality attribute such as the required effort, the existing incentives and the job 

security threats respectively.  The simulation can also be extended to assess and adapt other 

software process phases such as the requirements phase. Through the simulation of the complete 

software process, software engineers will be able to determine the impact of a specific process 

phase on the quality of other phases. Furthermore, software engineers will also be able to 

evaluate the impact of skipping a process phase on the quality of the other phases and the 

produced software.  

 The current research defines local reference values for each particular design. The 

reference values are defined as the initial values of the quality attributes before any design 

change. As an improvement, those reference values can be determined statistically along many 

sets of projects or from the history of projects in a company. The reference values can also be 

updated from one simulation run to another or fixed from the first run. Similarly, the same 
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methodologies can determine the required initial values of the design properties to run the 

simulation for any project type. Therefore, designers will be able to determine a uniform 

proportion for each design property that can be run in any design’s simulation. For example, 

statistical studies over a large set of designs may suggest that the third of any design should be 

composed of hierarchies and then assign the value .3 to the hierarchies design property and its 

corresponding metric in the simulation.    

 Besides design quality evaluation and adaptation, the simulation can be extended to 

include other options that will help designers in optimizing their designs’ quality and estimating 

the costs of adaptations. To find realistic trade-offs between design decisions and the intended 

quality attributes values, a quality optimization mechanism can effectively guide designers in 

forecasting those trade-offs. Therefore, the simulation can be extended to provide designers with 

the needed values of design properties to reach any targeted quality attributes levels. Another 

interesting extension to the simulation is to run a cost-benefit analysis of the simulated design 

changes and their corresponding adaptations. Hence, designers will be able to forecast the costs 

of their design changes and adaptations before applying them in the real designs.       

 To consolidate the obtained results from this research, more validations are required by 

including other types of design deliverables and simulating industry-based software designs. 

Besides the UML class diagrams that were studied in this research, the simulation will be 

extended to evaluate and adapt other design data obtained from other types of design deliverables 

such as the entity-relationship and the data flow diagrams.  As an industrial validation to this 

research, the simulation results will be applied in open-source software. This type of validation is 

based on a long time consuming process and constitute by itself a research project. This type of 

validation may specialize on one type of open source software such as android applications or 
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consider different types of software at the same time. Then, those applications should be reverse-

engineered to transform code to UML class diagrams. Design quality should be assessed from 

one reverse-engineered release to another by applying QMOOD.  The reverse-engineered 

designs should also be thoroughly analyzed to detect any design changes from one release to 

another. A decrease in design quality indicates that changes need to be counterbalanced by 

applying one of the presented adaptation mechanisms in this research. All of this data should be 

experimented in the simulation before applying the obtained adaptations on the real reversed 

design. Then, a second QMOOD quality evaluation should be performed on the real adapted 

design to check the effectiveness of adaptations. The same methodology is applied on the 

different releases of an open-source project as well as in the remaining projects. By the end, 

Pearson's r correlation factors are computed between the simulated and the real results.     
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Appendix A: System dynamics concepts 

 

  

 System Dynamics (SD) is a computer-based simulation modeling methodology 

developed at the Massachusetts Institute of Technology (MIT) in the 1950s as a tool for 

managers to analyze complex problems. It is used to model systems’ behavior that changes over 

time.   

 System dynamics simulations are based on the principle of cause and effect relationships 

between outputs that both respond and influence inputs in a closed feedback loop. There are two 

types of feedback loops: positive and negative. Positive loops represent self-reinforcing systems 

that are either growing or declining. Negative loops represent goal-seeking systems that keep 

improving or get stabilized over time. The direction of causality between the variables in a 

feedback loop is represented by a minus or a positive sign at the head of each arrow. The positive 

sign indicates that the variable at the tail of each arrow causes a change in the variable at the 

head of each arrow in the same direction and vice versa. The positive sign is also represented by 

S (same direction) and the negative sign is represented by O (opposite direction).   Figure 48 

shows an example of a feedback loop where an increase in price leads to a decrease in sales. 
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Figure 48: A feedback loop that shows the relationships  

between price, sales, and unit costs 
 

 

 The overall polarity (positive or negative) of the feedback loop is determined by 

multiplying all of its arrows’ signs. If the resulting sign is negative, the feedback loop describes a 

balancing (B) or a counteracting (C) behavior to adjust and stabilize the status of a system. When 

the resulting sign is positive, the feedback loop represents a reinforcing (R) behavior towards the 

growth or the decline of a given system.  Figure 49 illustrates a reinforcing feedback loop that 

describes the growth of the national debt due to the compounding of interest payments. Figure 50 

presents a balancing loop that stabilizes the rate of itching by applying regular scratching.    

 

  
Figure 49: Reinforcing feedback loop Figure 50: Balancing feedback loop 
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 Besides the cause and effect relationships, dynamic systems’ variables accumulate over 

time due to continuous flows of policies. Those accumulations are represented as levels such as 

an inventory level that increases due to increasing production flows. To control the production, a 

specific production rate is applied.  Levels (rectangle symbol), flows (double arrows), and rates 

(valve symbol) are the main representations of variables in SD.  In addition, rates and levels can 

be influenced by other external variables that are modeled as constants (diamond) or auxiliaries 

(circle) linked by information links (single arrows). Figure 51 represents a simple simulation 

model that helps us understand the interactions between the ordered merchandise from clients 

(order rate), the available goods (inventory), and production rate (production).  Those 

interactions are computed numerically through a set of differential equations (e.g.; Production= 

(Desired Inventory - Inventory)/Inventory Adjustment Time). The simulation can help business 

managers in estimating the optimum level of inventory to cover their future market demands.  

  

 
 

Figure 51: level-rate diagram example 
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Appendix B: Simulation source code 

 

 

 The following appendix illustrates the implementation code of the simulation in the 

Powersim
®
 environemt that uses a C-like syntax.   
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Appendix C: simulation validation on D2-D10 designs 

 

 

 This appendix presents the design changes and adaptations that were applied on D2-D10 

designs. It also describes the correlations between the simulated and the real values of the 

QMOOD quality attributes other than understandability.  

 

C.1     Design 2 (D2): Banker system 

C.1.1   System description and reference quality values 

 The banker system handles all banking operations such as accounts management and 

money withdrawals through two interfaces: clerk and administrator interfaces. On the one hand, 

a clerk can manage loans, check balances, and handle account operations. On the other hand, an 

administrator manages staff profiles (figure 56). The quality and reference values of the banker 

system are illustrated in tables 17 and 18.    

 

C.1.2    Design changes 

C.1.2.1 Design changes affecting the understandability quality attribute 

 The understandability quality attribute of D2 decreased below its reference value when 

design size increased by seven classes. To counterbalance the impact of that design change, 

encapsulation is the best fit adaptation mechanism both in the simulated and the real results 

(tables 8 and 9).    
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1) Simulated results 

 D2 simulation results show that encapsulation should be increased by a factor of seven to 

compensate for the decrease in understandability (figure 53). Therefore, the “DAM” metric 

should equal 1 in all the newly added seven classes.   

 

2) Real results 

 The simulated results were applied on D2’s class diagram as illustrated in figure 54. 

Since encapsulation is maximized in all the seven classes (i.e. the ratio of private attributes to the 

total number of attributes in each class equals 1), the real value of understandability after 

adaptation equals its simulated value. 
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Figure 52: The banker system class diagram 
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Figure 53: Understandability adaptation results of D2 
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Figure 54: D2’s understandability design change and adaptation 

Mortgages 

- mortgageRate: String 

- mortgageOption: String 

+ createMortgage (clientID: String,  rate: 

String, option: String) 

+ updateMortgage (clientID: String, 

motgageNumber: String) 

+ deleteMortgage (clientID: String, 

motgageNumber: String) 

 

 

 

Individual retirement account 

- accountNumber : String 

-accountType: String 

+ getIRAtype (type: String) 

+ manageIRA (type: String, 

dateAccountCreation: String, 

balance: String) 

 

 

Banking services 

-serviceType: String 

+ getServiceType ( type: String) 

 

 

 

Credit cards 

-cardType: String 

-cardNumber: String 

+ manageOptimizerCard 

(cardNumber: String, 

expirationDate: String, 

securityCode: String) 

+ manageVISASignatureCard 

(cardNumber: String, 

expirationDate: String, 

securityCode: String) 

+ clearPointsCreditCard 

(cardNumber: String, 

expirationDate: String, 

securityCode: String) 

+ cancelCard (cardNumber: 

String, securityCode: String) 

+ activateCard (cardNumber: 

String, securityCode: String) 

 

 

Mobile banking 

- type: String 

-date: String   

+ processMobileTransaction 

(textMessage: String, id: int) 

+ cancelMobileTransaction (id: int) 

 

 

 

Online banking 

-title: String 

-author: String   

+ processOnlineBill (clientID: int, 

billNumber: String) 

+ cancelOnlineBill (billNumber: 

String) 

+ processFundsTransfer(clientID: int, 

amount: String, accountNumber: 

String) 

 

 

ATM banking 

-banking service: String 

+ personalServices (type: String)  

+ manageAccount (accountNumber: 

String) 
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C.1.2.2 Design changes affecting the extendibility and the flexibility quality attributes 

 After adding seven new classes to D2’s class diagram, new aggregation and inheritance 

relationships were identified as illustrated in figure 57. The aggregation relationships are 

represented by a diamond symbol. Since the “Banking services”, “Credit cards”, and 

“Mortgages” classes’ responsibilities are part of the “Control bank” class, the defined 

relationship between them is aggregation. The “individual retirement account” inherits the 

characteristics of the “Account” class. Another inheritance relationship is defined between the 

“banking services” class and three classes: “Online banking”, “Mobile banking”, and “ATM 

banking”. Those new changes and their adaptation were both simulated and applied in D2’s class 

diagram.       

1) Simulated results 

 The identification of new inheritance and aggregation relationships led to an increase in 

coupling and a decrease in the flexibility and the extendibility quality attributes. After applying 

the adaptation equation of polymorphism, the extendibility quality attribute reaches its reference 

value and the decrease in flexibility is also counterbalanced (figures 55 and 56). The simulation 

results show that the NOP metric should be increased by a factor of seven to effectively adapt the 

flexibility and the extendibility values.   

2) Real results 

 The simulated design changes and adaptations were applied on D2. Seven polymorphic 

methods were added to D2’s classes as suggested by the simulation (figure 57). The values of 

flexibility and extendibility after integrating their adaptations on D2 nearly equal their simulated. 
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Figure 55: Flexibility adaptation results of D2 

 

 

 
Figure 56: Extendibility adaptation results of D2 
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Figure 57: Flexibility and extendibility design change and adaptation in D2 

Mortgages 

- mortgageRate: String 

- mortgageOption: String 

+ createMortgage (clientID: String,  rate: 

String, option: String) 

+ updateMortgage (clientID: String, 

motgageNumber: String) 

+ deleteMortgage (clientID: String, 

motgageNumber: String) 

 

Mortgages 

- mortgageRate: String 

- mortgageOption: String 

+ createMortgage (clientID: String,  rate: 

String, option: String) 

+ updateMortgage (clientID: String, 

motgageNumber: String) 

+ deleteMortgage (clientID: String, 

motgageNumber: String) 

 

Mortgages 

- mortgageRate: String 

- mortgageOption: String 

+ createMortgage (clientID: String,  rate: String, 

option: String) 

+ updateMortgage (clientID: String, 

motgageNumber: String) 

+ deleteMortgage (clientID: String, 

motgageNumber: String) 

+ deleteMortgage (clientID: String) 

+ createMortgage (clientID: String) 

 

 

 

 

 
Individual retirement account 

- accountNumber : String 

-accountType: String 

+ getIRAtype (type: String) 

+ manageIRA (type: String, 

dateAccountCreation: String, 

balance: String) 

 

 
Banking services 

-serviceType: String 

+ getServiceType ( type: String) 

 

 

 
Credit cards 

-cardType: String 

-cardNumber: String 

+ manageOptimizerCard (cardNumber: 

String, expirationDate: String, 

securityCode: String) 

+ manageVISASignatureCard 

(cardNumber: String, expirationDate: 

String, securityCode: String) 

+ clearPointsCreditCard (cardNumber: 

String, expirationDate: String, 

securityCode: String) 

+ cancelCard (cardNumber: String, 

securityCode: String) 

+ activateCard (cardNumber: String, 

securityCode: String) 

+ manageOptimizerCard (cardNumber: 

String) 

+ manageVISASignatureCard 

(cardNumber: String) 

+ clearPointsCreditCard (cardNumber: 

String) 

+ cancelCard (cardNumber: String) 

 

 
Mobile banking 

- type: String 

-date: String   

+ processMobileTransaction 

(textMessage: String, id: int) 

+ cancelMobileTransaction 

(id: int) 

+ processMobileTransaction 

(id: int) 

 

 

 
Online banking 

-title: String 

-author: String   

+ processOnlineBill (clientID: int, 

billNumber: String) 

+ cancelOnlineBill (billNumber: String) 

+ processFundsTransfer(clientID: int, 

amount: String, accountNumber: String) 

 
 

ATM banking 

-banking service: String 

+ personalServices (type: String)  

+ manageAccount (accountNumber: String) 

 

 

 
Control bank 

 

 

 

 
Account 
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C.1.2.3 Design changes affecting the reusability and the functionality quality attributes 

 The third design change applied in D2 leads to a decrease in design size. The class 

“policy” was deleted and its attributes were merged in the “Account” class. Furthermore, the 

“checking” and the “savings” classes were deleted and their responsibilities were processed by 

the “Account” class.   

1) Simulated results 

The simulation results of the third design change in Powersim
®
 show a decrease in the 

reusability and the functionality quality attributes below their reference values (figures 58 and 

59). This decrease is counterbalanced by applying the adaptation equation of cohesion. From the 

simulation graph, cohesion should be increased by a factor of six. Therefore, the relatedness 

among the methods of six classes in D2 should be maximized (i.e. CAM equals 1).      

 

 
Figure 58: Functionality adaptation results of D2 
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Figure 59: Reusability adaptation results of D2 

 

 

2) Real results 

 The simulated adaptation through cohesion was applied in D2 to counterbalance the 

effect of design size decrease. Hence, cohesion among the six following classes was maximized 

by increasing the relatedness among their methods: “Individual retirement account”, “ATM 

banking”, “Mobile banking”, “Online banking”, “Mortgages”, and “Banking services” (figure 

60). The values of functionality and reusability after the real adaptation almost equal their 

forecasted values in the simulation.   
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Figure 60: Functionality and reusability design change and adaptation in D2 

 
Credit cards 

-cardType: String 

-cardNumber: String 

+ manageOptimizerCard (cardNumber: 

String, expirationDate: String, 

securityCode: String) 

+ manageVISASignatureCard 

(cardNumber: String, expirationDate: 

String, securityCode: String) 

+ clearPointsCreditCard (cardNumber: 

String, expirationDate: String, 

securityCode: String) 

+ cancelCard (cardNumber: String, 

securityCode: String) 

+ activateCard (cardNumber: String, 

securityCode: String) 

+ manageOptimizerCard (cardNumber: 

String) 

+ manageVISASignatureCard 

(cardNumber: String) 

+ clearPointsCreditCard (cardNumber: 

String) 

+ cancelCard (cardNumber: String) 

 

Mortgages 

- mortgageRate: String 

- mortgageOption: String 

+ createMortgage (clientID: String,  rate: String, 

option: String) 

+ updateMortgage (clientID: String, 

motgageNumber: String, rate: String, option: 

String) 

+ deleteMortgage (clientID: String, 

motgageNumber: String, rate: String, option: 

String) 

+ deleteMortgage (clientID: String, rate: String, 

option: String) 

+ createMortgage (clientID: String, rate: String, 

option: String) 

 

 

 

 

 
Control bank 

 

 

  
Banking services 

-serviceType: String 

+ getServiceType ( type: String) 

 

 
 

Mobile banking 

- type: String 

-date: String   

+ processMobileTransaction 

(textMessage: String, id: int) 

+ cancelMobileTransaction 

(id: int, textMessage: String) 

+ processMobileTransaction 

(id: int, textMessage: String) 

 

 
 

ATM banking 

-banking service: String 

+ personalServices (type: String)  

+ manageAccount (accountNumber: 

String, type: String) 

 

 

 
Online banking 

-title: String 

-author: String   

+ processOnlineBill (clientID: int, 

billNumber: String) 

+ cancelOnlineBill (billNumber: String, 

clientID: int) 

+ processFundsTransfer(clientID: int, 

amount: String, accountNumber: String, 

billNumber: String) 

 

 
 

Individual retirement account 

- accountNumber : String 

-accountType: String 

+ getIRAtype (type: String, 

dateAccountCreation: String, balance: String) 

+ manageIRA (type: String, 

dateAccountCreation: String, balance: Str) 

 

 
Account 
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C.1.2.4 Design changes affecting the effectiveness quality attribute 

 Composition is decreased by deleting two aggregation relationships from D2’s class 

diagram. As a consequence, the effectiveness value dropped below its reference value. The 

aggregation relationship between the “Mortgage” and the “Account” classes was deleted. 

Instead, the “Mortgage” class becomes one of the children of the “Account” class. Moreover, the 

“Menu” class was deleted and its methods were merged in the “Control Bank” class.  

1) Simulated results 

 According to the simulation results, polymorphism should be increased by a factor of 

eight to adapt to the decrease in effectiveness (figure 61).  

 

 
Figure 61: Effectiveness adaptation results of D2 
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2) Real results 

 The same simulated results were noticed after applying the changes and their adaptations 

in D2’s class diagram. The adaptation mechanism was applied in D2 by adding eight 

polymorphic equations such as “+ activateCard (cardNumber: String)” in the “Credits cards” 

class  and “+ updateMortgage (clientID: String)” in the “Mortgages” class. The value of 

effectiveness from D2 after its adaptation is similar to its simulated expectations. 

  

C.2. Design 3 (D3): The Sol security system 

C.2.1. System description and reference quality values 

 The Sol security system allows users to control the security options of their homes such 

as the cameras and the motion sensors remotely. Figures 62, 63, and 64 represent the different 

components of the system class diagram. Moreover, the initial quality and reference values of D3 

are illustrated in tables 17, 18.  
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Figure 62:  The workstation classes of D3 
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Figure 63: The server classes of D3 

 

 
 

Figure 64: The monitoring device classes of D3 
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C.2.2 Design changes 

C.2.2.1 Design changes affecting the understandability quality attribute 

 When design size increased by six classes, D3’s understandability decreased below its 

reference value. The encapsulation adaptation equation effectively counterbalances the resulting 

decrease in D3’s quality as it is depicted in the simulation and the real results of D3.   

1) Simulated results 

 As it is illustrated in figure 65, D3 overcomes the decrease in understandability when 

encapsulation increases by a factor of six (i.e. DAM should equal 1 in all the newly added six 

classes).   

2) Real results 

 After increasing the design size of D3 and applying the adaptation equation of 

encapsulation, the obtained real understandability reaches again its reference and equals its 

simulated value (figure 66). 

 
Figure 65: Understandability adaptation results of D3 
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Figure 66: Understandability design change and adaptation in D3 

 

 

 

 

Flood alarm 

- waterLevel: String 

- alarmStatus: String 

-ring: String 

+ launchAlarm (waterLevel: String,  

alarmStatus: String, ring: String) 

+ stopAlarm (ring: String, waterLevel: String) 

 

 

 
Carbon monoxide alarm 

- COLevel : String 

-alarmStatus: String 

-ring: String 

+ launchAlarm (COlevel: String, 

alarmStatus: String, ring: String) 

+ stopAlarm (ring: String, COlevel: 

String) 

 

 
Carbon monoxide detector 

- COLevel : String  

- detectorStatus: String 

- detector: String 

+ launchDetector  (COLevel: 

String, detectorStatus: String, 

detector: String) 

+ stopDetector (COLevel: String, 

detector: String) 

 

 

 
Flood detector 

- waterLevel: String 

- detectorStatus: String 

-ring: String 

+ launchDetector (waterLevel: String,  

detectorStatus: String, detector: String) 

+ stopDetector (detector: String, 

waterLevel: String) 

 

 

 
Flood event 

-floodEventStatus: String 

-floodEventTime: String   

+ scheduleEvent (floodEventTime: 

String, detectedLevel: String) 

+cancelEvent (floodEventTime: String, 

detectedLevel: String 

 

 
Carbon monoxide event 

-carbonEventStatus: String 

-carbonEventTime: String   

+ scheduleEvent (carbonEventTime: String, 

detectedLevel: String) 

+cancelEvent (carbonEventTime: String, 

detectedLevel: String  
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C.2.2.3 Design changes affecting the extendibility and the flexibility quality attributes 

 The newly added classes in D3 from the previous design change were linked through 

inheritance relationships, which increase the coupling rate in the design. In figure 69, The 

“Alarm” class is the ancestor of the “Fire alarm” and the “Intrusion alarm” classes. In addition, 

the “Carbon monoxide detector” and the “Flood detector” classes are inheriting the 

characteristics of the “Monitoring device” class. Another inheritance relationship was established 

between the “Event” class and its children: “Carbon monoxide event” and “Flood event” classes. 

The impact of increasing coupling on D3’s quality and its corresponding adaptation was both 

simulated and applied in the real design.   

1) Simulated results 

 From figures 67 and 68, the increase in coupling led to a decrease in both the flexibility 

and the extendibility quality attributes. The simulation results show that polymorphism should be 

increased by a factor of six to overcome the decrease in quality.   

2) Real results 

 Adding six polymorphic methods to D3 as suggested by the simulation counterbalances 

the decrease in quality caused by the increase in coupling (figure 69). The real values of 

extendibility and flexibility after adaptation nearly equal their simulated values. 
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Figure 67: Extendibility adaptation results of D3 

 
Figure 68: Flexibility adaptation results of D3 
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Figure 69: Flexibility, extendibility, reusability, and functionality design changes with their 

adaptations in D3 

 
Carbon monoxide event 

-carbonEventStatus: String 

-carbonEventTime: String   

+ scheduleEvent (carbonEventTime: String, 

detectedLevel: String) 

+cancelEvent (carbonEventTime: String, 

detectedLevel: String)  

 

 
Carbon monoxide detector 

- COLevel : String  

- detectorStatus: String 

- detector: String 

+ launchDetector  (COLevel: String, 

detectorStatus: String, detector: String) 

+ launchDetector  (COLevel: String) 

+ launchDetector  (detector: String) 

+ stopDetector (COLevel: String, detector: 

String, detectorStatus: String) 

 

 
Flood detector 

- waterLevel: String 

- detectorStatus: String 

-ring: String 

+ launchDetector (waterLevel: String,  

detectorStatus: String, detector: String) 

+ stopDetector (detector: String, 

waterLevel: String, detectorStatus: String) 

 

 
Flood event 

-floodEventStatus: String 

-floodEventTime: String   

+ scheduleEvent (floodEventTime: 

String, detectedLevel: String) 

+cancelEvent (floodEventTime: String, 

detectedLevel: String) 

 

 
Carbon monoxide alarm 

- COLevel : String 

-alarmStatus: String 

-ring: String 

+ launchAlarm (COlevel: String, 

alarmStatus: String, ring: String) 

+ launchAlarm (COlevel: String) 

+ launchAlarm (ring: String) 

+ stopAlarm (ring: String, COlevel: 

String, alarmStatus: String) 

 

Flood alarm 

- waterLevel: String 

- alarmStatus: String 

-ring: String 

+ launchAlarm (waterLevel: String,  alarmStatus: 

String, ring: String) 

+ launchAlarm (waterLevel: String) 

+ launchAlarm (alarmStatus: String) 

+ stopAlarm (ring: String, waterLevel: String, 

alarmStatus: String) 

 

 
Alarm 

 

 

 

 
Monitoring device 

 

 

 

 
Event 
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C.2.2.3 Design changes affecting the reusability and the functionality quality attributes 

 The values of the reusability and the functionality quality attributes decreased below their 

reference values after dropping three classes from D3. Thus, the design size of D3 decreased 

when the following classes were omitted from the class diagram in figures 62-64: “Schedule 

Button”, “Edit Schedule”, and “Event Log Button”.  Those design changes and their adaptations 

were both simulated and applied in the real design of D3.  

1) Simulated results 

 The simulated results illustrated in figures 70 and 71 showed that cohesion should be 

increased by a factor of six to counterbalance the decrease in functionality and reusability.  

2) Real results 

 Cohesion was maximized among six classes of D3 as suggested by the simulation to 

adapt the quality levels of reusability and functionality (figure 69). The real quality values of 

both quality attributes after adaptation almost equal their simulated values.  
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Figure 70: Reusability adaptation results of D3 

 
Figure 71: Functionality adaptation results of D3 

 

 

C.3   Design 4 (D4): Alexandria web-based library system 

C.3.1   System description and reference quality values 
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 The Alexandria library system deals with the operations of its members, staff and 

catalogue. Through D4’s system, a member can benefit from many options such as checkout 

items, return items, and pay late fees. Staff members’ options are multiple such as collect late 

fees, issuing, renewing, and cancelling memberships. The library catalogue can be managed 

through several functionalities such as checkout status and item type. D4 class diagram is 

represented in figure 72. Moreover, the reference values of D4 can be depicted in tables 16 and 

17. 

 
 

Figure 72: D4 class diagram 
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C.3.2 Design changes 

C.3.2.1 Design changes affecting the understandability quality attribute 

 After increasing D4 design size by adding ten new classes, understandability decreased 

below its reference value. From both the simulation and the real results, encapsulation effectively 

brings back the value of understandability to its reference value. 

1) Simulated results 

 According to the simulated results in figure 73, encapsulation should equal one in all the 

newly added classes to counterbalance the decrease in understandability. 

 

2) Real results 

 Figures 74 and 75 illustrate the increase in D4’s design size and its corresponding 

adaptation through encapsulation. The computed real value of understandability after adaptation 

almost equals its simulated value.  
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Figure 73: Understandability adaptation results of D4 
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Figure 74: Understandability design change and adaptation in D4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post complaints 

- type: String 

-date: String   

+ postComplaint (id: int, type: String, date: 

String, title: String, content: String) 

+ updateComplaint (id: int, date: String, title: 

String) 

+ cancelComplaint (id: int) 

 

 
Member service controller 

- serviceType: String 

+ getService (type: String) 

 
 

Member service  

- serviceType: String 

+ transferService (type: String) 

 

 
Library amenities 

-reservationType: String 

-date: String 

+ postTalkRoomReservation (date: String, 

event: String) 

+ updateReservation (date: String, event: 

String) 

+ cancelReservation (date: String, event: 

String) 

 

 
Library events 

- event Type: String 

- event date: String 

+ exhibitBooks (newArrival: String,  

specialEdition: String) 

+ announceTalk (date: String, topic: 

String) 
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Figure 75: Understandability design change and adaptation in D4 

 

 

C.3.2.2 Design changes affecting the extendibility and the flexibility quality attributes 

 The eight added classes to D4 were linked together through two types of relationships: 

aggregation and inheritance. An aggregation relationship is identified between the “Member 

service controller” class and three classes namely “Post complaints”, “Library amenities”, and 

“Library events”. The remaining classes are linked though inheritance. The “item” class is the 

ancestor of the “Suggestions” class. The “Books”, the “Audio books”, the “Videos”, and the 

“Periodicals” classes inherit the characteristics of the “Suggestions” class. The impacts of those 

 
Videos  

-title: String 

-director: String 

-Length: String   

+ addVideo (title: String, director: 

String, length: String) 

+ updateVideo (title: String, 

director: String) 

+ cancelVideo (title: String, 

director: String) 

 

 
Periodicals 

- type: String 

- title: String 

 

+ addPeriodical(type: String, title: String) 

+ updatePeriodical (type: String, title: 

String) 

+ cancelPeriodical (type: String, title: 

String) 

 

 
Audio books 

-title: String 

-author: String   

+ addAudioBook (title: String, author: 

String) 

+ updateAudioBook (title: String, author: 

String) 

+ cancelAudioBook (title: String, author: 

String) 

 

 

 
Books 

-title: String 

-author: String   

+ addSuggestion (id: int, author: String, 

type: String, title: String) 

+ updateSuggestion (bookid: int, 

availability: bool) 

+ cancelSuggestion (id: int, title: String, 

author: String) 

 
 

Suggestions 

-suggestionType: String 

+ getSuggestionType (type: String) 
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design changes and their adaptations through polymorphism were experimented in the simulation 

and in the real design of D4.  

1) Simulated results 

 After increasing coupling, flexibility and extendibility decreased below their reference 

values (Figures 76 and 77).  From the simulation results, polymorphism should be increased by 

eight to compensate for the decrease in quality.   

2) Real results 

 The increase in coupling and the suggested polymorphism adaptation value from the 

simulation were applied on the real class diagram of D4 (figures 78 and 79). The computed real 

values of flexibility and extendibility after adaptation nearly equal their simulated values.   

 
Figure 76: Flexibility adaptation results of D4 
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Figure 77: Extendibility adaptation results of D4 
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Figure 78: Flexibility and extendibility design change and adaptation in D4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post complaints 

- type: String 

-date: String   

+ postComplaint (id: int, type: String, date: 

String, title: String, content: String) 

+ postComplaint (id: int) 

+ postComplaint (id: int, type: String) 

+ postComplaint (id: int, type: String, date: 

String) 

+ postComplaint (title: String) 

+ updateComplaint (id: int, date: String, title: 

String) 

+ cancelComplaint (id: int) 

 

 
Member service  

- serviceType: String 

+ transferService (type: String) 

 

 
Library amenities 

-reservationType: String 

-date: String 

+ postTalkRoomReservation (date: String, 

event: String) 

+ updateReservation (date: String, event: 

String) 

+ updateReservation (event: String) 

+ cancelReservation (date: String, event: 

String) 

+ cancelReservation (event: String) 

 

 

 
Library events 

- event Type: String 

- event date: String 

+ exhibitBooks (newArrival: String,  

specialEdition: String) 

+ exhibitBooks (newArrival: String) 

+ exhibitBooks (specialEdition: String) 

+ announceTalk (date: String, topic: 

String) 

 

 
Member service controller 

- serviceType: String 

+ getService (type: String) 

 



196 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 79: Flexibility and extendibility design change and adaptation in D4 

 

 

 

 

 

 

 
Videos  

-title: String 

-director: String 

-Length: String   

+ addVideo (title: String, director: 

String, length: String) 

+ updateVideo (title: String, 

director: String) 

+ cancelVideo (title: String, 

director: String) 

 

 
Periodicals 

- type: String 

- title: String 

 

+ addPeriodical(type: String, title: String) 

+ updatePeriodical (type: String, title: 

String) 

+ cancelPeriodical (type: String, title: 

String) 

 

 
Audio books 

-title: String 

-author: String   

+ addAudioBook (title: String, author: 

String) 

+ updateAudioBook (title: String, author: 

String) 

+ cancelAudioBook (title: String, author: 

String) 

 

 

 
Books 

-title: String 

-author: String   

+ addSuggestion (id: int, author: String, 

type: String, title: String) 

+ updateSuggestion (bookid: int, 

availability: bool) 

+ cancelSuggestion (id: int, title: String, 

author: String) 

 

 
Suggestions 

-suggestionType: String 

+ getSuggestionType (type: String) 

 

 
Item 

-title: String 

-genre: String 

+ getItemType (type: String) 
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C.3.2.3 Design changes affecting the reusability and the functionality quality attributes 

 D4’s design size was decreased by dropping three classes namely “post complaints”, 

“Library amenities”, and “Library events”. Then, the responsibilities of those classes were added 

to the “Member” class. Consequently, reusability and functionality decreased below their 

reference values and was effectively adapted by increasing cohesion as illustrated in the 

simulated and the real results.   

1) Simulated results 

 D4’s cohesion should be maximized in six classes to bring back the value of reusability 

and functionality to their reference levels (figures 80 and 81).   

2) Real results 

 The application of the design change in D4 and the suggested cohesion level by the 

simulation make the real values of functionality and reusability identical to their simulated 

values (figures 82 and 83). 

 
Figure 80: Reusability adaptation results of D4 
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Figure 81: Functionality adaptation results of D4 
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Figure 82: Reusability and functionality design change and adaptation in D4 

 

 

 

 

 

 

 

 

 

 

 

 
Member service controller 

- event Type: String 

- event date: String 

- complaintType: String 

-complaintDate: String  

-reservationType: String 

-date: String  

+ exhibitBooks (newArrival: String,  specialEdition: String) 

+ exhibitBooks (newArrival: String) 

+ exhibitBooks (specialEdition: String) 

+ announceTalk (date: String, topic: String) 

+ postComplaint (id: int, type: String, date: String, title: String, content: String) 

+ postComplaint (id: int) 

+ postComplaint (id: int, type: String) 

+ postComplaint (id: int, type: String, date: String) 

+ postComplaint (title: String) 

+ updateComplaint (id: int, date: String, title: String) 

+ cancelComplaint (id: int) 

+ postTalkRoomReservation (date: String, event: String) 

+ updateReservation (date: String, event: String) 

+ updateReservation (event: String) 

+ cancelReservation (date: String, event: String) 

+ cancelReservation (event: String) 

 

 
Member service  

- serviceType: String 

+ transferService (type: String) 
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Figure 83: Reusability and functionality design change and adaptation in D4 

 

 

 

 
Videos  

-title: String 

-director: String 

-Length: String   

+ addVideo (title: String, director: 

String, length: String) 

+ updateVideo (title: String, 

director: String) 

+ cancelVideo (title: String, 

director: String, Length: String) 

 

 
Periodicals 

- type: String 

- title: String 

 

+ addPeriodical(type: String, title: String) 

+ updatePeriodical (type: String, title: 

String) 

+ cancelPeriodical (type: String, title: 

String) 

 

 
Audio books 

-title: String 

-author: String   

+ addAudioBook (title: String, author: 

String) 

+ updateAudioBook (title: String, author: 

String) 

+ cancelAudioBook (title: String, author: 

String) 

 

 

 
Books 

-title: String 

-author: String   

+ addSuggestion (id: int, author: String, 

type: String, title: String) 

+ updateSuggestion (bookid: int, 

availability: bool, title: String, author: 

String) 

+ cancelSuggestion (id: int, title: String, 

author: String) 

 

 
Suggestions 

-suggestionType: String 

+ getSuggestionType (suggestionType: 

String) 

 

 
Item 

-title: String 

-genre: String 

+ getItemType (type: String, title: String, 

genre: String) 
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C.4. Design 5 (D5): Third eye Home security system   

C.4.1. System description and reference quality values 

 Third eye enables users to set up a remote security system for their homes or businesses. 

The user can view streaming videos of his cameras while at work. The system can also take 

snapshots of specific areas of the user’s home and email them to him. If an intruder is detected, 

the user is notified through text messages and emails with a snapshot from the security camera. 

Through third eye, the user can set up the notification option by choosing the type of events and 

the means of contact when a threat is detected. The class diagram of D5 represents the different 

options that are available in the system (figure 84). The reference quality values of D5 can be 

accessed in tables 17 and 18. 
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Figure 84: D5 class diagram 

 

 

C.4.2 Design changes 

C.4.2.1 Design changes affecting the understandability quality attribute 

 The class diagram of D5 was extended by adding four classes namely “Security options”, 

“Fire alarm”, “Flood watch”, and “Carbon monoxide protection” (figure 86). This design change 

led to a decrease in understandability that is adapted by increasing encapsulation as it is 

described in the simulation and the real results. 
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1) Simulated results 

 To compensate for the decrease in understandability after increasing the design size of 

D5, encapsulation should be increased by a factor of 4 (figure 85). 

 

2) Real results 

 The simulated results of D5 were applied in its class diagram as illustrated in figure 86. 

Encapsulation was maximized in the four classes (i.e. DAM = 1) and the real understandability 

value after adaptation is identical to its simulated value.  

 

 

 
Figure 85: Understandability adaptation results of D5 
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Figure 86: Understandability design change and adaptation in D5 

 

 

C.4.2.2 Design changes affecting the flexibility and the extendibility quality attributes 

 The value of coupling in D5 increased by a factor of four as it is represented in figure 89. 

The “security options” class became the ancestor of four classes: “Camera”, “Fire alarm”, “Flood 

watch”, and “Carbon monoxide protection”. As a consequence, the flexibility and the 

extendibility quality attributes decrease below their reference values. Those design changes and 

the applied adaptation strategies are described in the simulation and the real results of D5.  

1) Simulated results 

 To minimize the decrease in understandability after increasing the design size of D5, 

polymorphism should be increased by a factor of 4 (figure 85). 

 

 
Security options 

-type: String  

+ getOption(type: String) 

 

 
Carbon monoxide protection 

- COLevel : String  

- detectorStatus: String 

- detector: String 

+ launchDetector  (COLevel: 

String, detectorStatus: String, 

detector: String) 

+ stopDetector (COLevel: String, 

detector: String) 

 

 
Flood watch 

- waterLevel: String 

- detectorStatus: String 

-ring: String 

+ launchDetector (waterLevel: String,  

detectorStatus: String, detector: String) 

+ stopDetector (detector: String, 

waterLevel: String) 

 

 

 
Fire alarm 

- smokeLevel: String 

- detectorStatus: String 

-ring: String 

+ launchFireAlarm (smokeLevel: String,  

detectorStatus: String, ring: String) 

+ stopFireAlarm (smokeLevel: String,  

detectorStatus: String, ring: String) 
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2) Real results 

 The simulated results of D5 were applied in its class diagram as illustrated in figure 89. 

Four polymorphic methods were added to the class diagram of D5 such as “launchDetector 

(waterLevel: String)”. Then, the computed real flexibility and extendibility values after 

adaptation are similar to their simulated ones.   

 
Figure 87: Flexibility adaptation results of D5 
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Figure 88: Extendibility adaptation results of D5 
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Figure 89: Extendibility and flexibility design change and adaptation in D5 

 

 

 

 

 

 

 

 

 
Security options 

-type: String  

+ getOption(type: String) 

 

 
Carbon monoxide protection 

- COLevel : String  

- detectorStatus: String 

- detector: String 

+ launchDetector  (COLevel: 

String, detectorStatus: String, 

detector: String) 

+ launchDetector  (COLevel: 

String) 

+ launchDetector  (COLevel: 

String, detectorStatus: String) 

+ stopDetector (COLevel: String, 

detector: String) 

 

 
Flood watch 

- waterLevel: String 

- detectorStatus: String 

-ring: String 

+ launchDetector (waterLevel: String,  

detectorStatus: String, detector: String) 

+ launchDetector (waterLevel: String) 

+ launchDetector (waterLevel: String,  

detectorStatus: String) 

+ stopDetector (detector: String, 

waterLevel: String) 

 

 
Fire alarm 

- smokeLevel: String 

- detectorStatus: String 

-ring: String 

+ launchFireAlarm (smokeLevel: String,  

detectorStatus: String, ring: String) 

+ stopFireAlarm (smokeLevel: String,  

detectorStatus: String, ring: String) 

 

 
Camera 
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C.4.2.3 Design changes affecting the reusability, the functionality, and the effectiveness 

quality attributes 

 The design size of D5 was decreased by dropping two classes from its class diagram: 

“MenuInterface” and “DropdownMenu”. This design change led also to a decrease in 

composition since the omitted class diagrams are related to other classes through aggregation 

relationships. Therefore, those design changes affect the reusability, the functionality, and the 

effectiveness quality attributes as it is illustrated in the simulated and the real results.    

1) Simulated results 

 On the one hand, the decrease in design size leads to a drop in the values of the 

reusability and the functionality quality attributes. In this case, cohesion should be increased by 

four as an adaptation strategy (figures 91 and 92). On the other hand, the decrease in composition 

drops the value of effectiveness below its reference value. To overcome this decrease, 

polymorphism is increased by six (figure 93).  

2) Real results 

 The simulated design changes and adaptations were applied in the class diagram of D5 as 

illustrated in figure 94. The computed real values of the quality attributes after adaptation nearly 

equal their simulated ones.  
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Figure 90: Reusability adaptation results of D5 

 

 

 
Figure 91: Functionality adaptation results of D5 
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Figure 92: Effectiveness adaptation results of D5 
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Figure 93: Reusability, functionality, and effectiveness design change and adaptation in D5 

 

 

 

 

 

 
Security options 

-type: String  

+ getOption(type: String) 

 

 
Carbon monoxide protection 

- COLevel : String  

- detectorStatus: String 

- detector: String 

+ launchDetector  (COLevel: 

String, detectorStatus: String, 

detector: String) 

+ launchDetector  (COLevel: 

String) 

+ launchDetector  (COLevel: 

String, detectorStatus: String) 

+ stopDetector (COLevel: String, 

detector: String) 

+ stopDetector (COLevel: String) 

 

 
Flood watch 

- waterLevel: String 

- detectorStatus: String 

-ring: String 

+ launchDetector (waterLevel: String,  

detectorStatus: String, detector: String) 

+ launchDetector (waterLevel: String) 

+ launchDetector (waterLevel: String,  

detectorStatus: String) 

+ stopDetector (detector: String, 

waterLevel: String) 

+ stopDetector (waterLevel: String) 

+ stopDetector (detector: String) 

 

 
Camera 

 

 

 

 
Fire alarm 

- smokeLevel: String 

- detectorStatus: String 

-ring: String 

+ launchFireAlarm (smokeLevel: String,  

detectorStatus: String, ring: String) 

+ launchFireAlarm (smokeLevel: String) 

+ launchFireAlarm (smokeLevel: String,  

detectorStatus: String) 

+ launchFireAlarm (detectorStatus: String) 

+ stopFireAlarm (smokeLevel: String,  

detectorStatus: String, ring: String) 

 



212 

 

C.5     Design 6 (D6): HAMK UNIVERSITY online registration system 

C.5.1   System description and reference quality values 

 HAMK is an online university registration system that can be used by students and staff 

members. Students have access to many operations such as searching for a specific class, 

viewing a listing of the taken classes, and checking time conflicts between classes. The different 

operations and characteristics of the system are represented in the class diagram of figure 94 and 

the reference values of D6 are illustrated in tables 17 and 18.     

 

C.5.2    Design changes 

C.5.2.1   Design changes affecting the understandability quality attribute 

 Three new classes were added to D6, which increases the design size attribute and drops 

the understandability quality attribute below its reference value. The three classes are: 

“HAMKEntity”, “Transferred courses”, and “Registration holds” (figure 96). Adaptation through 

encapsulation brings back understandability to its reference value both in the simulation and the 

real results.  

1) Simulated results 

 Encapsulation should be maximized in the three newly added classes (i.e. DAM = 1) 

(figure 95) to successfully adapt the value of understandability.  

2) Real results 

 After maximizing encapsulation in the new three classes as represented in figure 96, the 

resulting value of understandability is similar to its simulated one.    
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Figure 94: D6 class diagram 
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Figure 95: Understandability adaptation results of D6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 96: Understandability design change and adaptation in D6 

 

 

 

 
Degree plan 

- course: String 

- studentId: String 

-advisor: String 

+ addCourse (course: String, studentId: 

String) 

+ updatePlan (studentId: String) 

+ createPlan (studentId: String) 

+ deletePlan (StudentId: String) 

+ DeleteCourse (course: String, studentId: 

String) 

 

 
Transferred courses 

- course: String 

- studentId: String 

-advisor: String 

+ addCourse (course: String, studentId: 

String) 

+ DeleteCourse (course: String, 

studentId: String) 

 

 
Registration holds 

- holdType: String 

- studentId: String 

-advisor: String 

+ getHolds(holdType: String) 

+ holdsStatus() 
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C.5.2.2   Design changes affecting the flexibility and the extendibility quality attributes 

 Two new inheritance relationships were identified in D5 where the “HamkEntity” class is 

the ancestor (figure 99). Those two relationships led to an increase in the coupling design 

property and both the flexibility and the extendibility quality attributes. Flexibility was adapted 

by increasing composition while extendibility was adjusted by increasing polymorphism as it is 

illustrated in the simulation and real results.    

1) Simulated results 

 From the simulation graphs in figures 97 and 98, composition should be increased by a 

factor of three and polymorphism should be increased by a factor of two to adapt the quality 

values of flexibility and extendibility.  

2) Real results 

 From figure 99, the simulated adaptations were successfully applied in the real design and 

the values of the resulting quality attributes nearly equal their simulated values. Two 

polymorphic methods such as “holdsStatus(status: String)”were added to adapt the value of 

extendibility. Three aggregation relationships (i.e. composition) were added such as the part-

whole relationship between the classes “Registration holds” and “Enrollment summary”, which 

successfully adjusts the value of the flexibility attribute.   
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Figure 97: Flexibility adaptation results of D6 

 

 
Figure 98: Extendibility adaptation results of D6 
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Figure 99: Extendibility and flexibility design change and adaptation in D6 

 

 

 

 

 

 

 
Registration holds 

- holdType: String 

- studentId: String 

-advisor: String 

+ getHolds(holdType: String) 

+ holdsStatus(status: String, 

holdType: String) 

+ holdsStatus(status: String) 

 

 
Transferred courses 

- course: String 

- studentId: String 

-advisor: String 

+ addCourse (course: String, 

studentId: String) 

+ DeleteCourse (course: String, 

studentId: String) 

 

 
Degree plan 

- course: String 

- studentId: String 

-advisor: String 

+ addCourse (course: String, studentId: 

String, advisor: String) 

+ addCourse (course: String, studentId: 

String) 

+ updatePlan (studentId: String) 

+ createPlan (studentId: String) 

+ deletePlan (StudentId: String) 

+ DeleteCourse (course: String, 

studentId: String) 

 

 
HamKEntity 

 

 

 

 
Enrollment 

summary 

 

 

 

 

Course 
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C.5.2.3 Design changes affecting the reusability, the functionality, and the effectiveness 

quality attributes 

 The last design changes in D6 decreased the values of the reusability, the functionality, 

and the effectiveness attributes below their reference values. The classes “Registration holds” 

and “Transferred courses” were deleted and their functions were merged in the classes 

“Registration” and “Course” respectively, which decreased the design size of D6 and its quality 

attributes reusability and functionality. In this case, cohesion is increased as an adaptation mean. 

The omission of classes from D6 led also to a deletion of their aggregation relationships, which 

decreased the value of effectiveness. The polymorphism adaptation equation is applied in this 

case to counterbalance the decrease in effectiveness.  

1) Simulated results 

 As it is illustrated in figures 100-102, cohesion and polymorphism should be increased by 

factors of two and three respectively to compensate for the decrease in reusability, functionality, 

and effectiveness.   

2) Real results 

 The simulated design changes and their corresponding adaptations were successfully 

applied on the real design of D6 as it is represented in figure 103. The real values of the quality 

attributes after adaptation are similar to their simulated ones.  
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Figure 100: Reusability adaptation results of D6 

 

 
Figure 101: Functionality adaptation results of D6 
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Figure 102: Effectiveness adaptation results of D6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 103: Reusability, functionality, and effectiveness design change and adaptation in 

D6 

 

 
Degree plan 

- course: String 

- studentId: String 

-advisor: String 

+ addCourse (course: String, studentId: String, advisor: String) 

+ addCourse (course: String, studentId: String, advisor: String) 

+ addCourse (course: String) 

+ addCourse (course: String, studentId: String) 

+ updatePlan (studentId: String, course: String) 

+ updatePlan (studentId: String) 

+ createPlan (studentId: String) 

+ deletePlan (StudentId: String) 

+ DeleteCourse (course: String, studentId: String) 

+ DeleteCourse (course: String) 
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C.6     Design 1 (D7): Music On the Brain (MOB) 

C.6.1   System description and reference quality values 

 MOB is an online web service allowing users to build their music playlists based on their 

preferences. The site is also recommending songs to users and keeping track of their liked and 

disliked music.  The main components of D7 design are represented in figures 104-106.  The 

reference quality values of D7 are recorded in tables 17 and 18.  

 

 

 
Figure 104: D7 class diagram (1) 
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Figure 105: D7 class diagram (2) 
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Figure 106: D7 class diagram (3) 
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C.6.2      Design changes 

C.6.2.1   Design changes affecting the understandability quality attribute 

 The design of D7 was extended by adding seven classes: “online purchase”, 

“songsbasket”, “SongBasket”, “MusicVideosLibrary”, “MusicVideo”, “VideoLibrary”, and 

“Video” (figures 109-111).  As a result, the design size of D7 increased and its understandability 

decreased below its reference value. The impact of this design change and the applied 

encapsulation adaptation equation is illustrated in the following simulation and real results.   

 

1) Simulated results 

 From figure 107, encapsulation should be increased by seven to bring back 

understandability to its reference value.  

 

2) Real results 

 Figures 108-110 show that the simulated encapsulation adaptation can be easily applied 

on the real design of D7, which makes the resulting adapted understandability equal its simulated 

value. 
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Figure 107: Understandability adaptation results of D7 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 108: Understandability design change and adaptation in D7 (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Controllers::onlinepurchase 

- title: String 

- artist: String 

-genre: String 

+ addSongToBasket (title: String, artist: 

String, genre: String) 

+ epay (basket:String, paymentamount: 

String) 

 

 
Controllers::musicvideoslibrary 

- title: String 

- artist: String 

-genre: String 

+ addSongToBasket (title: String, 

artist: String, genre: String) 

+ epay (basket:String, 

paymentamount: String) 

 

Controllers 
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Figure 109: Understandability design change and adaptation in D7 (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
GUIComponents::songsBasket 

- title: String 

- artist: String 

-genre: String 

-basket: String 

+ songsBasketForm (in 

myonlinepurchase: onlinepurchase) 

+ addSong (name: String, artist: 

String) 

+checkout (sessionId: String) 

 

 
GUIComponents::musicVideo 

- title: String 

- artist: String 

-genre: String 

-videoID; String 

+ addVideoForm (in myControllerin: 

MOBController) 

+ addVideo (videoId: String, artist: 

String) 

+ close (videoId: String, artist: String) 

 

GUIComponents 

cccomponenet 
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Figure 110: Understandability design change and adaptation in D7 (3) 

 

 

C.6.2.2 Design changes affecting the extendibility and the flexibility quality attributes 

 After adding seven classes to D7, four new relationships were identified. The first linkage 

is an inheritance relationship between the “GUIComponent” and the “SongsBasket” classes. 

Another inheritance relationship was depicted between the “GUIComponent” and the 

“MusicVideo” classes. The remaining two relationships are aggregation relationships such as the 

 
Classes::songBasket 

- title: String 

- artist: String 

-genre: String 

-basket: String 

+ addSong (title: String, artist: String) 

+ deleteSong (title: String, artist: 

String) 

+checkout (sessionId: String) 

+computeBill () 

 

 
Classes::videoLibrary 

- title: String 

- artist: String 

-type: String 

-videoID; String 

+ addVideo (in newVideo: Video) 

+ removeVideo (in videoOut: Video): 

bool 

+ count (): int 

+ getCompliment(): Library 

+ chooseRandom(): Video 

+ getEnumerator(): <unspecified> 

+ contains (in video: Video): bool 

+ copyTo() :: <unspecified> 

+ clear() 

+ isReadOnly (): bool 

+ getIntersection (in liben: Library): 

Library 

 

 
Classes::video 

- title: String 

- artist: String 

-genre: String 

-year: String 

+ getTitle (title: String, artist:String, 

genre: String, year: String) 

+ setTitle (title: String, artist:String, 

genre: String, year: String) 

+ getArtist (title: String, artist:String) 

+ setArtist (title: String, artist:String) 

+ getGenre (genre: String, 

artist:String) 

+ setGenre (genre: String, artist:String) 

+ getYear (year: String, title:String) 

+ setYear (year: String, title:String) 

+ video (in tag) 

 

Classes 

cccomp

onenet 
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relationship between the “Song” and the “SongBasket” classes (figures 113-115). Those design 

changes led to an increase in coupling and extendibility and flexibility quality attributes as it is 

illustrated in the simulated and the real results.  

1) Simulated results 

 The obtained results from the simulation in figures 111 and 112 show that polymorphism 

should be increased by four to adapt the values of extendibility and flexibility.  

2) Real results  

 Four polymorphic methods were added to D7 such as “deleteSong (title: String)” as 

represented in figures 113-115. As a result, flexibility and reusability successfully increased to at 

least their reference values. Moreover, the real values of the quality attributes almost equal their 

simulated values. 

 

 
Figure 111: Extendibility adaptation results of D7 
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Figure 112:  Flexibility adaptation results of D7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 113: Extendibility and flexibility design change and adaptation in D7 (1) 

 

 

 

 

 

 

 

 

 

 

 

 
Controllers::onlinepurchase 

- title: String 

- artist: String 

-genre: String 

+ addSongToBasket (title: String, artist: 

String, genre: String) 

+ epay (basket:String, paymentamount: 

String) 

 

 
Controllers::musicvideoslibrary 

- title: String 

- artist: String 

-genre: String 

+ addSongToBasket (title: String, 

artist: String, genre: String) 

+ epay (basket:String, 

paymentamount: String) 
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Figure 114: Extendibility and flexibility design change and adaptation in D7 (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
GUIComponents::songsBasket 

- title: String 

- artist: String 

-genre: String 

-basket: String 

+ songsBasketForm (in 

myonlinepurchase: onlinepurchase) 

+ addSong (name: String, artist: 

String) 

+checkout (sessionId: String) 

 

 
GUIComponents::musicVideo 

- title: String 

- artist: String 

-genre: String 

-videoID; String 

+ addVideoForm (in myControllerin: 

MOBController) 
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Figure 115: Extendibility and flexibility design change and adaptation in D7 (3) 

 

 

 

 

 

 

 

 
Classes::songBasket 

- title: String 

- artist: String 

-genre: String 

-basket: String 

+ addSong (title: String, artist: String) 

+ addSong (title: String) 
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Classes 

cccomp

onenet 

  
Classes::song 
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C.6.2.3   Design changes affecting the reusability, the functionality and the effectiveness 

quality attributes 

 The last design change in D7 led both to a decrease in design size and composition. The 

classes “Song” and “Video” were deleted as well as their composition relationships. On the one 

hand, the decrease in design size led to a decrease in the functionality and the reusability quality 

attributes. On the other hand, the decrease in composition led to a decrease in the effectiveness 

quality attribute. The simulated and the real results illustrate the impact of those changes and the 

applied adaptation equations of cohesion and polymorphism.    

1) Simulated results  

 To counterbalance the values of reusability and functionality, cohesion should be 

maximized (i.e. CAM =1) at least in two classes (figures 116 and 117). The value of 

effectiveness can be adapted when polymorphism is increased by six (figure 118).  

2) Real results  

 Figures 119-121 illustrate the application of the simulated changes and their 

corresponding adaptations. The cohesion adaptation mechanism was applied in the “songBasket” 

and the “videoLibrary” classes. In addition, six polymorphic methods were added to D7 such as 

“addVideo (title: String, artist: String)” to adapt the value of effectiveness. The resulting real 

values of the quality attributes are nearly similar to their simulated ones.   
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Figure 116: Reusability adaptation results of D7 

 

 

 
Figure 117: Functionality adaptation results of D7 
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Figure 118: Effectiveness adaptation results of D7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 119: Functionality, reusability, and effectiveness design changes and adaptations in 

D7 (1) 

 

 

 

 

 

 

 

 

 

 

 
Controllers::onlinepurchase 

- title: String 

- artist: String 

-genre: String 

+ addSongToBasket (title: String, artist: 

String, genre: String) 

+ epay (basket:String, paymentamount: 

String) 

 

 
Controllers::musicvideoslibrary 

- title: String 

- artist: String 

-genre: String 

+ addSongToBasket (title: String, 

artist: String, genre: String) 

+ epay (basket:String, 

paymentamount: String) 

 

Controllers 
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Figure 120: Functionality, reusability, and effectiveness design changes and adaptations in 

D7 (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
GUIComponents::songsBasket 

- title: String 

- artist: String 

-genre: String 

-basket: String 

+ songsBasketForm (in 

myonlinepurchase: onlinepurchase) 

+ addSong (name: String, artist: 

String) 

+checkout (sessionId: String) 

 

 
GUIComponents::musicVideo 

- title: String 

- artist: String 

-genre: String 

-videoID; String 

+ addVideoForm (in myControllerin: 

MOBController) 

+ addVideo (videoId: String, artist: 

String) 

+ close (videoId: String, artist: String) 

 

GUIComponents 

cccomponenet 

  
GUIComponents::GUIComponent 
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Figure 121: Functionality, reusability, and effectiveness design changes and adaptations in 

D7 (3) 

 

 
Classes::songBasket 

- title: String 

- artist: String 

-genre: String 

-basket: String 

+ addSong (title: String, 

artist: String, genre: 

String, basket: String) 

+ addSong (title: String, 

basket: String) 

+ addSong (title: String, 

artist: String, genre: 

String) 

+ addSong (title: String) 

+ addSong (title: String, 

artist: String) 

+ deleteSong (title: 

String, artist: String, 

genre: String, basket: 

String) 

+ deleteSong (title: 

String) 

+ deleteSong (title: 

String, artist: String) 

+checkout (sessionId: 

String) 

+computeBill () 

 

 
Classes::videoLibrary 

- title: String 

- artist: String 

-type: String 

-videoID; String 

-year: String 

+ addVideo (in newVideo: Video, title: String, artist: 

String, type: String, videoId: String, year: String) 

+ addVideo (in newVideo: Video, title: String) 

+ addVideo (title: String, artist: String) 

+ removeVideo (in videoOut: Video, title: String, 

artist: String, type: String, videoed: String, year: 

String): bool 

+ count (): int 

+ getCompliment(): Library 

+ chooseRandom(): Video 

+ getEnumerator(): <unspecified> 

+ contains (in video: Video, title: String, artist: String, 

type: String, videoID: String, year: String): bool 

+ copyTo() :: <unspecified> 

+ clear() 

+ isReadOnly (): bool 

+ getIntersection (in liben: Library, title: String, artist: 

String, type: String, videoID: String, year: String): 

Library 

+ getTitle (title: String, artist:String, genre: String, 

year: String) 

+ setTitle (title: String, artist:String, genre: String, 

year: String) 

+ getArtist (title: String, artist:String, type: String, 

videoID: String, year: String) 

+ getArtist (artist:String, title: String, type: String, 

videoID: String, year: String) 

+ setArtist (title: String, artist:String, type: String, 

videoID: String, year: String) 

+ setArtist (artist:String) 

+ getGenre (genre: String, artist:String) 

+ setGenre (genre: String, artist:String) 

+ getYear (year: String, title:String) 

+ setYear (year: String, title:String) 

+ video (in tag) 

 

Classes 

cccomp

onenet 
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C.7     Design 8 (D8): Skye Net Home Security 

C.7.1   System description and reference quality values 

 Skye Net is a computerized home security system that is owned by the homeowner and 

maintained remotely by the system’s producer. The protection offered by the system includes many 

options such as door/window alarms, smoke detector, and carbon monoxide detector. In addition, the 

system has different security modes such as the “away”, “vacation”, and “in home” modes (figure 

122). The reference quality values of D8 are recorded in tables 17 and 18. 

 

 
 

Figure 122: D8 class diagram 
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C.7.2     Design changes 

C.7.2.1   Design changes affecting the understandability quality attribute 

 To upgrade the capabilities of the system, four new classes were added to D8: “System 

updates”, System feedback”, “System maintenance”, and “System expansion request” (figure 

124). Consequently, the design size of D8 increased and its understandability decreased. The 

simulated and the real results show the effectiveness of the encapsulation equation in adapting 

understandability.  

1) Simulated results 

 To counterbalance the decrease in understandability, encapsulation should be maximized 

in the four newly added classes (figure 123).  

2) Real results 

 The simulated changes and their corresponding adaptations were applied in the real 

design of D8 as illustrated in figure 124. The obtained understandability from the real design of 

D8 after adaptation equals its simulated value.  
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Figure 123: Understandability adaptation results of D8 
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Figure 124: Understandability design changes and adaptations of D8 

 

 

C.7.2.2   Design changes affecting the extendibility and the flexibility quality attributes 

 The newly added classes in the first design change were linked to the class “System” 

through aggregation relationships, which increased the coupling property of D8 (figure 127). 

Consequently, the flexibility and the extendibility quality attributes dropped below their 

reference values as illustrated in the following simulated and real results.    

1) Simulated results 

 The decrease in extendibility and flexibility can be adapted by increasing polymorphism 

to three polymorphic methods (figures 125 and 126).   

 

 

 
System feedback 

- level: String 

- type: String 

- date: String 

- content: String 

+ failureLevel (level: String) 

+satisfaction (level: String) 

+ critics (type: String, date: String, 

content: String) 

 

 
System updates 

- name: String 

+ buyOnline (name: String) 

+activate (name: String) 

+ cancel (name: String) 

  
System maintenance 

- type: String 

- date: String 

- content: String 

+ sendRequest (type: String, date: String) 

+deleteRequest (type: String, date: 

String) 

+ updateRequest (type: String, date: 

String) 

 

 
System expansion request 

- type: String 

- date: String 

- content: String 

+ suggestRequest (type: String, date: 

String) 

+deleteRequest (type: String, date: 

String) 

+ updateRequest (type: String, date: 

String) 
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2) Real results 

 As suggested in the simulated results, three polymorphic methods such as 

“suggestRequest (type: String)” were added to D8 to adapt the values of extendibility and 

flexibility (figure 127).  The real computed values of the quality attributes after adaptation are 

similar to their simulated values.  

 
Figure 125: Extendibility adaptation results of D8 
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Figure 126: Extendibility adaptation results of D8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F 

Figure 127: Extendibility and flexibility design changes and adaptations in D8 

 

 

 

 

 

 

 

 

 
System feedback 

- level: String 

- type: String 

- date: String 

- content: String 

+ failureLevel (level: String) 

+satisfaction (level: String) 

+ critics (type: String, date: String, 

content: String) 

 

 
System updates 

- name: String 

+ buyOnline (name: String) 

+activate (name: String) 

+ cancel (name: String) 

 

 
System maintenance 

- type: String 

- date: String 

- content: String 

+ sendRequest (type: String, date: String) 

+deleteRequest (type: String, date: 

String) 

+ updateRequest (type: String, date: 

String) 

 

 
System expansion request 

- type: String 

- date: String 

- content: String 

+ suggestRequest (type: String, date: 

String) 

+suggestRequest (type: String) 

+deleteRequest (type: String, date: String) 

+deleteRequest (type: String) 

+ updateRequest (type: String, date: 

String) 

+ updateRequest (type: String) 

 

 
System 

 

 

 

 
Website 
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C.7.2.3   Design changes affecting the functionality and the reusability quality attributes 

 After merging the “Vacation mode” functionalities in the “Away Mode” class, the design 

size of D8 decreased as well as its reusability and functionality. The simulated and the real 

results show the effectiveness of cohesion in adapting the values of reusability and functionality. 

1) Simulated results 

 The reusability and functionality of D8 can be adapted when cohesion is maximized in 

two classes (figures 128 and 129).   

2) Real results 

 In figure 130, cohesion was maximized in the “System feedback” and the “System 

maintenance” classes to adapt the values of the reusability and the functionality attributes. The 

real values of the quality attributes after adaptation equal their simulated ones.   

 

 
Figure 128: Reusability adaptation results of D8 
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Figure 129: Functionality adaptation results of D8 
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Figure 130: Reusability and functionality design changes and adaptations in D8 

 

 

 

 

 

 

 
System feedback 

- level: String 

- type: String 

- date: String 

- content: String 

+ failureLevel (level: String, type: 

String, date: String, content: String) 

+satisfaction (level: String, type: 

String, date: String, content: String) 

+ critics (type: String, date: String, 

content: String, level: String) 

 

 
System updates 

- name: String 

+ buyOnline (name: String) 

+activate (name: String) 

+ cancel (name: String) 

 

 
System maintenance 

- type: String 

- date: String 

- content: String 

+ sendRequest (type: String, date: String, 

content: String) 

+deleteRequest (type: String, date: String, 

content: String) 

+ updateRequest (type: String, date: 

String, content: String) 

 

 
System expansion request 

- type: String 

- date: String 

- content: String 

+ suggestRequest (type: String, date: 

String) 

suggestRequest (type: String) 

+deleteRequest (type: String, date: String) 

+deleteRequest (type: String) 

+ updateRequest (type: String, date: 

String) 

+ updateRequest (type: String) 

 

 
System 

 

 

 

 
Website 
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C.7.2.4   Design changes affecting the effectiveness quality attribute 

 The last change in D8 decreased the composition property and the effectiveness quality 

attribute. The “System expansion request” functionalities are merged in the “System feedback” 

class, which suppressed its aggregation relationship and the effectiveness property of D8 (figure 

132). The impact of those changes and the applied polymorphism adaptation is illustrated in the 

simulated and the real results.    

1) Simulated results 

 Polymorphism should be increased by four to effectively adapt the value of effectiveness 

(figure 131).  

2) Real results 

 After adding four polymorphic equations to D8 such as “deleteRequest (type: String)”, 

the resulting effectiveness nearly equal its simulated value (figure 132).  

 

 
Figure 131: Effectiveness adaptation results of D8 
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Figure 132: Effectiveness design change and adaptation in D8 

 

 

 

 

 

 

 
System feedback 

- level: String 

- type: String 

- date: String 

- content: String 

+ failureLevel (level: String, type: 

String, date: String, content: String) 

+satisfaction (level: String, type: 

String, date: String, content: String) 

+ critics (type: String, date: String, 

content: String, level: String) + 

suggestRequest (type: String, date: 

String) 

suggestRequest (type: String) 

+deleteRequest (type: String, date: 

String) 

+deleteRequest (type: String) 

+ updateRequest (type: String, date: 

String) 

+ updateRequest (type: String) 

 

 

 
System updates 

- name: String 

+ buyOnline (name: String) 

+activate (name: String) 

+ cancel (name: String) 

 

 
System maintenance 

- type: String 

- date: String 

- content: String 

+ sendRequest (type: String, date: String, content: String) 

+ sendRequest (type: String) 

+ sendRequest (type: String, content: String) 

+ sendRequest (content: String) 

+deleteRequest (type: String, date: String, content: String) 

+deleteRequest (type: String, date: String, content: String) 

+deleteRequest (date: String, content: String) 

+ updateRequest (type: String, date: String, content: String) 

 

 
System 

 

 

 

 
Website 
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C.8      Design 3 (D9): Jabbler chat system 

C.8.1   System description and reference quality values 

 Jabbler is a text based online chat system that offers many options to users. Besides 

viewing a list of chat rooms, a user can join a room, view its messages, send messages, and even 

join multiple chat rooms simultaneously. Figure 133 illustrates the class diagram of D9. The 

reference quality values of D9 for all the quality attributes can be accessed in tables 17 and 18.    
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Figure 133: D9 Class diagram 

 

 

 

 

+OpenConnection()

+CloseConnection()

+CloseNetLibrary()

+SendData()

+ReceiveData() : char

+GetServerConnectionInfo() : bool

Connection

+Server(Connection)()

+LogIn() : bool

+LogOut() : bool

+GetRooms() : <unspecified>

+JoinRoom()

+LeaveRoom()

+RegisterNewUser()

+CreateRoom()

Server

+ChatRoom(Connection)()

+SendMessage()

+GetUpdatedContent()

+GetUserList()

ChatRoom

+Command(Char* unparsedCommand)()

+Command(UInt16 cmdCode, Parameter)()

+Command(UInt16 cmdCode, Parameter, Parameter)()

+Command(UInt16 cmdCode, Parameter, Parameter, Parameter)()

+ToString() : char

+HasMoreParameters() : bool

+GetNextParameter() : Parameter

Command

+Parameter(Char* paramTitle, Char* paramData)()

+GetParameterTitle()() : char

+GetParameterData()() : char

+ToString()() : char

Parameter

Jabbler

+ProcessReceivedCommands(Char* receivedData)() : char

+GetFieldText(UInt16 fieldID)() : int

Command Handler
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C.8.2     Design changes 

C.8.2.1   Design changes affecting the understandability quality attribute 

 D9 was extended by adding two new options that enable users to share videos and 

pictures as it is illustrated in the classes: “Video share” and “Picture share” (figure 135). 

Increasing D9’s design size led to a decrease in understandability that was adapted by increasing 

encapsulation. 

1) Simulated results 

 The observed decrease in understandability after increasing design size is effectively 

adapted by increasing encapsulation by two (figure 134).   

2) Real results 

 Encapsulation was maximized in two classes of D9 as it is illustrated in figure 135. As a 

result, the obtained real understandability equals its simulated value.   

 

 
Figure 134: Understandability adaptation results of D9 
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Figure 135: Understandability design change and adaptation in D9 

 

 

 

C.8.2.2   Design changes affecting the extendibility and the flexibility quality attributes 

 The newly added classes were linked to the “ChatRoom” class through aggregation 

relationships, which increased the rate of coupling in D9 (figure 138). Consequently, Both the 

flexibility and the extendibility quality attributes dropped below their reference values as it is 

illustrated and adapted in the simulated and the real results.    

1) Simulated results 

 To counterbalance the decrease in flexibility and extendibility, polymorphism should be 

increased by one (figures 136 and 137).  

2) Real results 

 The class diagram of D9 was updated by adding one polymorphic method namely 

“sendVideo (videoID: String)”, which made the resulting real flexibility and extendibility 

attributes nearly equal their simulated values (figure 138).  

 

 
Video share 

- videoName: String 

+ sendVideo (videoID: String, 

videoName: String) 

+ cancelShare (videoID: String, 

videoName: String) 

 

 
Picture share 

- pictureName: String 

+ sendPicture (pictureName: String) 

+ cancelShare (pictureName: String) 
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Figure 136: Flexibility adaptation results of D9 

 

 

 
Figure 137: Extendibility adaptation results of D9 
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Figure 138: Flexibility and extendibility design change and adaptation in D9 

 

 

 

C.8.2.3   Design changes affecting the extendibility and the understandability quality 

attributes 

 The chat capabilities of “Jabbler” were improved by adding the “Video chat” and the 

“Voice chat” classes (figure 141). Those newly added classes were linked to the existing classes 

of D9 through aggregation relationships. As a result, the understandability and the extendibility 

quality attributes dropped below their reference values as it is described in the simulated and real 

results.    

1) Simulated results 

 On the one hand, extendibility can be adapted by increasing polymorphism to six (figure 

139). On the other hand, understandability can be adapted by maximizing encapsulation in the 

two newly added classes (figure 140).  

 

 
Video share 

- videoName: String 

+ sendVideo (videoID: String, 

videoName: String) 

+ sendVideo (videoID: String) 

+ cancelShare (videoID: String, 

videoName: String) 

 

 
Picture share 

- pictureName: String 

+ sendPicture (pictureName: String) 

+ cancelShare (pictureName: String) 

 

 
ChatRoom 
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2) Real results 

 From figure 141, encapsulation was maximized in the “Video chat” and the “Voice chat” 

classes. In addition, six polymorphic methods were added such as “sendVideo (videoID: 

String)”. Consequently, the resulting extendibility and understandability nearly equal their 

simulated values.   

 

 
Figure 139: Second extendibility adaptation results of D9 
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Figure 140: Second understandability adaptation results of D9 
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Figure 141: Second extendibility and Understandability design change and adaptation in 

D9 

 

 

 

 

 

 

 

 
Video share 

- videoName: String 

+ sendVideo (videoID: String, 

videoName: String) 

+ sendVideo (videoName: String) 

+ sendVideo (videoID: String) 

+ cancelShare (videoID: String, 

videoName: String) 

+ cancelShare (videoID: String) 

+ cancelShare (videoName: String) 

 

 
Picture share 

- pictureName: String 

+ sendPicture (pictureName: String) 

+ cancelShare (pictureName: String) 

 

 
ChatRoom 

 

 

 

 
Voice chat 

- voiceMessage: String 

-messageID: String 

+ sendVoiceMessage (voiceMessage: 

String, messageID: String) 

+ sendVoiceMessage (voiceMessage: 

String) 

+ sendVoiceMessage (messageID: 

String) 

+ launchLiveVoiceChat (voiceMessage: 

String) 

+ shareMedia (type: String, name: 

String) 

+ cancelMediaShare (type: String, 

name: String) 

+ cancelMediaShare (name: String) 

 

 
Video chat 

- videoID: String 

+ sendVideoMessage (videoID: 

String) 

+ launchVideoChat (videoID: String) 

+ cancelChat () 

+ shareMedia (type: String, name: 

String) 

+ cancelMediaShare (type: String, 

name: String) 
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C.8.2.4   Design changes affecting the reusability, the functionality and the effectiveness 

quality attributes 

 The class diagrams “Video share” and “Picture share” were deleted from D9 as well as 

their corresponding aggregation relationships (figure 145). Thus, the reusability, the 

functionality, and the effectiveness of D9 decreased significantly. To face the impact of those 

design changes, the equations of cohesion and polymorphism were applied.  

1) Simulated results 

 From figures 142 and 143, reusability and functionality can be adapted by maximizing 

cohesion in one class. Effectiveness can be adapted by increasing polymorphism to eight (figure 

144).  

2) Real results 

 Cohesion was maximized in the “Video chat” class, which adapted the values of 

reusability and functionality. Eight polymorphic methods such as “cancelShare (videoID: 

String)” were added to D9 to adapt the value of effectiveness (figure 145). The obtained real 

values of the quality attributes almost equal their simulated values.    
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Figure 142: Reusability adaptation results of D9 

 

 
Figure 143: Functionality adaptation results of D9 
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Figure 144: Effectiveness adaptation results of D9 
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Figure 145: Reusability, functionality, and effectiveness design change and adaptation in 

D9 

 

 

 

 

 

 

 

 

 

 

 

 
ChatRoom 

- videoName: String 

- pictureName: String 

+ sendVideo (videoID: String, videoName: String) 

+ sendVideo (videoName: String) 

+ sendVideo (videoID: String) 

+ cancelShare (videoID: String, videoName: String) 

+ cancelShare (videoID: String) 

+ cancelShare (videoName: String) 

+ sendPicture (pictureName: String) 

+ cancelShare (pictureName: String) 

 

 
Voice chat 

- voiceMessage: String 

-messageID: String 

+ sendVoiceMessage (voiceMessage: 

String, messageID: String) 

+ sendVoiceMessage (voiceMessage: 

String) 

+ sendVoiceMessage (messageID: String) 

+ launchLiveVoiceChat (voiceMessage: 

String) 

+ shareMedia (type: String, name: String) 

+ shareMedia (type: String) 

+ shareMedia (name: String) 

+ cancelMediaShare (type: String, name: 

String) 

+ cancelMediaShare (name: String) 

 

 
Video chat 

- videoID: String 

+ sendVideoMessage (videoID: String) 

+ launchVideoChat (videoID: String) 

+ cancelChat () 

+ shareMedia (type: String, name: String, 

videoID: String) 

+ shareMedia (type: String, videoID) 

+ shareMedia (name: String, videoID) 

+ cancelMediaShare (type: String, name: 

String, videoID) 

+ cancelMediaShare (type: String, videoID) 

+ cancelMediaShare (name: String, 

videoID) 
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C.9       Design 10 (D10): Darden wellness center  

C.9.1    System description and reference quality values 

 The Darden wellness system allows nurses to input patients’ information into electronic 

forms, add new patients as well as generate their records. The class diagram of D10 is 

represented in figures 146-150. The reference quality values are recorded in tables 17 and 18.    

 

  
Figure 146: D10 class diagram (1) 
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Figure 147: D10 class diagram (2) 
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Figure 148: D10 class diagram (3) 
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Figure 149: D10 class diagram (4) 
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Figure 150: D10 class diagram (5) 

 

 

 

C.9.2      Design changes 

C.9.2.1   Design changes affecting the understandability quality attribute 

 The computerized system of the Darden center was extended by adding three options 

dealing with insurance, vaccination, and pharmacy (figure 152). This increase in the design size 

of D10 led to a decrease in understandability that was adapted by increasing encapsulation. 

1) Simulated results 

 From the simulation results in figure 151, encapsulation should be increased by three to 

counterbalance the decrease in understandability. 

2) Real results 

 In figure 152, encapsulation was maximized in the three new added classes, which makes 

the value of the real understandability equal its simulated value. 
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Figure 151: Understandability adaptation results of D10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 152: Understandability design change and adaptation of D10 

 
Insurance counselling 

- patientID: String 

+ bookCouncellingSession  

(patientID: String, patientName: String, 

date: String) 

+ cancelSession (patientID: String, 

patientName: String, date: String) 

 

 
Vaccination department 

- type: String 

- name: String 

+ addVaccinationItem (type: String, 

name: String, date: String, number: 

String) 

+ deleteItems (type: String, name: 

String) 

+ orderItems (type: String, name: 

String, date: String, number: String) 

 
 

Local pharmacy 

- type: String 

- name: String 

+ addMedicine (type: String, name: 

String, date: String, number: String) 

+ deleteMedicine (type: String, name: 

String, date: String, number: String) 

+ ordermedicine (type: String, name: 

String, date: String, number: String) 
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C.9.2.2    Design changes affecting the extendibility and the flexibility quality attributes 

 The coupling level of D10 was increased by linking the newly added classes to the 

existing classes through aggregation relationships (figure 155). As a result, extendibility and 

flexibility dropped below their reference values. Those design changes and the applied 

adaptation through polymorphism is illustrated in the real and the simulated results. 

1) Simulated results 

 Extendibility and flexibility are effectively adapted when polymorphism is increased by 

three (figures 153 and 154). 

2) Real results 

 After adding three polymorphic methods to D10 such as “bookCouncellingSession 

(patientID: String)”, the obtained extendibility and flexibility are similar to their simulated 

values (figure 155). 

 

 
Figure 153: Extendibility adaptation results of D10 
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Figure 154: Flexibility adaptation results of D10 
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Figure 155: Flexibility and extendibility design change and adaptation of D10 

 

 

C.9.2.3    Design changes affecting the reusability, the functionality and the effectiveness 

quality attributes 

 The last design change in D10 dealt with deleting the class “Insurance counseling” as 

well as its corresponding aggregation relationship (figure 159). Thus, the reusability, the 

functionality, and the effectiveness quality attributes dropped below their reference values and 

were adapted through cohesion and polymorphism.   

 

 

 
Insurance counselling 

- patientID: String 

+ bookCouncellingSession  

(patientID: String, patientName: String, 

date: String) 

+ bookCouncellingSession  

(patientID: String) 

+ cancelSession (patientID: String, 

patientName: String, date: String) 

+ cancelSession (patientID: String) 

 

 
Vaccination department 

- type: String 

- name: String 

+ addVaccinationItem (type: String, 

name: String, date: String, number: 

String) 

+ addVaccinationItem (type: String) 

+ deleteItems (type: String, name: 

String) 

+ orderItems (type: String, name: String, 

date: String, number: String) 

 

 
Local pharmacy 

- type: String 

- name: String 

+ addMedicine (type: String, name: 

String, date: String, number: String) 

+ deleteMedicine (type: String, name: 

String, date: String, number: String) 

+ ordermedicine (type: String, name: 

String, date: String, number: String) 

 

 
Transition layer 
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1) Simulated results 

 Reusability and functionality were adapted by maximizing cohesion in one class (figures 

156 and 157). Effectiveness is adapted when polymorphism increases by six (figure 158).   

2) Real results 

 The simulated design changes and adaptations were applied in D10’s class diagram. 

Cohesion was maximized in the “Local pharmacy” class and six polymorphic methods were 

added to D10 such as “addVaccinationItem (type: String)”. The computed quality attributes after 

adaptation almost equal their simulated values. 

 

 
Figure 156: Reusability adaptation results of D10 
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Figure 157: Functionality adaptation results of D10 

 

 
Figure 158: Effectiveness adaptation results of D10 
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Figure 159: Reusability, functionality, and effectiveness design change and adaptation of 

D10 

 

 

 As it was described in chapter 4, Pearson’s r was also computed for the remaining 

QMOOD quality attributes namely reusability, flexibility, functionality, extendibility, and 

effectiveness in the following tables.   

 

 

 
Vaccination department 

- type: String 

- name: String 

+ addVaccinationItem (type: String, name: String, date: String, number: 

String) 

+ addVaccinationItem (type: String) 

+ addVaccinationItem (name: String) 

+ addVaccinationItem (number: String) 

+ addVaccinationItem (type: String, name: String) 

+ deleteItems (type: String, name: String) 

+ deleteItems (type: String) 

+ deleteItems (name: String) 

+ orderItems (type: String) 

+ orderItems (type: String, name: String, date: String, number: String) 

 

 
Local pharmacy 

- type: String 

- name: String 

+ addMedicine (type: String, name: 

String, date: String, number: String) 

+ deleteMedicine (type: String, name: 

String, date: String, number: String) 

+ ordermedicine (type: String, name: 

String, date: String, number: String) 

 

 
Transition layer 
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X: Simulated 

extendibility 

in D1-D10 

Y: Real 

extendibility 

in D1-D10 

XY X² Y² 

-12.25 -11.80 144.55 150.06 139.24 

-4.10 -4.10 16.81 16.81 16.81 

-3.50 -3.50 12.25 12.25 12.25 

-8.13 -8.13 66.09 66.09 66.09 

-9.06 -9.06 82.08 82.08 82.08 

-11.14 -11.14 124.09 124.09 124.09 

-3.88 -3.88 15.05 15.05 15.05 

-5.45 -5.45 29.70 29.7 29.70 

-6.75 -6.75 45.56 45.56 45.56 

-0.7 -0.7 0.49 0.49 0.49 

Σ X= -64.96 Σ Y= -64.51 Σ XY= 536.67 Σ X²= 542.18 Σ Y²= 531.36 

n =10     

Table 22: Correlation computations of extendibility 

 

 

 

                            10 (536.67) – (-64.96) (-64.51) 

rxy =    

         √|10 (542.18) – (- 64.96)²| * |10 (531.36) – (-64.51)²| 

 

     =   0.99   very high correlation  
 

 

 

 

X: Simulated 

flexibility 

 in D1-D10 

Y: Real flexibility 

in D1-D10 XY X² Y² 

-3 -0.75 2.25 9 0.562 

-1.5 6.75 10.12 2.25 45.56 

-1.5 0 0 2.25 0 

-2.5 -0.5 1.25 6.25 0.25 

-3.5 -2.75 9.62 12.25 7.56 

-1.5 -1 1.5 2.25 1 

0.25 1.25 0.31 0.06 1.56 

-2.25 -1.5 3.37 5.06 2.25 

4.75 5.25 24.93 22.56 27.56 

3.25 4 13 10.56 16 

Σ X= -7.5 Σ Y= 10.75 Σ XY= 66.35 Σ X²= 72.49 Σ Y²= 102.3 

n =10     

Table 23: Correlation computations of flexibility 
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                            10 (66.35) – (-7.5) (10.75) 

rxy =    

         √|10 (72.49) – (-7.5)²| * |10 (102.3) – (10.75)²| 

 

     =   0.95   very high correlation  

 

 

X: Simulated 

reusability 

Y: Real 

reusability 
XY X² Y² 

23.20 23.30 538.24 538.24 538.24 

31.75 31.75 1008.06 1008.06 1008.06 

51.80 51.82 2684.27 2683.24 2685.31 

33 33 1089 1089 1089 

38.05 37.05 1409.75 1447.80 1372.70 

47.75 47.75 2280.06 2280.06 2280.06 

61.75 61.75 3813.06 3813.06 3813.06 

20 20 400 400 400 

21.25 21.75 462.18 451.56 473.06 

57.50 57.50 3306.25 3306.25 3306.25 

Σ X= 386.05 Σ Y= 385.57 Σ XY= 16990.87 Σ X²= 17017.27 Σ Y²= 16965.74 

n =10     

Table 24: Correlation computations of reusability 

 

 

                            10 (16990.87) – (386.05) (385.57) 

rxy =    

         √|10(17017.27) – (386.05)²| * |10 (16965.74) – (385.57)²| 

 

     =   0.99   very high correlation  
  

 

 

X: Simulated 

functionality 

Y: Real 

functionality 
XY X² Y² 

17.48 17.08 298.55 305.55 291.72 

18.38 18.08 332.31 337.82 326.88 

26.64 26.71 711.55 709.68 713.42 

20.8 20.86 433.88 432.64 435.13 

22.02 23.38 514.82 484.88 546.62 

25.86 26.32 680.63 668.73 692.74 

30.26 31.38 949.55 915.66 984.70 

12.44 12.46 155 154.75 155.25 

13.98 15.30 213.89 195.44 234.09 

27.84 28.96 806.24 775.06 838.68 

Σ X= 215.7 Σ Y= 220.53 Σ XY= 5096.42 Σ X²= 4980.21 Σ Y²= 5219.23 

n =10     

Table 25: Correlation computations of functionality 

 



276 

 

 

                            10 (5096.42) – (215.7) (220.53) 

rxy =    

         √|10(4980.21) – (215.7)²| * |10 (5219.23) – (220.53)²| 

 

     =   0.99   very high correlation  
  

 

 

X: Simulated 

effectiveness 

Y: Real 

effectiveness 
XY X² Y² 

3.68 5.38 19.79 13.54 28.94 

4.12 5.52 22.74 16.97 30.47 

0 0 0 0 0 

0 0 0 0 0 

2.18 3.18 6.93 4.75 10.11 

3.34 3.54 11.82 11.15 12.53 

2.45 3.25 7.96 6 10.56 

1.82 2.42 4.40 3.31 5.85 

6.5 6.9 44.85 42.25 47.61 

2.92 3.92 11.44 8.52 15.36 

Σ X= 27.01 Σ Y= 34.11 Σ XY= 129.93 Σ X²= 106.49 Σ Y²= 161.43 

n =10     

Table 26: Correlation computations of effectiveness 

 

 

                            10 (129.93) – (27.01) (34.11) 

rxy =    

         √|10 (106.49) – (27.01)²| * |10 (161.43) – (34.11)²| 

 

     =   0.97   very high correlation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


