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Abstract

This dissertation is a collection of results on analysis on real noncompact semisimple

Lie groups. Specifically, we examine the convergence patterns of sequences arising from the

special group decompositions that exist in this setting.

The dissertation consists of five chapters, the first of which provides a brief introduction

to the topics to be studied.

In Chapter 2, we introduce preliminary ideas and definitions regarding Lie groups, their

Lie algebras, and the relationships between the two structures.

Chapter 3 specifically examines semisimple Lie algebras and groups; we discuss local

(algebra level) and global (group level) decompositions of real and complex semisimple Lie

groups, such as the root space decomposition of a complex Lie algebra; the local and global

Cartan and Iwasawa decompositions over R; the global Bruhat decomposition; and the

restricted root space decomposition of a real Lie algebra. Each of these will play important

roles in the remainder.

Chapter 4 presents the iterated Aluthge sequence on Cn×n, and extends the sequence to

a real noncompact semisimple Lie group. We use the Cartan decomposition and properties

of the group and its adjoint map to show that the iterated Aluthge sequence converges in

this setting.

The final chapter discusses the matrix iterated Aluthge sequence and its Lie group

generalization using the Bruhat decomposition. We establish convergence of the sequence

(under some conditions) in this general setting using the many special properties of the

decomposition.
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Chapter 1

Introduction

The topic of this dissertation is the asymptotic behavior of sequences in noncompact

connected semisimple Lie groups. The motivation for these problems comes from matrix the-

ory: several well-known matrix decompositions lead to matrix sequences whose asymptotic

behavior has been studied extensively. In 2011, Pujals et. al. [7] showed that the iterated

Aluthge sequence, which is based on the polar decomposition of a matrix, converges in Cn×n.

The behavior of the LR sequence, based on the matrix LU decomposition, was studied by

Rutishauser [26]; under certain conditions this sequence also converges. This dissertation

generalizes both of these matrix convergence results to the Lie group setting. Several other

matrix sequences have led to similar generalizations: Holmes et. al. [18] extended a result

on the QR iteration in 2011.

Matrix results provide a natural starting point for the study of general Lie groups.

Well-known matrix groups such as GLn(C) and SLn(C) have a Lie group structure, and the

matrix Lie groups are known as the classical groups; their structure often provides clues to

the structure of more abstract Lie groups. Using the well-studied classical groups as a model

for the abstract groups leads to a much better understanding of the abstract structure than

one might otherwise hope to gain.

The main tools in this dissertation are some important decompositions of semisimple

Lie algebras, which lead to corresponding decompositions on the group level. For example,

the Cartan decomposition of a real semisimple Lie algebra, which is precisely the Hermitian

decomposition on the general linear algebra gln(C), yields the group level Cartan decomposi-

tion (which corresponds to the polar decomposition of the general linear group GLn(C)). In

addition, the Iwasawa decomposition (which corresponds to the matrix QR decomposition)
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and the Bruhat decomposition (which corresponds to the Gelfand-Naimark decomposition

in matrix theory) are built from factors derived from algebra level decompositions. The

Complete Multiplicative Jordan Decomposition (CMJD) corresponds to the matrix Multi-

plicative Jordan Decomposition. The Cartan, Iwasawa, and Bruhat decompositions exist for

any semisimple Lie group, and indeed for any reductive Lie group.

These decompositions, as well as the tools we use to prove the convergence results, are

available to our use because of the remarkable correspondence between a Lie group and

its Lie algebra. Indeed, the two structures are diffeomorphic via the exponential map in a

neighborhood of the identity, so that results on a Lie algebra often have analogues in the

corresponding Lie groups. For example, the Cartan decomposition of a real semisimple Lie

algebra as g = k⊕ p implies a decomposition of any Lie group G with Lie algebra g: G may

be decomposed as G = KP , where K is the analytic subgroup generated by k and P = exp p.

In particular, properties of the algebra imply that the map K × exp p → G is actually a

diffeomorphism onto G. Thus the relatively accessible Lie algebra provides a great deal of

insight into the structure of G.

The other group decompositions relevant to this dissertation are all derived from the

algebra-group correspondence, but these decompositions are not the only beautiful relation-

ships between the two structures. As a particularly relevant example, the Weyl group of a

Lie group, which captures the symmetry of the group, and the Weyl group of its Lie alge-

bra, which reflects the algebra’s symmetry, are actually isomorphic. Again, we see that the

correspondence between the two structures is wonderfully rich.

The organization of this dissertation is as follows: in Chapter 2, we introduce the basic

Lie group and Lie algebra definitions and record a few well known results for future reference.

In Chapter 3, we discuss the structure of semisimple Lie groups and the relevant Lie group

decompositions that lead to questions about sequences. Chapter 4 presents the Aluthge

sequence and shows that the sequence converges in a real noncompact semisimple Lie group.

Finally, in Chapter 5, we discuss the Bruhat sequence and the conditions under which it
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converges in a real noncompact semisimple Lie group. We also consider the problem of

convergence of the sequence under some relaxed conditions and present some illustrative

matrix examples.
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Chapter 2

Lie Groups and Lie Algebras

In this chapter, we introduce the background information and notation needed through-

out the dissertation. At the most fundamental level, a Lie group is an object that has the

structure of a smooth manifold as well as that of a group; in particular, the two different

structures (one analytic and one algebraic) are tied together by the requirement that the

group operations be smooth mappings on the manifold. Accordingly, we begin by discussing

smooth manifolds, following the treatment in [13], [24], and [34].

2.1 Smooth Manifolds

A topological manifold is a topological space M that has the local structure of n-

dimensional Euclidean space. More precisely, M is a topological manifold of dimension

n if

(1) M is a second countable Hausdorff space, and

(2) every point of M has an open neighborhood that is homeomorphic to an open subset

of Rn.

If M satisfies the properties above, then it is natural to consider the local homeomorphisms,

and in particular the relationships between such homeomorphisms. A chart on M is a pair

(U,φ) consisting of an open subset U ⊂ M and a homeomorphism φ : U → Rn. We should

investigate the behavior of the maps on overlapping charts. To do so, we will need to consider

maps on open subsets of Rn. If U and V are open in Rn and Rm, respectively, and F is a map

F : U → V , we say that F is smooth or C∞ if each component function of F has continuous

partial derivatives of all orders. If, in addition, F is bijective and F−1 is smooth, we say that
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F is a diffeomorphism. Returning to the manifold M , suppose that charts (U,φ) and (V, ψ)

are chosen so that U ∩ V ̸= ∅. Then the transition map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V )

is a map between two open subsets of Rn. Two charts (U,φ) and (V, ψ) are called smoothly

compatible if either U ∩ V = ∅ or ψ ◦ φ−1 is C∞.

A collection A of charts that cover M is called an atlas, and if each pair of charts in

the atlas A is smoothly compatible, we say that A is a smooth atlas. If A is a maximal

smooth atlas (in the sense that the addition of any chart (U,φ) to A would destroy its

property of smooth compatibility) we say that A is a smooth structure on M . Concisely,

A = {(Uα, φα) : α ∈ I} is a smooth structure if

(1)
∪
α∈I

Uα =M ,

(2) φα ◦ φ−1
β : Rn → Rn is C∞ for all α, β ∈ I, and

(3) the collection is maximal with respect to (2).

The topological manifold M is called a smooth manifold (or simply a manifold) if it has

a smooth structure A, and a chart on M is said to be smooth if it is a member of a smooth

structure on M .

We would like to extend the idea of smoothness of maps on Euclidean space to maps on

manifolds. Accordingly, let M be an m-dimensional manifold and N be an n-dimensional

manifold with smooth structures Am and An, respectively, and F : M → N a continuous

map. The map F is said to be smooth if, for every p ∈M , there are charts (U,φ) ∈ Am and

(V, ϕ) ∈ An so that p ∈ U , F (U) ⊂ V , and ϕ ◦ F ◦ φ−1 (which maps an open subset of Rm

to an open subset of Rn) is C∞ from φ(U) to ϕ(V ). In particular, consider the case where

N = R. Then F is called a smooth function onM if for each p ∈M , there is a corresponding

smooth chart (U,φ) so that p ∈ U and F ◦ φ−1 is C∞.

The manifold analogue for the collection of C∞ functions on open subsets of Euclidean

space is C∞(M), which we use to denote the set of all smooth functions F : M → R. It

is clear that C∞(M) is a vector space. It becomes a ring if we introduce the product f · g,
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which is calculated by pointwise multiplication. Next, we introduce calculus on M : any

linear map v : C∞(M) → R that satisfies the product rule at some p ∈M , i.e.,

v(fg) = f(p)v(g) + v(f)g(p), ∀f, g ∈ C∞(M),

is called a tangent vector of M at p. The collection of tangent vectors at the point p is a

vector space denoted by Tp(M), known as the tangent space to M at p. Each v ∈ Tp(M)

(i.e., a vector in the tangent space ofM at p) is called a tangent vector at p. We may think of

M = Rn as a prototype; the tangent vector v acts on f ∈ C∞(Rn) by taking the directional

derivative of f in the direction provided by v, i.e., v(f) = ⟨∇f, v⟩.

Given a point p ∈ M and a smooth map F : M → N we assign to F a corresponding

linear map between the tangent spaces Tp(M) and TF (p)(N). This is known as the differential

(or derivative) of F : the differential dFp : Tp(M) → TF (p)(N) of F at p is the linear map

defined by

dFp(v)(f) = v(f ◦ F ), for all v ∈ Tp(M), f ∈ C∞(N).

Notice that dFp sends a tangent vector v ∈ Tp(M) to a tangent vector in Tp(N), so that

dFp(v) : C
∞(N) → R.

Example 2.1. If M = N = R, then under the natural identification Tp(R) ∼= R, the map

dFp : R → R is just multiplication by F ′(p), where F ′ is the usual derivative of elementary

calculus.

In a sense, the map dFp provides a “linear approximation” for F or a “linearization” of

F . The rank of the linear map dFp is well-defined, so that we may define the rank of F as

rank dFp. If F is a smooth map so that rankF = dimM for each p ∈ P , then F is called an

immersion. Equivalently, F is an immersion if dFp is injective for each p ∈M .

We define the concept of a submanifold of M by beginning with a subset S ⊂ M that

is a smooth manifold in its own right; in addition, we want the topological and differential
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structure of S to align with that of M , so we require the inclusion map ι : S →M to be an

immersion.

At each point p ∈M , we have defined a tangent space Tp(M). The disjoint union

T (M) = ∪p∈MTp(M)

is called the tangent bundle of M . We define the natural projection π : T (M) → M of the

tangent bundle onto its manifold via π(X) = p for X ∈ Tp(M). Of course, we may simply

view T (M) as a collection of vector spaces, but the definitions actually equip the tangent

bundle with quite a bit of structure: T (M) has a natural topology as well as a smooth

structure derived from M , so that the tangent bundle of a manifold is again a smooth

manifold and in particular, π : T (M) →M is smooth.

With tangent spaces and the tangent bundle in place, we may assign to each p ∈ M a

vector in Tp(M). Such a map X : M → T (M), so that X(p) ∈ Tp(M) for all p ∈ M , is

called a vector field on M . The set of smooth vector fields on M is clearly a vector space

over R, and in fact forms a module over the ring C∞(M): if X is a vector field on M and

f ∈ C∞(M), then fX is the vector field defined by (fX)(p) = f(p)Xp.

A derivation of an algebra A over a field F is a map D : A → A that satisfies the

following properties:

(1) D(af + bg) = aD(f) + bD(g) for all a, b ∈ F, f, g ∈ A;

(2) D(fg) = f(Dg) + (Df)g for all f, g ∈ A.

Any smooth vector field X may be thought of as a derivation of C∞(M): let Xf ∈

C∞(M) be given by Xf(p) = Xpf . Then since Xp ∈ Tp(M),

X(fg)(p) = Xpfg = f(p)(Xpg) + (Xpf)g(p) = f(p)Xg(p) +Xf(p)g(p).
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In other words, X(fg) = f(Xg) + (Xf)g. Each derivation of C∞(M) can actually be

identified with a smooth vector field: a function X : C∞(M) → C∞(M) is a derivation if

and only if it is of the form X (f) = Xf for some smooth vector field X on M [24, p.86]. If

X and Y are smooth vector fields on M , the composition X ◦ Y : C∞(M) → C∞(M) may

not be a smooth vector field; however, the Lie bracket [X, Y ] := X ◦ Y − Y ◦X always is.

2.2 Lie Groups and Their Lie Algebras

Let g be a vector space over a field F, and equip g with a product g× g → g, denoted

(X, Y ) 7→ [X, Y ]. The following properties arise naturally for many choices of [·, ·]:

(1) [·, ·] is bilinear.

(2) [X,X] = 0 for all X ∈ g.

(3) The Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 holds for all X, Y, Z ∈ g.

If g and its product [·, ·] satisfy the three properties above, we call [X,Y ] the Lie bracket

of X and Y , and call g a Lie algebra over F. We will focus our attention on F = R or C in

our future discussion; the corresponding Lie algebra is called a real or complex Lie algebra.

Example 2.2. A familiar example of a Lie algebra is the general linear algebra gl(V ), which

consists of all linear operators on the vector space V over F with the Lie bracket defined by

[X, Y ] = XY − Y X, X, Y ∈ gl(V ).

Example 2.3. The space of smooth vector fields on a manifold M , with

[X,Y ] = X ◦ Y − Y ◦X,

has the structure of a Lie algebra over R.
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Let g and h be Lie algebras. Both g and h have the underlying structure of a vector

space, so that we have the notion of linear transformation from g to h. Considering the

spaces as Lie algebras, we would like to restrict our attention to linear transformations that

preserve the algebra structure. Accordingly, we define a Lie algebra homomorphism as a

linear transformation φ : g → h such that

φ([X,Y ]) = [φ(X), φ(Y )], for all X, Y ∈ g.

Given a vector space V over the field F, a Lie algebra homomorphism ϕ : g → gl(V ) is

called a representation of g. Representations are particularly useful, as ϕ(g) is an algebra of

matrices which retains inherits the bracket operation from g.

Because of the bilinearity of the bracket and the Jacobi identity, the linear transforma-

tion

ad : g → gl(g)

defined by

adX(Y ) = [X,Y ], X, Y ∈ g

is a Lie algebra homomorphism and therefore a representation of g, known as the adjoint

representation of g. Clearly the adjoint representation is of prime importance when we study

Lie algebras. A vector subspace s of g that is a Lie algebra in its own right, i.e., [X, Y ] ∈ s

for all X,Y ∈ s, is called a subalgebra of g; it is called an ideal if [X, Y ] ∈ s for all X ∈ g

and Y ∈ s.

A Lie group G is simultaneously a smooth manifold and a group such that the maps

m : G×G→ G and i : G→ G defined by multiplication and inversion are smooth.

Example 2.4. The set of all n× n nonsingular complex matrices forms a Lie group, called

the general linear group and denoted by GLn(C). Any closed subgroup of GLn(C) is also a Lie

group, called a closed linear group. Due to their dual topological and algebraic structure, Lie
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groups have a rich anatomy which provides both analytic and algebraic tools for exploration.

Other classical Lie groups are

1. the real general linear group GLn(R) = GLn(C) ∩ Rn×n,

2. the special linear group SLn(C) = {A ∈ Cn×n : detA = 1},

3. the real special linear group SLn(R) = SLn(C) ∩ Rn×n,

4. the unitary group U(n) = {U ∈ GLn(R) : U∗U = I} ⊂ SLn(C),

5. the orthogonal group O(n) = U(n) ∩ Rn×n,

6. the special orthogonal group SO(n) = {O ∈ SLn(R) : O⊤O = I} ⊂ O(n),

7. the complex special orthogonal group SOn(C) = {O ∈ SLn(C) : O⊤O = I},

8. the complex symplectic group Spn(C) = {g ∈ SL2n(C) : g⊤Jng = Jn}, where Jn = 0 In

−In 0

 .

9. the real symplectic group Spn(R) = Spn(C) ∩ Rn×n,

10. the (compact) symplectic group Sp(n) = Sp(n,C) ∩ U(2n) =
{
g =

 A B

−B̄ Ā

 : g ∈

U(2n)
}
.

The groups GLn(C), SLn(C), SLn(R), SOn(C), SO(n), SU(n), U(n), Spn(C) and Sp(n) are

all connected. The group GLn(R) has two components.

Example 2.5. As a more general example, let V be a finite dimensional vector space over

C or R. The group GL(V ) of vector space automorphisms of V , with multiplication given

by function composition, is a Lie group.

Let G be a Lie group. Given g ∈ G, we define the left translation Lg : G → G by

Lg(h) = gh. Since multiplication is smooth, Lg is a diffeomorphism of G. Because of its
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manifold structure, we may consider the interaction of a smooth vector field X of G with

Lg: X is left-invariant, or Lg related to itself, if

X ◦ Lg = dLg ◦X, for all g ∈ G.

When X is viewed as a derivation on C∞(G), left-invariance is equivalent to

(Xf) ◦ Lg = X(f ◦ Lg), for all f ∈ C∞(G), g ∈ G.

The vector space of left-invariant smooth vector fields on G is closed under the bracket

given in Example 2.3, so that it forms a Lie algebra g. In particular, we refer to g as the

Lie algebra of G. The natural identification X 7→ Xe of the left-invariant vector field X ∈ g

with its image in the tangent space of G at the identity is readily seen to be a vector space

isomorphism of g with Te(G). Indeed, we create a bracket operation in Te(G) by setting

[Xe, Ye] := [X, Y ]e, so that Te(g) is identified with g and may itself be viewed as a Lie

algebra.

Example 2.6. The Lie algebra of the Lie group GL(V ) is gl(V ). The Lie algebra of

1. the real general linear group GLn(R) is gln(R) = Rn×n,

2. the special linear group SLn(C) is sln(C) = {X ∈ Cn×n : trX = 0}.

3. the real special linear group SLn(R) is sln(C) ∩ Rn×n,

4. the unitary group U(n) is u = {X ∈ Cn×n : X∗ = −X},

5. the orthogonal group O(n) is so(n) = {X ∈ Rn×n : X⊤ = −X},

6. the special orthogonal group SO(n) is also so(n),
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7. the complex symplectic group Spn(C) is

spn(C) =
{X1 X2

X3 −X⊤
1

 : Xi ∈ Cn×n and X2 = X⊤
2 , X3 = X⊤

3

}

8. the real symplectic group Spn(R) is

spn(R) =
{X1 X2

X3 −X⊤
1

 : Xi ∈ Rn×n and X2 = X⊤
2 , X3 = X⊤

3

}

9. and the (compact) symplectic group Sp(n) is sp(n,R) = {X ∈ gl(2n,R) : X⊤J =

−JX} [21, p. 59].

A smooth map φ : G → H between the Lie groups G and H that is also a group ho-

momorphism is called a smooth homomorphism. Since a smooth homomorphism φ preserves

both the manifold and the group structure of G, the differential map dφe : g → h between

the corresponding Lie algebras g and h is actually a Lie algebra homomorphism. We simply

write dφ for dφe, and dφ is called the derived homomorphism of φ.

Let G be a Lie group with Lie algebra g. A one-parameter subgroup of G is a smooth

homomorphism ϕ : R → G, where we view R a Lie group under addition. Due to the

theorem of existence and uniqueness of solutions of linear ordinary differential equations,

the map ϕ 7→ dϕ(0) is a bijection of the set of one-parameter subgroups of G onto g [13,

p.103]. For each X ∈ g, let ϕX be the one-parameter subgroup corresponding to X, and

define the exponential map exp = expg : g → G by exp(X) = ϕX(1). Then exp is smooth,

and ϕX(t) = exp(tX), so that the one-parameter subgroups are the maps t 7→ exp tX for

X ∈ g. The properties of the exponential map lead to the following important theorem.

Theorem 2.7. [13, p.104] There is a neighborhood N0 of 0 in g and an open neighborhood

Ne of e in G so that exp is an smooth diffeomorphism of N0 onto Ne.
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In a sense, g and G behave alike near their identities. The exponential map interacts

particularly well with smooth homomorphisms φ : G→ H; it is natural in that

φ ◦ expg = exph ◦dφ. (2.1)

If G is a closed linear group, its exponential map is just the well-known matrix expo-

nential function [21, p.76], with expA given by

expA =
∞∑
n=0

1

n!
An.

If the submanifold H of G is also a Lie group in its own right, with multiplication

induced by the multiplication on G, H is called a Lie subgroup of G. If H is also closed

in the topology on G, H is called a closed subgroup. We would like to have a correlation

of some kind between Lie subgroups of G and Lie subalgebras of g. The following theorem

displays an elegant correspondence between the two structures [13, p.112, p.115, p.118]:

Theorem 2.8. Let G be a Lie group with Lie algebra g. IfH is a Lie subgroup of G, then the

Lie algebra h of H is a subalgebra of g. Moreover, h = {X ∈ g : exp tX ∈ H for all t ∈ R}.

Each subalgebra of g is the Lie algebra of exactly one connected Lie subgroup of G.

For g ∈ G, define a map Ig : G → G by Ig(x) = gxg−1. Since multiplication in a Lie

group is a smooth operation, Ig is a smooth automorphism; its differential, denoted Ad g, is

a Lie algebra automorphism of g. Then by (2.1), we have

exp(Ad g(X)) = g(expX)g−1, g ∈ G, X ∈ g. (2.2)

As a particularly nice example, suppose that G is a closed linear group, i.e., a matrix group.

Then Ad g is given by

Ad g(X) = gXg−1, g ∈ G.
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The exponential map is smooth and invertible in a neighborhood of the identity, so that

if X ∈ g is close to the identity, g 7→ Ad gX is smooth as a map from a neighborhood of

e in G to g. In other words, g 7→ Ad g is a smooth map from a neighborhood of e into

GL(g). In addition, since Ig1g2 = Ig1Ig2 , we see that Ad (g1g2) = Ad (g1)Ad (g2). Thus Ad

is smooth on all of G, so that Ad : G → GL(g) is a smooth homomorphism; in particular,

AdG is a Lie subgroup of GL(g). Ad is actually a representation of G, known as the adjoint

representation. The smoothness of Ad leads us to consider its differential, which is just

ad : g → gl(g) [21, p.80]. Another application of (2.1) shows that

Ad (expX) = exp(adX), X ∈ g. (2.3)

Note that the exponential map on the left of the equality is exp : g → G, whereas exp on

the right hand side is exp : gl(g) → GL(g).

The group Aut g of all Lie algebra automorphisms of g is a closed subgroup of GL(g).

Since a closed abstract subgroup of a group G is automatically a Lie subgroup [13, p.115],

Aut g is a Lie subgroup of GL(g). Its Lie algebra Der g consists of all derivations of g [13,

p.127]. Due to the Jacobi identity, adX : g → g is a derivation for all X ∈ g, so that ad g is

a subalgebra of Der g. Indeed, ad g generates a connected subgroup Int g of Aut g [13, p.127],

known as the adjoint group of g. Elements of ad g are called inner derivations, and elements

of Int g are called inner automorphisms. If G is a connected group, then Int g = AdG by

(2.3). The adjoint group Int g is advantageous over AdG since it is independent of the choice

of the connected Lie group G. The Lie algebra g is said to be compact if G is compact or,

equivalently, the adjoint group Int g is compact.

The symmetric bilinear form B on g defined by

B(X,Y ) = tr (adX adY ), X, Y ∈ g

14



is called the Killing form. Its interaction with the Lie bracket is associative in the sense that

B([X,Y ], Z) = B(X, [Y, Z]), X, Y, Z ∈ g.

If the Killing form has the property that B(X, Y ) = 0 for all Y ∈ g only when X = 0, we

say that B is nondegenerate on g. If σ is an automorphism of g, then

ad (σX) = σ ◦ adX ◦ σ−1

so that B(σX, σY ) = B(X,Y ). In particular, B is AdG-invariant.

A Lie algebra g is abelian if [g, g] = 0; it is simple if it is not abelian and has no nontrivial

ideals; it is solvable if Dkg = 0 for some k, where

D0g := g, Dk+1g := [Dkg, Dkg];

it is nilpotent if Ckg = 0 for some k, where

C0g = g, and Ck+1g = [Ckg, g].

If the (unique) maximal solvable ideal of g, called the radical of g and denoted by Rad g,

is trivial, g is said to be semisimple. As semisimple Lie algebras will be a main object of

interest in this dissertation, let us record for future reference some equivalent conditions to

semisimplicity: g is semisimple if and only if its Killing form is nondegenerate. Additionly,

g is semisimple if and only if it is isomorphic to a direct sum of simple algebras.

The algebra g is reductive if its center z(g) = Rad g (or, equivalently, [g, g] is semisimple).

A Lie group is called semisimple (simple, reductive, solvable, nilpotent, abelian) if its Lie

algebra is semisimple (simple, reductive, solvable, nilpotent, abelian).
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Chapter 3

Structure and Decompositions of Semisimple Lie Groups

In this chapter, we discuss the special structure of semisimple groups which leads to the

group decompositions needed in the sequel.

3.1 Real Forms

For any complex Lie algebra g, restricting the base field C to R allows g to be viewed as a

real Lie algebra gR, called the realification of g. A subalgebra g0 of gR such that gR = g0⊕ig0

is called a real form of g, and g is called the complexification of g0. If g0 is a real form of

g, then each Z ∈ g can be uniquely written as Z = X + iY with X,Y ∈ g0, and the map

σ : g → g given by

X + iY 7→ X − iY for all X, Y ∈ g0

is called the conjugation of g with respect to g0. It is clear that

(1) σ2 = 1,

(2) σ(αX) = ᾱσ(X) for all X ∈ g and α ∈ C,

(3) σ(X + Y ) = σ(X) + σ(Y ) for all X,Y ∈ g, and

(4) σ[X,Y ] = [σX, σY ] for all X, Y ∈ g.

Because of (2), σ is not an automorphism of g, but it is an automorphism of the real algebra

gR.

On the other hand, if σ : g → g is a bijection such that (1)-(4) above hold, then the set

g0 of fixed points of σ is a real form of g and σ is the conjugation of g with respect to g0.

Hence there is a one-to-one correspondence between real forms and conjugations of g.
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Let B0, B, and BR denote the Killing forms of the Lie algebras g0, g, and gR, respectively.

Then [13, p.180]

B0(X, Y ) = B(X, Y ), X, Y ∈ g0

BR(X, Y ) = 2ReB(X,Y ), X, Y ∈ gR.

Since semisimplicity is equivalent to nondegeneracy of the Killing form, g0, g, and gR are all

semisimple if any of them is.

Every complex semisimple Lie algebra g has a compact real form g0, i.e., the group

generated by g0 is compact [13, p.181]. The compact real forms of complex simple Lie

algebras are listed in [13, p.516].

Example 3.1. For g = sln(C), the most obvious real form is sln(R); it is clear that gR =

sln(R)⊕ isln(R). The corresponding conjugation is X 7→ X̄. We note, however, that sln(R)

is not a compact real form for g.

Example 3.2. We construct a compact real form for sln(C) as follows: if X ∈ sln(C), set

X1 =
1

2
(X −X∗) ∈ sln(C) and X2 =

1

2
(X +X∗) ∈ sln(C),

where ∗ denotes the conjugate transpose. In particular, X∗
1 = −X1 and X

∗
2 = X2 so that X1

and X2 are skew-hermitian and hermitian, respectively. Then X = X1 +X2. The set of all

trace zero skew-hermitian matrices is denoted sun(C) ⊂ sln(C); in particular, if A ∈ sln(C)

is hermitian, then iA ∈ sun(C), and

gR = sun(C)⊕ isun(C).

In this case, conjugation is given by X 7→ −X∗. The analytic subgroup of SLn(C) generated

by sun(C), denoted SUn(C), consists of determinant 1 unitary matrices and is compact, so

that sun(C) is a compact real form of sln(C).

17



3.2 Cartan Decomposition

We are particularly interested in algebras over R. Thus we make the notation more

convenient by using g to denote a real semisimple Lie algebra, gC its complexification, and

σ the conjugation of gC with respect to g. A (vector space) decomposition g = k ⊕ p of g

into a subalgebra k and a vector subspace p is called a Cartan decomposition if there exists

a compact real form u of gC such that

σ(u) ⊂ u, k = g ∩ u, p = g ∩ iu.

If u is any compact real form of gC with a conjugation τ , then there exists an automorphism

φ of gC such that the compact real form φ(u) is invariant under σ, which guarantees the

existence of a Cartan decomposition of g. In this case, the involutive automorphism θ = στ

is called a Cartan involution of g. The bilinear form Bθ of g defined by

Bθ(X,Y ) = −B(X, θY ), X, Y ∈ g

is symmetric and positive definite. The following theorem establishes a one-to-one corre-

spondence between Cartan decompositions of a real semisimple Lie algebra and its Cartan

involutions [13, p.184] [25, p.144].

Theorem 3.3. Let g be a real semisimple Lie algebra written as the direct sum of subspaces

g = k⊕ p. The following statements are equivalent.

(1) g = k⊕ p is a Cartan decomposition.

(2) The map θ : X + Y 7→ X − Y (X ∈ k, Y ∈ p) is a Cartan involution of g.

(3) The Killing form is negative definite on k and positive definite on p, and [k, k] ⊂ k,

[p, p] ⊂ k, [k, p] ⊂ p.
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Let g = k ⊕ p be a Cartan decomposition. It follows that k and p are the +1 and −1

eigenspaces of θ, respectively, and that k is a maximal compactly embedded subalgebra of g.

Moreover, k and p are orthogonal to each other with respect to both the Killing form B and

the inner product Bθ.

If g is a complex semisimple Lie algebra and u is a compact real form of g, then gR = u⊕iu

is automatically a Cartan decomposition [13, p.185].

The local (algebra-level) decomposition lifts nicely to a global (group-level) Cartan

decomposition. The details are summarized below [13, p.252] [21, p.362].

Theorem 3.4. Let G be a real semisimple Lie group with Lie algebra g. Let g = k ⊕ p

be the Cartan decomposition corresponding to a Cartan involution θ of g. Let K be the

analytic subgroup of G with Lie algebra k. Then

(1) K is connected, closed, and contains the center Z of G. Moreover, K is compact if

and only if Z is finite. In this case, K is a maximal compact subgroup of G.

(2) There exists an involutive, analytic automorphism Θ of G whose fixed point set is K

and whose differential at e is θ.

(3) The map K × p → G given by (k,X) 7→ k expX is a diffeomorphism onto.

In particular G = KP and every element g ∈ G can be uniquely written as g = kp,

where k ∈ K, p ∈ P.

Remark 3.5. If G is compact, G = K and the theorem is trivial.

For any k ∈ K, Ad k leaves k invariant because k is the Lie algebra of K. Since

Ad k ∈ Aut g, Ad k leaves invariant the subspace of g orthogonal to k, which is exactly p.

Ad k also leaves B invariant. If X ∈ g, write X = Xk +Xp with Xk ∈ k and Xp ∈ p and we

see that

Ad k(θ(X)) = Ad (k)Xk − Ad (k)Xp = θ(Ad (k)Xk) + θ(Ad (k)Xp) = θ(Ad (k)X),
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i.e., Ad k commutes with θ. Hence Ad k leaves Bθ invariant as well.

Example 3.6. Let us work out a Cartan decomposition of SLn(C). Since sun(C) is a

compact real form of sln(C), the decomposition

sln(C) = sun ⊕ isun

is a Cartan decomposition with k = sun(C), p = isun(C), and Cartan involution the same

as the conjugation for the form, i.e., θ(X) = −X∗. As noted above, k has analytic subgroup

K = SUn(C) ⊂ SLn(C), and P = exp p is the set of determinant 1 matrices g so that g∗ = g.

The map Θ is given by Θ(g) = (g∗)−1.

3.3 Root Space Decomposition

Let g be a complex semisimple Lie algebra. An element X ∈ g is called nilpotent if

adX is a nilpotent endomorphism; it is called semisimple if adX is diagonalizable. Since

g is semisimple, it possesses nonzero subalgebras consisting of semisimple elements, called

toral subalgebras. These subalgebras are abelian [20, p.35].

The normalizer of a subalgebra a of g is

Ng(a) = {X ∈ g : adX(a) ⊂ a};

it is the largest subalgebra of g which contains a and in which a is an ideal. The centralizer

of a in g is

Zg(a) = {X ∈ g : adX(a) = 0}.

A subalgebra h of g is called a Cartan subalgebra of g if it is self-normalizing, i.e., h = Ng(h),

and nilpotent. The Cartan subalgebras of g are precisely the maximal toral subalgebras of

g [20, p.80], and all Cartan subalgebras of g are conjugate under the adjoint group Int g of

inner automorphisms [20, p.82].
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Let h be a Cartan subalgebra of g. Since h is abelian, ad gh is a commuting family of

semisimple endomorphisms of g, thus is a simultaneously diagonalizable family. In other

words, g is the direct sum of the subspaces

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ h},

where α ranges over the dual h∗ of h. Note that g0 = h because h is self-normalizing. A

nonzero α ∈ h∗ is called a root of g relative to h if gα ̸= 0. The set of all roots, denoted by

∆, is call the root system of g relative to h. Thus we have the root space decomposition

g = h⊕
⊕
α∈∆

gα.

The root system ∆ characterizes g completely.

The restriction of the Killing form on h is nondegenerate and is given by

B(H,H ′) =
∑
α∈∆

α(H)α(H ′), H,H ′ ∈ h.

Consequently we can explicitly identify h with h∗: each α ∈ h∗ corresponds to a unique

Hα ∈ h with

α(H) = B(H,Hα) for all H ∈ h.

Thus it induces a nondegenerate bilinear form ⟨·, ·⟩ defined on h∗ by

⟨α, β⟩ = B(Hα, Hβ), α, β ∈ h∗.

The following is a collection of some properties of the root space decomposition [20,

p.36–40]:

(1) ∆ is finite and spans h∗.
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(2) If α, β ∈ ∆ ∪ {0} and α+ β ̸= 0, then B(gα, gβ) = 0.

(3) If α ∈ ∆, then −α ∈ ∆, but no other scalar multiple of α is a root.

(4) If α ∈ ∆, then [gα, g−α] is one dimensional, with basis Hα.

(5) If α ∈ ∆, then dim gα = 1.

(6) If α, β ∈ ∆, then
2⟨β, α⟩
⟨α, α⟩

∈ Z and β − 2⟨β, α⟩
⟨α, α⟩

α ∈ ∆.

3.4 Restricted Root Space Decomposition

In this section, we follow the treatment in [21]. Let g be a real semisimple Lie algebra

with Cartan decomposition g = k⊕ p and corresponding Cartan involution θ, and let a be a

maximal abelian subspace of p. For any element λ of the dual space a∗ of a, set

gλ := {X ∈ g : ad (H)X = λ(H)X for all H ∈ a}.

Analogous to the complex case, if λ ̸= 0 and gλ ̸= 0, we call λ a restricted root of g, or

a root of g with respect to a. We use Σ to denote the set of roots of (g, a).

Set m = Zk(a), i.e.,

m = {X ∈ k : ad (X)H = 0 for all H ∈ a},

and

g0 = Zg(a).

Since a is a maximal abelian subspace of p, if X ∈ p so that ad (H)X = 0 for all H ∈ a,

then X ∈ a; so g0 ∩ p = a.

Proposition 3.7. The restricted root system has the following properties:

1. g is the orthogonal direct sum g = g0 ⊕
⊕
λ∈Σ

gλ.
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2. [gα, gβ] ⊆ gα+β.

3. θ(gλ) = g−λ.

4. g0 = a⊕m.

For each restricted root α, the set

Pα = {X ∈ a : α(X) = 0}

is a subspace of a of codimension 1. The subspaces Pα (α ∈ Σ) divide a into several open

convex cones, called Weyl chambers. Fix a Weyl chamber a+ and refer to it as the funda-

mental Weyl chamber. A root α is positive if it is positive on a+. If α is not a positive root,

then since α is a linear functional and is nonzero on a+, it must be negative on a+; in this

case we call α a negative root. Let Σ+ denote the set of all positive roots with respect to

a+, and Σ− the set of all negative roots. If α ∈ Σ+ and X ∈ gα, write

X = Xk +Xp

with Xk ∈ k and Xp ∈ p. Since

[k, p] ⊂ p and [p, p] ⊂ k,

for any H ∈ a we have

(adH)Xk = α(H)Xp, (adH)Xp = α(H)Xk,

which imply

(adH)2Xk = α(H)2Xk,

(adH)2Xp = α(H)2Xp,
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and

θ(X) = Xk −Xp ∈ g−α.

For α ∈ Σ+, define

kα = {X ∈ k : (adH)2X = α(H)2X for all H ∈ a},

pα = {X ∈ p : (adH)2X = α(H)2X for all H ∈ a}.

Example 3.8. Again viewing g = sln(C) as a Lie algebra over R, we construct its restricted

root space decomposition using the Cartan decomposition

sln(C) = sun(C)⊕ isun(C),

with k = sun(C) and p = isun(C). We choose the maximal abelian subspace a of p to

be the traceless real diagonal matrices. The restricted root λij (i ̸= j) corresponds to the

two-dimensional root space

gλij
= {a1Eij + a2iEij : a1, a2 ∈ R},

where Eij indicates the n×n matrix with zeros in each entry except for a 1 in the i, j entry.

The centralizer m of a in k is the set of traceless diagonal matrices with purely imaginary

entries. As a commutes only with diagonal matrices, it is clear that g0 = a ⊕ m. Since the

Eij (i ̸= j), together with {Eii −Ei+1,i+1}, where i < n (which generate g0), form a basis for

sln(R), it is clear that

sln(C) = g0 ⊕
⊕
i̸=j

gλij
.

Let us examine the roots for g = sl3(C). Setting

e1 := E11 − E22 and e2 := E22 − E33,
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we choose {e1, e2} as a basis for a; via the Killing form, we see that the angle between e1

and e2 is 2π/3.

We may specify the roots by describing their action on the chosen basis. Let λ1, λ2,

and λ3 be the roots so that

λ1(e1) = 2, λ1(e2) = −1,

λ2(e1) = 1, λ2(e2) = 1,

λ3(e1) = −1, λ3(e3) = 2.

The remaining (non-zero) roots are −λ1, −λ2, and −λ3. The hyperplanes Pλ1 , Pλ2 , and Pλ3

are given by

Pλ1 = {ae1 + 2ae2 : a ∈ R}, Pλ2 = {ae1 − ae2 : a ∈ R}, Pλ3 = {ae1 +
a

2
e2 : a ∈ R}.

The hyperplanes subdivide a into its Weyl chambers:

Figure 3.1: Weyl Chambers of a
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If we fix the Weyl chamber a+ = {a1e1 + a2e2 : 0 < 1
2
a1 < a2 < a1}, the corresponding

positive roots are λ1, λ2 and λ3.

3.5 Iwasawa Decomposition

With notation as in the previous section, we construct another decomposition of a real

semisimple Lie algebra, which again lifts to a global decomposition.

Lemma 3.9. [23, p.107]

(1) k = m⊕
∑
α∈Σ+

kα and p = a⊕
∑
α∈Σ+

pα are direct sums whose components are mutually

orthogonal under Bθ,

(2) gα ⊕ g−α = kα ⊕ pα for all α ∈ Σ+, and

(3) dim gα = dim kα = dim pα for all α ∈ Σ+.

The spaces n :=
⊕

α∈Σ+ gα and n− :=
⊕

α∈Σ− gα are subalgebras of g. Recall that

θ(gλ) = g−λ by Proposition 3.7. Thus if X ∈ n−, we see that

X = (X + θ(X))− θ(X) ∈ k+ n.

Since g0 = (g0 ∩ k) ⊕ a, it is clear that g = k + a + n as vector spaces. This is actually a

direct sum, g = k⊕ a⊕ n, which is called Iwasawa decomposition of g [13, p.263] [21, p.373].

The following theorem summarizes the global Iwasawa decomposition [21, p.374].

Theorem 3.10. Let G be a real semisimple Lie group with Lie algebra g. Let g = k⊕ a⊕ n

be an Iwasawa decomposition. Let K, A, and N be the analytic subgroups of G with Lie

algebras k, a, and n, respectively. Then G = KAN and the map

(k, a, n) 7→ kan

is a diffeomorphism of K × A×N onto G. The groups A and N are simply connected.
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As a consequence, if g ∈ G, then g can be written in the form g = kan, k ∈ K, a ∈ A,

n ∈ N , and the decomposition is unique.

Example 3.11. For g = sln(C), we use the Cartan decomposition and choice of a from

Example 3.8, with k = sun(C) and a the set of trace zero real diagonal matrices. As indicated

in the example, we may choose a+ so that n consists of strictly upper triangular matrices.

The local Cartan decomposition is

g = k⊕ a⊕ n.

We construct the global decomposition by setting K := SUn(C), A := exp a, and N := exp n.

Then A is precisely the set of determinant 1 diagonal matrices with positive entries, and N

is the set of unit diagonal upper triangular matrices. This choice of factors in the Iwasawa

decomposition of X ∈ G gives the QR decomposition of X; QR factors a matrix as a product

of a unitary matrix Q and an upper triangular matrix R. Since K := SUn(C) consists of

unitary matrices and AN is the group of upper triangular matrices with positive diagonal

elements, Q = k(g) and R = a(g)n(g).

Example 3.12. Let G be the real noncompact symplectic group

G := Spn(R) = {g ∈ SL2n(R) : g⊤Jng = Jn}, Jn =

 0 In

−In 0

 .

By block multiplication, the elements of G are of the form

A B

C D

 , where A⊤C = C⊤A, B⊤D = D⊤B, A⊤D − C⊤B = In. (3.1)
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The Iwasawa decomposition of G = KAN is given by [31, p.285]

K =


 C B

−B C

 : C + iB ∈ U(n)

 = O(2n) ∩ Spn(R),

A = {diag (a1, . . . , an, a−1
1 , . . . , a−1

n ) : a1, . . . , an > 0},

N =


C B

0 (C−1)⊤

 : C real unit upper triangular, CB⊤ = BC⊤

 .

3.6 Weyl Groups

Let G be a real semisimple Lie group with Lie algebra g, with a chosen Iwasawa decom-

position g = k⊕ a⊕ n. Let M be the centralizer of a in K and M ′ the normalizer of a in K,

i.e.,

M = {k ∈ K : Ad (k)H = H for all H ∈ a},

M ′ = {k ∈ K : Ad (k)a ⊂ a}.

Note that M and M ′ are also the centralizer and normalizer of A in K, respectively, and

that they are closed Lie subgroups of K. More importantly, M is a normal subgroup of

M ′, and the quotient group M ′/M is finite because M and M ′ have the same Lie algebra

m = Zk(a) [13, p.284]. The finite group W := W (G,A) = M ′/M is called the (analytically

defined) Weyl group of G relative to A. For w = mwM ∈ W , the linear map

Ad (mw) : a → a

does not depend on the choice of mw ∈ M ′ representing w. Therefore, w 7→ Ad (mw) is

well-defined, and we may regard w ∈ W as the linear map Ad (mw) : a → a and W as a
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group of linear operators on a. In particular, it is a faithful representation of W on a: for if

Ad (ms)X = Ad (mt)X for all X ∈ a, then

ms exp(X)m−1
s = mt exp(X)m−1

t for all X ∈ a.

Since A = exp a, we see that msam
−1
s = mtam

−1
t for all a ∈ A, i.e., ms and mt are in the

same coset. Thus the representation is injective.

For each root α, the reflection sα about the hyperplane Pα with respect to the Killing

form B, is a linear map on a given by

sα(H) = H − 2α(H)

α(Hα)
Hα, for all H ∈ a,

where Hα is the element of a representing α, i.e., α(H) = B(H,Hα) for all H ∈ a. The

group W (g, a) generated by {sα : α ∈ Σ} is called the (algebraically defined) Weyl group

of g relative to a. When viewed as groups of linear operators on a, the two Weyl groups

W (G,A) and W (g, a) coincide [21, p.383].

We record a few of the many remarkable properties of W in the following proposition,

which we will have several occasions to use:

Proposition 3.13. [23, p.112] The Weyl group W permutes the Weyl chambers in a simply

transitive fashion, i.e., if C1 and C2 are Weyl chambers, then there is s ∈ W so that s(C1) =

C2, and if s ̸= eW , then for any chamber C, S(C) ̸= C.

Example 3.14. Let us compute the Weyl group for SLn(C). We use the conventions chosen

above for a and m, with a the set of traceless (real) diagonal matrices and m the set of

traceless diagonal matrices with purely imaginary entries. The subgroups generated by a

and m are A, the subgroup of determinant 1 diagonal matrices with real positive entries, and

M , the subgroup of determinant 1 diagonal matrices with entries of the form eiθ, θ ∈ R.
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Let ej be the n× 1 column vector with 1 in the jth row and 0s in the remaining entries.

The normalizer M ′ := NK(a) is the set of matrices of the form

(
eiθ1eπ(1) eiθ2eπ(2) . . . eiθneπ(n)

)
,

where θi ∈ R and π is a permutation. Then M ′/M ∼= Sn.

The action of W on a is given by permutation of the entries of X ∈ a; if

X = diag (a1, . . . , an),

then

ω(X) = diag (aω(1), . . . , aω(n)), ω ∈ Sn.

Alternatively, we may identify a permutation ω ∈ Sn with the unique permutation matrix

(also written as ω) in SLn(C), where ωei = eω(i). The matrix representation of ω under the

standard basis is

ω = [eω(1), · · · , eω(n)].

Thus if g ∈ SLn(C) is written in column form, g = [g1, · · · ,gn], gω = [gω(1), · · · ,gω(n)].

Moreover, if a = diag (x1, . . . , xn) ∈ A, then the action of ω on a is given by

ω−1diag (x1, . . . , xn)ω = diag (xω(1), . . . , xω(n)). (3.2)

3.7 Bruhat Decomposition

Given a real semisimple Lie group G and s ∈ W , we again denote by ms ∈ M ′ a

representative such that s = msM . Moreover, for s = 1, we choose the identity of G for ms.

Because of the global Iwasawa decomposition (3.10), the exponential map is a diffeo-

morphism from a, n, and n− onto A, N , and N−, respectively. Thus each of A, N , and

N− is a closed subgroup of G [23, p.116]. Since M is also closed and centralizes A, and
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MA normalizes N , MAN is a closed subgroup of G [13, p.403]. Thus multiplication from

M × A×N to MAN is a diffeomorphism onto MAN [21, p.460].

Now by Proposition 3.13 there is s∗ ∈ W so that s∗(a+) = −a+. Then s
∗ ◦ s∗(a+) = a+,

so again by the proposition, s∗ = (s∗)−1. Then it is clear that Adms∗(n
±) = n∓, so that

ms∗Nms∗ = N−; (3.3)

alternatively, we write

ms∗N = N−ms∗ . (3.4)

We refer to s∗ as the longest element of W .

The following theorem is one form of the Bruhat decomposition, which relies upon the

diffeomorphism outlined above and parameterizes G through W .

Theorem 3.15. [13, p.403] Let G be any noncompact semisimple Lie group. Then G is the

disjoint union

G =
∪
s∈W

MANmsMAN. (3.5)

Ifms = ms∗ , the termMANmsMAN is an open submanifold ofG, and each termMANmtMAN

with t ̸= s∗ is a lower dimensional open submanifold.

Example 3.16. Let G = SLn(R), the group of determinant 1 matrices with entries from

R. We may choose N (N−) to consist of upper (respectively lower) triangular matrices with

diagonal entries all 1s; MAN is the set of upper triangular matrices, and W ∼= Sn. Then

s∗ ∈ W has matrix representation

s∗ =



0 0 . . . 0 1

0 0 . . . 1 0

... . .
.

1 0 . . . 0 0


.

31



Notice that s∗ = (s∗)−1. It is clear that s∗Ns∗ = N−: let n ∈ N , i.e., of the form



1 ∗ . . . ∗ ∗

0 1 . . . ∗ ∗
...

. . .
...

0 0 . . . 1 ∗

0 0 . . . 0 1


.

Since s∗ acts on the left by reversing the order of the columns, s∗n has form



∗ ∗ . . . ∗ 1

∗ ∗ . . . 1 0

... . .
. ...

∗ 1 . . . 0 0

1 0 . . . 0 0


;

finally s∗ acts on the right by reversing the order of the rows, so we see that s∗ns∗ has form



1 0 . . . 0 0

∗ 1 . . . 0 0

...
. . .

...

∗ ∗ . . . 1 0

∗ ∗ . . . ∗ 1


.

In particular, (s∗ns∗)ij = nji, and we see that s∗Ns∗ = N−, as claimed.

For the purposes of this dissertation, as well as for the classical LU decomposition

for GLn(C), the decomposition in 3.15 is not the most convenient form. The treatment

in [23] yields an alternate (but equivalent, up to the statements on open submanifolds)

decomposition.
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Recall that M commutes with A, and M and A normalize N and N−. Since M ′

normalizes M and A, ms normalizes M and A for any s ∈ W . Accordingly, we rewrite the

terms from Theorem 3.15:

MANmsMAN = NMAmsMAN = NmsMAN.

In addition, we note that msG = G for all s ∈ W so that for any s ∈ W ,

G =
∪
t∈W

MANmtMAN =
∪
t∈W

msNmtMAN.

[23, p.118]. By (3.4), we have

ms∗NmtMAN = N−ms∗mtMAN

for any t ∈ W and

{N−ms∗mtMAN : t ∈ W} = {N−mtMAN : t ∈ W}.

Thus the decomposition in Theorem 3.15 is equivalent to the form below.

Theorem 3.17. [23, p. 117] The real semisimple Lie group G has Bruhat decomposition

G =
∪
s∈W

N−msMAN, (3.6)

which is a disjoint union. Moreover, N−MAN is a diffeomorphic product and is an open

subset of G, and the other cells N−msMAN (s ̸= eW ) are lower dimensional submanifolds

of G.

An immediate consequence is that, for each g ∈ G, there exists a unique s ∈ W such

that g ∈ N−msMAN .
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Given a decomposition of g ∈ G according to (3.6), say g = n̄msman, we may use the

discussion preceding Theorem 3.17 to revert to the form (3.5) in Theorem 3.15; following

[18],

ms∗g = (ms∗n̄ms∗)ms∗sman

∈ Nms∗sMAN

⊂MANms∗sMAN.

Thus the form (3.5) allows more flexibility on the choice of the MA component. How-

ever, the form (3.6) is more convenient for the ensuing calculations, thus we shall use it as

the standard Bruhat decomposition in the remainder of this disseration.

Example 3.18. Let us consider the Bruhat decomposition of SLn(C). We slightly extend

our discussion from the semisimple SLn(C) to GLn(C), and the arguments from Example

3.14 are still applicable. Let {e1, . . . , en} be the standard basis of Cn, i.e., ei is a column

vector with 1 as the only nonzero entry in the i-th position. Given a matrix A ∈ Cn×n,

let A(i|j) denote the submatrix formed by the first i rows and the first j columns of A,

1 ≤ i, j ≤ n. The Bruhat decomposition of SLn(C) is indeed reduced to the well-known

Gelfand-Naimark decomposition [13, p.434].

Theorem 3.19. [16] Each A ∈ GLn(C) has A = LωU , for a permutation matrix ω, a

unit lower triangular matrix L ∈ GLn(C), and an upper triangular U ∈ GLn(C). The

permutation matrix ω is uniquely determined by A:

rankω(i|j) = rankA(i|j) for 1 ≤ i, j ≤ n.

Moreover diagU is uniquely determined by A.

Remark 3.20. Although ω is unique in the Gelfand-Naimark decomposition A = LωU of

A, the components L and U may be not unique. The following example illustrates this
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ambiguity:

0 1

1 1

 =

1 0

1 1


0 1

1 0


1 0

0 1

 =

1 0

0 1


0 1

1 0


1 1

0 1

 .

In contrast, the permutation ω′ in a Gauss elimination A = ω′L′U ′ may be not unique, but

L′ and U ′ are uniquely determined by ω′. For example,

1 1

1 2

 =

1 0

0 1


1 0

1 1


1 1

0 1

 =

0 1

1 0


1 0

1 1


1 2

0 −1

 .

Moreover, the ω in a Gelfand-Naimark decomposition A = LωU of A can also be a permuta-

tion in a Gauss elimination A = ωL′U ′ of A. To see this, we notice that ω−1A = (ω−1Lω)U

and det[(ω−1Lω)(k|k)] = 1 since (ω−1Lω)(k|k) is the submatrix formed by choosing the

ω(1), · · · , ω(k) rows and columns of L. Therefore, by the LU algorithm [19], ω−1Lω = L1U1

for some unit lower triangular L1 and unit upper triangular U1, and

A = LωU = ω(ω−1Lω)U = ωL1(U1U) = ωL′U ′, (3.7)

where L′ := L1 and U ′ := U1U . We also have ω−1A = L1U1U . Then u(A) can be computed

by

det[(ω−1A)(k|k)] = det[(L1U1U)(k|k)] = det[U(k|k)] =
k∏

i=1

uii. (3.8)

Remark 3.21. When ω is the identity, it is well-known [19] that the decomposition A = LU

is unique.

3.8 Complete Multiplicative Jordan Decomposition

Let G be a real Lie group with Lie algebra g. An element g ∈ G is elliptic if Ad (g) ∈

Aut g is diagonalizable over C with eigenvalues of modulus 1; an element g ∈ G is hyperbolic
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if g = expX, where X ∈ g is real semisimple, which is to say adX ∈ End g is diagonalizable

over C with all eigenvalues real; an element g ∈ G is unipotent if g = expX, where X ∈ g is

nilpotent (3.3).

Each g ∈ G can be uniquely written as g = ehu, where e is elliptic, h is hyperbolic,

u is unipotent, and the three elements e, h, u commute [22, Proposition 2.1]. This is the

complete multiplicative Jordan decomposition (CMJD) of g. We write

g = e(g) h(g) u(g).

Let a+ be the closure of the Weyl chamber a+, and let A+ be the closure of A+ := exp a+.

Since exp : a → A is a diffeomorphism onto, we have A+ = exp a+ [23]. In addition,

diffeomorphisms preserve open sets so that A+ is open in A. It turns out that h ∈ G is

hyperbolic if and only if it is conjugate to an element of A+; in this case, such an element

of A+ is uniquely determined and we denote it by b(h) [22, Proposition 2.4]. For g ∈ G, we

define

b(g) := b(h(g)) ∈ A+.

Example 3.22. Follow [13, Lemma 7.1]: viewing g ∈ SLn(R) as an element in gln(R), the

additive Jordan decomposition [19, p.153] for gln(R) yields

g = s+ n1

(where s ∈ SLn(R) is semisimple, that is, diagonalizable over C, n1 ∈ sln(R) is nilpotent,

and sn1 = n1s). Moreover these conditions determine s and n1 completely [20, Proposition

4.2]. Put u := 1 + s−1n1 ∈ SLn(R) and we have the multiplicative Jordan decomposition

g = su,
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where s is semisimple, u is unipotent, and su = us. By the uniqueness of the additive Jordan

decomposition, s and u are also completely determined. Since s is diagonalizable,

s = eh,

where e is elliptic, h is hyperbolic, eh = he, and these conditions completely determine e

and h. The decomposition can be obtained by observing that there is k ∈ SLn(C) such that

k−1sk = s1Ir1 ⊕ · · · ⊕ smIrm ,

where s1 = eiξ1 |s1|, . . . , sm = eiξm |sm| are the distinct eigenvalues of s with multiplicities

r1, . . . , rm respectively. Set

e := k(eiξ1Ir1 ⊕ · · · ⊕ eiξmIrm)k
−1, h := k(|s1|Ir1 ⊕ · · · ⊕ |sm|Irm)k−1.

Since

ehu = g = ugu−1 = ueu−1uhu−1u,

the uniqueness of s, u, e and h implies e, u and h commute. Since g is fixed under complex

conjugation, the uniqueness of e, h and u imply e, h, u ∈ SLn(R) [13, p.431]. Thus g = ehu

is the CMJD for SLn(R). The eigenvalues of h are simply the eigenvalue moduli of s and

thus of g.

A matrix in GLn(C) is called elliptic (respectively hyperbolic) if it is diagonalizable with

norm 1 (respectively real positive) eigenvalues. It is called unipotent if all its eigenvalues are

1. The complete multiplicative Jordan decomposition of g ∈ GLn(C) asserts that g = ehu for

e, h, u ∈ GLn(C), where e is elliptic, h is hyperbolic, u is unipotent, and these three elements

commute. The decomposition is obvious when g is in a Jordan canonical form with diagonal
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entries (i.e., eigenvalues) z1, · · · , zn, in which

e = diag

(
z1
|z1|

, · · · , zn
|zn|

)
, h = diag (|z1|, · · · , |zn|) ,

and u = h−1e−1g is a unit upper triangular matrix.
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Chapter 4

Aluthge Iteration

Given 0 < λ < 1, the λ-Aluthge transform of X ∈ Cn×n [2]:

∆λ(X) := P λUP 1−λ

has been extensively studied, where X = UP is the polar decomposition of X, that is, U is

unitary and P is positive semidefinite. If U and P commute, we say that X is normal.

The Aluthge transform can be extended to Hilbert space operators [1, 2]; see [9, 10, 29,

33, 36] for some recent research.

Define

∆m
λ (X) := ∆λ(∆

m−1
λ (X)), m ∈ N

with ∆1
λ(X) := ∆λ(X) and ∆0

λ(X) := X so that we have the λ-Aluthge sequence {∆m
λ (X)}m∈N.

It is known that {∆m
λ (X)}m∈N converges if n = 2 [8], if the eigenvalues of X have distinct

moduli [14], and if X is diagonalizable [4, 5, 6]. Very recently Antezana, Pujals and Stojanoff

[7] proved the following interesting result using ideas and techniques from dynamical systems

and differential geometry.

Theorem 4.1. [7, Theorem 6.1] Let X ∈ Cn×n and 0 < λ < 1.

1. The sequence {∆m
λ (X)}m∈N converges to a normal matrix ∆∞

λ (X) ∈ Cn×n.

2. The function ∆∞
λ : GLn(C) → GLn(C) defined by X 7→ ∆∞

λ (X) is continuous.

The convergence problem for Cn×n is reduced to GLn(C) [3] and can be further reduced

to SLn(C) since ∆λ(cX) = c∆λ(X), c ∈ C.
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Not much is known about the limit ∆∞
λ (X). For X ∈ SL2(C) with equal eigenvalue

moduli [30],

∆∞
λ (X) =

trX

2
I2 +

√
4− trX2

2
√

tr (XX∗) + 2 detX − trX2
(X −X∗).

Our goal in this section is to extend Theorem 4.1 to Lie groups with the right properties.

4.1 The λ-Aluthge Iteration

Let G be a real noncompact connected semisimple Lie group, and let g be its Lie algebra,

with g = k + p a fixed Cartan decomposition of g, and let G = KP be the corresponding

global decomposition as in Theorem 3.4. Given 0 < λ < 1, the λ-Aluthge transform of

∆λ : G→ G is defined as

∆λ(g) := pλkp1−λ,

where

pλ := exp(λX) ∈ P

if p = expX for some X ∈ p. The map (0, 1)×G→ G defined by (λ, g) 7→ ∆λ(g) is smooth;

thus ∆λ : G→ G is smooth [15]. We define

∆m
λ (g) := ∆λ(∆

m−1
λ (g)),

with ∆1
λ(g) := ∆λ(g) and ∆0

λ(g) := g so that we have the generalized λ-Aluthge sequence

{∆m
λ (g)}m∈N. Clearly ∆λ(g) = pλg(pλ)−1 so that all members of the Aluthge sequence are

in the same conjugacy class.

Lemma 4.2. [15] Let G be a real connected noncompact semisimple Lie group with Lie

algebra g. For any irreducible representation π of G and 0 < λ < 1,

π ◦∆λ = ∆λ ◦ π,
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where ∆λ on the left is the Aluthge transform of g ∈ G with respect to the Cartan decom-

position of G as G = KP , and ∆λ on the right is the Aluthge transform of π(g) ∈ GL(Vπ)

with respect to the polar decomposition.

Proof. Let g = kp with k ∈ K, p ∈ P with p = exp(X) for some X ∈ p. Then

π(pλ) = π(exp(λX)) = exp(dπ(λX)) = exp(λdπ(X)) = (π(p))λ

by 2.1.

Since π is an irreducible representation, the Cartan decomposition of π(g) is π(k)π(p)

[15]. So

∆λ ◦ π(g) = ∆λ(π(k)π(p))

= π(p)λπ(k)π(p)1−λ

= π(pλ)π(k)π(p1−λ)

= π(pλkp1−λ)

= π ◦∆λ(g).

4.2 Normal Elements

An element g ∈ G is said to be normal if kp = pk, where g = kp (k ∈ K and p ∈ P )

is the Cartan decomposition of g. Recall that the center Z of G is contained in K 3.4. So

g ∈ G is normal if and only if zg is normal for all z ∈ Z.

Equip g once and for all with an inner product [21, p.360] such that the operator

Ad k ∈ GL(g) on g is orthogonal for all k ∈ K, and Ad p ∈ GL(g) is positive definite for all

p ∈ P . Notice that AdG = (AdK)(AdP ) is the polar decomposition of AdG ⊂ GL(g).

Lemma 4.3. 1. The element g ∈ G is normal if and only if Ad g ∈ GL(g) is normal.
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2. Let 0 < λ < 1. An element g ∈ G is normal if and only if g is invariant under ∆λ.

Proof. (1) One implication is trivial. For the other implication, consider g = kp such that

Ad g is normal, i.e., Ad (kp) = Ad (pk). Since kerAd = Z ⊂ K, kp = pkz where z ∈ Z,

i.e., kpk−1 = zp. Now kpk−1 ∈ P because p is invariant under Ad k for all k ∈ K. By the

uniqueness of the Cartan decomposition, z = 1 and kpk−1 = p, i.e., kp = pk.

(2) Suppose that g is normal, with Cartan decomposition g = kp. Then kpk−1 = p so

that exp(Ad (k)X) = expX. Since Ad (k)p = p and the map exp : p → P is a diffeomorphism

by Theorem 3.4, we have Ad (k)X = X. Thus Ad (k)(tX) = tX for all t ∈ R so that

kp⊤k−1 = p⊤, i.e., kp⊤ = p⊤k. As a result ∆λ(g) = pλkp1−λ = g. Conversely if g = kp

is invariant under ∆λ, then pλkp1−λ = kp, i.e., pλk = kpλ. So exp(Ad (k)λX) = exp(λX)

where expX = p. Again using the diffeomorphism of p onto P , Ad (k)λX = λX so that

Ad (k)X = X and thus kp = pk.

Lemma 4.4. Let G be a noncompact connected semisimple Lie group and g ∈ G, and let

φ : G → G be a diffeomorphism such that φ(cg) = cφ(g) for each c ∈ Z, where Z is the

center of G. If {Adφm(g)}m∈N converges to L so that Ad −1(L) contains some fixed point ℓ

of φ, then {φm(g)}m∈N converges to an element φ∞(g) ∈ G.

Proof. If {Adφm(g)}m∈N converges, then the limit L is of the form Ad ℓ for some ℓ ∈ G

since AdG is closed in GL(g) [13, p.132]. We may assume that ℓ is a fixed point of φ.

Since (G,Ad ) is a covering group of AdG [13, p.272], there is a (local) homeomorphism,

induced by Ad , between neighborhoods U of ℓ and AdU of Ad ℓ. Thus there is a sequence

{gm}m∈N ⊂ U converging to ℓ and Ad gm = Adφm(g). Since kerAd = Z, there is a sequence

{zm}m∈N ∈ Z such that gm = zmφ
m(g), and

lim
m→∞

zmφ
m(g) = ℓ. (4.1)

Apply φ on (4.1) to have

lim
m→∞

zmφ
m+1(g) = φ(ℓ) = ℓ.
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Hence

lim
m→∞

zm+1z
−1
m = 1,

where 1 ∈ G denotes the identity element. The converging sequence {zm+1z
−1
m }m∈N is con-

tained in the center Z which is discrete [13, p.116]. So zm+1 = zm = z (say) for sufficiently

large m ∈ N. Hence {φm(g)}m∈N converges to φ∞(g) := ℓz−1.

4.3 Asymptotic Behavior of the Aluthge Sequence

The main result in this chapter is

Theorem 4.5. [32] Let G be a real connected noncompact semisimple Lie group, and let

g ∈ G. Let 0 < λ < 1.

1. The λ-Aluthge sequence {∆m
λ (g)}m∈N converges to a normal ∆∞

λ (g) ∈ G.

2. The map ∆∞
λ : G→ G defined by g 7→ ∆∞

λ (g) is continuous.

Proof. (1) By Lemma 4.2,

Ad (∆m
λ (g)) = ∆m

λ (Ad (g)), m ∈ N, (4.2)

where ∆λ on the left is the Aluthge transform of g ∈ G with respect to the Cartan de-

composition G = KP and that on the right is the matrix Aluthge transform of Ad (g) ∈

AdG ⊂ GL(g) with respect to the polar decomposition. By Theorem 4.1 {∆m
λ (Ad (g))}m∈N

converges to a normal Ad ℓ for some ℓ ∈ G since AdG is closed in GL(g) [13, p.132]; so does

{Ad (∆m
λ (g))}m∈N. Since ℓ is normal by Lemma 4.3, ℓ is fixed by ∆λ. Moreover central ele-

ments factor out of ∆λ so that Lemma 4.4 applies immediately, i.e., {∆m
λ (g)}m∈N converges

to the normal ∆∞
λ (g) := ℓz−1 ∈ G.
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(2) By 4.2,

Ad (∆∞
λ (g)) = Ad ( lim

m→∞
∆m

λ (g)) = lim
m→∞

Ad (∆m
λ (g))

= lim
m→∞

∆m
λ (Ad (g)) = ∆∞

λ (Ad (g)).

So

Ad ◦∆∞
λ = ∆∞

λ ◦ Ad . (4.3)

The ∆∞
λ : GL(g) → GL(g) on the right of (4.3) is continuous by Theorem 4.1(b), thus

Ad ◦∆∞
λ is continuous. Since AdG ∼= G/Z [13, p.129], Ad : G → AdG on the left of (4.3)

is an open map [13, p.123], [27, p.97]. Hence ∆∞
λ : G→ G is continuous.
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Chapter 5

Bruhat Iteration

5.1 Rutishauser’s LR algorithm

Suppose that A ∈ GLn(C) with LU decomposition A = LU , where L ∈ GLn(C) is

unit lower triangular and U ∈ GLn(C) is upper triangular. Rutishauser’s LR algorithm [26]

asserts that if A ∈ GLn(C) has distinct eigenvalue moduli, then under certain conditions the

following iteration

As = LsUs,

As+1 = UsLs = Ls+1Us+1, s = 1, 2...

converges to an upper triangular matrix. The result is significant since As+1 = L−1
s AsLs so

that eigenvalues are preserved during the whole algorithm. Since eigenvalues are continues

functions, Rutishauser’s algorithm provides a means to approximate eigenvalues of A.

Theorem 5.1. [35] Let A ∈ GLn(C) such that As admits LU decomposition for all s ∈ N

and so that the moduli of the eigenvalues λ1, . . . , λn of A are distinct, i.e.,

|λ1| > |λ2| > · · · > |λn| (> 0). (5.1)

Let A = Xdiag (λ1, . . . , λn)X
−1. Assume that X and X−1 admit LU decomposition. Then

the sequence {As}s∈N converges and the limit lims→∞As is an upper triangular matrix R in

which diagR = diag (λ1, . . . , λn).

J.H. Wilkinson praised the LR iteration as “algorithmic genius” [33, p.vii] and “the

most significant advance which has been made in connection with the eigenvalue problem
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since the advent of automatic computers” with the understanding that “The QR algorithm,

which was developed later by Francis, is closely related to the LR algorithm but is based

on the use of unitary transformations. In many respects this has proved to be the most

effective of known methods for the solution of the general algebraic eigenvalues problem.”

[33, p.487-488]. See the comments in [12].

Indeed Theorem 5.1 may be generalized due to the argument in [33, p.521-522]; with

careful reading (see Remark 5.10), we deduce the theorem below.

Theorem 5.2. Let A ∈ GLn(C) such that As admits LU decomposition for all s ∈ N and

the moduli of the eigenvalues λ1, . . . , λn of A are distinct. Let A = Xdiag (λ1, . . . , λn)X
−1.

Assume that PY = LYUY (Y := X−1) and XP⊤ = LXUX admit LU decomposition

where P is a permutation matrix corresponding to the permutation ω. Then the sequence

{As}s∈N converges and lims→∞As is an upper triangular matrix R in which diagR =

diag (λω(1), . . . , λω(n)).

The QR algorithm does not imply that its iterates converge to an upper triangular ma-

trix. However, it does assert that, under the assumption of distinct eigenvalue moduli of

A ∈ GLn(C), its iterates are “convergent” to an upper triangular form. The LR algorithm,

on the other hand, does imply convergence, not just form convergence, towards an upper tri-

angular matrix R whose diagonal entries display the eigenvalues of the original matrix. Very

recently the QR algorithm has been extended in the context of semisimple Lie groups [18];

see Remark 5.5 for the comparison. We now extend the LR algorithm in the same fashion,

and give explicit examples. We remark that the decomposition PY = LYUY is the matrix

version of Gaussian elimination; none of the components P,LY , UY in the decomposition is

unique. However, the Gelfand-Naimark decomposition Y = LωU yields a unique ω, where L

is unit lower triangular and U is upper triangular. The role of the Gelfand-Naimark decom-

position will be played by the Bruhat decomposition in the context of semisimple groups, as

we will see in the next section.
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5.2 Regular elements

Let G denote a connected real semisimple Lie group with a fixed Cartan decomposition

g = k + p of the semisimple Lie algebra g. Let K ⊂ G be the connected subgroup corre-

sponding to k. Recall that K is closed. Since AdK ⊂ O(g), which is compact, AdK is itself

a maximal compact subgroup of AdG [13, Lemma 1.2, p.253].

Recall that a+ is the closure of the Weyl chamber a+, that A+ := exp a+, and that

A+ = exp a+ is the closure of A+. An element b ∈ A+ is regular if α(log b) > 0 for all

positive roots α, that is, b is in A+.

When G = SLn(C) or SLn(R), the CMJD of g ∈ G is given in Example 3.22; see [13,

p. 430-431]. In this case, b(g) is regular if and only if g has distinct eigenvalue moduli,

which implies that g is diagonalizable, that is, the unipotent part u(g) = 1. The following

proposition is an extension of this result in the context of a connected real semisimple Lie

group G.

Proposition 5.3. [18] Let g ∈ G such that b(g) ∈ A+ is regular. Then the unipotent

component u(g) in the CMJD of g is the identity and there is x ∈ G such that xh(g)x−1 = b(g)

and xe(g)x−1 ∈M .

Let Σ+ denote the set of positive roots with respect to a+, and Σ− the set of negative

roots. For any root α, recall that gα is the associated root space, and that

n− :=
∑
α∈Σ−

gα.

Given H ∈ a+, set

n0H :=
∑
α∈P 0

H

gα, where P
0
H := {α ∈ Σ− : α(H) = 0},
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and

nH :=
∑
α∈PH

gα, where PH := {α ∈ Σ− : α(H) < 0}.

Thus n− decomposes as n− = n0H ⊕ nH . Define the map

π0
H : n− → n0H

by projection onto the first summand. If H ∈ a+, then P
0
H = ∅, n0H = 0, and π0

H maps n− to

0.

Lemma 5.4. [18] Let b ∈ A+ and ℓ ∈ N−. Denote H := log b ∈ a+ and L := log ℓ ∈ n−.

Then

lim
i→∞

biℓb−i = exp π0
H(L) ∈ N−.

In particular, if b is regular, then lim
i→∞

biℓb−i = 1.

Proof. Let i > 0, and set Li := ead (iH)(L). By (2.2) and (2.3),

biℓb−i = exp(Ad (bi)(L))

= exp(Ad (eiH)(L))

= exp(ead (iH)(L))

= expLi.

For any root α and Lα ∈ gα, we see that

ad (iH)(Lα) = iad (H)(Lα) = iα(H)(Lα).

Then

ead (iH)(Lα) =
∞∑
j=0

(ad (iH))j

j!
(Lα) =

∞∑
j=0

(iα(H))j

j!
Lα = eiα(H)Lα.
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Now L ∈ n−, so that it may be decomposed as

L =
∑
α∈Σ−

Lα

with Lα ∈ gα. Then

Li = ead (iH)(L) =
∑
α∈Σ−

eiα(H)Lα.

Now for all α ∈ Σ−, either α(H) = 0 or α(H) < 0 so that

lim
i→∞

biℓb−i = lim
i→∞

expLi = exp lim
i→∞

Li = exp π0
H(L).

Lemma 5.5. [18] Let {xi}i∈N and {yi}i∈N be two sequences in G, such that limi→∞ xi = 1

and {Ad (yi)}i∈N is in a compact subset of Ad (G). Then

lim
i→∞

yixiy
−1
i = 1.

Proof. Recall that exp : g → G is a diffeomorphism in a neighborhood of the identity. Since

limi→∞ xi = 1, there exist N ∈ Z+ and Xi ∈ g (for i > N) so that if i > N , xi = expXi.

Thus limi→∞Xi = 0, and for all i > N , yixiy
−1
i = exp(Ad (yi)Xi).

By way of contradiction, suppose that limi→∞ yixiy
−1
i ̸= 1. Then limi→∞(Ad (yi)Xi) ̸=

0, so that there is an open neighborhood U ⊂ g of 0 and a subsequence {ti}i∈N of N so that

ti > N and Ad (yti)Xti ̸∈ U for all i ∈ N. However, since {Ad (yti)} is in a compact subset of

AdG, there is a subsequence {si}i∈N of {ti}i∈N and y ∈ G so that limi→∞ ysi = Ad y. Thus

limi→∞ Ad (ysi)Xsi = Ad (y)(0) = 0, which contradicts the assumption Ad (yti)Xti ̸∈ U for

all i ∈ N. Thus limi→∞ yixiy
−1
i = 1.

Proposition 5.6. Given ω ∈ W , set Gω := N−mωMAN . Then m−1
ω Gω ⊂ N−MAN .
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Proof. Let g := n̄mωman ∈ Gω, with n̄ ∈ N−, m ∈M , a ∈ A, and n ∈ N . By [23, p.117]

mωN
−m−1

ω = N1N2

is a diffeomorphic product, where N1 and N2 are Lie subgroups of N− and N , respectively.

So

m−1
ω n̄−1mω = n̄′n′

with n̄′ ∈ N− and n ∈ N . Then

m−1
ω n̄mωman = n̄′n′man = n̄′man′′ (5.2)

with n′′ ∈ N since MA normalizes N . Thus (5.2) is the Bruhat decomposition of m−1
ω g ∈

N−MAN .

5.3 Bruhat iteration

Let g = g1 = n̄man be the Bruhat decomposition of g ∈ N−MAN , where n̄ ∈ N− and

man ∈MAN . Set n̄1 := n̄ and u1 := man so that g1 = n̄1u1. Define

B(g1) := u1n̄1 = n̄−1
1 g1n̄1

and the Bruhat iteration recursively:

gs = B(gs−1) = n̄−1
s−1gs−1n̄s−1, s ∈ N.

Theorem 5.7. Suppose that g ∈ G with b(g) regular, {gs}s∈N ⊂ N−MAN , and g = xcbx−1

as in Proposition 5.3. If x−1 = lmωp, l ∈ N−, ω ∈ W , p ∈ MAN , and xmω ∈ N−MAN ,

50



then gs ∈ N−MAN . Moreover, there is p′ ∈MAN so that

lim
s→∞

gs = p′m−1
ω (bc)mω(p

′)−1 ∈MAN.

The MA-component of the limit is ω · (bc).

Proof. Note that

gs = n̄−1
s−1gs−1n̄s−1 = n̄−1

s−1 · · · n̄−1
1 g1n̄1 · · · n̄s−1. (5.3)

Set ts := n̄1 · · · n̄s and rs := us · · ·u1. Then

ts−1gs = g1ts−1. (5.4)

Now consider

tsrs = n̄1 · · · n̄s−1(n̄sus)us−1 · · ·u1

= n̄1 · · · n̄s−1gsus−1 · · ·u1

= g1n̄1 · · · n̄s−1us−1 · · ·u1

= g1ts−1us−1.

Repeated application of this result yields tsus = gs1, i.e., g
s
1 ∈ N−MAN for all s ∈ N .

As ts ∈ N− and rs ∈MAN the Bruhat decomposition of gs1 is given by

gs1 = tsrs. (5.5)

Let g1 = ehu be the complete multiplicative Jordan decomposition of g1. As g1 is regular,

there is an x ∈ G so that b := xhx−1 ∈ A+. By [18], u = 1 and c := xex−1 ∈ M , so that

x−1g1x = cb ∈MA+.
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Suppose that x−1 = lmωp, l ∈ N−, ω ∈ W , and p ∈MAN . We want to show that

lim
s→∞

csbslb−sc−s = 1.

Since c ∈M ⊂ K, {Ad cs}s∈N is contained in the compact set AdK. By Lemma 5.5 we need

only consider the sequence {bslb−s}s∈N. By Lemma 5.4,

lim
s→∞

bslb−s = 1

since b is regular. Set

ls:=c
sbslb−sc−s, (5.6)

which is in n− since MA normalizes N−. Now

gs = xcsbsx−1 = xcsbsl(csbs)−1csbsmωp = xlsc
sbsmωp. (5.7)

Since M ′ normalizes MA, csbsmω = mωcsbs for some cs ∈M , bs ∈ A. We have

xlsc
sbsmωp = xlsmωcsbsp,

with ks := csbsp ∈MAN . Then (5.7) can be rewritten as

gs =xlsmωcsbsp = xlsmωks. (5.8)

Since ls ∈ N− and ks ∈ MAN , lsmωks is in the cell Gω. Then by Proposition 5.2

m−1
ω lsmωks ∈ N−MAN , i.e.,

m−1
ω lsmωks = l′sk

′
s

with l′s ∈ N− and k′s ∈ MAN . By Proposition 5.6, m−1
ω lsmω = l̄sps, with l̄s ∈ N− and

ps ∈ N . Since ls → 1, m−1
ω lsmω = l̄sps → 1 as well. By the diffeomorphic product of
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N−MAN , both l̄s and ps approach 1. Thus we rewrite (5.8) as

gs = xlsmωks = xmω(m
−1
ω lsmω)ks = xmω l̄spsks.

By the assumption, xmω ∈ N−MAN , say xmω = l′p′. We have xmω l̄spsks = l′p′l̄spsks.

Since l′ ∈ N−, p′ ∈MAN , l̄s ∈ N− with l̄s → 1, and ps → 1, we have

tsrsk
−1
s → l′p′.

Since the mapN−×M×A×N→ N−MAN is a diffeomorphism, and ts ∈ N−, rsk
−1
s ∈MAN ,

tsrsk
−1
s → l′p′ implies that ts → l′ and rsk

−1
s → p′ as s → ∞. Since gs = t−1

s−1g1ts−1 from

(5.4), we have

gs → (l′)−1g1l
′ = (xmω(p

′)−1)−1g1(xmω(p
′)−1) = p′m−1

ω (bc)mωp
′.

We record as a corollary the special case when ω = 1, i.e., x−1 is in the large cell.

Corollary 5.8. Suppose that g ∈ G with b(g) regular, {gs}s∈N ⊂ N−MAN , and g = xcbx−1

as in Proposition 5.3. If x−1 and x ∈ N−MAN , then gs ∈ N−MAN . Moreover, there is

p′ ∈MAN so that

lim
s→∞

gs = p′(bc)(p′)−1 ∈ N.

The MA-component of the limit is bc.

Remark 5.9. We remark that the large cell N−MAN is not closed under inversion. For

example, for G = SL2(C), note that and

A = LU =

 1 0

−1 1


1 1

0 1

 =

 1 1

−1 0
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but

(LU)−1 =

 0 1

−1 1

 ,

which is not in the large cell.

Remark 5.10. The proofs in the literature of the convergence statements for the LR itera-

tion are not purely group theoretic since they usually make use of the embedding of GLn(C)

in Cn×n to accommodate matrix addition at some point (see [33, p.521] for example). Two

proofs of the convergence statement are given in [33]. The first is computation-intensive,

while the second is much more similar to the proof given here, except that it uses Gaussian

elimination instead of Gelfand-Naimark decomposition. However, both proofs are sketched

out roughly, and are missing important details, for example, Equation (33.2) in [33, p.521].

Our proof of the generalization only involves purely group theoretic arguments.

Remark 5.11. For x−1 ∈ N−mωMAN , the condition xmω ∈ N−MAN is essential to

guarantee convergence in Theorem 5.7. Consider Rutishauser’s matrix [26, p.52]

A1 :=


1 −1 1

4 6 −1

4 4 1

 =


0 −1 −1

1 1 1

1 0 1



5 0 0

0 2 0

0 0 1




1 1 0

0 1 −1

−1 −1 1

 .

Setting

x :=


0 −1 −1

1 1 1

1 0 1

 ,

we see that x−1 has LU decomposition

x−1 =


1 0 0

0 1 0

−1 0 1



1 1 0

0 1 −1

0 0 1

 ,

54



i.e., x−1 is in the largest cell, while x is not in the largest cell.

We claim that the sequence As remains in the largest cell, but diverges. To this end we

first establish that

As+1 =


1 −1

5s
1

4 · 5s 6 −5s

4 4
5s

1


by induction. A routine calculation shows that

A2 =


1 −1

5
1

20 6 −5

4 4
5

1

 .

Suppose that

As =


1 −1

5s−1 1

4 · 5s−1 6 −5s−1

1 −1
5s−1 1

 .

Then As has LU decomposition

As =


1 0 0

4 · 5s−1 1 0

4 4
5s

1



1 −1

5s−1 1

0 10 −5s

0 0 1

 .

So

As+1 =


1 −1

5s−1 1

0 10 −5s

0 0 1




1 0 0

4 · 5s−1 1 0

4 4
5s

1

 =


1 −1

5s
1

4 · 5s 6 −5s

4 4
5s

1

 .

The sequence obviously diverges since 4 · 5s → ∞.

Remark 5.12. In Theorem 5.2, the condition is given in terms of Gaussian elimination PY =

LYUY instead of Gelfand-Naimark decomposition Y = LωU . See [16] for some comparison
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of the two decompositions. Although ω is unique in the Gelfand-Naimark decomposition

Y = LωU , the components L and U may be not unique. The permutation P may be not

unique, but LY and UY are uniquely determined by the permutation matrix P . Moreover,

ω can also be a permutation in a Gauss elimination Y = ωL′U ′ [16].

Example 5.13. Consider the real symplectic group ([28, p.129]):

G := Spn(R) = {g ∈ SL2n(R) : g⊤Jng = Jn}, Jn =

 0 In

−In 0

 .

Recall that the elements of G are of the formA B

C D

 , A⊤C = C⊤A, B⊤D = D⊤B, A⊤D − C⊤B = In (5.9)

[28, p.128], and that the Cartan decomposition of G is given by

K =
{ C B

−B C

 : C + iB ∈ U(n)
}
= O(2n) ∩ Spn(R),

A = {diag (a1, . . . , an, a−1
1 , . . . , a−1

n ) : a1, . . . , an > 0},

N =
{C B

0 (C−1)⊤

 : C unit upper triangular, CB⊤ = BC⊤
}

The centralizer M of A in K is the group of the diagonal matrices in K, i.e., the group of

matrices of the form diag (C,C), where C = diag (±1,±1, . . . ,±1) (independent signs here

and below). The normalizer M ′ of A in K is W ′M where W ′ is generated by

{Ek,n+k − En+k,k +
∑

i̸=k,n+k Eii : k = 1, . . . , n}

∪{diag (C,C) : C is a permutation matrix}.
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Note that W ′M/M ≃ W ′/(W ′ ∩M) is isomorphic to the Weyl group. In particular, W ∼=

(Z/2Z)n o Sn [20, p.66]. We have N− = N⊤ = {n⊤ : n ∈ N}.

We may choose a to be the set of all real matrices of the form

X = diag (x1, . . . xn,−x1, . . . ,−xn) ∼= (x1, . . . , xn);

the natural basis for a is then

{Hi := Ei,i − En+i,n+i : 1 ≤ i ≤ n}.

The corresponding basis elements Li of a
∗ are given by Li(Hj) = δij. The Lie algebra n of

N is

n =
{A B

0 −A⊤

 : A,B ∈ gln(R), A stricly upper triangular, B = B⊤
}
.

The root system is {±Li ± Lj : i ̸= j} ∪ {2Li : 1 ≤ i ≤ n}; the positive roots α are

{Li − Lj, Li + Lj, 2Li : i < j} [11, p.238-240]. The root spaces gα are:

gLi−Lj
= Eij − En+j,n+i ∈ n

g−Li+Lj
= Eji − En+i,n+j ∈ n−

gLi+Lj
= Ei,n+j + Ej,n+i ∈ n

g−Li−Lj
= En+i,j + En+j,i ∈ n−

g2Li
= Ei,n+i ∈ n

g−2Li
= En+i,i ∈ n−.

So n− = n⊤. Since W contains the negative of the identity γ = −id, the longest root is −id.

Now N = exp n and N− = exp n− = exp n⊤ = (exp n)⊤. So γNγ−1 = N⊤.
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Let g ∈ G and assume the hypotheses of Theorem 5.7, that is, assume that ygy−1 = cb

for some y ∈ Spn(R), c ∈ K and b = diag (b1, . . . , bn, b
−1
1 , . . . , b−1

n ) ∈ A with bc = cb, and that

y has Bruhat decomposition y = n−msman ∈ N−msMAN . In particular, assume that b is

regular, i.e., b ∈ A◦
+. Choosing A+, as usual, to be the set of those matrices in A with first

n diagonal entries nonincreasing and ≥ 1, we have b1 > b2 > · · · > bn > 1. Since bc = cb, it

follows that c = diag (C,C) with C = diag (±1,±1, . . . ,±1).

According to Theorem 5.7,

1. lim
i→∞

k(gi) = cs ∈ M, where cs := (msm)−1c(msm) is of the form diag (C,C) with

C = diag (±1,±1, . . . ,±1),

2. lim
i→∞

a(gi) = bs ∈ A, where bs := (msm)−1b(msm) = m−1
s bms is of the form diag (D,D−1)

with D a diagonal matrix having diagonal entries b±1
1 , b±1

2 , . . . , b±1
n in some order.

The diagonal entries of n(gi) are each 1, so it follows that the diagonal entries of the sequence

{gi} converge to the eigenvalues of g.

5.4 Open Problem

One often encounters real matrices A ∈ SLn(R) whose complex eigenvalues occur in

complex conjugate pairs, i.e., the hyperbolic component of A is not regular. In order to deal

with this case, we would like to relax somewhat the assumption of regularity in Theorem

5.7. In particular, we would like to consider g ∈ G so that xgx−1 = cb for some y ∈ G,

c ∈ K, b ∈ A+, such that cb = bc. In SLn(C), this corresponds to choosing a matrix X with

repeated eigenvalues. In this case, we believe that the convergence pattern for X will be

based upon the repeated eigenvalues; if the distinct eigenvalues are λ1 > . . . > λj, so that λi
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has multiplicity ki, then we expect that X (pattern) converges to the block diagonal form



Aλ1 ∗ . . . ∗

0 Aλ2 ∗
. . .

0 0 . . . Aλj


,

where Aλi
is a ki × ki matrix with eigenvalues all λi. This requires further study.

5.5 Comparison of the Iwasawa and Bruhat Iterations

Given X ∈ GLn(C), the QR algorithm writes X as a product of a unitary matrix Q

and upper triangular matrix R,

X = QR.

We define the QR iteration in a similar fashion to the LR iteration by setting

X1 = X = Q1R1,

and defining:

Xs+1 = RsQs = Qs+1Rs+1, s = 1, 2...

The iteration preserves the eigenvalues of X1 since Xs+1 = RsXsR
−1
s . Indeed, if X1

has distinct eigenvalue moduli, proofs in the literature [17, 35] show that {Xi}i∈N displays

pattern convergence to a matrix in upper triangular form. In particular, {Xi}i∈N does not

necessarily converge, as the strictly upper triangular entries may behave poorly. However,

the diagonal entries will actually converge to the eigenvalues of X1.
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The QR iteration has the advantage of being computationally stable, but as it only guar-

antees form convergence, not actual convergence, it compares poorly with the LR iteration,

which does indeed guarantee actual convergence.

The Iwasawa decomposition of SLn(C) corresponds to the QR decomposition, thus pro-

vides motivation for considering a generalized QR iteration in this context. The Iwasawa

iteration of g ∈ G, where G is a real connected semisimple Lie group with Iwasawa decom-

position G = KAN , is defined by

g1 := g = k1a1n1,

and

gs+1 = asnsks = ks+1as+1ns+1, s = 1, 2, ...

The asymptotic behavior of this sequence is given in the following theorem:

Theorem 5.14. [18] Let g ∈ G and assume that ygy−1 = cb for some y ∈ G, c ∈ K, b ∈ A+,

so that cb = bc. Suppose that y has Bruhat decomposition

y = n−msman ∈ N−msMAN.

Let n−
0 := exp π0

H(L) where H := log b ∈ a+ and L := log n− ∈ n−. Put

cs := (n−
0msm)−1cs(n

−
0msm).

Then there exists a sequence {di}i∈N in the set ANc̃sAN ∩K such that

lim
i→∞

kid
−1
i = 1.
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In keeping with the matrix result, the theorem does not suggest actual convergence of

the Iwasawa iteration. Instead, it specifies the behavior of the K component of the sequence:

it “nearly converges” in the sense that there is a “multiplier sequence” {di} which can be used

to perturb {ki} into a converging sequence. Again, the Bruhat iteration is advantageous over

the Iwasawa iteration in that it can guarantee actual convergence, not just form convergence.
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[9] M. Chō, I.B. Jung and W.Y. Lee, On Aluthge transform of p-normal operators, Integral
Equations Operator Theory, 53 (2005), 321–329.
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