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Abstract 

 
 

Imagine that you are trying to read everything you got in 2011 as soon as possible. That 

will take the first three months of 2012. How can we get access to the vast unstructured literature, 

automatically process it, effectively predigest and make sense of it with less effort? Focusing on 

the entire preprocessing and classification steps, a hybrid semi-supervised text classification 

approach proposed in this dissertation will help you survive in a rising sea of information. The 

porter stemming, new adaptive TFIDF-LDA weighting, Zipf's law based dimension reduction, 

multinomial Naive Bayes classifier, and Expectation-maximization algorithm are harmoniously 

integrated together in the hybrid semi-supervised text classification model. From a small set of 

“known” labeled papers, you can use this mixture model to make predictions about newly 

“unknown” unclassified papers into the predefined categories. Extensive experimental results 

show that the proposed system dramatically reduces the feature dimension and improves the 

classification accuracy.  
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Chapter 1 

Introduction 

 
1.1 Text Mining 

According to Bloomberg Business Week, the average person receives about 63,000 words of 

new information a day [1]. That is about the length of a novel.  The average computer user 

checks 40 websites a day and switches programs 36 times an hour [2]. That is about once every 

two minutes to change tasks. If you had a crazy idea to read everything you got in 2011. That is 

about the first three months of 2012 to spend. So, does it make us superhuman to acclimate to 

extracting information from the rapidly expanding literature? Tens of thousands of journals exist, 

and the deluge of new articles is leading to information overload. 30 percent of people under 45 

said the use of devices such as smart phones and personal computers has made it harder for them 

to concentrate. In this era of information explosion, computers double in speed every year. The 

use of machine learning dramatically enhances the human ability to parse and understand the 

complex text. Hence, the common existence of numerous unstructured text documents and the 

ongoing importance of the textual information undoubtedly make text mining technology 

become a persistently interesting hotspot. 

What is text mining? As a variation on a field of data mining which searches for interesting 

patterns from large databases, text mining is data mining using text documents as data. Text 

mining, also known as text data mining or knowledge discovery from textual databases, refers 
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generally to the process of extracting interesting and non-trivial patterns or knowledge from 

unstructured text documents [3] [4]. 

What is the purpose of text mining? In a nutshell, the purpose of text mining is to turn text into 

numbers and then automatically extract information contained in the text using various statistical 

and machine learning algorithms. The extracted information develops new observations or new 

hypotheses to be analyzed further in order to derive summaries for the words used in the 

documents or to find summaries and similarities of the documents based on these words. The 

goal of text mining is to discover heretofore unknown information from different written 

resources.  

What are the text mining applications in this paper? For researchers, librarians and publishers, 

text mining is already being used and deployed in many ways across scholarly communications. 

To find the most useful scientific information hidden or buried in the literature, one can save a 

lot of time and money with ease by letting a computer repeatedly filter the text from tens of 

thousands of documents for you. Text mining techniques explored in this paper can easily help 

busy real-life researchers to efficiently exploit a large number of papers, quickly navigate the 

latest researches, more effectively predigest and go digging deeper into unstructured textual 

information of the literature, and ultimately pulling out the most relevant ones to further their 

research.  

Text mining definitely can be an imperative alternative to the labor-intensive and manual 

intervention scholarly researches. Text mining already plays an important role in some 

researches. Unfortunately, in most cases, although copyright law and some other barriers are 

limiting the use of text mining at this time, text mining still overwhelmingly promises huge 

economic and research benefits. Some biomedical researchers have already pushed for the end of 

http://www.guardian.co.uk/education/research
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publishers' default ban on computer scanning of medical papers to find links between genes and 

diseases. The impact of text mining will continue increasing in the following years and certainly 

its application will finally move away from the experts’ desks to become a daily used tool by 

every researcher. The next big thing is already here-Text mining.  

 

1.2 Big Data  

 
Unstructured and massive information from YouTube, Facebook, Instagram, and Twitter flooded 

into our daily life. Have you still suffered from “Facebook addiction syndrome”? A recent claim 

from IBM showed that humans create around 2.5 quintillion bytes of data every day and almost 

90% of the data in the world today has been created in the last two years alone [5]. Is this claim 

true or just a marketing hype? Although there are no rigorous research resources to verify this 

statement, we have to admit that a new era of big data has already happened. The tsunami of the 

large volumes of data makes the notion of “big data” a big trending term. 

According to the definition from Wikipedia online dictionary, big data is defined as a collection 

of large and complex data sets which are very difficult to process using available database 

management tools [6]. Big data do not only mean big size, but also the big complexity. Actually, 

there are four major characteristics of big data which are volume, velocity, variety, and veracity 

[5]. Currently, many types of data accumulating gigabytes, terabytes even petabytes of 

information have already tremendously changed the way we view, learn, and analyze the world 

[7]. As the blood of a company, the volume of business transactional data has being dramatically 

increased from storing in relational databases to ever-growing cloud-based electronic database. 

Velocity shows the streaming data in motion feature and the large volume data movement [5]. 

There is also great variety in big data. We have to manage many different forms of data such as 
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structured, unstructured, text, and even multimedia. Veracity refers to the data quality. The 

decision based on the big data may have some uncertainty and deflection because of data 

ambiguities, inconsistency, incompleteness, or model approximations.  

Big data analysis gives us intensive potential opportunities and meanwhile big technical 

challenges. Big data is more than just a large quantity of numbers. Not only the voluminous scale, 

but also heterogeneity, format variability and error-handling [8], timely and effective 

exploitation of big data urges the deep human insights and better analysis solutions.  

 

1.3 From documents to data 

 
How are the textual documents converted to data? The idea of the vector space model (VSM) [9] 

[10] [11] is widely used in text mining area for extracting knowledge automatically from given 

documents. Given a huge document collection, a set of terms or features can be defined as a 

point in a space or a vector in a vector space [12] to represent each document in a collection.  

There are three stages, the document indexing, term weighting, and the document ranking stage, 

to build the vector space model [13]. In the document indexing step, the useful terms are 

extracted from the textual documents. Then the frequency of occurrence of the indexed terms 

will be calculated by a weighting scheme, and finally the documents will be ranked according to 

the similarity measure [14]. 

 

1.3.1 Term-document Matrix 

 
In the term weighting stage, how can one consider the number of occurrences of a term in a 

document before applying the common weighting scheme? The most important basic step is to 



5 
 

construct a term-document matrix. Term-document matrix is a mathematical matrix which 

describes the frequency of terms that occur in a collection of documents [15] [16]. The columns 

of a term-document matrix correspond to the documents in the collection and rows correspond to 

the terms within the documents.  Each document is a count vector and term-document Matrix 

tabulates the terms in all documents and how many times they appear. 

 

1.4 Aspects of the Dissertation 

 
In Chapter 2, the motivation and the experimental frame of the new hybrid semi-supervised 

learning model will be introduced. The comparison of three different machine learning methods 

of unsupervised, supervised, semi-supervised, both pro and con, will be discussed in details. In 

Section 2.3, the data sets used to analyze the experiments will be presented. A flow chart Figure 

2.1 will also illustrate the whole experiment frame and proposed hybrid model. 

In Chapter 3, the procedures used for text preprocessing will be outlined step by step. Term 

filtering, porter stemming algorithm, and Zipf’s law based dimension reduction processes will be 

effectively implemented on the unstructured textual data in order to extract meaningful numeric 

indices from the text. 

In Chapter 4, the feature extraction steps will be considered. A new adaptive TFIDF-LDA 

weighting approach will integrate the TF-IDF weighting theory and the application of latent 

dirichlet allocation probabilistic topic model to improve the recall and precision of text 

classification. 

Chapter 5 will portray a whole picture of semi-supervised multinomial naive Bayes training and 

classification. Based on the labeled and unlabeled mixture training data, in this dissertation, 

naive Bayes classifier and Expectation-Maximization (EM) algorithm will be applied together in 
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a semi-supervised setting. In Chapter 6, the model evaluation and results will measure the 

accuracy of the proposed classification model. At last, Chapter 7 will summarize the main points 

of the dissertation and present the major experimental findings. 

 
1.4.1 Notations 

Before describing the hybrid model, several symbols and mathematical notations used 

throughout the dissertation will be presented as follows. 

1. Word, the basic unit of literary text data, is defined as an item from a vocabulary list. In this 

dissertation, word is indexed by {1, 2, ... ,V}. V is the total number of vocabulary terms. The total 

number of words is noted as N and the vth word in the vocabulary list is represented by a V-

vector w such that wv = 1 and wu = 0 for u ≠v.  

2. A document is denoted by a sequence of N words w = (w1, w2, wn), where wi is the ith word in 

the sequence. |𝐷| is the total number of all documents in the collection. The collection of |𝐷| 

documents noted by O = {w1, w2 ,…, wD} is called a corpus in text mining. �𝑉𝑗� is the total 

number of words in a document j.   

3. The raw frequency of a term i in a document j, or the number of times that term i occurs in 

document j, is denoted as 𝑓𝑖𝑗. The term or word type is also the unique word as a dictionary entry. 

𝑑𝑓𝑖 represents the amount of documents in the corpus that contain term i. 

∑ 𝑓𝑖𝑗
|𝐷|
𝑗=1  is the total number of times that a term i occurs in all documents, i is the term index and 

j is the document index. 

4. The conditional probability of a word 𝑤𝑖 given topic 𝑧𝑖 = 𝑘 is 𝑃(𝑤𝑖|𝑧𝑖 = 𝑘, 𝑧−𝑖 ,𝑤−𝑖 ). 𝑧−𝑖  is 

all other topic assignment  𝑧−𝑖 ≠ 𝑧𝑖 . 𝑤−𝑖  is also all other word types 𝑤−𝑖 ≠ 𝑤𝑖 . 𝜙(𝑘)  is the 
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multinomial distribution with topic 𝑧𝑖 = 𝑘 over words. |𝑇| is the total number of topics as your 

predefined class number of the corpus. 

5. 𝑅𝑖𝑗 is the adaptive TFIDF-LDA weights showing the weight of term i in a document j. 

6. In Chapter 5, 𝑑𝑗 is the documents notation, 𝑐𝑘 denotes the predefined categories, 𝑤𝑖 represents 

every term,  |𝑉| is the total number of terms in all documents or the vocabulary size, |𝐶| is the 

total number of all classes. 

𝑊𝑖𝑗 is the count of term 𝑤𝑖 in document 𝑑𝑗, where i is still the term index , j is the document 

index and k is the category index. 
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Chapter 2 

Model Background 

 
2.1 Motivation of the Method 

 
Almost anybody can propose a method for analyzing data which is already in a good shape. How 

can we get access to the unstructured data, process it and make sense of it through statistics? 

Although many existing studies have reported promising performance of text mining method, 

only a few works are focused on the entire preprocessing training and classification methods for 

analyzing the vast unstructured scientific literature data. The text mining model in this paper will 

systematically put you on the map and pull your grades up. 

Imagine that people are trying to make inference about 5,000 documents with the goal of 

retrieving all texts relevant to mathematics education. One can randomly pick up the 

representative small samples since normally we cannot manually process so many documents at 

once. But this sampling choosing process will ignore lots of paper and then loss major part of the 

story. If people have the opportunity to process 5,000 paper using computers to look for unseen 

patterns and associations across the millions of words in the articles, why they shouldn’t process 

it using text mining application? Let the machine to learn and pull out data.  

In this paper, an application can automatically read files, put the analyzable format then run the 

statistics. How can one take the stuff that people wouldn’t be looking at? Too many synonyms, 

too many different format and sources of data, people can investigate it and make sense of it 

through this hybrid semi-supervised text classification approach. That is powerful and the newest 

direction since people usually does modeling on existing dataset but people can pick up their 

own unstructured data and make sense of it.  
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2.2 Machine Learning Methods: Unsupervised, Supervised, Semi-Supervised 

As an important branch of artificial intelligence, machine learning is defined as the science of 

computer learning without being explicitly programmed by Arthur Samuel in 1959 [17]. Way 

back around 1998, Tom Mitchell presented a new formal definition of machine learning as a 

computer program which learns from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E [18].  

This field of study can automatically let computer learn from data and is supposed to effectively 

save human intervention time. From spam detection, speech/face recognition, computer vision, 

gene discovery, medical diagnosis to self-driving cars [19], cutting edge machine learning 

applications are everywhere in real life and often without even being aware of it. 

Labeled Data

Supervised learningUnsupervised 
learning

Semi-supervised 
learning

Labeled Data

Unlabeled Data

 

Figure 2.1: Interactivity of three types of machine learning. 

In highly interdisciplinary machine learning field, there are three major techniques of supervised, 

unsupervised and reinforcement learning. The reinforcement learning, motivated by behaviorist 

psychology, is concerned with existence of optimal solutions to take actions in an environment in 

order to maximize the cumulative reward [20]. Supervised learning is to train completely labeled 
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data and unsupervised learning is to train unlabeled data. The semi-supervised learning used in 

this dissertation is a combination of supervised and unsupervised learning techniques that make 

use of both labeled and unlabeled data for training. The above Figure 2.1 illustrates the 

interactivity of these three different types of learning. 

2.2.1 Unsupervised Learning 

Unsupervised learning is a machine learning method to find hidden structures in the unlabeled 

data. Clustering algorithms is normally pointed as the part of unsupervised learning because 

there is actually no available information relating the membership of input unlabeled data to 

predefined classes [21]. The exploratory unsupervised algorithm has to experimentally exploit 

the statistical properties and structures in the distribution of the input unlabeled data without any 

guidance[19].  

Unsupervised learning is widely used for many different problems since unlabeled data are easier 

to get and we can collect data that are known to belong to one of the classes without manually 

labeling it. There are a lot of real life applications of unsupervised learning such as web search, 

social network analysis and market segmentation [19]. Using unsupervised learning, a marketer 

can automatically divide the targeted marketing into different segments or separate diverse 

customers according to their hidden similarities.  

However, unsupervised learning has both advantages and disadvantages. Although it is fairly 

easy to design a learning algorithm using cheap un-annotated training data, but it is very hard to 

tell whether the naturally discovered knowledge reports good patterns or trends. The generality, 

existence of many local maximums and lack of guided direction for the unsupervised learning 

algorithm limits its performance on some specific tasks. Thus, for achieving better performance 
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in some cases, the supervised learning turns out to be a popular alternative solution to 

unsupervised learning.  

2.2.2 Supervised Learning 

Supervised learning is a type of machine learning techniques that utilizes completely labeled data 

for training purpose. As students learn knowledge by examples from teachers and correct 

answers, supervised learning also extracts structures and regularities from labeled input data with 

pre-defined classes. Since more information is already contained by the annotated data examples, 

supervised learning can easily study a mapping between inputs and outputs based on a training 

data set to predict the outputs corresponding to test inputs [19]. 

Supervised learning is actually used for broad modern life applications such as spam detection, 

face detection, signature/character recognition, and medicine. For example, every time we send a 

mail via the post office, we are experiencing a supervised learning approach which can 

automatically recognize the handwritten zip code on the envelope [22]. 

The learning efficiency of supervised learning is relatively higher compare with unsupervised 

learning. However, obtaining fully labeled and sufficiently large training data needs a number of 

qualified experts for manually annotating the corpus and is usually expensive, time consuming, 

and error prone, which is the biggest bottleneck for supervised learning. The quality and amount 

of the labeled data undoubtedly limits the performance of supervised learning. So if you cannot 

afford the labeling costs required by supervised learning, semi-supervised learning approach, 

using both the unlabeled and labeled data, can substitute for unsupervised learning and 

supervised learning to generate considerable improvement in performance accuracy with less 

human effort.  
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2.2.3 Semi-Supervised Learning 

As the size of online documents increases rapidly nowadays, to annotate a huge collection of 

corpus for supervised learning is almost infeasible. In reality, there is usually a huge amount of 

convenient unlabeled data but relatively limited labeled data. Semi-supervised learning, which is 

to learn with labeled in conjunction with unlabeled training data, takes the advantages of the 

strengths of both unsupervised learning method that discovers the underlying structure in the 

unlabeled data and supervised learning algorithm which employs sufficient labeled training data 

to learn classifiers [23] [24] [25] [26].  

In the text processing practical application, semi-supervised learning reduces the high cost of 

obtaining labeled documents. In facial expression recognition, it is very tedious and difficult to 

manually label the video to the corresponding expressions. Semi-supervised learning provides 

useful assistance in the video indexing.  

There are some commonly representative semi-supervised learning methods including 

Expectation-Maximization (EM) algorithm with generative mixture models, self-training, co-

training, density-based transductive support vector machines (TSVM), boosting-based and 

graph-based methods [24]. As a compromise between the supervised learning and unsupervised 

learning, in this dissertation semi-supervised learning provides most cost effective solution in the 

document classification tasks. 

 

2.3 Datasets and Protocol 

A collection of large datasets will be used to conduct the simulation and experimental study for 

the document classification tasks in this dissertation. The proposed hybrid model and other 

benchmark methods will be applied to two real-life data sets primarily collected from the 
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publicly available online journal paper databases of the institute of electrical and electronics 

engineers (IEEE), which is the world's largest technical professional association.  The popular 

benchmark text classification collection 20 Newsgroups data set, collected by Ken Lang in 1993, 

consisting of 18828 messages partitioned nearly evenly across 20 different UseNet discussion 

groups will be also utilized to compare the effectiveness of the proposed hybrid semi-supervised 

model [27] [28] [29].  

Labeling data is normally expensive and time consuming in most text classification tasks 

especially the real world problems, unlabeled data are usually inexpensive, abundant and readily 

available. Therefore, with the aim of saving time and energy and simultaneously improving the 

classification performance, the semi-supervised machine learning method with both labeled and 

unlabeled data used for training will be applied in this dissertation.  

For two real life journal paper datasets, the accuracy and F-measure of the proposed model will 

be estimated based on the average of results using the five-fold cross validation protocol. The 

five-fold cross validation will be also repeated four times on the same data set to assess the 

robustness of the algorithms as labeled training data instances are assigned differently at random 

to folds. All results will be reported as the averages over all trials of the experiments. 

The following Table 2.1 tabulates a brief description of these three datasets. The total number of 

documents is indicated by “Total” and “Class” stands for the number of categories in each 

dataset. The amount of training data includes the count of both labeled and unlabeled training 

sets respectively. 

 

 

http://en.wikipedia.org/wiki/Data
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Table 2.1: Data Descriptions. 

Dataset Source Class Total Training Test Labeled Unlabeled 

5 class journal paper Real life 5 710 

(6%) 35 533 142 
(10%) 56 512 142 
(20%) 113 455 142 
(25%) 142 426 142 
(30%) 170 398 142 
(40%) 227 341 142 
(50%) 284 284 142 

7 class journal paper Real life 7 1133 

(6%) 54 853 226 
(10%) 90 817 226 
(20%) 181 726 226 
(25%) 226 681 226 
(50%) 454 453 226 

20 Newsgroups UseNet 6 3000 

(10%) 270 2430 300 
(20%) 540 2160 300 
(25%) 810 1890 300 
(50%) 1350 1350 300 

 

To make the raw paper more valuable and easier for classification, all experiments of two real 

life journal paper datasets have considered only the short paragraph-sized abstracts of papers. 

Since the abstract sketches the detailed objective and summary of the main points of a paper. 

However, a complete long paper may contain extraneous items such as tables, images, 

mathematical equations and references, which add a lot of noise and may not be a good 

appropriate input for text classification tasks. Moreover, vector space model, which represents 

documents as a vector containing the frequency of how many times each term occurs in a 

document, is more effective for short documents [30].   
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2.3.1 Corpus 1: Five Classes Journal Papers 

 
710 documents randomly accumulated mainly from the IEEE online journal papers databases 

will be used to analyze the experiments. These five categories of papers are respectively chosen 

from mathematics education (math), aerosol research (env), text mining (txt), nuclear research 

(nuc), and image processing (img) areas. This real life dataset is created with almost unequal 

numbers of documents per class (46 documents from mathematics education, 264 documents 

from aerosol research, 144 documents from text mining, 112 documents from nuclear research 

and 144 documents from image processing).  

For this first journal paper datasets, different experiments will be conducted to see the impact of 

labeled and unlabeled training data in the semi-supervised learning environment. First of all, the 

training and testing data sets split is employed by randomly choosing approximately one-fifth of 

the original data sets into a test set, including a total of 142 manually labeled papers, and the 

remaining 568 papers as a training set of labeled and unlabeled documents. Then the 568 training 

documents are randomly split into two groups: labeled and unlabeled training sets. Seven 

different labeled data rates vary from 6%, 10%, 20%, 25%, 30%, and 40% to 50% of all training 

number are used to check the sensitivity and performance of the proposed model. For example, 

as shown in the Table 2.1, in the first experiment, 35 of the 568 training data or approximately 6% 

of the total training data are randomly chosen as labeled sets and the rest 533 documents are 

retained as unlabeled data sets.  

2.3.2 Corpus 2: Seven Classes Journal Papers 

The second real world dataset includes a total of 1133 documents randomly extracted from the 

IEEE online journal databases. There are seven categories of papers respectively chosen from 
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mathematics education (math), aerosol research (env), text mining (txt), nuclear research (nuc), 

image processing (img), transportation (tra) and robotics (rob) fields. To keep the comparison 

fair, this dataset also has the same unbalanced amount of documents per class (46 documents 

from mathematics education, 264 documents from aerosol research, 144 documents from text 

mining, and 112 documents from nuclear research, 144 documents from image processing, 216 

documents from transportation, and 207 documents from robotics). 

The training and testing data sets consist of 907 and 242 documents, respectively in the 

experiments. Five experiments will be conducted to investigate the performance of different 

algorithms as the labeling rate increases from 6%, 10%, 20%, 25% to 50%. For example, as 

listed in the Table 2.1, in the first experiment, 54 of the 907 training data or approximately 6% of 

the total training data are randomly selected using SAS surveyselect procedure as labeled sets 

and the remaining 853 documents as unlabeled data sets. The average results obtained from 20 

runs of cross validation for each experiment will be reported in details.  

2.3.3 Corpus 3: 20 Newsgroups 

Collected from UseNet postings over several months in 1993 by Ken Lang for his paper, 20 

Newsgroups data set has been a popular benchmark dataset in the large scale text classification 

fields [31] [27]. A total of 18828 messages collected from web are partitioned into 20 different 

Usenet newsgroups from computer, sports to politics related topics. For testing the performance 

of proposed hybrid model, multiple document classification experiments are conducted using 20 

Newsgroups corpus in the Chapter 6. 

In the experiments, 3000 newsgroup postings from 6 categories are drawn at random from the 20 

Newsgroups data. This dataset has the same balanced amount of documents per class including 

500 documents each randomly extracted from comp.graphics, comp.os.ms-windows.misc, 
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comp.windows.x, misc.forsale, rec.sport.hockey, and sci.crypt categories. We can find that many 

of the categories fall into the confusable cross classes such as three of them are computer related 

discussion groups.  

A total of 2700 documents are used for training purpose, while 300 test sets are retained for 

evaluating predictive classification accuracy. A labeled training set is built by randomly selecting 

10%, 20%, 30% and 50% documents respectively from those 2700 training documents. The 

remaining documents are formed as unlabeled training datasets. Preprocessing the 20 

Newsgroups data in the proposed text filtering manner resulted in a vocabulary of unique terms. 

The accuracy and F-measure of classifying the new testing article into the predefined newsgroup 

to which it was posted are estimated and reported as the averages over all trials of the 

experiments.  

2.4 Experiment Frame and Hybrid Model 

What is the goal of text classification for this dissertation? To make a long story short, from a 

small set of “known” labeled papers, you can make predictions about new “unknown” 

unclassified papers into predefined categories. The hybrid semi-supervised text classification 

approach consisting of Porter stemming, TFIDF-LDA weighting, Zipf's law, Naive Bayes 

classifier, and Expectation–maximization algorithm is implemented for classifying given 

literature. 

The first and foremost step I will take should be text pre-processing, which is a useful technique 

to represent the input text files of each document as a feature vector. A frequency of character 

string in the text pre-processing phase always gives us a lot of interesting information. For 

example, as one of the most artistic valuable Chinese ancient literatures, the writing of Song 

http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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poetry is always a big challenge since a lot of basic knowledge is needed. After the words 

frequency analysis for the Chinese Song poetry corpus, result shows high frequency content 

words “east wind, where, human world, ...”   Therefore, using the statistical words counting 

information, we can easily write a new Song poetry in just three seconds, “In the human world, 

where is the east wind.”  

How do we count the words information? The following process is used for text preprocessing 

and feature extraction in the hybrid model. The flow chart Figure 2.2 illustrates this experiment 

frame and hybrid model. 

1. Convert “pdf” files to plain text: Use the SAS TGFILTER procedure to read and extract plain 

text from a collection of your own papers, which can be stored in various formats, such as Word 

or PDF.  

2. Abstracts extraction: Since analyzing only the abstracts gives the best journal paper 

classification results.  The abstracts will be then pulled out from the text of all journal papers in 

the document collection. 

3. Term filtering: After transforming all characters to lowercase, the common English stopwords 

typically 400-600 words, punctuations and the words whose length less than three and larger 

than sixteen will be removed. The words are excluded for being too short, too long or too 

common. 

4. Porter stemming (Lemmatization):  In order to further reduce the word space dimensionality, 

word suffices are removed by the most popular porter stemming algorithm.  

 

 

 



19 
 

 

 

Figure 2.2: Experiment frame and hybrid model. 

5. Tokenization: Word token is defined as the occurrences of a word. After the porter stemming 

matlab procedure, the papers are imported from excel format into SAS data set and then parse 

the text in these papers into separate words and count the frequency and statistics in order to 

perform the dimension reduction techniques. 

6. Zipf’s law based dimension reduction: According to the Zipf’s law in linguistics, there is a 

very small subset of words that occur very frequently and almost all words are rare. If the 
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occurrence of words in all papers is relatively low, deletion of such rare words is therefore out of 

the question.  

7. TFIDF-LDA weighting: Text classification is based on the accurate information of vector 

space model. The brand new TFIDF-LDA weighting method is proposed to describe documents 

in the vector space model. 
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Chapter 3 

Text Preprocessing 

3.1 Overview 

In the text preprocessing, the key question is how to process unstructured textual information and 

extract meaningful numeric indices from the text. There are many special techniques for pre-

processing text documents to make them suitable for mining. To evaluate the journal papers, this 

hybrid model will first parse the text of abstracts in these documents into separate words, 

perform following preprocessing dimension reduction techniques and use the resulting 

information from the dimension reduction to significantly improve the classification accuracy of 

the documents. 

3.2 Term Filtering 

3.2.1 Stopwords & punctuations removal 

The stopword list used in this paper has about 575 most frequent words that often do not carry 

much meaning. Since including non-informative words will dilute our analysis, the data should 

be as clean and consistent as possible. After removing stopword list, a simple collection of low-

information or extraneous words that you want to remove from the text such as a, an, the, be, 

with, by, etc., we can create a crucial start for obtaining valid and useful results. Moreover, 

synonym list can also be used to improve the quality of the text mining output, but creating the 

synonym list is a very labor intensive and time-consuming process. Normally, a change in the 

stopword list and synonym lists can dramatically alter the term weightings. Sometimes it is a bit 

hard to tune. The porter stemming algorithm treats words with the same stem as synonyms and 

you can use it as a substitute to synonym list. So by considering the costs and accuracy,  I will 

http://en.wikipedia.org/wiki/Synonym
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not devote a large amount of effort to create good stopword and synonym lists and only throw 

away all punctuations and 575 stopwords. 

3.2.2 Excluding too short & long strings 

The next factor I have to consider is a length of the character string. Short strings like “us” 

express a little useful information and meanwhile undesirably long and redundant strings are 

usually expected to have low frequencies. According to several experiments on given dataset, 

excluding too long and too short strings can highly reduce dimension and clean text. Thus, after 

removing all symbols but only letters and digits, the strings whose length are less than three and 

larger than sixteen will be excluded.  

3.3 Porter stemming algorithm 

English words like “work” can be inflected with a morphological suffix to produce “works, 

working, worked” which share the same stem “work”.  The porter stemmer [32] has five steps to 

progressively strip the suffixes as “s, es, ed, ing, al, er, ic, able, ment, ive, etc.” for short and long 

stems. The porter stemming algorithm applied in this research is usually but not always perfectly 

useful to map all inflected forms into the right stem, since language is highly ambiguous and this 

complex stemming algorithm process may have some exceptional cases and mistakes such as 

that it replaces the word “department” to “depart”. 

In addition, some special word like “kept” has “kept” as its lemma. However, using the porter 

stemmer, their link will be missed and the stemmed word for original word “kept” is still “kept”. 

Since the porter stemmer operates on a single word without knowledge of the context, and we 

cannot distinguish the words of different meanings solely depending on the part of speech.  It 

requires lemmatization, a dictionary look-up process, which can essentially select the appropriate 
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lemma depending on the context to solve this issue. But the porter stemmer is normally run faster 

and easier to implement. Therefore, the reduced accuracy without lemmatization in this research 

may not matter too much. 

3.4 Zipf’s law based dimension reduction 

Named after the linguist George Kingsley Zipf, Zipf’s Law [33] [34] discovered the law about 

the distribution of words: the frequency of any word is inversely proportional to its rank in the 

frequency table. Frequencies of words used in everyday English follow the Zipf’s distribution 

showing that a very small subset of words occurs very frequently as “common words” and a 

large subset of words are rare as “rare words”. Zipf’s law points out an important empirical 

observation that almost all words are rare. This heavy tail property motivated the following 

dimension reduction research. 

Most terms occur only in a very limited number of documents, which makes them interesting 

candidates for our dimensionality reduction purpose [35] [9]. The elimination threshold 

occurrence of rare word was experimentally determined to be around the range from 1% to 2% 

of all documents in my experiments. The multiple experiments on the first journal paper corpus 

show an empirical fact that the rare terms appearing only three or fewer in the entire collection of 

documents after the porter stemming can be removed in order to reduce the term space 

dimensionality and improve classification accuracy.  

 

  

http://en.wikipedia.org/wiki/Inversely_proportional
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Chapter 4 

Feature Extraction-Applications of TFIDF-LDA Weighting 

4.1 Overview 

How can one extract the best terms that are able to discriminate certain individual documents 

from the remainder of the collection? Feature extraction is exactly a special form of 

dimensionality reduction. In test mining, the vector space model (VSM) is widely used for 

representing textual documents. Given a massive document collection, a set of terms or features 

can be defined. Then, by putting associated weighting value of each word in documents, a high 

dimensional and sparsely filled vector is generated from this feature set. Usually, the raw term 

frequencies can be weighted to find the best terms for document content identification, using one 

of the following available measures, such as TF-IDF, Entropy, Normal, Chi-Square, etc. The 

proper weighting of the set of features that represents the text can improve the performance of 

the model. In this dissertation, a new weighting method based on the term frequency-inverse 

document frequency and statistical estimation of the word importance for topic model LDA is 

proposed. 

4.2 TF-IDF Weighting 

Documents are represented as a vector in the vector space model. Each vector component of a 

document is related to a particular word in the term vocabulary lists. A numerical value is 

normally assigned to every component of a document vector to estimate the importance or 

weight of the word in the document. From old to present, there are many studies relate to this 

problem of quantifying the significance of terms in the documents. In 1957, Luhn [36] first 

discovered the measurement of term significance, Term Frequency (TF), the number of 
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occurrences of terms in a document. In 1972, Spark-Jones [37] found another useful 

measurement Inverse Document Frequency (IDF), the number of occurrences of terms over the 

documents. In 1983, Salton and McGill [38] represented the most famous term frequency-inverse 

document frequency (TFIDF) weighting, the production of TF and IDF, for detecting the 

importance of terms in the documents. 

As a benchmark weighting method, TF-IDF weighting [39] [40], is a statistical measure used to 

evaluate how important a word is to a document in a corpus. The best terms normally have high 

term frequencies but low overall collection frequencies. Therefore, TF-IDF weighting assumes 

that the importance of words increases proportionally to the occurrence of a word in the 

document but is offset by the frequency of the word in the corpus [41]. The definition of the TF-

IDF weighting function is the multiplication of two statistics, term frequency and inverse 

document frequency as follows, 

 
𝑇𝐹𝐼𝐷𝐹 =  𝑓𝑖𝑗 ∙ 𝑙𝑜𝑔 �

|𝐷|
𝑑𝑓𝑖

� (4.2.1) 

where 𝑓𝑖𝑗 is the raw frequency of a term i in a document j, i.e. the number of times that term i 

occurs in document j; The term or word type is defined as the unique word as a dictionary entry. 

|𝐷| is the total number of documents in the collection; 

𝑑𝑓𝑖 is the number of documents in the corpus that contain term i. 

4.2.1 Advanced TF-IDF Weighting 

The raw frequency sometimes may result in a bias towards longer documents. Therefore, 

normalized frequency, raw frequency divided by the total number of words in a document, is 

applied to prevent this issue. As a penalizing factor, the denominator of inverse document 

frequency can also be improved as the total number of times that a term occurs in all documents 
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to offset those terms too frequent. Thus the TF-IDF weighting in (4.2.1) can be modified as the 

following new advanced TF-IDF weighting (𝐴𝑑𝑣_𝑇𝐹𝐼𝐷𝐹) in my experiments: 

 
𝐴𝑑𝑣_𝑇𝐹𝐼𝐷𝐹 =

𝑓𝑖𝑗
�𝑉𝑗�

∙ �1 + 𝑙𝑜𝑔 �
|𝐷|

∑ 𝑓𝑖𝑗
|𝐷|
𝑗=1

�� (4.2.2) 

Where 𝑓𝑖𝑗 is the raw frequency of a term i in a document j; 

�𝑉𝑗� is the total number of words in a document j; 

|𝐷| is the total number of documents in the collection; 

∑ 𝑓𝑖𝑗
|𝐷|
𝑗=1  is the total number of times that a term i occurs in all documents, i is the term index and 

j is the document index. 

4.3 Probabilistic Topic Model-Latent Dirichlet Allocation (LDA)  

Probabilistic topic models have been successfully applied to many text mining tasks such as 

information retrieval, summarization, categorization, and clustering. As an updated most popular 

representative probabilistic topic model, Latent Dirichlet Allocation (LDA) has attracted intense 

research attention in recent years. In this dissertation, LDA model is used to mine large 

collections of documents and summarizes those using topics. 

What is Latent Dirichlet Allocation?  

LDA is a generative model that expresses the distributed probability of words and explains sets 

of observations by unobserved groups which show why some parts of the data are similar [42]. If 

observations are words collected into documents, LDA supposes that every document is a 

mixture of a small number of latent topics and these document's topics create every word [43]. 

Based on seminal work in latent semantic indexing (LSI) (Deerwester et al., 1990) [44] and 

Probabilistic Latent Semantic Indexing (pLSI) (Hofmann, 1999) [45], LDA model was first 

http://en.wikipedia.org/wiki/Generative_model
http://en.wikipedia.org/wiki/Latent_variable
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proposed by David Blei, Andrew Ng, and Michael Jordan [42] in 2002 and then was 

reintroduced as a graphical model in the paper "Latent Dirichlet allocation" in 2003.  

What are the benefits of LDA approach?  

Based upon singular value matrix decomposition to deal with polysemy (words with multiple 

meanings) and synonymy (multiple words with the same meaning), LSI model does not have 

satisfactory statistical foundation. As a probabilistic topic approach to document modeling, the 

pLSI model is difficult to test the generalizability of the model to new documents, since there are 

not any assumptions about how the mixture weights θ are generated [45]. As an extended pLSI 

model, Latent Dirichlet Allocation (LDA) introduced a Dirichlet prior on θ, regularized and 

dealing directly with probabilities that works better for discrete data. 

What are the LDA model applications in this dissertation?  

LDA model is applied to several huge document collections which can get much easier to 

navigate using topics. Since there are far less topics than words and the topics usually retain a lot 

of the meaning of the documents. Like principal component analysis (PCA) and LSA, LDA 

improves the word features to topic features which highly reduce the dimensionality of the 

documents in the corpus.  

4.3.1 LDA Model 

In LDA model, every document is a random mixture over latent topics and every topic is an 

uncorrelated and discrete distribution over words from finite dictionary. A discrete latent model 

is assigned to words and each document maintains a random variable, indicating its probabilities 

of belonging to each topic.  
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The generative model LDA shows how every document obtains its words in a corpus O of a 

collection of |𝐷| documents. As the bag-of-words assumption in document classification, the 

order of the words in the documents is ignored. A topic is defined as a multinomial probability 

distribution over a collection of words. Each document includes terms from multiple topics and 

contains topics in distinct proportion comparing with other different documents. A K topic 

multinomial distribution with parameter vector 𝜙 of length |𝑉|, which is the total number of 

terms in all documents, is assumed first. Then for each word in the document we draw one of the 

K topics from the assumed topic multinomial distribution and probabilistically choose a word 

from |𝑉|  vocabulary according to parameter vector 𝜙 at random. For the purpose of 

automatically discovering the topics from given corpus, the K topic distributions can be learned 

through statistical inference. 

Given the multinomial and Dirichlet probability distributions, LDA model assumes the following 

three generative process for each document containing N words in a corpus O [42] [46]: 

1. Select the total number of words N for a document w as N ~ Poisson (ξ). 

2. Randomly draw a topic distribution θ ~ Dir(α). The proportions of the topic distribution for 

the document w are determined by a k dimensional Dirichlet random variable θ . 𝛼 is the 

Dirichlet prior over the documents and is usually set as a fixed scalar hyperparameter in the LDA 

programming process although maximum likelihood fitting can find its optimal value. 

The Dirichlet distribution, the exponential family distribution over the simplex of positive 

vectors that sum to one, is conjugate to the multinomial distribution and has the following 

probability density [41]: 

𝑃(𝜃|𝛼) =
𝛤(∑ 𝛼𝑖𝑘

𝑖=1 )
∏ 𝛤(𝛼𝑖)𝑘
𝑖=1

� 𝜃𝑖
𝛼𝑖−1

𝑘

𝑖=1
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where the scaling parameter α is a positive k-vector with components αi >0, and Γ(x) denotes the 

Gamma function. 

3. Next, a topic zi belonged to multinomial (θ ) distribution is selected for every N words wi . 

Moreover, for every word in the document, a word wi from 𝑃(𝑤𝑖|𝑧𝑖 ), a multinomial probability 

conditioned on the topic vector zi,, is then chosen at random. β is a k×V word-probability matrix 

for each topic as row and every term as column, which records the generated wi word 

probabilities given the certain topic zi.  

The joint distribution of a topic mixture θ, N topics z, and N words w given the predefined 

constant parameters α and β, is defined as follows [41]: 

 
𝑃(𝜃, 𝑧,𝑤|𝛼,𝛽) = 𝑃(𝜃|𝛼)�𝑃(𝑧𝑖 = 𝑘|𝜃)𝑃(𝑤𝑖|𝑧𝑖 = 𝑘,𝛽)

𝑁

𝑖=1

 (4.3.1) 

The probability of word 𝑤𝑖  equals to the following summation of the multiplication of 

multinomial distribution over T topics and the conditional probability of a word 𝑤𝑖 given a topic 

𝑧𝑖 = 𝑘 [47]: 

𝑃(𝑤𝑖) = �𝑃(𝑧𝑖 = 𝑘)𝑃(𝑤𝑖|𝑧𝑖 = 𝑘)
𝑘=1

 

In this predictive multinomial Dirichlet distribution model, according to the paper “Gibbs 

sampling in the generative model of Latent Dirichlet Allocation” written by Tom Griffiths in 

2002, the conditional probability of a word 𝑤𝑖 given topic 𝑧𝑖  is derived as follows [47] : 
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 𝑃(𝑤𝑖|𝑧𝑖 = 𝑘, 𝑧−𝑖 ,𝑤−𝑖 ) 

= �𝑃�𝑤𝑖�𝑧𝑖 = 𝑘,𝜙(𝑘)�𝑃�𝜙(𝑘)�𝑧−𝑖 ,𝑤−𝑖 � 𝑑𝜙(𝑘) 

=
𝛽 + 𝑛−𝑖,𝑘

(𝑤𝑖)

|𝑉|𝛽+𝑛−𝑖,𝑘
(.)  

(4.3.2) 

where 𝑧−𝑖  is all other topic assignment 𝑧−𝑖 ≠ 𝑧𝑖 . 𝑤−𝑖  is also all other word types 𝑤−𝑖 ≠ 𝑤𝑖 . 

𝜙(𝑘) is the multinomial distribution with topic 𝑧𝑖 = 𝑘 over words. 𝑛−𝑖,𝑘
(𝑤𝑖)  is the number of words 

assigned to topic k without word 𝑤𝑖 . 𝑛−𝑖,𝑘
(.)  is the sum of all words assigned to topic k except the 

current word 𝑤𝑖  [47].  β is a smooth hyperparameter. |𝑉| is the size of vocabulary. 

In LDA model, the computation of the posterior distribution of the latent variables given a 

document is the most crucial and intractable inferential issue since the integral in the 

denominator 𝑃(𝑤|𝛼,𝛽) which is difficult because of the coupling between θ and β  parameters 

in the summation over hidden topics [41]. Thus, the approximate inference algorithms should be 

considered for LDA to approximate the posterior. By trading off speed, complexity, accuracy, 

and conceptual simplicity, the Gibbs sampling algorithm is used to estimate the parameters of 

topic-word distributions 𝜙 and topic distributions θ. Gibbs sampling, a form of Markov chain 

Monte Carlo which refers to a set of approximate iterative techniques designed to sample values 

from complex high-dimensional distributions, simulates a high-dimensional distribution by 

sampling on lower-dimensional subsets of variables where each subset is conditioned on the 

value of all others. For extracting a set of topics from a large corpus, Gibbs sampling is 

iteratively done and proceeds until the sampled values approximate the target distribution.   
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4.4 Adaptive TFIDF-LDA Weighting 

In the information retrieval field, TF-IDF weighting is very appropriate to represent the 

usefulness of terms in the retrieval process. It is commonly very useful to weigh each word in the 

text document according to how unique it is. But the performance of the conventional TF-IDF 

approach on the text classification problem is not very clear since TF-IDF weighting method 

captures the relevancy among words, text documents and does not leverage the information 

implicitly contained in the classification job to represent documents [39]. For enhancing the TF-

IDF weighting on the text classification, a new adaptive TFIDF-LDA weighting approach, which 

combines the word significance within documents and the estimation of a word importance for a 

particular classification task based on the LDA model, is created to improve the recall and 

precision of text classification. 

The generative LDA model assumes that each document is generated by a mixture of topical 

multinomial. A document is first generated by selecting a multinomial over topics zn given the 

Dirichlet prior 𝛼. Moreover, a topic for each term in the document is created from the document-

specific topic distribution. Then generate each word in the document by the discrete distribution 

for that topic. After repeating the Gibbs sampling machine learning steps, eventually the topic 

mixtures of each document is estimated by counting the proportion of words assigned to each 

topic within that document and the topic-word probabilities of generated word wn probabilities 

given certain topic zn are calculated by counting the proportion of words assigned to each topic. 

The topic-word probabilities from LDA model output inspired me to infer the LDA weighting, 

which shows the importance of each word in all topics or classes.  

Running the LDA Gibbs sampler on given documents, a set of topics and the probability of each 

word per topic can be extracted. In this paper, I will introduce a new weighting method, adaptive 
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TFIDF-LDA weighting, based on advanced TF-IDF weighting and LDA Weighting which is 

associated with the statistical estimation of the probability of each word per topic by LDA Gibbs 

sampler. 

How to derive the adaptive TFIDF-LDA weighting formula? 

For the LDA model, the input is a bag of word representation containing the number of times 

each words occurs in a document. After converting text file into proper LDA input data format, 

the Matlab Topic Modeling Toolbox 1.4 released by Mark Steyvers and Tom Griffiths [48] will 

be implemented to extract topics with LDA model. The following steps illustrate the extraction 

of the probability of each word per topic.  

First, we have to compile the term dictionary, which lists the unique words in your corpus, in 

order to the future writing of the resulting word-topic distributions.  

Then, the word indices in the dictionary and the document index of each word should be created. 

Moreover, set the number of topics as your predefined class number of the corpus, the hyper 

parameters β as 0.01 and α  as 50 divided by the number of topics. After 1000 times LDA Gibbs 

sampler iterations, you can get the probability list of each term per topic. 

Except the LDA model, the adaptive TFIDF-LDA weighting formula developed in this 

dissertation is also motivated by the basic theoretical formulae of information theory. As a 

branch of applied mathematics, electrical engineering, and computer science involving the 

quantification of information, information theory was first developed by Claude E. Shannon 

1948 [49] to find fundamental limits on signal processing operations including compressing data 

and on reliably storing and communicating data. Information theory is already applied and 

broadened to many different research areas such as statistical inference and natural language 
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processing. In this paper, the concept of entropy, a key notion of information, is used to quantify 

a measure of information how important each word in all topics should be.  

As the definition represented in the textbook of Elements of information theory by Thomas M. 

Cover 1991 [50], the concept of entropy is a measure of uncertainty of a random variable. Let xi 

and yj be random variables representing two distinct events from finite event spaces X and Y. 

Given 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 , the marginal distribution of a joint probability distribution 𝑃(𝑥𝑖 ,𝑦𝑖) is 

defined as: 

𝑃(𝑥𝑖) = � 𝑃(𝑥𝑖 , 𝑦𝑖)
𝑦𝑖∈𝑌

 

The amount of information, a basic quantity in information theory, is expressed as the log of the 

inverse of the probability [51]: 

𝑙𝑜𝑔 �
1

𝑃(𝑥𝑖)
� = −𝑙𝑜𝑔 𝑃(𝑥𝑖) 

The entropy H(X) of a discrete random variable X, which expresses the degree of uncertainty 

about which an event will occur in a future observation, is then defined by [48]: 

 𝐻(𝑋) = −� 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖)
𝑥𝑖∈𝑋

 (4.4.1) 

The base of logarithm is 2 and entropy is expressed in bits.  

Based on the above conventional information theory definitions in (4.4.1) and the word-topic 

distributions from LDA modeling in (4.3.2), the importance of each word in all topics is 

computed by a new LDA weighting as follows:  
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𝐿𝐷𝐴𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 = −�(𝑃(𝑤𝑖|𝑧𝑖 = 𝑘) + 𝜇 )log (𝑃(𝑤𝑖|𝑧𝑖 = 𝑘) + 𝜇) 

|𝑇|

𝑘=1

= −�𝑝𝑖𝑘𝑙𝑜𝑔𝑝𝑖𝑘

|𝑇|

𝑘=1

 

(4.4.2) 

where 𝑝𝑖𝑘 = 𝑃(𝑤𝑖|𝑧𝑖 = 𝑘) + 𝜇  is the probability of term i in a topic k . The smoothing 

parameter 𝜇  (0 < 𝜇 < 0.1)will be added into the formula for avoiding the zero probability 

estimation and 𝑝𝑖𝑘 > 0; 

|𝑇| is the total number of topics as your predefined class number of the corpus. 

Therefore, by integrating the word significance within documents illustrated by TF-IDF and the 

estimation of a word importance within classes by LDA modeling, a new weighting method, 

adaptive TFIDF-LDA weighting can be formulated according to the equations (4.2.2) and (4.4.2) 

as follows: 

 
𝑅𝑖𝑗 =

𝑓𝑖𝑗
�𝑉𝑗�

∙ �1 + 𝑙𝑜𝑔 �
|𝐷|

∑ 𝑓𝑖𝑗
|𝐷|
𝑗=1

�� −
1

|𝑇|�𝑝𝑖𝑘𝑙𝑜𝑔𝑝𝑖𝑘

|𝑇|

𝑘=1

 (4.4.3) 

where 𝑅𝑖𝑗 is the adaptive TFIDF-LDA weights showing the weight of  term i in a document j; 

k is the topic index. 

Then we can apply a weights cutoff to exclude the terms with relatively small adaptive TFIDF-

LDA weights in each document. The cutoff is usually determined empirically by your corpus 

from 2% to 3% or more. The experiment results in this paper show that the best classification 

accuracy was achieved by using cutoff around 3%. This adaptive TFIDF-LDA weighting method 

has the benefits to greatly reduce the feature dimension and meanwhile make feature selection 

robust.  
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To evaluate the performance of the feature selection by TFIDF-LDA weighting approaches, the 

commonly used F-measure metric, which is equal to the harmonic mean of recall and precision, 

is used in this paper. F-measure defined in the following Chapter 5.4 is widely used to evaluate 

text classification system because of the trade-off between recall and precision measures. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Comparison of TFIDF-LDA, Hybrid TFIDF and TFIDF Standard methods on first 

710 journal paper dataset as the number of labeled documents increases. 

Above Figure 4.1 shows the comparison of TFIDF-LDA, hybrid TFIDF and TFIDF Standard 

weighting methods on first five-class real life journal paper datasets, when we use the same 

semi-supervised training methods on these three solutions. The hybrid TFIDF method uses the 

exactly identical algorithms to preprocess the documents as the proposed TFIDF-LDA weights. 

As the number of labeled documents increases, the macro-F1 value of TFIDF-LDA weighing is 

higher than the hybrid TFIDF weighting and significantly greater than the conventional TFIDF 
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weighting. Moreover, there is much less features in the feature space of TFIDF-LDA weighting 

than other two methods associated with basic TFIDF weighting. More extensive experiments 

reported in Chapter 5 show that this new weighting method improves the classification accuracy 

and meanwhile reduce the feature dimension. 
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Chapter 5 

Semi-supervised Naive Bayes Training & Classification 

5.1 Mixture model frame 

The training data set is already prepared through previous feature extraction process. Then, in the 

next step, how to classify new documents into the predefined categories? For computing the 

probabilities of these documents belonging to each category, in this paper, a naive Bayes 

classifier based semi-supervised learning [52] will be conducted on the labeled and unlabeled 

training text data. The following mixture model assumes that word distributions in documents 

are generated by a specific parametric model and the parameters can be estimated from the 

training text data [53]. 

 

Figure 5.1: Mixture probability model frame. 
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5.2 Naive Bayes Classifier 

5.2.1 Introduction 

As a probabilistic classifier based on Bayesian theorem, naive Bayes classifier [54] is normally 

trained very efficiently in a supervised learning setting. The word naive in its name derives from 

the fact that the algorithm uses Bayesian techniques but does not take into account dependencies 

that may exist. With strong independence assumption, naive Bayes classifier assumes that given 

the class variable the presence of a particular feature of a class is unrelated to the presence of any 

other feature [29].  

Naive Bayes classifier [55] can often outperform more sophisticated classification methods with 

less effort, since its general-purpose, simple to implement, suited when the dimensionality of the 

inputs is high, and particularly it only requires a small amount of training data to estimate the 

necessary parameters for classification. 

5.2.2 Multinomial Naive Bayes Classifier  

Suppose that each document is assumed to be generated by the multinomial distribution,  𝑑𝑗 will 

be the documents notation, 𝑐𝑘 denotes the predefined categories, 𝑤𝑖 represents every term,  |𝑉| is 

the total number of terms in all documents or the vocabulary size, |𝐶| is the total number of all 

classes and the count of term 𝑤𝑖 in document 𝑑𝑗 is 𝑊𝑖𝑗. i is still the term index , j is the document 

index and k is the category index [56]. 

The conditional probability 𝑃(𝑤𝑖|𝑐𝑘) of term 𝑤𝑖 in given class 𝑐𝑘 equals to the count of term 𝑤𝑖 

in class 𝑐𝑘 divided by the total number of words in class 𝑐𝑘. If the training document 𝑑𝑗 is in the 

class 𝑐𝑘, the probability 𝑃�𝑐𝑘�𝑑𝑗� = 1, otherwise 𝑃�𝑐𝑘�𝑑𝑗� = 0. The smoothing parameter 𝜆 will 

be added into the formula of for the following conditional probability 𝑃(𝑤𝑖|𝑐𝑘) so as to avoid the 

zero probability estimation (0 < 𝜆 < 1). 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_independence
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𝑐𝑜𝑛𝑑𝑖_𝑝𝑟𝑜𝑏: 

 
𝑃(𝑤𝑖|𝑐𝑘) =

𝜆 + 𝑐𝑜𝑛𝑑𝑖_𝑡𝑒𝑟𝑚_𝑛𝑢𝑚
𝜆|𝑉| + 𝑡𝑒𝑟𝑚_𝑐𝑙𝑎𝑠𝑠_𝑛𝑢𝑚

=
𝜆 + ∑ 𝑊𝑖𝑗

|𝐷|
𝑗=1 𝑃�𝑐𝑘�𝑑𝑗�

𝜆|𝑉| + ∑ ∑ 𝑊𝑖𝑗
|𝐷|
𝑗=1 𝑃�𝑐𝑘�𝑑𝑗�

|𝑉|
𝑖=1

 (5.2.1) 

condi_term_num is the amount of every term in each class; 

term_class_num is the total number of terms in each class. 

For example, the term “student”, its condi_term_num is respectively 9 in class 1 and 4 in class 3. 

The total number of all terms |V| is 661. term_class_num, the total number of terms in class 1 

and 4 is separately 53 and 76. Thus, the conditional probability of the term “student” in class 1 

equals to _𝑝𝑟𝑜𝑏 = 0764.0
536611.0

91.0
=

+×
+ . 

The prior probability of each class is equal to the number of documents in this class 𝑐𝑘 divided 

by the total number of documents |𝐷|.  

𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏: 

 
𝑃(𝑐𝑘) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑠 𝑖𝑛  𝑐𝑙𝑎𝑠𝑠 𝑐𝑘
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

=
∑ 𝑃�𝑐𝑘�𝑑𝑗�

|𝐷|
𝑗=1

|𝐷|  (5.2.2) 

According to the multinomial naive Bayes model, we can get the posterior probability of every 

document as follows: 

 𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑏: 

 
𝑃�𝑐𝑘�𝑑𝑗� =

𝑃�𝑑𝑗�𝑐𝑘�𝑃(𝑐𝑘)
𝑃(𝑑𝑗)

=
𝑃(𝑐𝑘)∏ 𝑃 �𝑤𝑑𝑗,𝑖�𝑐𝑘�

�𝑑𝑗�
𝑖=1

∑ 𝑃(𝑐𝑘)|𝐶|
𝑘=1 ∏ 𝑃 �𝑤𝑑𝑗,𝑖�𝑐𝑘�

�𝑑𝑗�
𝑖=1

 (5.2.3) 

where 𝑤𝑑𝑗,𝑖 is the term 𝑤𝑖 in document 𝑑𝑗; 

𝑃 �𝑤𝑑𝑗,𝑖�𝑐𝑘� represents the conditional probability that a term 𝑤𝑖 will appear in document 𝑑𝑗 

given the class 𝑐𝑘; 
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�𝑑𝑗� is the total number of unique terms in the document 𝑑𝑖. 

The posterior probability 𝑃�𝑐𝑘�𝑑𝑗� tells us the probabilities of testing document 𝑑𝑗 belonging to 

every category with the class label 𝑐𝑘 . The category of the largest posterior probability 

𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑘∈𝑐𝑃�𝑐𝑘�𝑑𝑗� will be the predicted class of the testing documents. 

5.3 Naive Bayes+EM Algorithm on Labeled and Unlabeled Training Data 

Naive Bayes classifier usually works well in the standard supervised learning environment with 

the limited number of labeled training data. Due to the high cost of obtaining real world labeled 

documents, in this dissertation, naive Bayes classifier [57] [58] and Expectation-Maximization 

(EM) [59] [60] algorithm, an iterative method for finding maximum likelihood estimates of 

parameters in statistical models, are used together in a semi-supervised setting on both labeled 

and unlabeled training datasets [61].  

The basic EM algorithm for semi-supervised learning of a text classifier has the following steps. 

Firstly, a classifier is initially built from the given labeled documents. Then, EM algorithm 

successively runs two major procedures, the E-Step (Expectation) and M-step (Maximization).  

After the looped modifications of parameters, the improved naive Bayes classifier is employed to 

estimate the probabilities of every unlabeled document associated with each class. This is the E-

Step, first executed for each iteration, which estimates the posterior probability of unlabeled 

documents belong to each class according to the given posterior probability of labeled 

documents. The next following M-step re-estimate the parameter vector of the probability 

distribution of each class. A new naive Bayes classifier is iteratively reconstructed using all the 

mixtures of labeled and unlabeled training sets. The algorithm finishes when the distribution 

http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
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parameters converge or reach the maximum number of iterations [62]. Then, the final tuned 

classifier can be used to predict the unlabeled documents in the test sets into a predefined class. 

The SAS programming based on the naive Bayes classifier and EM algorithm [63] was created 

to train labeled and unlabeled training documents and classify the testing documents in my 

experiments. To formalize the semi-supervised classification with the naive Bayes classifier and 

EM algorithm, comparing with the previous description, the generative process restated in more 

detail as follows.  

1. First of all, since the documents were pre-classified as different classes, the initialization of 

prior probability of each class 𝑃(𝑐𝑘) is calculated as the division of number of documents in 

current class 𝑐𝑘 and the total number of documents as defined in equation (5.2.2). 

 2. Then, the initialized conditional probability of each term 𝑃(𝑤𝑖|𝑐𝑘) is estimated using equation 

(5.2.1) with smoothing parameter 𝜆 =0.2. 

3. Moreover, according to the initialized conditional probability and prior probability of each 

class, create and initialize posterior probability of every document as follows.  

𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑏_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝑒𝑥𝑝 (𝑙𝑜𝑔 (𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏) + ∑ 𝑙𝑜𝑔 (𝑐𝑜𝑛𝑑𝑖_𝑝𝑟𝑜𝑏))

∑(𝑒𝑥𝑝 (𝑙𝑜𝑔 (𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏) + ∑ 𝑙𝑜𝑔 (𝑐𝑜𝑛𝑑𝑖_𝑝𝑟𝑜𝑏)))
 

4. Next, we will calculate the iterative prior probability which is changed iteratively at each 

convergence of the EM algorithm. The iterative prior probability is computed using the 

following equation 

 
𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏2 =

∑𝑝𝑜𝑠𝑡_𝑝rob_𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∑∑𝑝𝑜𝑠𝑡_𝑝rob_𝑖𝑛𝑖𝑡𝑖𝑎𝑙

=
𝑠𝑢𝑚 𝑜𝑓 𝑝𝑜𝑠𝑡 𝑝𝑟𝑜𝑏𝑠 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑓𝑢𝑙𝑙 𝑝𝑜𝑠𝑡 𝑝𝑟𝑜𝑏𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 

(5.3.1) 

5. Whereafter, we calculate the iterative conditional probability. 
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𝑐𝑜𝑛𝑑𝑖_𝑝𝑟𝑜𝑏_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝜆 + 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑐𝑜𝑛𝑑𝑖_𝑡𝑒𝑟𝑚_𝑛𝑢𝑚 ∗ 𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑏_𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜆|𝑉| + ∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑐𝑜𝑛𝑑𝑖_𝑡𝑒𝑟𝑚_𝑛𝑢𝑚 ∗ 𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑏_𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
 

Weight is a factor used for the leverage of the large unlabeled training documents since several 

experiments indicate that unlabeled data are quite often detrimental to the performance of 

classifiers. 

When document 𝑑𝑗 ∈ unlabeled training documents, then weight=0.7; 

Otherwise, document 𝑑𝑗 ∈ labeled training documents, then weight=1. 

6. We can find the difference between two maximum number of prior probabilities prior_prob 

and the iterative prior probability prior_prob2 estimated in (5.3.1). If this difference less than 

your default threshold such as|(𝑚𝑎𝑥(𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏) −𝑚𝑎𝑥(𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏2)| < 0.001, then the 

algorithms converges to a stable classifier. This process of classifying the unlabeled data and 

rebuilding the naive Bayes model finally stopped at this time. 

7. After the EM iteration, we can use the final iterative conditional probability and prior 

probability tables of training documents to calculate the posterior probability of every testing 

document. And then according to the naive Bayesian classification algorithm, we can classify the 

testing datasets based on the class of the largest predicted posterior probability. 

𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑘∈𝑐𝑃�𝑐𝑘�𝑑𝑗�. 
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Chapter 6 

Model Evaluation and Experimental Results 

  
6.1 Confusion Matrix 

How good is the performance of predictive model? Confusion matrix [64] for each category is 

created to evaluate classifier accuracy of the classification model. The following Table 6.1 

depicts a confusion matrix of a three class problem with the classes 1, 2, and 3. The rows 

correspond to the known true class of the data, i.e. the labels of the documents and the columns 

correspond to the predictions made by the model. The diagonal elements TPi in the matrix 

illustrate the number of correct classifications made for each class, and the off-diagonal elements 

Eij show the number of documents that have not been labeled by the classifier to the category that 

should have [65]. 

Table 6.1: The confusion matrix for a three class classifier. 

  
  
  

  

Predicted Class Label 

1 2 3 

Known 
Class 
Label 

1 True Positive 
(TP1) 

Error(E12) Error(E13) 

2 Error(E21) 
True Positive 

(TP2) 
Error(E23) 

3 Error(E31) Error(E32) 
True Positive 

(TP3) 
 

For example, the following confusion matrix or actual-by-predicted Table 6.2 generated by base 

SAS programming gives us the whole picture of the errors made by the classification model. The 
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Table 6.2 from one of the experimental results for first 710 journal papers dataset is based on the 

condition that size of labeled data is 284 or 50% of the total 568 training data. The sum of 

diagonal elements 118 presents the total number of correct classifications. With 284 labeled 

training documents, proposed hybrid semi-supervised text classification reaches approximately 

83.1% accuracy. 

Table 6.2: Confusion matrix for the five-class text classification of 142 test journal papers with 

284 labeled training documents. 

                                 Table of true_class by pred_class 
 

                   true_class        pred_class 
 
                   Frequency‚ 
                   Percent  ‚ 
                   Row Pct  ‚ 
                   Col Pct  ‚       1‚       2‚       3‚       4‚       5‚  Total 
                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                          1 ‚      7 ‚      0 ‚      1 ‚      0 ‚      1 ‚      9 
                            ‚   4.93 ‚   0.00 ‚   0.70 ‚   0.00 ‚   0.70 ‚   6.34 
                            ‚  77.78 ‚   0.00 ‚  11.11 ‚   0.00 ‚  11.11 ‚ 
                            ‚ 100.00 ‚   0.00 ‚   3.70 ‚   0.00 ‚   2.04 ‚ 
                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                          2 ‚      0 ‚     37 ‚      0 ‚      1 ‚     15 ‚     53 
                            ‚   0.00 ‚  26.06 ‚   0.00 ‚   0.70 ‚  10.56 ‚  37.32 
                            ‚   0.00 ‚  69.81 ‚   0.00 ‚   1.89 ‚  28.30 ‚ 
                            ‚   0.00 ‚ 100.00 ‚   0.00 ‚   4.55 ‚  30.61 ‚ 
                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                          3 ‚      0 ‚      0 ‚     25 ‚      1 ‚      3 ‚     29 
                            ‚   0.00 ‚   0.00 ‚  17.61 ‚   0.70 ‚   2.11 ‚  20.42 
                            ‚   0.00 ‚   0.00 ‚  86.21 ‚   3.45 ‚  10.34 ‚ 
                            ‚   0.00 ‚   0.00 ‚  92.59 ‚   4.55 ‚   6.12 ‚ 
                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                          4 ‚      0 ‚      0 ‚      1 ‚     20 ‚      1 ‚     22 
                            ‚   0.00 ‚   0.00 ‚   0.70 ‚  14.08 ‚   0.70 ‚  15.49 
                            ‚   0.00 ‚   0.00 ‚   4.55 ‚  90.91 ‚   4.55 ‚ 
                            ‚   0.00 ‚   0.00 ‚   3.70 ‚  90.91 ‚   2.04 ‚ 
                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                          5 ‚      0 ‚      0 ‚      0 ‚      0 ‚     29 ‚     29 
                            ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚  20.42 ‚  20.42 
                            ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚ 100.00 ‚ 
                            ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚  59.18 ‚ 
                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                   Total           7       37       27       22       49      142 
                                4.93    26.06    19.01    15.49    34.51   100.00 
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There are a total of 24 misclassified documents. Two documents misclassified as third and fifth 

class respectively in the category one; one document misclassified as fourth and 15 misclassified 

as fifth class in category two; one document misclassified as fourth and 3 misclassified as fifth 

class in category three; and two documents misclassified as third and fifth class respectively in 

the category four.  

6.2 Performance Measures: Precision, Recall, Accuracy & F-measure 

In this dissertation, the performance of the proposed model is evaluated and compared with other 

methods using different measures. The precision, recall, accuracy and the F-measure including 

F1 score and macro-F1 average [66] are implemented to measure the accuracy of the 

classification model.  

6.2.1 Precision 

Precision, an important measure of the ability of a system to filter out irrelevant items and focus 

on potentially useful information, is defined as the proportion of the retrieved documents that are 

relevant. As a measure of the predicted classifier accuracy, precision in the following equation 

(6.2.1) is calculated by the column percent in the confusion matrix of Table 6.1 [67]. For 

example, Precision1 formula is the first column percent for Table 6.1 confusion matrix and 

estimates the accuracy provided that class-1 has been predicted. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

 (6.2.1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 =
𝑇𝑃1

𝑇𝑃1 + 𝐸21 + 𝐸31
 

Nowadays, precision is commonly no doubt a hot benchmark measure for evaluating the 

effectiveness of the internet search engines such as Google and Yahoo [68]. Poor precision with 

high recall particularly discourages the use of a search engine. Most of users are generally 

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
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impressed by precise search performances even with a relatively low recall rate. In the process of 

executing a web search solution, although precision sometimes may be difficult to measure for 

some terms due to the subjective opinions about results, high precision is still the main goal for 

searchers satisfaction and has more influence than recall [69]. 

6.2.2 Recall 

Recall, commonly also called as sensitivity, is a measure of the ability of a prediction model to 

successfully select instances of a certain class from a data set. Recall or the proportion of the 

relevant documents that are retrieved in the following equation (6.2.2) is calculated by the row 

percent in the confusion matrix of Table 6.1 [67]. For example, Recall1 formula is the first row 

percent for Table 6.1 confusion matrix and estimates how well a model finds every possible 

document in class-1. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠

 (6.2.2) 

𝑅𝑒𝑐𝑎𝑙𝑙1 =
𝑇𝑃1

𝑇𝑃1 + 𝐸12 + 𝐸13
 

Recall is especially important in research, security and compliance applications where the user 

cannot afford the loss of related information [69]. A very low rate of recall means that the 

algorithm is very conservative and many relevant documents in the testing corpus still retained 

unidentified [70]. In security and compliance applications, low recall may hurt the reputation of 

the system since the users are worried about the ineffective in correctly classifying the hidden 

unsecure contents.  

6.2.3 Accuracy 

As a measurement of the overall correctness of the model, accuracy is the percentage of the 

correct predictions. The classification accuracy of a model is evaluated as the number of 
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correctly classified testing samples divided by the total number of testing samples. In our 

experiments, accuracy of a test is simply gauged by summing across all correct classifications 

over total number of test sets in the equation (6.2.3): 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 (6.2.3) 

The goal of text classification is to minimize of the classification error on the test sets. The 

classification error is usually formulated by 1.0 minus the classification accuracy in (6.2.3). In 

some real world corpora, when most of the documents are in the non-relevant category, accuracy 

is not an appropriate measure for this kind of extremely skewed document classification case. In 

this circumstance, the measures of precision and recall, which mainly focus on the evaluation of 

the results of true positives (percentage of the correctly classified relevant documents) and false 

positives or a Type I error (percentage of mistakenly flagged irrelevant files), turn out to be other 

good alternatives to judge the model.  

6.2.4 F-measure 

There is always a tradeoff between precision and recall. Any algorithm needs to be tuned 

between the extremes of conservatism and liberalism so as to achieve fairly high precision and 

recall rates. Considering both the precision and recall in a single value, the F-measure merges 

them together and reflects the relative importance of these two measures.   

F-measure is generally defined as the following equation (6.2.4): 

 
𝐹𝛽 =

(1 + 𝛽2) ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 (6.2.4) 

Positive real parameter 𝛽 is used to tune the relative weight between recall and precision rates. 

When 𝛽=1, the formula (6.2.4) is adjusted to the following equation (6.2.5). We call this 

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
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harmonic mean of precision and recall in (6.2.5) as traditional F-measure or balanced F-score (F1 

score) [71]. 

F1 score given in formula (6.2.5) can be interpreted as a weighted average of the precision in 

(6.2.1) and recall in (6.2.2), where an F1 score reaches its best value at 1 and worst score at 0. 

 
𝐹1 = 2 ∙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 (6.2.5) 

The F1 score is a traditional way to mix and balance two precision and recall numbers in a single 

score. Moreover, the macro-F1 average, the simple average of all F1 values assuming each 

category gets the same weight in the average, is used to combine all the F1 values for different 

classes together.  

𝑚𝑎𝑐𝑟𝑜_𝐹1 =
1

|𝐶|�𝐹𝑘

|𝐶|

𝑘=1

 

where |𝐶| is the total number of all classes. 

The F- measure especially F1 score is usually widely used in the field of information retrieval 

and data mining for evaluating search, document classification performance and query 

classification results [72]. Macro-average method calculates the F1 score locally over each class 

first and then take the average over all categories [73]. The macro-F1 average can be used to 

evaluate the overall performances of the model across the sets of data. When the dataset varies in 

size, another micro-average measure may be a useful substitution. In micro-averaging, the 

micro-F1 measure is calculated globally over all categories. 
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6.3 Experimental Results 

6.3.1 Experiments on Corpus 1: Five Classes Journal Papers  

First experiments in this chapter use the real life corpus1 described in previous section 2.3.1 

consisting of 710 documents unevenly distributed across five distinct classes. The document 

classification task is implemented to classify new test papers into the predefined five classes 

including mathematics education (math), aerosol research (env), text mining (txt), nuclear 

research (nuc), and image processing (img). 

Followed the text preprocessing processes in Chapter 3, all abstracts of the 710 documents are 

extracted as SAS dataset first. The punctuations, 575 common English stopwords, mathematical 

notations and the words whose length less than three and larger than sixteen are deleted. The 

word suffices are then removed by the porter stemming algorithm. According to Zipf’s law based 

dimension reduction, if the occurrence of words in all documents is lower than 1%, such rare 

words are deleted.  Word counts of each document are scaled by TFIDF-LDA weighting in order 

to perform feature extraction and following semi-supervised learning experiments.  

In the semi-supervised text classification experiments, the datasets are randomly split into three 

nonoverlapping parts. Two parts are respectively training data and testing data based on the five-

fold cross validation methodology. The training data is randomly divided as a small labeled 

dataset and the remaining documents as the unlabeled training dataset. To verify whether the 

proposed method is effective when there is only a limited amount of labeled training data 

available, seven different experiments are performed based on the increasing labeled training 

data rates from 6%, 10%, 20%, 25%, 30%, and 40% to 50% of all training amount.  Moreover, 

for checking the sensitivity and performance of the proposed hybrid model, additional 
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comparative experiments of three text classification methods including the conventional semi-

supervised TFIDF weighting classification, TFIDF weight with our hybrid algorithm, and 

proposed TFIDF-LDA hybrid method are implemented. The comparative experimental results 

are tabulated the precision, recall and the F1 score of five classes as the labeling rate increases in 

the following Table 6.3.  

Table 6.3: Precision, recall and the F1 score for the corpus 1 five-class document classification 

with 142 test sets. 

Label Class Hybrid TFIDF-LDA TFIDF+Hybrid Algorithm TFIDF 
Recall Precision F1 Recall Precision F1 F1 

         

35 

1.math 0.777778 1 0.875 0.777778 1 0.875 0.8 
2.env 0.603774 0.888889 0.719101 0.509434 0.931034 0.658537 0.46376 
3.txt 0.862069 0.925926 0.892857 0.862069 0.757576 0.806452 0.84615 
4.nuc 0.545455 0.923077 0.685714 0.409091 0.9 0.5625 0.60606 
5.img 1 0.491525 0.659091 1 0.460317 0.630435 0.50434 

         

56 

1.math 0.666667 1 0.8 0.666667 1 0.8 0.71428 
2.env 0.660377 0.897436 0.76087 0.641509 0.944444 0.764045 0.61538 
3.txt 0.862069 0.961538 0.909091 0.862069 0.925926 0.892857 0.85714 
4.nuc 0.681818 0.9375 0.789474 0.681818 0.882353 0.769231 0.54545 
5.img 1 0.527273 0.690476 1 0.517857 0.682353 0.54368 

         

113 

1.math 0.666667 1 0.8 0.555556 1 0.714286 0.61538 
2.env 0.716981 0.95 0.817204 0.660377 0.972222 0.786517 0.62500 
3.txt 0.862069 0.892857 0.877193 0.896552 0.83871 0.866667 0.87273 
4.nuc 0.772727 0.944444 0.85 0.818182 0.9 0.857143 0.58824 
5.img 1 0.58 0.734177 0.965517 0.56 0.708861 0.54902 

         

142 1.math 0.777778 1 0.875 0.777778 1 0.875 0.61538 
2.env 0.679245 0.972973 0.8 0.641509 1 0.781609 0.65823 

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
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3.txt 0.862069 0.925926 0.892857 0.862069 0.925926 0.892857 0.88889 
4.nuc 0.863636 0.95 0.904762 0.863636 0.904762 0.883721 0.66667 
5.img 1 0.568627 0.725 1 0.54717 0.707317 0.56863 

         

170 

1.math 0.777778 1 0.875 0.777778 1 0.875 0.71429 
2.env 0.698113 0.973684 0.813187 0.641509 1 0.781609 0.65823 
3.txt 0.862069 0.925926 0.892857 0.862069 0.892857 0.877193 0.88889 
4.nuc 0.818182 0.947368 0.878049 0.863636 0.904762 0.883721 0.68571 
5.img 1 0.568627 0.725 0.965517 0.538462 0.691358 0.56863 

         

227 

1.math 0.777778 1 0.875 0.777778 1 0.875 0.8 
2.env 0.716981 1 0.835165 0.698113 1 0.822222 0.65822 
3.txt 0.862069 0.925926 0.892857 0.862069 0.862069 0.862069 0.87272 
4.nuc 0.863636 0.95 0.904762 0.863636 0.904762 0.883721 0.66666 
5.img 1 0.58 0.734177 0.931034 0.5625 0.701299 0.54902 

         

284 

1.math 0.777778 1 0.875 0.777778 1 0.875 0.8 
2.env 0.698113 1 0.822222 0.698113 1 0.822222 0.65822 
3.txt 0.862069 0.925926 0.892857 0.862069 0.925926 0.892857 0.88461 
4.nuc 0.909091 0.909091 0.909091 0.909091 0.833333 0.869565 0.70588 
5.img 1 0.591837 0.74359 0.931034 0.574468 0.710526 0.55769 

 

The first column “label” in the Table 6.3 indicates the amount of the labeled training documents. 

For each of the five classes, we can see from the table that the proposed model has 54.55% 

lowest and 100% highest recall rate and the range of precision rate is from 49.15% to 100%. 

Basic TFIDF weight integrated with proposed method can achieve recall rate from 40.91% to 

100% and 46.03% lowest and 100% highest precision value. Comparing the average F1 score for 

each class, the performance of standard TFIDF method is even worse than the modified TFIDF 

weight with hybrid algorithm. For example, when 284 documents are added as the labeled 

training data, the F1 score of proposed method achieves 90.91% at class-4, while that of modified 

TFIDF and basic TFIDF are 86.96% and 70.59% respectively. As the percentage of labeled 
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training documents increases, it can be observed from the table that the proposed hybrid TFIDF-

LDA semi-supervised approach performs better on the whole. The detailed comparison of 

corresponding macro-F1 curves for predicting five categories using three methods are plotted in 

the following figures.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Comparison of F1 score for class-1 mathematical education on corpus 1 

The above Figure 6.1 shows the specific comparison results of F1 score for class-1 mathematical 

education on corpus 1. The horizontal axis illustrates the percentage of labeled training data and 

the vertical axis represents the average classifier F1 score on test sets. The amount of labeled 

training data varies from 6% to 50% and three distinct colored curves show the different methods 

used on corpus 1. Comparing the classification F-measure curve, the proposed hybrid TFIDF-

LDA method is substantially better than the traditional TFIDF methods. Except 20% labeling 

rate, the F1 scores of class-1 for modified hybrid TFIDF and proposed hybrid TFIDF-LDA semi-
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supervised model are almost the same. The highest F1 score for class-1 mathematical education 

reaches 87.5%. This might due to the fact that the experimental data are real-world textual data 

which contains only a very few amount of labeled mathematical education documents. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Comparison of F1 score for class-2 aerosol research on corpus 1 

The above Figure 6.2 illustrates the comparison results of F1 score for class-2 aerosol research on 

corpus 1. The highest F1 score for class-2 reaches 83.5% using hybrid TFIDF-LDA semi-

supervised model. We can observe that, as the number of training data varies, the hybrid TFIDF-

LDA achieves better performance than other two baseline methods. However, the F1 score of all 

three methods fluctuate slightly as the rate of labeled data increases around 20%. This 

phenomenon might occur due to the random noise or the manually labeling error of the real-

world experimental data. 
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Figure 6.3: Comparison of F1 score for class-3 text mining documents on corpus 1  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Comparison of F1 score for class-4 nuclear research documents on corpus 1 
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Figure 6.5: Comparison of F1 score for class-5 image processing documents on corpus 1 

For the class-3 text mining, the Figure 6.3 shows more stable F1 score curves. The highest F1 

score for class-3 reaches 90.9% using hybrid TFIDF-LDA semi-supervised algorithm. We can 

find that, when the labeled training data number is small especially less than 10%, the hybrid 

TFIDF-LDA achieves much better performance than other two methods for text mining 

document classification.  

The above Figure 6.4 shows the F1 score curves for the class-4 nuclear research. The highest F1 

score for class-4 reaches 90.91% using hybrid TFIDF-LDA semi-supervised model. When less 

labeled training data is available, the advantage of hybrid TFIDF-LDA is still more obvious for 

the nuclear research documents.  
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Figure 6.5 shows the F1 score curves for the class-5 image processing document classification. 

The highest F1 score for class-5 reaches 74.36% using hybrid TFIDF-LDA semi-supervised 

algorithm, which demonstrates the effectiveness of proposed hybrid method in predicting 

document categories. 

 

 

 

 

 

 

 

 

 

Figure 6.6: Comparison of F1 score for all 5-classes document classification on corpus 1 using 

proposed hybrid TFIDF-LDA model 

The above Figure 6.6 summarizes the F1 score curve for all 5-classes document classification on 

corpus 1 using proposed hybrid TFIDF-LDA model. The class-5 image processing document 

classification has the relatively lower accuracy comparing other four classes. This might due to 

the similar cross contents between some image processing and mathematical education 

documents. Since some class-1 documents present the curriculum and mathematical teaching 

methods in the disciplines of mathematics, science, engineering, and computing.  
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Figure 6.7: Comparison of F1 score for all 5-classes document classification on corpus 1 using 

modified hybrid TFIDF model 

 

 

 

 

 

 

 

Figure 6.8: Comparison of F1 score for all 5-classes document classification on corpus 1 using 

standard TFIDF algorithm. 
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Comparing with the F1 score curves for all 5-classes document classification using modified 

hybrid TFIDF algorithm in Figure 6.7 and using standard TFIDF algorithm in Figure 6.8, it is 

easy to check from the picture that the proposed model is more stable even when the ratio of 

labeled to unlabeled documents is relatively small around 6%. The following Table 6.4 also 

summarizes the number of used features and average macro-F1 score for three different methods 

in details. 

Table 6.4: Comparison of three different document classification methods on the 5-classes 

corpus 1 using number of used features and macro-F1 score. 

Labeled 
TFIDF Standard TFIDF+Proposed 

model 
Proposed Hybrid 

TFIDF-LDA 

Features macro-F1 Features macro-F1 Features macro-F1 

6%(35) 7245 0.644066 4597 0.706585 1851 0.766353 
10%(56) 7852 0.655191 4595 0.739794 1942 0.789982 
20%(113) 7850 0.650073 4595 0.786695 1873 0.815715 
25%(142) 7819 0.679559 4575 0.828101 1650  0.839524 
30%(170) 7819 0.703149 4575 0.821776 1672  0.836819 
40%(227) 7781 0.709328 4575 0.828862 1991  0.848392 
50%(284) 7810 0.721284 4581 0.834034 1650 0.848552 

 

Each row indicates a specific experiment at a given percentage of labeled training data. 

Comparing proposed hybrid method with the most commonly used TFIDF base run on the 

corpus 1, the highest macro-F1 average of 84.86% and smallest amount of used features of 1650 

in the above table show the superiority of the hybrid semi-supervised document classification 

approach. Only labeling 6% training data using proposed model in corpus 1, we can achieve the 

similar or even much higher accuracy than labeling 50% training documents using TFIDF 

standard method. We can see that having more labeled training documents improves the 
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classification F-measure in most cases although when there is a little rise and fall at very few 

labeled rates, the differences of macro-F1 average are small. It can also be observed from the 

Figures 4.1 that as the count of the labeled training data increases in the document classification 

experiments for corpus 1, proposed hybrid TFIDF-LDA model and modified hybrid TFIDF 

method perform generally stable and much better than the standard TFIDF approach even when 

the labeling rate is small. 

6.3.2 Experiments on Corpus 2: Seven Classes Journal Papers  

Although the experimental results shown in Chapter 6.3.1 are quite encouraging for the 

document classification on the 5-class corpus 1, it would be even better to check the model 

performance with larger data sets with more classes. Thus the real world document collection 

corpus 2 described in previous section 2.3.2 is employed to make further experiments and 

comparative study. For maintaining the fair comparison, the corpus 2 consists of 1133 

documents unevenly distributed across seven different classes, including mathematics education 

(math), aerosol research (env), text mining (txt), nuclear research (nuc), image processing (img), 

transportation (tra) and robotics (rob). 

Using the same text preprocessing and feature selection procedures as the 5-class corpus 1, five 

experiments based on different amount of labeled training data are implemented to compare the 

performances of proposed hybrid model and the TFIDF base run. As the labeled training data 

rate increases from 6%, 10%, 20%, 25% to 50%, the document classification measurements 

containing precision, recall and the F1 score for each class in corpus 2 are presented in the 

following Table 6.5. 

 

 

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
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Table 6.5: Precision, recall and the F1 score for the corpus 2 seven-class document classification 

with 226 test sets. 

Label Class TFIDF-LDA TFIDF Standard 
Recall Precision F1 Recall Precision F1 

6%(58) 

1.math 0.222222 1 0.363636 0.444444 1 0.615385 
2.env 0.490566 0.866667 0.626506 0.264151 1 0.41791 
3.txt 0.724138 0.84 0.777778 0.793103 0.884615 0.836364 
4.nuc 0.318182 0.875 0.466667 0.318182 0.875 0.466667 
5.img 0.689655 0.909091 0.784314 0.37931 0.916667 0.536585 
6.tra 0.833333 0.875 0.853659 0.738095 0.939394 0.826667 
7.rob 0.904762 0.383838 0.539007 0.952381 0.310078 0.467836 

10%(96) 

1.math 0.111111 1 0.2 0.333333 1 0.5 
2.env 0.584906 0.861111 0.696629 0.283019 0.833333 0.422535 
3.txt 0.793103 0.958333 0.867925 0.758621 0.956522 0.846154 
4.nuc 0.5 0.916667 0.647059 0.363636 0.727273 0.484848 
5.img 0.689655 0.909091 0.784314 0.37931 0.6875 0.488889 
6.tra 0.833333 0.945946 0.886076 0.785714 0.970588 0.868421 
7.rob 0.928571 0.414894 0.573529 0.880952 0.305785 0.453988 

20%(193) 

1.math 0.222222 1 0.363636 0.333333 1 0.5 
2.env 0.641509 0.918919 0.755556 0.45283 0.888889 0.6 
3.txt 0.862069 0.961538 0.909091 0.827586 0.827586 0.827586 
4.nuc 0.681818 0.9375 0.789474 0.454545 0.833333 0.588235 
5.img 0.758621 0.956522 0.846154 0.413793 0.857143 0.55814 
6.tra 0.833333 0.921053 0.875 0.761905 1 0.864865 
7.rob 0.928571 0.464286 0.619048 0.833333 0.321101 0.463576 

25%(242) 

1.math 0.444444 1 0.615385 0.333333 1 0.5 
2.env 0.641509 0.944444 0.764045 0.45283 1 0.623377 
3.txt 0.827586 0.923077 0.872727 0.827586 0.96 0.888889 
4.nuc 0.727273 0.8 0.761905 0.454545 0.833333 0.588235 
5.img 0.689655 0.952381 0.8 0.448276 0.866667 0.590909 
6.tra 0.880952 0.902439 0.891566 0.809524 0.971429 0.883117 
7.rob 0.880952 0.474359 0.616667 0.904762 0.339286 0.493506 

50%(454) 1.math 0.555556 1 0.714286 0.555556 0.714286 0.625 
2.env 0.679245 0.947368 0.791209 0.471698 1 0.641026 

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
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3.txt 0.862069 0.961538 0.909091 0.827586 0.923077 0.872727 
4.nuc 0.818182 0.9 0.857143 0.5 0.846154 0.628571 
5.img 0.793103 1 0.884615 0.448276 1 0.619048 
6.tra 0.833333 1 0.909091 0.714286 1 0.833333 
7.rob 0.97619 0.518987 0.677686 0.952381 0.357143 0.519481 

 

Table 6.5 tabulates the results for each of the seven classes in details. We can observe that the 

proposed model has 97.62% highest recall rate and standard TFIDF method has 95.24%. 

Comparing the highest F1 score for each class, the proposed model can reach 90.91% and TFIDF 

baseline can get 88.89%. However, the Table 6.5 also presents that at the lowest percentages of 

labeled training data, the performances for the proposed model in class one and class three are 

inferior to the standard TFIDF baseline. The following Figure 6.9(a) shows the changes of two 

F1 score curves for class-1 mathematical education.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) class-1 mathematical education (math) 
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                 (b) class-2 aerosol research (aer)                         (c) class-3 text mining (txt)  

 

               (d) class-4 nuclear research (nuc)                  (e) class-5 image processing (img)  

 

                (f) class-6 transportation (tra)                              (g) class-7 robotics (rob)  

Figure 6.9: F1 score for each class on corpus 2 
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In the beginning, the F1 score for class 1 is lower and unstable using proposed methods due to the 

limited amount of the labeled class-1 training document. As the labeled training percentage 

increases, the performance of the proposed hybrid approach in class-1 improves rapidly at 25% 

labeled case and is better than the performance with the standard TFIDF baseline. We make 

closer analysis of the experimental results for each class from Figure 6.9. It shows that except the 

variability in class-1 and class-3, the proposed hybrid TFIDF-LDA semi-supervised approach 

generally outperforms the basic TFIDF method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.10: F1 score for all seven classes on corpus 2 using proposed hybrid model 

From the above overview of the classification performances of all classes using proposed hybrid 

model in Figure 6.10, the result of class-1 mathematical education is the worst. As we discussed 

in previous section, this might due to the fact that some class-1 documents have cross related 

contents with other classes. Since this is only one real world document collection and empirical 
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classification performance is likely to change substantially over different classes. After 

comparing the results under different categories, we then see the full story of our experiments 

using two approaches as shown in Table 6.6. 

Table 6.6: Comparison of two document classification methods on corpus 2 using number of 

used features, macro-F1 score and accuracy. 

Labeled 
TFIDF Standard Proposed Hybrid TFIDF-LDA 

Features macro-F1 Accuracy Features macro-F1 Accuracy 

6%(54) 10254 0.595345 57.5% 2566 0.630224 66% 
10%(90) 9723 0.580691 57.1% 2566 0.665076 70.8% 
20%(181) 9723 0.628915 62% 2566 0.736851 76.1% 
25%(226) 9703 0.652576 64.6% 2357 0.760328 77% 
50%(454) 10031 0.677027 65.5% 2610 0.820446 81% 

     

(a) macro-F1                                                   (b) accuracy  

Figure 6.11:  Comparison of macro-F1 and accuracy curves on corpus 2 

The detailed comparison of corresponding macro-F1  and accuracy curves for predicting seven 

classes are plotted in Figure 6.11. We see that in both two plots, the performances were 

improved when more labeled training data were added. The improvements of the basic TFIDF 
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methods are reasonably modest comparing with the substantial modifications from proposed 

hybrid TFIDF-LDA approach.  The proposed hybrid model reaches 81% accuracy on corpus 2 

while the TFIDF baseline achieves its highest accuracy at 65.5%. From the intensive 

experiments on the real life corpus 1 and corpus 2, we can find that proposed hybrid TFIDF-

LDA semi-supervised model provides a promising solution for real world document 

classification problem and offers higher accuracy with less human labeling effort. 

6.3.3 Experiments on Corpus 3: 20 Newsgroups 

Considering the training efficiency, the 20 Newsgroups dataset used in this dissertation randomly 

select 3000 documents with 6 categories from the benchmark 20 Newsgroups. There are three 

versions of the 20 Newsgroups data set and the 18828 documents version with "From" and 

"Subject" headers is used in the experiments. Using the same text preprocessing and feature 

selection procedures as previous two corpora, the proposed method and TFIDF base run are 

implemented in the corpus 3. As the data description given in Table 2.1, four different 

experiments are implemented on corpus 3 using increasing labeled training document rate from 

10%, 20%, 30% to 50% of total 2700 training documents.  

Since this dataset is collected from the internet, which are typically not very well written or 

edited by users and might have some random noise due to the typo and carelessness [74]. Some 

classes of 20 Newsgroups data are ambiguous and how to clearly extract the clusters of different 

classes is a difficult problem. Table 6.7 shows the experimental precision, recall and the F1 score 

for each class in corpus 3. As the amount of labeled training set increases, we can observe from 

the table that all measurements gradually improve. The proposed model has 50% lowest and 98% 

highest recall rate and the range of precision rate is from 51% to 100%.  

 

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
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Table 6.7: Precision, recall and the F1 score for the corpus 3 with 300 test sets. 

Label Class Proposed model 
Recall Precision F1 

10% 

1. comp.graphics 0.56 0.736842 0.636364 
2. comp.os.ms-windows.misc 0.72 0.75 0.734694 
3. comp.windows.x 0.5 0.595238 0.543478 
4. misc.forsale 0.7 0.795455 0.744681 
5. rec.sport.hockey 0.62 0.96875 0.756098 
6. sci.crypt 0.98 0.510417 0.671233 

20% 

1. comp.graphics 0.72 0.765957 0.742268 
2. comp.os.ms-windows.misc 0.78 0.866667 0.821053 
3. comp.windows.x 0.56 0.717949 0.629213 
4. misc.forsale 0.72 0.837209 0.774194 
5. rec.sport.hockey 0.66 0.970588 0.785714 
6. sci.crypt 0.98 0.532609 0.690141 

30% 

1. comp.graphics 0.74 0.787234 0.762887 
2. comp.os.ms-windows.misc 0.8 0.851064 0.824742 
3. comp.windows.x 0.64 0.8 0.711111 
4. misc.forsale 0.72 0.857143 0.782609 
5. rec.sport.hockey 0.66 0.970588 0.785714 
6. sci.crypt 0.98 0.544444 0.7 

50% 

1. comp.graphics 0.8 0.833333 0.816327 
2. comp.os.ms-windows.misc 0.82 0.911111 0.863158 
3. comp.windows.x 0.68 0.894737 0.772727 
4. misc.forsale 0.8 0.869565 0.833333 
5. rec.sport.hockey 0.7 1 0.823529 
6. sci.crypt 0.98 0.556818 0.710145 

 

The highest F1 score achieves 86.3% at class-2, when the percentage of labeled training data is 

50%. As shown in the following Table 6.8, a whole picture of model performance is tabulated 

using macro-F1 average and accuracy rate. The proposed model reaches 80% accuracy with 6870 

word features at 50% labeled training rate, while as shown in the following Table 6.8, the tuned 

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29
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TFIDF base run can get 70% accuracy with more features at the same amount of the labeled 

training for corpus 3.  

Table 6.8: Proposed document classification method on corpus 3 using macro-F1 score and 

accuracy. 

Labeled 
TFIDF Standard Proposed Hybrid TFIDF-LDA 

macro-F1 Accuracy macro-F1 Accuracy 

10% 0.501346 50% 0.681091 68% 
20% 0.611875 61% 0.74043 73.67% 
30% 0.655281 64.67% 0.761177 75.67% 
50% 0.703068 70% 0.803203 80% 

     
(a) macro-F1                                                   (b) accuracy 

Figure 6.12:  Comparison of macro-F1 and accuracy curves on corpus 3 

The above Figure 6.12 illustrates the accuracy and the macro-F1 measures for two methods. As 

the amount of labeled training data increases, the performance of proposed method is much 

better than the TFIDF base run. Hybrid semi-supervised model improves the classification 

accuracy and at the same time reduces the need for large amount of manually labeled training 

documents. Therefore, you will suffer less from the demand of scarce labeled training data in 
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real life projects. Incorporating unlabeled documents with desired labeled training documents 

together can generally improve the classification accuracy when the class boundaries of 

documents are relatively clear. Considering the tradeoffs in accuracy and labeling efficiency, 

proposed hybrid model can be a promising solution for real life text classification tasks. 

6.3.4 Comparative Experiments with Unsupervised, Supervised and Semi-

Supervised Learning 

Traditional supervised learning method uses only the labeled data to build classifiers. 

Unsupervised learning discovers the meaningful clusters in the raw unlabeled data. Can we use 

the unlabeled data to modify and learn a preferable classifier? Semi-supervised learning 

approach employs additional large amount of unlabeled data together with the labeled data to 

train and help create better classifier.  

To check whether the semi-supervised learning with both labeled and unlabeled data can 

improve the classification accuracy of the supervised learning using only the labeled data. 

Additional experiments on the 20 Newsgroups dataset were implemented. Four classes of 

documents including the comp.graphics, comp.os.ms-windows.misc, misc.forsale, and 

rec.sport.hockey are randomly selected from the 20 Newsgroups collection. 

In the experiments, a total of 980 newsgroup postings from four categories are used for the semi-

supervised learning model. This dataset has the same balanced amount of documents per class 

including total of 80 documents (20 each per class) as the test set, and 100 documents (25 each 

per class) as the labeled training set. The unlabeled training sets are respectively 200, 500 (125 

each per class) and 800 documents in three experiments. For the fair comparisons, a total of 188 

newsgroup postings from four categories including the exactly same balanced amount of 80 
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testing documents and 100 labeled training documents are used for the supervised learning 

approach. Without the additional unlabeled training data, the performance of supervised learning 

method is also evaluated and compared with the completely unsupervised learning approach 

using only the clustering of the same 80 test documents.  

Table 6.9: Comparative experimental results with Unsupervised, Supervised and Semi-

Supervised learning methods 

Methods Labeled Train Unlabeled Train Test Accuracy 

Unsupervised   80 55% 

Supervised 100  80 67.5% 

Semi-Supervised 

100 200 80 71.25% 

100 500 80 73.75% 

100 800 80 77.5% 

 

The above Table 6.9 shows the comparative experimental results with these three machine 

learning document classification methods based on the same preprocessing and proposed feature 

extraction algorithms. The classification performance on the selected 20 Newsgroups dataset 

using 100 labeled documents with additional unlabeled documents in the semi-supervised setting 

is more accurate than the supervised learning without the use of unlabeled data. Increasing the 

unlabeled training data in the experiments can also further improve the performance. The 

unsupervised learning model discovered four clusters in the data set resulting in a lowest 

clustering accuracy of 55%. 
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Unsupervised learning rarely has higher accuracy than the semi-supervised learning method 

since it uncovers the latent structures in the documents without the help of any labeled 

information and is very difficult to automatically get the exact desired conceptual categories. If 

there are inherent relationships between the labeled and the unlabeled data distribution [76], as 

illustrated in the experimental results of Table 6.9, the semi-supervised learning can beat over the 

supervised learning. With the small amounts of training data and relatively large amount of 

unlabeled training data, using semi-supervised learning normally can achieve more accurate 

classifiers than the supervised learning without the help of unlabeled training data.  

Good matching of problem structure with model assumption can improve the classifier 

performance [24] [75]. Several semi-supervised learning methods including the transductive 

support vector machines (TSVMs) and information regularization assume that the decision 

boundary should go through a low density region of the data domain [53] [76]. However, some 

researchers found that the unlabeled data cannot be always useful to improve the classification 

accuracy in some cases [24] [53] [77] [78]. At this time the sound theoretical explanation of the 

advantages of unlabeled data in the semi-supervised learning approach is difficult and is still an 

open question. 
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Chapter 7 

Conclusion and Future Work 

7.1 Experiment Findings  

In this dissertation, a hybrid semi-supervised text classification approach, integrating porter 

stemming, new adaptive TFIDF-LDA weighting, Zipf's law, multinomial Naive Bayes classifier, 

and expectation-maximization algorithm, is proposed for literature classification. After multiple 

experiments on the proposed new approach, the following major findings bring us a deeper and 

broader understanding of the text mining. 

1. The words could be excluded for being too short, too long or too common. A string whose 

length is less than three and larger than sixteen can be removed. 

2. If the occurrence of words is less than 1% of all documents in the corpus, deletion of such 

“rare words” can improve the classification accuracy.  

3. The proposed hybrid semi-supervised text classification model can greatly reduce the feature 

dimension and meanwhile make feature selection robust. 

4. The combination of multinomial naive Bayes classifier and EM algorithm allows the co-

training of label and unlabeled documents more straightforward and reliable especially for the 

high dimensional inputs and the small amount of training data. 

 

7.2 Future Work 

In my future research, the unlabeled training data are planned to extend which means the future 

experiments will be focused on the use of a relatively small amount of labeled data with a very 

large amount of unlabeled data. More experiments concerning the impact of IDF weighting on 

http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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the improvement of the empirical performance of LDA model will also be implemented. How 

can people effectively remove the less informative words will be always in the lists of the future 

work.  Doing text mining well for the documents is an on-going exploration. The methods used 

in this dissertation will keep updating and renewing in the future.  
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