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Abstract

Necessary and sufficient conditions are given for the existence of a graph decomposition

of the Kneser Graph KGn,2 into paths of length three and four, and of the Generalized

Kneser Graph GKGn,3,1 into paths of length three. A solution is also presented for the

problem of embedding maximal H-designs, where H is a path of length three.
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Chapter 1

Introduction

1.1 Definitions

A graph G is an ordered pair (V,E) where V is a set of objects known as vertices and

E is a set of two element subsets of V called edges. The edge {u, v} is said to join the

vertices u and v. A complete graph of order n, denoted by Kn, is a graph with n vertices

in which each pair of vertices is joined by an edge. A bipartite graph is a graph G in which

the vertices of G can be partitioned into two parts M and N such that the edge set is a

subset of E = {{x, y} | x ∈ M, y ∈ N}; so no edges join two vertices in the same part. If

the edge set of G equals E, then G is called a complete bipartite graph with parts M and N

and is denoted Km,n or K(M,N), where |M | = m and |N | = n. The star of order m is the

complete bipartite graph K1,m = Sm (for convenience, we allow the possibility that m = 0).

The vertex of Sm with degree m when m ≥ 2 is said to be the center of Sm; if m = 1 then

either vertex can be designated the center. A path of length n, Pn = (v0, v1, . . . , vn), is a

sequence of n + 1 distinct vertices such that for 0 ≤ i < n, {vi, vi+1} is an edge in G. A

cycle of length n is the graph that can be formed from a path of length n− 1 by joining the

first and last vertices. The join of two graphs G and H, denoted by G ∨ H, is the graph

with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {{a, b} | a ∈ V (G), b ∈ V (H)}.

A graph G′ = (V ′, E ′) is said to be a subgraph of G = (V,E) if V ′ ⊆ V , E ′ ⊆ E.

An H-decomposition of a graph G = (V,E) is a pair (V,B), where B is a collection of

edge-disjoint subgraphs of G, each isomorphic to H, whose edges partition E(G). If G is

chosen to be the complete graph on n vertices then an H-decomposition of G is also referred

to as an H-design of order n. A 3-cycle design of order n is often referred to as a Steiner Triple

System. An H-design of a subgraph of Kn is also referred to as a partial H-design of order
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n. The leave of a partial H-design (V, P ) of order n is the graph L = (V (Kn), E(Kn)\E(P ))

where E(P ) = {e | e ∈ E(H), H ∈ P}. A partial H-design is said to be maximal if its leave

contains no subgraphs isomorphic to H.

The set of k element subsets of a set V is denoted Tk(V ).

1.2 History and Context

Over the years, many different graph decomposition problems have been studied, using

various subgraphs for the decomposition. Perhaps the most common family of decomposi-

tions studied are cycle decompositions. One of the earliest graph theoretic problems was

posed by Kirkman [16] in 1847 which asks, for a given x, to find the largest subgraph of Kx

which has a 3-cycle decomposition.

In the 1960’s, a great deal of work was done in solving the problem of cycle designs. In

1965, Kötzig found necessary and sufficient conditions for 4k-cycle designs of order n where

n ≡ 1 (mod 8k) [18]. The next year, Rosa found p-cycle designs of order n where p ≡ 2

(mod 4) and n = 2kp+ 1 for any k and p [23]. The solution to the odd cycle decomposition

problem waited until 1989 when it was partially solved by Hoffman, Rodger, and Lindner

[14] and then until 2001 where it was completely solved by Alspach and Gavlas [1].

G need not be limited to the complete graph. For instance, in 2001, Alspach and

Gavlas found necessary and sufficient conditions for the existence even cycle decompositions

of K2m − F , the complete graph of even order with the edges of a 1-factor F removed [1],

and in 2002, Šajna settled the existence problem for odd cycle decompositions of K2m − F

[24].

Another graph for which cycle decompositions have been widely studied is the complete

multipartite graph. One of the most prominent results for this problem was proved by

Sotteau in 1981 [26]. Sotteau showed that there exists a 2k-cycle decomposition of Km,n if

and only if m,n ≥ k, m and n are even, and 2k|mn. More recently, stemming from statistical

designs, G has been chosen to be the graph formed from a complete multipartite graph with
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multiplicity λ2 (i.e., each pair of vertices in different parts are joined by λ2 edges) by adding

a copy of λ1Kn to each part of size n (i.e., each pair of vertices in the same part are joined

by λ1 edges) and H is a 3-cycle [10], a 4-cycle [11], or a Hamilton cycle [3].

Other types of graph decompositions have also been well studied in the literature. Of

particular interest related to this dissertation is the work of Michael Tarsi. In 1979, Tarsi

found necessary and sufficient conditions for a decomposition of λKn into stars of order m

[27]. In 1983, he completely solved the problem of decomposing λKn into paths of length m

[28]. In this paper he showed that the obvious necessary conditions for an m-path decompo-

sition of λKn, namely that m | |E(λKn)| and n ≥ m + 1, are also sufficient. In Chapters 2

and 3 of this dissertation, companion results are obtained by finding necessary and sufficient

conditions for decomposing the Kneser and Generalized Kneser graphs into paths of length

three (See Theorems 2.1 and 2.2 respectively). In Chapter 4, necessary and sufficient condi-

tions for decomposing the Kneser Graph into paths of length four are found (see Theorem

3.1).

The Kneser Graph KGn,k is defined to be the graph whose vertices are the k-element

subsets of some set of n elements, in which two vertices are adjacent if and only if their

intersection is empty. The Generalized Kneser Graph, GKGn,k,r is defined to be the graph

whose vertices are the k-element subsets of some set of n elements in which two vertices

are adjacent if and only if they intersect in precisely r elements. The graph-decomposition

problem of finding necessary and sufficient conditions for the existence of P3-decompositions

of KGn,2 and GKGn,3,1 is completely solved in Theorem 2.1 and 2.2 respectively, and the

problem of the existence of P4-decompositions of KGn,2 is completely solved in Theorem 3.1.

An explicit construction is provided to find the relevant decompositions.

It is worth noting that Kneser graphs have attracted much interest in the years since

Kneser first described them in 1955 [17]. In particular, this interest has centered on solving

the conjecture by Kneser that χ(KGn,k) = n − 2k + 2 whenever n ≥ 2k [17], where χ(G)

is the chromatic number of G (KGn,k has no edges if n < 2k). The first proof of Kneser’s
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conjecture was given by Lovász in 1978. What makes Lovász’s proof so interesting is that

it wasn’t of a combinatorial nature at all, but rather topological. Lovász used the Borsuk-

Ulam theorem which states, in essence, that any continuous function from the n-sphere

into Euclidean n-space must map some pair of antipodal points to the same point. This

application of a theorem in a seemingly unrelated field to what was perceived as a purely

combinatorial problem was revelatory, and is considered one of the most influential works

in the field of topological combinatorics. In the years after Lovász’s proof, several other

proofs were published, but all of them were essentially topological in nature [4, 12]. A purely

combinatorial proof of Kneser’s conjecture wasn’t found until 2004, when Matoušek proved

the result using Tucker’s lemma which deals with vertex labellings in particular triangulations

[22].

Another problem regarding Kneser graphs that has received a good deal of attention

is to find the values of n and k for which KGn,k contains a Hamilton cycle. In 2000, Chen

showed that Kneser graphs are Hamiltonian if n ≥ 3k [8]. The current conjecture is that

all Kneser Graphs are Hamiltonian if n ≥ 2k + 1 with the exception of KG5,2 which is the

Petersen Graph. It has been shown computationally that all connected Kneser graphs with

n ≤ 27 except for the Petersen Graph are indeed Hamiltonian [25]. The veracity of this

conjecture in general is still an open problem.

In Chapter 4, the problem of embedding maximal partial 3-path designs is addressed.

The embedding problem can be thought of as follows: for each partial H-design (V ′, P ′) of

order n, find the set of integers M such that m ∈M if and only if there exists an H-design

(V, P ) of Km such that V ′ ⊆ V and P ′ ⊆ P . This dissertation also completely solves the

problem of embedding maximal partial P3-designs.

Various embedding problems have been studied extensively in the literature as well.

Given the amount of study received by cycle decomposition problems over the years, it

is perhaps not surprising that partial cycle system embeddings are also among the most

studied embedding problems. In particular, the problem of partial Steiner Triple System
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embeddings has been a major focus over the years and was only recently solved. In 1977,

Lindner conjectured that any partial Steiner Triple System of order u can be embedded in a

Steiner Triple System of order v if v ≡ 1, 3 (mod 6) and v ≥ 2u+ 1 [20]. The next thirty-two

years saw steady progress made towards proving this conjecture. Lindner had already shown

in 1975 that any partial Steiner Triple System of order u can be embedded in a Steiner Triple

System of order 6u+ 3 [19]. In 1980, Anderson, Hilton and Mendelsohn improved the bound

to v ≥ 4u + 1 and v ≡ 1, 3 (mod 6) [2]. The bound was improved again in 2004 by Bryant

to 3u− 2 [6]. The conjecture was finally proved in 2009 by Bryant and Horsley using a new

technique, dubbed “repacking” [7].

1.3 Techniques

In Chapters 2 and 3, where path decompositions of Kneser and Generalized Kneser

graphs are considered, the main technique utilized is taking advantage of the highly struc-

tured nature of the underlying graph. By cleverly partitioning the element set that generates

the vertices, predictable subgraphs can be induced by selecting vertices containing elements

in various parts of the partition. These subgraphs can be catalogued in a fairly straightfor-

ward manner, and path decompositions of each of them can be found far more simply than

trying to decompose the whole graph at once. By finding decompositions of these subgraphs,

and by carefully using the partition of the element set to ensure that every edge of the graph

appears in exactly one of these subgraphs, all of the edges in the overall graph can be placed

into paths.

The construction technique in Chapter 4, where embeddings of partial 3-path systems

are considered, uses a similar approach. The key observation here is that maximal partial 3-

path systems have easily catalogued leaves. For embedding partial 3-path systems of order n

into complete 3-path systems of orders at least n+2, by carefully partitioning the components

of the leave the embedding problem can be reduced to finding 3-path decompositions of a

reasonably small number of fairly basic graphs. In the case of embedding partial 3-path
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systems or order n into complete 3-path systems of order n + 1, a different approach was

needed. Here, the problem is solved for maximal partial 3-path systems by analyzing what

the new 3-paths would look like in terms of how many edges in the leave they would use.

From here, the leave is partitioned into the proper number of paths of length two and paths

of length one, and the 3-paths required are built up from these smaller paths by taking

advantage of the predictable form of the leave.
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Chapter 2

P3-decompositions of KGn,2 and GKGn,3,1

2.1 Introduction

In this chapter, the problem of finding necessary and sufficient conditions for obtaining

3-path decompositions of KGn,2 and GKGn,3,1 is completely solved. Recall that Tk(V ) is

the set of k-element subsets of the set V , and let (a, b, c, d) denote the path, P3, of length

three with edge set {{a, b}, {b, c}, {c, d}}.

2.2 Building Blocks

The following lemmas will be useful in the constructions to come.

Lemma 2.1. There exists a P3-decomposition of each of the following graphs:

(i) K2,3

(ii) K3,3

(iii) Kn,3k for any n ≥ 2 and k ≥ 1

(iv) H4 = K3,3−F with bipartition {Z3,Z6\Z3} of V (K3,3), and where E(F ) = {{i, i+ 3} |

i ∈ Z3}

(v) H5 = H4 ∪G′, where G′ = (Z9\Z3, {{3, 6}, {4, 7}, {5, 8}})

(vi) H6, the bipartite graph with bipartition {T2(Z4),Z4} of V (H6) and E(H6) = {{a, b} |

b /∈ a, a ∈ T (Z4), b ∈ Z4}

(vii) KG5,2 (the Petersen Graph)
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(viii) H8, the bipartite graph with bipartition {T2(Z5),Z5} of V (H8) and E(H8) = {{a, b} |

b /∈ a, a ∈ T (Z5), b ∈ Z5}

Proof. Hoffman and Billington solved cases (i)-(iii) (and much more besides) in [5]. However,

in the interest of keeping this discussion self-contained, explicit constructions are given for

these cases.

(i) Define K2,3 with bipartition {Z2,Z5\Z2} of the vertex set Z5. Then

(Z5, {(0, 2, 1, 3), (3, 0, 4, 1)}) is the required decomposition.

(ii) Define K3,3 with bipartition {Z3,Z6\Z3} of the vertex set Z6. Then

(Z6, {(3, 0, 5, 2), (1, 3, 2, 4), (0, 4, 1, 5)}) is the required decomposition.

(iii) Since n ≥ 2, form a partition, P , of Zn into sets of size 2 and 3, and a parti-

tion Q of Zn+3k\Zn into sets of size 3. For each p ∈ P and q ∈ Q, let (p ∪

q, Bp,q) be a P3-decomposition of K|p|,3 with bipartition {p, q} of the vertex set. Then

(Zn+3k,
⋃
p∈P,q∈QBp,q) is the required P3-decomposition of Kn,3k.

(iv) With bipartition {Z3,Z6\Z3}, (Z6, {(0, 4, 2, 3), (0, 5, 1, 3)}) is the required decomposi-

tion with F = {{0, 3}, {1, 4}, {2, 5}}.

(v) (Z9, {(6, 3, 1, 5), (7, 4, 2, 3), (8, 5, 0, 4)}) is the required decomposition.

(vi) (V (H6), {(0, {2, 3}, 1, {0, 2}), (1, {0, 3}, 2, {1, 3}), (2, {0, 1}, 3, {0, 2}),

(3, {1, 2}, 0, {1, 3})) is the required decomposition.

(vii) Let V (KG5,2) = T2(Z5). Then (T2(Z5), {({i, i+1}, {i+2, i+3}, {i+1, i+4}, {i, i+3}) |

i ∈ Z5} reducing the sums modulo 5 is the required decomposition.

(viii) (V (H8), {(1, {0, 2}, 3, {0, 1}), (2, {0, 3}, 4, {0, 2}), (2, {0, 4}, 1, {0, 3}),

(0, {1, 2}, 3, {0, 4}), (0, {1, 3}, 4, {1, 2}), (3, {1, 4}, 2, {1, 3}),

(4, {2, 3}, 0, {1, 4}), (3, {2, 4}, 1, {2, 3}), (1, {3, 4}, 0, {2, 4}), (4, {0, 1}, 2, {3, 4})) is the re-

quired decomposition.
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A graph, G, is said to have an Euler tour if there exists a closed walk in G that contains

each edge of G exactly once.

The following is well known.

Lemma 2.2. A connected simple graph, G, has an Euler tour if and only if the degree of

every vertex in G is even.

From this, we can easily obtain the following result.

Lemma 2.3. If G is a connected bipartite simple graph in which the number of edges is

divisible by three and all vertices have even degree, then G has a P3-decomposition.

Proof. By Lemma 2.2, let P = (v0, v1, . . . , ve) be an Euler tour of G. Since G is bipartite,

each set of three consecutive edges of P induce a P3. Therefore, since e = |E(G)| is divisible

by three, (V (G), {(v3i, v3i+1, v3i+2, v3i+3) | i ∈ Ze/3}) is a P3-decomposition of G.

Lemma 2.4. There exists a P3-decomposition of each of the following graphs:

(i) GKG5,3,1 (The Petersen Graph)

(ii) GKG6,3,1

Proof.

(i) GKG5,3,1 = KG5,2 as can be seen by taking the complement of each vertex. The result

follows from Lemma 2.1(vii).

(ii) Partition the vertices of GKG6,3,1 into the following two types:

Type 1: T3(Z5), and

Type 2: T3(Z6)\T3(Z5)

Let G1 be the subgraph induced by the Type 1 vertices, G2 be the subgraph induced

by the Type 2 vertices, and G3 be the bipartite subgraph induced by the edges of

the form {x, y} where x is a Type 1 vertex and y is a Type 2 vertex. G1 is clearly a
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GKG5,3,1 and has a P3-decomposition by (i). G2 is isomorphic to KG5,2 (all vertices

share the element 5, so two are adjacent only if their other two elements are disjoint)

and has a P3-decomposition by Lemma 2.1(vii). G3 is a bipartite graph that is 6-

regular, so |E(G3)| is a multiple of three. To see that G3 is connected, for each Type

1 vertex, {a, b, c} in G3 we display a path to each vertex of Type 2 as follows (where

a, b, c, d and e are the distinct elements of Z5): ({a, b, c}, {a, d, 5}, {b, c, d}, {a, b, 5}),

({a, b, c}, {a, d, 5}, {a, b, e}, {d, e, 5}), and ({a, b, c}, {a, d, 5}). These account for all

pairs of nonadjacent vertices in G3, so G3 is connected. Therefore, G3 is a connected

even regular bipartite graph with a multiple of three edges, so by Lemma 2.3, it also has

a P3-decomposition. The union of these three decompositions forms a P3-decomposition

of GKG6,3,1.

2.3 A P3-Decomposition of KGn,2

Theorem 2.1. KGn,2 is P3-decomposable if and only if n 6= 4.

Proof. If n ∈ {1, 2, 3}, then KGn,2 has no edges, so the result is vacuously true. Since

KG4,2 is a 1-factor on six vertices, it is clearly not P3-decomposable. KG5,2 is decomposable

by Lemma 2.1(vii).

The remaining cases are proved by induction on n. So now assume that KGw,2 is

P3-decomposable for all w ≤ n for some n ≥ 5. It is shown that G = KGn+1,2 is

P3-decomposable. Let ε ∈ {0, 1, 2} such that ε ≡ n (mod 3). Let (T2(Zn), B) be a P3-

decomposition of KGn,2.

The subgraph of KGn+1,2 induced by vertices in T2(Zn+1)\T2(Zn) clearly has no edges,

since they all share the element n. What remains to be shown is that the subgraph in-

duced by the edges connecting vertices in T2(Zn) to vertices in T2(Zn+1)\T2(Zn) has a P3-

decomposition.

Partition Zn into t = (n − ε)/3 sets: Si = {3i, 3i + 1, 3i + 2} for i ∈ Zt−1 and

St−1 = {i | n− 3− ε ≤ i ≤ n− 1}. It is convenient to partition the old vertices, T (Zn), into

10



Vi Vi,j Si

Old Vertices New Vertices

Figure 2.1: Partitioning the Vertices

the following two types (visualized in Figure 2.1):

Vi = {{x, y} | x, y ∈ Si, x 6= y} for i ∈ Zt, and

Vi,j = {{x, y} | x ∈ Si, y ∈ Sj} for 0 ≤ i < j < t.

Further, partition the new vertices into t sets:

S ′i = {{x, n} | x ∈ Si} for i ∈ Zt.

All of the edges not involving vertices with elements in St−1 are handled first. Of these

edges, the edges that require special attention are those joining two vertices in {{v, s} | v ∈

Vi, s ∈ S ′i} for some i ∈ Zt−1 . For each i ∈ Zt−1, these edges induce a matching on six

vertices, so they can’t be decomposed into three paths in isolation. To decompose these

edges, they are combined with edges joining two vertices in {{v, s} | v ∈ V0,i, s ∈ S ′i} for

some i ∈ Zt−1\{0} to form 3-paths as described in the next two paragraphs, with i = 1 being

an even more special case.
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{5,n}

{4,n}

{3,n}

S′
1V0,1

{0,3} {1,3} {2,3}

{0,4} {1,4} {2,4}

{0,5} {1,5} {2,5} {3,4}

{3,5}

{4,5}

V1

{2,n}{1,n}{0,n} S′
0

{0,1}{0,2}{1,2} V0

Figure 2.2: The Two H5’s

{5,n}

{4,n}

{3,n}

S′
1V0,1

{0,3} {1,3} {2,3}

{0,4} {1,4} {2,4}

{0,5} {1,5} {2,5} {3,4}

{3,5}

{4,5}

V1

{2,n}{1,n}{0,n} S′
0

{0,1}{0,2}{1,2} V0

Figure 2.3: Example of the H4

First, consider the bipartite subgraph G0 of KGn+1,2 induced by the edges joining the

vertices in V0 ∪ V1 ∪ V0,1 to the vertices in S ′0 ∪ S ′1. Partition these edges as follows. The

edges joining the vertices of V1 ∪ {{0, x} | x ∈ S1} to S ′1 induce a subgraph isomorphic

to H5, so by Lemma 2.1(v), there exists a P3-decomposition of this subgraph. The edges

joining the vertices of V0 ∪ {{x, 3} | x ∈ S0} to S ′0 also form a subgraph isomorphic to H5,

so by Lemma 2.1(v), there exists a P3-decomposition of this subgraph as well (See Figure

2.2). Now, for each k ∈ {1, 2} consider the edges joining the vertices {{k, x} | x ∈ S1} to

the vertices in S ′1. These edges induce a subgraph isomorphic to H4, so by Lemma 2.1(iv),

there exists a P3-decomposition of this subgraph. Also, for each k ∈ {4, 5} the edges joining

the vertices {{x, k} | x ∈ S0} to the vertices in S ′0 induce a subgraph isomorphic to H4, so

by Lemma 2.1(iv), there exists a P3-decomposition of this subgraph (See Figure 2.3 for an

example). Figure The union of these sets of 3-paths produce a P3-decomposition (V (G0), B
′
0)

of most of G0. The edges connecting V1 to S ′0 and connecting V0 to S ′1 occur in paths in B′1,0

and B′0,1, respectively as defined below.

Now, for each i ∈ {Zt−1\Z2}, consider the bipartite subgraph Gi of KGn+1,2 induced

by the edges joining the vertices in Vi ∪ V0,i to the vertices in S ′0 ∪ S ′i. The edges in Gi

connecting the vertices of Vi ∪ {{0, x} | x ∈ Si} to S ′i induce a subgraph isomorphic to H5,

thus it has a P3-decomposition by Lemma 2.1(v). Now, for each k ∈ {1, 2}, the edges joining
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the vertices in {{k, x} | x ∈ Si} to the vertices in S ′i induce a subgraph isomorphic to H4,

so there exists a P3-decomposition of the subgraph by Lemma 2.1(iv). Further, for each

k ∈ Si, the edges connecting the vertices of {{x, k} | x ∈ S0} to the vertices of S ′0 induce

a subgraph isomorphic to H4 which therefore has a decomposition by Lemma 2.1(iv). The

union of these decompositions produce a P3-decomposition, (V (Gi), B
′
i), of most of Gi for

each i ∈ {Zt\Z2}. The remaining edges in Gi, namely those connecting Vi to S ′0, are in paths

in B′i,0 as defined below.

For each i ∈ Zt−1 and for each j ∈ Zt−1\{i}, the bipartite subgraph of G induced by

the edges joining vertices in Vi to vertices in S ′j is isomorphic to K3,3, so by Lemma 2.1(ii)

there exists a P3-decomposition (Vi ∪ S ′j, B′i,j) of this subgraph.

For 1 < j < t− 1, the edges connecting vertices of V0,1 to vertices of S ′j induce a K9,3 ,

and thus this graph has a P3-decomposition (V0,1 ∪ S ′j, B0,1,j) by Lemma 2.1(iii).

For each i ∈ Zt−1\Z2 and for each j ∈ Zt−1\{0, i}, the edges connecting vertices of

V0,i with the vertices of S ′j induce a copy of K9,3 so this graph has a P3-decomposition,

(V0,i ∪ S ′j, B0,i,j), by Lemma 2.1(iii).

For 0 < i < j < t− 1 and 0 ≤ k < t− 1, consider the bipartite subgraph of G induced

by edges joining vertices in Vi,j to vertices in S ′k. This subgraph of G has a P3-decomposition

as follows:

(a) if k /∈ {i, j}, then the subgraph is isomorphic to K9,3, so it has a P3-decomposition

(Vi,j ∪ S ′k, Bi,j,k) by Lemma 2.1(iii);

(b) if k = i, then for each y ∈ Sj the edges connecting the vertices {{x, y} | x ∈ Si} and

S ′k=i induce a subgraph isomorphic toH4, which has a P3-decomposition (Vi,j∪S ′k, Bi,j,k)

by Lemma 2.1(iv);

(c) if k = j, then for each x ∈ Si the edges connecting the vertices {{x, y} | y ∈ Sj} and

S ′k=j form a subgraph isomorphic to H4, which has a P3-decomposition (Vi,j∪S ′k, Bi,j,k)

by Lemma 2.1(iv).
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The only edges left to consider are all the edges which are incident with a vertex in

S ′t−1 ∪ Vt−1 ∪ Vi,t−1, i ∈ Zt−1. The handling of these edges depends on the value of ε.

First, consider the bipartite subgraph Gt−1 of KGn+1,2 induced by the edges joining the

vertices in Vt−1 ∪ V0,t−1 to the vertices in S ′0 ∪ S ′t−1. We consider each value of ε in turn.

For ε = 0, the edges in Gt−1 connecting the vertices of Vt−1 ∪{{0, x} | x ∈ St−1} to S ′t−1

induce a subgraph isomorphic to H5, thus it has a P3-decomposition by Lemma 2.1(v). Now,

for each k ∈ {1, 2}, the edges joining the vertices in {{k, x} | x ∈ St−1} to the vertices in S ′t−1

induce a subgraph isomorphic to H4, so there exists a P3-decomposition by Lemma 2.1(iv).

Further, for each k ∈ St−1, the edges connecting the vertices of {{x, k} | x ∈ S0} to the

vertices of S ′0 induce a subgraph isomorphic to H4 which therefore has a decomposition by

Lemma 2.1(iv). Lastly, the edges joining the vertices in vt−1 to the vertices in S ′0 induce a

subgraph isomorphic to K3,3, and so has a P3-decomposition be Lemma 2.1(ii). The union

of these decompositions produce a P3-decomposition, (V (Gt−1), B
′
t−1), of Gt−1.

For ε = 1 or 2, the edges connecting vertices in Vt−1 to S ′t−1 induce a graph isomorphic to

H6 or H8 respectively, which has a P3-decomposition by Lemma 2.1(vi)((viii) respectively).

Regarding the edges connecting vertices in V0,t−1 to S ′t−1, for each y ∈ St−1 the edges con-

necting the vertices {{x, y} | x ∈ S0} and S ′t−1 induce a subgraph isomorphic to K3,3 if ε = 1

and K3,4 if ε = 2, which has a P3-decomposition by Lemma 2.1(iii) in both cases. For each

k ∈ St−1 the edges connecting the vertices in {{x, k} | x ∈ S0} to the vertices in S ′0 induce

a subgraph isomorphic to H4, so there exists a P3-decomposition by Lemma 2.1(iv). Lastly,

the edges joining the vertices in vt−1 to the vertices in S ′0 induce a subgraph isomorphic to

K3+ε,3, and so has a P3-decomposition be Lemma 2.1(iii). The union of these decompositions

produce a P3-decomposition, (V (Gt−1), B
′
t−1), of Gt−1.

The rest of the edges are easier to decompose.

For each i ∈ Zt−1, the bipartite subgraph induced by the edges joining the vertices of

Vi to the vertices of S ′t−1 induce a graph isomorphic K3,3+ε, so it has a P3-decomposition

(Vi ∪ S ′t−1, Bi,t−1) by Lemma 2.1(iii).

14



For 0 ≤ i < j < t−1, the bipartite subgraph induced by the edges joining the vertices of

Vi,j to the vertices of S ′t−1 induce a graph isomorphic to K9,3+ε, so it has a P3-decomposition

(Vi,j ∪ S ′t−1, Bi,j,t−1) by Lemma 2.1(iii).

Finally, For 0 < i < t−1 and 0 ≤ k < t, consider the bipartite subgraph of G induced by

edges joining vertices in Vi,t−1 to vertices in S ′k. This subgraph of G has a P3-decomposition

as follows:

(a) if k /∈ {i, t−1}, then the subgraph is isomorphic toK3(3+ε),3, so it has a P3-decomposition

(Vi,t−1 ∪ S ′k, Bi,t−1,k) by Lemma 2.1(iii);

(b) if k = i, then for each y ∈ St−1 the edges connecting the vertices {{x, y} | x ∈

Si} and S ′k=i induce a subgraph isomorphic to H4, which has a P3-decomposition

(Vi,t−1 ∪ S ′k, Bi,t−1,k) by Lemma 2.1(iv);

(c) if k = t− 1, then

Case ε = 0: For each x ∈ Si the edges connecting the vertices {{x, y} | y ∈ Sj}

and S ′k=j induce a subgraph isomorphic to H4, which has a P3-decomposition

(Vi,j ∪ S ′k, Bi,j,k) by Lemma 2.1(iv).

Case ε = 1: For each y ∈ St−1 the edges connecting the vertices {{x, y} | x ∈ Si}

and S ′k=t−1 induce a subgraph isomorphic to K3,3, which has a P3-decomposition

(Vi,t−1 ∪ S ′k, Bi,t−1,k) by Lemma 2.1(ii).

Case ε = 2: For each y ∈ St−1 the edges connecting the vertices {{x, y} | x ∈ Si}

and S ′k=t−1 induce a subgraph isomorphic to K4,3, which has a P3-decomposition

(Vi,t−1 ∪ S ′k, Bi,t−1,k) by Lemma 2.1(iii).

This accounts for all new edges.
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Let B1 =
⋃
i∈Zt B

′
i, B2 =

⋃
0≤i<j<tB

′
i,j, and B3 =

⋃
0≤i<j<t,k∈Zt B

′
i,j,k. The required

P3-decomposition of G is given by (V (G), B ∪B1 ∪B2 ∪B3).

2.4 A P3-Decomposition of GKGn,3,1

Before stating and proving the main result forGKGn,3,1, a few definitions and a technical

lemma are presented.

A digraph is an ordered quadruple D = (V,E, t, h) where V is a set of vertices, E is a

set of ordered pairs of vertices (each element of which is called an arc or directed edge), and

t, h : E → V are functions defined by t((u, v)) = u and h((u, v)) = v for each arc (u, v) ∈ E

(t(e) and h(e) are called the tail and head of arc e, respectively). A complete digraph is a

digraph in which E = V × V .

A directed 2-factor of a digraph D is a spanning subdigraph F in which every vertex is

the head of exactly one arc and the tail of exactly one arc of F .

Let D = (V,E, t, h) be a digraph, let C be a set of colors, and for each e ∈ E, let

Ce ⊆ C. A (C1, . . . , Ce)-coloring of D is a function c : E → C such that if e ∈ E then

c(e) ∈ Ce (this is known as a list arc-coloring). A list arc-coloring is said to be proper if no

two adjacent arcs receive the same color. In the following lemma, the vertex set is T3(Zn), so

we can refer to the intersection of two vertices (it is the intersection of two 3-element sets).

Lemma 2.5. Let D = (T3(Zn), E, t, h) be a complete digraph. Let C = Zn be a set of

colors. For each e ∈ E, let Ce = t(e) ∩ h(e) (so possibly Ce = ∅). There exists a proper list

arc-colored directed 2-factor of D.

Proof. Let D, C, and Ce be defined as stated in the lemma. Form a directed 2-factor, F , of

D as follows.

First, form a partition, P , of the vertex set T3(Zn) so that two vertices {a, b, c} and

{x, y, z} are in the same element of P if and only if {x, y, z} = {a + i, b + i, c + i} for some

i ∈ Zn with the sums reduced modulo n. If n is not a multiple of three, then P contains
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l = (n−1)(n−2)
6

sets, each containing n elements. If n is a multiple of three, say n = 3k,

then P contains l =
(3k

3 )−k
3k

= 3
(
k
2

)
sets of size n and one set of size k. In either case, let

the elements of P of size n be {E0, E1, . . . El−1}, and if n is a multiple of three then let

El = {{i, i+ k, i+ 2k} | i ∈ Zk} be the single set of size k.

For 0 ≤ i < l, among the vertices in Ei, let ei = {0, ai, bi} with ai < bi be one that

contains both zero and as small a nonzero element of Zn as possible (two such vertices might

exist, in which case either can be ei). Let di = gcd(ai, n). For 0 ≤ j < di, and for 0 ≤ r < n
di

,

define the arc ei,r,j = ({rai+j, (r+1)ai+j, rai+bi+j}, {(r+1)ai+j, (r+2)ai+j, (r+1)ai+

bi+j}) in D. Then for each j ∈ Zdi , the subgraph Si,j of D induced by {ei,r,j | 0 ≤ r < n
di
} is

a directed cycle. Note that the both the tail and head of each arc ei,r,j contains the element

(r + 1)ai + j; so let c(ei,r,j) = (r + 1)ai + j. Clearly this coloring is proper since consecutive

arc colors differ by ai (mod n), where clearly ai < n. If n is not a multiple of three, then

F =
⋃
i∈Zl,j∈Zdi

Si,j is a directed 2-factor that is properly list arc-colored as required.

If n is a multiple of three, then F is a properly list arc-colored directed 2-factor that

includes all of the vertices in D except for those in El. We now insert the k vertices in El

into an already created directed cycle in F and then give a proper list arc-coloring to the

modified cycle. Recall that El = {i, k+ i, 2k+ i} | 0 ≤ i < k}. Consider the colored directed

cycle, C ′, in F containing the vertex {0, 1, 1 + k}. Then C ′ = (v′0, v
′
1, . . . , v

′
n−1) where for

each j ∈ Zn, v′j = {0 + j, 1 + j, 1 + k + j} and where the arc (v′j, v
′
j+1) is colored j + 1. For

0 ≤ j ≤ k, replace the arc ({0 + j, 1 + j, 1 + k + j}, {1 + j, 2 + j, 2 + k + j}) colored i+ j in

F with the arcs ({0 + j, 1 + j, 1 + k+ j}, {1 + j, 1 + k+ j, 1 + 2k+ j}) colored 1 + k+ j and

({1 + j, 1 +k+ j, 1 + 2k+ j}, {1 + j, 2 + j, 2 +k+ j}) colored 1 + j. The resulting cycle is still

properly list edge-colored since the only potential conflict is at the vertex {0, 1, 1 + k} which

previously was incident with arcs colored 0 and 1 and now is incident with arcs colored 0

and 1 + k.

We are now ready to prove our second main result.

Theorem 2.2. G = GKGn,3,1 has a P3-decomposition for all n > 0.
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Proof. For n ∈ {1, 2, 3, 4}, G has no edges, so the result is vacuously true. For n = 5, G has a

P3-decomposition by Lemma 2.4(i). For n = 6, G has a P3-decomposition by Lemma 2.4(ii).

The remaining cases are proved by induction on n. So now assume that GKGw,3,1

is P3-decomposable for all w ≤ n for some n ≥ 6. It is shown that H = GKGn+2,3,1 is

P3-decomposable. Let (T3(Zn), B0) be a P3-decomposition of G = GKGn,3,1. Partition the

vertices of H as follows:

(i) V0 = T3(Zn) (the vertices of G),

(ii) V1 = {{a, b, n} | a, b ∈ Zn},

(iii) V2 = {{a, b, n+ 1} | a, b ∈ Zn}, and

(iv) V3 = {{a, n, n+ 1} | a ∈ Zn}.

Consider the following subgraphs of H:

(i) H0 is the subgraph induced by the vertices of V0,

(ii) H1 is the subgraph induced by the vertices of V1 ∪ V3,

(iii) H2 is the subgraph induced by the vertices of V2 ∪ V3,

(iv) H3 is the bipartite subgraph induced by the edges {{x, y} | x ∈ V0, y ∈ V1 ∪ V2},

(v) H4 is the bipartite subgraph induced by the edges {{x, y} | x ∈ V1, y ∈ V2}, and

(vi) H5 is the bipartite subgraph induced by the edges {{x, y} | x ∈ V0, y ∈ V3}.

These six subgraphs clearly partition the edges of H, so combining P3-decompositions of

each will create a P3-decomposition of H itself.

Since H0 = G, it has a decomposition (T3(Zn), B0) by assumption.

Next, notice that in H1 and H2, all vertices share the element x = n or n+1 respectively;

so any two vertices, say {a, b, x}and {c, d, x}, are adjacent if and only if {a, b} ∩ {c, d} = ∅.

So H1 is clearly isomorphic to KGn+1,2 with vertex set {v\{n} | v ∈ V (H1)} and H2 is
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isomorphic to KGn+1,2 with vertex set {v\{n+ 1} | v ∈ V (H2)}. Therefore, H1 and H2 have

P3-decompositions (V (H1), B1) and (V (H2), B2) respectively by Theorem 2.1.

Next, consider the bipartite subgraph H3. If v ∈ V0, then dH3(v) = 6
(
n−3
2

)
, and if

v ∈ V1 ∪V2, then dH3(v) = 2
(
n−2
2

)
, both of which are even. Also, |E(H3)| = 6

(
n
2

)(
n−3
2

)
which

is clearly a multiple of three. Finally, to show H3 is connected, for each {s, t, u} ∈ V0 we

display a path to each vertex in V1∪V2 as follows (where a, b, s, t, and u are distinct elements

of Zn and x ∈ {n, n+ 1}): ({s, t, u}, {a, s, x},

{b, s, u}, {a, b, x}), ({s, t, u}, {a, s, x}, {a, b, t}, {s, t, x}), and ({s, t, u}, {a, s, x}).

These account for all pairs of nonadjacent vertices in H3, so H3 is easily seen to be connected.

Therefore, H3 has a P3-decomposition (V (H3), B3) by Lemma 2.3.

We also use Lemma 2.3 to find a P3-decomposition of H4 as the following shows. H4 is

a 2
(
n−2
2

)
-regular bipartite graph, so all vertices have even degree. Also, |E(H4)| = 2

(
n
2

)(
n−2
2

)
which is a multiple of three. To see this, note |E(H4)| is the product of four consecutive

integers (one of which must be a multiple of three) divided by two. Finally, to show that H4

is connected, for each vertex {a, b, n} ∈ V1 we display a path to each vertex in V2 as follows

(where a, b, s, and t are distinct elements of Zn): ({a, b, n}, {a, t, n+1}, {a, s, n}, {a, b, n+1}),

({a, b, n}, {b, s, n+ 1}, {a, s, n}, {s, t, n+ 1}), and ({a, b, n}, {a, c, n+ 1}). These account for

all pairs of nonadjacent vertices in H4, so H4 is easily seen to be connected. Therefore, H4

has a P3-decomposition (V (H4), B4) by Lemma 2.3.

Finally, consider H5. Using Lemma 2.5, let F be a properly list arc-colored 2-factor of

the complete digraph with vertex set V0, with the set of colors C = Zn, and with lists of colors

(C0, C1, . . . , C|E|−1) defined by Ce = t(e) ∩ h(e) for each e ∈ E. Assume F has components

{f0, f1, . . . , fm−1}. For each i ∈ Zm, consider the directed cycle fi of length l with E(fi) =

{e0, e1, . . . , el−1} where h(ek) = t(ek+1) for k ∈ Zl with additions done modulo l. Form the

following 3-paths in H5: Ti = {(t(ej), {c(ej), n, n + 1}, h(ej), {h(ej)\{c(ej), c(ej+1)}, n, n +

1}) | j ∈ Zl} with subscript additions done modulo l. The edges in Ti exist in H5 since Ce is

a list of the shared elements of t(e) and h(e). H5 has a P3-decomposition (V (H5), B5) where
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B5 =
⋃
i∈Zm Ti. To see that each edge in H5 is in exactly one path in B5, consider the edge

e = ({a, b, c}, {a, n, n+ 1}) in H5. The vertex {a, b, c} is in exactly one component, fi, of F .

Consider the two arcs, e1 and e2 in fi such that h(e1) = {a, b, c} and t(e2) = {a, b, c}. There

are three possibilities.

1. If c(e1) = a, then e is in (t(e1), {a, n, n+ 1}, {a, b, c}, {{b, c}\c(e2), n, n+ 1).

2. If c(e2) = a, then let e3 be the arc in fi with t(e3) = h(e2). Then e is in ({a, b, c}, {a, n, n+

1}, h(e2), {h(e2)\{a, c(e3)}, n, n+ 1}).

3. If a /∈ {c(e1), c(e2)}, the e is in (t(e1), {c(e1), n, n+ 1}, {a, b, c}, {a, n, n+ 1}).

Since F is a properly list arc-colored 2-factor, exactly one of the previous three cases holds.

Thus every edge of H5 is in exactly one path in B5.

Let B =
⋃
i∈Z6

Bi. Then (V (H), B) is the desired P3-decomposition.
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Chapter 3

P4-decompositions of KGn,2

3.1 Introduction

In this chapter, the problem of finding necessary and sufficient conditions for obtaining

4-path decompositions of KGn,2 is completely solved. Again, recall that Tk(V ) is the set of

k-element subsets of the set V , and let (a, b, c, d, e) denote the path, P4, of length four with

edge set {{a, b}, {b, c}, {c, d}, {d, e}}.

3.2 Useful Building Blocks

Billington and Hoffman solved a more general problem concerning P4-decompositions

of multipartite graphs [5], but the following will suffice for our purposes.

Lemma 3.1. The complete bipartite graph Ka1,a2 with a1 ≤ a2 has a P4-decomposition if

and only if a1 ≥ 2, a2 ≥ 3 and a1a2 ≡ 0 (mod 4).

The next result provides specific ingredients used in the general constructions.

Lemma 3.2. There exists a P4-decomposition of:

(i) the bipartite graph H1 with partition {A = T2(Z4), B = Z4} of V (H1) and E(H1) =

{{a, b}|a ∈ A, b ∈ B, b /∈ a},

(ii) the bipartite graph H2 with partition {A = T2(Z6), B = Z6} of V (H2) and E(H2) =

{{a, b}|a ∈ A, b ∈ B, b /∈ a},

(iii) H3(W,X, Y ) = (W ∪ X ∪ Y,E), where W , X, and Y are disjoint sets of size 4, and

E = {{(i1, l1), (i2, l2)} | l1 6= l2, i1 ∈ X ∪ Y, i2 ∈ W},
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(iv) H4 = (Z4 × Z4, {(i, j), (k, l) | i 6= k, j 6= l}),

(v) H5(W,X, Y, Z) = (W ∪X ∪Y ∪Z,E), where W , X, Y , and Z are disjoint sets of size

4, and E = {{(i1, l1), (i2, l2)} | l1 6= l2, i1 ∈ X ∪ Y ∪ Z, i2 ∈ W},

(vi) the bipartite graph H6 with partition {A = T2(Z5) ∪ T (Z9\Z5), B = Z5} of V (H6) and

E(H6) = {{a, b}|a ∈ A, b ∈ B, b /∈ a}, and

(vii) K8.

Proof.

(i) (V (H1), {(0, {1, 2}, 3, {0, 1}, 2), (3, {0, 2}, 1, {2, 3}, 0), (0, {1, 3}, 2, {0, 3}, 1)}) is the re-

quired decomposition.

(ii) Let B1 = {(1 + 3i, {3i, 2 + 3i}, 5 + 3i, {1 + 3i, 2 + 3i}, 4 + 3i), (3 + 3i, {3i, 2 + 3i}, 4 +

3i, {3i, 1 + 3i}, 5 + 3i), (2 + 3i, {3i, 1 + 3i}, 3 + 3i, {1 + 3i, 2 + 3i}, 3i) | i ∈ {0, 1}}

with addition done modulo 6 and B2 = {(j + 1, {j, 3}, 4, {j, 5}, j + 2), ({j, 3}, j +

2, {j, 4}, 3, {j, 5}), ({j, 3}, 5, {j, 4}, j+1, {j, 5}) | j ∈ {0, 1, 2}} with addition done mod-

ulo 3. Then (V (H2), B1 ∪B2) is the required decomposition.

(iii) Let W = {w1, w2, w3, w4}, X = {x1, x2, x3, x4}, and Y = {y1, y2, y3, y4}. Then

(W ∪X ∪ Y, {(x1, w3, x4, w1, x3), (x2, w4, x3, w2, x4), (y1, w3, y2, w1, y4),

(y2, w4, y1, w2, y3), (w1, x2, w3, y4, w2), (w1, y3, w4, x1, w2)}) is the required decomposi-

tion.

(iv) The result follows from (iii), since H4 is the union of the three graphs H3(Z4×{i},Z4×

{j},Z4 × {k}), where (i, j, k) ∈ {(1, 0, 2), (3, 2, 1), (0, 3, 2)}

(v) LetW = {w1, w2, w3, w4}, X = {x1, x2, x3, x4}, Y = {y1, y2, y3, y4}, and Z = {z1, z2, z3, z4}.

Then (W ∪X ∪ Y ∪ Z, {(x0, w2, x1, w0, x2),

(x1, w3, x2, w1, x3), (y0, w1, y2, w0, y1), (y3, w2, y1, w3, y2), (z1, w0, z2, w1, z3),
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(z2, w3, z1, w2, z3), (z3, w0, y3, w1, z0), (w2, z0, w3, x0, w1), (w0, x3, w2, y0, w3)}) is the re-

quired decomposition.

(vi) (V (H6), {({0, 1}, 3, {0, 2}, 4, {5, 6}), ({0, 2}, 1, {0, 3}, 4, {5, 7}),

({0, 3}, 2, {0, 4}, 1, {6, 8}), ({0, 4}, 3, {1, 2}, 4, {5, 8}),

({1, 2}, 0, {1, 3}, 4, {6, 7}), ({1, 3}, 2, {1, 4}, 3, {6, 8}),

({1, 4}, 0, {2, 3}, 4, {6, 8}), ({2, 3}, 1, {2, 4}, 3, {7, 8}),

({2, 4}, 0, {3, 4}, 1, {7, 8}), ({3, 4}, 2, {0, 1}, 4, {7, 8}),

({5, 6}, 1, {5, 7}, 3, {5, 8}), ({5, 6}, 3, {6, 7}, 1, {5, 8}),

({5, 6}, 0, {5, 7}, 2, {5, 8}), ({5, 6}, 2, {6, 7}, 0, {6, 8}),

({6, 8}, 2, {7, 8}, 0, {5, 8})}) is the required decomposition.

(vii) Define K8 on the vertices Z7∪{∞}. Then (Z7∪{∞}, {(∞, i, i+1, i−1, i+2) | i ∈ Z7})

with addition done modulo 7 is the required decomposition.

Since the proof of Theorem 3.1 is based on a recursive construction, the next result gives

an important starting point.

Lemma 3.3. KG16,2 is P4-decomposable.

Proof. Consider G = KG16,2 on vertex set T (Z16). Partition Z16 into four sets

Si = {4i, 4i + 1, 4i + 2, 4i + 3} for i ∈ Z4. Partition the set of vertices T (Z16) of G into

the following two types:

Type 1: Vi = {{x, y} | x, y ∈ Si, x 6= y} for each i ∈ Z4, and

Type 2: Vi,j = {{x, y} | x ∈ Si, y ∈ Sj} for 0 ≤ i < j < 4.

First, the subgraph G′ of G induced by the Type 1 vertices is considered. Decompose

G′ into paths of length four in two steps. First define three pairs of vertices M0,i = {{4i, 4i+

23



K 8

K 8

K 8

V0 V1 V2 V3

{ 0, 1}

{ 2, 3}

{ 1, 3}

{ 0, 2}

{ 0, 3}

{ 1, 2}

{ 4, 5}

{ 6, 7}

{ 4, 6}

{ 5, 7}

{ 4, 7}

{ 5, 6}

{ 8, 9}

{ 10, 11}

{ 8, 10}

{ 9, 11}

{ 8, 11}

{ 9, 10}

{ 12, 13}

{ 14, 15}

{ 12, 14}

{ 13, 15}

{ 12, 15}

{ 13, 14}

Figure 3.1: The K8’s
V0 V1

{ 0, 1}

{ 2, 3}

{ 1, 3}

{ 0, 2}

{ 0, 3}

{ 1, 2}

{ 4, 5}

{ 6, 7}

{ 4, 6}

{ 5, 7}

{ 4, 7}

{ 5, 6}

Figure 3.2: B0,1,j

1}, {4i+ 2, 4i+ 3}}, M1,i = {{4i, 4i+ 2}, {{4i+ 1, 4i+ 3}}, and M2,i = {{4i, 4i+ 3}, {{4i+

1, 4i + 2}}. For each j ∈ Z3, the subgraph G′j of G′ induced by
⋃
i∈Z4

Mj,i is isomorphic to

K8 (Figure 3.1) which therefore has a P4-decomposition (
⋃
i∈Z4

Mj,i, B
′
j) by Lemma 3.2(vii).

Let B1 =
⋃
j∈Z3

B′j. Second, for 0 ≤ i1 < i2 ≤ 3 and for j ∈ Z3, the induced bipartite

subgraph G′i1,i2,j of G′ with bipartition {Mj,i1 ,
⋃
k∈Z3\{j}Mk,i2} is isomorphic to K2,4 so has a

P4-decomposition (V (G′i1,i2,j), B
′
i1,i2,j

) by Lemma 3.1. Let B2 =
⋃

0≤i1<i2≤3,j∈Z3
B′i1,i2,j. (See

Figure 3.2 for an example of the decomposition of the other edges beteween V0 and V1).

All edges connecting Type 1 vertices have now been placed into 4-paths in B1∪B2. The

remaining edges are those connecting Type 2 vertices and those connecting a Type 1 vertex

to a Type 2.

The subgraph Gi,j of G induced by the vertices in Vi,j for 0 ≤ i < j < 4 is isomorphic

to H4, so has a P4-decomposition (V (Gi,j), Bi,j) by Lemma 3.2(iv). Let B3 =
⋃

0≤i<j<4Bi,j.

Next, consider the subgraph Gi,j,k of G induced by the edges joining the vertices in Vi,j

to the vertices in Vk where 0 ≤ i < j < 4 and k ∈ Z4. If k /∈ {i, j}, then Gi,j,k is isomorphic

to K16,6 and has a P4-decomposition (V (Gi,j,k), Bi,j,k) by Lemma 3.1. If k ∈ {i, j} then

without loss of generality assume that k = i. Then Gi,j,k consists of four edge disjoint copies

of K3,4 (induced by the edges connecting vertices in {{x, y} | y ∈ Sj} to vertices in Vk

for each x ∈ Si=k). So Gi,j,k has a P4-decomposition (V (Gi,j,k), Bi,j,k) by Lemma 3.1. Let

B4 =
⋃

0≤i<j<4,k∈Z4
Bi,j,k.
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Finally, consider the subgraph Gi,j,k,l of G induced by the edges joining the vertices in

Vi,j to the vertices in Vk,l where 0 ≤ i < j < 4 , 0 ≤ k < l < 4, and |{i, j} ∩ {k, l}| < 2.

If {i, j} ∩ {k, l} = ∅, then Gi,j,k,l is isomorphic to KG16,16 and so has a P4-decomposition

(V (Gi,j,k,l), Bi,j,k,l) by Lemma 3.1. If |{i, j} ∩ {k, l}| = 1 then without loss of general-

ity assume that i = k. Then Gi,j,k,l consists of four edge disjoint copies of K4,12 (in-

duced by the edges connecting vertices in {{x, y} | y ∈ Sj} to vertices in Vk,l for each

x ∈ Si=k). So Gi,j,k,l has a P4-decomposition (V (Gi,j,k,l), Bi,j,k,l) by Lemma 3.1. Let

B5 =
⋃

0≤i<j<4,0≤k<l<4,|{i,j}∩{k,l}|<2Bi,j,k,l

All of the edges have now been placed into 4-paths, thus (V (G),
⋃

1≤i≤5Bi) is a P4-

decomposition of G.

3.3 A P4-Decomposition of KGn,2

We are now ready to prove the main theorem.

Theorem 3.1. KGn,2 is P4-decomposable if and only if n ≡ 0, 1, 2 or 3 (mod 16).

Proof. The necessity follows from the observation that

|E(KGn,2)| = n(n− 1)(n− 2)(n− 3)/8 is a multiple of 4 if and only if n ≡ 0, 1, 2 or 3 (mod

16).

If n ∈ {0, 1, 2, 3}, then KGn,2 has no edges, so the result is vacuously true. KG16,2

has a P4-decomposition by Lemma 3.3. The remaining cases are proved by induction on n.

Suppose for some w ≥ 1 that for all t ≤ 16w with t ≡ 0, 1, 2 or 3 (mod 16) there exists a

P4-decomposition (V (KGt,2), B) of KGt,2. It remains to find a P4-decomposition of KGn,2

for each n = {16w + 1, 16w + 2, 16w + 3, 16w + 16}.

First suppose n = 16w+16. By the inductive hypothesis there exists a P4-decomposition

(V (KG16w,2), B) of KG16w,2. Let X = {xi | i ∈ Z16} and S = Z16w ∪ X. Consider

G = KG16w+16,2 on the vertex set T (S). Partition S into 4w + 4 sets as follows: Si =

{4i, 4i + 1, 4i + 2, 4i + 3} for i ∈ Z4w and Xj = {x4j, x4j+1, x4j+2, x4j+3} for j ∈ Z4. Using

this partition of S, partition the vertices of G into the following types:
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(a) Vi = {{x, y} | x, y ∈ Si, x 6= y} for each i ∈ Z4w,

(b) V ′i = {{x, y} | x, y ∈ Xi, x 6= y} for each i ∈ Z4,

(c) Vi,j = {{x, y} | x ∈ Si, y ∈ Sj} for 0 ≤ i < j < 4w,

(d) V ′i,j = {{x, y} | x ∈ Xi, y ∈ Xj} for 0 ≤ i < j < 4, and

(e) Si,j = {{x, y} | x ∈ Si, y ∈ Xj} for each i ∈ Z4w and each j ∈ Z4.

It is convenient to refer to the vertices in (
⋃
i∈Z4w

Vi) ∪ (
⋃

0≤i<j<4w Vi,j) as ‘old’ vertices

and the vertices in (
⋃
i∈Z4

V ′i ) ∪ (
⋃

0≤i<j<4 V
′
i,j) as ‘new’ vertices. Consider the subgraph

G1 of G induced by the old vertices. G1 is isomorphic to KG16w,2 and therefore has a P4-

decomposition (V (G1), B1) by the inductive hypothesis. The subgraph G2 of G induced

by the new vertices is isomorphic to KG16,2 and has a P4-decomposition (V (G2), B2) by

Lemma 3.3. The bipartite subgraph G3 of G formed by the edges {{x, y} | x is an old

vertex, y is a new vertex} is isomorphic to the complete bipartite graph K(16w
2 ),(16

2 ) and thus

has a P4-decomposition (V (G3), B3) by Lemma 3.1.

The only edges of G left to place into paths are those in the subgraph of G induced by

each Si,j, those connecting the vertices in each Si,j to the old and new vertices, and those

connecting vertices in each Si,j to vertices in each other Sk,l.

The subgraph Gi,j of G induced by the vertices in Si,j for i ∈ Z4w and j ∈ Z4 is

isomorphic to H4 and thus has a P4-decomposition (V (Gi,j), Bi,j) by Lemma 3.2(iv). Let

B4 =
⋃
i∈Z4w,j∈Z4

Bi,j.

For each i, k ∈ Z4w and j ∈ Z4, consider the bipartite subgraph Gi,j,k of G induced by

the edges joining the vertices in Si,j to the vertices in Vk. If i 6= k then Gi,j,k is isomorphic
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to K16,6 and has a P4-decomposition (V (Gi,j,k), Bi,j,k) by Lemma 3.1. If i = k then Gi,j,k

consists of four edge disjoint copies of K3,4 (induced by the edges connecting the vertices

in {{a, y} | y ∈ Xj} to those in Vi=k for each a ∈ Si). So in all cases Gi,j,k has a P4-

decomposition (V (Gi,j,k), Bi,j,k) by Lemma 3.1. Let B5 =
⋃
i,k∈Z4w,j∈Z4

Bi,j,k.

For each i ∈ Z4w, j, k ∈ Z4, consider the bipartite subgraph G′i,j,k of G induced by the

edges joining the vertices in Si,j to the vertices in V ′k . If j 6= k, then G′i,j,k is isomorphic

to K16,6 and has a P4-decomposition (V (G′i,j,k), B
′
i,j,k) by Lemma 3.1. If j = k, then G′i,j,k

consists of four edge disjoint copies of K3,4 (induced by the edges connecting the vertices

in {{a, x} | a ∈ Si} to those in V ′k for each x ∈ Xk). So G′i,j,k has a P4-decomposition

(V (G′i,j,k), B
′
i,j,k) by Lemma 3.1. Let B6 =

⋃
i∈Z4w,j,k∈Z4

B′i,j,k.

For each i, k, l ∈ Z4w, k 6= l, and j ∈ Z4, consider the bipartite subgraph Gi,j,k,l of

G induced by the edges joining the vertices in Si,j to the vertices in Vk,l. If i /∈ {k, l},

then Gi,j,k,l is isomorphic to K16,16 and thus has a P4-decomposition (V (Gi,j,k,l), Bi,j,k,l) by

Lemma 3.1. If i ∈ {k, l} then without loss of generality assume that i = k. Then Gi,j,k,l

consists of four edge disjoint copies of K12,4 (induced by the edges connecting the vertices

in {{a, y} | y ∈ Xj} to those in Vi=k,l for each a ∈ Si=k). So Gi,j,k,l has a P4-decomposition

(V (Gi,j,k,l), Bi,j,k,l) by Lemma 3.1. Let B7 =
⋃
i,k,l∈Z4w,j∈Z4,k 6=lBi,j,k,l.

For each i ∈ Z4w and j, k, l ∈ Z4 with k 6= l, consider the bipartite subgraph G′i,j,k,l

of G induced by the edges joining the vertices in Si,j to the vertices in V ′k,l. If j /∈ {k, l},

then G′i,j,k,l is isomorphic to K16,16 and thus has a P4-decomposition (V (G′i,j,k,l), B
′
i,j,k,l) by

Lemma 3.1. If j ∈ {k, l} then without loss of generality assume that j = k. Then G′i,j,k,l

consists of four edge disjoint copies of K12,4 (induced by the edges connecting the vertices

in {{a, x} | a ∈ Si} to those in V ′j=k,l for each x ∈ Xj=k). So G′i,j,k,l has a P4-decomposition

(V (G′i,j,k,l), B
′
i,j,k,l) by Lemma 3.1. Let B8 =

⋃
i∈Z4w,j,k,l∈Z4,k 6=lB

′
i,j,k,l.

Finally, for each i, k ∈ Z4w and j, l ∈ Z4 with i 6= k and/or j 6= l, consider the bipartite

subgraph S ′i,j,k,l of G induced by the edges joining the vertices in Si,j to the vertices in

Sk,l. If {i, j} ∩ {k, l} = ∅, then S ′i,j,k,l is isomorphic to K16,16 and has a P4-decomposition

27



(V (S ′i,j,k,l), B
′
i,j,k,l) by Lemma 3.1. If i = k and j 6= l, then S ′i,j,k,l consists of four edge disjoint

copies of K12,4 (induced by the edges connecting the vertices in {{a, x} | x ∈ Xj} to those

in S ′i=k,l for each a ∈ Si=k). If i 6= k and j = l, then S ′i,j,k,l consists of four edge disjoint

copies of K12,4 (induced by the edges connecting the vertices in {{a, x} | a ∈ Si} to those

in S ′k,j=l for each x ∈ Xj=l). In either case, S ′i,j,k,l has a P4-decomposition (V (S ′i,j,k,l), B
′
i,j,k,l)

by Lemma 3.1. Let B9 =
⋃
i,k∈Zz ,j,l∈Z4,i 6=korj 6=lB

′
i,j,k,l.

(V (G),
⋃

1≤i≤9Bi) is a P4-decomposition of G = KG16w+16,2 .

It now remains to find a P4-decomposition of KGn,2 for each n ∈ {16w+1, 16w+2, 16w+

3}. To construct these P4-decompositions, we will extend a P4-decomposition (T (Zn−1), B0)

of KGn−1,2 to a P4-decomposition of KGn,2. Define ε ≡ n− 1(mod 16) with ε ∈ {0, 1, 2}.

Partition Zn−1 into 4w sets: Si = {4i, 4i + 1, 4i + 2, 4i + 3} for i ∈ Z4w−1 and S4w−1 =

Zn−1\Z16w−4. It is convenient to partition the vertices of the form T (Zn−1), into the following

two types:

Vi = {{x, y} | x, y ∈ Si, x 6= y} for i ∈ Z4w, and

Vi,j = {{x, y} | x ∈ Si, y ∈ Sj} for 0 ≤ i < j < 4w.

Further, partition the vertices containing the new element n− 1 into the 4w sets:

S ′i = {{x, n− 1} | x ∈ Si} for each i ∈ Z4w.

The subgraph of KGn,2 induced by vertices in T (Zn)\T (Zn−1) clearly has no edges, since

they all share the element n− 1. All that needs to be shown is that the bipartite subgraph
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G′ induced by the edges connecting verices in T (Zn−1) to vertices in T (Zn)\T (Zn−1) has a

P4-decomposition.

It will be helpful in the following discussion to define the following bipartite subgraphs

of G′:

Gi,j is the bipartite subgraph induced by the edges in {{x, y} | x ∈ Vi, y ∈ S ′j}, and

Gi,j,k is the bipartite subgraph induced by the edges in {{x, y} | x ∈ Vi,j, y ∈ S ′k}.

The following parts of the construction are identical for all ε.

For each i, j ∈ Z4w−1, consider Gi,j. If i 6= j, then Gi,k is isomorphic to K6,4 and therefore

has a P4-decomposition (V (Gi,j), Bi,j) by Lemma 3.1. If i = j, then Gi,k is isomorphic to H1

and therefore has a P4-decomposition (V (Gi,j), Bi,j) by Lemma 3.2(i).

For each i ∈ Z4w−1, G4w−1,i is isomorphic toK(4+ε
2 ),4 and therefore has a P4-decomposition

(V (G4w−1,i), B4w−1,i) by Lemma 3.1.

For 0 ≤ i < j < 4w − 1 and k ∈ Z4w−1, consider Gi,j,k. If k /∈ {i, j}, then Gi,j,k is

isomorphic to K16,4 and therefore has a P4-decomposition (V (Gi,j,k), Bi,j,k) by Lemma 3.1.

If k ∈ {i, j} then without loss of generality assume that i = k. Then Gi,j,k consists of four

edge disjoint copies of K3,4 (induced by the edges connecting the vertices in {{a, y} | y ∈ Sj}

to those in S ′i=k for each a ∈ Si=k). Thus Gi,j,k has a P4-decomposition (V (Gi,j,k), Bi,j,k) by

Lemma 3.1.

For 0 ≤ i < j < 4w − 1 and k = 4w − 1, Gi,j,k is isomorphic to K16,4+ε and thus has a

P4-decomposition (V (Gi,j,4w−1), Bi,j,4w−1) by Lemma 3.1.

The only edges remaining are those in Gi,4w−1 where i ∈ Z4w and those in Gi,4w−1,k

where i ∈ Z4w−1 and k ∈ Z4w. The way these situations are treated depends on ε.

First, suppose that ε ∈ {0, 2}.
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For each i ∈ Z4w, consider Gi,4w−1. If i 6= 4w − 1 then Gi,4w−1 is isomorphic to K6,4+ε

and therefore has a P4-decomposition (V (Gi,4w−1), Bi,4w−1) by Lemma 3.1. If i = 4w − 1

then Gi=4w−1,4w−1 is isomorphic to H1 if ε = 0 and isomorphic to H2 if ε = 2. In either case,

Gi=4w−1,4w−1 has a P4-decomposition (V (G4w−1,4w−1), B4w−1,4w−1) by Lemma 3.2(i) and (ii)

respectively.

Next, for each i ∈ Z4w−1 and each k ∈ Z4w, consider Gi,4w−1,k. If k /∈ {i, 4w − 1} then

Gi,4w−1,k is isomorphic toK4(4+ε),4 and therefore has a P4-decomposition (V (Gi,4w−1,k), Bi,4w−1,k)

by Lemma 3.1. If k = i, then Gi,4w−1,k is the disjoint union of the graphs H3({{a, n−1} | a ∈

Si}, {{a, n− 2j} | a ∈ Si}, {{a, n− 2j− 1} | a ∈ Si}) for each j ∈ {1, 2} if ε = 0 and for each

j ∈ {1, 2, 3} if ε = 2. Each of these subgraphs has a P4-decomposition by Lemma 3.2(iii), so

their union forms a P4-decomposition (V (Gi,4w−1,k=i), Bi,4w−1,k=i) of Gi,4w−1,k=i. If k = 4w−1

then Gi,4w−1,k=4w−1 consists of 4 + ε edge disjoint copies of K4,3+ε (induced by the edges con-

necting the vertices in {{x, a} | x ∈ Si} to those in S ′k=4w−1 for each a ∈ Sk=4w−1). So

Gi,4w−1,k=4w−1 has a P4-decomposition (V (Gi,4w−1,k), Bi,4w−1,k) by Lemma 3.1.

Let B1 =
⋃
i,j∈Zt Bi,j and B2 =

⋃
0≤i<j≤t−1,k∈Zt Bi,j,k. The required P4-decomposition of

G is given by (V (G),
⋃
i∈Z3

Bi).

Finally, suppose that ε = 1.

For each j ∈ Z2w, consider G′j = G2j,4w−1∪G2j+1,4w−1. If j 6= 2w−1, then G′j is isomor-

phic to K12,5 and therefore has a P4-decomposition (V (G′j), B
′
j,4w−1) by Lemma 3.1. If j =

2w − 1, then G′j is isomorphic to H6 and therefore has a P4-decomposition (V (G′j), Bj,4w−1)

by Lemma 3.2(vi).

For each i ∈ Z4w−1 and each k ∈ Z4w, consider Gi,4w−1,k. If k /∈ {i, 4w − 1}, then

Gi,4w−1,k is isomorphic to K20,4 and therefore has a P4-decomposition (V (Gi,4w−1,k), Bi,4w−1,k)

by Lemma 3.1. If k = i, then Gi,4w−1,k is the disjoint union of the graphs H5({{a, n −

1} | a ∈ Si}, {{a, n − 2} | a ∈ Si}, {{a, n − 3} | a ∈ Si}, {{a, n − 4} | a ∈ Si}) and

H3({{a, n − 1} | a ∈ Si}, {{a, n − 5} | a ∈ Si}, {{a, n − 6} | a ∈ Si}) and so has a P4-

decomposition (V (Gi,4w−1,k=i), Bi,4w−1,k=i) by Lemma 3.2 (v) and (iii). If k = 4w − 1, then
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Gi,4w−1,k=4w−1 consists of five edge disjoint copies of K4,4 (induced by the edges connecting

the vertices in {{x, a} | x ∈ Si} to those in S ′k=4w−1 for each a ∈ Sk=4w−1). So Gi,4w−1,k=4w−1

has a P4-decomposition (V (Gi,4w−1,k), Bi,4w−1,k) by Lemma 3.1.

Let B1 =
⋃
i∈Z4w,j∈Z4w−1

Bi,j, B2 =
⋃
j∈Z2w

B′j,4w−1 and

B3 =
⋃

0≤i<j≤t−1,k∈Z4w
Bi,j,k. The required P4-decomposition ofG is given by (V (G),

⋃
0≤i≤3Bi).
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Chapter 4

Embedding Partial P3-systems

4.1 Introduction

In this chapter, the problem of embedding maximal partial 3-path designs is completely

solved. Recall that the embedding problem is that for each partial H-design (V ′, P ′) of order

n, find the set of integers M such that m ∈M if and only if there exists an H-design (V, P )

of Km such that V ′ ⊆ V and P ′ ⊆ P . Recall also that the existence of P3-designs was settled

by Tarsi [28].

Theorem 4.1. There exists a Pm-design of order n if and only if n(n+1)
2
≡ 0 (mod m) and

n ≥ m+ 1.

4.2 Building Blocks

In the discussion that follows we will use the following definitions. A star of order k,

Sk, is the complete bipartite graph K1,k (possibly k = 0). The vertex c(Sk) of Sk with

degree k when k ≥ 2 is said to be the center of Sk; if k = 1 then either vertex can be

designated to be the center. The leave of a partial H-design (V, P ) of order n is the graph

L = (V (Kn), E(Kn)\E(P )). A partial H-design is said to be maximal if its leave has no

proper subgraphs isomorphic to H. Let (a, b, c, d) denote the path, P3, of length three with

edge set {{a, b}, {b, c}, {c, d}}. The disjoint union of two graphs G and H, denoted G+H,

is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

The Billington and Hoffman result [5] will be very useful in the constructions to come:

Lemma 4.1. The complete bipartite graph Ka1,a2 with a1 ≤ a2 has a P3-decomposition if

and only if a1 ≥ 2, a2 ≥ 3 and a1a2 ≡ 0 (mod 3).
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The following lemmas will be useful in the constructions to come.

Lemma 4.2. There exists a P3-decomposition of the following graphs:

(i) H1 = (S3 ∨KC
2 )− F where F = {{x, c(S3)} | x ∈ V (KC

2 )},

(ii) H2 = (S3 ∨KC
3 )− F where F = {{x, c(S3)} | x ∈ V (KC

3 )},

(iii) H3 = (S3 ∨KC
4 )− F where F = {{x, c(S3)} | x ∈ V (KC

4 )},

(iv) H4 = ((S2 + S1) ∨KC
2 )− F where F = {{x, c} | x ∈ V (KC

2 ), c ∈ {c(S2), c(S1)}},

(v) H5 = ((S2 + S1) ∨KC
3 )− F where F = {{x, c} | x ∈ V (KC

3 ), c ∈ {c(S2), c(S1)}},

(vi) H6 = ((S2 + S1) ∨KC
4 )− F where F = {{x, c} | x ∈ V (KC

4 ), c ∈ {c(S2), c(S1)}}, and

(vii) H7 = S1 ∨KC
4 .

Proof. For each of the following, let V (KC
n ) = {v1, v2, . . . , vn}, V (S3) = {c, a1, a2, a3} where

c is the center, V (S2) = {c2, a1, a2} and V (S1) = {c1, b1} where c2 and c1 are the centers of

S2 and S1 respectively.

(i) (V (H1), {(c, a3, v1, a2), (a1, c, a2, v2), (a3, v2, a1, v1)}) is the desired decomposition.

(ii-iii) Let n ∈ {2, 3}. The subgraph of Hn obtained by removing the edges in the two three

paths (c, a1, v1, a2) and (a2, c, a3, v1) is isomorphic to Kn,3, so has a P3-decomposition

(V (Hn), Bn) by Lemma 4.1. Then (V (Hn), Bn∪{(c, a1, v1, a2), (a2, c, a3, v1)}) gives the

desired decomposition.

(iv) (V (H4), {(c1, b1, v1, a2), (a1, c2, a2, v2), (b1, v2, a1, v1)}) is the desired decomposition.

(v-vi) Let n ∈ {5, 6}. The subgraph of Hn obtained by removing the edges in the two

three paths (c1, b1, v1, a1) and (a1, c2, a2, v1) is isomorphic to Kn−3,3, so has a P3-

decomposition (V (Hn), Bn) by Lemma 4.1. Then (V (Hn), Bn∪{(c1, b1, v1, a1), (a1, c2, a2, v1)})

gives the desired decomposition.
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(vii) (V (H7), {(v1, c1, b1, v4), (v1, b1, v2, c1), (v4, c1, v3, b1)} is the desired decomposition.

Lemma 4.3. There exists a P3-decomposition of the following graphs:

(i) G1 = ((S1 + S1 + S1) ∨KC
2 ),

(ii) G2 = ((S1 + S1 + S1) ∨KC
3 ), and

(iii) G3 = ((S1 + S1 + S1) ∨KC
4 ).

Proof. For each of the following, let V (KC
n ) = {v1, v2, . . . , vn} and let the vertex sets for the

three one stars be {a1, a2}, {b1, b2}, and {c1, c2}.

(i) (V (G1), {(a1, a2, v1, b1), (b1, b2, v2, a2), (b1, v2, c1, c2), (b2, v1, a1, v2),

(v2, c2, v1, c1)}) is the required decomposition.

(ii-iii) Let n ∈ {2, 3}. The subgraph of Gn obtained by removing the edges in the three

three paths (a1, a2, v1, b1), (b1, b2, v1, c1), and (c1, c2, v1, a1) is isomorphic to Kn,6, so has

a P3-decomposition (V (Gn), Bn) by Lemma 4.1. Then (V (Gn), Bn ∪ {(a1, a2, v1, b1),

(b1, b2, v1, c1), (c1, c2, v1, a1)}) gives the desired decomposition.

Lemma 4.4. There exists a P3-decomposition of K4.

Proof. Let V (K4) = Z4. Then (V (K4), {(0, 1, 2, 3), (0, 2, 1, 3)} is the required decomposition.

Lemma 4.5. There exists a P3-decomposition of K3 ∨KC
m for all m ≥ 1.

Proof. Let V (K3) = {a, b, c} and V (KC
m) = Zm. For m = 1, the graph is isomorphic to K4

and has a P3-decomposition by Lemma 4.4. For m = 2, (V (KC
2 ), {(1, a, c, 2),

(a, b, 1, c), (c, b, 2, a)}) is the required decomposition. For m ≥ 3, consider the subgraph G

of K3 ∨ KC
m induced by the vertices in {a, b, c, 1}. G is isomorphic to K4, and has a P3-

decomposition by Lemma 4.4. The remaining edges in (K3 ∨ KC
m) − G are isomorphic to

K3,m−1 and have a P3-decomposition by Lemma 4.1. The union of these decompositions give

the required decomposition.
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4.3 Embedding Partial P3-designs.

We now prove the main results.

Theorem 4.2. Let k ≥ n + 2. A partial P3-design of order n ≥ 2 can be embedded in a

P3-design of order k if and only if k ≡ 0 or 1 (mod 3) and k ≥ 4.

Proof. Suppose there exists a P3-design of order k. Then it must be the case that the number

of edges in Kk is a multiple of three. This occurs when k ≡ 0 or 1 (mod 3). Further, since

K3 has no P3-design, it must be the case that k ≥ 4. So the necessity is proved.

To prove the sufficiency, first note that if n ≤ 2 then the result follows from Theorem 4.1,

so assume that n ≥ 3. Begin by adding copies of P3 to the given partial P3-design until a

maximal partial P3-design (V,B) of order n is obtained. The result will follow once it is

shown that (V,B) can be embedded in P3-designs of orders n + 3 and n + 4 when n ≡ 0

(mod 3), orders n + 2 and n + 3 when n ≡ 1 (mod 3), and order n + 2 when n ≡ 2 (mod

3), since the embedding for all values larger than these can be obtained through repeated

application of these small embeddings.

Since (V,B) is a maximal partial P3-design, each component of its leave, L, must be a

K3 or a star (possibly with no edges), for otherwise it would contain a path of length three.

Let T = {T1, T2, . . . , Tt} be the set of components of L which are isomorphic to K3, let P be

the subgraph of L consisting of the components isomorphic to Si with i ≥ 2, let R be the

subgraph of L consisting of components that are isomorphic to S1 = K2, and I be the set of

isolated vertices in L (copies of S0).

Let m ∈ {2, 3, 4} such that n+m ≡ 0 or 1 (mod 3). Construct a P3-design (V ∪V ′, B′)

of order n+m with B ⊆ B′ as follows.

For each 1 ≤ i ≤ t, the subgraph T ′i of Kn+m induced by the edges in E(Ti) ∪ {{x, y} |

x ∈ V (Ti), y ∈ V ′} is isomorphic to K3 ∨ KC
m and has a P3-decomposition (V (T ′i ), BTi) by

Lemma 4.5. Let BT =
⋃

1≤i≤tBTi .
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Let {Ri | 1 ≤ i ≤ d|E(R)|/3e} be a partition of E(R) with |Ri| = 3 for each i ≤

|E(R)|/3. For each i ≤ |E(R)|/3, the subgraph of Kn+m induced by the edges in E(Ri) ∪

{{x, y} | x ∈ V (Ri), y ∈ V ′} is isomorphic to (S1 +S1 +S1)∨KC
m, so has a P3-decomposition

(V (Ri), BRi) by Lemma 4.3. Let BR =
⋃

1≤i≤|E(R)|/3BRi . If |E(R)| ≡ 1 or 2 (mod 3), then

the subgraph induced by Rd|E(R)|/3e is isomorphic to S1 or (S1 + S1) respectively; the edges

in these subgraphs have not yet been placed into 3-paths.

Let C1, C2, . . . , Cl be the components of P . Let {Pi | 1 ≤ i ≤ d|E(P )|/3e} be a partition

of E(P ) with |Pi| = 3 for each i ≤ |E(P )|/3 such that for all i < j, if e1 ∈ (Pi ∩E(Ck)) and

e2 ∈ (Pj ∩ E(Cl)) then k ≤ l. This partion ensures that for each i ≤ |E(P )|/3, Pi induces a

subgraph of L isomorphic to either S3 or (S2 + S1), and that Pd|E(P )|/3e induces a subgraph

of L isomorphic to S1 if |E(P )| ≡ 1 (mod 3) and to S2 if |E(P )| ≡ 2 (mod 3). For each

i ≤ |E(P )|/3, let C ′i be the collection of centers of any stars of P with edges in Pi and consider

the subgraph of Kn+m induced by the edges in E(Pi)∪{{x, y} | x ∈ V (Pi)\C ′i, y ∈ V ′}. This

subgraph is isomorphic to either (S3∨KC
m)−F or ((S2+S1)∨KC

m)−F as defined in Lemma 4.2

and thus has a P3-decomposition (V (Pi), BPi) by Lemma 4.2. Let BP =
⋃

1≤i≤|E(P )|/3BPi .

Note that we have now placed all edges in L into paths of length three except for those

in Rd|E(R)|/3e and Pd|E(P )|/3e whenever |E(R)| and |E(P )| respectively is not a multiple of

three. At this point, the edges between 3(b|E(P )|/3c+ b|E(R)|/3c+ |T |) vertices in L and

each of the vertices in V ′ now occur in 3-paths. We now consider two cases in turn.

First, suppose that n ≡ 0 or 1 (mod 3), then |E(L)| ≡ 0 (mod 3). Therefore, if

the number of edges in either R or P is not divisible by 3, then the subgraph induced by

Rd|E(R)|/3e ∪ Pd|E(P )|/3e is isomorphic either to (S2 + S1) or (S1 + S1 + S1). If Rd|E(R)|/3e ∪

Pd|E(P )|/3e is isomorphic to (S2 + S1) then the subgraph of Kn+m induced by the edges in

E(Rd|E(R)|/3e ∪ Pd|E(P )|/3e) ∪ {{x, y} | x ∈ V (Rd|E(R)|/3e ∪ Pd|E(P )|/3e)\C ′, y ∈ V ′} (where C ′ is

the set of centers of the two stars in question) is isomorphic to ((S2+S1)∨KC
m)−F as defined

in Lemma 4.2 and thus has a P3-decomposition (V (Rd|E(R)|/3e∪Pd|E(P )|/3e), B
∗) by Lemma 4.2.

If Rd|E(R)|/3e∪Pd|E(P )|/3e is isomorphic to (S1 +S1 +S1), then the subgraph of Kn+m induced
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by the edges in E(Rd|E(R)|/3e∪Pd|E(P )|/3e)∪{{x, y} | x ∈ V (Rd|E(R)|/3e∪Pd|E(P )|/3e), y ∈ V ′} is

isomorphic to (S1+S1+S1)∨KC
m and has a P3-decomposition (V (Rd|E(R)|/3e∪Pd|E(P )|/3e), B

∗)

by Lemma 4.3 (let C ′ = ∅ in this case). Note that all edges in L have now been placed into

paths of length three.

All that remains when n ≡ 0 or 1 (mod 3) is to place the edges connecting the vertices

in I ′ = I ∪C ′ ∪{⋃i≤|E(P )|/3C
′
i} to the vertices in V ′ and the edges in the subgraph of Kn+m

induced by the vertices in V ′ into paths of length three. Note that: exactly three vertices in

V (Pi) have all of the edges connecting them to the vertices in V ′ placed into paths of length

three in BPi ; all six vertices in V (Ri) have all of the edges connecting them to the vertices

in V ′ placed into paths of length three in BRi ; and all three vertices in V (Ti) have all of

the edges connecting them to the vertices in V ′ placed into paths of length three BTi . This

immediately implies that |I ′| ≡ n (mod 3).

If n ≡ 0 (mod 3), then the bipartite subgraph induced by the edges {{x, y} | x ∈ I ′, y ∈

V ′} is isomorphic to K|I′|,m and has a P3-decomposition (I ′, BI) by Lemma 4.1. Note that

all the subconstructions used so far have at least one path either of the form p1 = (a, u, b, v)

or p2 = (a, b, u, c) where {a, b, c} ∈ V (L) and {u, v} ∈ V ′. If m = 3, either replace p1 with

the paths (a, u, v, w) and (w, u, b, v) or replace p2 with the paths (c, u, v, w) and (w, u, b, a),

thereby placing edges joining vertices in V ′ into 3-paths. If m = 4, then by Lemma 4.4, let

(V ′, BN) be a P3-design of order 4. The union of all 3-paths thus defined completes the case

where n ≡ 0 (mod 3).

If n ≡ 1 (mod 3), then m ∈ {2, 3} and |I ′| ≡ 1 (mod 3). Again, note that all the

subconstructions used so far have at least one path either of the form p1 = (a, u, b, v) or

p2 = (a, b, u, c) where {a, b, c} ∈ V (L) and {u, v} ∈ V ′. If V (I ′) = {w} and m = 2, then

replace p1 with the paths (a, u, v, w) and (w, u, b, v), or replace p2 with the paths (c, u, v, w)

and (w, u, b, a). If V (I ′) = {w} and m = 3, then by Lemma 4.4, let (V ′ ∪ {w}, BN) be a

P3-design of order 4. If |I ′| ≥ 4 and m = 2, then partition I ′ into two sets I ′1 and I ′2 with

|I ′1| = 4 and |I ′2| = |I ′| − 4 ≡ 0 (mod 3). The subgraph of Kn+m induced by the vertices in

37



V ′ ∪ I ′1 is isomorphic to H7 and has a P3-decomposition (V ′ ∪ I ′1, BN) by Lemma 4.2. The

bipartite subgraph induced by the edges {{x, y} | x ∈ I ′2, y ∈ V ′} is isomorphic to K|I′|−4,2

and has a P3-decomposition (V ′ ∪ I ′2, BI) by Lemma 4.1. If |I ′| ≥ 4 and m = 3, then let

a ∈ I ′. The subgraph of Kn+m induced by the vertices in V ′ ∪ {a} is isomorphic to K4 and

has a P3-decomposition (V ′ ∪ {a}, BN) by Lemma 4.4. The remaining edges, namely those

in {{x, y} | x ∈ I ′\{a}, y ∈ V ′}, induce a bipartite subgraph isomorphic to K|I′|−1,3 and has

a P3-decomposition (V ′ ∪ I ′\{a}, BI) by Lemma 4.1. The union of all 3-paths thus defined

completes the case where n ≡ 1 (mod 3).

Finally consider the case where n ≡ 2 (mod 3), so m = 2. In this case |E(L)| ≡

1 (mod 3), so there must be exactly 1 or 4 edges in Rd|E(R)|/3e ∪ Pd|E(P )|/3e. Therefore,

Rd|E(R)|/3e ∪ Pd|E(P )|/3e must induce a graph isomorphic to S1 or to (S2 + S1 + S1) (note that

Rd|E(R)|/3e∪Pd|E(P )|/3e can’t induce a subgraph isomorphic to S2+S2, since Pd|E(P )|/3e induces

a subgraph isomorphic to either S1 or S2 and Rd|E(R)|/3e induces a subgraph isomorphic to

either S1 or S1 + S1).

If Rd|E(R)|/3e ∪ Pd|E(P )|/3e induces a graph isomorphic to S1, then the subgraph of Kn+2

induced by the vertices in V ′ ∪ Rd|E(R)|/3e ∪ Pd|E(P )|/3e is isomorphic to K4 and has a P3-

decomposition (V ′ ∪ Rd|E(R)|/3e ∪ Pd|E(P )|/3e, BN) by Lemma 4.4. This leaves the edges con-

necting the vertices in V ′ to those in I ′′ = I ∪ {⋃i≤|E(P )|/3C
′
i}. Note that since Rd|E(R)|/3e ∪

Pd|E(P )|/3e induces a graph on exactly two vertices, |I ′′| ≡ 0 (mod 3). Thus the bipartite

subgraph induced by the edges {{x, y} | x ∈ I ′′, y ∈ V ′} is isomorphic to K|I′|,2, so has a

P3-decomposition (V ′ ∪ I ′′, BI) by Lemma 4.1.

If Rd|E(R)|/3e∪Pd|E(P )|/3e induces a graph isomorphic to (S2 +S1 +S1), then partition the

edges in Rd|E(R)|/3e ∪ Pd|E(P )|/3e into P ′1 and P ′2 such that P ′1 induces a subgraph isomorphic

to (S2 + S1) and P ′2 induces a subgraph isomorphic to S1. Consider the the subgraph of

Kn+m induced by the edges in E(P ′1)∪{{x, y} | x ∈ V (P ′1)\C ′, y ∈ V ′} where C ′ is the set of

centers of the two stars in P ′1. This subgraph is isomorphic to ((S2+S1)∨KC
m)−F as defined

in Lemma 4.2 and thus has a P3-decomposition (V (P ′1), B
∗) by Lemma 4.2. The subgraph of
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Kn+2 induced by the vertices in V ′ ∪ P ′2 is isomorphic to K4 and has a P3-decomposition by

Lemma 4.4. This leaves the bipartite subgraph induced by the edges {{x, y} | x ∈ I ′, y ∈ V ′}

with I ′ as defined above. This subgraph is isomorphic to K|I′|,2, so has a P3-decomposition

(V ′ ∪ I ′, BI) by Lemma 4.1.

Let B′ = B ∪ BT ∪ BR ∪ BP ∪ BN ∪ BI ∪ B∗. Then (V (Kn+m, B
′) is an embedding of

(V (Kn, B) as required.

Theorem 4.3. A maximal partial P3-design (V,B) of order n can be embedded in a P3-design

of order n+ 1 if and only if

(i) n ≡ 0 or 2 (mod 3),

(ii) |E(L)| ≥ n/2, and

(iii) n 6= 2

Proof. To prove the necessity, assume that (V,B) is embedded in a P3-design (V ∪ {v}, B′)

of order n + 1. By Theorem 4.1, n + 1 ≡ 0 or 1 (mod 3), so n ≡ 0 or 2 (mod 3). Clearly

n 6= 2 since by Theorem 4.1 there is no P3-design of order 3. To show the necessity of the

condition |E(L)| ≥ n/2, note that since (V,B) is maximal, each new 3-path in B′\B must

either be of the form (a, b, c, v) using two edges of L or (a, b, v, c) using one edge in L, where

{a, b, c} ∈ V (L). Define paths of the first form as Type 1 and of the second as Type 2. Let

x be the number of paths of Type 1 in any embedding and let y be the number of paths of

Type 2. By considering the edges in L in paths in B′\B it follows that 2x + y = |E(L)|.

Also, the n edges joining vertices in L to v are all in paths in B\B′, so x+2y = n. Therefore

x = (2|E(L)| − n)/3 and y = (2n − |E(L)|)/3. Since x must be a nonnegative integer,

|E(L)| ≥ n/2. (Note that y ≥ 0 implies that |E(L)| ≤ 2n. But since each component

in each maximal P3-design is K3 or a star, in fact |E(L)| ≤ n, so this apparent necessary

condition is always satisfied.)

To show the sufficiency, we will embed a maximal partial P3-design (V,B) of order n

satisfying the necessary conditions into a P3-design (V ∪{v}, B′) of order n+1. If n = 3 then
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L = K3 so the result follows from Theorem 4.1, so we can assume that n ≥ 5. Recall that

in the leave L of any maximal partial P3-designs, each component must be a K3 or a star

(possibly with no edges), otherwise it would contain a path of length three. In particular,

this means that |E(L)| ≤ n.

As is shown above, we must construct x = (2|E(L)| − n)/3 3-paths of Type 1 and

y = (2n− |E(L)|)/3 3-paths of Type 2. Note that since |E(L)| ≤ n, y ≥ (2n− n)/3 ≥ 5/3

so y ≥ 2. To be able to construct x 3-paths of Type 1, clearly there must be at least x

edge-disjoint 2-paths in L. To show that there are sufficiently many 2-paths in L to use as

building blocks for the Type 1 paths, consider the value 2|E(L)|−n. Let L′ be the subgraph

of L induced by the components of L not isomorphic to S0 or S1. Since each component

of L isomorphic to S0 has one vertex and zero edges and each component of L isomorphic

to S1 has two vertices and one edges, it follows that n − |V (L′)| ≥ 2(|E(L)| − |E(L′)|), so

2|E(L′)| − |V (L′)| ≥ 2|E(L)| − n. Now consider a maximal P2-decomposition (V (L′), D)

of the subgraph induced by L′. Since D contains exactly two edges in each component

isomorphic to K3 and contains all of the edges of each component that is a star except

possibly one, it follows that the number of edges in D is at least two thirds of the total

number of edges in L′; so |D| ≥ |E(L′)|/3. Also note that |E(L′)| ≤ |V (L′)| since L′ consists

entirely of disjoint stars and K ′3s, so |E(L′)| ≥ 2|E(L′)| − |V (L′)|. So |D| ≥ |E(L′)|/3 ≥

(2|E(L′)| − |V (L′)|)/3 ≥ (2|E(L)| − n)/3 = x, ensuring that there are indeed at least x

2-paths in L.

Construct the Type 1 3-paths as follows. Let {X ′i | i ∈ Zx} be any set of x edge disjoint

paths of length two in L. For each i ∈ Zx, extend X ′i = (a, b, d) to the 3-path Xi = (a, b, d, v).

Let X = {Xi | i ∈ Zx}. Note that because each component of L is a K3 or a star,

(1) for each edge {a, b} in L that occurs in no 3-path in X, at least one of the edges {a, v}

and {b, v} does not occur in a 3-path in X.

Also note that if c is the center of a star then the edge of the form {c, v} has not been placed

into a 3-path in X, since no center can be an end of a 2-path in L.
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Let Y ′′ = {Y ′′i | i ∈ Zy} be the subset of E(L) consisting of the |E(L)| − 2x = y edges

not occurring in paths in X. Finally we show how to place into 3-paths the edges in Y ′′

together with the edges in the set W consisting of the n− x = 2y edges incident with v that

occur in no 3-path in X. It is easy to direct the edges in Y ′′ so that in the resulting directed

graph D:

(i) if (a, b) is the arc in D corresponding to Y ′′i = {a, b} then {b, v} occurs in no path in

X (this is possible by (1)),

(ii) each vertex in D has in-degree at most 1, and

(iii) each center c of each star incident with an edge in Y ′′ has in-degree exactly 1.

Note that since each component of L is a K3 or a star, by (ii) it follows that:

(iv) the only vertices with out-degree greater than 1 are centers of stars.

For each i ∈ Zy, if Y ′′i = {a, b} corresponds to (a, b) in D then define the 2-path

Y ′i = (a, b, v); name these so that if b is the center of a star, then i is as small as possible.

More formally, if (a1, b1) and (a2, b2) are arcs in D corresponding to Y ′′i and Y ′′j respectively

and if b1 is the center of a star and b2 is not the center of a star, then i < j. Let Y ′ =
⋃
i∈Zy Y

′
i .

Let Z be the set consisting of the y edges in W occurring in no path in Y ′. Then Z can

be partitioned into sets Z1 and Z2 where Z1 = {{u, v} | (u, c) ∈ D, c is the center of a star

in L}. By (iii) at most one vertex (namely v) is incident with more than one edge in Z1, so

we can name the vertices in D so that Z1 = {{ui, v} | i ∈ Z|Z1|} where for each i ∈ Z|Z1|,

(ui, ci) is the arc in D corresponding to Y ′′i , and ci is the center of a star in L. Then we can

let Z2 = {{ui, v} | i ∈ Zy\Z|Z1|}. It turns out that the vertices in {ui | i ∈ Zy\Z|Z1|} are

isolated vertices in D. To see this, notice that if u ∈ {ui | i ∈ Zy\Z|Z1|}, then:

(i) u is an isolated vertex in L, or

(ii) u appears in a 3-path in X of the form (a, u, b, v) where {a, u} and {u, b} are edges in

a component of L isomorphic to K3, or
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(iii) u appears in a 3-path in X of the form (u, c, a, v) where {c, u} and {c, a} are edges in

a component of L isomorphic to a star with center c, or

(iv) u is the center or a star in L all of whose edges appear in 3-paths in X.

For each i ∈ Zy, extend Y ′i = (a, b, v) = (ui, b, v) to the 3-path Yi = (ui, b, v, ui+1)

reducing the sum modulo y. Let Y = {Yi | i ∈ Zy}. Note that each element in Y is a 3-path,

since ui 6= ui+1 since y ≥ 2.

All edges have now been placed into 3-paths, so (V (L)∪{v}, B ∪X ∪Y ) embeds (V,B)

into a complete P3-design of order n+ 1 as desired.

4.4 Further Comments

It is natural to consider embeddings of all partial P3-designs, not just maximal ones.

While Theorem 4.2 does find embeddings for all partial P3-designs, Theorem 4.3 does not.

The difficulty when embedding partial P3-designs of order n into P3-designs of order

n + 1 arises because of condition (ii) in Theorem 4.3. Indeed, it is easy to find partial

P3-designs of order n that can be embedded in a P3-design of order n + 1, but can also be

extended to a maximal partial P3-design which cannot be embedded in a P3-design of order

n+ 1. As an example, consider the partial P3-design (V,B) of order 6 in which B is empty

(the leave is K6 itself). This can easily be embedded in a P3-designs of order 7 by Tarsi’s

result in [28], since any P3-design of order 7 embeds (V,B). (V,B) can be extended to a

maximal partial P3-design (V,B′) in which the leave is empty ((V,B′) is a complete design).

By Theorem 4.3, (V,B′) cannot be embedded in a P3-designs of order 7.

It is clear that new necessary conditions must be introduced to completely solve this

problem.
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Chapter 5

Future Directions

Identifying and classifying underlying structures and decompositions of Kneser and Gen-

eralized Kneser Graphs seems to a be a fertile area for future results. In particular, the (Gen-

eralzed) Kneser Graphs have very strong underlying recursive structures that lend themselves

readily to inductive design constructions. As an example of this, consider the Kneser Graph

G = KGn,k on element set Zn. For any element i in the element set, the subgraph Gi of G

induced by the vertices not containing the element i is clearly isomorphic to KGn−1,k on the

element set Zn\{i}. Note that the collection of vertices in G containing the element i is an

independent set (no two are adjacent). This set is denoted Vi. G can therefore be viewed

as the edge-disjoint union of Gi and the bipartite subgraph Bi of G induced by the edges

{{a, b} | a ∈ V (Gi), b ∈ Vi}. So in this case, if we have some H-decomposition of Gi, and we

can find an H-decomposition of Bi, we immediately have an H-decomposition of G. Note

that Bi is not only bipartite, but any two vertices in a given partition have the same degree

in Bi. Graph decompositions of bipartite graphs have been well studied in the literature and

give a firm grounding for these types of constructions (see for example [5]).

This approach not only allows one to show the existence of a given decomposition, but

actually creates a structure for building explicit constructions inductively. It can also be

generalized fairly readily to Generalized Kneser Graphs and illustrates the interrelationship

between Kneser Graphs and Generalized Kneser Graphs. To illustrate this, consider the

Generalized Kneser Graph G = GKGn,k,r on element set Zn. The subgraph G′i of G induced

by the vertices containing the element i is isomorphic to GKGn−1,k−1,r−1 on the element

set Zn\{i}. The subgraph Gi of G induced by the vertices not containing the element i

is isomorphic to GKGn−1,k,r on the element set Zn\{i}. G can therefore be viewed as the
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edge-disjoint union of Gi, G
′
i and the bipartite subgraph Bi of G induced by the edges

{{a, b} | a ∈ V (Gi), b ∈ V (G′i)}, with similar possibilities for analysis as above. Note that

the Kneser Graph is a Generalized Kneser Graph with r = 0, so repeated applications of

this procedure can partially reduce the task of decomposition of Generalized Kneser Graphs

to the decompositions of the Kneser Graph.

In each of the results discussed in Chapter 2, the obvious necessary condition that the

number of edges in the graph be a multiple of the path length turned out to also be sufficient

for the existence of the relevant path decomposition. This, plus another small observation,

leads to the following conjecture.

Conjecture 1. The Kneser Graph KGn,k has a Pl-decomposition if and only if:

(i) n > 2k,

(ii) l |
(
n
k

)(
n−k
k

)
/2 = |E(KGn,k)|,

(iii) and 2o(KGn,k) ≤ |E(KGn,k)|/l where o(G) denotes the number of vertices in G with

odd degree.

The first two conditions simply ensure that the graph is connected and has a number of

edges that is a multiple of the path length. The connectivity is important, since if n = 2k,

then the graph is a 1-factor and if n < 2k, the graph has no edges The third condition comes

from the observation that removing a path from a graph will change the parity of exactly two

vertices in the graph (the endpoints of the path). If the number of paths in a proposed path

decomposition of a graph is less than half the number of odd vertices, then the proposed

path decomposition is clearly impossible, since a decomposition can be thought of as a way

to remove all edges from a graph, leaving each vertex with degree zero. There would be an

insufficient number of paths to turn all of the odd vertices to the even even zero. If this

conjecture can be established, it should be possible to extend the result to a similar result

for Generalized Kneser Graphs using the observations of the recursive nature of these graphs

discussed above.
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