
Modeling and Optimization of Parallel Matrix-based Computations on GPU

by

Andrew White

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 5, 2013

Keywords: GPU, matrix-based computations, parallelization procedure, execution metrics

Copyright 2013 by Andrew White

Approved by

Soo-Young Lee, Chair, Professor of Electrical and Computer Engineering
Victor Nelson, Professor of Electrical and Computer Engineering

Chwan-Hwa Wu, Professor of Electrical and Computer Engineering

Abstract

As graphics processing units (GPUs) are continually being utilized as coprocessors, the

demand for optimally utilizing them for various applications continues to grow. This work

narrows the gap between programmers and minimum execution time for matrix-based com-

putations on a GPU. To minimize execution time, computation and communication time1

must be considered. For computation, the placement of data in GPU memory significantly

affects computation time and therefore is considered. Various matrix-based computation

patterns are examined with respect to the layout of GPU memory. A computation pattern

refers to the order in which each GPU thread computes a result. From examination of com-

putation patterns, an optimized computation pattern, a pattern which reduces computation

time, is derived. After the optimized computation pattern is derived, the access pattern to

GPU memory, or order in which data is accessed, is considered. From the optimized access

pattern, fine-tuning is performed to the GPU code such as minimization of index calcula-

tions and loop unrolling to further reduce computation time and resource allocation. After

fine-tuning, input parameters which yield the minimum computation time for a matrix-based

computation on the GPU are derived. Input parameters are defined as the dimensions of

the grid and blocks assigned for execution on the GPU. Execution metrics are formulated,

as functions of the input parameters, to represent the executional behavior of the GPU.

The execution metrics are utilized to derive the optimal input parameters which are input

parameters that yield the minimum computation time.

1In this work, computation time refers to the amount of time required for the GPU to execute a given
computation. Communication time refers to the amount of time required for a CPU to GPU or a GPU to
CPU data transfer.

ii

The matrix-based computations considered arematrix-vector multiplication (Mv),matrix-

matrix multiplication (MM), convolution, and the conjugate gradient method. A paralleliza-

tion procedure is developed to minimize execution time by deriving the optimal placement of

data, optimized computation pattern, optimized access pattern, and optimal input parame-

ters. Each step of the procedure is developed through analysis of Mv and MM. The procedure

includes an accurate communication model and estimates for CPU and GPU data transfers.

With accurate estimates for communication and computation times, partitioning computa-

tion for CPU and GPU execution is performed to minimize execution time. Convolution and

conjugate gradient are utilized to verify the validity of the procedure. Therefore, the overall

goal of this work is to develop a parallelization procedure which minimizes execution time

of matrix-based computations executing on the GPU.

iii

Acknowledgments

First, I would like to thank God for blessing me with the opportunity to complete this

work. Countless prayers from family, friends and myself enabled me to finish this dissertation.

I would like to thank my wife, Abigail, who has always been supportive through the many

years. Her dedication is truly inspiring. My family, particularly my parents, Bob and Ann,

provided financial assistance and emotional support which none of this would be possible

without. The lengthy phone calls about this work with my father also provided an outside

perspective for improvement and I am sincerely grateful.

I would like to thank the entire Department of Electrical Engineering at Auburn Uni-

versity. Specifically, I would like to acknowledge my advisor, Dr. Soo-Young Lee, for always

being supportive. This work would not have been possible without his constant help and

guidance. Through countless meetings, emails, and phone calls, Dr. Lee always believed we

could finish this work and went above and beyond expectations of an advisor.

I would also like to acknowledge Dr. Victor Nelson and Dr. Chwan-Hwa Wu for their

thorough review of this work as well as availability to discuss any problems encountered

along the way. Lastly, Dr. Amnon Meir, the outside reader of this work, provided quick and

helpful revisions for completion. It was always a pleasure meeting with these professors and

I truly appreciate the help.

Lastly, I would like to acknowledge the graduate students with whom I have shared an

office for many years at Auburn. It was always enjoyable and relaxing to discuss life, and

of course work, with Dr. Chris Wilson over lunch. I also appreciate the conversations with

Siwei Wang and Praveen Venkataramani which provided me a wider understanding of the

rest of the world and some social interaction in an otherwise non-social environment.

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . viii

List of Tables . xv

1 Introduction . 1

1.1 Problem Definition . 1

1.2 Review . 2

1.3 Motivation . 6

1.4 Objectives . 7

1.5 Organization . 8

2 GPU, CUDA and Terms . 9

2.1 GPU History . 9

2.2 GPU Architecture . 10

2.3 GPU Performance . 13

2.4 CUDA Environment . 14

2.5 Terms . 15

3 Modeling . 18

3.1 Global Memory Layout . 19

3.1.1 Partition Camping . 19

3.2 Shared Memory Layout . 22

3.2.1 Bank Conflicts . 23

3.3 Execution Metrics . 24

3.3.1 Global Memory Accesses . 26

v

3.3.2 Active Threads . 29

3.3.3 Fragmented Threads . 30

3.3.4 Global Memory Partitions . 31

3.4 Communication Time . 31

3.4.1 CPU-GPU . 32

3.4.2 GPU-CPU . 33

3.5 Computation Time . 34

3.5.1 CPU . 35

3.5.2 GPU . 39

4 Parallelization Procedure . 41

4.1 Placement of Data . 44

4.1.1 Mv . 46

4.1.2 MM . 52

4.2 Computation Patterns . 55

4.2.1 Mv . 56

4.2.2 MM . 60

4.3 Access Patterns . 66

4.3.1 Mv . 67

4.3.2 MM . 72

4.4 Fine-tuning . 75

4.4.1 Mv . 77

4.4.2 MM . 79

4.5 Input Parameters . 82

4.5.1 Mv . 84

4.5.2 MM . 89

4.5.3 GPU Computation Summary . 95

4.6 Computation Partitioning . 97

vi

4.6.1 Mv . 98

4.6.2 MM . 100

5 Performance Analysis . 103

5.1 Convolution . 103

5.1.1 Placement of Data . 103

5.1.2 Computation Patterns . 109

5.1.3 Access Patterns . 116

5.1.4 Fine-tuning . 120

5.1.5 Input Parameters . 124

5.1.6 Computation Partitioning . 134

5.2 Conjugate Gradient . 139

6 Conclusion . 142

Bibliography . 144

vii

List of Figures

2.1 Architecture of the T10 GPU. 11

2.2 Memory organization of the T10 GPU. 12

2.3 A square block of size 64. 15

2.4 Partitioning of a square block of size 64 into warps. 16

2.5 Partitioning of a square block of size 64 into half-warps. 17

3.1 Global memory connection of the T10 GPU. Memory is divided into 8 equal-sized

partitions. Each address represents 256 bytes. 19

3.2 An example of partition camping occurring: global memory accesses by 2 HWs

to 2 partitions. 20

3.3 An example of partition camping not occurring: global memory accesses by 2

HWs to 2 partitions. 20

3.4 Shared memory layout in the T10 GPU. Memory is divided into 16 equal-sized

partitions. Each column is 4 bytes wide. 22

3.5 Threads within a HW accessing 16 shared memory banks. No bank conflicts occur. 22

3.6 Threads within a HW accessing one shared memory bank. 16 bank conflicts occur. 23

3.7 Modeling MM with input parameters: average percent difference between the

maximum and minimum computation time (ms) of a group defined by n and a

subset of the input parameters. 25

viii

3.8 Comparison of measured and estimated CPU to GPU communication time (ms)

on the T10 GPU. 33

3.9 Comparison of measured and estimated GPU to CPU communication time (ms)

on the T10 GPU. 34

3.10 Comparison of measured and estimated computation time (ms) for the optimized

BLAS implementation of Mv on the CPU. 36

3.11 Comparison of measured and estimated computation time (ms) for the optimized

BLAS implementation of MM on the CPU. 37

3.12 Comparison of measured and estimated computation time (ms) for the non-

optimized C implementation of convolution on the CPU. FS=3. 38

3.13 Comparison of measured and estimated computation time (ms) for the non-

optimized C implementation of convolution on the CPU. FS=63. 38

3.14 Comparison of measured and estimated computation time (ms) for the non-

optimized C implementation of convolution on the CPU. FS=513. 39

4.1 Example of a HW, consisting of 4 threads, accessing A in each iteration of Mv.

Each memory transaction is 4 bytes. The accesses to A are uncoalesced and 4

accesses are required for each iteration. 49

4.2 Example of a HW, consisting of 4 threads, accessing A in each iteration of Mv

utilizing shared memory. Each memory transaction is 4 bytes. The accesses to

A are coalesced and 4 accesses are required every 4th iteration. 50

4.3 Comparison of GPU memories: Maximum effective bandwidth (GB/s) for Mv

on the T10 GPU. 52

ix

4.4 Comparison of GPU memories: Maximum effective bandwidth (GB/s) for MM

on the T10 GPU. 55

4.5 Computation patterns: two computation patterns for Mv for computing multiple

Cjs. 56

4.6 Average computation time (ms) varying the number of total threads for Mv on

the T10 GPU. 57

4.7 Comparison of computation patterns: Maximum effective bandwidth (GB/s) for

Mv on the T10 GPU. 59

4.8 Computation patterns: four computation patterns for MM for computing multi-

ple Cijs. 60

4.9 Computation patterns: hybrid computation patterns for MM for computing mul-

tiple Cijs. 62

4.10 Comparison of computation patterns: Maximum effective bandwidth (GB/s) for

MM on the T10 GPU. 66

4.11 Access patterns: example of block-level access patterns to A for matrix-based

computations. Each column is one partition of global memory. Each row is 512

values of type float. 67

4.12 Example of loadingA into shared memory for the shared memory implementation

of Mv utilizing the optimized computation pattern but not the optimized access

pattern. No bank conflicts occur. dBlk.x = 16. 69

4.13 Example of reading shared memory for the shared memory implementation of

Mv utilizing the optimized computation pattern but not the optimized access

pattern. Bank conflicts occur. dBlk.x = 16. 70

x

4.14 Example of loadingA into shared memory for the shared memory implementation

of Mv utilizing the optimized computation and access pattern. No bank conflicts

occur. dBlk.x = 16. 70

4.15 Example of reading shared memory for the shared memory implementation of

Mv utilizing the optimized computation and access pattern. No bank conflicts

occur. dBlk.x = 16. 71

4.16 Comparison of access patterns: Maximum effective bandwidth (GB/s) for Mv on

the T10 GPU. 71

4.17 Comparison of access patterns: Maximum effective bandwidth (GB/s) for MM

on the T10 GPU. 74

4.18 Comparison of fine-tuning: Maximum bandwidth (GB/s) for Mv on the T10 GPU. 79

4.19 Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for MM on

the T10 GPU. 82

4.20 Comparison of input parameters: Computation time (ms) of all input parameters

for Mv on the T10 GPU. 88

4.21 Comparison of input parameters: Computation time (ms) of all input parameters

for MM on the T10 GPU. 94

4.22 Comparison of effective bandwidth (GB/s) for Mv on the T10 GPU. 95

4.23 Comparison of effective bandwidth (GB/s) for MM on the T10 GPU. 96

4.24 Comparison of execution time (ms) for Mv on the T10 GPU. 99

4.25 Comparison of execution time (ms) for MM on the T10 GPU. 101

xi

5.1 Comparison of GPU memories: Maximum effective bandwidth (GB/s) for con-

volution on the T10 GPU. FS=3. 108

5.2 Comparison of GPU memories: Maximum effective bandwidth (GB/s) for con-

volution on the T10 GPU. FS=63. 108

5.3 Comparison of GPU memories: Maximum effective bandwidth (GB/s) for con-

volution on the T10 GPU. FS=513. 109

5.4 Computation patterns: two computation patterns for convolution. 110

5.5 Comparison of computation patterns: Maximum effective bandwidth (GB/s) for

convolution on the T10 GPU. FS=3. 114

5.6 Comparison of computation patterns: Maximum effective bandwidth (GB/s) for

convolution on the T10 GPU. FS=63. 114

5.7 Comparison of computation patterns: Maximum effective bandwidth (GB/s) for

convolution on the T10 GPU. FS=513. 115

5.8 Access patterns: example of a 3x3 filter, B, stored in global memory. Each row

of a partition is 4 values of type float. 116

5.9 Comparison of access patterns: Maximum effective bandwidth (GB/s) for con-

volution on the T10 GPU. FS=3. 118

5.10 Comparison of access patterns: Maximum effective bandwidth (GB/s) for con-

volution on the T10 GPU. FS=63. 119

5.11 Comparison of access patterns: Maximum effective bandwidth (GB/s) for con-

volution on the T10 GPU. FS=513. 119

xii

5.12 Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for convolu-

tion on the T10 GPU. FS=3. 122

5.13 Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for convolu-

tion on the T10 GPU. FS=63. 123

5.14 Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for convolu-

tion on the T10 GPU. FS=513. 124

5.15 Comparison of input parameters: Computation time (ms) of all input parameters

for convolution on the T10 GPU. FS=3. 128

5.16 Comparison of input parameters: Computation time (ms) of all input parameters

for convolution on the T10 GPU. FS=63. 129

5.17 Comparison of input parameters: Computation time (ms) of all input parameters

for convolution on the T10 GPU. FS=513. 131

5.18 Comparison of effective bandwidth (GB/s) for convolution on the T10 GPU.

FS=3. 132

5.19 Comparison of effective bandwidth (GB/s) for convolution on the T10 GPU.

FS=63. 133

5.20 Comparison of effective bandwidth (GB/s) for convolution on the T10 GPU.

FS=513. 134

5.21 Comparison of execution time (ms) for convolution on the T10 GPU. FS = 3. . . 136

5.22 Comparison of execution time (ms) for convolution on the T10 GPU. FS = 63. . 137

5.23 Comparison of execution time (ms) for convolution on the T10 GPU. FS = 513. . 138

xiii

5.24 Comparison of execution time (ms) for 8 iterations of the conjugate gradient

method on the T10 GPU. 140

5.25 Comparison of execution time (ms) for 256 iterations of the conjugate gradient

method on the T10 GPU. 141

xiv

List of Tables

3.1 Measured results of executing Listing 3.1 which demonstrate the effect of partition
camping on the T10 GPU. v is the number of values each thread summed. 21

3.2 Measured results of executing Listing 3.2 which demonstrates the effect of bank
conflicts on the T10 GPU. v is the number of values summed by each thread. . . 24

xv

Chapter 1

Introduction

1.1 Problem Definition

As the market for massively multithreaded architectures continues to grow, so does the

development of general-purpose graphics processing unit (GPGPU) applications. Many pro-

gramming models such as NVIDIA’s compute unified device architecture (CUDA) try to ease

the gap between programmers and GPUs. While much research has been done in optimizing

written GPU applications, little has been done to bridge the gap between programmers and

minimum execution time for matrix-based computations on a GPU. Therefore, a paralleliza-

tion procedure is necessary to provide programmers a guide to achieve minimum execution

time for matrix-based computations on a GPU.

To develop a parallelization procedure, it is necessary to consider computation and

communication time. Accurate estimates for computation and communication time are

necessary to minimize execution time. To assist in modeling GPU computation time, the

layout of GPU memory must be examined for various matrix-based computation patterns.

Therefore, it is necessary to determine in which type of GPU memory data is placed. After

the placement of data is determined, the order in which threads executing on the GPU

compute results, the computation pattern, is considered. Therefore, a computation pattern

which reduces the computation time with respect to the layout of GPU memory for matrix-

based computations must be derived. After deriving the optimized computation pattern, it

is necessary to derive an optimized access pattern to GPU memory since the order in which

threads access memory affects computation time. Utilizing the optimized access pattern, the

code must be fine-tuned to reduce computation and resource allocation. From the fine-tuned

code, it is necessary to derive the input parameters for the GPU computation which yield

1

the minimum computation time. To derive optimal input parameters, an accurate model

of the computational behavior of the GPU is required. Since modeling GPU computation

using input parameters is insufficient, execution metrics must be formulated as functions

of the input parameters to model the behavior. From the execution metrics, optimal input

parameters must then be derived which yield the minimum computation time for matrix-

based computations.

Communication estimates between the CPU and GPU are also necessary to develop

a parallelization procedure which minimizes execution time. Accurate communication es-

timates, in addition to accurate computation estimates, are necessary to determine which

computations are performed by the CPU and GPU to minimize execution time.

Therefore, a parallelization procedure which minimizes execution time of matrix-based

computations on the GPU must consider the placement of data, computation patterns, access

patterns, input parameters, communication time, and computation partitioning.

1.2 Review

In early GPU research, Fatahalian and others performed a study of matrix-matrix multi-

plication on GPU architectures [1]. It was shown at the time that GPUs suffer from memory

bandwidth limitations which has later been expounded upon by many research groups. At

that time, work showed that CPUs were better candidates for applications that feature

data reuse such as matrix-matrix multiplication. Since then, GPU architecture has evolved

creating an increasing atmosphere for GPUs being utilized as coprocessors.

Shortly after 2004, work began on automatically tuning matrix-matrix multiplication for

GPUs [2]. However, results proved that automatic tuning of GPU programs severely reduced

performance. After that, a Microsoft research group proposed a system to program GPUs [3].

Results proved that CPUs were several times faster than GPUs at executing computations

such as Mv. After that, research began to focus on modeling GPU performance [4]. At the

2

time, results showed accurate estimations of GPU computation time. However, the advent

of CUDA and CUDA-enabled devices obsoleted this work.

Researchers at the Georgia Institute of Technology attempted to predict GPU perfor-

mance in very fine detail by examining the PTX code (NVIDIA assembly code equivalent) to

determine the number of computation and memory access cycles and using these to determine

the GPU computation time [5, 6]. This work was utilized to predict the optimal number of

active cores for the GPU and to disable some of the cores to reduce energy consumption [7].

Although the work provides a detailed algorithm to count the number of instructions from

PTX code, this can be a tedious job to calculate the cycles and predict the result. Analysis

at a higher level allows a more general approach and can reduce the time required to yield a

minimum execution time. In addition, while the predictions for older model GPUs such as

the FX5600 are mostly accurate, the behavior of the predicted time on newer GPUs, such as

200-series architectures, is not the same as the behavior of the measured time. Moreover, the

work provided a static approach to predicting the computation time but left optimizations

up to the programmer. Most importantly, the layout of the global memory in the GPU was

not considered which largely affects the computation time for matrix-based computations on

GPUs.

Researchers at the International Institute of Information Technology in Hyderabad,

India focused on explaining the behavior of current NVIDIA GPUs and worked on developing

a model to illustrate the performance of an NVIDIA GPU [8]. Their work focused on creating

a simulator for the GPU in the future which would aid in writing optimized applications.

However, their research, as stated in publications, does not aim to provide a procedure to

programmers which minimizes execution time for GPU applications.

Researchers at the Center for Reliable and High-Performance Computing at the Uni-

versity of Illinois at Urbana-Champaign have also spent time researching GPUs and their

performance [9–13]. The work is a discussion of balancing shared resource usage to achieve

high performance on the GeForce 8800 [9]. They focused on generating enough threads to

3

hide memory latency, choosing applications with a high percentage of floating point oper-

ations such as MM, and reducing the number of global memory accesses. They use this

example to show that shared memory is useful for reducing redundant loads and thus re-

ducing the pressure on memory bandwidth. In addition, some of their research focuses on

resource utilization by the kernel such as shared memory, registers and occupancy [10, 11].

Similar to previous work, PTX code is examined for modeling computation time. The re-

search focused on minimizing the number of trials necessary to find optimal input parameters

rather than deriving them. In addition, the research did not consider the layout of global

memory or access pattern and thus does not work well for memory-bound problems such as

many matrix-based computations.

In addition to the previous work mentioned, the group at the Center for Reliable and

High-Performance Computing at the University of Illinois at Urbana-Champaign developed

a program called CUDA-lite [14]. This was developed to be an enhancement to CUDA

that automates the task of selecting the appropriate memory to use and the coding of

data transfers between memories. The tool was written to coalesce memory accesses which

was a roadblock to GPU performance at the time. However, NVIDIA continues to relax

the requirements to achieve coalesced read/writes with every SDK released so there is a

dwindling need for a programmer to use an automated compiler to handle such a task.

In addition, requiring programmers to learn other tools in addition to CUDA creates an

additional burden. Regardless, it should be assumed that programmers understand the

basic concepts of the memory hierarchy and thus do not need additional tools to optimize

the access patterns if some basic guidelines are followed when writing applications. Lastly,

this work does not consider the global memory layout and can produce poor results in such

cases as utilizing shared memory to coalesce accesses.

The most recent research by this group includes an adaptive performance modeling

tool [12] and a CUDA application survey [13]. In [13], a survey is performed of different

4

applications and the suitability of CUDA-enabled GPUs. While this provides a useful sum-

mary of the architecture and how the GPU operates, along with analysis as to why certain

applications are optimal, it does not satisfy the need for a procedure to minimize computa-

tion time. In [12], a compiler-based approach is utilized to estimate GPU computation time.

They, too, analyzed the effects on computation time from utilizing various GPU memories.

While this was a major step in automatic selection of optimal applications, it does not pro-

vide a procedure which yields optimal GPU code and derivation of input parameters that

yield the minimum computation time.

With the release of CUDA, NVIDIA released CUBLAS [15], an optimized implementa-

tion of the BLAS [16] routines for GPUs. However, source for CUBLAS is closed and little

work is published on how each routine is implemented. Alternatively, MAGMA [17] released

an optimized implementation of the BLAS routines similar to LAPACK [18] for GPUs. Sev-

eral works [19–34] provide insights into optimized GPU applications. However, the research

aims to provide users optimized BLAS routines rather than provide programmers a procedure

for optimizing GPU computations and minimizing execution time.

Other work [35–48] also focuses on optimizing individual computations, such as Mv or

MM, but is limited to specific implementations or ignores certain aspects of the GPU such

as memory layout.

Lastly, work has been performed that highlights the programming experiences with

CUDA as well as the architectures of GPUs [49–52]. [49] provides a summary of research

done with different applications on GPUs utilizing CUDA. The work highlights the benefits

of CUDA as well as what is necessary to make applications suitable for a GPU, such as

exposing sufficient amounts of fine-grained parallelism to occupy the device, ability to block

computation, efficiency of data-parallel programs without thread divergence and finally, us-

age of shared memory. [51] focuses on the architecture of Tesla GPUs and how it has evolved

over the last decade from fixed-function graphics pipelines to programmable processors with

computing power greater than multi-core CPUs. One of the newest GPU architectures,

5

Fermi, is outlined in [52], which also discusses the demand for increasing GPU capabilities

and the future of GPUs. The research shows the benefit of co-processing architectures (such

as CUDA) and explains the reason the market for these architectures and their usability

will continue to grow. Because of this expanding market, research is needed to provide users

with a procedure for achieving the minimum execution time.

1.3 Motivation

With the development of environments such as CUDA, GPUs are increasingly becoming

a viable option for parallel processing. With the increased interest in utilizing the GPU as a

coprocessor, it is necessary that programmers be able to write applications for this platform

without the need to fully understand the underlying architecture of the GPUs. Often,

GPU manufacturers do not disclose certain aspects of the hardware, or sometimes even the

software, to maintain a competitive advantage. Therefore, researchers are constantly testing

and analyzing the new generations of GPUs to understand how to fully utilize them. It is

necessary to provide programmers a procedure for minimizing the execution time while also

providing a logical reasoning.

Previous research does not provide programmers a parallelization procedure for matrix-

based computations which yields minimum execution time. More specifically, previous re-

search does not account for the layout of GPU global memory or the access pattern to that

memory, which is determined by the code, and thus, optimized access patterns are not de-

rived to minimize computation time. In addition, previous research does not consider the

computation pattern by the executing threads, which affects computation time. Therefore,

optimized computation patterns are not derived to achieve the minimum time. In previous

research, input parameters are determined through testing the application, and thus, optimal

input parameters are not derived for various computations to yield the minimum computa-

tion time. Therefore, it is necessary to develop a parallelization procedure for matrix-based

6

computations executing on a GPU which minimizes execution time by considering the place-

ment of data, computation patterns, access patterns, input parameters, communication time,

and computation partitioning.

1.4 Objectives

Since the primary goal of this work is to develop a procedure which yields the minimum

execution time for matrix-based computations on a GPU, the objectives are to

� examine the layout of GPU memory,

� formulate execution metrics to accurately represent the computational behavior of the

GPU,

� model and estimate CPU to GPU and GPU to CPU communication time,

� model and estimate CPU and GPU computation time,

� determine the optimal placement of data in GPU memory,

� analyze computation patterns for GPUs and derive the optimized computation pattern,

� derive the optimized access pattern for GPU memory,

� fine-tune code to minimize computation and resource allocation,

� from the execution metrics, derive the optimal input parameters for the GPU,

� determine the optimal partitioning of computation between the CPU and GPU,

� verify these objectives by comparing the procedure with several matrix-based compu-

tations.

This is accomplished with consideration to grid and block partitioning, data arrangement and

partitioning, code arrangement and data transfers. Therefore, the intellectual contribution

7

of this work is a parallelization procedure which minimizes execution time for matrix-based

computations on a GPU.

1.5 Organization

Chapter 2 is an introduction to GPUs, CUDA and terms utilized in this work. An

examination of the layout of GPU memory and the formulation of execution metrics to

accurately represent the computational behavior of the GPU are presented in Chapter 3.

In addition, modeling communication and computation times is presented in Chapter 3.

From the layout of GPU memory and formulation of execution metrics, the parallelization

procedure to minimize execution time for matrix-based computations executing on a GPU

is developed in Chapter 4. The parallelization procedure considers the placement of data,

computation patterns, access patterns, fine-tuning, input parameters, communication, and

computation partitioning. The procedure is developed through and applied to Mv and MM

in Chapter 4. Results are included to illustrate the impact on time for each step of the

procedure. In Chapter 5, the procedure is applied to convolution and the conjugate gradient

method. The application of the procedure to convolution is shown. Results illustrate the

performance of the procedure applied to convolution and the conjugate gradient method.

Chapter 6 is a summary and conclusion of the presented work.

8

Chapter 2

GPU, CUDA and Terms

This chapter includes a brief history of GPUs, a comparison of CPU and GPU architec-

tures, and the performance of GPUs. Following is a summary of CUDA, the NVIDIA GPU

programming environment, and lastly, terms are introduced.

2.1 GPU History

As GPUs continue to become low-cost, parallel processing architectures, additional pro-

grammers will turn to these architectures to minimize execution time. Therefore, there is an

increasing need for optimizing applications written for GPUs. While much work has been

done by NVIDIA and other researchers using the CUDA environment to explain the impact

of different application parameters, much information is not public knowledge about how

GPUs function. Therefore, it is necessary to expand upon the previous research into opti-

mizing applications, and develop a procedure for minimizing execution time to ease future

programmers into writing efficient CUDA applications for GPUs.

Over the last 30 years, GPU architecture has evolved to a massively parallel design. In

the 1980s, GPUs were large expensive systems that typically cost in the range of $50,000 and

were capable of processing 50 million pixels per second. By the 1990s, GPU costs decreased

significantly, causing them to be more widespread as they were deployed in small workstations

as PC accelerators. During this time, graphics APIs such as DirectX became popular and

programmers began utilizing the fixed-functions to perform other tasks. In the 2000s, GPUs

dropped in price to the $100 range and became available on every computer. Those GPUs

were capable of processing 1 billion pixels per second. More importantly, those GPUs became

programmable for general purpose computing using such languages as CUDA and Open CL.

9

This advancement in graphics performance has been driven by the market demand for high-

quality, real-time graphics in computer applications, namely the gaming industry. The result

is that, over time, graphics architecture has changed from being a simple pipeline for drawing

wire-frame diagrams to a highly parallel computing chip [53] [52] [51].

In order to fully utilize today’s chips and maximize performance, GPU algorithms need

several key components: access to data with minimal bank conflicts, SIMD parallelism and

many arithmetic computations. GPU algorithms are best suited for computationally in-

tensive applications that require little inter-process communication and include but are not

limited to physical modeling, computational engineering, matrix algebra, convolution, cor-

relation and sorting. Therefore, matrix-based computations are ideally suited for GPUs.

2.2 GPU Architecture

GPUs, as opposed to CPUs, are not well-suited for all algorithms due to their architec-

ture. CPUs are designed for optimal sequential performance and application performance

increases with increasing clock frequencies. However, the rate at which clock speeds increase

is beginning to slow. Because of the importance of sequential performance, CPU cores in-

clude the full x86 instruction set with complex branching. In addition CPUs have large cache

memories to decrease instruction and data latencies for applications. The larger cache mem-

ories and the need for complex control logic forces designers to use less of the available silicon

for ALUs. On the other hand, GPUs are designed for optimal parallel performance. While

GPU clock speeds are slower than CPU speeds, the application performance increases with

the number of cores. The lack of large cache memories and complex control logic decreases

the sequential performance in comparison to CPUs but allows designers to implement more

ALUs on the available silicon thus increasing the numeric computing capability. Lastly, since

GPUs are designed with a focus on parallelism, their structure includes many smaller cores

than CPUs.

10

The NVIDIA GPU1 architecture is a collection of streaming multiprocessors (SMs) with

each SM having a number of cores or streaming processors (SPs). The control logic and

instruction cache for all SPs within an SM are shared as illustrated in Figure 2.1a. This

work utilizes the Tesla T10 (T10) GPU which is built on the NVIDIA 200-series architecture.

The T10 architecture has a total of 30 SMs with each SM having 8 SPs. A newer architecture,

Fermi, includes only 16 SMs but each SM has 32 SPs. In both architectures, each SP consists

of an ALU and FPU as illustrated in Figure 2.1b. The 200-series architecture has a 24-bit

ALU while the Fermi architecture includes a 32-bit ALU. However, the 200-series architecture

is capable of 32-bit precision arithmetic through the use of multiple arithmetic instructions.

(a) Streaming Multiprocessor. (b) Streaming Processor.

Figure 2.1: Architecture of the T10 GPU.
Source: http://www.anandtech.com/show/2549/2

In current GPU systems, the GPU and CPU have a separate memory space with a

GPU consisting of three separate types of memory: global, constant and shared. Figure 2.2

depicts the organization of GPU memory. Global and constant memory are accessible by all

1From this point forward, GPU refers to an NVIDIA GPU.

11

CPU

Memory

GPU

...

Global Memory

SM 0 SM 1 SM 29

Constant Memory

Memory

Shared

Registers

Memory

Shared

Registers Registers

Shared

Figure 2.2: Memory organization of the T10 GPU.

SPs while shared memory is partitioned for each SM. Therefore, each SP in the same SM can

share data through the shared memory. However, SPs from one SM cannot share data with

SPs from a different SM. Global memory is the slowest memory available on the GPU and is

4GB in size for the Tesla T10 GPU. It is utilized as a transfer medium for the host (CPU) to

the device (GPU) or for the device to the host. The GPU can read and write to the global

memory while the CPU can copy memory to or from the global memory. Global memory

is persistent through kernel calls while constant and shared are not. A CUDA application

can transfer data from the system memory at 4GB/s and at the same time upload data

to the system memory at 4GB/s. Constant memory is much faster and smaller than the

global memory and is only 64KB in size on the Tesla T10. However, the GPU cannot write

to constant memory therefore it is simply used to transfer constant data from the CPU to

the GPU. Shared memory is also faster and smaller than global memory and can be written

to and read from by the GPU. There are 16KB of shared memory per SM for the Tesla

T10. However, shared memory cannot be accessed by the CPU therefore it is typically

used as a scratch-pad memory for each SP. All computational results generated by the GPU

must be stored in global memory to be accessible by the CPU. In some applications, shared

memory can also be used for sharing data amongst SPs in the same SM. In addition to

12

the three types of memory, each thread has access to registers and local memory2 both of

which are read/write. The shared memory can be read/written by all threads in the same

SM. However, threads from different SMs cannot access the same shared memory while the

constant memory can be read by any thread. The global memory can be read/written by

any thread.

2.3 GPU Performance

Because of differences in architecture, GPUs have continually outperformed CPUs in

terms of floating-point operations per second. “As of 2009, the ratio between many-core

GPUs and multicore CPUs for peak floating-point calculation throughput is about 10 to

1” [53]. The fundamental difference in the design of CPUs versus GPUs has created this

large increase in performance in terms of FLOPS.

While the CPU is designed to optimize sequential performance, GPUs are designed

to optimize parallel instructions throughput. Therefore, GPUs need thousands of threads

executing in parallel to achieve full efficiency where a CPU may only need a few. However,

each thread of a GPU is lightweight in comparison and requires little overhead to create. The

NVIDIA 200-series architecture supports 1024 threads per SM for a total of 30720 threads

running in parallel for the entire chip. In addition, new generations of hardware, such as

the Fermi, support even more threads running concurrently. Today’s Tesla C1060, currently

sold by NVIDIA, includes one Tesla T10 processor built on the 200-series architecture. The

T10 includes 240 cores, each with a clock speed of 1.33GHz and is connected to 4GB

of DRAM. The C1060 fits in a standard PCIe dual slot and consumes around 160 watts

of power. Because of these low-cost, low-power GPUs, massively parallel applications are

quickly being ported for GPGPU use.

To date, more than 200 million GPUs have been deployed, providing economical parallel

processing around the globe. GPGPU hardware is currently being used in a variety of

2Local memory is a subsection of global memory used to store variables when the maximum amount of
registers is exceeded.

13

applications, including MRI products. In the past, typical parallel processing research was

focused on using large clusters but actual clinical MRI machines needed to be much smaller

than that. Because of this, groups such as the National Institutes of Health (NIH) would not

fund parallel processing research since it was considered to be limited to large cluster-based

machines. However, current MRI machine manufacturers ship MRI products with GPUs

and the NIH funds research using GPUs as coprocessors [53].

Previously, a large drawback of GPGPU applications was the necessary programming.

In the past, programmers had to learn to program the GPUs using drivers and assembly

language. These languages also did not include many useful general computing instructions

like integer or bit operations since they were not implemented at the time. In addition, a lack

of communication between any of the processors in the GPU was limited making any data

sharing difficult. While this is still somewhat of a limitation, it has been greatly improved,

since the original design, through CUDA.

2.4 CUDA Environment

Since GPUs were starting to be used as massively parallel processors, NVIDIA developed

a programming interface to utilize them known as CUDA. CUDA stands for Compute Unified

Device Architecture and is based on the C/C++ language. It enables programmers to write

applications in either C or C++ to utilize the GPU as a massively parallel co-processor.

In addition, since MATLAB version 2010b, there is support for m-files to use the CUDA

environment allowing access for computation on the GPU. CUDA provides constructs for

memory transfers between the CPU and GPU for sharing data. It is based on an SPMD

programming style which executes the same program on multiple parts of the data. This

is different than SIMD since the processing units do not have to be executing the same

instruction at the same time. In the CUDA programming environment, there is a host which

is the CPU and a device which is the GPU. The NVIDIA CUDA programming language is

a large reason more and more industries are looking at GPUs as portable parallel processing

14

systems. The CUDA extension of the C programming language has enabled all programmers

to create parallel applications without any special hardware or software knowledge beyond

C. However, knowledge of the underlying architecture to achieve high speedups has inhibited

typical programmers from using GPUs as coprocessors.

2.5 Terms

Using CUDA, a C/C++ program consists of host code, code written to execute on the

CPU, and device code, code written to execute on the GPU. Device code is divided into

individual functions known as kernels. To compile kernels, NVIDIA provides a C compiler

known as NVCC. It separates the host and device code and only performs compilation on

the device code while using the gcc for the host code. In addition, NVIDIA provides a low-

level programming language, parallel thread execution, PTX, similar to assembly language

for writing kernels without exposing any of the underlying instruction set. Kernels can be

written for any computational operation involving the GPU and are similar to functions

in C. They are executed using a specified number of threads. Since the GPU is an SPMD

structure, all threads execute the same code on different portions of data and each thread

has an identifier known as the thread index. Thread identifiers are used for control logic

and data access. A collection of threads is a block, as shown in Figure 2.3. A block can

be partitioned in 1, 2, or 3-dimensions. The number of threads in the x- and y-dimension

of each block is defined by dBlk.x and dBlk.y, respectively. Threads in the same block

dBlk.x

dB
lk

.y

Figure 2.3: A square block of size 64.

can cooperate through atomic operations and synchronization. However, threads in separate

15

blocks cannot since there is no guarantee to which SM a block is assigned. Each block also

has an identifier similar to a thread, known as the block index. The collection of blocks is

considered the grid and can be partitioned in 1 or 2-dimensions. The number of blocks in the

x- and y-dimension of the grid is defined by dGrd.x and dGrd.y, respectively. Each kernel

call can define different grid and block sizes and dimensions but these cannot be changed

dynamically during kernel execution.

In the T10 processor, each grid can have a maximum of 65,536 blocks in each dimen-

sion and each block can have a maximum of 512 threads yielding a maximum total of 241

threads. The dimensions of a grid and block determine the total number of threads operating

in the GPU, so each need to be chosen to ensure the GPU is fully occupied. Since blocks

can execute in any order with respect to other blocks, CUDA applications are very scalable

which allows applications to adapt to new hardware without changing any of the existing

code. However, architecture changes that often accompany new hardware can cause issues

with scalability. Once the partitioning for the grid and blocks is determined, the scheduler

organizes threads into groups of 32 known as warps as shown in Figure 2.4. Since warps

dB
lk

.y

dBlk.x

warp 0

warp 1

Figure 2.4: Partitioning of a square block of size 64 into warps.

waiting for long-latency operations such as intensive arithmetic operations or memory access

are not selected for execution, this provides a type of latency hiding. While those warps are

waiting for their operations to finish executing, other warps that are not waiting are sched-

uled to execute. This type of zero-overhead thread scheduling ensures that the maximum

instruction throughput is realized. This is one major reason GPUs do not dedicate as much

chip area to cache memories and branch prediction mechanisms as CPUs, thus allowing for

many more ALUs to fit in the same size of silicon.

16

A warp is divided into half-warps (HWs), a group of 16 threads in row-major order as

shown in Figure 2.5. Memory accesses are issued at the HW level. The number of HWs

dB
lk

.y

dBlk.x

half−warp 0

half−warp 1

half−warp 2

half−warp 3

Figure 2.5: Partitioning of a square block of size 64 into half-warps.

is defined by the dimensions of the grid and blocks, input parameters, which are specified

by the programmer. The four input parameters are defined as dGrd.x, dGrd.y, dBlk.x,

and dBlk.y. dGrd.x and dGrd.y are the dimensions of the grid in the x and y-dimensions,

respectively. dBlk.x and dBlk.y are the dimensions of each block in the x and y-dimensions,

respectively. Lastly, the focus of this work is on matrix-based computations. All matrices

are assumed to be square and n is used to denote the width or height of a square matrix.

17

Chapter 3

Modeling

Developing a parallelization procedure to minimize execution time requires an accurate

model of communication and computation times. Several modeling techniques, including

fine-grain, vector-based, and table-based modeling, were initially applied to model GPU

computational behavior. Fine-grain modeling was performed by measuring computation

times for arithmetic operations and extrapolating for larger computations. Vector-based

modeling was performed by measuring computation times for vector-based arithmetic oper-

ations such as a dot product and extrapolating for larger computations. Lastly, table-based

modeling was performed by measuring computation time for various numbers of blocks and

threads and extrapolating for other input parameters. However, none of these techniques

provided reasonable models of the GPU computational behavior, partly due to the layout of

the GPU’s memory.

Therefore, this chapter includes an examination of the layout of GPU memory and

the formulation of execution metrics to accurately represent the computational behavior

of the GPU. Section 3.1 is an examination of the layout of global memory on the GPU.

Included in this section are the effects on computation time from the layout. Section 3.2 is

an examination of the layout of shared memory and the effects on computation time. The

beginning of Section 3.3 provides reasoning for utilizing execution metrics to model GPU

computational behavior. Instead of utilizing input parameters to model behavior, execution

metrics are formulated as functions of the input parameters for modeling. Section 3.4 is

a model and estimation of CPU to GPU and GPU to CPU communication time. Results

are included to prove the validity of the estimation. CPU computation time is estimated in

Section 3.5 through curve-fitting measured data and results are included in the section.

18

3.1 Global Memory Layout

One reason the aforementioned modeling techniques for GPU computational behavior

yield inaccurate models is the layout of global memory on the GPU. Due to the layout of

global memory, a problem referred to as partition camping exists. Partition camping has

been defined by NVIDIA [54], although its effects on various applications have not been

studied until recently [55] [56] [57].

3.1.1 Partition Camping

A description of the GPU architecture is necessary to understand partition camping.

The global memory on an 8-series and 200-series GPU is divided into 6 and 8 partitions,

respectively. On both GPU architectures, each partition is 256-bytes wide. All partitions are

connected to a memory controller allowing access by all SMs as depicted in Figure 3.1. Data

N PK

A B D E F G HC

Q R T U V W XS

I J L M O

543210

SM 0 SM 29...SM 1 SM 2

partition

memory controller

ad
dr

es
s

2,048 bytes

2,097,152 row
s76

Figure 3.1: Global memory connection of the T10 GPU. Memory is divided into 8 equal-sized
partitions. Each address represents 256 bytes.

is stored in row-major order and each address in the figure occupies one row of a partition.

Accesses to global memory partitions are performed at the HW level. Therefore, par-

tition camping occurs when multiple HWs attempt to access the same partition, but not

necessarily the same address, at a given time. Figure 3.2 illustrates partition camping oc-

curring when two HWs access two consecutive partitions where Figure 3.1 depicts in which

partition each address resides. Since addresses A and I are in the same partition, HW 1

19

HW 1: addr. I

HW 0: addr. B

memory access

time

computation

HW 1: addr. J

HW 0: addr. A

Figure 3.2: An example of partition camping occurring: global memory accesses by 2 HWs
to 2 partitions.

must wait, until HW 0 finishes accessing address A, to access address I. The same occurs

for the second accesses to addresses B and J. Therefore, partition camping occurs and the

memory accesses are serialized.

Figure 3.3 illustrates the access of two partitions by two HWs which eliminates partition

camping. For the first access, HW 0 accesses address A which resides in partition 0 and HW

computation

HW 1: addr. I

HW 0: addr. A

HW 1: addr. J

memory access

time

HW 0: addr. B

Figure 3.3: An example of partition camping not occurring: global memory accesses by 2
HWs to 2 partitions.

1 accesses address J in partition 1. Partition camping does not occur since the accesses by

each HW occur in different partitions. Similarly, for the second access, each HW accesses

different partitions and partition camping does not occur. Figures 3.2 and 3.3 demonstrate

the theoretical effects on computation time due to partition camping on a GPU such that

minimizing partition camping should be performed to minimize computation time.

Effects

For most GPU computations, thousands of HWs are executing at a given time. To min-

imize partition camping, and thus the computation time, it is necessary that HWs utilize all

partitions of global memory. In addition, it is necessary that the HWs be evenly distributed

to the partitions.

20

The code in Listing 3.1 is a portion of a kernel tested to measure the effects of utilizing

a varying number of partitions.

1 int offset = floor(BlkIdx / BlksPerPart) * 64;
2 for(j = 0; j < v; j++)
3 temp += A[j * 512 + offset + threadIdx.y];

Listing 3.1: Code to test the effects of partition camping.

Line 1 calculates which partition of global memory each block accesses by utilizing a linear

block index, BlkIdx, and the number of assigned blocks per partition, BlksPerPart. The

fraction of the two is multiplied by 64 since each value is stored as a float and a partition is

256 bytes wide on a 200-series GPU. The length of a vector in the matrix that is summed

is represented by v. Adding the thread index in the y-dimension, threadIdx.y, minimizes the

possible effect of memory request merging [58] [59].

The computation time and effective bandwidth, from executing the code in Listing 3.1

on the T10 GPU, are given in Table 3.11. Each time was measured using a square block of

256 threads and 120 blocks to yield a maximum occupancy for each SM. Since threads are

assigned to warps in row-major order, each thread in a HW sums identical values. However,

each HW in a block computes different sums. The bandwidth decreases linearly as the

number of partitions
v 8 4 2 1
512 0.4 0.9 1.7 3.4
1024 0.9 1.7 3.4 6.7
2048 1.7 3.4 6.8 13.5
4096 3.3 6.8 13.5 26.9
8192 6.8 13.4 26.5 53.8
16384 13.7 26.5 52.3 107.5

(a) Measured computation time (ms).

number of partitions
v 8 4 2 1
512 69.4 34.4 17.2 8.7
1024 68.4 34.6 17.2 8.7
2048 69.9 34.5 17.2 8.7
4096 71.7 34.4 17.4 8.7
8192 69.6 35.1 17.7 8.7
16384 68.5 35.4 17.9 8.7

(b) Effective bandwidth (GB/s).

Table 3.1: Measured results of executing Listing 3.1 which demonstrate the effect of partition
camping on the T10 GPU. v is the number of values each thread summed.

number of partitions utilized decreases, due to partition camping. Since the number of

HWs remains constant in the tests, using less partitions increases partition camping which

1These results suggest memory request merging mentioned in [58] and [59] does not occur.

21

increases the computation time. For MM, all partitions are utilized at some point when

n2 ≥ 512, where n is the height or width of a square matrix. However, the order in which

HWs access each partition varies depending on the computation pattern, which is determined

by how the code is written. Therefore, partition camping and the effects are considered in

the parallelization procedure.

3.2 Shared Memory Layout

Shared memory is divided into equal-sized banks for GPUs. For the T10 GPU, there

are 16 banks as depicted in Figure 3.4. Each bank consists of 256 rows, 4 bytes wide, and

all banks can be accessed simultaneously. Bank conflicts occur at the thread level. If all

bank

9 10 11 12 13 14 15876543210

Figure 3.4: Shared memory layout in the T10 GPU. Memory is divided into 16 equal-sized
partitions. Each column is 4 bytes wide.

threads within a HW access different banks, as illustrated in Figure 3.5, no bank conflicts

occur and only one access is necessary.

9 10 11 12 13 14 15876543210

bank

Figure 3.5: Threads within a HW accessing 16 shared memory banks. No bank conflicts
occur.

22

3.2.1 Bank Conflicts

If two or more addresses of a memory access to shared memory fall into the same memory

bank, a bank conflict occurs. Since memory accesses are issued at the HW level, threads

within a HW accessing differing addresses in the same bank cause bank conflicts and the

accesses are serialized. In Figure 3.6, all threads within a HW access different rows of shared

memory but the same column. Since the column resides in the same shared memory bank,

9 10 11 12 13 14 15876543210

bank

Figure 3.6: Threads within a HW accessing one shared memory bank. 16 bank conflicts
occur.

16 bank conflicts occur. Therefore, 16 accesses to shared memory are issued to service the

HW. However, the T10 GPU supports shared memory broadcasting. Therefore, if threads

within a HW access the same address in shared memory, no bank conflicts occur.

Effects

The portion of the kernel utilized to test the effects of bank conflicts is depicted in

Listing 3.2.

1 __shared__ float As[dBlkx][dBlky];

2 int offset = blockIdx.x % 8 * 64;
3 int soffset = threadIdx.x % Banks;

4 for(j = 0; j < v; j++) {
5 As[threadIdx.y][threadIdx.x] = d_A[j * 512 + offset + threadIdx.y];
6 temp += As[threadIdx.x][soffset];
7 }

Listing 3.2: Code to test the effects of bank conflicts.

23

The number of banks each HW accesses is defined by Banks. In Line 3, soffset is calculated

to specify which column of shared memory is accessed and therefore, the number of bank

conflicts is fixed. blockIdx.x and threadIdx.x are the indices of each block and thread in the

x-dimension, respectively.

Table 3.2 shows the effect on computation time due to bank conflicts. Similar to the

number of banks
v 16 8 4 2 1
512 0.5 0.5 0.6 0.9 1.5
1024 0.9 1.0 1.3 1.8 2.9
2048 1.7 1.9 2.5 3.6 5.8
4096 3.4 3.8 5.0 7.2 11.5
8192 6.6 7.6 9.9 14.3 23.0
16384 12.9 15.1 19.6 28.5 46.0

(a) Computation time (ms).

number of banks
v 16 8 4 2 1
512 65.1 58.6 45.8 31.8 19.9
1024 66.6 60.4 46.5 32.2 20.1
2048 67.7 61.4 47.1 32.6 20.2
4096 69.1 61.7 47.3 32.7 20.3
8192 71.2 61.9 47.6 32.8 20.4
16384 72.4 62.1 47.7 32.9 20.4

(b) Effective bandwidth (GB/s).

Table 3.2: Measured results of executing Listing 3.2 which demonstrates the effect of bank
conflicts on the T10 GPU. v is the number of values summed by each thread.

effects of partition camping in global memory, shared memory bank conflicts significantly

affect computation time. As the number of banks increases, the number of bank conflicts

decreases as does the computation time. Although the change in computation time is not

linearly proportional to the number of banks utilized, the effects of bank conflicts are clearly

illustrated. Therefore, bank conflicts and the effects are considered in the parallelization

procedure.

3.3 Execution Metrics

In this section, execution metrics are formulated to represent computational behavior

of the GPU to assist in modeling. Figure 3.7 shows the necessity for execution metrics, as

input parameters, the dimensions of the grid and blocks, do not accurately model compu-

tational behavior. Initially, all measured computation times of MM utilizing varying input

parameters are grouped by n. The average percent difference between the maximum and

minimum time within a group is shown. Grouping by n yields an average difference of

24

163% between the maximum and minimum time of a group. Next, all measured computa-

tion times utilizing varying input parameters are grouped by n and dBlk.x. The average

percentage difference is 109 between the maximum and minimum of a group. The order

of the groupings is determined by the input parameter which yields the smallest average

percent difference between the maximum and minimum time of a group. Continuing until

3 of the 4 input parameters are exhausted for grouping yields an average percent difference

of 28. Therefore, modeling the computational behavior of the GPU is inaccurate utilizing

input parameters. Because of this, execution metrics are formulated as functions of input

parameters to accurately represent computational behavior.

n n, dBlk.x n, dBlk.x, dGrid.y n, dBlk.x, dGrid.y, dGrid.x
20%

40%

60%

80%

100%

120%

140%

160%

180%

grouping using inputs

a
v
g
.

%
d
iff

er
en

ce
b
et

w
ee

n
m

a
x
.

a
n
d

m
in

.
w

it
h
in

a
g
ro

u
p

Figure 3.7: Modeling MM with input parameters: average percent difference between the
maximum and minimum computation time (ms) of a group defined by n and a subset of the
input parameters.

Four input parameters, dGrd.x, dGrd.y, dBlk.x and dBlk.y, and the size of each matrix,

n, are used to formulate the execution metrics. Input parameters and n are assumed to be

powers of two in this work. The product of the four input parameters yields the total number

25

of threads assigned for execution on the GPU2 as

ThdstotalGPU = dGrd.x × dGrd.y × dBlk.x × dBlk.y. (3.1)

The execution metrics can be formulated for any matrix-based computation. However, in

this work, the focus of the execution metrics pertains to Mv, MM, and convolution.

3.3.1 Global Memory Accesses

ThdstotalGPU is used to formulate an execution metric for representing the number of global

memory accesses. The number of memory accesses significantly affects the computation time

for matrix-based computations since the time is largely dependent on memory access latency.

In general, for matrix-based computations, all matrices reside in global memory and

portions of matrices may reside in shared memory. For MM, there are 2n3 values read from

global memory, although consecutive reads from threads in the same block can be combined.

The number of writes to global memory for MM is n2 and consecutive writes from threads in

the same block can be combined. Therefore, the amount of time for writing to global memory

for MM is significantly less than the amount of time for reading from global memory. This

is similar for other matrix-based computations such as Mv and 2D convolution. Therefore,

the number of writes to global memory is ignored in this work.

Memory accesses are issued at the HW level and the GPU combines consecutive thread

accesses within a HW into one access, known as coalescing. The memory access is issued as

either a 32-, 64- or 128-byte memory transaction. Therefore, the number of reads is the sum

of 32B, 64B and 128B transactions.

Gld = Gld32B +Gld64B +Gld128B.

2The notation used in Equation (3.1) is used throughout this work. The unit being defined, threads
(Thds) or blocks (Blks), is specified first. The superscript represents the type of unit being defined, total
(total), active (active) or fragmented (frag.). The subscript represents the execution unit being defined,
GPU (GPU) or SM (SM).

26

Initially, each transaction is considered a 128B access by the GPU’s memory controller and is

reduced if possible. If the threads in a HW access between 9 and 16 consecutive and aligned

memory locations of float or integer value, only one 64B memory transaction is issued. If

the HW accesses less than 9 consecutive memory locations of float or integer value, one

32B memory transaction is issued. If the HW accesses memory locations which are not

consecutive and 128B aligned, multiple 32B and/or 64B memory transactions are issued

until all threads in the HW have been serviced. Since each HW is a group of 16 threads, the

number of HWs that execute on the GPU is defined as

HWs# = ThdstotalGPU

16
.

The equation assumes there are at least 16 threads in a block.

From the input parameters, and considering coalescing, the number of 32B and 64B

reads for matrix-based computations can be formulated3.

For a näıve implementation of Mv utilizing only global memory, threadj, to compute cj

where c=A×b, computes rowj ⋅ b where rowj is one row of A. Therefore, the neighboring

thread, threadj+1, computes rowj+1 ⋅ b. If dBlk.x ≥ 16, each HW accesses 16 values of A

and 1 value of b. Since 1 value of b is accessed, a 32B transaction is issued. The 16 values

of A reside in differing rows of A, and therefore the accesses are uncoalesced and require

16 32B transactions. This is repeated for each HW n times. Therefore, the number of 32B

transactions for this implementation of Mv is

Gld32B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(dBlk.x + 1)n2

dBlk.x
if dBlk.x ≤ 8

17n2

16
if dBlk.x ≥ 16.

(3.2)

This equation assumes only global memory is utilized for Mv. The equation is modified for

varying memories as shown in Section 4.1.

3128B reads do not exist in matrix-based computations when using values of type int or float.

27

For a näıve implementation of MM utilizing only global memory, to compute Cij where

C=A×B, threadij accesses rowi and colj. If dBlk.x > 1, the neighboring thread, threadi(j+1),

accesses rowi and colj+1. Since both threads are in the same HW, then if dBlk.x ≥ 16, n 32B

transactions are issued to read rowi and n 64B transactions to read colj...colj+15. However,

if dBlk.x ≤ 8, then only 32B transactions are issued. Therefore, the total number of reads

performed to global memory is defined as

Gld32B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n3

dBlk.x
+ n3

16
if dBlk.x ≤ 8

n3

16
if dBlk.x ≥ 16

(3.3)

Gld64B =
n3

16
if dBlk.x ≥ 16. (3.4)

These equations assume only global memory is utilized for MM. The equations are modified

for varying memories as shown in Section 4.1. Assuming dBlk.x ≥ 16, half of the reads are

32B transactions and half are 64B. Since memory access latency to constant and shared

memory is much shorter than global, the number of accesses performed to constant and

shared memory is ignored in this work as it has an insignificant impact on computation

time.

For a näıve implementation of 2D convolution4, threadij computes Cij where C = A ∗

B. In image processing, A is an image and B is a filter. Therefore, C is the result of applying

a filter to an image and Cij is one pixel of the resulting image. In this work, all filters, B, are

assumed to be square. Therefore, the size, height or width, of a filter is represented by FS.

For a näıve implementation of convolution utilizing only global memory, to compute Cij,

threadij accesses FS2 values of A and B. Since each thread within a HW accesses the same

value of B in each iteration of computation, the number of 32B transactions for accessing B

is defined only by FS. If dBlk.x ≥ 16, neighboring threads within a HW access neighboring

values of A and therefore the accesses are coalesced into one 64B transaction. However, if

4From this point forward, convolution refers to 2D convolution of two matrices where C = A ∗ B.

28

dBlk.x ≤ 8, no 64B transactions occur and the number of 32B transactions is dependent on

FS and dBlk.x. Therefore, the number of global memory accesses is approximately5

Gld32B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n2FS2

16
(1 + 16

dBlk.x
) if dBlk.x ≤ 8

n2FS2

16
if dBlk.x ≥ 16

(3.5)

Gld64B =
n2FS2

16
if dBlk.x ≥ 16. (3.6)

These equations assume only global memory is utilized for convolution. The equations are

modified for varying memories as shown in Section 5.1.1. The number of accesses performed

to shared memory is ignored in this work as it has an insignificant impact on computation

time. In addition to formulating the amount of reads to global memory, it is necessary to

formulate the amount of threads executing in parallel on the GPU.

3.3.2 Active Threads

The number of threads executing at a given time on a GPU, or the number of active

threads, is defined by ThreadsactiveGPU . To formulate the number of active threads, it is nec-

essary to formulate the number of active blocks per SM, BlksactiveSM . BlksactiveSM is dependent

on the number of registers used per block (RegsPerBlk), amount of shared memory used

per block (SMemPerBlk), maximum amount of blocks allowable, and maximum amount of

threads allowable. The number of registers used per thread is dependent on the compiler

and determined after compilation. The amount of shared memory used per block is defined

by the kernel and determined after compilation.

The maximum number of blocks and threads that can be active varies depending on the

GPU. The T10 GPU consists of 30 SMs and each SM can have a maximum of 8 blocks or 1024

threads. Assuming there are more blocks assigned for execution than SMs, dGrd.x×dGrd.y >
5Due to boundary checking, not all reads are issued.

29

30, BlksactiveSM is formulated as

BlksactiveSM =min(⌊ 16384

RegsPerBlk
⌋ , ⌊ 16384

SMemPerBlk
⌋ ,8, 1024

dBlk.x × dBlk.y
) . (3.7)

Therefore, from Equation (3.7), the number of active blocks on the GPU at a given time is

BlksactiveGPU =min (30 ×BlksactiveSM , dGrd.x × dGrd.y) . (3.8)

The number of active threads on the GPU is formulated as the product of Equation (3.8)

and the number of threads per block. Therefore,

ThdsactiveGPU = BlksactiveGPU × dBlk.x × dBlk.y. (3.9)

3.3.3 Fragmented Threads

If the number of active threads on a GPU is not evenly divisible by the number of

total threads (ThdsactiveGPU mod ThdstotalGPU ≠ 0)6, fragmentation occurs. Fragmented threads are

threads which are not executed with the same amount of parallelization as active threads.

From (3.8) and (3.9), two execution metrics are formulated to represent the number of

fragmented blocks and threads: Blksfrag.GPU and Thdsfrag.GPU , respectively. Therefore, the number

of fragmented blocks on the GPU is

Blksfrag.GPU = (dGrd.x × dGrd.y)mod BlksactiveGPU (3.10)

and the number of fragmented threads on the GPU is

Thdsfrag.GPU = Blks
frag.
GPU × dBlk.x × dBlk.y. (3.11)

6xmod y denotes the remainder of x
y
.

30

3.3.4 Global Memory Partitions

In addition to formulating execution metrics to represent the number of global memory

accesses, active and fragmented threads, two execution metrics are formulated to represent

the layout of global memory. The global memory on a 200-series GPU architecture is divided

into 8 partitions where each partition is 256B wide. To represent the number of global

memory partitions accessed per block, an execution metric, PartsPerBlk, is formulated as

PartsPerBlk = dBlk.x

64
(3.12)

Since HWs are formed in row-major order, the x-dimension of the block is used. Since values

of type float are 4 bytes and each global memory partition is 256 bytes wide, 64 values are

stored per row for each partition. Therefore, Equation (3.12) represents the number of global

memory partitions accessed per block.

From PartsPerBlk, the number of global memory partitions accessed by the active blocks

on the GPU, PartsPerGPU, is formulated as

PartsPerGPU =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min (BlksactiveGPU ×PartsPerBlk,8) if BlksactiveGPU < dGrd.x

min (dGrd.x ×PartsPerBlk,8) if BlksactiveGPU ≥ dGrd.x.

(3.13)

PartsPerGPU is dependent on the number of global memory partitions accessed per block

and BlksactiveGPU . The equation defines a maximum of 8 partitions being accessed since there

are 8 partitions of global memory in the T10 GPU.

3.4 Communication Time

Estimating the communication time between the CPU and GPU is necessary for a

parallelization procedure to minimize execution time. For small matrix-based computations,

it is possible the communication time is higher than the CPU computation time. Therefore,

it is necessary to accurately model the communication time between the CPU and GPU.

31

In addition, communication and computation time estimates are necessary to determine the

partitioning of computation between the CPU and GPU.

Communication time, Tcomm., is modeled linearly with a setup time, Tsu, and a maximum

transfer rate, Tx. Therefore,

Tcomm. =
b

Tx

+ Tsu (3.14)

where b is the number of bytes being transferred. Research shows Tx is dependent on the

type of transfer (CPU to GPU or GPU to CPU). In addition, analysis of measured data

suggests Tsu is a function of b. Therefore,

Tsu = c0b + c1 (3.15)

where c0 is the time per byte to set up a transfer and c1 is a constant. Both are determined

through curve-fitting measured data. For Mv, MM, and convolution, there are two CPU-

GPU transfers and one GPU-CPU.

3.4.1 CPU-GPU

From NVIDIA, the advertised transfer rate between the CPU and GPU is 4GB/s.

However, the maximum transfer rate, Tx, measured for CPU to GPU communication is

3.5GB/s. For transfers smaller than 256KB, measured data shows c0 is approximately

525ms/GB and c1 is approximately 0.014ms. For transfers between 256KB and 1MB, data

shows c0 is approximately 3.2ms/GB and c1 is approximately 0.061ms. Lastly, for transfers

of size 1MB and larger, data shows c0 is approximately 3.2ms/GB and c1 is approximately

0.19ms. The varying values for c0 and c1 are presumably due to CPU cache size and memory

layout as well as the layout of GPU memory. In this work, n ≥ 512, as discussed in Section

4.1, and therefore, all CPU to GPU matrix transfers are larger than 1MB. Figure 3.8 depicts

the measured and estimated time for two CPU to GPU transfers. Two transfers are measured

and estimated since the GPU requires a matrix and vector for Mv and two matrices for MM

32

and convolution. The nonuniform behavior illustrated in the figure is because c0 and c1 vary

with the size of data.

10
2

10
4

10
6

10
8

10
0

10
2

bytes

ti
m

e
(m

s
)

Measured
Estimated

Figure 3.8: Comparison of measured and estimated CPU to GPU communication time (ms)
on the T10 GPU.

For Mv, 4n2 + 4n bytes are transferred for the matrix, A, and vector, b, since values

of type float are utilized. For MM, 8n2 bytes are transferred for the two matrices, A and

B. For convolution, 4n2 + 4FS2 bytes are transferred for the two matrices, A and B. The

maximum and average percent error between the measured and estimated time are 5.0% and

1.0%, respectively.

3.4.2 GPU-CPU

The maximum transfer rate measured for GPU to CPU communication is 3.1GB/s. For

transfers smaller than 1MB, measured data shows c0 is approximately 210ms/GB and c1

is approximately 0.02ms. For transfers larger than 1MB, data shows c0 is approximately

6.9ms/GB and c1 is approximately 0.21ms. The varying values for c0 and c1 are presumably

due to CPU cache size and memory layout as well as the layout of GPU memory. Figure 3.9

depicts the measured and estimated time for one GPU to CPU transfer.

33

10
2

10
4

10
6

10
8

10
0

10
2

bytes

ti
m

e
(m

s
)

Measured
Estimated

Figure 3.9: Comparison of measured and estimated GPU to CPU communication time (ms)
on the T10 GPU.

For Mv, one GPU to CPU transfer of 4n bytes is necessary for the vector, c. For MM

and convolution, one transfer of 4n2 bytes is necessary for the matrix, C. The maximum

and average percent error between the measured and estimated time are 8.9% and 1.4%,

respectively.

3.5 Computation Time

For a parallelization procedure to minimize execution time of matrix-based computa-

tions on a GPU, it is necessary to model CPU and GPU computation time. Computation

time in this work refers to time for memory accesses and computation. Determining which

computations are performed by the CPU and GPU require accurate computation and com-

munication time estimates.

The execution time for matrix-based computations is defined as the sum of the commu-

nication and computation times and therefore,

Texec. = Tcomm. + Tcomp.

34

The computation time, Tcomp., is the sum of the CPU and GPU computation times, TCPU
comp.

and TGPU
comp., respectively, as shown in Equation (3.16):

Tcomp. = TCPU
comp. + TGPU

comp.. (3.16)

3.5.1 CPU

Due to CPU cache memories, branch prediction mechanisms, hyper-threading and other

instruction and data latency-hiding optimizations, there is significant research in modeling

CPU computation time. Since the goal of this work is to minimize execution time of matrix-

based computations on a GPU, an estimate of CPU computation time is obtained through

analysis of measured data. In this work, the ATLAS [60] package is utilized for matrix-

based computations executing on the CPU. ATLAS is an ongoing research project which

provides C interfaces to an optimized BLAS implementation as well as some routines from

LAPACK [18]. ATLAS is currently used in MAPLE, MATLAB, Octave and planned for use

in Mathematica.

Computation time for Mv and MM is measured utilizing the ATLAS interface to the

sgemv (Mv) and sgemm (MM) BLAS functions, respectively. Bandwidth is utilized to es-

timate CPU computation time and is calculated as the number of bytes accessed for each

computation divided by the computation time.

For Mv, 2n2 float values are accessed and therefore, effective bandwidth is 8n2bytes
TCPU
comp.

.

From measured data, the maximum bandwidth is dependent on n and measured between

2GB/s and 8GB/s. Therefore, for Mv, the bandwidth is estimated as min (max (16384n ,2) ,8).

Therefore,

TCPU
comp. =

8n2

10243

min (max (16384n ,2) ,8)
seconds

for the optimized BLAS implementation of Mv. Figure 3.10 depicts the measured and

estimated time for the optimized BLAS implementation of Mv on the CPU.

35

512 1024 2048 4096 8192 16384

10
0

10
2

n

ti
m

e
(m

s
)

Measured
Estimated

Figure 3.10: Comparison of measured and estimated computation time (ms) for the opti-
mized BLAS implementation of Mv on the CPU.

The maximum and average percent error between the measured and estimated time are

3.0% and 1.4%, respectively.

For MM, 2n3 float values are accessed and therefore, effective bandwidth is 8n3bytes
TCPU
comp.

.

From measured data, the maximum bandwidth varies between 50GB/s and 54GB/s. From

the median bandwidth (51GB/s) measured,

TCPU
comp. =

8n3

10243

51
seconds

for the optimized BLAS implementation of MM. Figure 3.11 depicts the measured and

estimated time for the optimized BLAS implementation of MM on the CPU.

36

512 1024 2048 4096 8192 16384

10
2

10
4

10
6

n

ti
m

e
(m

s
)

Measured
Estimated

Figure 3.11: Comparison of measured and estimated computation time (ms) for the opti-
mized BLAS implementation of MM on the CPU.

The maximum and average percent error between the measured and estimated time are

5.6% and 3.2%, respectively.

Since BLAS routines do not include convolution, time for a non-optimized C implemen-

tation is measured. For convolution, 2n2FS2 float values are accessed. Therefore, effective

bandwidth is calculated as 8n2FS2bytes
TCPU
comp.

. From measured data, maximum bandwidth is esti-

mated as (3√
FS
− n

20000 + 2.7)GB/s and therefore,

TCPU
comp. =

8n2FS2

10243

(3√
FS
− n

20000 + 2.7)
seconds

for the non-optimized C implementation of convolution. Figure 3.12 depicts the measured

and estimated time for the non-optimized C implementation of convolution with a filter size

of 3 on the CPU.

37

512 1024 2048 4096 8192 16384

10
1

10
2

10
3

n

ti
m

e
(m

s
)

Measured
Estimated

Figure 3.12: Comparison of measured and estimated computation time (ms) for the non-
optimized C implementation of convolution on the CPU. FS=3.

The maximum and average percent error between the measured and estimated time are

9.6% and 7.0%, respectively. Figure 3.13 depicts the time for convolution with a filter size

of 63.

512 1024 2048 4096 8192 16384

10
4

10
5

10
6

n

ti
m

e
(m

s
)

Measured
Estimated

Figure 3.13: Comparison of measured and estimated computation time (ms) for the non-
optimized C implementation of convolution on the CPU. FS=63.

The maximum and average percent error between the measured and estimated time are

4.0% and 2.1%, respectively. Figure 3.14 depicts the time for convolution with a filter size

of 513.

38

512 1024 2048 4096 8192 16384

10
1

10
2

10
3

n

ti
m

e
(m

s
)

Measured
Estimated

Figure 3.14: Comparison of measured and estimated computation time (ms) for the non-
optimized C implementation of convolution on the CPU. FS=513.

The maximum and average percent error between the measured and estimated time are

15.1% and 8.6%, respectively.

Therefore, for the implementations of Mv, MM, and convolution, the worst-case percent

error between the measured and estimated CPU computation time is 15.1%.

3.5.2 GPU

Similar to CPU computation time, GPU computation time, TGPU
comp., is dependent on

the implementation of the matrix-based computation. Since the parallelization procedure

minimizes execution time of matrix-based computations executing on a GPU, it is assumed

the procedure yields the minimum computation time. Therefore, the time is estimated

assuming the theoretical bandwidth to global memory.

The theoretical bandwidth to global memory is calculated as the product of the memory

clock rate and data bus width. The T10 GPU has a 792MHz memory clock rate and a 512-bit

data bus. Since the memory is double-data rate, the theoretical bandwidth to global memory

is approximately 94GB/s. According to NVIDIA [61], 70-80% of theoretical bandwidth “is

very good” for memory-bound computations.

39

Since GPU computation time is estimated assuming theoretical bandwidth, it is neces-

sary to determine the number of bytes accessed from global memory for each matrix-based

computation. The number of bytes accessed is dependent on the memory utilized and the

size of each memory transaction. Therefore, the GPU computation time is estimated in the

last step of the parallelization procedure after the type of memory is determined and the

number and size of memory transactions are calculated.

40

Chapter 4

Parallelization Procedure

This chapter describes the development of the parallelization procedure and its impact

on minimizing execution time for matrix-based computations on the GPU. The procedure

is developed to be general in that it applies to any matrix-based computation. Each step of

the procedure is developed through research, testing, and analysis of measured data for Mv,

MM, or both. The procedure is applied to convolution and the conjugate gradient method in

Chapter 5 for verification. The procedure considers the placement of data in GPU memory,

computation patterns of the GPU, access patterns to GPU memory, fine-tuning GPU code,

input parameters to the GPU, and computation partitioning between the CPU and GPU.

Each aforementioned item is discussed individually in Sections 4.1 - 4.6.

In each section of this chapter, one step of the parallelization procedure is developed

through analysis of Mv, MM, or both. Results are included at the end of each section to

demonstrate the effectiveness of each step. Each section includes the kernel for each matrix-

based computation to illustrate the application of each step of the procedure. All results

in this chapter were gathered using the NVIDIA Tesla S1070, which includes a pair of T10

GPUs connected to a quad-core 2.26GHz Intel Xeon E5520 CPU at Alabama Supercomputer

Authority [62]. The height or width of a square matrix, n, is varied in the results from 512

to 16384 as defined by Equation (4.1) in Section 4.1. dBlk.x is varied in the results from 8

to 512, the maximum allowable value for the T10.

The first step is to determine the optimal placement of data in GPU memory. Therefore,

Section 4.1 is a discussion of the three types of memory in the GPU and the appropriateness

of each memory for various computations. Utilizing various memories on the GPU other

than global can reduce the number of accesses to global memory and therefore, reduce GPU

41

computation time. This is the first step of the procedure, as it is the most common optimiza-

tion to GPU computations to minimize time. In addition, other steps of the procedure such

as deriving the optimized computation and access patterns and optimal input parameters are

dependent on which memories are utilized and therefore, this is the first step. An algorithm

is presented to determine the optimal placement of data in GPU memory to minimize GPU

computation time.

Step 2 in Section 4.2 is a discussion of various computation patterns determined by the

kernel. The kernel defines which result(s) each thread computes and therefore, an examina-

tion is performed of various computation patterns of Mv and MM. From measured data, it

is shown that for Mv, if threadj computes one value of c, cj, where c=Ab, the computation

time is bound by the number of threads and data size. Likewise, for MM, if threadij com-

putes one value of C, Cij, where C=AB, the computation time is bound by computation

and memory accesses. Increasing the overlap of computation and memory accesses reduces

the computation time. Therefore, the optimized computation pattern which reduces GPU

computation time is derived. Since the access pattern is dependent on the computation

pattern, this step of the procedure is included before deriving the optimized access pattern.

The optimized access pattern is dependent on the placement of data in GPU memory

and the computation pattern. Therefore, Step 3 is included to derive the optimized access

pattern. Access patterns to GPU memory are discussed in Section 4.3 and the optimized

access pattern is derived to minimize partition camping and eliminate bank conflicts. This

step is developed through analysis of Mv and MM. For Mv, bank conflicts occur when

accessing shared memory and affect computation time as shown in Section 3.2. For Mv

and MM, all HWs begin accessing matrix A from the same partition of global memory;

thus partition camping occurs. From Section 3.1, partition camping affects computation

time. Therefore, the optimized access pattern is derived to minimize partition camping and

eliminate bank conflicts.

42

After the optimal placement of data is determined and the optimized computation and

access patterns are derived, fine-tuning of the kernels is performed to reduce the amount of

computation and resource allocation, as shown in Section 4.4. This step, Step 4, is developed

from analysis of MM, as the optimized computation pattern for MM utilizes many registers.

Due to the register usage, this step is included in the procedure to reduce the register

requirement of the kernels such that more threads execute in parallel, and thus reduce the

execution time. Included in this step is the minimization of index calculations. Developed

from analysis of measured data for MM, reducing index calculations, particularly in inner

loops, reduces the time necessary to issue global memory transactions thus reducing the

computation time.

After fine-tuning the kernels, analysis of Mv and MM yields a necessity of optimal

input parameters. Therefore, Step 5 of the procedure is included to derive the optimal

input parameters, which are input parameters that yield the minimum GPU computation

time. From measured data, computation time varies significantly depending on the number

of blocks and size of each block. Therefore, from the formulation of execution metrics in

Section 3.3, optimal input parameters are derived in Section 4.5. This step of the procedure

is performed after Steps 1-4 since each of the aforementioned steps affects the execution

metrics. Execution metrics are affected by each previous step since they are dependent on

such things as the allocation of registers and shared memory.

The last step, Step 6, of the parallelization procedure to minimize execution time is to

determine the partitioning of computation between the CPU and GPU as shown in Section

4.6. From measured data for Mv, it is shown that the communication time may exceed

the CPU computation time. Therefore, optimally determining which computations are per-

formed by the CPU and GPU is included in the procedure. Optimally determining the

partitioning of computation requires accurate estimates of communication and computation

43

times as discussed in Sections 3.4 and 3.5, respectively. An algorithm utilizing the com-

munication and computation times is included for determining the optimal partitioning of

computation.

Therefore, the parallelization procedure to minimize execution time of matrix-based

computations utilizing the GPU consists of

1. determining the optimal placement of data in GPU memory,

2. deriving the optimized computation pattern which reduces computation time,

3. deriving the optimized access pattern to data in GPU memory,

4. fine-tuning GPU code to reduce computation time,

5. deriving optimal input parameters which yield the minimum computation time for the

GPU, and

6. optimally partitioning computation between the CPU and GPU.

4.1 Placement of Data

To minimize GPU computation time, and thus the execution time, it is necessary to

consider which GPU memories are utilized. Three types of memory exist in the T10 GPU:

global, constant and shared.

Global memory is the only memory available for both CPU to GPU and GPU to CPU

transfers. It is the main memory of the device due to its read/write capability, large size,

accessibility by both the CPU and GPU and its accessibility by all executing threads. It is

the largest of the available memories, at 4GB in the T10. However, it is the slowest memory

with a peak theoretical bandwidth of 94GB/s. Since some global memory is reserved by

the system, not all 4GB are accessible. Therefore, using powers of two for n, the height or

width of a square matrix, the maximum value of n is 16384. The minimum value of n, in

44

this work, is determined such that one row of a matrix spans at least one global memory

partition. Therefore,

512 ≤ n ≤ 16384. (4.1)

Constant memory is available for CPU to GPU transfers and is used for storing constant

data; it is a read-only memory from the GPU’s perspective. Similar to shared memory, it

is much faster than global memory and can reduce computation time in applications by

reducing the number of global memory accesses. The T10 GPU includes 64KB of constant

memory that is accessible by all threads. However, since it is read-only by the GPU, it can

only be used for transferring data from the CPU to GPU. In computations such as MM, when

n ≥ 512, utilizing constant memory is not possible as matrices exceed the size. However, for

Mv, constant memory can be utilized to store the vector, and thus reduce the number of

global memory reads as well as the partition camping effect.

Shared memory is read/write for the GPU but not accessible to the CPU. Therefore,

to utilize shared memory, the CPU must transfer data to the GPU’s global memory and

the GPU must transfer the data from global memory to shared. Shared memory is much

faster than global and is widely used as temporary storage, or scratchpad space, for threads.

Utilizing shared memory for computations such as MM can greatly reduce the computation

time as many of the accesses to global memory can be reduced. Data is transferred from

the CPU to the GPU’s global memory and then the GPU copies portions of the data that

are reused to shared memory thus greatly reducing the number of global memory accesses.

The T10 GPU includes 16KB of shared memory per SM, for a total of 480KB of shared

memory. However, shared memory is allocated per SM, so threads executing on one SM

cannot read or write to shared memory of another SM. Even if it were possible, if n ≥ 512,

the limited data size would not accommodate one matrix. However, significant reductions

in computation time can be realized in computations which reuse data by partitioning the

reused data into smaller blocks and then utilizing shared memory. For MM, data is reused

and utilizing shared memory reduces the demand on the global memory bus thus reducing

45

computation time. Shared memory can also be utilized to coalesce accesses to global memory

for data which are not reused such as the matrix in Mv, and therefore, reduce computation

time.

From the summaries of each memory, Listing 4.1 is developed to determine the placement

of data.

1 if(data reused)
2 if(sizeof(data reused) ≤ sizeof(cmem))
3 utilize cmem for data reused
4 if(sizeof(data reused) > sizeof(cmem))
5 partition data reused into blocks ≤ sizeof(smem)
6 utilize smem for data reused
7 else
8 if(uncoalesced memory accesses)
9 utilize smem to coalesce accesses

10 utilize gmem for data

Listing 4.1: Algorithm for determining the placement of data in GPU memory.

From Lines 7-10, data which is not reused for computation is stored in global memory

(gmem). Since constant memory (cmem) and shared memory (smem) have similar access

times, data, which is reused (data reused) and smaller than the maximum amount of constant

memory, is stored in constant memory as shown in Lines 2 and 3. Data, which is reused but

larger than constant memory, is partitioned into blocks no greater than the size of shared

memory, as shown in Lines 4-6. However, the CPU does not have access to shared memory

so data which is reused must be transferred to global memory. The GPU kernel partitions

data which is reused into blocks and transfers the data from global to shared memory. Lines

8-9 refer to the access pattern to data which is not reused. If there is no data reuse, such as

A for Mv, shared memory is utilized to coalesce the uncoalesced memory accesses and thus

reduce computation time.

4.1.1 Mv

Listing 4.2 is the kernel for the global memory implementation of Mv on a GPU, where

each thread computes one cj. As mentioned in Section 4.2, computation time increases as

each thread computes additional values of c. Each thread computes the index of the cj to

46

1 __global__ void Mv(float* A, float* b, float* c, int n) {

2 int index = blockIdx.x * blockDim.x + threadIdx.x;

3 float temp = 0.0;
4 for(int j = 0; j < n; j++) {
5 temp += A[index * n + j] * b[j];
6 }
7 c[index] = temp;
8 }

Listing 4.2: The global memory implementation of Mv on a GPU.

compute in Line 2. Partial cjs are computed by each thread in Line 5 and the final cj is

stored in global memory in Line 7. The number of reads to A and b for this kernel is defined

by Equation (3.2). Assuming dBlk.x ≥ 16, the number of reads is 17×n2

16 .

The CPU code for this implementation of Mv is shown in Listing 4.3.

1 ...
2 float* d_A;
3 cudaMalloc ((void **) &d_A , sizeof(float) * n * n);
4 float* d_b;
5 cudaMalloc ((void **) &d_b , sizeof(float) * n);
6 float* d_c;
7 cudaMalloc ((void **) &d_c , sizeof(float) * n);

8 cudaMemcpy(d_A , h_A , sizeof(float) * n * n, cudaMemcpyHostToDevice);
9 cudaMemcpy(d_b , h_b , sizeof(float) * n, cudaMemcpyHostToDevice);

10 Mv <<< dGrd.x, dBlk.x >>>(n, d_A , d_b , d_c);

11 cudaMemcpy(h_c , d_c , sizeof(float) * n, cudaMemcpyDeviceToHost);
12 ...

Listing 4.3: CPU code for the global memory implementation of Mv.

The notation h denotes CPU (host) memory and d denotes GPU (device) memory. Lines

2-7 allocate the matrix and vectors in global memory of the GPU. Lines 8 and 9 transfer A,

h A, and b, h b, from the CPU to global memory, d A and d b. Line 10 launches the kernel

for execution using dGrd.x blocks and dBlk.x threads per block. The size of data, n, and

pointers to A, b and c are passed to the kernel. Line 11 transfers c from the GPU global

memory, d c, to the CPU, h c.

Lines 2-3 of Listing 4.1, which determines the placement of data, specifies that reused

data is placed in constant memory if the size of the reused data is less than the size of

47

constant memory. b, which is reused, is of size n. The upper limit of n is defined by

Equation (4.1). Therefore, since n ≤ 16384, b is stored in constant memory. Listing 4.4

shows the modification of the kernel in Listing 4.2 necessary to utilize constant memory.

1 __constant__ float b[n];
2 __global__ void Mv(float* A, float* c, int n) {
3 ...

Listing 4.4: The constant memory implementation of Mv on a GPU.

Line 1 allocates constant memory of size n for b. Constant memory cannot be dynamically

allocated and therefore, n must be defined for execution. Pointers to A and c, which reside

in global memory, and the height or width of A, n, are passed to the kernel as shown in Line

2 of the kernel definition. To transfer b from the CPU to GPU constant memory, Line 9 is

modified from Listing 4.3 as shown in Listing 4.5.

8 ...
9 cudaMemcpyToSymbol(b, h_b , sizeof(float) * n);

10 Mv <<< dGrd.x, dBlk.x >>>(n, d_A , d_c);
11 ...

Listing 4.5: CPU code for the constant memory implementation of Mv.

Line 10 of Listing 4.3 is modified such that the kernel is no longer passed a pointer to b. No

other modifications to the kernel or CPU code are necessary. Utilizing constant memory for

b eliminates global memory accesses to b. Therefore, the number of global memory reads

for the constant memory implementation of Mv is

Gld32B = n2.

This is a 6.25% reduction of global memory reads compared to the global memory imple-

mentation of Mv. In addition, with fewer accesses to global memory, partition camping is

reduced.

For the constant memory implementation of Mv, threadj, to compute cj, computes

rowj ⋅b where rowj is one row of A. Therefore, the neighboring thread, threadj+1, computes

rowj+1 ⋅ b. An example of a HW accessing A is depicted in Figure 4.1. In this example,

48

the HW is only 4 threads and each memory access is 4 bytes. Since the values of A needed

in each iteration reside in different rows, the accesses to A are uncoalesced and the HW

performs 4 reads in each iteration.

iteration 1

shared memory

iteration 0iteration 4

value needed for iteration j
memory access

iteration n

Figure 4.1: Example of a HW, consisting of 4 threads, accessing A in each iteration of Mv.
Each memory transaction is 4 bytes. The accesses to A are uncoalesced and 4 accesses are
required for each iteration.

Assuming dBlk.x ≥ 16, each HW accesses 16 values of A from global memory. The

16 values of A reside in different rows of A, and therefore the accesses are uncoalesced

and require 16 32B transactions1. This is repeated for each HW n times. Coalescing the

accesses to A significantly reduces the number of transactions and thus the computation

time. Reducing the number of transactions also reduces the effects of partition camping.

Lines 8-9 of Listing 4.1, which defines the placement of data, specifies that shared

memory is utilized to coalesce uncoalesced accesses for data which is not reused. Since

accesses to A of the global and constant memory implementations of Mv are uncoalesced,

shared memory is utilized to coalesce accesses as shown in Figure 4.2. In the figure, the HW

is only 4 threads.

132B is the minimum size of a memory transaction on the T10 GPU.

49

iteration n... ...iteration 4iteration 0

value needed for iteration j
memory access
shared memory

iteration 1

Figure 4.2: Example of a HW, consisting of 4 threads, accessing A in each iteration of
Mv utilizing shared memory. Each memory transaction is 4 bytes. The accesses to A are
coalesced and 4 accesses are required every 4th iteration.

In the first iteration, the HW performs 4 reads of 4 bytes each and stores the data in

shared memory. Therefore, in the next iteration, the next value needed for computation

is read from shared memory instead of global. This reduces the number of global memory

accesses by a factor of 4. Listing 4.6 is the kernel for the shared memory implementation of

Mv.

1 __constant__ float b[n];
2 __global__ void Mv(int n, float* A, float* c) {

3 __shared__ float As[blockDim.x][blockDim.x];

4 int index = blockIdx.x * blockDim.x;

5 float temp = 0.0;
6 for(int j = 0; j < n; j += blockDim.x) {
7 for(int k = 0; k < blockDim.x; k++) {
8 As[k][threadIdx.x] = A[(index + k) * n + threadIdx.x + j];
9 }

10 __syncthreads ();

11 for(k = 0; k < blockDim.x; k++) {
12 temp += As[threadIdx.x][k] * b[j + k];
13 }
14 __syncthreads ();
15 }
16 c[index + threadIdx.x] = temp;
17 }

Listing 4.6: The shared memory implementation of Mv on a GPU. Constant memory is
utilized for b.

50

In Line 3, shared memory is allocated per block of size dBlk.x2. Therefore, for this kernel,

the amount of shared memory per block is

SMemPerBlk = (dBlk.x2) × 4. (4.2)

The first row each block accesses from A is calculated in Line 4. In Lines 7-9, HWs load the

values of A into shared memory in a coalesced manner.

Line 10 is a synchronization instruction. HWs in a block stop executing at this instruc-

tion until all HWs within the block reach this instruction. This is to ensure that shared

memory is loaded before the following computation. In Lines 11-13, threads utilized shared

memory values to compute a portion of cj. Line 14 ensures each HW completes the cur-

rent iteration of computation before reloading shared memory. Similar to constant memory,

shared memory cannot be allocated dynamically and therefore, dBlk.x must be defined.

As mentioned, the shared memory implementation of Mv, Listing 4.6, significantly re-

duces the number of global memory accesses by coalescing the accesses to A. The number

of global memory accesses for the shared memory implementation of Mv is

Gld32B =
n2

dBlk.x
if dBlk.x ≤ 8

and

Gld64B =
n2

16
if dBlk.x ≥ 16.

Assuming dBlk.x ≥ 16, the total number of reads for this implementation is n2

16 which is 16

times less than the number of reads for the constant memory implementation. Therefore, the

shared memory implementation of Mv significantly reduces the computation time compared

to global and constant implementations.

51

Figure 4.3 depicts maximum effective bandwidth of the global memory implementation

of Mv (Listing 4.2) and the shared and constant memory implementation (Listing 4.6).

Effective bandwidth is calculated as 8n2bytes
TGPU
comp.

as discussed in Section 3.5.

512 1024 2048 4096 8192 16384
0

10

20

30

40

50

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Global Memory
Shared Memory

Figure 4.3: Comparison of GPU memories: Maximum effective bandwidth (GB/s) for Mv
on the T10 GPU.

As illustrated in the figure, the shared and constant memory implementation yields a

significant speedup compared to the global memory implementation. As mentioned, utilizing

shared memory for Mv coalesces memory accesses to global memory. Utilizing constant

memory reduces the number of global memory transactions, and therefore, reduces partition

camping. The shared and constant memory implementation yields a speedup, on average,

of 4.79 compared to the global memory implementation. The minimum (n = 4096) and

maximum (n = 16384) speedups are 2.51 and 10.58, respectively. Therefore, for Mv, this

step of the procedure significantly reduces GPU computation time.

4.1.2 MM

Listing 4.7 is the kernel for the global memory implementation of MM if threadij com-

putes Cij. Pointers to A, B and C and the height or width of each matrix, n, are passed to

the kernel in Line 1. Lines 2 and 3 compute the row and column indexes of the Cij being

computed for each thread, respectively. The x- and y-indices of each block are specified by

52

1 __global__ void MM(float* A, float* B, float* C, int n) {

2 int Row = blockIdx.y * blockDim.y + threadIdx.y;
3 int Col = blockIdx.x * blockDim.x + threadIdx.x;

4 float temp = 0.0;
5 for(int j = 0; j < n; j++) {
6 temp += A[Row * n + j] * B[j * n + Col];
7 }
8 C[Row * n + Col] = temp;
9 }

Listing 4.7: The global memory implementation of MM on a GPU where threads compute
one Cij.

blockIdx.x and blockIdx.y, respectively. Block indices in the x- and y-dimensions have a

range of 0 to dGrd.x − 1 and 0 to dGrd.y − 1, respectively. The x- and y-indices of each

thread are specified by threadIdx.x and threadIdx.y, respectively. Thread indices in the x-

and y-dimensions have a range of 0 to dBlk.x−1 and 0 to dBlk.y−1, respectively. The x- and

y-dimensions of each block are specified by blockDim.x (dBlk.x) and blockDim.y (dBlk.y),

respectively. In Line 6, each thread computes the partial Cij and the final Cij is stored in

global memory in Line 8.

The number of global memory reads for the global memory implementation of MM is

defined by Equations (3.3) and (3.4). Assuming dBlk.x ≥ 16, all accesses to A and B are

coalesced and 2n3

16 accesses are performed.

Lines 4-6 of Listing 4.1, which determines the placement of data, specifies that shared

memory is utilized for reused data which is larger than the size of constant memory. Line 5

specifies that data which is reused is partitioned into blocks smaller than the size of shared

memory. Therefore, A and B are partitioned into blocks of shared memory to reduce the

number of global memory accesses as shown in Listing 4.8. Lines 3 and 4 allocate shared

memory for blocks of A and B. Therefore, for this kernel,

SMemPerBlk = (dBlk.x × dBlk.y + dBlk.x2) × 4. (4.3)

53

1 __global__ void MM(float* A, float* B, float* C, int n, ...
2 int nele_x , int nele_y) {

3 __shared__ float As[blockDim.y][blockDim.x];
4 __shared__ float Bs[blockDim.x][blockDim.x];

5 int Row = blockIdx.y * blockDim.y + threadIdx.y;
6 int Col = blockIdx.x * blockDim.x + threadIdx.x;

7 float temp = 0.0;
8 for(int j = 0; j < n; j += blockDim.x) {
9 As[threadIdx.y][threadIdx.x] = A[Row * n + (j + threadIdx.x)];

10 Bs[threadIdx.y][threadIdx.x] = B[(j + threadIdx.y) * n + Col];
11 __syncthreads ();

12 for(int k = 0; k < blockDim.x; k++) {
13 temp += As[threadIdx.y][k] * Bs[k][threadIdx.x];
14 }
15 __syncthreads ();
16 }
17 C[Row * n + Col] = temp;
18 }

Listing 4.8: The shared memory implementation of MM on a GPU.

Lines 9 and 10 load blocks of A and B into shared memory. This kernel assumes dBlk.x =

dBlk.y and slight modifications are performed to Line 10 for loading B if dBlk.x ≠ dBlk.y.

Line 11 forces all threads within a block to wait until shared memory is loaded by all HWs

within that block. Partial Cijs are computed in Line 13. Line 15 forces all threads within a

block to wait until all HWs have performed their respective computations with the current

data in shared memory before new data is loaded.

Calculating the number of reads for the shared memory implementation of MM in Listing

4.8 yields

Gld32B =
n3

dBlk.x
(1

dBlk.x
+ 1

dBlk.y
) if dBlk.x ≤ 8 (4.4)

and

Gld64B =
n3

16
(1

dBlk.x
+ 1

dBlk.y
) if dBlk.x ≥ 16. (4.5)

If dBlk.x ≥ 16, all global memory accesses are 64B and the number of accesses to global

memory is reduced by a factor of 2dBlk.x×dBlk.y
dBlk.x+dBlk.y compared to the global memory implementa-

tion.

54

Figure 4.4 depicts maximum effective bandwidth of the global memory implementation

of MM (Listing 4.7) and the shared memory implementation (Listing 4.8). For MM, effective

bandwidth is calculated as 8n3bytes
TGPU
comp.

as discussed in Section 3.5.

512 1024 2048 4096 8192 16384
0

100

200

300

400

500

600

700

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Global Memory
Shared Memory

Figure 4.4: Comparison of GPU memories: Maximum effective bandwidth (GB/s) for MM
on the T10 GPU.

Similar to Mv, the shared memory implementation yields a significant speedup compared

to the global memory implementation. Utilizing shared memory reduces the number of

global memory transactions by data reuse, thus reducing computation time and increasing

effective bandwidth. The shared memory implementation yields a speedup, on average,

of 7.32 compared to the global memory implementation. The minimum (n = 16384) and

maximum (n = 512) speedups are 5.96 and 10.46, respectively. Therefore, for MM, Step 1 of

the procedure significantly reduces GPU computation time.

4.2 Computation Patterns

Computation patterns are determined by the code and represent the manner and order

in which results are computed. For Mv, if threadj computes one value of c, cj, where

c=Ab, there are no varying computation patterns. Likewise, for MM, if threadij computes

one value of C, Cij, where C=AB, there are no varying computation patterns. However, if

55

threads compute more or less than one value, the order in which threads compute creates

computation patterns.

Since computation patterns are affected by partition camping, a derivation of the com-

putation pattern which minimizes partition camping is necessary. In addition, computation

patterns can affect the number of accesses to global memory. Therefore, it is necessary

to derive the optimal computation patterns for matrix-based computations. Deriving the

optimal pattern requires an examination of the various patterns.

4.2.1 Mv

For Mv, there are two computation patterns if threadj computes multiple values of c

as depicted in Figure 4.5. A computation pattern where each thread computes neighboring

(a) Grouped. (b) Spread.

Figure 4.5: Computation patterns: two computation patterns for Mv for computing multiple
Cjs.

values of c, grouped, is depicted in Figure 4.5a. A computation pattern where each thread

computes values of c which are not neighboring, spread, is depicted in Figure 4.5b.

Figure 4.6 depicts the average computation time for Mv on the T10 GPU if each thread

computes one or more values of c utilizing the spread computation pattern. dGrd.x × dBlk.x

is the number of total threads. Each thread computes at least one value of c and therefore,

the maximum number of total threads is n. The average computation time decreases as the

number of total threads increases. The minimum time is achieved, for all data sizes tested,

when the number of total threads equals n. This is due to the memory bus not being fully

utilized when dGrd.x × dBlk.x ≤ 8192.2
2Discussion on the number of threads necessary to saturate the memory bus is in Section 4.5.

56

64 128 256 512 1024 2048 4096 8192 16384
10

−1

10
0

10
1

10
2

dGrd.x× dBlk.x

av
er

a
g
e

ti
m

e
(m

s
)

n=16384
n=8192
n=4096
n=2048
n=1024
n=512

Figure 4.6: Average computation time (ms) varying the number of total threads for Mv on
the T10 GPU.

Optimized

To increase the number of total threads, it is necessary that multiple threads are utilized

to compute one cj. Therefore, the optimized computation pattern consists of each thread

computing a part of cj as depicted in Listing 4.9. In Listing 4.9, each thread computes a

part of cj and each block computes dBlk.x cjs. Shared memory is allocated in Line 3 and

therefore,

SMemPerBlk = dBlk.x2 × 4.

In Line 5, index is calculated, which specifies the group of cjs that are computed by each

block. Lines 7-9 load parts of A into shared memory. All threads within a block are

synchronized in Line 10 to ensure shared memory is loaded before computation. Each thread

computes a part of cj in Lines 11-13. Threads are again synchronized in Line 14 to prevent

shared memory being reloaded before each thread completes computation with the current

data in shared memory. At the end of the for -loop in Line 15, each thread contains a part

of a cj in temp. Threads with threadIdx.y ≠ 0 store their parts of cj into shared memory.

The shared memory which is utilized for portions of A is reused for the parts of cj computed

by each thread. Threads with threadIdx.y = 0 are utilized to sum the parts of cj stored in

57

1 __constant__ float b[n];
2 __global__ void Mv(float* A, float* c, int n) {

3 __shared__ float As[blockDim.x][blockDim.x];

4 float temp = 0.0;
5 int index = blockIdx.x * blockDim.x;

6 for(int j = 0; j < n; j+= blockDim.x) {
7 for(int k = 0; k < blockDim.x / blockDim.y; k++) {
8 As[k + threadIdx.y * blockDim.x / blockDim.y][threadIdx.x] =

Ç A[(index + k + threadIdx.y * blockDim.x / blockDim.y) * n +
Ç threadIdx.x + j];

9 }
10 __syncthreads ();

11 for(int k = 0; k < blockDim.x / blockDim.y; k++) {
12 temp += As[threadIdx.x][k + threadIdx.y * blockDim.x / blockDim.y]

Ç * b[j + k + threadIdx.y * blockDim.x / blockDim.y];
13 }
14 __syncthreads ();
15 }

16 if(threadIdx.y != 0) {
17 As[threadIdx.y-1][threadIdx.x] = temp;
18 }
19 __syncthreads ();
20 if(threadIdx.y == 0) {
21 for(k = 0; k < blockDim.y-1; k++) {
22 temp += As[k][threadIdx.x];
23 }
24 c[index + threadIdx.x] = temp;
25 }
26 }

Listing 4.9: The shared memory implementation of Mv on a GPU utilizing the optimized
computation pattern. Constant memory is utilized for b.

58

shared memory in Lines 20-23. Lastly, in Line 24, these threads store the final cjs in c in

global memory.

Since b is stored in constant memory, global memory reads are issued only for accessing

A. In Line 8, the number of accesses to A by each HW is dependent on dBlk.x, dBlk.y and

threadIdx.y. Therefore,

Gld32B =
n2

dBlk.x
if dBlk.x ≤ 8 (4.6)

and

Gld64B =
n2

16
if dBlk.x ≥ 16 (4.7)

which is equivalent to the number of accesses in the shared memory implementation of Mv

without the optimized computation pattern (Listing 4.6).

Figure 4.7 illustrates the maximum effective bandwidth of Mv before (Listing 4.6) and

after (Listing 4.9) utilizing the optimized computation pattern. As discussed in Section 3.5,

for Mv, effective bandwidth is calculated as 8n2bytes
TGPU
comp.

.

512 1024 2048 4096 8192 16384
10

20

30

40

50

60

70

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 4.7: Comparison of computation patterns: Maximum effective bandwidth (GB/s) for
Mv on the T10 GPU.

Since the optimized computation pattern increases the number of total threads, the

effective bandwidth is significantly increased. The optimized computation pattern yields

a speedup, on average, of 1.80 compared to the non-optimized pattern. The minimum

59

(n = 2048) and maximum (n = 4096) speedups are 1.59 and 2.23, respectively. Therefore,

Step 2 of the parallelization procedure, deriving the optimized computation pattern, is valid

and necessary for minimizing GPU computation time of Mv.

4.2.2 MM

For MM, rather than Mv, increasing the number of total threads does not necessarily

yield the minimum computation time due to saturation of the memory bus. With a satu-

rated memory bus, the effects of fragmentation and partition camping are more apparent.

Therefore, if threadij computes more than Cij, the computation pattern, or order in which

the threads compute results, affects the computation time.

Four computation patterns for MM are illustrated in Figure 4.8 if each thread com-

putes multiple Cijs. Figure 4.8a depicts a computation pattern where each thread computes

(a) Grouped. (b) Column-major. (c) Row-major. (d) Hybrid.

Figure 4.8: Computation patterns: four computation patterns for MM for computing mul-
tiple Cijs.

neighboring Cijs, defined as grouped. Figures 4.8b and c, defined as column-major and row-

major, respectively, depict computation patterns where each thread computes multiple Cijs

per column or row, respectively. Merging column- and row-major patterns yields the last

computation pattern, defined as hybrid, as depicted in Figure 4.8d.

Grouped

The grouped computation pattern, depicted in Figure 4.8a, causes a reduction of mem-

ory coalescing. Coalescing as many memory reads as possible at the HW level is ideal to

minimize the computation time. Considering an example where each thread is to compute

60

4 Cijs in a grouped pattern, Cij, Ci(j+1), C(i+1)j and C(i+1)(j+1), to compute the first Cij,

threadij accesses one row of A, rowi and one column of B, colj. Since threads are assigned

to warps in row-major order, the neighboring thread of threadij, threadi(j+1), accesses the

same row of A, rowi, but a differing column of B, colj+2 to compute Ci(j+2)
3. In general,

each HW read will only use 1
x of the bytes where x is the number of Cijs computed in the

x-dimension, thus reducing the number of coalesced memory accesses to B by a factor of

x. Therefore, this computation pattern is not included in the results as it demonstrates the

effects of memory coalescing more than partition camping.

Column-major

The row- and column-major computation patterns do not cause a reduction of mem-

ory coalescing, as the grouped pattern does, if each block has at least 8 threads in the

x-dimension, dBlk.x ≥ 8. For the column-major computation pattern, depicted in Figure

4.8b, threadij computes C(i+y×dGrd.y×dBlk.y)j for y = 0 to nele y where nele y is the number of

Cijs to compute. For this pattern, colj is repeatedly read by threadij while the row that is

read varies from i to (nele y×dGrd.y × dBlk.y). If n%512 = 0, all accesses to colj remain in

the same partition.

Row-major

For the row-major computation pattern, depicted in Figure 4.8c, threadij computes

Ci(j+x×dGrd.x×dBlk.x) for x = 0 to nele x where nele x is the number of Cijs to compute. There-

fore, to compute Cij to Ci(j+dBlk.x−1), threadij to threadi(j+dBlk.x−1) read rowi and the column

reads vary in a coalesced pattern from colj to colj+dBlk.x−1. However, for computing addi-

tional Cijs, the accesses to each partition for reading B vary depending on which Cij is

being computed. Accesses to each partition for reading A always vary as the program exe-

cution continues as it is not possible for an entire row of A to be stored in one partition if

3threadi(j+1) computes Ci(j+2) instead of Ci(j+1) because of the grouped computation pattern. In this
case, threadij is computing Ci(j+1) as well as C(i+1)j and C(i+1)(j+1).

61

n > 8 without transposing A. However, an entire column of B is stored in one partition if

n%512 = 0. For this computation pattern, as the program execution continues, each HW is

accessing varying partitions to read B dependent on the current Cij being computed.

Hybrid

For the hybrid computation pattern, depicted in Figure 4.8d, it is necessary to determine

the order each Cij is computed. Two computation patterns are defined and illustrated in

Figure 4.9: hybrid-column and hybrid-row. The hybrid-column computation pattern allows

each thread to compute multiple Cijs in each row and column but computes each first in the

y-dimension. The hybrid-row is similar except each thread computes each Cij first in the x-

dimension. Therefore, the column-major computation pattern is a subset of hybrid-column,

and the row-major is a subset of hybrid-row. Because of this, hybrid-column and hybrid-row

computation patterns are presented in the results, and row- and column-major are not.

(a) Hybrid-column. (b) Hybrid-row.

Figure 4.9: Computation patterns: hybrid computation patterns for MM for computing
multiple Cijs.

Similar to row- and column-major computation patterns, both hybrid patterns, defined

in Figure 4.9, benefit from memory coalescing if dBlk.x ≥ 8. If (dGrd.x × dBlk.x)%512 = 0,

then all Cijs computed by threadij will be in the same partition. Therefore, with regards to

the distribution of the HWs to all partitions, and from the GPU’s perspective, the hybrid-

row and hybrid-column patterns are identical. In addition, in this case, both patterns are

identical to the column-major pattern.

However, if (dGrd.x × dBlk.x)%512 ≠ 0, there is a difference between the hybrid-row

and hybrid-column pattern. In both, threadij computes C(i+y×dGrd.y×dBlk.y)(j+x×dGrd.x×dBlk.x)

62

for y = 0 to nele y and x = 0 to nele x where nele x and nele y are the number of Cijs to

compute in the x- and y-dimensions, respectively. If all partitions are not initially accessed

by the HWs, the hybrid-row pattern accesses the unused partitions quicker than the hybrid-

column pattern thus reducing partition camping.

Optimized (column-major)

Memory coalescing and the order of computation are considered to derive the optimized

computation pattern for MM. The row- and column-major patterns, in addition to the hybrid

patterns, do not reduce memory coalescing as the grouped pattern does. From the kernel

in Listing 4.8, the shared memory implementation of MM on a GPU, global memory is ac-

cessed in Lines 9 and 10. Computation is then performed in Line 13 before reloading shared

memory. In this pattern, little overlap exists between accessing global memory and compu-

tation. Therefore, the optimized computation pattern consists of an algorithm maximizing

the overlap of global memory accesses and computation such as the one described in [63] and

utilized in [19], [20], and [21]. In this implementation, only one matrix is placed in shared

memory. In addition, the aforementioned implementations assume column-major storage for

matrices. In this work, row-major storage is assumed due to the row-major storage of the

GPU. Although the algorithm for MM is similar to the aforementioned implementations,

other steps of the parallelization procedure augment the algorithm to further minimize GPU

computation time. Utilizing this algorithm and the optimized computation pattern depicted

in Figure 4.8b yields Listing 4.10. In this implementation of MM, all memory accesses are

coalesced since the column-major computation pattern is utilized. Shared memory is allo-

cated for parts of A in Line 2. Therefore, the amount of shared memory allocated is modified

from Equation (4.3) to yield

SMemPerBlk = (n ele × dBlk.x) × 4 (4.8)

63

1 __global__ void MM(float *A, float *B, float *C, int n) {

2 __shared__ float As[n_ele][blockDim.x];

3 float temp[N_ele];
4 for(int i = 0; i < n_ele; i++) {
5 temp[i] = 0.0;
6 }

7 for(int j = 0; j < n / blockDim.x; j++) {
8 for(int i = 0; i < n_ele / blockDim.y; i++) {
9 As[threadIdx.y + i * blockDim.y][threadIdx.x] = A[threadIdx.x +

Ç (blockIdx.y * n_ele + threadIdx.y) * n + (i * blockDim.y * n
Ç + j * blockDim.x)];

10 }
11 __syncthreads ();

12 for(int i = 0; i < blockDim.x; i++) {
13 for(int k = 0; k < n_ele; k++) {
14 temp[k] += As[k][i] * B[(blockIdx.x * blockDim.x * blockDim.y +

Ç threadIdx.y * blockDim.x + threadIdx.x) + (i * n + j * n *
Ç blockDim.x)];

15 }
16 }
17 __syncthreads ();
18 }

19 for (int i = 0; i < n_ele; i++) {
20 C[i * n + blockIdx.x * blockDim.x * blockDim.y + threadIdx.y *

Ç blockDim.x + threadIdx.x + blockIdx.y * n_ele * n] = temp[i];
21 }
22 }

Listing 4.10: The shared memory implementation of MM on a GPU utilizing the optimized
computation pattern.

64

where n ele is the number of Cijs computed per thread. In Lines 3-6, each thread allocates

and initializes temporary variables for each Cij being computed. A portion of A is loaded

into shared memory in Lines 8-10. This implementation assumes dBlk.y ≤ n ele. Slight

modifications are made to loading A into shared memory in Lines 8-10 if dBlk.y > n ele.

Threads within a block synchronize in Line 11 to ensure A is loaded. In Lines 13-15, each

thread accesses B once and performs computation with that value and shared memory n ele

times. B is not read in every iteration of k in Line 14 as the access to B is independent of

the value of k. Therefore, the overlap between accessing global memory and computation is

greatly increased. In addition, this implementation requires that only portions of one matrix

be loaded into shared memory thus reducing the amount of shared memory necessary.

The number of global memory accesses to A and B is dependent on n, dBlk.x, dBlk.y,

and n ele. After simplifying,

Gld32B =
n3

dBlk.x
(1

dBlk.x × dBlk.y
+ 1

n ele
) if dBlk.x ≤ 8 (4.9)

and

Gld64B =
n3

16
(1

dBlk.x × dBlk.y
+ 1

n ele
) if dBlk.x ≥ 16. (4.10)

Therefore, the number of global memory accesses is reduced by a factor of n ele(dBlk.x+dBlk.y)
n ele+dBlk.x×dBlk.y

compared to the shared memory implementation of MM without the optimized computation

pattern (Listing 4.8).

Figure 4.10 depicts maximum effective bandwidth of MM before (Listing 4.8) and af-

ter (Listing 4.10) utilizing the optimized computation pattern. The effective bandwidth is

calculated in Section 3.5 as 8n3bytes
TGPU
comp.

.

65

512 1024 2048 4096 8192 16384
500

600

700

800

900

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 4.10: Comparison of computation patterns: Maximum effective bandwidth (GB/s)
for MM on the T10 GPU.

Similar to Mv, the optimized computation pattern yields a significant speedup. In the

figure, the optimized computation pattern yields a speedup, on average, of 1.32 compared

to the non-optimized pattern. The speedup is due to the reuse of data by the optimized

computation pattern. As mentioned, the optimized computation pattern reduces the number

of global memory transactions and therefore, the effective bandwidth is increased. The

minimum (n = 4096) and maximum (n = 512) speedups are 1.28 and 1.41, respectively.

Therefore, Step 2 of the parallelization procedure is valid and necessary for reducing GPU

computation time of MM.

4.3 Access Patterns

The third step of the parallelization procedure specifies that the optimized access pattern

to data in memory be derived. The optimized access patterns are derived to minimize

partition camping (Section 3.1) and eliminate bank conflicts (Section 3.2). Therefore, the

GPU computation time is reduced.

For matrix-based computations such as Mv and MM, all HWs begin by initially reading

the first value of their respective rows of A. Therefore, distributing the accesses to A at

the block level to all partitions reduces partition camping. Figure 4.11a, assuming n ≥ 512,

66

illustrates an access pattern to A of 8 blocks for Mv or MM. At the beginning of execution,

blocki reads the first value of rowi from A, which is stored in partition 0. As execution

continues, blocki accesses rowi of A where rowi is stored across all partitions. However,

since all blocks begin accessing the first value of A, all blocks begin reading from partition 0

and thus, partition camping occurs. Therefore, an optimized access pattern which minimizes

partition camping for accessing A is derived by distributing blocks to all partitions at the

beginning of execution. This is illustrated in Figure 4.11b.

0 1 2 3 4 5 6 7
partition

block 1
block 2
block 3
block 4
block 5
block 6
block 7

block 0

(a) Standard access pattern.

0 1 2 3 4 5 6 7
partition

block 1
block 2
block 3
block 4
block 5
block 6
block 7

block 0

(b) Optimized access pattern.

Figure 4.11: Access patterns: example of block-level access patterns to A for matrix-based
computations. Each column is one partition of global memory. Each row is 512 values of
type float.

4.3.1 Mv

To implement Figure 4.11b for the shared memory implementation of Mv utilizing the

optimized computation pattern, the kernel in Listing 4.9 is modified to yield the kernel in

Listing 4.11. This kernel utilizes the optimized access pattern. In Line 6, the partition from

which each block begins accessing A, P , is calculated. The for -loop from Line 6 in Listing

4.9 is split into 2 for -loops, Line 7 and 17 of Listing 4.11, such that blocks begin accessing

A from varying partitions, P . P is computed using blockId.xmod 8 since there are 8 global

memory partitions. This is multiplied by 64 since each partition is 256 bytes wide and values

are of type float.

The allocation of shared memory in Line 3 of Listing 4.11 is greater than the allocation

of shared memory in Listing 4.9. Therefore, Equation (4.2), which defines the amount of

67

1 __constant__ float b[n];
2 __global__ void Mv(float* A, float* c, int n) {

3 __shared__ float As[blockDim.x][blockDim.x+1];

4 float temp = 0.0;
5 int index = blockIdx.x * blockDim.x;
6 int P = (blockIdx.x % 8) * 64;

7 for(int j = P; j < n; j+= blockDim.x) {
8 for(int k = 0; k < blockDim.x / blockDim.y; k++) {
9 As[k + threadIdx.y * blockDim.x / blockDim.y][threadIdx.x] =

Ç A[(index + k + threadIdx.y * blockDim.x / blockDim.y) * n +
Ç threadIdx.x + j];

10 }
11 __syncthreads ();

12 for(int k = 0; k < blockDim.x / blockDim.y; k++) {
13 temp += As[threadIdx.x][k + threadIdx.y * blockDim.x / blockDim.y]

Ç * b[j + k + threadIdx.y * blockDim.x / blockDim.y];
14 }
15 __syncthreads ();
16 }
17 for(int j = 0; j < P; j+= blockDim.x) {
18 for(int k = 0; k < blockDim.x / blockDim.y; k++) {
19 As[k + threadIdx.y * blockDim.x / blockDim.y][threadIdx.x] =

Ç A[(index + k + threadIdx.y * blockDim.x / blockDim.y) * n +
Ç threadIdx.x + j];

20 }
21 __syncthreads ();

22 for(int k = 0; k < blockDim.x / blockDim.y; k++) {
23 temp += As[threadIdx.x][k + threadIdx.y * blockDim.x / blockDim.y]

Ç * b[j + k + threadIdx.y * blockDim.x / blockDim.y];
24 }
25 __syncthreads ();
26 }

27 if(threadIdx.y != 0) {
28 As[threadIdx.y-1][threadIdx.x] = temp;
29 }
30 __syncthreads ();
31 if(threadIdx.y == 0) {
32 for(k = 0; k < blockDim.y-1; k++) {
33 temp += As[k][threadIdx.x];
34 }
35 c[index + threadIdx.x] = temp;
36 }
37 }

Listing 4.11: The shared memory implementation of Mv on a GPU utilizing the optimized
computation and access pattern. Constant memory is utilized for b.

68

shared memory used per block for the shared memory implementation of Mv utilizing the

optimized computation pattern is modified to yield

SMemPerBlk = (dBlk.x2 + dBlk.x) × 4. (4.11)

Although dBlk.x2 × 4 bytes of shared memory are necessary for the kernel in Listing

4.11, (dBlk.x2+dBlk.x)×4 bytes are allocated. The additional allocation in the kernel is to

reduce bank conflicts. An example of bank conflicts for Mv is depicted in Figures 4.12-4.15.

In the figures, dBlk.x = 16. Figure 4.12 depicts shared memory being loaded with A for

the shared memory implementation of Mv utilizing the optimized computation pattern but

not the optimized access pattern. This implementation utilizes dBlk.x2 × 4 bytes of shared

memory. Since the threads within a HW access different banks of shared memory, no bank

conflicts occur for loading shared memory.

9 10 11 12 13 14 15876543210 9 10 11 12 13 14 15876543210 9 10 11 12 13 1415876543210

values stored in shared memory for iteration k

bank bank bank

iteration 2 ...iteration 1iteration 0

Figure 4.12: Example of loading A into shared memory for the shared memory implementa-
tion of Mv utilizing the optimized computation pattern but not the optimized access pattern.
No bank conflicts occur. dBlk.x = 16.

However, for reading the values from shared memory, the HW accesses varying rows and

one column of shared memory in each iteration as depicted in Figure 4.13. As illustrated,

each value resides in the same shared memory bank and thus bank conflicts occur.

69

9 10 11 12 13 14 15876543210 9 10 11 12 13 14 15876543210 9 10 11 12 13 1415876543210

bank bank bank

values read from shared memory for iteration k

iteration 2 ...iteration 1iteration 0

Figure 4.13: Example of reading shared memory for the shared memory implementation of
Mv utilizing the optimized computation pattern but not the optimized access pattern. Bank
conflicts occur. dBlk.x = 16.

Figure 4.14 depicts shared memory being loaded with A for the shared memory imple-

mentation of Mv that utilizes the optimized computation and access pattern. (dBlk.x2 +

dBlk.x)× 4 bytes of shared memory are allocated. Since the threads within a HW access all

shared memory banks, no bank conflicts occur.

9 10 11 12 13 14 15876543210 9 10 11 12 13 14 15876543210 9 10 11 12 13 1415876543210

values stored in shared memory for iteration k

bank bank bank

iteration 2 ...iteration 1iteration 0

Figure 4.14: Example of loading A into shared memory for the shared memory implementa-
tion of Mv utilizing the optimized computation and access pattern. No bank conflicts occur.
dBlk.x = 16.

For reading the values from shared memory, the HW accesses varying rows and the same

column of shared memory in each iteration as depicted in Figure 4.15. As illustrated, each

value resides in a different shared memory bank and therefore, no bank conflicts occur.

70

9 10 11 12 13 14 15876543210 9 10 11 12 13 14 15876543210 9 10 11 12 13 1415876543210

values read from shared memory for iteration k

bank bank bank

iteration 0 iteration 1 iteration 2 ...
Figure 4.15: Example of reading shared memory for the shared memory implementation
of Mv utilizing the optimized computation and access pattern. No bank conflicts occur.
dBlk.x = 16.

Therefore, the optimized access pattern for Mv reduces partition camping and eliminates

bank conflicts. Figure 4.16 depicts maximum effective bandwidth of Mv before (Listing

4.9) and after (Listing 4.11) utilizing the optimized access pattern. Effective bandwidth is

calculated as 8n2bytes
TGPU
comp.

as discussed in Section 3.5.

512 1024 2048 4096 8192 16384
0

50

100

150

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 4.16: Comparison of access patterns: Maximum effective bandwidth (GB/s) for Mv
on the T10 GPU.

In the figure, the optimized access pattern yields a speedup, on average, of 2.28 compared

to the non-optimized pattern. The significant speedup is due to the optimized access pattern

reducing partition camping and eliminating bank conflicts. The minimum (n = 512) and

71

maximum (n = 2048) speedups are 2.06 and 2.81, respectively. The significant increase in

effective bandwidth shows the validity and necessity of Step 3 of the procedure for Mv,

deriving the optimized access pattern.

4.3.2 MM

To reduce partition camping by implementing Figure 4.11b for the shared memory

implementation of MM utilizing the optimized computation pattern, the kernel in Listing

4.10 is modified to yield Listing 4.12. This kernel utilizes the optimized access pattern. In

Listing 4.12, dBlk.y ≤ n ele. Slight modifications are performed to Lines 9-11 and 21-23 for

loading A if dBlk.y > n ele. In this kernel, additional computation is required compared to

Listing 4.10 to determine which value of A each block reads at the beginning of execution.

Line 7 of Listing 4.12 assigns P , a variable used to specify which partition is accessed for

reading A at the beginning of execution. To calculate P , a linear block index is calculated

as blkIdx.x+ dGrd.x× blkIdx.y. The linear block index mod 8, the number of partitions, is

calculated such that blocks are assigned to each partition at the beginning of execution in

round-robin order. This is multiplied by 64
blockDim.x since there are 64 values of type float per

row of each partition. This kernel utilizes the same amount of shared memory as the kernel

in Listing 4.8. Therefore, Equation (4.8) defines the amount of shared memory utilized per

block. Splitting the for -loop in Line 7 of Listing 4.10 as shown in Lines 8-20 of Listing 4.12

distributes the blocks to all partitions for reading A at the beginning of execution. Therefore,

this optimized access pattern reduces partition camping and thus reduces the computation

time.

Shared memory is allocated in Line 2 of Listing 4.12 the same as in Line 2 of Listing 4.10.

Therefore, the amount of shared memory allocated per block is defined by Equation (4.8).

In Lines 10 and 22, values from A are loaded into shared memory. If dBlk.x ≥ 16, threads

within a HW have the same value for threadIdx.y. Therefore, no bank conflicts occur for

loading shared memory as all banks are utilized. When reading from As in Lines 15 and

72

1 __global__ void MM(float *A, float *B, float *C, int n) {

2 __shared__ float As[n_ele][blockDim.x];

3 float temp[N_ele];
4 for(int i = 0; i < n_ele; i++) {
5 temp[i] = 0.0;
6 }

7 int P = ((blockIdx.x + gridDim.x * blockIdx.y) % 8) * (64 / blockDim.x);

8 for(int j = P; j < n / blockDim.x; j++) {
9 for(int i = 0; i < n_ele / blockDim.y; i++) {

10 As[threadIdx.y + i * blockDim.y][threadIdx.x] = A[threadIdx.x +
Ç (blockIdx.y * n_ele + threadIdx.y) * n + (i * blockDim.y * n + j *
Ç blockDim.x)];

11 }
12 __syncthreads ();

13 for(int i = 0; i < blockDim.x; i++) {
14 for(int k = 0; k < n_ele; k++) {
15 temp[k] += As[k][i] * B[(blockIdx.x * blockDim.x * blockDim.y +

Ç threadIdx.y * blockDim.x + threadIdx.x) + (i * n + j * n *
Ç blockDim.x)];

16 }
17 }
18 __syncthreads ();
19 }
20 for(int j = 0; j < P; j++) {
21 for(int i = 0; i < n_ele / blockDim.y; i++) {
22 As[threadIdx.y + i * blockDim.y][threadIdx.x] = A[threadIdx.x +

Ç (blockIdx.y * n_ele + threadIdx.y) * n + (i * blockDim.y * n + j *
Ç blockDim.x)];

23 }
24 __syncthreads ();

25 for(int i = 0; i < blockDim.x; i++) {
26 for(int k = 0; k < n_ele; k++) {
27 temp[k] += As[k][i] * B[(blockIdx.x * blockDim.x * blockDim.y +

Ç threadIdx.y * blockDim.x + threadIdx.x) + (i * n + j * n *
Ç blockDim.x)];

28 }
29 }
30 __syncthreads ();
31 }

32 for (int i = 0; i < n_ele; i++) {
33 C[i * n + blockIdx.x * blockDim.x * blockDim.y + threadIdx.y *

Ç blockDim.x + threadIdx.x + blockIdx.y * n_ele * n] = temp[i];
34 }
35 }

Listing 4.12: The shared memory implementation of MM on a GPU utilizing the optimized
computation and access pattern.

73

27, each HW reads the same value, row k and column i. Since the T10 GPU supports

shared memory broadcasting, threads within a HW accessing the same address in shared

memory cause no bank conflicts. Therefore, no further optimizations to the access pattern

are necessary.

Figure 4.17 depicts maximum effective bandwidth of MM before (Listing 4.10) and

after (Listing 4.12) utilizing the optimized access pattern. For MM, effective bandwidth is

calculated in Section 3.5 as 8n3bytes
TGPU
comp.

.

512 1024 2048 4096 8192 16384
740

760

780

800

820

840

860

880

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 4.17: Comparison of access patterns: Maximum effective bandwidth (GB/s) for MM
on the T10 GPU.

The optimized access pattern yields a speedup, on average, of 1.01 compared to the

non-optimized pattern. The minimum (n = 2048) and maximum (n = 512) speedups are 1.00

and 1.04, respectively. Comparing results from Figure 4.16 with Figure 4.17, the optimized

access pattern yields a significant speedup for Mv but a modest speedup for MM. Since bank

conflicts do not occur for MM, these results suggest that bank conflicts affect computation

time more significantly than partition camping. Regardless, the optimized access pattern

increases maximum effective bandwidth, on average, for both. Therefore, Step 3 of the

parallelization procedure, deriving the optimized access pattern, is valid and necessary.

74

4.4 Fine-tuning

The fourth step of the parallelization procedure specifies that fine-tuning is performed

on each kernel to reduce computation and resource allocation. Fine-tuning is defined as

optimizations to the kernel to reduce time, such as reducing index calculations and loop un-

rolling. Reducing index calculations, particularly in inner loops, reduces the time necessary

to issue global memory transactions thus reducing the computation time.

Loop unrolling also reduces computation time by increasing the instruction mix of mem-

ory transactions and computation instructions. In addition, loop unrolling can reduce the

number of registers used per thread since the compiler can reuse registers. When the com-

piler exceeds the maximum register allocation per thread, local memory is allocated. Local

memory is a section of global memory reserved for each thread as storage for temporary

variables. The usage of local memory instead of registers greatly increases the computation

time as global memory accesses are orders of magnitude slower than register accesses. Since

the implementation of MM utilizes many registers, the effect is more apparent than for Mv.

Since loop unrolling can reduce the number of registers used per thread due to register reuse,

it can eliminate allocation of local memory thus greatly reducing the computation time.

For matrix-based computations, index calculations are necessary for each thread to

determine which value of each matrix is accessed. Index calculations typically consist of

several multiply and addition instructions inside a loop. The kernel definitions of matrix-

based computations specify that pointers to each matrix are passed. Since each thread

contains a pointer to each matrix, some of the multiplication instructions can be reduced

to addition. Listing 4.13 depicts sample code for a typical matrix-based computation. In

1 __global__ void Example(float* A, float* B, int n) {
2 for(int i = 0; i < n; i++) {
3 for(int j = 0; j < n; j++) {
4 B[threadIdx.y * n + j] = A[i * n + threadIdx.x];
5 }
6 }
7 }

Listing 4.13: An example of a matrix-based computation without fine-tuning.

75

Line 4, to calculate a part of the index of B, each thread calculates threadIdx.y ∗ n which

is performed n2 times. Since the value is constant for each thread, this calculation can

be performed once before the for -loops. Likewise, each thread adds threadIdx.x which is

calculated n2 times for a part of the index of A. This calculation can also be performed once

outside of the for -loops. Similarly, each thread calculates i ∗ n which is performed n2 times

for a part of the index of A. Therefore, this calculation can be replaced by adding n to the

pointer to A inside the outer for -loop. Now, each thread performs only n additions of n.

The kernel in Listing 4.13 is modified accordingly to yield the fine-tuned kernel, with respect

to index calculations, in Listing 4.14.

1 __global__ void Example(float* A, float* B, int n) {
2 A += threadIdx.x;
3 B += threadIdx.y * n;
4 for(int i = 0; i < n; i++) {
5 for(int j = 0; j < n; j++) {
6 B[j] = A[0];
7 }
8 A += n;
9 }

10 }

Listing 4.14: An example of a matrix-based computation with index calculations minimized.

As mentioned, loop unrolling can reduce computation time by increasing the instruction

mix and reducing the number of registers used per thread. Reducing the number of registers

used per thread can significantly reduce computation time since the number of active threads

can be dependent on register usage. Therefore, NVIDIA provides a #pragma unroll directive

to instruct the compiler to unroll a loop. From the CUDA programming guide [64], “By

default, the compiler unrolls small loops with a known trip count.” However, it is undefined

as to what constitutes a small loop. Therefore, #pragma unroll is inserted before each loop

in the kernel. The compiler unrolls inner loops first and stops unrolling loops once the

maximum instruction limit is reached. Listing 4.14 is modified to instruct the compiler to

unroll the for -loops as depicted in Listing 4.15.

76

1 __global__ void Example(float* A, float* B, int n) {
2 A += threadIdx.x;
3 B += threadIdx.y * n;
4 #pragma unroll
5 for(int i = 0; i < n; i++) {
6 #pragma unroll
7 for(int j = 0; j < n; j++) {
8 B[j] = A[0];
9 }

10 A += n;
11 }
12 }

Listing 4.15: An example of a matrix-based computation after fine-tuning. Index calculations
are minimized and all loops are unrolled

4.4.1 Mv

Fine-tuning is performed to the shared memory implementation of Mv on a GPU uti-

lizing the optimized computation and access pattern, Listing 4.11, to yield Listing 4.16.

1 __constant__ float b[n];
2 __global__ void Mv(float* A, float* c, int n) {

3 __shared__ float As[blockDim.x][blockDim.x+1];

4 float temp = 0.0;
5 int index = blockIdx.x * blockDim.x;
6 int P = (blockIdx.x % 8) * 64;
7 int calc1 = blockDim.x / blockDim.y;
8 int calc2 = calc1 * threadIdx.y;

9 A += threadIdx.x + index * n + calc2 * n + P;
10 c += index + threadIdx.x;

11 #pragma unroll
12 for(int j = P; j < n; j+= blockDim.x) {
13 #pragma unroll
14 for(int k = 0; k < calc1; k++) {
15 As[k + calc2][threadIdx.x] = A[0];
16 A += n;
17 }
18 A += blockDim.x;
19 A -= n * calc1;
20 __syncthreads ();

21 #pragma unroll
22 for(int k = 0; k < calc1; k++) {
23 temp += As[threadIdx.x][k + calc2] * b[j + k + calc2];
24 }
25 __syncthreads ();
26 }
27 A -= n;

28 #pragma unroll

77

29 for(int j = 0; j < P; j+= blockDim.x) {
30 #pragma unroll
31 for(int k = 0; k < calc1; k++) {
32 As[k + calc2][threadIdx.x] = A[0];
33 A += n;
34 }
35 A += blockDim.x;
36 A -= n * calc1;
37 __syncthreads ();

38 #pragma unroll
39 for(int k = 0; k < calc1; k++) {
40 temp += As[threadIdx.x][k + calc2] * b[j + k + calc2];
41 }
42 __syncthreads ();
43 }

44 if(threadIdx.y != 0) {
45 As[threadIdx.y-1][threadIdx.x] = temp;
46 }
47 __syncthreads ();
48 if(threadIdx.y == 0) {
49 #pragma unroll
50 for(k = 0; k < blockDim.y-1; k++) {
51 temp += As[k][threadIdx.x];
52 }
53 c[0] = temp;
54 }
55 }

Listing 4.16: The shared memory implementation of Mv on a GPU utilizing the optimized
computation and access pattern after fine-tuning. Constant memory is utilized for b.

No modifications are performed to the allocation of shared memory thus Equation (4.11)

defines shared memory usage. Since modifications are performed only to index calculations

and loop unrolling, the number of global memory reads is defined by Equations (4.6) and

(4.7). calc1 and calc2 in Lines 7 and 8 are commonly used calculations in the for -loops. By

defining temporary variables for the commonly used calculations, the amount of computation

in the for -loops is reduced. Index calculations are reduced by initializing pointers to A and

c in Lines 9 and 10. Likewise, pointer arithmetic is performed in Lines 16, 18, 19, 27, 33,

35, and 36 to further reduce index calculations.

In Listing 4.16, for -loops are preceded with the #pragma unroll directive in Lines 11,

13, 21, 28, 30, 38, and 49. This instructs the compiler to unroll as many loops as possible

to increase the instruction mix and reduce the number of registers used per thread.

78

Figure 4.18 depicts maximum effective bandwidth of Mv before (Listing 4.11) and after

(Listing 4.16) fine-tuning. As mentioned, effective bandwidth is calculated as 8n2bytes
TGPU
comp.

.

512 1024 2048 4096 8192 16384
20

40

60

80

100

120

140

160

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Standard
Fine-tuned

Figure 4.18: Comparison of fine-tuning: Maximum bandwidth (GB/s) for Mv on the T10
GPU.

In the figure, the kernel, after fine-tuning, yields a speedup, on average, of 1.05 compared

to before fine-tuning. The minimum (n = 16384) and maximum (n = 1024) speedups are 1.00

and 1.12, respectively. As mentioned, the usage of local memory instead of registers greatly

increases the computation time as global memory accesses are orders of magnitude slower

than register accesses. However, for Mv, a small amount of registers are allocated and

therefore, local memory is not utilized. Therefore, fine-tuning Mv yields a reduction in only

the amount of index calculations and thus a modest speedup. Regardless, the maximum

effective bandwidth is increased and therefore, Step 4, fine-tuning the kernel, is valid for Mv.

4.4.2 MM

Fine-tuning is performed to the shared memory implementation of MM on a GPU uti-

lizing the optimized computation and access pattern, Listing 4.12, to yield Listing 4.17. In

this kernel, dBlk.y ≤ n ele. Slight modifications are performed to Lines 15-18 and 37-40 for

loading A if dBlk.y > n ele.

79

1 __global__ void MM(float *A, float *B, float *C, int n) {

2 __shared__ float As[n_ele][blockDim.x];

3 float temp[N_ele];
4 #pragma unroll
5 for(int i = 0; i < n_ele; i++) {
6 temp[i] = 0.0;
7 }
8 int P = ((blockIdx.x + gridDim.x * blockIdx.y) % 8) * (64 / blockDim.x);
9 A += P * blockDim.x + threadIdx.x + (blockIdx.y * N_ele + threadIdx.y)

Ç * n;
10 B += P * n * blockDim.x + blockIdx.x * blockDim.x * blockDim.y +

Ç threadIdx.y * blockDim.x + threadIdx.x;
11 C += threadIdx.x + blockIdx.x * blockDim.x * blockDim.y + threadIdx.y *

Ç blockDim.x + blockIdx.y * N_ele * n;

12 #pragma unroll
13 for(int j = P; j < n / blockDim.x; j++) {

14 #pragma unroll
15 for(int i = 0; i < n_ele / blockDim.y; i++) {
16 As[threadIdx.y + i * blockDim.y][threadIdx.x] = A[0];
17 A += blockDim.y * n;
18 }
19 A -= blockDim.y * n * N_ele / blockDim.y;
20 __syncthreads ();

21 #pragma unroll
22 for(int i = 0; i < blockDim.x; i++) {

23 #pragma unroll
24 for(int k = 0; k < n_ele; k++) {
25 temp[k] += As[k][i] * B[0];
26 }
27 B += n;
28 }
29 A += blockDim.x;
30 __syncthreads ();
31 }
32 A -= n;
33 B -= n * n;

34 #pragma unroll
35 for(int j = 0; j < P; j++) {

36 #pragma unroll
37 for(int i = 0; i < n_ele / blockDim.y; i++) {
38 As[threadIdx.y + i * blockDim.y][threadIdx.x] = A[0];
39 A += blockDim.y * n;
40 }
41 A -= blockDim.y * n * N_ele / blockDim.y;
42 __syncthreads ();

43 #pragma unroll
44 for(int i = 0; i < blockDim.x; i++) {

45 #pragma unroll

80

46 for(int k = 0; k < n_ele; k++) {
47 temp[k] += As[k][i] * B[0];
48 }
49 B += n;
50 }
51 A += blockDim.x;
52 __syncthreads ();
53 }

54 #pragma unroll
55 for (int i = 0; i < n_ele; i++) {
56 C[0] = temp[i];
57 C += n;
58 }
59 }

Listing 4.17: The shared memory implementation of MM on a GPU utilizing the optimized
computation and access pattern after fine-tuning.

No modifications are performed to the allocation of shared memory, thus Equation (4.8)

defines shared memory usage. Since modifications are performed only to index calculations

and loop unrolling, the number of global memory reads is defined by Equations (4.9) and

(4.10). Index calculations are reduced by initializing pointers to A, B, and C in Lines 9-11.

Likewise, pointer arithmetic is performed in Lines 17, 19, 27, 29, 32, 33, 39, 41, 49, 51, and

57 to further reduce index calculations.

The for -loops in Listing 4.17 are preceded with the #pragma unroll directive in Lines 4,

12, 14, 21, 23, 34, 36, 43, 45, and 54 to increase the instruction mix and reduce the number

of registers used per thread. However, the for -loops in Lines 13 and 35 are dependent on

P which is calculated in Line 8 and dependent on block indices. Since P is calculated at

run-time, its value is unknown during compilation. Therefore, the for -loops in Lines 13 and

35 are not unrolled by the compiler since the trip count is unknown.

Figure 4.19 depicts maximum effective bandwidth of MM before (Listing 4.12) and after

(Listing 4.17) fine-tuning. As discussed, maximum effective bandwidth is 8n3bytes
TGPU
comp.

for MM.

81

512 1024 2048 4096 8192 16384
700

800

900

1000

1100

1200

1300

1400

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Standard
Fine-tuned

Figure 4.19: Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for MM on
the T10 GPU.

For MM, register utilization is high since each thread is computing multiple results and

utilizing a register for each partial result. As shown in Figure 4.19 the kernel after fine-tuning

yields a speedup, on average, of 1.51 compared to before fine-tuning. The minimum (n = 512)

and maximum (n = 16384) speedups are 1.43 and 1.53, respectively. Since fine-tuning the

kernel reduces the amount of register utilization, a significant improvement in maximum

effective bandwidth is realized for MM. Therefore, Step 4 of the parallelization procedure,

fine-tuning the kernel, is necessary and valid for MM.

4.5 Input Parameters

The penultimate step of the parallelization procedure, Step 5, specifies that optimal

input parameters are derived. Input parameters are defined as the dimensions of the grid

and blocks assigned for execution on the GPU. Through analysis of measured data for Mv and

MM, input parameters significantly affect the GPU computation time. Therefore, optimal

input parameters are derived as the input parameters which yield the minimum computation

time. The derivation is performed utilizing the execution metrics formulated in Section 3.3.

Since input parameters are dependent on the kernel, the derivation is performed after the

82

kernel is written, which considers the placement of data, optimized computation and access

patterns, and fine-tuning adjustments.

A list of five steps is presented, in order, to derive the optimal input parameters:

1. Saturate the memory bus.

2. Maximize shared memory utilization.

3. Minimize the amount of shared memory used per block.

4. Maximize the number of global memory partitions accessed.

5. Minimize the number of fragmented blocks.

The order of deriving optimal input parameters is developed through analysis of measured

data for Mv and MM. Step 1 is listed to maximize the overlap of computation and memory

accesses by ensuring the memory bus is fully utilized. Step 2 ensures that data which is loaded

into shared memory is reused as much as possible. Step 3 is listed such that a minimum

amount of shared memory is assigned per block. This increases the number of blocks assigned

to each SM. In addition, this reduces the amount of time each HW in a block must wait for

synchronization since there are less HWs per block. Step 4 maximizes the number of global

memory partitions accessed such that partition camping is reduced. Lastly, Step 5 ensures

the contribution to computation time from fragmented blocks is minimized.

Due to limitations of the T10 GPU, a maximum of 512 threads can be assigned per

block. Therefore,

dBlk.x × dBlk.y ≤ 512. (4.12)

Since threads are assigned to HWs in row-major order and the minimum global memory

transaction size is 32B,

dBlk.x ≥ 8. (4.13)

Since values of type float are used, this equation ensures that one 32B transaction can service

half of the threads in a HW.

83

Step 1 specifies that the memory bus is saturated which requires analysis of ThdsactiveGPU

which is dependent on BlksactiveGPU . In the GPU documentation provided by NVIDIA [64], it is

stated that each global memory access takes approximately 400-800 clock cycles. Therefore,

there needs to exist a minimum of 400
8 warps per partition, or 12800 ThdsactiveGPU , to fully

saturate the memory bus. Since the maximum value of ThdsactiveGPU is determined by the

product of the number of SMs and the maximum number of threads per SM,

12800 ≤ ThdsactiveGPU ≤ 30720 (4.14)

Therefore, optimal input parameters are derived such that ThdsactiveGPU is greater than the

minimum necessary to fully saturate the memory bus. Optimal input parameters for each

matrix-based computation are derived in the following sections. Sections 4.5.1 and 4.5.2

include the derivation of optimal input parameters for Mv and MM, respectively.

4.5.1 Mv

In this section, optimal input parameters are derived for the kernel in Listing 4.16, which

is the shared memory implementation of Mv on a GPU utilizing the optimized computation

and access pattern after fine-tuning. The amount of shared memory allocated per block is

defined by Equation (4.11). Since each SM has a maximum of 16KB of shared memory,

the maximum value of dBlk.x is 32. Combining with the minimum value of dBlk.x from

Equation (4.13) yields

8 ≤ dBlk.x ≤ 32. (4.15)

84

From the kernel in Listing 4.16 and the maximum value of dBlk.y determined from solving

for dBlk.y in Equation (4.12),

dBlk.y ≤min(512

dBlk.x
, dBlk.x) (4.16a)

dGrd.x = n

dBlk.x
(4.16b)

dGrd.y = 1.

The number of registers used per thread for the kernel varies from 10 to 15 dependent

on dBlk.x and dBlk.y. Assuming the maximum is used, BlksactiveSM from Equation (3.7) is

not limited by register usage. Therefore, Equation (3.8) simplifies to

BlksactiveSM =min(⌊ 16384

SMemPerBlk
⌋ ,8, 1024

dBlk.x × dBlk.y
) . (4.17)

Since dGrd.y = 1, Equation (3.8) simplifies to

BlksactiveGPU =min (30 ×BlksactiveSM , dGrd.x) .

Since

ThdsactiveGPU = BlksactiveGPU × dBlk.x × dBlk.y, (4.18)

then, if dGrd.x ≤ BlksactiveGPU ,

ThdsactiveGPU = dGrd.x × dBlk.x × dBlk.y.

Substituting dGrd.x = n
dBlk.x from Equation (4.16b) and the lower limit of n defined by

Equation (4.1) yields

ThdsactiveGPU ≥ 512 × dBlk.y.

85

Since dBlk.x ≤ 32, the maximum value of dBlk.y from Equation (4.16a) yields

ThdsactiveGPU ≥ 8192.

Substituting into Equation (4.18) and substituting for BlksactiveGPU yields

8192 ≤min (30 ×BlksactiveSM , dGrd.x) × dBlk.x × dBlk.y. (4.19)

If dGrd.x ≤ 30 × BlksactiveSM , rearranging Equation (4.19) and solving for dBlk.y yields the

lower limit as

8192

n
≤ dBlk.y. (4.20)

The upper limit of dBlk.y is not modified and therefore is defined by Equation (4.16a).

However, if dGrd.x > 30×BlksactiveSM , then substituting for BlksactiveSM from Equation (4.17)

into Equation (4.19) yields

8192 ≤ 30 ×min(⌊ 16384

SMemPerBlk
⌋ ,8, 1024

dBlk.x × dBlk.y
) × dBlk.x × dBlk.y. (4.21)

From Equation (4.11), SMemPerBlk = (dBlk.x2+dBlk.x)×4. After substituting SMemPerBlk

into Equation (4.21), solving for dBlk.y, given the possible values of dBlk.x from Equation

(4.15), yields the lower limit as

max(4, 64

dBlk.x
) ≤ dBlk.y. (4.22)

Combining lower limits of dBlk.y from Equations (4.20) and (4.22) with the upper limit

from Equation (4.16a) yields

max(8192
n

,4,
64

dBlk.x
) ≤ dBlk.y ≤min(512

dBlk.x
, dBlk.x) . (4.23)

86

Step 2 of deriving optimal input parameters specifies shared memory utilization is max-

imized to ensure data is reused as much as possible. From Lines 22 and 39 of the kernel in

Listing 4.16, the trip count for the inner loops where shared memory is accessed is dependent

on dBlk.x
dBlk.y . Therefore, the maximum of dBlk.x from Equation (4.15) and the minimum of

dBlk.y from Equation (4.23) yield

dBlk.x = 32

dBlk.y =max(8192
n

,4)

dGrd.x = n

32

dGrd.y = 1. (4.24)

Given n, all input parameters are constant and therefore, no further steps are necessary to

derive optimal input parameters for Mv. However, as realized through measured data for

MM, additional steps are necessary to derive optimal input parameters for MM. Regardless,

Equation (4.24) is the derivation of optimal input parameters for the shared memory im-

plementation of Mv on a GPU utilizing the optimized computation and access pattern after

fine-tuning.

Figure 4.20 depicts measured computation time of all input parameters for GPU com-

putation of Mv. The figure illustrates the necessity of optimal input parameters as the GPU

computation time of Mv varies significantly depending on the input parameters. In the fig-

ures in this section, the x-axis represents the number of threads per block (dBlk.x×dBlk.y).

Therefore, there are several combinations of dBlk.x and dBlk.y which yield an equivalent

number of threads per block.

87

8 16 32 64 128 256 512

10
−1

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=512

Optimal

8 16 32 64 128 256 512

10
−1

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=1024

Optimal

8 16 32 64 128 256 512
10

−0.7

10
−0.5

10
−0.3

10
−0.1

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=2048

Optimal

8 16 32 64 128 256 512

10
0

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=4096

Optimal

8 16 32 64 128 256 512

10
0.5

10
0.7

10
0.9

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=8192

Optimal

8 16 32 64 128 256 512

10
1.1

10
1.3

10
1.5

10
1.7

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=16384

Optimal

Figure 4.20: Comparison of input parameters: Computation time (ms) of all input parame-
ters for Mv on the T10 GPU.

88

As illustrated, derivation of optimal input parameters yields computation time, on av-

erage, within 1.8% of the minimum measured time. In the worst-case (n = 8192), utilizing

optimal input parameters yields time within 4.1% of the minimum. Best-case utilization of

optimal input parameters (n = {1024,2048,16384}) yields the minimum. Therefore, Step

5 of the parallelization procedure, deriving optimal input parameters, yields minimum or

near-minimum GPU computation times for Mv.

4.5.2 MM

In this section, optimal input parameters are derived for the kernel in Listing 4.17, which

is the shared memory implementation of MM on a GPU utilizing the optimized computation

and access pattern after fine-tuning. From the kernel and Equations (4.12) and (4.13),

8 ≤dBlk.x ≤ 512 (4.25a)

1 ≤dBlk.y ≤ 512

dBlk.x
(4.25b)

dGrd.x = n

dBlk.x × dBlk.y
(4.25c)

dGrd.y = n

n ele
(4.25d)

where 1 ≤ n ele ≤ 16 due to resource constraints. From Equation (4.8), SMemPerBlk =

(n ele × dBlk.x) × 4. From compilation of the kernel, RegsPerThd varies from 14 to 38.

From the minimum of SMemPerBlk and RegsPerBlk, dGrd.x × dGrd.y > 30 ×BlksactiveSM .

Therefore, Equation (3.8) simplifies to

BlksactiveGPU = 30 ×min(⌊ 16384

RegsPerBlk
⌋ , ⌊ 16384

SMemPerBlk
⌋ ,8, 1024

dBlk.x × dBlk.y
) . (4.26)

89

Substituting BlksactiveGPU from Equation (4.26) and the minimum of ThdsactiveGPU from Equa-

tion (4.14) into Equation (3.9) yields

12800 ≤ 30 ×min(⌊ 16384

RegsPerBlk
⌋ , ⌊ 16384

SMemPerBlk
⌋ ,8, 1024

dBlk.x × dBlk.y
) × dBlk.x × dBlk.y.

(4.27)

Solving for dBlk.y modifies the lower limit of dBlk.y from Equation (4.25b) to yield

max
⎛
⎜
⎝

12800

30dBlk.x ⌊ 16384
RegsPerBlk⌋

,
12800

30dBlk.x ⌊ 16384
(n ele×dBlk.x)×4⌋

,
64

dBlk.x

⎞
⎟
⎠
≤ dBlk.y ≤ 512

dBlk.x
. (4.28)

Step 2 of deriving optimal input parameters specifies shared memory utilization is max-

imized to ensure data is reused as much as possible. From Lines 25 and 47 of the kernel in

Listing 4.17, the trip count for the inner loops where shared memory is accessed is dependent

on n ele. Since 1 ≤ n ele ≤ 16, n ele = 16. Substituting n ele = 16 into Equation (4.25d)

yields

dGrd.y = n

16
(4.29)

Since SMemPerBlk = (n ele × dBlk.x) × 4, dBlk.x ≤ 64. However, if dBlk.x = 64 and

dBlk.y is the maximum from Equation (4.28), then BlksactiveGPU = 30 due to register usage.

Therefore, ThdsactiveGPU = 7680 and is less than the minimum from Equation (4.14). Therefore,

dBlk.x ≤ 32. However, if dBlk.x ≥ 16, due to register usage, only two values exist for dBlk.y

which satisfy Equation (4.28). Therefore, Equation (4.28) simplifies to

64

dBlk.x
≤ dBlk.y ≤ 512

dBlk.x
if dBlk.x = 8. (4.30)

and

dBlk.y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

32 if dBlk.x = 16

2 if dBlk.x = 32.

90

Step 3 of deriving optimal input parameters specifies the minimum amount of shared

memory is allocated per block to increase the number of blocks assigned to each SM. In

addition, minimizing the amount of shared memory allocated reduces time each HW in a

block waits for synchronization since there are fewer HWs per block. Since n ele = 16,

SMemPerBlk = 64dBlk.x. Therefore, the minimum value of dBlk.x from Equation (4.25a)

is utilized. Since dBlk.x = 8, Equations (4.30) and (4.25c) are evaluated to yield

8 ≤dBlk.y ≤ 64 (4.31a)

dGrd.x = n

8dBlk.y
(4.31b)

Step 4 of deriving optimal input parameters specifies the maximum number of global

memory partitions, PartsPerGPU, are accessed to reduce partition camping. PartsPerGPU

is dependent on PartsPerBlk, dGrd.x, and BlksactiveGPU . Since dBlk.x and n ele are constant,

RegsPerThd is constant. From compilation, 32 RegsPerThd are allocated so RegsPerBlk =

256dBlk.y. Since RegsPerBlk is the only limiting factor of Equation (4.26), the equation

simplifies to

BlksactiveGPU =
1920

dBlk.y
. (4.32)

If dGrd.x > BlksactiveGPU , substituting dBlk.x = 8 and BlksactiveGPU from Equation (4.32) into

Equation (3.13) and solving for dBlk.y yields4

dBlk.y ≤ 16. (4.33)

If dGrd.x ≤ BlksactiveGPU , substituting dBlk.x = 8 and dGrd.x from Equation (4.31b) into Equa-

tion (3.13) and simplifying yields

PartsPerGPU =min(n

64dBlk.y
,8) . (4.34)

4The solution is dBlk.y ≤ 30. However, dBlk.y is a power of two so it is rounded down to the nearest
power of two.

91

Substituting the minimum value of dBlk.y from Equation (4.31a) into Equation (4.34) yields

dGrd.x
dBlk.x

64
≥min(n

512
,8) . (4.35)

Substituting dBlk.x = 8 and dGrd.x from Equation (4.31b) into Equation (4.35) and solving

for dBlk.y yields

dBlk.y ≤ n

64min (n
512 ,8)

. (4.36)

Combining the upper limits of dBlk.y from Equations (4.33) and (4.36) with the lower limit

of dBlk.y from Equation (4.31a) yields

8 ≤ dBlk.y ≤min
⎛
⎝
16,

n

64min (n
512 ,8)

⎞
⎠
. (4.37)

Step 5 of deriving optimal input parameters specifies the number of fragmented blocks,

Blksfrag.GPU from Equation (3.10), is minimized. Substituting dGrd.x from Equation (4.31b),

dGrd.y from Equation (4.29), and BlksactiveGPU from Equation (4.32) into Equation (3.10) yields

n2

128dBlk.y
mod

1920

dBlk.y
. (4.38)

In general, x
y can be expressed as x = Qy + R where Q is the quotient, Q = ⌊xy ⌋, and R is

the remainder. Since Blksfrag.GPU = R, Blksfrag.GPU = x −Qy. Substituting for x, y, and Q from

Equation (4.38) and simplifying yields

Blksfrag.GPU =
n2

128dBlk.y
− ⌊ n2

245760
⌋ 1920

dBlk.y
. (4.39)

Therefore, to minimize Blksfrag.GPU , the maximum value of dBlk.y from Equation (4.37) is

utilized and

dBlk.y =min
⎛
⎝
16,

n

64min (n
512 ,8)

⎞
⎠
. (4.40)

92

Since dBlk.x = 8 and from Equations (4.40), (4.25c), and (4.29), the optimal input

parameters for the shared memory implementation of MM on a GPU utilizing the optimized

computation and access pattern after fine-tuning are

dBlk.x = 8

dBlk.y =min
⎛
⎝
16,

n

64min (n
512 ,8)

⎞
⎠

dGrd.x = n

8Blk.y

dGrd.y = n

16
. (4.41)

Figure 4.21 depicts measured GPU computation time of all input parameters for MM.

The figure illustrates the necessity of optimal input parameters as the computation time of

MM varies significantly depending on the input parameters.

8 16 32 64 128 256 512

10
0

10
1

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=512

Optimal

8 16 32 64 128 256 512

10
1

10
2

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=1024

Optimal

93

8 16 32 64 128 256 512

10
2

10
3

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=2048

Optimal

8 16 32 64 128 256 512

10
3

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=4096

Optimal

8 16 32 64 128 256 512

10
4

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=8192

Optimal

8 16 32 64 128 256 512

10
5

10
6

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=16384

Optimal

Figure 4.21: Comparison of input parameters: Computation time (ms) of all input parame-
ters for MM on the T10 GPU.

Derivation of optimal input parameters yields computation time, on average, within

0.5% of the minimum measured time. In the worst-case (n = 512), utilizing optimal in-

put parameters yields time within 1.2% of the minimum. Best-case utilization of optimal

input parameters (n = {1024,8192,16384}) yields the minimum. As depicted, deriving op-

timal input parameters yields minimum or near-minimum GPU computation time for MM.

Therefore, Step 5 of the parallelization procedure is valid and necessary for MM.

94

4.5.3 GPU Computation Summary

After Step 5, the parallelization procedure is developed to determine the optimal parti-

tioning of computation between the CPU and GPU. Therefore, the procedure with regards

to minimizing GPU computation time is complete. Therefore, this section illustrates max-

imum effective bandwidth of each aforementioned step of the parallelization procedure as

it pertains to GPU computation time. In addition, a comparison of the procedure to the-

oretical bandwidth and CUBLAS effective bandwidth is illustrated. For each figure in this

subsection, Näıve denotes the global memory implementation, Sh. Mem. denotes the shared

memory implementation, O.C.P. denotes the optimized computation pattern utilizing shared

memory, and O.A.P. denotes the optimized access pattern utilizing the optimized compu-

tation pattern and shared memory. P.P. denotes the entire parallelization procedure with

regards to GPU computation which utilizes shared memory, optimized computation and

access patterns, fine-tuning adjustments, and optimal input parameters.

Mv

Figure 4.22 depicts effective bandwidth of Mv for each step of the parallelization pro-

cedure in addition to CUBLAS effective bandwidth and theoretical bandwidth.

512 1024 2048 4096 8192 16384

10
1

10
2

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Theoretical
CUBLAS
P.P.
O.A.P.
O.C.P.
Sh. Mem.
Näıve

Figure 4.22: Comparison of effective bandwidth (GB/s) for Mv on the T10 GPU.

95

The parallelization procedure yields a speedup, on average, of 18.98 compared to the

näıve implementation. The minimum (n = 4096) and maximum (n = 16384) speedups are

11.92 and 37.35, respectively. As illustrated, each step of the procedure increases the effective

bandwidth. On average, the procedure yields a speedup of 1.47 compared to the CUBLAS

implementation with a minimum (n = 8192) and maximum (n = 1024) speedup of 0.96

and 2.17, respectively. Compared to theoretical bandwidth, the procedure yields effective

bandwidth, on average, as 63.7% of the theoretical bandwidth. Utilizing the procedure yields

a worst-case (n = 512) effective bandwidth of 21.3% of theoretical. Best-case utilization of

the procedure (n = 8192) yields an effective bandwidth of 79.1% of the theoretical. The

procedure is verified to yield increases in speedup compared to the optimized CUBLAS

GPU implementation of Mv. More importantly, the procedure is verified to yield significant

increases in speedup compared to the näıve GPU implementation of Mv.

MM

Figure 4.23 depicts effective bandwidth of MM for each step of the parallelization pro-

cedure in addition to the theoretical and CUBLAS effective bandwidth.

512 1024 2048 4096 8192 16384

10
2

10
3

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Theoretical
CUBLAS
P.P.
O.A.P.
O.C.P.
Sh. Mem.
Näıve

Figure 4.23: Comparison of effective bandwidth (GB/s) for MM on the T10 GPU.

Similar to Mv, the procedure applied to MM yields a significant speedup, on average,

of 14.58 compared to the näıve implementation. The minimum (n = 16384) and maximum

96

(n = 512) speedups are 12.36 and 21.56, respectively. In Figure 4.23, each step of the

procedure increases the effective bandwidth. The largest increase in bandwidth occurs after

the first step of the procedure. This is due to the first step significantly reducing the number

of global memory transactions. Compared to the CUBLAS implementations, the procedure

yields a speedup, on average, of 1.07 with a minimum (n = 4096) and maximum (n = 512)

speedup of 0.95 and 1.39, respectively. As illustrated, the procedure yields bandwidth near

the theoretical. On average, the procedure yields 84.2% of the theoretical bandwidth. In

the worst-case (n = 512), utilizing the procedure yields effective bandwidth of 73.2% of the

theoretical. Best-case utilization of the procedure (n = 16384) yields an effective bandwidth

of 88.3% of the theoretical. Similar to Mv, the procedure is verified to yield increases in

speedup compared to the optimized CUBLAS GPU implementation of MM. Likewise, the

procedure is verified to yield significant increases in speedup compared to the näıve GPU

implementation of MM.

Therefore, for Mv and MM, the procedure yields GPU computation times competitive

with the CUBLAS implementation and significantly lower than the näıve implementation.

4.6 Computation Partitioning

The last step, Step 6, of the parallelization procedure to minimize execution time is to

determine the partitioning of computation between the CPU and GPU. For small matrix-

based computations, the communication time may exceed the CPU computation time as

measured for certain data sizes of Mv. Therefore, determining which computations are per-

formed by the CPU and GPU requires accurate estimates of communication and computation

times.

From accurate estimates of communication and computation times, it is possible to de-

termine the appropriate computations to be performed by the CPU and GPU. The algorithm

in Listing 4.18 determines which matrix-based computations are performed by the CPU and

GPU. TCPU
comp. and Tcomm. are presented in Chapter 3.

97

1 if TCPU
comp. ≤ TGPU

comp. + Tcomm.

2 perform computation on CPU.

3 if TCPU
comp. > TGPU

comp. + Tcomm.

4 perform computation on GPU.

Listing 4.18: Algorithm to determine which computations are performed by the CPU and
GPU.

Since GPU computation time is estimated assuming maximum bandwidth, it is neces-

sary to determine the number of bytes accessed from global memory for each matrix-based

computation. The theoretical bandwidth is partially calculated by dividing the number of

bytes necessary for computation by the number of bytes accessed from global memory. This

fraction is multiplied by the maximum bandwidth to global memory (94GB/s) to yield the

theoretical bandwidth.

4.6.1 Mv

For Mv, optimal input parameters define dBlk.x = 32 from Equation (4.24). Therefore,

from Equation (4.7), the number of 64B memory transactions is 4n2. Since 2n2 float values

are necessary for computation and 4n2 bytes are accessed from global memory, the theoretical

bandwidth for Mv is 8n2

4n2 (94GB/s). Therefore, TGPU
comp. =

8n2

10243

188 . Communication requires two

CPU to GPU transfers and one GPU to CPU transfer. Substituting for b, c0, and c1 into

Equations (3.14) and (3.15) and simplifying yields the communication time in seconds as

Tcomm. = 5.00 × 10−9n +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.02 × 10−9n2 + 5.00 × 10−5 if n < 256

1.08 × 10−9n2 + 9.60 × 10−5 if 256 ≤ n < 512

1.08 × 10−9n2 + 2.27 × 10−4 if n ≥ 512.

From Lines 1-2 of Listing 4.18, computation is partitioned for CPU execution if TCPU
comp. ≤

TGPU
comp. + Tcomm.. Therefore, after substitution, if

8n2

10243

min (max (16384n ,2) ,8)
≤

8n2

10243

188
+ Tcomm.,

98

computation is performed on the CPU to minimize execution time. Solving for n yields

TCPU
comp. ≤ TGPU

comp. + Tcomm. if n ≤ 2048. Therefore, if n > 2048, the computation is performed on

the GPU to minimize execution time.

Figure 4.24 illustrates measured execution time for Mv. CPU (ATLAS) execution time is

measured time of the CPU utilizing ATLAS to perform Mv. GPU (CUBLAS) execution time

is measured time for communication between the CPU and GPU in addition to measured

GPU computation time utilizing CUBLAS.

512 1024 2048 4096 8192 16384
10

−1

10
0

10
1

10
2

10
3

n

m
ea

su
re

d
ex

ec
u
ti

o
n

ti
m

e
(m

s
)

CPU (ATLAS)
GPU (näıve)
GPU (CUBLAS)
P.P.

Figure 4.24: Comparison of execution time (ms) for Mv on the T10 GPU.

As mentioned, if n ≤ 2048, Mv is performed on the CPU and therefore, the procedure

yields execution time identical to the ATLAS implementation. If n > 2048, Mv is performed

on the GPU utilizing the kernel developed in the procedure (Listing 4.16). The procedure

yields a speedup, on average, of 1.68 compared to the ATLAS implementation, 2.63 com-

pared to the näıve GPU implementation (Listing 4.2), and 1.39 compared to the CUBLAS

implementation. The speedup compared to the näıve and CUBLAS implementations in Fig-

ure 4.24 is less than in Figure 4.22 due to communication time. For Mv, the communication

time is a significant portion of execution time. Therefore, large speedups measured for Mv

computation have less of an impact on execution time since the execution time includes

communication and computation time.

99

From Figure 4.24, the procedure yields execution time, on average, within 0.8% of the

theoretical minimum execution time. Utilizing the procedure yields a worst-case (n = 8192)

time within 1.9% of the theoretical minimum. In the best-case (n = {512,1024,2048}), uti-

lizing the procedure yields the theoretical minimum. This is possible since the theoretical

minimum for n ≤ 2048 is identical to the CPU utilizing ATLAS. This is because the theoreti-

cal minimum for the CPU is calculated utilizing effective bandwidths of the CPU. Therefore,

Step 6 of the parallelization procedure, determine the optimal partitioning of computation,

is valid and necessary for Mv.

4.6.2 MM

For MM, 2n3 float values are necessary for computation. If n ele = 16 as defined in

Section 4.5.2 (optimal input parameters), data is reused via shared memory. Since each

thread in a HW reuses 16 float values, 8n3

16 bytes are necessary from global memory. Assuming

the maximum global memory bandwidth of 94GB/s, the theoretical bandwidth for MM is

1504GB/s. Therefore, TGPU
comp. =

8n3

10243

1504 . Communication requires two CPU to GPU transfers

and one GPU to CPU transfer. Substituting for b, c0, and c1 into Equations (3.14) and

(3.15) and simplifying yields the communication time in seconds as

Tcomm. =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8.02 × 10−9n2 + 5.00 × 10−5 if n < 256

4.14 × 10−9n2 + 1.42 × 10−4 if 256 ≤ n < 512

3.38 × 10−9n2 + 5.94 × 10−4 if n ≥ 512.

From Lines 1-2 of Listing 4.18, computation is partitioned for CPU execution if TCPU
comp. ≤

TGPU
comp. + Tcomm.. Therefore, after substitution, if

8n2

10243

51
≤

8n2

10243

1504
+ Tcomm.,

100

computation is performed on the CPU to minimize execution time. Solving for n yields

TCPU
comp. ≤ TGPU

comp. + Tcomm. if n ≤ 64. Therefore, if n > 64, the computation is performed on the

GPU to minimize execution time.

Figure 4.25 illustrates measured execution time for MM. CPU (ATLAS) execution time

is measured time of the CPU utilizing ATLAS to perform MM. GPU (CUBLAS) execution

time is measured time for communication between the CPU and GPU in addition to measured

GPU computation time utilizing CUBLAS.

512 1024 2048 4096 8192 16384
10

0

10
2

10
4

10
6

n

m
ea

su
re

d
ex

ec
u
ti

o
n

ti
m

e
(m

s
)

CPU (ATLAS)
GPU (näıve)
GPU (CUBLAS)
P.P.

Figure 4.25: Comparison of execution time (ms) for MM on the T10 GPU.

For MM, the parallelization procedure yields execution time similar to the CUBLAS

implementation for all data sizes tested. The speedup, on average, is 1.02. The procedure

yields a speedup, on average, of 18.81 compared to the ATLAS implementation, and 10.60

compared to the näıve implementation. Similar to Mv, the speedup compared to the näıve

and CUBLAS implementations in Figure 4.25 is less than in Figure 4.23 due to communica-

tion time. However, differing from Mv, the communication time is not a significant portion

of execution time. Therefore, the reduction in speedup, due to communication, is less than

for Mv.

Similar to Mv, the procedure yields execution time, on average, within 10.9% of the

theoretical minimum execution time. Worst-case utilizing the procedure (n = 4096) yields

time within 11.4% of the theoretical minimum. Best-case utilizing the procedure (n = 512)

101

yields time within 10.4% of the theoretical minimum. For MM, Step 6 of the procedure,

determine the partitioning of computation, is not necessary for MM since n > 64. However,

Step 6 is necessary to minimize execution time for Mv and thus is included.

102

Chapter 5

Performance Analysis

The parallelization procedure is developed and verified through Mv and MM. Therefore,

Section 5.1 of this chapter is the application of the parallelization procedure to convolution.

Each step is illustrated in a subsection and results are presented. In addition to verification

through convolution, in Section 5.2, execution time of the conjugate gradient method [65]

utilizing the parallelization procedure is compared with execution time of the CPU utilizing

ATLAS and the GPU utilizing CUBLAS.

All results in this chapter were gathered using the NVIDIA Tesla S1070 which includes

a pair of T10 GPUs connected to a quad-core 2.26GHz Intel Xeon E5520 CPU at Alabama

Supercomputer Authority [62]. The height or width of a square matrix, n, is varied from

512 to 16384 as defined by Equation (4.1). dBlk.x is varied from 8 to 512, the maximum

allowable value for the T10.

5.1 Convolution

As mentioned, the parallelization procedure developed in Chapter 4 is applied to con-

volution to show the validity of the procedure. Three various filter sizes (FS = {3,63,513})

were selected for testing convolution.

5.1.1 Placement of Data

Step 1 of the parallelization procedure is to determine the optimal placement of data in

GPU memory. Listing 5.1 is the kernel for the global memory implementation of convolution

on a GPU where each thread computes one Cij. The size of the filter, or the height or width

of B, is passed to the kernel as FS. The radius of the filter is computed in Line 2. Each thread

103

1 __global__ void Conv(float* A, float* B, float* C, int n, int FS) {

2 int radius = (FS -1) /2;
3 int indexCol = blockIdx.x * blockDim.x + threadIdx.x;
4 int indexRow = blockIdx.y * blockDim.y + threadIdx.y;

5 float temp = 0.0;
6 for(int k = 0; k < FS; k++) {
7 int Col = indexCol + k - radius;

8 for(int l = 0; l < FS; l++) {
9 int Row = indexRow + l - radius;

10 if(Col >= 0 && Col < n) {
11 if(Row >= 0 && Row < n) {
12 temp += A[Row * n + Col] * B[l * FS + k];
13 }
14 }
15 }
16 }
17 C[indexRow * n + indexCol] = temp;
18 }

Listing 5.1: The global memory implementation of convolution on a GPU.

computes the column and row index of the Cij to compute in Lines 3 and 4. Lines 10 and 11

perform boundary checking to ensure no address is accessed which is out of range. k and l

determine which row and column of the filter, respectively, are being accessed. The order of

the for -loops in Lines 6 and 8 determines the order in which computation is performed and

thus affects the computation time. The order of computation, or the computation pattern,

is discussed in Section 5.1.2.

In Line 3 of Listing 5.1, indexCol is calculated utilizing threadIdx.x. Therefore, Col, Line

7, is also dependent on threadIdx.x. Since HWs are assigned in row-major order (threadIdx.x

first), accesses to A in Line 12 are coalesced. The number of global memory accesses for

accessing A is dependent on the number of threads per HW with differing threadIdx.y values.

This is because each HW has threadIdx.y unique values for Row from Line 4. Therefore, the

number of global memory accesses for accessing A is approximately1

Gld32B =
n2FS2

dBlk.x
if dBlk.x ≤ 8

1For simplicity, the equations are approximations. Due to boundary checking, not all reads defined by
the equations are necessary or issued.

104

and

Gld64B =
n2FS2

16
if dBlk.x ≥ 16.

Since each thread in a HW accesses the same value of B in Line 12, the number of global

memory accesses for accessing B is approximately1

Gld32B =
n2FS2

16
(5.1)

regardless of the value of dBlk.x.

Lines 4-6 of Listing 4.1, the algorithm to determine the placement of data, specify that

shared memory is utilized for reused data which is larger than the size of constant memory.

It is not assumed the filter is smaller than the size of constant memory 2. Therefore, Line 5

specifies that data which is reused is partitioned into blocks smaller than the size of shared

memory. Therefore, A and B are partitioned into blocks of shared memory to reduce the

number of global memory accesses as shown in Listing 5.2. Shared memory is allocated for

parts of A and B in Lines 2 and 3, respectively. Therefore,

SMemPerBlk = (2 × dBlk.y × dBlk.x + dBlk.y) × 4. (5.2)

Every dBlk.y iteration, parts of A and B are loaded into shared memory as shown in Lines

12-28. Since all HWs within a block access the same part of B, only some threads are utilized

to load B into shared memory. In this kernel, threads of each HW with threadIdx.x=0 are

utilized to load part of B into shared memory as shown in Lines 14-18. Boundary checking is

performed in Lines 15, 19, 20, 23, 29, and 30. Similar to the global memory implementation,

the order of the for -loops in Lines 8 and 10 determines the computation pattern, which is

discussed in Section 5.1.2.

2If constant memory is utilized to store the filter, the maximum size of the filter is limited to 128.

105

1 __global__ void Conv(float* A, float* B, float* C, int n, int FS) {

2 __shared__ float As[blockDim.y * 2][blockDim.x];
3 __shared__ float Bs[blockDim.y];

4 int radius = (FS -1) /2;
5 int indexCol = blockIdx.x * blockDim.x + threadIdx.x;
6 int indexRow = blockIdx.y * blockDim.y + threadIdx.y;

7 float temp = 0.0;
8 for(int k = 0; k < FS; k++) {
9 int Col = indexCol + k - radius;

10 for(int l = 0; l < FS; l++) {
11 int Row = indexRow + l - radius;

12 if((l % blockDim.y) == 0) {
13 __syncthreads ();
14 if(threadIdx.x == 0) {
15 if(l + threadIdx.y < FS) {
16 Bs[threadIdx.y] = B[(l + threadIdx.y) * FS + k];
17 }
18 }
19 if(Col >= 0 && Col < n) {
20 if(Row >= 0 && Row < n) {
21 As[threadIdx.y][threadIdx.x] = A[Row * n + Col];
22 }
23 if((Row + blockDim.y) >= 0 && (Row + blockDim.y) < n) {
24 As[threadIdx.y + blockDim.y][threadIdx.x] = A[(Row +

Ç blockDim.y) * n + Col];
25 }
26 }
27 __syncthreads ();
28 }

29 if(Col >= 0 && Col < n) {
30 if(Row >= 0 && Row < n) {
31 temp += As[threadIdx.y + (l % blockDim.y)][threadIdx.x] * Bs[(l

Ç % blockDim.y)];
32 }
33 }
34 }
35 }
36 C[indexRow * n + indexCol] = temp;
37 }

Listing 5.2: The shared memory implementation of convolution on a GPU.

106

Since global memory is accessed every dBlk.y iteration, the number of global memory

accesses for accessing A is dependent on the size of B, FS, and the number of threads

per HW with differing threadIdx.y values. This is because each HW has threadIdx.y unique

values for Row from Lines 6 and 11. Therefore, the number of global memory accesses for

accessing A is approximately3

Gld32B =
2n2FS

dBlk.x
⌈ FS

dBlk.y
⌉ if dBlk.x ≤ 8 (5.3)

and4

Gld64B =
2n2FS

16
⌈ FS

dBlk.y
⌉ if dBlk.x ≥ 16. (5.4)

If dBlk.x ≥ 16, this reduces the number of global memory accesses for accessing A by a

factor of FS

2⌈ FS
dBlk.y

⌉
compared to the global memory implementation. Since global memory is

accessed every dBlk.y iteration, the number of global memory accesses for accessing B is

approximately3

Gld32B =
16n2FS

dBlk.x2
⌈ FS

dBlk.y
⌉ if dBlk.x ≤ 8 (5.5)

and

Gld32B =
n2FS

dBlk.x
⌈ FS

dBlk.y
⌉ if dBlk.x ≥ 16. (5.6)

This reduces the number of 32B accesses for accessing B by a factor of FSdBlk.x

16⌈ FS
dBlk.y

⌉
compared

to the global memory implementation.

Figures 5.1-5.3 depict maximum effective bandwidth of the global memory implemen-

tation of convolution (Listing 5.1) and the shared memory implementation (Listing 5.2).

Effective bandwidth for convolution is calculated in Section 3.5 as 8n2FS2bytes
TGPU
comp.

. Figure 5.1

depicts maximum effective bandwidth for a filter size, FS, of 3.

3For simplicity, the equations are approximations. Due to boundary checking, not all reads defined by
the equations are necessary or issued.

4Since FS is not a power of two, some reads are 32B transactions if dBlk.x ≥ 16.

107

512 1024 2048 4096 8192 16384
20

30

40

50

60

70

80

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Global Memory
Shared Memory

Figure 5.1: Comparison of GPU memories: Maximum effective bandwidth (GB/s) for con-
volution on the T10 GPU. FS=3.

As illustrated, the reduction in global memory accesses significantly increases the effec-

tive bandwidth for convolution with a small filter size. The shared memory implementation

yields a speedup, on average, of 2.74 compared to the global memory implementation. The

minimum (n = 512) and maximum (n = 16384) speedups are 2.37 and 2.86, respectively.

Figure 5.2 depicts maximum effective bandwidth for a filter size of 63.

512 1024 2048 4096 8192 16384
70

75

80

85

90

95

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Global Memory
Shared Memory

Figure 5.2: Comparison of GPU memories: Maximum effective bandwidth (GB/s) for con-
volution on the T10 GPU. FS=63.

For a filter size of 63, utilizing shared memory increases effective bandwidth due to

the reduction in global memory accesses. However, comparing Figures 5.1 and 5.2 shows

108

the increase in bandwidth is less as the filter size has increased. Regardless, in Figure 5.2,

the shared memory implementation yields a speedup, on average, of 1.25 compared to the

global memory implementation. The minimum (n = 512) and maximum (n = 4096) speedups

are 1.22 and 1.26, respectively. Although the increase in effective bandwidth for the shared

memory implementation is less than for a small filter size, Step 1 of the procedure is valid

for a filter size of 63. Lastly, maximum effective bandwidth is illustrated in Figure 5.3 for a

filter size of 513.

512 1024 2048 4096 8192 16384
60

70

80

90

100

110

120

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Global Memory
Shared Memory

Figure 5.3: Comparison of GPU memories: Maximum effective bandwidth (GB/s) for con-
volution on the T10 GPU. FS=513.

Similar to a filter size of 63, the shared memory implementation yields a speedup,

on average, of 1.27 compared to the global memory implementation for a large filter size.

Likewise, the minimum (n = 512) and maximum (n = 8192) speedups are 1.18 and 1.32,

respectively. These results show that Step 1 of the procedure yields larger reductions of

computation time for smaller filter sizes. Regardless, Step 1 is verified to reduce computation

time for all data and filter sizes tested.

5.1.2 Computation Patterns

Step 2 of the procedure specifies that the optimized computation pattern is derived. As

mentioned, computation patterns are determined by the code and represent the manner and

109

order in which results are computed. For convolution, if threadij computes Cij where C =

A ∗ B, the order in which Cij is computed creates varying computation patterns.

For convolution, the filter, B, is centered over each value of the input, A. The products

of the overlapping values of A and B are summed to compute one value of C, Cij, where C =

A ∗ B. This is depicted in Figure 5.4. The order in which overlapping values are multiplied

filter
value being computed

(a) Column-major.

filter
value being computed

(b) Row-major.

Figure 5.4: Computation patterns: two computation patterns for convolution.

determines the computation pattern. A pattern where each partial sum is computed first

in the y-dimension, as depicted in Figure 5.4a, is the column-major computation pattern.

Figure 5.4b depicts the computation pattern where each value is computed first in the x-

dimension, row-major.

Column-major

The shared memory implementation of convolution utilizing the column-major compu-

tation pattern depicted in Figure 5.4a is shown in Listing 5.2 in Section 5.1.1. The amount

of shared memory allocated per block is defined by Equation (5.2) and the number of global

memory accesses for accessing A and B is approximated5 in Equations (5.3)-(5.6).

5Due to boundary checking, not all reads are issued.

110

Optimized (row-major)

The shared memory implementation of convolution utilizing the row-major computation

pattern depicted in Figure 5.4b requires several minor modifications to Listing 5.2. There-

fore, the shared memory implementation of convolution utilizing the row-major computation

pattern is shown in Listing 5.3. Shared memory is allocated for parts of A and B in Lines

2 and 3, respectively. Therefore,

SMemPerBlk = (2 × dBlk.x × dBlk.y + dBlk.x) × 4. (5.7)

Every dBlk.x iteration, parts of A and B are loaded into shared memory as shown in Lines

12-28. Since all HWs within a block access the same part of B, only some threads are utilized

to load B into shared memory. In this kernel, threads of each HW with threadIdx.y=0 are

utilized to load part of B into shared memory as shown in Line 14. Boundary checking is

performed in Lines 15, 19, 20, 23, 29, and 30.

Since global memory is accessed every dBlk.x iteration, the number of global memory

accesses for accessing A is dependent on the size of B, FS, and the number of threads

per HW with differing threadIdx.y values. This is because each HW has threadIdx.y unique

values for Row from Lines 6 and 9. Therefore, the number of global memory accesses for

accessing A is approximately8

Gld32B =
2n2FS

dBlk.x
⌈ FS

dBlk.x
⌉ if dBlk.x ≤ 8 (5.8)

and6

Gld64B =
2n2FS

16
⌈ FS

dBlk.x
⌉ if dBlk.x ≥ 16. (5.9)

If dBlk.x ≥ 16, this reduces the number of global memory accesses for accessing A by a

factor of FS
2⌈ FS

dBlk.x
⌉ compared to the global memory implementation. However, if dBlk.x =

6Since FS is not a power of two, some reads are 32B transactions if dBlk.x ≥ 16.

111

1 __global__ void Conv(float* A, float* B, float* C, int n, int FS) {

2 __shared__ float As[blockDim.y][blockDim.x * 2];
3 __shared__ float Bs[blockDim.x];

4 int radius = (FS -1) /2;
5 int indexCol = blockIdx.x * blockDim.x + threadIdx.x;
6 int indexRow = blockIdx.y * blockDim.y + threadIdx.y;

7 float temp = 0.0;
8 for(int k = 0; k < FS; k++) {
9 int Row = indexRow + k - radius;

10 for(int l = 0; l < FS; l++) {
11 int Col = indexCol + l - radius;

12 if((l % blockDim.x) == 0) {
13 __syncthreads ();
14 if(threadIdx.y == 0) {
15 if(l + threadIdx.x < FS) {
16 Bs[threadIdx.x] = B[k * FS + l + threadIdx.x];
17 }
18 }
19 if(Row >= 0 && Row < n) {
20 if(Col >= 0 && Col < n) {
21 As[threadIdx.y][threadIdx.x] = A[Row * n + Col];
22 }
23 if((Col + blockDim.x) >= 0 && (Col + blockDim.x) < n) {
24 As[threadIdx.y][threadIdx.x + blockDim.x] = A[Row * n + Col +

Ç blockDim.x];
25 }
26 }
27 __syncthreads ();
28 }

29 if(Row >= 0 && Row < n) {
30 if(Col >= 0 && Col < n) {
31 temp += As[threadIdx.y][threadIdx.x + (l % blockDim.x)] * Bs[(l

Ç % blockDim.x)];
32 }
33 }
34 }
35 }
36 C[indexRow * n + indexCol] = temp;
37 }

Listing 5.3: The shared memory implementation of convolution on a GPU utilizing the
optimized computation pattern.

112

dBlk.y, there is no reduction in the number of accesses compared to the shared memory

implementation utilizing the column-major computation pattern.

Since global memory is accessed every dBlk.x iteration, the number of global memory

accesses for accessing B is approximately8

Gld32B =
n2FS

dBlk.x × dBlk.y
⌈ FS

dBlk.x
⌉ if dBlk.x ≤ 8. (5.10)

and

Gld64B =
n2FS

16dBlk.y
⌈ FS

dBlk.x
⌉ if dBlk.x ≥ 16. (5.11)

If dBlk.x ≥ 16, 32B accesses for accessing B are replaced with 64B accesses compared to

the shared memory implementation utilizing the column-major computation pattern. The

number of accesses to global memory is reduced by a factor of
16dBlk.y⌈ FS

dBlk.y
⌉

dBlk.x⌈ FS
dBlk.x

⌉ . Therefore, if

dBlk.x = dBlk.y = 16, this computation pattern reduces the number of accesses to global

memory by a factor of 16 and the number of bytes accessed by a factor of 8. Therefore, the

row-major pattern is the optimized computation pattern.

Figures 5.5-5.7 depict maximum effective bandwidth of convolution before (Listing 5.2)

and after (Listing 5.3) utilizing the optimized computation pattern. The optimal placement

of data is utilized in both listings. As mentioned, effective bandwidth for convolution is

8n2FS2bytes
TGPU
comp.

. Figure 5.5 depicts maximum effective bandwidth for a filter size, FS, of 3.

113

512 1024 2048 4096 8192 16384
60

65

70

75

80

85

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 5.5: Comparison of computation patterns: Maximum effective bandwidth (GB/s) for
convolution on the T10 GPU. FS=3.

Shown in Figure 5.5, Step 2 of the procedure yields a modest speedup, on average, of

1.03 compared to the non-optimized pattern. As mentioned, for the optimized computation

pattern, the number of accesses to global memory is reduced by a factor of
16dBlk.y⌈ FS

dBlk.y
⌉

dBlk.x⌈ FS
dBlk.x

⌉

compared to the non-optimized pattern. Since maximum effective bandwidth is illustrated

and dBlk.x and dBlk.y vary, the optimized computation pattern yields a modest speedup.

The minimum (n = 16384) and maximum (n = 512) speedups are 1.02 and 1.07, respectively.

For a filter size of 63, the maximum effective bandwidth is illustrated in Figure 5.6.

512 1024 2048 4096 8192 16384
89.5

90

90.5

91

91.5

92

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 5.6: Comparison of computation patterns: Maximum effective bandwidth (GB/s) for
convolution on the T10 GPU. FS=63.

114

In Figure 5.6, the effective bandwidth, before and after utilizing the optimized compu-

tation pattern, shows a differing behavior for the varying data sizes. However, given the

scale of the figure, the difference is small and not explored further. Similar to a small filter

size, the optimized computation pattern for a filter size of 63 yields a near-constant speedup,

on average, of 1.01 compared to the non-optimized pattern. The minimum (n = 2048) and

maximum (n = 512) speedups are 1.00 and 1.02, respectively. Lastly, Figure 5.7 depicts

maximum effective bandwidth for a filter size of 513.

512 1024 2048 4096 8192 16384
90

95

100

105

110

115

120

125

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 5.7: Comparison of computation patterns: Maximum effective bandwidth (GB/s) for
convolution on the T10 GPU. FS=513.

As illustrated in Figure 5.7, the optimized computation pattern yields a constant speedup

of 1.03 compared to the non-optimized pattern. The effective bandwidth for all filter sizes

tested is roughly equivalent and a modest increase is shown when utilizing the optimized

computation pattern. Although modest speedups are measured for all filter sizes, the band-

width is increased for all data and filter sizes tested. Therefore, Step 2 of the parallelization

procedure is shown to yield increases in effective bandwidth, and thus reduce the computa-

tion time, for convolution.

115

5.1.3 Access Patterns

Step 3 of the parallelization procedure is to derive the optimized access pattern that

minimizes partition camping and eliminates bank conflicts. For Mv and MM, HWs begin

execution by reading the first value of their respective rows of A. However, for convolution,

HWs begin by reading varying columns of their respective rows of A. Therefore, HWs are

spread to varying partitions for accessing A without an optimized access pattern.

Figure 5.8a illustrates a 3x3 filter, B, stored in global memory. Padding the filter with

zeros such that each row resides in the next partition of global memory reduces partition

camping. This is illustrated in Figure 5.8b. In addition, padding the filter aligns each

0 1 2 3

row of filter
filter values

partition

(a) Non-padded filter in global memory.

0 1 2 3

row of filter
filter values

partition

(b) Padded filter in global memory.

Figure 5.8: Access patterns: example of a 3x3 filter, B, stored in global memory. Each row
of a partition is 4 values of type float.

row to a specified boundary. From the CUDA programming guide [64], “Any access (via a

variable or a pointer) to data residing in global memory compiles to a single global memory

instruction if and only if the size of the data type is 1, 2, 4, 8, or 16 bytes and the data is

naturally aligned (i.e., its address is a multiple of that size).” Therefore, padding the filter

with zeros ensures the data is naturally aligned thus reducing the number of global memory

transactions.

Similarly, padding A with zeros eliminates the boundary checking instructions in Lines

15, 19, 20, 23, 29, and 30 of Listing 5.3. From the CUDA programming guide [64], “If threads

of a warp diverge via a data-dependent conditional branch, the warp serially executes each

116

branch path taken.” Eliminating boundary checking instructions via padding eliminates

thread divergence. Therefore, modifying Listing 5.3 to accommodate padding of A and B

yields Listing 5.4 which is the shared memory implementation of convolution utilizing the

optimized computation and access pattern. Shared memory is allocated in Lines 2 and 3 of

1 __global__ void Conv(float* A, float* B, float* C, int n, int FS) {

2 __shared__ float As[blockDim.y][blockDim.x * 2];
3 __shared__ float Bs[blockDim.x];

4 int padding = 64 - FS % 64;
5 int indexCol = blockIdx.x * blockDim.x + threadIdx.x;
6 int indexRow = blockIdx.y * blockDim.y + threadIdx.y;

7 float temp = 0.0;
8 for(int k = 0; k < FS; k++) {
9 int Row = indexRow + k;

10 for(int l = 0; l < FS; l++) {
11 int Col = indexCol + l;

12 if((l % blockDim.x) == 0) {
13 __syncthreads ();
14 if(threadIdx.y == 0) {
15 Bs[threadIdx.x] = B[k * (FS + padding) + l + threadIdx.x];
16 }
17 As[threadIdx.y][threadIdx.x] = A[Row * (n + FS - 1) + Col];
18 As[threadIdx.y][threadIdx.x + blockDim.x] = A[Row * (n + FS - 1)

Ç + Col + blockDim.x];
19 __syncthreads ();
20 }

21 temp += As[threadIdx.y][threadIdx.x + (l % blockDim.x)] * Bs[(l %
Ç blockDim.x)];

22 }
23 }
24 C[indexRow * n + indexCol] = temp;
25 }

Listing 5.4: The shared memory implementation of convolution on a GPU utilizing the
optimized computation and access pattern.

Listing 5.4 the same as in Lines 2 and 3 of Listing 5.3. Therefore, the amount of shared

memory allocated per block is defined by Equation (5.7). In Line 4, padding instead of the

filter radius is calculated. padding specifies the number of zeros added to each row of the

filter. The index calculations for accessing A, Lines 9 and 11, no longer include the radius

of the filter, as A is padded. Since A is padded by the size of the filter, the length of each

row is n + FS − 1 rather than n as shown in Lines 17 and 18.

117

Figures 5.9-5.11 depict maximum effective bandwidth of convolution before (Listing

5.3) and after (Listing 5.4) utilizing the optimized access pattern. The optimal placement of

data and optimized computation patterns are utilized. Figure 5.9 depicts maximum effective

bandwidth for a filter size of 3.

512 1024 2048 4096 8192 16384
60

80

100

120

140

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 5.9: Comparison of access patterns: Maximum effective bandwidth (GB/s) for con-
volution on the T10 GPU. FS=3.

As mentioned, the optimized access pattern, which consists of padding A and B with

zeros, reduces partition camping. In addition, the optimized access pattern eliminates bound-

ary checking, and thus, reduces thread divergence. As illustrated in Figure 5.9, the optimized

access pattern yields a speedup, on average, of 1.54 compared to the non-optimized pattern

for a small filter size. The minimum (n = 512) and maximum (n = 16384) speedups are 1.27

and 1.67, respectively. Similar to Mv and MM, the optimized access pattern, which reduces

partition camping, significantly increases bandwidth for convolution with a small filter size.

Maximum effective bandwidth for a filter size of 63 is depicted in Figure 5.10.

118

512 1024 2048 4096 8192 16384
90

100

110

120

130

140

150

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 5.10: Comparison of access patterns: Maximum effective bandwidth (GB/s) for
convolution on the T10 GPU. FS=63.

Similar to a filter size of 3, the optimized access pattern for a filter size of 63 yields

a speedup, on average, of 1.60 compared to the non-optimized pattern. The minimum

(n = 512) and maximum (n = 16384) speedups are 1.58 and 1.61, respectively. Lastly, Figure

5.11 depicts maximum effective bandwidth for a filter size of 513.

512 1024 2048 4096 8192 16384
90

100

110

120

130

140

150

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Non-optimized
Optimized

Figure 5.11: Comparison of access patterns: Maximum effective bandwidth (GB/s) for
convolution on the T10 GPU. FS=513.

As shown in Figure 5.11, the optimized access pattern yields a speedup, on average,

of 1.46 compared to the non-optimized pattern. The minimum (n = 512) and maximum

(n = 16384) speedups are 1.19 and 1.59, respectively. For each filter size tested, Step 3 of

119

the parallelization procedure, derive the optimized access pattern, yields significant increases

in maximum effective bandwidth. In addition, the optimized access pattern yields similar

increases in speedup for all data and filter sizes tested.

5.1.4 Fine-tuning

Step 4 of the parallelization procedure is to fine-tune the kernel by unrolling loops

and minimizing index calculations. As mentioned, loop unrolling reduces computation time

by increasing the instruction mix of memory transactions and computation instructions.

Minimizing index calculations, particularly in inner loops, reduces the time necessary to

issue global memory transactions, thus reducing the computation time.

Step 4, fine-tuning, is applied to the shared memory implementation of convolution on a

GPU utilizing the optimized computation and access pattern, Listing 5.4, to yield Listing 5.5.

No modifications are performed to the allocation of shared memory and therefore, Equation

(5.7) defines the amount of shared memory utilized. Since modifications are performed only

to index calculations and loop unrolling, the number of global memory reads is defined

by Equations (5.8)-(5.11). In Line 8, calc1 is calculated outside of the for -loops as it is

a commonly used calculation in the for -loops for index calculations of A and B. Index

calculations are reduced by initializing pointers toA,B, andC in Lines 9-11, thus eliminating

the need for Row and Col from Listing 5.4. Pointer arithmetic is performed in Lines 21, 23,

29, and 30 to further reduce index calculations.

In Listing 5.5, for -loops are preceded with the #pragma unroll directive in Lines 12

and 14 to increase the instruction mix and reduce the number of registers used per thread.

Since the loops are dependent only on FS, the compiler unrolls the loops until the maximum

instruction limit is reached. Therefore, the amount of loop unrolling performed is dependent

on FS.

120

1 __global__ void Conv(float* A, float* B, float* C, int n, int FS) {
2 __shared__ float As[blockDim.y][blockDim.x * 2];
3 __shared__ float Bs[blockDim.x];

4 int padding = 64 - FS % 64;
5 int indexCol = blockIdx.x * blockDim.x + threadIdx.x;
6 int indexRow = blockIdx.y * blockDim.y + threadIdx.y;
7 float temp = 0.0;
8 int calc1 = blockDim.x * (floorf(FS / blockDim.x) + 1);
9 A += indexRow * (n + FS -1) + indexCol;

10 B += threadIdx.x;
11 C += indexRow * n + indexCol;

12 #pragma unroll
13 for(int k = 0; k < FS; k++) {

14 #pragma unroll
15 for(int l = 0; l < FS; l++) {

16 if((l % blockDim.x) == 0) {
17 __syncthreads ();
18 if(threadIdx.y == 0) {
19 Bs[threadIdx.x] = B[0];
20 }
21 B += blockDim.x;
22 As[threadIdx.y][threadIdx.x] = A[0];
23 A += blockDim.x;
24 As[threadIdx.y][threadIdx.x + blockDim.x] = A[0];
25 __syncthreads ();
26 }
27 temp += As[threadIdx.y][threadIdx.x + (l % blockDim.x)] * Bs[(l %

Ç blockDim.x)];
28 }
29 A += n + FS -1 - calc1;
30 B += FS + padding - calc1;
31 }
32 C[0] = temp;
33 }

Listing 5.5: The shared memory implementation of convolution on a GPU utilizing the
optimized computation and access pattern after fine-tuning

121

Figures 5.12-5.14 depict the maximum effective bandwidth of convolution before (Listing

5.4) and after (Listing 5.5) fine-tuning. Figure 5.12 depicts maximum effective bandwidth

for a filter size, FS, of 3.

512 1024 2048 4096 8192 16384
80

90

100

110

120

130

140

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Standard
Fine-tuned

Figure 5.12: Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for convolu-
tion on the T10 GPU. FS=3.

In Figure 5.12, the kernel after fine-tuning yields a modest speedup, on average, of 1.04

compared to before fine-tuning. The minimum (n = 16384) and maximum (n = 512) speedups

are 0.99 and 1.22, respectively. Similar to Mv, the figure suggests Step 4 of the procedure,

fine-tuning the kernel, has a minimal impact on computation time for a small filter size.

However, as illustrated in Figure 5.13, Step 4 of the procedure increases bandwidth more for

larger filter sizes.

122

512 1024 2048 4096 8192 16384
0

200

400

600

800

1000

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Standard
Fine-tuned

Figure 5.13: Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for convolu-
tion on the T10 GPU. FS=63.

The kernel after fine-tuning yields a speedup, on average, of 6.62 compared to before

fine-tuning for a filter size of 63. The minimum (n = 512) and maximum (n = 16384) speedups

are 6.58 and 6.64, respectively. The speedup is significantly higher than for a filter size of 3

presumably due to loop unrolling. As mentioned, the compiler automatically unrolls small

loops. The results in Figures 5.12 and 5.13 suggest that for a small filter size, the compiler

automatically unrolls both loops depicted in Listing 5.4. Therefore, fine-tuning the kernel

has a minimal impact for a small filter size. However, as the filter size increases, results

indicate the compiler does not automatically unroll the for -loops. Therefore, the procedure

yields significant speedups by forcing the compiler to unroll the loops. Lastly, Figure 5.14

depicts effective bandwidth for a filter size of 513.

123

512 1024 2048 4096 8192 16384
0

200

400

600

800

1000

1200

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Standard
Fine-tuned

Figure 5.14: Comparison of fine-tuning: Maximum effective bandwidth (GB/s) for convolu-
tion on the T10 GPU. FS=513.

Similar to a filter size of 63, for a filter size of 513, the kernel after fine-tuning yields

a speedup, on average, of 6.98 compared to before fine-tuning. The minimum (n = 512)

and maximum (n = 8192) speedups are 6.91 and 7.00, respectively. Again, the speedup is

significantly higher for a filter size of 513 than for a filter size of 3. Since the amount of loop

unrolling performed is dependent on FS, results suggest that loop unrolling occurs without

instructing the compiler for small filter sizes but not for larger sizes. Therefore, significant

speedup from Step 4 is attained only for larger filter sizes. Therefore, the speedup from

Step 4 of the procedure, fine-tuning the kernel, is dependent on the filter size. Regardless,

Step 4 of the procedure yields an increase in effective bandwidth, and thus a decrease in

computation time, on average, for all data and filter sizes tested.

5.1.5 Input Parameters

Step 5 of the parallelization procedure specifies that optimal input parameters are de-

rived. A list of five steps to derive optimal input parameters is presented in Section 4.5.

Since the derivation is Step 5 of the procedure, optimal input parameters are derived for the

kernel in Listing 5.5 which is the shared memory implementation of convolution on a GPU

utilizing the optimized computation and access pattern after fine-tuning. From the kernel

124

and Equations (4.12) and (4.13),

8 ≤dBlk.x ≤ 512 (5.12a)

1 ≤dBlk.y ≤ 512

dBlk.x
(5.12b)

dGrd.x = n

dBlk.x
(5.12c)

dGrd.y = n

dBlk.y
(5.12d)

From Equation (5.7), SMemPerBlk = (2 × dBlk.x × dBlk.y + dBlk.x) × 4. From compilation

of the kernel, RegsPerThd = 10 and is constant regardless of n, FS, and input parameters.

Therefore, Equation (3.7) simplifies to

BlksactiveSM =min(8, 1024

dBlk.x × dBlk.y
) . (5.13)

Substituting BlksactiveSM from Equation (5.13), dGrd.x from Equation (5.12c), and dGrd.y

from Equation (5.12c) into Equation (3.8) yields

BlksactiveGPU =min(30 ×min(8, 1024

dBlk.x × dBlk.y
) , n2

dBlk.x × dBlk.y
) . (5.14)

Since n ≥ 512 from Equation (4.1) and dBlk.x×dBlk.y ≤ 512 from Equation (4.12), Equation

(5.14) simplifies to

BlksactiveGPU = 30 ×min(8, 1024

dBlk.x × dBlk.y
) . (5.15)

Substituting BlksactiveGPU from Equation (5.15) and the minimum of ThdsactiveGPU from Equation

(4.14) into Equation (3.9) yields

12800 ≤ 30 ×min(8, 1024

dBlk.x × dBlk.y
) × dBlk.x × dBlk.y. (5.16)

125

If 1024
dBlk.x×dBlk.y ≥ 8, then Equation (5.16) is true. Solving for dBlk.y in Equation (5.16) if

1024
dBlk.x×dBlk.y < 8 yields

dBlk.y ≥ 12800

240dBlk.x
.

Since dBlk.y is a power of two, this simplifies to dBlk.y ≥ 64
dBlk.x . Combining this with the

limits of dBlk.y from Equation (5.12b) yields

max(64

dBlk.x
,1) ≤ dBlk.y ≥ 512

dBlk.x
. (5.17)

Step 2 of deriving optimal input parameters specifies shared memory utilization is max-

imized to ensure data is reused as much as possible. From Line 15 of the kernel in Listing

5.5, the trip count for the inner loop, where shared memory is accessed, is dependent on FS.

From the number of accesses to global memory from Equations (5.8)-(5.11), dBlk.x ≥ 16.

Since accesses are performed ⌈ FS
dBlk.x

⌉ times in the inner loop, dBlk.x > FS. Therefore,

dBlk.x ≥ max (16, FS). However, if dBlk.x > FS, dBlk.x × dBlk.y values are accessed for

A and dBlk.x values are accessed for B, but only FS values are necessary. Therefore,

dBlk.x > FS but less than the next power of two. So, dBlk.x =max (16,2⌈log2(FS)⌉). If FS is

greater than the upper limit of dBlk.x from Equation (5.12a), then dBlk.x = 512. Therefore,

dBlk.x =min (max (16,2⌈log2(FS)⌉) ,512) . (5.18)

Step 3 of deriving optimal input parameters specifies the minimum amount of shared

memory is allocated per block to increase the number of blocks assigned to each SM. In

addition, minimizing the amount of shared memory allocated reduces time each HW in a

block waits for synchronization since there are fewer HWs per block. Since SMemPerBlk =

(2×dBlk.x×dBlk.y+dBlk.x)×4 and dBlk.x is constant from Equation (5.18), the minimum

value of dBlk.y from Equation (5.17) is utilized. Since dBlk.y = max (64
dBlk.x ,1) and from

126

Equations (5.18), (5.12c), and (5.12c),

dBlk.x =min (max (16,2⌈log2(FS)⌉) ,512)

dBlk.y =max(64

dBlk.x
,1)

dGrd.x = n

dBlk.x

dGrd.y = n

dBlk.y
. (5.19)

Given n and FS, all input parameters are constant and therefore, no further steps are

necessary to derive the optimal input parameters. So, Equation (5.19) defines the optimal

input parameters for the shared memory implementation of convolution on a GPU utilizing

the optimized computation and access pattern after fine-tuning.

Figures 5.15-5.17 depict measured computation time of all input parameters for GPU

computation of convolution. In the figures in this section, the x-axis represents the number

of threads per block (dBlk.x× dBlk.y). Therefore, there are several combinations of dBlk.x

and dBlk.y which yield an equivalent number of threads per block. Figure 5.15 depicts time

for a filter size of 3.

8 16 32 64 128 256 512
10

−0.8

10
−0.6

10
−0.4

10
−0.2

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=512

Optimal

8 16 32 64 128 256 512

10
0

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=1024

Optimal

127

8 16 32 64 128 256 512

10
1

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=2048

Optimal

8 16 32 64 128 256 512

10
1

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=4096

Optimal

8 16 32 64 128 256 512

10
2

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=8192

Optimal

8 16 32 64 128 256 512
10

2.1

10
2.3

10
2.5

10
2.7

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=16384

Optimal

Figure 5.15: Comparison of input parameters: Computation time (ms) of all input parame-
ters for convolution on the T10 GPU. FS=3.

For a filter size of 3, derivation of optimal input parameters yields computation time,

on average, within 9.6% of the minimum measured time. Although the percentage difference

between the optimal input parameters and the minimum time is greater than Mv and MM,

the worst-case utilizing optimal input parameters (n = 8192) yields time within 12.1% of the

minimum. In the best-case (n = 512), utilizing optimal input parameters yields time within

5.3% of the minimum. Computation time for a filter size of 63 is illustrated in Figure 5.16.

128

8 16 32 64 128 256 512

10
1

10
2

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=512

Optimal

8 16 32 64 128 256 512

10
2

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=1024

Optimal

8 16 32 64 128 256 512

10
3

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=2048

Optimal

8 16 32 64 128 256 512

10
3

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=4096

Optimal

8 16 32 64 128 256 512

10
4

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=8192

Optimal

8 16 32 64 128 256 512

10
4

10
5

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=16384

Optimal

Figure 5.16: Comparison of input parameters: Computation time (ms) of all input parame-
ters for convolution on the T10 GPU. FS=63.

129

As illustrated in Figure 5.16, for a filter size of 63, derivation of optimal input parameters

yields computation time, on average, within 0.2% of the minimum measured time. The

percentage difference between optimal input parameters and minimum time is much less

for a filter size of 63 than for a filter size of 3. In addition, the percentage difference is

roughly equivalent to the difference measured for Mv and MM. In the worst-case utilizing

optimal input parameters (n = 512), the time is within 1.0% of the minimum measured. The

time for the best-case utilizing optimal input parameters (n = {1024,2048}) is the minimum

measured. Figure 5.17 depicts computation time for a filter size of 513.

8 16 32 64 128 256 512

10
3

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=512

Optimal

8 16 32 64 128 256 512

10
4

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=1024

Optimal

8 16 32 64 128 256 512

10
4

10
5

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=2048

Optimal

8 16 32 64 128 256 512

10
5

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=4096

Optimal

130

8 16 32 64 128 256 512

10
6

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=8192

Optimal

8 16 32 64 128 256 512

10
6

dBlk.x× dBlk.y

ti
m

e
(m

s
)

n=16384

Optimal

Figure 5.17: Comparison of input parameters: Computation time (ms) of all input parame-
ters for convolution on the T10 GPU. FS=513.

For a filter size of 513, derivation of optimal input parameters yields computation time,

on average, within 0.3% of the minimum measured time. In the worst-case (n = 512),

utilizing optimal input parameters yields time within 1.9% of the minimum measured. In

the best-case (n = {1024,2048,4096,8192,16384}), utilizing optimal input parameters yields

the minimum measured time. Similar to a filter size of 63, the percentage difference between

optimal input parameters and minimum time is much less for a filter size of 513 than for

a filter size of 3. Likewise, the percentage difference is roughly equivalent to the difference

measured for Mv and MM. For all data and filter sizes tested, the worst-case time utilizing

optimal input parameters occurs for a filter size of 3 and yields time within 12.1% of the

minimum measured.

GPU Computation Summary

After Step 5, the parallelization procedure is developed to determine the optimal parti-

tioning of computation between the CPU and GPU. Therefore, the procedure with regards

to minimizing GPU computation time is complete. So, this section illustrates maximum ef-

fective bandwidth of each aforementioned step of the parallelization procedure as it pertains

131

to GPU computation time. In addition, a comparison of the procedure to theoretical band-

width is illustrated. For each figure in this subsection, Näıve denotes the global memory

implementation, Sh. Mem. denotes the shared memory implementation, O.C.P. denotes the

optimized computation pattern utilizing shared memory, and O.A.P. denotes the optimized

access pattern utilizing the optimized computation pattern and shared memory. P.P. de-

notes the entire parallelization procedure with regards to GPU computation which utilizes

shared memory, optimized computation and access patterns, fine-tuning adjustments, and

optimal input parameters.

Figures 5.18-5.20 depict maximum effective bandwidth of convolution for each step of

the parallelization procedure, in addition to the theoretical bandwidth. Figure 5.18 depicts

maximum effective bandwidth for a filter size, FS, of 3.

512 1024 2048 4096 8192 16384

10
2

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Theoretical
P.P.
O.A.P.
O.C.P.
Sh. Mem.
Näıve

Figure 5.18: Comparison of effective bandwidth (GB/s) for convolution on the T10 GPU.
FS=3.

The parallelization procedure yields a speedup, on average, of 4.07 compared to the

näıve implementation. The minimum (n = 512) and maximum (n = 16384) speedups are

3.74 and 4.39, respectively. The procedure yields effective bandwidth, on average, as 39.0%

of the theoretical bandwidth. Worst-case (n = 512) and best-case (n = 16384) utilizing the

procedure yield effective bandwidths of 39.0% and 48.2% of the theoretical, respectively. As

mentioned, the procedure yields computation time utilizing optimal input parameters, on

132

average, within 9.6% of the minimum. Therefore, as shown in Figure 5.18, the maximum

effective bandwidth is slightly higher for the O.A.P. than for the P.P. which includes the

optimal input parameters. Regardless, the procedure yields a significant speedup compared

to the näıve implementation. Figure 5.19 depicts effective bandwidth for a filter size of 63.

512 1024 2048 4096 8192 16384

10
2

10
3

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Theoretical
P.P.
O.A.P.
O.C.P.
Sh. Mem.
Näıve

Figure 5.19: Comparison of effective bandwidth (GB/s) for convolution on the T10 GPU.
FS=63.

In Figure 5.19, the large difference between the O.A.P. and the procedure is due to the

effect on computation time from fine-tuning being dependent on filter size. For a small filter

size, Figure 5.18, the O.A.P. slightly outperforms the procedure for some data sizes. How-

ever, for a filter size of 63, Figure 5.19, the procedure significantly outperforms the O.A.P.

for all data sizes. Regardless, the procedure yields a speedup, on average, of 13.31 compared

to the näıve implementation. The minimum (n = 512) and maximum (n = 16384) speedups

are 12.85 and 13.52, respectively. The procedure yields effective bandwidth, on average, of

64.2% of the theoretical bandwidth. In the worst-case (n = 512), effective bandwidth is 62.6%

of the theoretical. In the best-case (n = 16384), the procedure yields 64.6% of the theoretical

bandwidth. Lastly, effective bandwidth for a filter size of 513 is depicted in Figure 5.20.

133

512 1024 2048 4096 8192 16384

10
2

10
3

n

eff
ec

ti
ve

b
a
n
d
w

id
th

(G
B
/
s)

Theoretical
P.P.
O.A.P.
O.C.P.
Sh. Mem.
Näıve

Figure 5.20: Comparison of effective bandwidth (GB/s) for convolution on the T10 GPU.
FS=513.

Similar to a filter size of 63, the large difference between the O.A.P. and the procedure

is due to the effect on computation time from fine-tuning being dependent on filter size. The

procedure yields a speedup, on average, of 13.38 compared to the näıve implementation. The

minimum (n = 512) and maximum (n = 16384) speedups are 9.82 and 15.04, respectively.

The procedure yields effective bandwidth, on average, of 68.7% of the theoretical bandwidth.

In the worst-case utilizing the procedure (n = 512), effective bandwidth is 65.9% of the

theoretical. In the best-case (n = 16384), the procedure yields 69.5% of the theoretical

bandwidth. Therefore, for all data and filter sizes tested, the parallelization procedure

significantly reduces GPU computation time compared to the näıve implementation.

5.1.6 Computation Partitioning

The last step of the parallelization procedure, Step 6, is to determine the optimal par-

titioning of computation between the CPU and GPU. For convolution, 2n2FS2 float values

are necessary for computation. If FS ≤ 15, each thread in a HW reuses FS float values from

global memory. However, if FS > 15, each thread in a HW reuses 16 float values from global

memory. Therefore, 8n2FS2

min(FS,16) bytes are necessary from global memory and the theoretical

bandwidth is min(FS,16)94GB/s. Therefore, TGPU
comp. =

8n2FS2

10243

min(FS,16)94 . Communication requires

134

two CPU to GPU transfers and one GPU to CPU transfer. Substituting for b, c0, and c1

into Equations (3.14) and (3.15) and simplifying yields the communication time in seconds.

Since communication time is dependent on FS and n, if FS < 256,

Tcomm. = 3.02 × 10−9FS2 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5.00 × 10−9n2 + 5.00 × 10−5 if n < 256

3.06 × 10−9n2 + 9.60 × 10−5 if 256 ≤ n < 512

2.30 × 10−9n2 + 4.17 × 10−4 if n ≥ 512.

If 256 ≤ FS < 512,

Tcomm. = 1.08 × 10−9FS2 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5.00 × 10−9n2 + 9.60 × 10−5 if n < 256

3.06 × 10−9n2 + 1.42 × 10−4 if 256 ≤ n < 512

2.30 × 10−9n2 + 4.63 × 10−4 if n ≥ 512.

If FS ≥ 512,

Tcomm. = 1.08 × 10−9FS2 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5.00 × 10−9n2 + 2.27 × 10−4 if n < 256

3.06 × 10−9n2 + 2.73 × 10−4 if 256 ≤ n < 512

2.30 × 10−9n2 + 5.94 × 10−4 if n ≥ 512.

From Lines 1-2 of Listing 4.18, computation is partitioned for CPU execution if TCPU
comp. ≤

TGPU
comp. + Tcomm.. Therefore, after substitution, if

8n2FS2

10243

(3√
FS
− n

20000 + 2.7)
≤

8n2FS2

10243

min(FS,16)94
+ Tcomm.,

computation is performed on the CPU to minimize execution time. Assuming the minimum

for FS (3), solving for n yields TCPU
comp. ≤ TGPU

comp. + Tcomm. if n ≤ 64. Therefore, if FS = 3 and

n > 64, computation is performed on the GPU to minimize execution time. If FS ≈ n,

135

solving for n yields TCPU
comp. ≤ TGPU

comp. + Tcomm. if n ≤ 11. Therefore, if FS ≈ n > 11, computation

is performed on the GPU.

Figures 5.21-5.23 illustrate measured execution time for convolution. Since BLAS rou-

tines do not include convolution, CPU execution time is measured time for a non-optimized C

implementation. Likewise, CUBLAS does not include convolution, so it is excluded. Figure

5.21 depicts execution time for convolution with a filter size of 3.

512 1024 2048 4096 8192 16384
10

0

10
1

10
2

10
3

10
4

n

m
ea

su
re

d
ex

ec
u
ti

o
n

ti
m

e
(m

s
)

CPU
GPU (näıve)
P.P.

Figure 5.21: Comparison of execution time (ms) for convolution on the T10 GPU. FS = 3.

In Figure 5.21, the parallelization procedure yields a speedup, on average, of 5.30 com-

pared to the CPU implementation, and 1.61 compared to the näıve implementation. The

procedure yields execution time, on average, within 11.9% of the theoretical minimum exe-

cution time. In the worst-case utilizing the procedure (n = 8192), execution time is within

13.2% of the theoretical minimum. Best-case utilizing the procedure (n = 512) yields time

within 11.1% of the theoretical minimum. Similar to Mv, the speedup compared to the

näıve implementation in Figure 5.21 is less than in Figure 5.18 due to communication time.

For convolution with a small filter size, the communication time is a significant portion of

execution time. Therefore, large speedups measured for computation of convolution, with a

small filter size, have less of an impact on execution time since the execution time includes

communication and computation time.

Execution time for convolution with a filter size of 63 is illustrated in Figure 5.22.

136

512 1024 2048 4096 8192 16384
10

0

10
2

10
4

10
6

10
8

n

m
ea

su
re

d
ex

ec
u
ti

o
n

ti
m

e
(m

s
)

CPU
GPU (näıve)
P.P.

Figure 5.22: Comparison of execution time (ms) for convolution on the T10 GPU. FS = 63.

The procedure yields a speedup, on average, of 323.21 compared to the CPU implemen-

tation, and 12.33 compared to the näıve implementation. In Figure 5.22, for a filter size of

63, communication time is a small portion of execution time compared to a filter size of 3.

Therefore, the procedure yields a speedup in execution time similar to the speedup achieved

for computation only. The procedure yields execution time, on average, within 33.0% of the

theoretical minimum execution time. Worst-case utilizing the procedure (n = 512) yields

time within 33.4% of the theoretical minimum. In the best-case (n = 1024), the procedure

yields time within 32.9% of the theoretical minimum. The significant speedup compared

to the CPU implementation is presumably due to the non-optimized CPU implementation.

Lastly, figure 5.23 depicts execution time for convolution with a filter size of 513.

137

512 1024 2048 4096 8192 16384
10

2

10
4

10
6

10
8

10
10

n

m
ea

su
re

d
ex

ec
u
ti

o
n

ti
m

e
(m

s
)

CPU
GPU (näıve)
P.P.

Figure 5.23: Comparison of execution time (ms) for convolution on the T10 GPU. FS = 513.

As illustrated in Figure 5.23, the procedure yields a speedup, on average, of 424.27

compared to the CPU implementation, and 13.36 compared to the näıve implementation.

Similar to a filter size of 63, the procedure yields a speedup in execution time similar to

the speedup achieved for computation only. This is due to communication time being a

small portion of execution time. The procedure yields execution time, on average, within

31.3% of the theoretical minimum execution time. In the worst-case (n = 512), the procedure

yields time within 34.0% of the theoretical minimum. In the best-case utilizing the procedure

(n = 16384), the time is within 30.5% of the theoretical minimum. As mentioned for FS = 63,

the significant speedup compared to the CPU implementation is presumably due to the non-

optimized CPU implementation.

For all data and filter sizes tested, the parallelization procedure yields a worst-case

speedup of execution time, on average, of 1.61 compared to the näıve GPU implementation.

Therefore, results show the procedure is valid for convolution.

138

5.2 Conjugate Gradient

This section is an illustration of execution time of the parallelization procedure applied

to an application utilizing a matrix-based computation. The conjugate gradient method [65]

is utilized to further validate the procedure.

The conjugate gradient method is an iterative algorithm for solving a system of linear

equations consisting of several vector-based computations (Level 1 BLAS) and Mv (Level

2 BLAS). The GPU (CUBLAS) implementation presented in the results utilizes CUBLAS

routines for each vector- and matrix-based computation. Therefore, execution time is the

sum of GPU computation and communication time. The CPU (ATLAS) implementation

utilizes BLAS routines via ATLAS for all vector- and matrix-based computation and no

communication is necessary. The näıve implementation and parallelization procedure utilize

the GPU for matrix-based computations and CPU for vector-based computations. The

näıve implementation utilizes a näıve GPU kernel. The procedure utilizes the GPU kernel

developed by the procedure. Since the matrix in Mv is constant, it is necessary to transfer

it to the GPU once. However, for the vector in Mv, it is necessary to transfer it to the

GPU in each iteration. Likewise, it is necessary to transfer the result of Mv to the CPU in

each iteration. Therefore, execution time of the procedure includes GPU computation, CPU

computation, and all data transfers.

For the conjugate gradient method, the number of iterations necessary for the solution

to converge is dependent on data size and input. Therefore, execution time is depicted

for 8 and 256 iterations. Figure 5.24 illustrates measured execution time for the conjugate

gradient method through 8 iterations.

139

512 1024 2048 4096 8192 16384
10

0

10
1

10
2

10
3

10
4

n

m
ea

su
re

d
ex

ec
u
ti

o
n

ti
m

e
(m

s
)

CPU (ATLAS)
GPU (näıve)
GPU (CUBLAS)
P.P.

Figure 5.24: Comparison of execution time (ms) for 8 iterations of the conjugate gradient
method on the T10 GPU.

As illustrated in Figure 5.24, the parallelization procedure yields a significant speedup,

on average, of 11.15 compared to the ATLAS implementation. The minimum (n = 512) and

maximum (n = 16384) speedups are 3.16 and 22.30, respectively. The procedure yields

a speedup, on average, of 6.84 compared to the näıve implementation. The minimum

(n = 4096) and maximum (n = 16384) speedups are 4.30 and 12.88, respectively. The

procedure yields a speedup, on average, of 3.00 compared to the CUBLAS implementation.

The minimum (n = 16384) and maximum (n = 512) speedups are 1.12 and 8.02, respectively.

Although communication time is included in Figure 5.24, the procedure still yields signifi-

cant increases in speedup of execution time for a small number of iterations of the conjugate

gradient method.

Figure 5.25 illustrates measured execution time for the conjugate gradient method

through 256 iterations.

140

512 1024 2048 4096 8192 16384
10

0

10
2

10
4

10
6

n

m
ea

su
re

d
ex

ec
u
ti

o
n

ti
m

e
(m

s
)

CPU (ATLAS)
GPU (näıve)
GPU (CUBLAS)
P.P.

Figure 5.25: Comparison of execution time (ms) for 256 iterations of the conjugate gradient
method on the T10 GPU.

The parallelization procedure yields a speedup, on average, of 26.89 compared to the

ATLAS implementation. The minimum (n = 512) and maximum (n = 16384) speedups

are 2.67 and 61.56, respectively. The procedure yields a speedup, on average, of 16.17

compared to the näıve implementation. The minimum (n = 1024) and maximum (n = 16384)

speedups are 9.48 and 38.74, respectively. The procedure yields a speedup, on average, of

5.88 compared to the CUBLAS implementation. The minimum (n = 16384) and maximum

(n = 512) speedups are 1.01 and 15.99, respectively. Similar to a small number of iterations

of the conjugate gradient method, the procedure yields significant speedup of execution

time for a large number of iterations. Comparing Figures 5.24 and 5.25 shows the speedup

achieved by the procedure increases as the number of iterations increases. This is due to the

amortization of communication time for transferring the matrix to the GPU. As mentioned,

for the conjugate gradient method, the matrix is constant and must be transferred to the

GPU only once. As the number of iterations increases, the contribution to execution time

for transferring the matrix to the GPU decreases. Therefore, the speedup in execution time

achieved by the procedure increases as the number of iterations increases.

As illustrated in Figures 5.24 and 5.25, the parallelization procedure yields minimum

execution time of the conjugate gradient method for all data sizes and iterations tested.

141

Chapter 6

Conclusion

In this work, a parallelization procedure is developed to minimize execution time for

matrix-based computations on a GPU. The procedure considers such factors as the placement

of data, computation patterns, access patterns, fine-tuning, input parameters, communica-

tion time, and computation partitioning. The procedure is applied to Mv, MM, convolution,

and the conjugate gradient method.

An accurate examination of the layout of GPU memory is presented. Partition camping

in global memory is examined and the effects on GPU computation time are shown. Bank

conflicts in shared memory are analyzed and effects are shown. Following the memory layout,

execution metrics are formulated as functions of the input parameters to accurately represent

the computational behavior of the GPU. The necessity of execution metrics is shown. In

addition to representing computational behavior of the GPU, communication time between

the CPU and GPU is modeled and estimates are presented. Computation time is modeled

for the CPU utilizing ATLAS and for the GPU assuming a maximum bandwidth.

From the layout of GPU memory, execution metrics, and communication and compu-

tation time estimates, a parallelization procedure is developed through analysis and testing

of Mv and MM to minimize execution time for matrix-based computations. The procedure

determines placement of data in GPU memory and derives the optimized computation and

access patterns to reduce computation time. Fine-tuning is performed on the GPU code to

further reduce time. From the execution metrics, optimal input parameters are derived to

yield the minimum computation time. Results show that utilizing optimal input parame-

ters for Mv yields computation time, on average, within 1.8% of the minimum measured.

For MM, results show that optimal input parameters yield time, on average, within 0.5%

142

of the minimum. Therefore, the derivation of optimal input parameters yields minimum or

near-minimum computation time for each matrix-based computation tested.

For Mv, results show the parallelization procedure yields a speedup of GPU computa-

tion, on average, of 36.37 compared to the ATLAS CPU implementation, 18.98 compared to

the näıve GPU implementation, and 1.47 compared to the CUBLAS GPU implementation.

Results show for MM the procedure yields a speedup of GPU computation, on average, of

24.47 compared to the ATLAS CPU implementation, 14.58 compared to the näıve GPU

implementation, and 1.07 compared to the CUBLAS GPU implementation.

Since the parallelization procedure is developed with analysis of measured data for Mv

and MM, the procedure is applied to convolution and the conjugate gradient method to

further validate the procedure. Results show for convolution that optimal input parameters

yield time, on average, within 9.6% of the minimum for small filters and within 1.0% for

large filters. For convolution with a small filter, results show the procedure yields a speedup

of GPU computation, on average, of 26.75 compared to the non-optimized CPU implemen-

tation, and 4.07 compared to the näıve GPU implementation. For convolution with a large

filter, results show the procedure yields a speedup of GPU computation, on average of 424.92

compared to the non-optimized CPU implementation, and 13.38 compared to the näıve GPU

implementation.

For a small number of iterations of conjugate gradient, results show the procedure

yields a speedup of execution time, on average, of 11.15 compared to the ATLAS CPU

implementation, 6.84 compared to the näıve GPU implementation, and 3.00 compared to

the CUBLAS implementation. For a large number of iterations of conjugate gradient, results

show the procedure yields a speedup of execution time, on average, of 26.89 compared to

the ATLAS CPU implementation, 16.17 compared to the näıve GPU implementation, and

5.88 compared to the CUBLAS implementation.

Therefore, the parallelization procedure developed minimizes execution time for matrix-

based computations on a GPU.

143

Bibliography

[1] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the efficiency
of gpu algorithms for matrix-matrix multiplication,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, ser. HWWS
’04. New York, NY, USA: ACM, 2004, pp. 133–137. [Online]. Available:
http://doi.acm.org/10.1145/1058129.1058148

[2] C. Jiang and M. Snir, “Automatic tuning matrix multiplication performance
on graphics hardware,” in Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 185–196. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2005.10

[3] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to program
gpus for general-purpose uses,” SIGARCH Comput. Archit. News, vol. 34, no. 5, pp.
325–335, Oct. 2006.

[4] W. Liu, Muller-Wittig, and B. Schmidt, “Performance predictions for general-purpose
computation on gpus,” in Parallel Processing, 2007. ICPP 2007. International Confer-
ence on, Sept. 2007, p. 50.

[5] S. Hong and H. Kim, “An analytical model for a gpu architecture with memory-level
and thread-level parallelism awareness,” in Proceedings of the 36th annual international
symposium on Computer architecture, ser. ISCA ’09, 2009, pp. 152–163.

[6] ——. (2009) Memory-level and thread-level parallelism aware gpu architecture
performance analytical model. [Online]. Available: http://www.cc.gatech.edu/
∼hyesoon/hong report09.pdf

[7] ——, “An integrated gpu power and performance model,” SIGARCH Comput. Archit.
News, vol. 38, no. 3, pp. 280–289, June 2010.

[8] K. Kothapalli, R. Mukherjee, M. Rehman, S. Patidar, P. Narayanan, and K. Srinathan,
“A performance prediction model for the cuda gpgpu platform,” in High Performance
Computing (HiPC), 2009 International Conference on, Dec. 2009, pp. 463 –472.

[9] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W. Hwu,
“Optimization principles and application performance evaluation of a multithreaded
gpu using cuda,” in Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, ser. PPoPP ’08. New York, NY, USA: ACM,
2008, pp. 73–82. [Online]. Available: http://doi.acm.org/10.1145/1345206.1345220

144

[10] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S. Baghsorkhi,
and W.-m. W. Hwu, “Program optimization carving for gpu computing,” J. Parallel
Distrib. Comput., vol. 68, no. 10, pp. 1389–1401, Oct. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2008.05.011

[11] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton, and
W.-m. W. Hwu, “Program optimization space pruning for a multithreaded gpu,” in
Proceedings of the 6th annual IEEE/ACM international symposium on Code generation
and optimization, ser. CGO ’08. New York, NY, USA: ACM, 2008, pp. 195–204.
[Online]. Available: http://doi.acm.org/10.1145/1356058.1356084

[12] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W. Hwu, “An
adaptive performance modeling tool for gpu architectures,” SIGPLAN Not., vol. 45,
no. 5, pp. 105–114, Jan. 2010.

[13] W.-M. Hwu, C. Rodrigues, S. Ryoo, and J. Stratton, “Compute unified device architec-
ture application suitability,” Computing in Science Engineering, vol. 11, no. 3, pp. 16
–26, May-June 2009.

[14] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-M. W. Hwu, “Languages
and compilers for parallel computing,” J. N. Amaral, Ed. Berlin, Heidelberg:
Springer-Verlag, 2008, ch. CUDA-Lite: Reducing GPU Programming Complexity, pp.
1–15. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-89740-8 1

[15] CUBLAS, NVIDIA, 2013. [Online]. Available: https://developer.nvidia.com/cublas

[16] “An updated set of basic linear algebra subprograms (blas),” ACM Trans.
Math. Softw., vol. 28, no. 2, pp. 135–151, Jun. 2002. [Online]. Available:
http://doi.acm.org/10.1145/567806.567807

[17] MAGMA, Innovative Computing Laboratory at the University of Tennessee, 2013.
[Online]. Available: http://icl.cs.utk.edu/magma/docs/

[18] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide,
3rd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999.

[19] R. Nath, S. Tomov, and J. Dongarra, “Accelerating gpu kernels for dense linear algebra,”
in Proceedings of the 9th international conference on High performance computing for
computational science, ser. VECPAR’10. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 83–92. [Online]. Available: http://dl.acm.org/citation.cfm?id=1964238.1964250

[20] ——, “An improved magma gemm for fermi graphics processing units,” Int. J. High
Perform. Comput. Appl., vol. 24, no. 4, pp. 511–515, November 2010. [Online].
Available: http://dx.doi.org/10.1177/1094342010385729

[21] Y. Li, J. Dongarra, and S. Tomov, “A note on auto-tuning gemm for gpus,” in
Proceedings of the 9th International Conference on Computational Science: Part I, ser.

145

ICCS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 884–892. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-01970-8/ 89

[22] R. Nath, S. Tomov, T. T. Dong, and J. Dongarra, “Optimizing symmetric
dense matrix-vector multiplication on gpus,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 6:1–6:10. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063392

[23] R. Nath, S. Tomov, and J. Dongarra, “Blas for gpus,” in Scientific Computing with
Multicore and Accelerators, 2010, ch. 4, pp. 57–80.

[24] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra solvers for mul-
ticore with gpu accelerators,” in Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1–8.

[25] S. Tomov, R. Nath, and J. Dongarra, “Accelerating the reduction to upper hessen-
berg, tridiagonal, and bidiagonal forms through hybrid gpu-based computing,” Parallel
Comput., vol. 36, no. 12, pp. 645–654, Dec. 2010.

[26] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid gpu
accelerated manycore systems,” Parallel Comput., vol. 36, no. 5-6, pp. 232–240, Jun.
2010.

[27] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S. Tomov,
“A hybridization methodology for high-performance linear algebra software for gpus,”
vol. 2, pp. 473–484, 2011.

[28] ——, “Faster, cheaper, better - a hybridization methodology to develop linear algebra
software for gpus,” 2010.

[29] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov, “Numerical linear algebra on emerging architectures: The
plasma and magma projects,” in Journal of Physics: Conference Series, vol. Vol. 180,
2009.

[30] F. Song, S. Tomov, and J. Dongarra, “Efficient support for matrix computations on
heterogeneous multi-core and multi-gpu architectures,” 2011.

[31] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning gemm kernels for the fermi gpu,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 23, no. 11, pp. 2045–2057,
2012.

[32] M. Horton, S. Tomov, and J. Dongarra, “A class of hybrid lapack algorithms
for multicore and gpu architectures,” in Proceedings of the 2011 Symposium
on Application Accelerators in High-Performance Computing, ser. SAAHPC ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 150–158. [Online].
Available: http://dx.doi.org/10.1109/SAAHPC.2011.18

146

[33] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra, “A scalable high performant
cholesky factorization for multicore with gpu accelerators lapack working note #223.”

[34] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich,
D. Poole, and C. Lamb, “Parallel performance measurement of heterogeneous parallel
systems with gpus,” in Proceedings of the 2011 International Conference on Parallel
Processing, ser. ICPP ’11, 2011, pp. 176–185.

[35] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of sparse matrix-
vector multiply on gpus,” in Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’10, 2010, pp. 115–126.

[36] D. Grewe and A. Lokhmotov, “Automatically generating and tuning gpu code for sparse
matrix-vector multiplication from a high-level representation,” in Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics Processing Units, ser.
GPGPU-4, 2011, pp. 12:1–12:8.

[37] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse matrix solvers on the gpu:
conjugate gradients and multigrid,” ACM Trans. Graph., vol. 22, no. 3, pp. 917–924,
Jul. 2003. [Online]. Available: http://doi.acm.org/10.1145/882262.882364

[38] B. Boyer, J.-G. Dumas, and P. Giorgi, “Exact sparse matrix-vector multiplication on
gpu’s and multicore architectures,” in Proceedings of the 4th International Workshop
on Parallel and Symbolic Computation, ser. PASCO ’10, 2010, pp. 80–88.

[39] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,
“Improving gpu performance via large warps and two-level warp scheduling,” in Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-44 ’11, 2011, pp. 308–317.

[40] A. Bulu, J. R. Gilbert, and C. Budak, “Gaussian elimination based algorithms on the
gpu,” 2008.

[41] L. Y. Kah, A. Akoglu, I. Guven, and E. Madenci, “High performance linear equation
solver using nvidia gpus,” in Adaptive Hardware and Systems (AHS), 2011 NASA/ESA
Conference on, 2011, pp. 367–374.

[42] A. El Zein and A. Rendell, “From sparse matrix to optimal gpu cuda sparse matrix
vector product implementation,” in Cluster, Cloud and Grid Computing (CCGrid),
2010 10th IEEE/ACM International Conference on, 2010, pp. 808–813.

[43] D. Q. Ren and R. Suda, “Power efficient large matrices multiplication by load scheduling
on multi-core and gpu platform with cuda,” in Computational Science and Engineering,
2009. CSE ’09. International Conference on, vol. 1, 2009, pp. 424–429.

[44] S. Solomon and P. Thulasiraman, “Performance study of mapping irregular com-
putations on gpus,” in Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1–8.

147

[45] G. Cummins, R. Adams, and T. Newell, “Scientific computation through a gpu,” in
Southeastcon, 2008. IEEE, 2008, pp. 244–246.

[46] Y. Sun and Y. Tong, “Cuda based fast implementation of very large matrix computa-
tion,” in Parallel and Distributed Computing, Applications and Technologies (PDCAT),
2010 International Conference on, 2010, pp. 487–491.

[47] N. P. Karunadasa and D. N. Ranasinghe, “Accelerating high performance applications
with cuda and mpi,” in Industrial and Information Systems (ICIIS), 2009 International
Conference on, 2009, pp. 331–336.

[48] A. Bustamam, K. Burrage, and N. Hamilton, “Fast parallel markov clustering in bioin-
formatics using massively parallel graphics processing unit computing,” in Parallel and
Distributed Methods in Verification, 2010 Ninth International Workshop on, and High
Performance Computational Systems Biology, Second International Workshop on, 2010,
pp. 116–125.

[49] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, and V. Volkov, “Parallel computing experiences with cuda,” Micro, IEEE,
vol. 28, no. 4, pp. 13 –27, July-Aug. 2008.

[50] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing cuda workloads
using a detailed gpu simulator,” in Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, April 2009, pp. 163 –174.

[51] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified graph-
ics and computing architecture,” Micro, IEEE, vol. 28, no. 2, pp. 39 –55, March-April
2008.

[52] J. Nickolls and W. Dally, “The gpu computing era,” Micro, IEEE, vol. 30, no. 2, pp. 56
–69, March-April 2010.

[53] D. B. Kirk and W. mei Hwu, Programming Massively Parallel Processors, 1st ed., 2010.

[54] G. Ruetsch and P. Micikevicius, Optimizing Matrix Transpose in CUDA, NVIDIA, 2009.

[55] A. M. Aji, M. Daga, and W.-c. Feng, “Bounding the effect of partition camping in
gpu kernels,” in Proceedings of the 8th ACM International Conference on Computing
Frontiers, ser. CF ’11. New York, NY, USA: ACM, 2011, pp. 27:1–27:10. [Online].
Available: http://doi.acm.org/10.1145/2016604.2016637

[56] J. Wu and J. JaJa, “Optimized strategies for mapping three-dimensional ffts onto cuda
gpus,” in Innovative Parallel Computing (InPar), 2012, May 2012, pp. 1 –12.

[57] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A gpgpu compiler for memory
optimization and parallelism management,” in Proceedings of the 2010 ACM
SIGPLAN conference on Programming language design and implementation, ser.
PLDI ’10. New York, NY, USA: ACM, 2010, pp. 86–97. [Online]. Available:
http://doi.acm.org/10.1145/1806596.1806606

148

[58] A. Dasgupta, “Cuda performance analyzer,” Master’s thesis, Georgia Institute
of Technology, May 2011. [Online]. Available: http://smartech.gatech.edu/jspui/
bitstream/1853/39555/1/dasgupta aniruddha s 201105 mast.pdf

[59] N. B. Lakshminarayana and H. Kim, “Effect of instruction fetch and memory scheduling
on gpu performance,” in Workshop on Language, Compiler, and Architecture Support
for GPGPU, 2010.

[60] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimization
of software and the ATLAS project,” Parallel Computing, vol. 27, no. 1–2, pp. 3–35,
2001. [Online]. Available: http://math-atlas.sourceforge.net/

[61] T. Bradley and P. Micikevicius. (2009) Advanced c for cuda. NVIDIA. [Online].
Available: http://www.gputechconf.com/object/gtc2009-on-demand.html

[62] HPC User Manual, The Alabama Supercomputer Authority, 2010.

[63] V. Volkov and J. W. Demmel, “Benchmarking gpus to tune dense linear algebra,”
in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, ser. SC
’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 31:1–31:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413402

[64] CUDA Programming Guide, NVIDIA, 2013. [Online]. Available: http://docs.nvidia.
com/cuda/cuda-c-programming-guide/

[65] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving Linear
Systems,” Journal of Research of the National Bureau of Standards, vol. 49, pp. 409–
436, Dec. 1952.

149

