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Abstract

Very little time has been devoted to the application of Dual Neural Networks and
advances that they might produce by utilizing them for conversion between network
architectures. By leveraging the efficiencies of the various networks, one can begin to
draw some conclusions about the unleashed power of network conversion. If we could
harness the advantages of multiple network architectures and somehow combine them
into one network, we could make great advances in ANNs. By introducing the DNN as a
tool for training, optimization, and architecture conversion, we find that this newly
presented architecture is key to unlocking the strengths of other network architectures.
Results in this study show that DNN networks have significantly higher overall success
rates compared to BMLP and MLP networks. In fact, the DNN architecture had either the
highest or the second highest success rate in all experiments. With the conversion
methods presented in this study, not only do we now have a path for network conversion
between BMLP, DNN, and MLP architectures, but also a means for training networks

that were previously untrainable.
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Chapter 1

Introduction

An enormous amount of research has been devoted to artificial neural network
(ANN) research over the past several decades. Much research has focused on training
algorithms such as Error Back Propagation (EBP) [1] [2], the Levenberg Marquardt (LM)
algorithm [3] [4], and the Neuron by Neuron (NBN) algorithm [5] [6] [7]. Other research
has seized opportunities to optimize training algorithms and network architecture. This
research has produced improvements in algorithms such as momentum [8] and flat-spot
elimination [9] for EBP. We have also seen the architecture progression from the multi-
layer Perceptron (MLP) to the bridged multi-layer Perceptron (BMLP) to the fully
connected cascade (FCC) architecture [10] and finally to dual neural networks (DNN)
[11]. All of this research has produced many advances in the methods used to train ANNs
as well as improvements in architecture design which have significantly improved
efficiency [11] [12] [13]. However, little time has been devoted to conversion between
network architectures and any advances that this might produce.

By looking at the efficiencies of the various networks, one can begin to draw
some conclusions about network conversion. Research has shown that for the Parity-N
problem an MLP network with one hidden layer requires N+1 neurons [14]. So, for the
Parity-11 problem, twelve neurons would be required in an 11-11-1 MLP architecture.

The number of neurons required for this same problem can be reduced by one if the MLP
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network has two hidden layers in an 11-5-5-1 MLP architecture. Figure 1.1 shows the
network for the Parity-11 problem using the 11-5-5-1 MLP architecture. With further
testing, we find that this is the smallest MLP network that can be trained for the Parity-11

problem.

NN
NG

Figure 1.1: MLP Network for Parity-11 Problem

If we move away from the mainstream architectures that utilize only sigmoidal
activation functions and look at a DNN architecture which utilizes neurons with both
sigmoidal and linear activation functions, we discover something quite surprising. We
find that if we use two linear neurons, one in each hidden layer, in a traditional MLP type
architecture, that we can reduce the number of required neurons for the Parity-11 problem
from 11 to 6. This DNN network can be seen in Figure 1.2 and has an 11-1(1)-2(1)-1
architecture where the number in parentheses represents the number of linear neurons in
that hidden layer. As seen in this network, an analytical solution was found for the
Parity-11 problem. By applying the input patterns for this network, one can see that it

yields the correct solution for each input pattern.



Figure 1.2: DNN Network for Parity-11 Problem

Analytically, the ANN seen in Figure 1.2 is not capable of solving the Parity-11
problem. So, what made this possible? As I studied the networks in Figures 1.1 and 1.2, I
could only conclude that what made the network in Figure 1.2 so much more powerful
was the addition of linear neurons. Simply changing the activation function of two
neurons from sigmoidal to linear transformed a traditional MLP network capable of
solving Parity-6 into a DNN capable of solving Parity-11. These results led me to ask
several important questions:

1) Can this type of result be duplicated with other network architectures?
2) Is there a way to directly convert between DNN and other architectures?
3) Can the use of DNNSs assist with the training of other network architectures?

Pondering these questions let me to consider that further investigation into DNNs
was warranted. Therefore, I decided to focus my research on answering these questions.
With this end in mind, the future chapters will aid one in understanding how we can
utilize DNNs as a tool for training, optimization, and architecture conversion.

Chapter 2 will discuss the current state of ANN research with regards to training,
optimization, architectures, and the many benchmarks used to test and analyze ANNS.

Chapter 3 will explain the motivation for my research of DNNs. Chapter 4 will cover
3



conversion methods between architectures. Chapter 5 will compare the results of the
various network architectures. Finally, Chapter 6 will provide a summary and conclusion

of the research.



Chapter 2

Overview of ANN Research

ANNS are currently used in many different applications. We likely see them every
day, but don’t realize that they are there. When you watch the weather forecast on the
news or view it on the Internet or you mobile phone, few of us realize that ANNs were
likely used to generate the forecast [15] [16] [17]. In industry, ANNSs are used to control
induction [18] [19] [20], permanent magnet [21] [22], and stepper motors [23].
Additionally, they are used in robotics [24], motion control [25], battery control [26], job
scheduling [27], and networking [28]. Some more advanced ANNs are used in highly
complex, dynamic systems such as oil wells [29] [30]. Although their uses vary, you can
see that ANNs are found almost everywhere.

As mentioned in the introduction, much research has been performed on ANNs
over the past several decades. So, what is the current state of ANN research with regards
to training, optimization, and architectures? Each of these areas will be addressed
separately in this chapter.

2.1 ANN Training Algorithms

The three main training algorithms that exist today are the Error Back Propagation
(EBP) algorithm, the Levenberg Marquardt (LM) algorithm, and the Neuron by Neuron
(NBN) algorithm. Each of these algorithms has benefits and drawbacks and they have all
seen modifications and improvements over the years. A discussion of each algorithm
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with its benefits and drawbacks will be discussed in this section while the optimizations
to each algorithm will be discussed in the next section of this chapter.

2.1.1 EBP Algorithm

The EBP algorithm is probably the most widely used and popular algorithm for
ANN training. EBP is a supervised learning method based upon a generalization of the
delta rule. This algorithm was developed in 1969 by Arthur E. Bryson and Yu-Chi Ho
[31], but was not applied in the context of neural networks until 1974 [1] [2]. Its “re-
discovery” in 1974 caused a so-called “renaissance” in the field of ANN research. The
benefit of this algorithm is that it has the ability to reduce learning errors to very small
values. However, this algorithm has many drawbacks [10]. Generally speaking, EBP is a
very inefficient algorithm that is computationally intensive. Although it can be very
successful at training an ANN to a give training set, there is no guarantee that the
resulting network has good generalization abilities. Another drawback of this algorithm is
that its solution search process only follows the gradient, leaving it vulnerable to being
trapped in local minima.

2.1.2 Levenberg Marquardt Algorithm

The Levenberg Marquardt algorithm is a second order algorithm that interpolates
between the Gauss—Newton (GNA) and EBP algorithms. The LM algorithm applies a
Jacobian matrix to evaluate the change of the gradient. This algorithm has two main
benefits. First, it typically provides much better results than the EBP algorithm. And
second, it is very fast and more efficient than the EBP algorithm. However, the LM
algorithm also has several drawbacks. First, computation of the Jacobian matrix can

become an impediment if the number of input patterns exceeds a few hundred [4].
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Second, this algorithm only finds a local minimum, not a global minimum. So, in
situations where there are multiple minima, the algorithm will only find a solution if the
initial guess is close to the final solution. Third, the algorithm functions in such a way
that it only works on MLP network architectures. It does not have the ability to function
on arbitrarily connected networks. Finally, for very large network architectures which
have a large number of neurons and weights, the computational load is very heavy and
can be taxing to even the most current computers.

In spite of its drawbacks, the LM algorithm was a major step forward in ANN
training. It not only provided more efficient results in faster times, it also gave
researchers an additional training algorithm option when the widely used EBP algorithm
failed to converge to a solution.

2.1.3 Neuron by Neuron Algorithm

One of the biggest drawbacks of both the EBP and LM algorithms is that both
only work on MLP architectures. Even the very popular MATLAB Neural Network
Toolbox’s [32] first and second order training algorithms only work on MLP networks.
This was a very limiting factor which gave researchers no other choice but to use MLP
architectures and any results obtained were usually less than satisfactory [33]. Both the
architectural and size limitations were solved by the development of the Neuron by
Neuron (NBN) algorithm [5] [6] [7]. A fully functioning software package that
implements the NBN algorithm along with EBP, LM, and other variations is available
online as the Neural Network Trainer [34] [35]. This particular algorithm has two main
benefits. First, it can work on all of the previously discussed network architectures: MLP,

BMLP, FCC, and DNN. Second, it supports several types of neuron activation functions
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such as unipolar, bipolar, and linear. The NNT software allows a user to define new types
of activation functions. The only know drawback of this algorithm is that it has some of
the same vulnerabilities as the LM algorithm in that it can get stuck in local minima and
like other algorithms, is not guaranteed to produce a solution.

2.2  ANN Algorithm Optimization

The previous section discussed the development of the three main training
algorithms used today in ANN research. As with most things, engineers are always
looking for ways to improve things. This is true of the EBN, LM, and NBN algorithms.
This section will discuss the optimizations developed over the years for the mentioned
algorithms as well as architectural optimizations.

2.2.1 EBP Optimizations

The EBP algorithm is the oldest of the algorithms that we have discussed, so it
will probably come as no surprise that this algorithm probably has the most
optimizations, or enhancements. Over the many years that EBP has existed, many
improvements have been developed to solve some of the algorithm’s inherent problems.
We will discuss some of the more well known optimizations.

2.2.1.1 EBP with Momentum

In this optimization to EBP, the momentum term is added to the weight update
rule to speed up the process of learning. The momentum term is added to the weight
update equation to prevent the system from converging to a saddle point or local
minimum. The momentum, typically given the Greek letter alpha, is a value between 0
and 1. The momentum term, which is the product of alpha and the change in weight that

occurred in the previous weight update, is added to the current weight update. By adding
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this momentum term, weight changes can be kept on a faster and more even path to a
solution [36].

Addition of this momentum term to the weight update equation doesn’t come
without risks. One must be careful when setting this parameter. While a high alpha can
help increase the speed of convergence, it can also cause instability in the system with a
risk of overshooting the minimum. At the other end of the spectrum, a low alpha is not
guaranteed to ovoid local minima and it will slow the training process. While the addition
of momentum improves EBP, the selection of alpha is more of an art than a science.

2.2.1.2 EBP with Stochastic Learning Rate

As a deterministic decent gradient algorithm, EBP has a limitation on speed and
convergence. These limitations are mainly due to large plateaus on the surface of the
error function as well as the potential presence of several local minima on that same
surface. As the size of the network and number of weights increase, these problems are
magnified. To overcome these problems, researchers have suggested adding a stochastic,
or random, process to the learning algorithm [37].

In 1988, Kolen suggested restarting the entire learning process with random
weights every time the algorithm failed to converge at a solution [38]. Starting over every
time the algorithm fails to converge is very impractical and could be very inefficient.
Instead, other researchers suggested that the stochastic element be added in real-time in
parallel with the deterministic weight changes rather than at the end of a training cycle.
The idea behind this procedure is to somehow avoid or get out of local minima and
achieve better solutions [39] [40]. It was shown that any of the stochastic modifications

improved either the convergence quality or speed.
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2.2.1.3 EBP with Flat-Spot Elimination

If an ANN has high neuron gain or has neuron states that are well defined and far
from the thresholds, back-propagation convergence is typically very slow. In both of
these cases, the gradient calculated for the back-propagation algorithm are very small
making it difficult for errors to propagate back through the network and effect
meaningful change in weights. Under these circumstances, “flat-spots” are encountered
and the output of the network can be entirely wrong while producing a small SSE. At
least three different methods were employed by different researchers to eliminate these
“flat-spots” and increase the speed of convergence. One method added an offset to the
activation function [41]. Another used a scaled linear approximation of the sigmoidal
function for the error calculation [42]. The last method uses a logic OR in the calculation.
Depending on whether the error is large or small, one of two effective gradient
calculations is used [9]. All three modifications yielded improvement in convergence.

2.2.1.4 RPROP

RPROP, or Resilient PROPagation, was developed to deal with the inherent
issues introduced with EBP with momentum. As you will remember, the momentum
parameter is chosen by the individual training the network. If this parameter is too small
or too large, it will cause convergence issues. The selection of this parameter value
became more of an art than a science and was different for every network.

To counter the problems just listed, RPROP introduces an individual weight
update value which solely determines the change in that weight. This adaptive update
value for each weight changes during the learning process based upon its local sight on

the error function. In general terms, the weight update value is adjusted as outlined here.
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If the partial derivative of the weight changes signs, then the previous update was too
large and jumped over a local minimum. In this case, the weight update value is
decreased. On the other hand, if the partial derivative of the weight does not change
signs, then the previous update was too small and the weight update value is slightly
increased.

Once the weight update values are all determined, the actual weight update
follows this guideline. If the derivative is positive, meaning increasing error, then the
weight is decreased by the weight update value. If the derivative is negative, meaning
decreasing error, then the weight is summed with the update value. The only exception to
this update is when the partial derivative changes signs, meaning that a local minimum
was jumped. In this instance, the previous weight change is reversed and the process
continues [43].

The success of this algorithm stems from the fact that there is individual and
direct weight adaptation during each training cycle. Essentially, it eliminates the error
caused by the “what’s good for one is good for all” mentality.

2.2.1.5 QUICKPROP

The QUICKPROP algorithm [44] is similar to the RPROP algorithm discussed in
the last section. In developing this algorithm, Fahlman makes two risky assumptions: 1)
He assumes that the error versus weight curve is an upward pointing parabola; and 2) The
changes in each individual weight do not affect the other weights. The goal of the
algorithm is to move downward in the parabola until the minimum is reached. To do this
the error derivative calculated during the previous iteration are stored and compared to

the current error derivative. For each weight, we use the previous and current error slopes
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coupled with the weight-change between the points at which these slopes were measured.
This information allows us to determine a parabola for that weight. With two known
points on the parabola, we are now able to jump directly to the minimum point of this
parabola.

In practice, the algorithm deals with three different cases: 1) If the current slope is
somewhat smaller and in the same direction as the previous slope, then the weight is
moving in the right direction. How much the weight is changed depends on the ratio of
slope change to weight change in the last iteration; 2) If the current slope is the opposite
direction (sign changes) of the previous slope, it means that the previous weight change
caused the weight to jump over the minimum. The weight is now on the opposite side of
the parabola. In this case, the weight is changed in the opposite direction in an amount
that puts it somewhere in between the previous two weights; and 3) In the final case, the
current slope is either the same or larger than the previous slope. In this case, a parameter
called the “maximum growth factor” is implemented to prevent a large step in the wrong
direction. This factor is multiplied by the previous step size and the weight is moved by
that amount.

While QUICKPROP is a significant optimization over standard EBP, it still can
suffer from the flat-spot problem. Thus we see that no algorithm is perfect.

2.2.2 Levenberg Marquardt Optimizations

Like the EBP algorithm, the LM algorithm has also seen a number of
optimizations, or enhancements. Over the many years that the LM algorithm has been
used in ANN training, many improvements have been developed to solve some of the

algorithm’s problems. We will discuss some of the more well known optimizations.

12



2.2.2.1 Neighborhood Based Levenberg Marquardt

The LM algorithm has been extensively applied as a neural-network training
method. In addition to only operating on MLP networks, it requires a very large overhead
in memory and number of operations when the network to be trained has a large number
of adaptive weights. The Neighborhood Based Levenberg Marquardt (NBLM) algorithm
was inspired by the way that biological brains seem to act; letting different groups of
neurons specialize in different tasks [45].

This algorithm optimization works by dividing the ANN into different groups or
neighborhoods and considers each group an independent learning unit. The algorithm
then allows weight adaptation to take place in each neighborhood independent of other
neighborhoods. The process for the algorithm has three steps:

1) Define the network structure and initial weights, and then assign neighborhoods.
2) Select a neighborhood to be trained and then train it with the LM algorithm.
3) Evaluate SSE to see if the training error was reached. If not, repeat steps 2 and 3.

The results of the NBLM algorithm showed a significant reduction in memory
and time requirements for computations. This was most noticeable in very large
networks. The gains in training times were found to considerably depend upon the
neighborhood size and selection; however, no general guidelines for selecting
neighborhoods have been outlined by the developers [46].

2.2.2.2 Modified NBLM

Several years following the development of the NBLM algorithm, its original
developer worked with other researchers to make additional improvements to the

algorithm. The researchers made one simple modification. They implemented a locally
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adaptive learning coefficient for the LM algorithm in each defined neighborhood. The
results of testing this modified algorithm showed statistically significant improvements in
learning times over the original NBLM algorithm [47].

2.2.2.3 Improved Computation for LM

As previously discussed, one of the major limitations of the LM algorithm is how
taxing the computational requirements are. In this modification to the LM algorithm, the
researchers developed a method to compute a Quasi-Hessian matrix and gradient vector
directly without utilizing Jacobian matrix multiplication and storage. This new method
solves the memory limitation problem for LM training [6].

To accomplish this exploit, only elements in the upper/lower triangular array need
to be calculated. Therefore, the Quasi-Hessian matrix, Q, can be calculated as an
approximation of Hessian matrix:

H=Q=J"J 1)
Similarly, the gradient vector can be calculated as follows:
g=J"e (2)
Huge computational savings are achieved as a result of the Quasi-Hessian matrix, Q, and
gradient vector, g, being calculated directly without the necessity of calculating and
storing Jacobian matrix, J [6].

2.2.2.4 LM for Arbitrarily Connected Neural Networks

Another major limitation of the LM algorithm is that it only worked for MLP
networks. As mentioned previously, a C++ implementation of the NNT [35] [48] was
developed to assist researchers in ANN training research. This tool implements two

different versions of the LM algorithm: 1) Traditional forward-backward computation;
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and 2) A newly developed forward-only computation. Additionally, these new
implementations can not only handle MLP networks, but also arbitrarily connected
networks (ACN).

This is a momentous step forward for the LM algorithm as researchers are no
longer tied to using MLP networks when utilizing the LM algorithm for training and
testing purposes.

2.2.3 NBN Optimizations

The NBN algorithm is relatively young in comparison to the EBP and LM
algorithms. In spite of its youth, this algorithm has also seen a few improvements and
optimizations. In addition to its traditional forward-backward computation algorithm, two
additional optimizations have been developed.

2.2.3.1 NBN Forward Only

The designers of the NBN algorithm [34] [49]and NNT implemented a
modification to the standard NBN algorithm that improves its speed. This modification
utilizes a forward-only computation capable of handling ACNs. Due to the reduced
computational requirements, the NBN forward only algorithm is significantly faster than
the standard NBN algorithm. This increased speed is even more noticeable on ANNs with

multiple output neurons.

2.2.3.2 NBN Improved Algorithm

The most recent optimization to the NBN algorithm is based upon the NBN
forward only algorithm just described. This optimization focuses on improving
computational speed. To accomplish this goal, the algorithm is designed to only invert
the Hessian matrix one time per iteration, reducing computational overhead.
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Theoretically and in experiments, this algorithm is able to compute faster than the LM
and NBN algorithms which need to invert the Hessian matrix several times per iteration.
Additionally, minor modifications were made to improve convergence [34].

2.3  ANN Topologies

There are four different ANN architectures that are commonly used today. They
are MLP, BMLP, FCC, and DNN. Each of these architectures has advantages and
disadvantages. While the architectures themselves have not changed over time, a
significant amount of research has been done to help determine optimal network size. We
will discuss each architecture separately.

231 MLP

A MLP network is a feedforward ANN that maps a set of input patterns to a set of
output patterns. It is made up of a given number of hidden layers and an output layer. All
inputs are connected to all neurons in the first hidden layer and all neurons outputs in the
hidden layers are connected to the inputs of neurons in the next layer. Figure 2.1 shows a
MLP network with one hidden layer with a 2-5-1 architecture. Figure 2.2 shows a MLP

network with two hidden layers with a 2-3-2-1 architecture.
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Figure 2.1: MLP network with 2-5-1 architecture

5 5

Figure 2.2: MLP network with 2-3-2-1 architecture

As will all networks, the first question one usually asks is, “What is the power of
this network?” Or, in other words, how big of a problem is a given network able to solve.
For purposes of this comparison, we will use the Parity-N problem as a benchmark for
comparing the networks. For a MLP network with one hidden layer, like that seen in
Figure 2.1, the total number of neurons, J, required to solve the Parity-N problem is:

J=N+1 (3)
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Although only two inputs are shown, we can conclude that the network in Figure 2.1 is
capable of solving the Parity-5 problem [11] [10]. Essentially, the number of neurons in
the first and only hidden layer is equal to the parity number, N.

For a MLP network with multiple hidden layers, the largest Parity-N problem that
a network can solve is defined by:

N=(h+1)+ o+ 1)+ ...+ (hy+1) -1 (4)
where h,, represents the number of neurons in the n™ hidden layer and it is assumed that
there is a single output neuron. Based upon this, we can conclude that the MLP network
in Figure 2.2 is capable of solving Parity-6.

2.3.2 BMLP

A BMLP network is also a feedforward ANN that maps a set of input patterns to a
set of output patterns. It is made up of a given number of hidden layers and an output
layer. All inputs are connected to all neurons in the entire network. Additionally, all
outputs from neurons in the hidden layers are fully connected to all neurons in forward
layers, including the output layer. Figure 2.3 shows a BMLP network with two hidden

layers and a 2=3=2=1 architecture.

Figure 2.3: BMLP network with 2=3=2=1 architecture
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For a BMLP network with multiple hidden layers, the largest Parity-N problem
that a network can solve is defined by [10] [14]:

N=2(hy + 1)(h,+1) ... (hy +1) -1 (5)
where h, represents the number of neurons in the n™ hidden layer and it is assumed that
there is a single output neuron. Based upon this, we can conclude that the BMLP network
in Figure 2.3 is capable of solving Parity-23. As can be seen by comparing the networks
in Figures 2.2 and 2.3, the only difference is that bridged connections are added to the
network in Figure 2.3. These bridged network connections significantly increase the
power of this network by nearly a factor of 4.

233 FCC

The FCC network is actually a special case of the BMLP network with only a
single neuron in each hidden layer. Once again, all connections are fully connected to all
neurons. Figure 2.4 shows a FCC network with two hidden layers and a 2=1=1=1
architecture. Research has shown that the largest Parity-N problem that a FCC network
can solve is defined by:

N=2"-1 (6)
where n is the total number of neurons in the network [10] [11] [14]. Based upon this, we
can conclude that the FCC network in Figure 2.4 is capable of solving Parity-7. Notice
that this answer also agrees with equation (5) above. This is due to the fact that FCC is a
special case of BMLP and therefore the calculation in equation (5) also applies to FCC.

However, the calculation in equation (6) is simplified and easier to use.
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Figure 2.4: FCC network with 2=1=1=1 architecture

2.34 DNN

A majority of research to date looks at neural networks as if they only contain a
single type of neuron. What if we looked at ANNs differently and allowed them to have
different types of neurons, each with a different function. The use of 2 different types of
neurons in the same architecture falls under a class of architectures called Dual Neural
Networks (DNN). Many researchers have looked to DNNSs to solve specific problems
[50] [51]. Figure 2.5 shows a diagram of the human brain, outlining the different sections
of the brain and the functions or specialization that occurs in that section of the brain. If
we apply this methodology on a small scale to DNNs by using only two different types of
neurons, we can construct a very powerful and versatile network structure. A majority of
DNN s to date in the literature are very specialized, using a myriad of different

components such as fuzzy devices, summers, logic blocks, and countless others.
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Figure 2.5: The different parts and functions of the human brain

This research will focus on a simple DNN design that utilizes standard linear and non-
linear neurons. Figure 2.6 shows a simple DNN network with a 2-1(2)-1(1)-1
architecture. Note that the numbers in parentheses represent the number of linear neurons

in that hidden layer.
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Figure 2.6: DNN network with 2-1(2)-1(1)-1 architecture

Extensive research has not been performed by outside researchers on this specific
architecture, however, based upon its architecture; we can draw some conclusions

regarding the power of the network. One may notice that the network in Figure 2.6 looks
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very similar to the FCC network in Figure 2.4. Likewise, if you look at the DNN network

Figure 2.7: DNN network with 2-3(3)-2(1)-1 architecture

in Figure 2.7 that has a 2-3(3)-2(1)-1 architecture, you will notice that it is also very
similar to the BMLP network in Figure 2.3. In both cases, we see that the bridged
connections are removed from the BMLP and FCC networks and they are replaced with
linear neurons and non-bridged connections.

For purposes of determining the power of these networks for the Parity-N
problem, we will make the assumption that we can treat the networks in Figures 2.6 and
2.7 like BMLP networks and use equation (5) to determine their power. In doing this, we
will only consider the non-linear neurons in each hidden layer for purposes of
calculations. By doing this, we find that the DNN network in Figure 2.6 is capable of
solving Parity-7 and the network in Figure 2.7 is capable of solving Parity-23. This can
be verified by training both networks with the specified parity data set. What is not know

is if these DNNs possess even greater power than the BMLP equation shows. However,
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we do know that the BMLP equation does give us a minimum power value for DNN
networks [11].

2.4  Benchmark Data Sets Used for Training and Comparison

When performing research with Neural Networks, one must have pre-defined sets
of data to use for training, testing, and comparison. These benchmark data sets must
provide a vigorous and robust means for validating and comparing Neural Networks.
This section will discuss many of the benchmarks used in this and other research. In order
to compare results between different Neural Network architectures, there must be
benchmark data sets used for comparison and validation. The general method is to select
a benchmark data set and train a given network architecture to that set. Then, perform the
network conversion. Following the conversion, validate the newly created network with
the same data set. If the network conversion is correct, the results for all inputs will be
identical on both networks. The conversions described later in this work will use one of
four baseline data sets: 1) Simple 3-D Surface; 2) 3-D Surface; 3) Two Spiral
Classification; 4) Parity-N problems; and 5) Checker-N problem.

2.4.1 Benchmark #1A - Simple 3-D Surface

The Surface seen in Figure 2.8 results from a set of 25 ordered pairs obtained
from the function:
z = ye [at—x0)*+B(y=y0)*] (7)
where X,y € (0, 1, 2, 3, 4) , Xo=4, Yo=3,and y=4. This particular data set yields a rough 3-D

surface.
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Figure 2.8: Simple 3-D Surface

X Axis Value
0 1 2 3 4
o 0 0.00403 | 0.01152 | 0.02439 | 0.03825 | 0.044436
'E 1 0.04911 | 0.14034 | 0.29709 | 0.46594 0.54134
2 2 0.22009 | 0.62895 1.3315 2.0882 2.4261
; 3 0.36287 1.037 2.1952 3.4428 4
4 0.22009 | 0.62895 1.3315 2.0882 2.4261

Table 2.1: Simple 3-D Surface Data Set
2.4.2 Benchmark #1B - 3-D Surface

The Surface seen in Figure 2.9 results from a set of 1600 ordered pairs obtained
from function 7. However, in this implementation, X,y € (0, 0.2564, 0.5128, ..., 9.7436,
10) , Xo=9, Yo=5,and y=1. As this surface is created from a more extensive data set, it
provides a much more rigorous challenge for training. The data set consists of 1600

ordered pairs with unique outputs derived from a mathematical function.
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Figure 2.9: 3-D Surface
2.4.3 Benchmark #2 — Two Spiral Classification

The Two Spiral Classification seen in Figure 2.10a results from a set of data
consisting of two input values (X and Y) and an output (Z) which is either a +1 or -1
classification. This set of data creates two spirals that are intertwined. The data set
consists of 382 ordered pairs with either a +1 or -1 which was generated from the
MATLAB code seen in Figure 2.10b. Values for Z are classifications of either -1 (blue)

or +1 (red).
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clear all; format compact; format short;
=2; Y%multiplier for number of patterns if m=1 then np=194

n=m%*96;
j=0;
fori=0:n

angle =1*3.1415926/(m*16.0);
radius = 6.5*%(104*m-1)/(104*m);
x = radius*sin(angle);
y = radius*cos(angle);
=L
a(j,: =[xy, 1]
=L
a(j’:):['xa'y:'l]
end
figure(1); clf;
scatter(a(:,1),a(:,2),7,a(:,3), filled’);
axis([-7 7 -7 7]);
whos

(b)

Figure 2.10: Two Spiral Classification — (a) Graph; and (b) MATLAB code
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2.4.4 Benchmark #3 — Parity-N Problems

Parity-N Problems consists of a set of N inputs and a single output. All inputs and
the output are either unipolar (0 or 1) or bipolar (-1 or +1). The goal of the parity problem
is to calculate the parity bit for any given set of inputs. The resulting output will be +1 if
the number of +1 inputs is odd and will be 0 or -1 if the number of +1 inputs is even.
There is no way to visualize the parity problem, but example data sets for Parity-3 and
Parity-5 can be found in Table 2.2. The parity calculation is used frequently in today’s

computers and has become one of the standards for Neural Network training.

Parity-5 Problem (bipolar)
Parity-3 Problem (bipolar) Input 1| Input 2| Input 3| Input 4| Input 5| Parity Bit

Input 1{Input 2| Input 3| Parity Bit -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 1 1

-1 -1 1 1 -1 -1 -1 1 -1
-1 1 -1 1 -1 -1 -1 1 1 -1

-1 1 1 -1 -1 -1 1 -1 -1
1 -1 -1 1 -1 -1 1 -1 1 -1
1 -1 1 -1 -1 -1 1 1 -1 -1
1 1 -1 -1 -1 -1 1 1 1 1
1 1 1 1 -1 1 -1 -1 -1 1
-1 1 -1 -1 1 -1
-1 1 -1 1 -1 -1
-1 1 -1 1 1 1
-1 1 1 -1 -1 -1
-1 1 1 -1 1 1
Parity-4 Problem (unipolar) -1 1 1 1 -1 1
Input 1| Input 2{Input 3| Input 4| Parity Bit -1 1 1 1 1 -1
0 0 0 0 0 1 -1 -1 -1 -1 1
0 0 0 1 1 1 -1 -1 -1 1 -1
0 0 1 0 1 1 -1 -1 1 -1 -1
0 0 1 1 0 1 -1 -1 1 1 1
0 1 0 0 1 1 -1 1 -1 -1 -1
0 1 0 1 0 1 -1 1 -1 1 1
0 1 1 0 0 1 -1 1 1 -1 1
0 1 1 1 1 1 -1 1 1 1 -1
1 0 0 0 1 1 1 -1 -1 -1 -1
1 0 0 1 0 1 1 -1 -1 1 1
1 0 1 0 0 1 1 -1 1 -1 1
1 0 1 1 1 1 1 -1 1 1 -1
1 1 0 0 0 1 1 1 -1 -1 1
1 1 0 1 1 1 1 1 -1 1 -1
1 1 1 0 1 1 1 1 1 -1 -1
1 1 1 1 0 1 1 1 1 1 1

Table 2.2: Example Parity-N data sets — bipolar and unipolar
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2.45 Benchmark #4 — Checker-N Problems

The Checker-N problem consists of a 10N x 10N grid similar to a checker board.

The checker board consists of N? squares, each containing 100 data points. For a given

ordered pair, the output is calculated with the following equation:

(7)

[lx] + y] mod 2] — 1

d(x,y)

., N) and [. ] is the floor operator [52].

where x and y are respectively (0, 0.1, 0.2, ..
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clear all; format compact; format short;
m=10
n=3;
np=m*n
j=0;
for x = 0:np
fory =0:mnp
z=2*mod(floor(x*0.1) + floor(y*0.1),2) -1
=t
a(j,)=[x*0.1,y*0.1,z]
end
end
figure(1); clf;
scatter(a(:,1),a(:,2),3,a(:,3)'filled");
axis([0 3 0 3]);
whos

(b)
Figure 2.11: Checker-3 Problem — (a) Graph; and (b) MATLAB code
2.4.6 Additional Benchmarks

The previous four benchmarks are only a small portion of the many benchmarks
that exist and are used in NN research. In his research on efficient optimization
algorithms, Pham [48] utilizes many additional test functions. Thirteen additional test
functions are outlined below. For functions that can be limited to 2 variables, graphs of

the function are shown below the respective function.

29



1) Beale function

F=(15—-x+xy)?+ (225 —x+ xy?)? + (2.625- x + xy3)?

(8)
2) Biggs Exp6 function
n
F = Z[tzetixi — Xipz€ L 4 xpy geliFive — ]2
i=1
(9)
3) Box function
n
F = Z[e—axi — e~ Xi+1 — xi+2(e—a _ e—lOa)]Z
i=1
(10)
4) Colville function
n
F= Y 1000 — x141) + G = D + Coiay = 1)
i=1
+10.1((xip1 — 1% + (43 — D?) +90(x,, — Xi43)°
+19.8(xi41 — D (X343 — 1)]
(11)
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5) De Jong function

n
F = z x?
i=1
(12)
6) De Jong function with a moved axis
F =% 00— a)? (13)
7) Powell function
n
F= Z[(Xi +10x;41)% + 5142 — Xi43)% + (041 — 2%342)*
i=1
+100x; — x343)%]
(14)
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8) Quadruple function

n
Xi
F = —)*
)G
=1

(15)
9) Rosenbrock function
n
F= > 10004, — xP)? + (= 1)7]
i=1
(16)

0 -0
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10) Step function

n
F= lei +0.5/2
i=1

(17)

11) Schwefel function

n
F = 418.9829n — Z (xisiny/ T )

i=1

(18)
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12) Sum of different power function

n
F= lei|i+1
i=1

(19)

10 -0

(20)

2.5  Summary of Algorithms, Optimization, Topologies, and Benchmarks

The previous sections have been dedicated to understanding and outlining the
current state of ANN research with regards to training, optimization, architectures, and

benchmarks. In the training section, we discussed the main methods used for training
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ANNSs today, namely EBP, LM, and NBN. In the optimization section, we discussed
optimizations made to the three mainstream algorithms and the advantages that these
optimizations bring to bear. In the architecture section, the current state of each of the
four main architectures was discussed. Time was spent discussing the power and
efficiency of each network architecture and the Parity-N benchmark was used as a
baseline to compare all four architectures. In the benchmark section, we discussed a small
portion of the many benchmarks that are used for ANN training and testing.

Now, with an understanding of where research has brought ANNs over the past
several decades, we are ready to look at the motivation for this work and the role of

DNNs in architectural conversion.
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Chapter 3

Motivation of Research

The exclusive-OR (XOR) and parity-N problems are used very frequently in
digital systems. For example, a chain of XOR operators is used to convert Gray code to
binary code. Also, parity-N circuits are essential for error detection and correction such
as generation of a parity bit and checksums. Likewise, digital addition and multiplication
require parity-N circuits. Additionally, parity-N circuits are often used in digital
transmission systems to detect errors and they are also used in digital memory to detect
hardware failures [14].

3.1 Digital Approach

In approaching XOR problems in a digital world, we are able to substitute a
neuron for a digital logic gate or unit. Figure 3.1 shows and simple XOR module which

utilizes 3 neurons.

Figure 3.1: XOR module with ANNs as digital units (3 neurons)

To solve larger Parity-N problems in a digital world, the XOR module seen in
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Figure 3.1 can be duplicated and combined to solve Parity-4, Parity-8, Parity-16, and so
on. Each time the parity number is doubled and the number of required neurons is two

times the parity number minus 1, or 2N-1.

Figure 3.2: Parity-4 by combining XOR units (7 neurons)

Figure 3.2 shows a digital solution for the Parity-4 problem. In this solution, two
XOR modules are placed side-by-side and their outputs are combined with the addition of
a single output neuron. Notice that this network requires 2N-1, or 7 neurons. Similarly,
figure 3.3 shows the digital solution for the Parity-8 problem. In this case, we placed two
of the Parity-4 modules side-by-side and combined the outputs with a single output

neuron. This network required 2N-1, or 15 neurons.
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Figure 3.3: Parity-8 by combining XOR units (15 neurons)
3.2 Digital Implementation with ANNs

A significant research effort has been made for many decades toward optimizing
the design of threshold logic networks. At the same time, many researchers were trying
to solve the XOR and parity-N problems with artificial neurons that use non-linear
activation functions.

In 1961, Minnink showed that solving the parity-N problem using threshold
networks with one hidden layer required N hidden threshold units plus one output unit

[53]. Since this time, the standard for solving a Parity-N problem using a MLP with one
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hidden layer required N+1 neurons. Figures 3.4 and 3.5 show the networks for Parity-4
and Parity-8, respectively. Using the power of the non-linear activation function, the
number of neurons required for Parity-4 and Parity-8 were reduced from 7 (digital
approach) to 5 (ANN approach) and 15 (digital approach) to 9 (ANN approach),

respectively.

Figure 3.5: Parity-8 using MLP ANN architecture (9 neurons)
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The reduction in the number of required neurons for Parity-N resulting from use
of ANNs was significant. The requirement of N+1 neurons for a single hidden layer MLP
network to solve the Parity-N problem has been the standard for over 50 years.

3.3 A Puzzle and a Discovery

The N+1 threshold discussed in section 3.2 has never really been overcome.
However, in various experiments, I discovered that I was able to solve the Parity-N
problem with fewer than N+1 neurons. Figures 3.6 and 3.7 show solutions for Parity-4
and Parity-8, respectively. Note that in Figure 3.7, it is assumed that all 8 inputs are
connected to each of the neurons in the first hidden layer. These input connections are not

shown to simplify the drawings.

5

Figure 3.6: Parity-4 solution using only 4 neurons

Figure 3.7: Parity-8 solution using only 6 neurons
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Although the networks in Figures 3.6 and 3.7 should theoretically not be able to
solve the Parity-4 and Parity-8 problems, I found that I was able to train these networks
to do just that. The success rates for training these networks were extremely low;
however, I was able to obtain solutions. These results violated the 50+ year old standard
and raised the question, “How is it possible to solve the Parity-N problem with fewer than
N+1 neurons in a MLP network?” I went forward, determined to answer this question.

After analyzing the training results for the Parity-4 and Parity-8 solutions, I found
that at least one of the neurons in the first hidden layer of each MLP network was
operating in its linear region. This was identified by very small input weights and a very
large output weight on the linear-acting neuron. This was a significant discovery!

Once I realized that the N+1 threshold could be overcome by having one or more
neurons operate in their linear region, I began to look at the potential advances that could
come from creating a network with both linear and non-linear neurons. This type of
network is the Dual Neural Network (DNN) discussed previously. I suspected that this
type of network could provide significant advances in ANN research. I proceeded to
investigate how a DNN could be used as a tool for training, optimization, and

architectural conversion.
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Chapter 4

Network Architecture Conversion

Researchers to date have dedicated very little time and research to conversion
between different neural network architectures. Generally, research has focused on the
advantages of a particular neural network architecture over another. Many architectures
have been developed with very specific problems or tasks in mind, leaving them very
specialized and incapable of being used for solutions outside the realm of that specific
research. However, when one explores the possibility of converting a particular neural
network architecture to a different architecture which yields an identical result, a world of
possibilities is opened.

For example, research has shown that some neural network architectures are
easier to train, others require less time to train, and others are more likely to yield a
solution to a training set [10]. Some architectures are more efficient, using a smaller
number of neurons, and others less efficient, requiring more neurons for a solution [11].

Figure 4.1 shows an example of a 2=3=2=1 BMLP network and a 2-1(1)-1 DNN
network. Please note that the networks in Figure 4.1 are not equivalent networks. Notice
that in a BMLP network, all inputs are connected to all neurons in the network. In
addition to this, the output of each neuron is connected to all neurons in forward layers.
In the DNN network, notice that there are no cross-layer or bridged connections. The

inputs are only connected to neurons in the first hidden layer and linear neurons are used
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in each hidden layer to pass inputs to forward layers. This chapter will explore and
discuss conversions between three different neural network architectures: BMLP, DNN,
and MLP. All NN training will be performed with software developed by Yu and

Wilamowski [35].

DNN

(a) (b)
Figure 4.1: (a) 2=3=2=1 BMLP and (b) 2-1(1)-1 DNN Architectures
4.1 Architecture Conversion Overview

After a significant amount of research, it was discovered that the DNN
architecture is the key to conversion between BMLP and MLP architectures. While there
1s no direct conversion from MLP to BMLP or from BMLP to MLP, both of these
architectures can be converted to and from the DNN architecture. Figure 4.2 shows three

equivalent networks: 1) 2=1=1=1 BMLP; 2) 2-1(2)-1(1)-1 DNN; and 3) 2-3-2-1 MLP.

ig
) 5
ig
BMLP DNN MLP

Figure 4.2: Conversion relationship between BMLP, DNN, and MLP
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Note that if I train any one of the networks in Figure 4.2 to a given data set, I can convert
the architecture and weights to either of the other two equivalent networks. If I start with
a DNN network, then I can directly convert to either BMLP or MLP. If I start with a
BMLP or MLP network and I desire to convert to the other, I must first convert to the
DNN architecture and then to the desired architecture. In other words, the DNN
architecture provides the path for conversion between BMLP and MLP.
With an understanding of the conversion relationship between BMLP, DNN, and

MLP, it is now important to understand the process to complete these conversions. The
next sections will cover the following conversions:

1) BMLP to DNN conversion

2) DNN to BMLP conversion

3) DNN to MLP conversion

4) MLP to DNN conversion

4.2 BMLP to DNN Conversion Process

This section will focus on the conversion from the BMLP architecture to an
equivalent DNN architecture. A specific process is employed to convert from the BMLP
architecture to the DNN architecture. This conversion has two different parts: 1) The
architecture conversion; and 2) The weight conversion. We will look at each part of the
conversion separately.

421 BMLP to DNN Architecture Conversion

One of the purposes of the BMLP to DNN architecture conversion is to eliminate
cross-layer or bridged connections found in the BMLP architecture. To do this, linear

neurons are inserted into the DNN architecture in each hidden layer to pass signals across
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layers without creating bridged connections. For example, if a bridged connection in a
BMLP network crossed 4 hidden layers, the DNN network would have 4 linear neurons,
one in each hidden layer, to pass the signals to the destination neuron.

4.2.1.1 BMLP to DNN Examples

To understand how this architectural conversion works, it is beneficial for us to
first look at several examples. Figures 4.3 and 4.4 show examples of simple BMLP

networks converted to DNN networks.

Figure 4.3: BMLP 2=1=1 to DNN 2-1(1)-1

Notice how the bridged connections are eliminated by inserting linear neurons. To
create the DNN in Figure 4.3, the bridged connections going from the two inputs to the
output neuron are replaced by connections to a linear neuron (1) in parallel with the
bipolar neuron in the first hidden layer. The sum of the inputs to this linear neuron is then
passed to the output neuron by a single connection (2) from the output of the linear
neuron to the input of the output neuron. And this simple architecture conversion is

complete.
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Figure 4.4: BMLP 2=1=1=1 to DNN

To create the DNN in Figure 4.4, the bridged connections going from the two
inputs to the neuron in the second hidden layer and the output neuron had to be replaced.
First, the two bridged inputs to the second hidden layer neuron are replaced by
connections to a linear neuron (1) in parallel with the bipolar neuron in the first hidden
layer. The sum of the inputs to this linear neuron is then passed to the second hidden
layer neuron by a single connection.

Next, the two bridged inputs to the output neuron are replaced by connections to a
linear neuron (2) in parallel with the bipolar neuron in the first hidden layer. The sum of
the inputs to this linear neuron is then passed to another linear neuron (3) in parallel with
the bipolar neuron in the second hidden layer. The sum of inputs to this linear neuron (3)

is passed to the output neuron via a single connection.
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Finally, the bridged connection from the output of the first hidden layer neuron to
the input of the output neuron is replaced (4) by a connection from the output of the first
hidden layer neuron to the input of the linear neuron (3) in layer 2. Thus, the output
neuron receives input from the first hidden layer neuron via a linear neuron (3) in layer
two rather than by a bridged connection. And, now, the architecture conversion is
complete.

The previous two examples were quite simple and straight forward; however, let
us look at a more complex conversion. Let us consider the BMLP network with an
X=2=3=2=1 architecture found in Figure 4.5. As the number of inputs to the network is
not important to it structure, we will ignore them in this example with the understanding

that all inputs are connected to every neuron in the BMLP network.

Figure 4.5: BMLP X=2=3=2=1 network

Using the same method as in the previous examples, the network in Figure 4.5 can
be converted to the DNN network in Figure 4.6. It is understood that all inputs to the
network will be connected to all neurons in the first hidden layer of the DNN network in

Figure 4.6.
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Figure 4.6: DNN network equivalent to BMLP in Figure 4.5

Let us now break down this more complex example from Figures 4.5 and 4.6 and

determine how we arrived with the network in Figure 4.6. In doing this, we will reference

the two networks side-by-side in Figure 4.7. Remember, it is understood that all inputs to

the network will be connected to all neurons in the first hidden layer of the DNN network

and all inputs are connected to all neurons in the BMLP network.

To create the DNN in Figure 4.7, the bridged connections going from the inputs to

the neuron in the second and third hidden layers and the output neuron had to be

replaced. First, the three bridged inputs to the second hidden layer neurons are replaced

by connections to linear neurons (1) in parallel with the bipolar neurons in the first

hidden layer. The sum of the inputs to this linear neuron is then passed to the second

hidden layer neuron by a single connection.

Next, the bridged inputs to the two bipolar neurons in the third hidden layer are
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replaced by connections to two linear neurons (2) in parallel with the bipolar neurons in
the first hidden layer. The sum of the inputs to these linear neurons is then passed to two
additional linear neurons (3) in parallel with the bipolar neurons in the second hidden
layer. The sum of inputs to these linear neurons (3) is passed to the two bipolar neurons

in the third hidden layer via a single connection (4).

S/ N/ NN/ N\

<
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Figure 4.7: BMLP X=2=3=2=1 to DNN X-2(6)-3(3)-2(1)-1
Then, the bridged inputs going to the output neuron are replaced by a series of 3
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linear neurons, one in each of the first three hidden layers (5). The sum of the inputs to
the first linear neuron in this series is passed to each of the future neurons by a single
connection between the neurons in each layer. Thus, the output neuron receives input via
three linear neurons in series rather than by bridged connections.

Finally, we deal with the connections between hidden layers. Instead of using
bridged connections to go between layers, connections are routed to the linear neuron in
next hidden layer that feeds the destination neuron. These connections are blue in Figure
4.7. Notice how the bridged connection from one bipolar neuron in the first hidden layer
to a bipolar neuron in the third hidden layer is replaced with a connection to a linear
neuron in the second hidden layer. This path is highlighted with a blue dotted line (6).
Now, the architecture conversion is complete.

4.2.1.2 BMLP to DNN Architecture Conversion Methodology

The previous three examples show progressively more complicated conversions.
After significant analysis, standardized methods have been developed with simple
formulas that determine the number of non-linear and linear neurons in each layer. Table
4.1 contains the variables used for BMLP to DNN architecture conversion. As seen in
this table, when converting from the BMLP architecture to the DNN architecture, the

DNN architecture will have the same total number of layers and the same number of

Variable Description
K The total number of layers in both the BMLP and DNN networks.
n, Number of non-linear neurons in the L™ layer of both the BMLP and DNN
networks where L is from 1 to K
h, Number of linear neurons in the L® layer of the DNN network where L is
from 1 to K. This is a calculated value.

Table 4.1: Variables used for BMLP to DNN conversion
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non-linear neurons in each hidden layer. The only parameter that must be calculated is
the number linear neurons in each hidden layer of the DNN architecture. From analysis,
the number of linear neurons in each hidden layer is equal to the number of bipolar

neurons in all future layers combined. This value can be calculated with Equation 21.

K
b= n)-m
x=L

Note that the number of inputs to the network has no effect on the architectural

(21)

conversion. For this reason, I have limited the number of inputs in the example networks
to two in order to simplify the drawings and make them less cluttered by connections
between neurons. Now, with all of the conversion tools at our disposal let us now
consider a more complex circuit like that found in Figure 4.8. This figure shows a BMLP

network with a 2=3=2=1 architecture. As seen in the figure, there are two inputs, three

Figure 4.8: BMLP 2=3=2=1 Network
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non-linear neurons in the first hidden layer, two non-linear neurons in the second hidden
layer, and one non-linear neuron in the output layer. Now, with an understanding of
Table 4.1 and Equation 21, we can calculate the architecture of the DNN network which

is equivalent to the BMLP network in Figure 4.8. The calculations for h;, h,, and h; are:

3

b= () m)—my =3
x=1
3

hy=() n)—m =1
x=2

3
h; = (an)—ns =0
x=3

Remember that the number of non-linear neurons in each layer, nL, is the same for both
architectures. A summary of our results can be found in Table 4.2 and the corresponding

DNN network can be found in Figure 4.9.

Layer n h,
1 3 3
2 2 1
3 1 0

Table 4.2: Parameters for DNN Network equivalent to BMLP in Figure 4.3
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Figure 4.10: X=2=3=2=1 BMLP to X-2(6)-3(3)-2(1)-1DNN conversion with calculations
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Let us look at the conversion example seen in Figure 4.7 again. This time, we will
use Equation 21 and Table 4.1 to validate the conversion. Figure 4.10 shows the BMLP
and DNN networks in Figure 4.7 along with the calculations for the number of linear
neurons in each hidden layer. Table 4.3 summarizes all the parameters for the DNN

network. Thus we see that the conversion shown in Figure 4.7 is accurate.

Layer n. h,
1 2 6
2 3 3
3 2 1
4 1 0

Table 4.3: Parameters for the conversion in Figure 4.10
4.2.1.3 BMLP to DNN Architecture Conversion Summary

This section has focused on the BMLP to DNN architecture conversion. As we
saw, the number of layers in the network and the number of non-linear neurons in each
layer did not change. It is only necessary to calculate the number of linear neurons for
each hidden layer and understand how they are placed and connected. Notice that in all
cases, no non-linear neurons will be added to the output layer. With an understanding of
the architecture conversion, we must now gain an understanding of the weight

conversion.
4.2.2 BMLP to DNN Weight Conversion
With an understanding of the BMLP to DNN architecture conversion, we are now
prepared to discuss the weight conversion. This weight conversion follows three rules:
1) All weights for non-bridged connections remain the same.
2) Weights for bridged connections remain the same, but are transferred to the new

network connection going to the linear neuron in the next hidden layer.

54



3) The weight on the output of every linear neuron is 1.

These rules may be a little bit confusing, so it is easiest to illustrate the application of
the three rules on networks that we have looked at previously in this chapter. Let’s look
at the network conversion in Figures 4.3 and 4.4. We will use these same networks to
illustrate the weight conversion. To simplify the network diagrams for illustrative
purposes, unique variable weights will be assigned so that it is easy to see how the
weights are converted. Figure 4.11 shows the weight conversion for the network in

Figure 4.3. Figure 4.12 shows the weight conversion for the network in Figure 4.4.

Figure 4.11: Weight Translation of networks in Figure 4.3

55



Figure 4.12: Weight Translation of networks in Figure 4.4

As can be seen in the examples illustrated in Figures 4.11 and 4.12, the weight
conversion during the BMLP to DNN conversion is simple and straight forward. There is
now a clear path for conversion between BMLP network architectures and the DNN
network architecture. The opposite conversion will be dealt with later in this chapter.

4.2.3 BMLP to DNN Conversion Examples

The process for converting a BMLP network to an equivalent DNN network is
rather simple and straight forward with the information that we have just covered. This
section will focus on an overview of the conversion tests performed as part of this
research and the implications of these tests.

4.2.3.1 BMLP to DNN Using Simple 3-D Surface Benchmark

The first conversion test was performed using the Simple 3-D Surface benchmark.

A BMLP network was built with two architectures: 2=3=2=2=1 and 2=2=3=2=1. In both
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cases, the BMLP network was trained to SSE < 0.01. Once the training was completed,
each network was converted to the DNN architecture using the standard conversion
process. The DNN equivalent architectures gave identical output results with no
variation. Figure 4.13 shows the trained 2=3=2=2=1 BMLP. Figure 4.14 shows the DNN

equivalent network.

Figure 4.13: 2=3=2=2=1 BMLP network for the Simple 3-D Surface



Figure 4.14: DNN equivalent network for the network in Figure 4.13

As mentioned previously, the networks in Figures 4.13 and 4.14 yielded identical
results to the benchmark data set.

4.2.3.2 BMLP to DNN Using 3-D Surface Benchmark

The second conversion test was performed using the 3-D Surface benchmark.
This time, a BMLP network was built with the architecture 2=3=2=1. The BMLP
network was trained to SSE < 0.01. Once the training was completed, the network was
converted to the DNN architecture using the standard conversion process. Figure 4.15

shows the BMLP network and Figure 4.16 shows the DNN equivalent. Note that the
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DNN equivalent architecture gave identical output results with no variation.

Figure 4.16: DNN equivalent network for the network in Figure 4.15
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4.2.3.3 BMLP to DNN Using Parity-N Benchmark

The third conversion test was performed using the Parity-N benchmark. The
BMLP network was built for Parity-11 using an 11=2=1=1 architecture. The BMLP
network was trained to SSE < 0.01. Once the training was completed, the network was
converted to the DNN architecture using the standard conversion process. Figure 4.17
shows the BMLP network and Figure 4.18 shows the DNN equivalent. Note that the

DNN equivalent architecture gave identical output results with no variation.
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Figure 4.18: DNN equivalent network for the network in Figure 4.17
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4.2.3.4 BMLP to DNN Conversion Summary

The results in Section 4.2.3 are significant because we have shown with multiple
data sets and multiple BMLP architectures that we can train a given BMLP network to
any given data set and then convert that trained network to an equivalent DNN
architecture. This equivalent architecture will give us identical results to those obtained
with the original BMLP network.

4.3 DNN to BMLP Conversion Process

This section will focus on the conversion from the DNN architecture to an
equivalent BMLP architecture. Under certain circumstances, it may be desirable to
minimize the total number of neurons in a NN with the trade-off of added bridged
connections. A specific process is employed to convert from the DNN architecture to the
BMLP architecture. This conversion has two different parts: 1) The architecture
conversion; and 2) The weight conversion. We will look at each part of the conversion
separately.

4.3.1 DNN to BMLP Architecture Conversion

One of the purposes of the DNN to BMLP architecture conversion is to minimize
the total number of neurons in the NN architecture. To do this, linear neurons are
removed from the DNN architecture and are replaced with bridged connections. For
example, if a series of three linear neurons (1 in each hidden layer prior to the output
layer) feeds the sum of the inputs to the output neuron, the three linear neurons are
removed and a bridged connection is made from each input to the output neuron.
Additionally, connections from the output of non-linear neurons in the hidden layers to

linear neurons in the next hidden layer are replaced by bridged connections to the
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destination non-linear neuron.

4.3.1.1 DNN to BMLP Examples

To understand how this architectural conversion works, it is beneficial for us to
first look at several examples. We will revisit many of the networks presented previously.
Figures 4.19 and 4.20 show examples of simple DNN networks converted to BMLP

networks.

Figure 4.19: DNN 2-1(1)-1 to BMLP 2=1=1

Notice in Figure 4.19 how the linear neuron was removed and the two
connections to its inputs were simply extended to the input of the output neuron.
Although this is a very simple example, it shows that we are able to simply remove linear
neurons and create bridged connections to replace them and the inputs that they receive.

Notice that the network in Figure 4.20 is more complex than the one in Figure
4.19. Its conversion will take more time. First, a single linear neuron in the first hidden
layer is removed (1) and the two connections it received are replaced with bridged
connections to the bipolar neuron in the second hidden layer. Next, two linear neurons

which pass outputs to the output neuron are removed (2) and the connections coming
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from the input are replaced with bridged connections to the output neuron.

Figure 4.20: DNN 2-1(2)-1(1)-1 to BMLP 2=1=1=1
With the removal of the last two neurons (2), the output from the bipolar neuron
in the first hidden layer to the linear neuron in the second hidden layer must be replaced
with a bridged connection (3). With the placement of this last bridged connection, the
conversion from DNN to BMLP is complete.

4.3.1.2 DNN to BMLP Architecture Conversion Methodology

The previous two examples show the basic concepts for converting from the DNN
architecture to the BMLP architecture. Referring back to Table 4.1 and what we learned
earlier in this chapter, we know the following about the BMLP network:

1) The BMLP network will have the same number of layers as the DNN network.

2) The number of non-linear neurons in each of the hidden layers will remain the
same.

3) The output neuron(s) will remain the same.

With an understanding of the points outlined above, we can now outline a
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standardized methodology for the DNN to BMLP conversion. As noted above, the main
idea behind this conversion is to remove all linear neurons and replace them with bridged
connections. The process for this conversion is as follows:
1) Identify all of the linear neuron series in the network.
2) Of the linear neuron series remaining in the network, work on the series with the
highest number of neurons in it. Trace the series from the inputs to the final
destination neuron.
3) Identify inputs to linear neurons in the series that come from neurons outside of
the series. Replace these inputs with bridged connections from the source neuron
to the final destination neuron.
4) After all tangential connections to the series are removed, remove all linear
neurons in the series and replace them with bridged connections from all inputs
that went to the first linear neuron in the series to the final destination neuron.
5) Repeat steps 2-4 until there are no linear neurons remaining in the network.
These steps may seem a little confusing, so let us look at two examples on the
more complex networks found in Figures 4.9 and 4.10. We will start with Figure 4.9
which is smaller and will apply the steps outlined above in order. Figure 4.21 shows the
network in Figure 4.9 with all linear neuron series identified with blue arrows.

In Figure 4.22, we perform steps 2 and 3 on the largest linear neuron series. The
three outside inputs to the linear neuron series are identified by dotted blue lines. These

connections are removed and replaced with the three bridged connections which are red.
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Figure 4.22: 2-3(3)-2(1)-1 DNN conversion Steps 2 and 3
65



In Figure 4.23, we perform step 4. Here, we remove the two linear neurons in that
series along with the associated connections. We then replace them with two bridged

connections from the two inputs to the output neuron. These new connections are red.

Figure 4.23: 2-3(3)-2(1)-1 DNN conversion Step 4
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Figure 4.24: 2-3(3)-2(1)-1 DNN conversion Step 2 repeated

I will now repeat steps 2 through 4 for the remaining two linear neurons. As
neither of the two remaining linear neurons has outside connections, we are able to skip
step 3 and only do steps 2 and 4. Figure 4.24 identifies the linear neuron series we will
work on. Figure 4.25 shows replacement of the linear neuron with bridged connections.

We will now repeat steps 2 and 4 one more time to complete the conversion.
Figure 4.26 identifies the linear neuron series we will work on. Figure 4.27 shows
replacement of the linear neuron with bridged connections. As always, the new

connections are red. This step is now complete.
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Figure 4.25: 2-3(3)-2(1)-1 DNN conversion Step 4 repeated
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Figure 4.26: 2-3(3)-2(1)-1 DNN conversion Step 2 repeated
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Figure 4.27: 2-3(3)-2(1)-1 DNN conversion Step 4 repeated

Let us now look at a more complex network which is found in Figure 4.10. Figure
4.28 shows the network in Figure 4.10 with all of the linear neuron series identified with
blue arrows. For simplicity, it is assumed that all inputs are connected to all neurons in

the first hidden layer.

/

/

/ 5

5 5 5
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Figure 4.28: X-2(6)-3(3)-2(1)-1 DNN conversion Step 1
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Note that during step 1 shown in Figure 4.28, we identified six linear neuron
series. There is one series with 3 linear neurons, two series with 2 linear neurons each,
and three series with a single linear neuron each. In Figure 4.29a, we perform steps 2 and
3 and in Figure 4.29b, we perform step 4 on the largest linear neuron series. The five
outside inputs to the linear neuron series are identified by dotted blue lines. These
connections are removed and replaced with the three bridged connections which are red.

The X bridged input connections are shown as one single, thick dotted blue line.

(a) (b)

Figure 4.29: DNN conversion Steps 2 and 3 (a) and 4 (b)

After finishing the first iteration of conversion, we are ready to repeat steps 2
through 4 on the remaining linear neuron series. Since the next largest series is two linear

neurons and there are two of these series, we can work on both in parallel. Refer to
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Figure 4.30: DNN conversion Steps 2 and 3 (a) and 4 (b) repeated

Figure 4.28 to identify the two series that we will work on. Figure 4.30a will show steps 2
and 3 on these series. Figure 4.30b will show step 4 on the same series.

After finishing the second iteration of conversion, we are ready to repeat steps 2
through 4 on the final three linear neuron series. As the remaining three linear neuron
series are all a single neuron, we can work on them in parallel. Refer to Figure 4.28 to
identify the three series that we will work on. Figure 4.31a will show steps 2. Step 3 is
not needed as there are no inputs from outside neurons. Figure 4.31b will show step 4 on
the same set of series. The conversion from DNN to BMLP is now complete for this
network. This particular network took three iterations of the conversion process to

complete.
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(a) (b)

Figure 4.31: DNN conversion Steps 2 and 3 (a) and 4 (b) repeated

4.3.1.3 DNN to BMLP Architecture Conversion Summary

This section has focused on the DNN to BMLP architecture conversion. As we
saw, the number of layers in the network and the number of non-linear neurons in each
layer did not change. It was only necessary to remove all linear neurons from the DNN
network hidden layers and replace them with the appropriate bridged connections. With
an understanding of the architecture conversion, we must now gain an understanding of

the weight conversion.

4.3.2 DNN to BMLP Weight Conversion

With an understanding of the DNN to BMLP architecture conversion, we are now
prepared to discuss the weight conversion. This weight conversion follows these rules:
1) All weights to non-linear neurons in the first hidden layer remain the same.
2) All weights from the outputs of non-linear neurons to the output neuron or the
inputs of non- linear neurons in the next hidden layer remain the same.
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3) All weights from the outputs of non-linear neurons in any hidden layer to the
inputs of linear neurons in the next hidden layer are multiplied by all subsequent
linear neuron output weights through to the destination neuron. The result of this
operation provides the new weight for the bridged connection created in the
architecture conversion.

4) All input weights that go to linear neurons in the first hidden layer are multiplied
by all subsequent linear neuron output weights through to the destination neuron.
The result of this operation provides the new weights for the bridged connections
created in the architecture conversion.

The last two rules may be somewhat confusing, so it is easiest to illustrate the
application of the rules on networks that we have looked at previously in this chapter.
Let’s look at the network conversion in Figures 4.19 and 4.20. We will use these same
networks to illustrate the weight conversion. To simplify the network diagrams for
illustrative purposes, unique variable weights will be assigned so that it is easy to see how
the weights are converted. Figure 4.32 shows the weight conversion for the network in
Figure 4.19. Figure 4.33 shows the weight conversion for the network in Figure 4.20. In
each of these three figures, arrows will show how the weight conversions are performed.
Each arrow will be numbered to show which step of the conversion process is being
performed on the specified weights. When a weight conversion requires an initial weight
to be multiplied by one or more factors, the dot operator will be used to signify the
multiplication operation. Dotted lines with an arrow will show the contribution of the
additional factors to the initial weight. The converted weight will be displayed as a

({2l [Pl

product. For example, “a” times “g” would be displayed as a-g.
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Figure 4.33: Weight Conversion for Network in Figure 4.20
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As can be seen in the examples illustrated in Figures 4.32 and 4.33, the weight
conversion during the DNN to BMLP conversion is more complex than the BMLP to
DNN weight conversion. With this conversion understood, there is now a clear path for
conversion between the DNN network architectures and the BMLP network architecture.

4.3.3 DNN to BMLP Conversion Examples

The process for converting a DNN network to an equivalent BMLP network is
more complex than the previous conversion, but is accomplished through a systematic
process. This section will focus on an overview of the conversion tests performed as part
of this research and the implications of these tests.

For the DNN to BMLP conversion tests, I used the same input data sets as were
used in the BMLP to DNN conversion. Only, in all cases, the DNN network was
constructed first, trained, and then converted to the equivalent BMLP architecture.

4.3.3.1 DNN to BMLP Using Simple 3-D Surface Benchmark

The first conversion test was performed using the Simple 3-D Surface benchmark.
A DNN network was built with two architectures: BMLP 2=3=2=2=1 equivalent and
BMLP 2=2=3=2=1 equivalent. In both cases, the DNN network was trained to SSE <
0.01. Once the training was completed, each network was converted to the BMLP
architecture using the conversion process outlined earlier in this chapter. The BMLP
equivalent architectures gave identical output results with no variation.

Figure 4.34 shows the trained 2-3(5)-2(3)-2(1)-1 DNN network and Figure 4.35
shows the BMLP equivalent. It is important to note that both the DNN and BMLP
architectures had different weights than the architectures in Section 4.3.2. This is due to

the fact that the DNN network was trained to the benchmark and then converted to a
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BMLP. Since the origin network was different, the weights are different. Note that the

BMLP equivalent architecture gave identical output results with no variation.

7
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Figure 4.34: 2-3(5)-2(3)-2(1)-1 DNN network for the Simple 3-D Surface
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Figure 4.35: BMLP equivalent network for the network in Figure 4.34

4.3.3.2 DNN to BMLP Using 3-D Surface Benchmark

The second conversion test was performed using the 3-D Surface benchmark.
This time, a DNN network was built with the BMLP 2=3=2=1 equivalent architecture.
The DNN network was trained to SSE < 0.01. Once the training was completed, the
network was converted to the BMLP architecture using the standard conversion process.
The BMLP equivalent architecture gave identical output results with no variation.

Figure 4.36 shows the DNN network and Figure 4.37 shows the BMLP equivalent
network. Once again, the DNN and BMLP architectures had different weights than the

architectures in Section 4.3.2.
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ure 4.37: BMLP equivalent network for the network in Figure 4.36
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4.3.3.3 DNN to BMLP Using Parity-N Benchmark

The third conversion test was performed using the Parity-N data set. The DNN
network was built for Parity-11 using a BMLP 11=2=2=1 equivalent architecture. This
network was then trained to SSE < 0.01. Once training was completed, the network was
converted to the BMLP architecture using the standard two-step conversion process. The
BMLP equivalent architectures gave identical output results with no variation.

Figure 4.38 shows the DNN network and Figure 4.39 shows the BMLP equivalent
network. Note that the BMLP equivalent architecture gave identical output results with
no variation. As with the previous two tests, the DNN and BMLP architectures had

different weights than the architectures in Section 4.3.2.

Figure 4.38: 11-2(3)-2(1)-1 DNN network for Parity-11
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Figure 4.39: BMLP equivalent network for the network in Figure 4.38

4.3.3.4 DNN to BMLP Conversion Summary

The results in this section are significant because we have shown with multiple
data sets and DNN architectures that we can train a DNN network to a given data set and
then convert that trained network to an equivalent BMLP architecture.

It has now been demonstrated that we are able to convert back and forth from
BMLP and DNN. This gives us many advantages, some of which will be discussed later.

4.4 DNN to MLP Conversion Process

This section will focus on the conversion from the DNN architecture to an
equivalent MLP architecture. The DNN to MLP conversion is not nearly as straight
forward as the other conversions that we have looked at thus far. And, in some
circumstances, the conversion may not be successful. As with previous conversions, a

specific process is employed to convert from the DNN architecture to the MLP
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architecture. This conversion has two different parts: 1) The architecture conversion; and
2) The weight conversion. We will look at each part of the conversion separately.

441 DNN to MLP Architecture Conversion

The architectural conversion from DNN to MLP is actually very simple. Once the
DNN network is trained, it can be converted to the MLP architecture by simply replacing
all linear neurons in the DNN network with bipolar neurons. We will color these bipolar
neurons the same color as the linear neurons to remind us that these neurons will have
weight adjustments that help them to operate in their linear region.

4.4.1.1 DNN to MLP Examples

As mentioned above, the architectural conversion from DNN to MLP is very
simple. No connections are changed, only the linear neurons are replaced with bipolar
neurons. Let’s take a look at a few examples. Figure 4.40 and Figure 4.41 show examples
of the DNN to MLP architectural conversion. Notice that the networks look identical with

the exception of the linear neurons being changed to bipolar neurons.

N
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Figure 4.40: 2-1(1)-1 DNN to 2-2-1 MLP conversion
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Figure 4.41: 2-1(2)-1(1)-1 DNN to 2-3-2-1 MLP conversion

4.4.1.2 DNN to MLP Architecture Conversion Summary

This brief section has focused on the DNN to MLP architecture conversion. As
we saw, the MLP architecture looks identical to the DNN architecture except for the
linear neurons being changed to bipolar neurons. Remember that the color of these newly
placed bipolar neurons is the same as the linear neurons to remind us that these neurons
will have weight adjustments that help them to operate in their linear region. With an
understanding of the architecture conversion, the remainder of this section will focus on

the weight conversion which is much more complex.
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4.4.2

DNN to MLP Weight Conversion

With an understanding of the DNN to MLP architecture conversion, we are now

prepared to discuss the weight conversion. After a significant amount of testing, it was

determined that all inputs into linear acting bipolar neurons had to be reduced by a factor

>10° to yield identical results to the DNN network. As this is not realistically feasible, an

alternate solution was developed for determining the weights of the MLP network. This

weight conversion follows these rules:

1)

2)

3)

4)

5)

6)

All weights to non-linear neurons in the first hidden layer remain the same.

All weights from the outputs of non-linear neurons to the output neuron or the
inputs of non- linear neurons in the next hidden layer remain the same.

All weights to the inputs of linear neurons in the first hidden layer are divided by
the given factor (generally 100).

All weights from non-linear neurons in the hidden layers to inputs of linear
neurons in the next hidden layer are divided by the given factor.

Weights for connections between one linear neuron’s output to the input of a
linear neuron in the next hidden layer remains unchanged.

Weights for connections between the one linear neuron’s output to the input of a
non-linear neuron in the next hidden layer or an output neuron are multiplied by

the given factor (i.e. x-100 if the factor was 100 and the weight was “x”).

This weight conversion yields a MLP network that is relatively close to a final

solution, but has a SSE >> 0.01. The output function for the bipolar neuron is:

fo(net) = tanh(1 x net) + 0.01 x net (22)

A graph of this activation function can be seen in Figure 4.42. Due to the nature of the

83



08

D6 F

04r

D2F

N2+

04F

06

08k

Figure 4.42: Graph of bipolar activation function

tangent hyperbolic function, its linear region is very small. Therefore, we need small net
values (typically < 0.1) in order to get a nearly linear output. Testing showed that
dividing inputs to the neurons by a value >100 was sufficient. Outputs could then be
multiplied by the same factor where appropriate.

Performance of these six steps will be demonstrated by revisiting the networks in
Figure 4.40 and Figure 4.41. Once again, we will use unique variables for the weights so
that we can see how the conversion takes place. Figure 4.43 and Figure 4.44 show the
weight conversions for the networks in Figure 4.40 and Figure 4.41, respectively. These
figures will not have arrows showing weight movements as the weights will remain in the
same physical location, but will either be left alone, divided by a factor, or multiplied by
a factor. For simplicity, when several factors are multiplied together, only the product
will be shown. For example, if our conversion factor is 100 and we are performing step 6
on variable “x”, the converted weight will be displayed as “x-100” rather than “x-1-100.”

Once the weight conversion is complete, the MLP network is ready for final

training iterations with the NNT software [34]. With the starting weights obtained by
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using steps 1-6 outlined above, experimentation has shown that it usually takes <50

training iterations with the Neuron-by-Neuron algorithm [6] [7].

fDNNe

Figure 4.43: 2-1(1)-1 DNN to 2-2-1 MLP weight conversion
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Figure 4.44: 2-1(2)-1(1)-1 DNN to 2-3-2-1 MLP weight conversion

To illustrate the entire process of weight conversion, we will re-examine the
network in Figure 4.35. For this example, the DNN network in Figure 4.45 will be trained
to SSE < 0.01 and it will not be converted to the standardized form. This means that the
linear neurons will have bias weights and their output weights will not be equal to 1.
Please note that the inputs and neurons in Figure 4.45 are given sequential node numbers
starting with the inputs. Therefore, the inputs are nodes 1 and 2 and the neurons are
numbered nodes 3 through 19 going top to bottom and left to right. These node numbers

will be used when we look at the topology map for this network.
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Figure 4.45: 2-3(5)-2(3)-2(1)-1 DNN network for Simple 3-D Surface Problem

The topology map and weights in Tables 4.4 and 4.5 warrant further explanation.
Using the network in Figure 4.45 and Table 4.4 for explanation, let us first address the
topology map. Each neuron or input in Figure 4.45 is given a node number as explained
previously. The network in Figure 4.45 has two inputs and 17 neurons. In the topology
portion of Table 4.4, each neuron is listed sequentially in the left-hand column with the
lowest numbered neuron at the top and the highest numbered neuron at the bottom. Along
with the neuron number, you will also find its type: unipolar, bipolar, or linear. In the
columns to the right, you see listed which nodes provide inputs to that neuron. Please

remember that node numbers can be either inputs or neuron outputs.
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Table 4.4: Topology for the network in Figure 4.45

Neuron Bias Weights from connection to neuron
3.08025801 | 0.6126632 | -2.39058

0.82199443 | -1.862036 | -0.705177

1.53836839 | -0.566183 | -0.636743

-0.9956325 | -0.536091 | 1.480373

-0.6684818 | -0.595857 | -1.10077

-0.9683538 | -0.019494 | -1.019197

-1.5016464 ] 0.7368931 | 0.5822719

-0.6546572 | -1.557863 | -2.056673

1.09760861 | -0.296337 | -0.699554 | -1.127874 | -1.416979
0.91290076 | -0.119499 | 0.7418785 | -0.154638 | -0.523773
0.52186636 | 0.0234138 | -0.988214 | 0.4395666 | -0.842445
-0.3563915 | 1.6641668 | -0.575217 | 0.4944395 | -1.298709
1.34918296 | -0.808509 | 0.324148 | -3.253097 | 0.2072503
-0.3881175] 0.7695723 | -0.739663 | -0.6214

-0.3561072 | 0.0590711 | 0.1192312 | 1.8024681
0.35572164 | -2.245134 | -0.544116 | -3.168171
-0.3251274 ] 0.2428015 | 3.4537729 | -3.794651

Table 4.5: Weights for the network in Figure 4.45
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To familiarize ourselves with the topology map and weight table, let’s examine
Table 4.4 and Table 4.5. By looking at Table 4.4, I can see that node 3 is a bipolar neuron
and is listed as “bipolar 3” in the topology map. I can now look at the correlating cell in
Table 4.5 to find that the bias weight for neuron 3 is 3.08025801. Similarly, I can look at
node 15 and see that it is a linear neuron listed as “linear 15” in topology map in Table
4.4. In this same topology map, I can see that neuron 15 receives inputs from nodes 3, 4,
5, and 10. Each of these connections going to the input of neuron 15 has a weight
associated with it. If I wanted to know what the input weight coming from node 10 into
neuron 15, I would locate the corresponding cell in the weight table in Table 4.5 and see
that this weight is 0.2072503. While this may seem tedious at first, it gets much easier
with a little practice. Note that it is important to understand the topology map and the

weight table in order to understand the weight conversion process about to be described.
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Figure 4.46: 2-8-5-3-1 MLP network for the network in Figure 4.45
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Table 4.6: Topology for the network in Figure 4.46

Neuron Bias Weights from connection to neuron
3.08025801 | 0.6126632 [ -2.39058

0.82199443 | -1.862036 | -0.705177

1.53836839 | -0.566183 | -0.636743 /100
-0.009956325 | -0.005361 [ 0.0148037

-0.006684818 | -0.005959 | -0.011008 x100
-0.009683538 | -0.000195 | -0.010192

-0.015016464 | 0.0073689 | 0.0058227 T
-0.006546572 | -0.015579 | -0.020567

1.09760861 | -0.296337 | -0.699554 | -1.127874 | -141.6979
0.91290076 | -0.119499 | 0.7418785 | -0.154638 | -52.37735
0.52186636 | 0.0234138 | -0.988214 | 0.4395666
-0.35639153 | 1.6641668 | -0.575217 | 0.4944395
134918296 | -0.808509 | 0.324148 | -3.253097
-0.38811753 | 0.7695723 | -0.739663 | =62.14001
-0.35610724 ] 0.0590711 [ 0.1192312 | 180.24681
0.35572164 | -2.245134 | -0.544116

-0.32512742 ] 0.2428015 | 3.4537729 | -379.4651
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Table 4.7: Initial conversion weights for the network in Figure 4.46




Neuron Bias Weights from connection to neuron
4.34861146 0.4308709 | -2.391354

0.56880824 -1.993203 | -1.137935

243241213 -1.521003 | 0.1752029

-3.89975667 -0.559942 | 2.0931741

-0.6707688 -0.440732 | -1.162265

-0.96690361 | -0.052703 | -0.992139

-2.13978938 | 0.9667528 | -0.419782

0.23989112 ] -1.639442 | -0.111844

1.61316693 0.9173422 | -0.571508 | -0.237162 | -4.293259
0.77067376 -0.602085 | 0.8525756 | 0.1313983 | -0.376507
0.52020742 0.044344 | -0.983806 | 0.4045055 | -0.831085
0.46269498 1.2281474 | -1.203796 | 1.2096349 | -2.289386
0.60310117 -5.1284 | 0.6672689 | -3.62143 | 1.5179751
-0.34602684 ] 0.8856006 | -0.722258 | -0.560782
0.19584711 1.7527249 1 0.2180854 | 2.9040219
1.63388368 | -3.019219 [ -0.557369 | -4.838114
0.18648368 0.3942708 | 4.320831 | -5.077064

Table 4.8: Final weights for the network in Figure 4.46

4.4.3 DNN to MLP Conversion
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In this example, the DNN weights were converted to MLP weights using a factor
of 100. In some cases, you may need to increase the factor to obtain a final result. As
seen in Table 4.7, all weights highlighted in orange were divided by the factor. All
weights highlighted in green were multiplied by 100. Finally, weights highlighted in blue
were multiplied by 1, or left unchanged. This conversion gave us the initial training
weights for the MLP network. After 15 iterations of training using the Neuron-by-Neuron
algorithm, an SSE = 0.0098 was achieved and the resulting weights are found in Table
4.8. Although the results of the MLP are not identical to the DNN network for any given

input in the data set, the result is acceptable because we achieved SSE < 0.01.

Converting from a DNN architecture to an equivalent MLP architecture proved to




be much more difficult than other conversion. Since the MLP architecture does not have
any bridged connections across layers, it is necessary for the MLP architecture to include
at least one neuron in each hidden layer that is functioning in its linear region.

Let us look at two simple examples of this conversion. For the purposes of these
examples, only the DNN to MLP conversion will be demonstrated.

4.4.3.1 DNN to MLP Using Simple 3-D Surface Benchmark

Figure 4.47 shows a 2-3(5)-2(3)-2(1)-1 DNN network trained for the Simple 3-D
Surface benchmark. This network was trained to SSE=0.00950321. Figure 4.48 the MLP
equivalent network obtained with the conversion process described previously. Note that
the output neuron is not changed and remains a linear neuron per the conversion
procedure. After the initial weight conversion, the network in Figure 4.48 received final
training with the NNT software. This training was successful and yielded

SSE=0.00449923 in 15 iterations.

Figure 4.47: 2-3(5)-2(3)-2(1)-1 DNN network for Simple 3-D Surface Problem
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Figure 4.48: 2-8-5-3-1 MLP equivalent network for network in Figure 4.47
4.4.3.2 DNN to MLP Using 3-D Surface Benchmark

Figure 4.49 is identical to Figure 4.36 presented earlier in this chapter and is
placed here for ease of comparison during this example. This figure shows a DNN 2-
3(3)-2(1)-1 architecture for the 3-D Surface problem. This network was trained to SSE=
0.00968703. Figure 4.50 shows the MLP equivalent network obtained with the
conversion process described above. Note that the output neuron is not changed and
remains a linear neuron per the conversion procedure. After the initial weight conversion,
the network in Figure 4.50 received final training with the NNT software. This training

was successful and yielded SSE= 0.00972139 in 59 iterations.
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Figure 4.50: MLP equivalent network for network in Figure 4.49

4.4.3.3 DNN to MLP Conversion Summary

These results are momentous because it has been shown that a DNN network can
be trained and then converted to a MLP architecture. This is important because training
deep MLP networks has been very challenging and typically has a very low success rate.

While it may not work in all cases, the method just described provides another option for
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training challenging MLP networks. Additionally, the success rate of training deep MLP
networks can be significantly increased by using the new method just described.

4,5 MLP to DNN Conversion Process

This section will focus on the conversion from the MLP architecture to an
equivalent DNN architecture. The MLP to DNN conversion is slightly less complex than
the DNN to MLP conversion in the previous section. As with previous conversions, a
specific process is employed to convert from the MLP architecture to the DNN
architecture. This conversion has two different parts: 1) The architecture conversion; and
2) The weight conversion. We will look at each part of the conversion separately.

451 MLP to DNN Architecture Conversion

The architectural conversion from MLP to DNN is actually very simple. Once the
MLP network is trained, it can be converted to the DNN architecture by simply replacing
all linear-acting bipolar neurons in the MLP network with linear neurons. Remember that
the linear-acting bipolar neurons are the same color as the linear.

4.5.1.1 MLP to DNN Examples

As mentioned above, the architectural conversion from MLP to DNN is very
simple. No connections are changed, only the linear-acting bipolar neurons are replaced
with linear neurons. Let’s take a look at a few examples. Figure 4.51 and Figure 4.52
show examples of the MLP to DNN architectural conversion. Notice that the networks
look identical with the exception of the linear-acting bipolar neurons being changed to

linear neurons.
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Figure 4.51: 2-2-1 MLP to 2-1(1)-1 DNN conversion
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Figure 4.52: 2-3-2-1 MLP to 2-1(2)-1(1)-1 DNN conversion

4.5.1.2 MLP to DNN Architecture Conversion Summary

This brief section has focused on the MLP to DNN architecture conversion. As
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we saw, the DNN architecture looks identical to the MLP architecture except for the
linear-acting bipolar neurons being changed to linear neurons. Remember that the color
of these linear-acting bipolar neurons is the same as the linear. With an understanding of
the architecture conversion, the remainder of this chapter will focus on the weight
conversion which is much more complex.

4.5.2 MLP to DNN Weight Conversion

With an understanding of the MLP to DNN architecture conversion, we are now
prepared to discuss the weight conversion. This weight conversion follows these rules:

1) All weights to non-linear neurons in the first hidden layer remain the same.

2) All weights from the outputs of non-linear neurons to the output neuron or the

inputs of non-linear neurons in the next hidden layer remain the same.

3) All output weights for linear-acting bipolar neurons remain the same.

This weight conversion yields a DNN network that is relatively close to a final
solution, but has a SSE > 0.01.

Performance of these three steps will be demonstrated on the networks in Figure 4.53
and Figure 4.54. Once again, we will use unique variables for the weights so that we can
see how the conversion takes place. As before, these figures will not have arrows
showing weight movements as the weights will remain in the same physical location and
will remain unchanged.

Once the weight conversion is complete, the DNN network is ready for final
training iterations with the NNT software [34]. With the starting weights obtained by
using steps 1-3 outlined above, experimentation has shown that it usually takes <50

training iterations with the Neuron-by-Neuron algorithm [6] [7].
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Figure 4.54: 2-3-2-1 MLP to 2-1(2)-1(1)-1 DNN weight conversion
45.3 MLP to DNN Conversion

Let us look at an example of this conversion. For the purposes of this example,
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only the MLP to DNN conversion will be demonstrated.

To illustrate the entire process of weight conversion, we will examine the network
in Figure 4.55. This network was trained for the Simple 3-D Surface benchmark. The
resulting topology map can be found in Table 4.9 and the resulting weights can be found

in Table 4.10.

2 s {12 {17 13

Figure 4.55: 2-8-5-3-1 MLP network for Simple 3-D Surface Problem
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Table 4.9: Topology for the network in Figure 4.55

Neuron Bias Weights from connection to neuron
2.48386872 0.3391859 | -2.446145
0.86353479 -0.800207 | -0.337705

1.51179365 -0.427785 | -0.626862

0.013593 0.0856393 | 0.049224

0.2802055 0.2875856 | 0.0970668
0.11637587 -0.052247 | 0.3852626

0.125717 -0.075481 | -0.231028
-0.18270813 -0.247846 | -0.21535

2.5086595 -0.198985 | -0.685744 | -1.137666 | 195.99979
1.26875625 -0.11896 | 0.737556 | -0.153597 | 196.00021
0.23606937 -0.329665 | 0.0423351 | -0.003764 | 1.9625221
-0.14593281 -0.237823 | -0.387408 | -0.186387 | 2.0362219
0.00418045 -0.013606 | -0.356509 | -0.381559 | 1.7635307
-1.21451414 | 0.7665509 | -0.734969 | 196.00011
2.51404962 0.2812977 | 0.1215542 | 195.99918

0.00176091 0.0031047 | -0.075732 | 1.4589998
12.91383034 ] 0.1040237 | 4.150778 | 195.99519

Table 4.10: Weights for the network in Figure 4.55
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Figure 4.56: 2-3(5)-2(3)-2(1)-1 DNN network for Simple 3-D Surface Problem

Table 4.11 shows the topology map for the DNN network and Table 4.12 shows

the converted weights obtained by step 3. After the initial weight conversion, the network

in Figure 4.56 received final training with the NNT software.
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Topology

Neuron Nodes connected to neuron

bipolar 3 1 2

bipolar 4 1 2

bipolar 5 1 2

linear 6 1 2

linear 7 1 2

linear 8 1 2

linear 9 1 2

linear 10 1 2
bipolar 11 3 4 5 6
bipolar 12 3 4 5 7
linear 13 3 4 5 8
linear 14 3 4 5 9
linear 15 3 4 5 10
bipolar 16 11 12 13
bipolar 17 11 12 14

linear 18 11 12 15

linear 19 16 17 18

Table 4.11: Topology for the network in Figure 4.56
Neuron Bias Weights from connection to neuron
2.48386872 | 0.3391859 |-2.446145
0.86353479 ] -0.800207 |-0.337705

1.51179365 | -0.427785 [-0.626862

0.013593 0.0856393 | 0.049224

0.2802055 ] 0.2875856 |0.0970668
0.11637587 | -0.052247 [0.3852626

0.125717 -0.075481 | -0.231028
-0.18270813 | -0.247846 | -0.21535

2.5086595 | -0.198985 |-0.685744| -1.13767 | 195.99979
1.26875625 | -0.11896 | 0.737556 [ -0.15360 | 196.00021
0.23606937 ] -0.329665 |0.0423351( -0.00376 | 1.9625221
-0.14593281 | -0.237823 |-0.387408 | -0.18639 | 2.0362219
0.00418045 ] -0.013606 | -0.356509 | -0.38156 | 1.7635307
-1.21451414 ] 0.7665509 | -0.734969 | 196.00011
2.51404962 ] 0.2812977 |0.1215542 | 195.99918
0.00176091 | 0.0031047 (-0.075732| 1.45900
12.91383034 | 0.1040237 | 4.150778 | 195.99519

Table 4.12: Beginning weights for the network in Figure 4.56
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Neuron Bias Weights from connection to neuron
4.14626735 | 0.2568368 | -3.006063
2.60073766 | -0.10758 |-0.674673
2.51577592 | -1.355735 | -0.349683
0.67166225 | 0.6315569 |0.1414477
0.63301109 | 0.2482514 |-0.015002
0.22037034 ] 0.0502236 | 0.4690399
0.68221011 | 0.0083547 {0.3357026
-0.20082532 | -0.691805 | -2.152607
2.53580054 | -0.554188 |-0.712023 | -1.137542 | 196.00541
1.28312069 | -0.108948 |0.7404038 | -0.148668 | 196.00129
0.66138032 | -0.201117 {0.0193988| 0.0754367 | 2.0358455
-0.71014083 ] 0.3395287 | 0.020528 | 0.1942554 | 3.8971835
-2.16988419 | -1.220909 |2.8424076| -1.033485 | 0.999659
-1.19716736 ] 0.7821705 | -0.717134 | 196.0018
2.48804015 ] 0.1618998 |0.0987929| 196.01029
0.00821911 | -0.221949 {0.4109369 | 3.6250751
12.9342263 | 0.1981816 |5.3071404 | 196.01165

Table 4.13: Final weights for the network in Figure 4.56

In this example, the MLP weights required no changes. As seen in Table 4.12, all
weights highlighted in yellow remained the same, giving us a starting point for training.
After 65 iterations of training using the Neuron-by-Neuron algorithm, an SSE =
0.00967125 was achieved and the resulting weights are found in Table 4.13. Although the
results of the DNN network are not identical to the MLP network for any given input in
the data set, the result is acceptable because we achieved SSE < 0.01.

46  Conversion Summary

As shown in the previous sections of this chapter, we are now able to convert
between BMLP, DNN, and MLP networks. As we discovered, the DNN architecture
provides the key for conversion between BMLP and MLP. If I start with a DNN network,

then I can directly convert to either BMLP or MLP. If I start with a BMLP or MLP
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network and I desire to convert to the other, I must first convert to the DNN architecture
and then to the desired architecture.
With the ability to convert between the different NN architectures, one has many

new options when it comes to NN training, especially for those hard to train networks.
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Chapter 5

Comparison of Training Success Rate and Efficiency

The conversion methods described in Chapter 4 provides additional means to
increase the odds of obtaining a solution to a NN problem. Normally, NN problems are
solved by selecting a NN architecture, compiling a training set, and then training the NN
to the desired SSE. Unfortunately, this method can often yield lower success rates.

To improve the odds of obtaining a solution, consider training multiple NN
architectures in parallel for the same problem. For example, you could select a BMLP
architecture and also a DNN architecture. Apply the same training set to both
architectures and train them in parallel. Not only do the odds of finding a solution
increase, but you very well may end up with solutions for both architectures. If only one
NN yields a solution, you have the option to use that architecture or convert it to a
different architecture. If both architectures yield solutions, you are able to choose the best
solution. If desired, you can convert to a different architecture using the methods
described in Chapter 4.

5.1  Efficiency Comparison

When researchers compare NN efficiency, they generally look at the power of the
network, or in other words, how many neurons are required to solve a given problem.
While this is a good comparison mechanism, it does not tell the entire story. For example,
Figure 5.1 shows an efficiency comparison of MLP, BMLP, FCC, and DNN network
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architectures based upon the Parity-N benchmark. If we are to simply judge our networks
based upon the number of neurons required to solve a given Parity-N problem, we would
likely conclude that the FCC architecture is the most efficient and the MLP architecture is
the least efficient. We could also conclude that the new DNN architecture presented in
this research falls somewhere in the middle close to BMLP with two hidden layers. And,
this would be somewhat disappointing!

Granted, Figure 5.1 is an important piece of data when comparing NN
architectures and it surely should not be ignored, however, this data only correlates the

number of neurons with the network power or efficiency. To get a more full picture
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Figure 5.1: Efficiency comparison of various neural network architectures

of a network’s true capabilities, we must also consider other aspects of its architecture
such as the number and type of connections. Table 5.1 shows these same network

architectures with an additional piece of data. In addition to showing the number of
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neurons required to solve the given Parity-N problem, this table shows us the number of

weights in the architecture which is also equal to the number of connections in the

network.
© Parity-3 Parity-7 | Parity-15 | Parity-31 | Parity-63
S
k] %) [%2) %) [%2) %)
S 2l |zl |zl |2|T|z2]|¢T
S o222 |el2|E|2 |82
5|5 5|5 |5|5]|5|5 |53
S B R T T I I S
MLP
4 16 | 81 64 | 16| 256 | 32 | 1024] o4
1 hidden layer 4096
BMLP
3 4 )15 4] 9] 152]17]560] 33
1 hidden layer 2144
BMLP
N/A 312715 88 | 7 |1 239] 11
2 hidden layers 739
BMLP
N/A N/A 41701 6 |203] 8
3 hidden layers >30
FCC 2 9 312714 70]5]1170] 6] 399
DNN using 1
linear neuron
per hidden 3 7 5 15 712719 34 |11] 83
layer

Table 5.1: Comparison of neural network efficiency with required weights

By more thoroughly analyzing the data presented in Table 5.1, one can easily see
the drastic impact that the NN architecture has on the number of weights and connections
in the network. For example, if we look at the Parity-63 column, we see that an MLP
network requires 4096 connections, a BMLP network with one hidden layer requires,
2144 connection, a FCC network requires 399 connections, and the DNN network only
requires 83 connections. Immediately, this gives us a much different picture than what we
saw in Figure 5.1.

Rather than solely basing your judgment on either the number of neurons required

or the number of connections in the architecture, an alternative method for judging

107



efficiency may be used. By summing the number of neurons required to solve a given
problem with the number of weights or connections in that architecture, a fuller picture of
network efficiency is seen. In this way, we take into account the entire solution, including
any advantages or disadvantages that the architecture may have. As we know, the number
of weights in an architecture has a direct effect on training times and success rates.
Applying our new method to the data in Table 5.1, we can conclude that the new DNN
architecture introduced in this research is truly more efficient than the others.

5.2  Experimental Training Results

Experimental results were obtained by comparing the BMLP, DNN, and MLP
equivalent architectures on given benchmarks. Simulations were run using the NNT

software [34] discussed previously. The user interface for the NNT can be seen in Figure

5.2 below.
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Figure 5.2: NNT User Interface

There are five main areas in the NNT user interface that are important to

understand. In order to better understand the experimental results, it is important to
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understand the tools used. The NNT was selected as the tool of choice because of its
flexibility, statistical display, error plot display, and its breadth of available training
algorithms. Each area of the NNT user interface and its functionality will be discussed
separately.

The first area, labeled “1” in Figure 5.2 is the error plot. In this area, the error is
plotted for each training iteration. The vertical axis displays error while the horizontal
axis displays the training iteration number. The error plot seen in this figure is a result of
500 training iterations and we see all 500 training curves. Notice that some curves end
when they reach the desired error, 1.0E-02, and others extend across the screen, never
reaching the desired error level.

The second area, labeled “2” in Figure 5.2 is the console area. This area displays
information pertaining to the current and previous training runs. This information
includes the name of the network training file, topology information (i.e. number of
inputs, outputs, weights, training patterns, nodes, and neurons), the desired maximum
error, the maximum number of iterations allowed in each training cycle, the number of
times to perform the training, and algorithm specific training parameters.

The third area, labeled “3” in Figure 5.2 is where certain algorithm independent
training parameters are set. “Training Times” is the total number of times you want to
train the given network. “Maximum error” is the desired maximum error for training.
When the current training error is less than or equal to this value, the current training
cycle ends. “Maximum iterations” sets the maximum number of training iterations that
can be performed in any cycle before training ends. If the maximum number of iterations

is reached before total training error reaches a value less than or equal to “Maximum

109



error,” the current training cycle ends.

The fourth area, labeled “4” in Figure 5.2 is the control area. In the drop-down
menu at the top, we are able to select the desired training algorithm. The button labeled
“Load Data File” allows us to select and load our desired network topology file. This is
the network that we want to train. The button labeled “Set Parameters” allows us to set
algorithm specific parameters that affect how the chosen algorithm works. The button
labeled “Start To Train” starts the training process. The button labeled “Clear Plotting”
clears the error plots displayed in area 1. One would typically clear the plotting area in
between training runs.

The fifth area, labeled “5” in Figure 5.2 displays training information from the
current training runs. Remember that a training run may train a given network many
times as defined by “Training Times” in area 3. Each training cycle can only perform up
to a give number of iterations as defined by “Maximum iterations” in area 3. The top two
values displayed in the training information area tell us about the current training cycle.
“Cur Iteration” displays the current training iteration in the current cycle. This value
counts up for each consecutive training iteration until the desired error is reached or the
maximum number of iterations is reached, whichever comes first. “Cur SSE” displays the
Sum of Squares Error for the current iteration. The bottom 4 parameters show statistical
data for the training run. “Ave Iteration” gives the average number of iterations needed to
train the network to the specified error. “Av Time (ms)” gives the average number of
milliseconds required to train the network to the specified error. “Total Times” shows
how many times the software successfully trained the network to the specified error.

“Succ Rate” displays the rate at which the software was successful in training the
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network. This value is equal to “Total Times” divided by “Training Times.”

All experiments were run using the NBN algorithm and all initial weights for
training were randomized to non-zero values between +1 and -1. Training trials were run
100 times for each network up to a maximum of 500 training iterations in each trial. The
desired SSE was set to 0.01. Many training trials were run for each network, attempting
to optimize the training parameters. Final results shown for each network architecture
were the optimal results obtained during experimentation.

The first set of experiments will focus on comparing equivalent networks, as
defined in Chapter 4, against benchmarks to see which of the equivalent networks yields
the highest success rate. This range of experiments will help determine if, all things being
equal (i.e. networks are functionally equivalent), one particular architecture is
consistently superior to the others with regards to training success across a range of
benchmarks. In essence, this helps determine if architecture superiority is dependent on
the benchmark. The second set of experiments will focus on comparing a minimally sized
network against the same benchmarks to see which network yields the best success rate.
This range of experiments will serve as a control group for comparison to the first set.
Again, we will see if a particular architecture is consistently superior to the others with
regards to training success when network size, not network equivalence, is the varied
parameter.

The 3-D Control Surface Benchmark which has 1600 training patterns was used
as the first benchmark to compare the success rate, average number of iterations required,
and the average training time for equivalent BMLP, DNN, and MLP networks.

Equivalent network architectures were setup per the architectural conversion process
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outlined in Chapter 4. The BMLP network used a 2=3=2=1 architecture. The equivalent
DNN network used a 2-3(3)-2(1)-1 architecture. And the equivalent MLP network used a
2-6-3-1 architecture. Figure 5.3 shows the three equivalent networks side-by-side for ease
of comparison and review. Table 5.2 summarizes the training results. The supporting

training data may be found in Appendix A.
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Figure 5.3: Equivalent networks for 3-D Surface
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Table 5.2: Comparison of equivalent architectures on 3-D Surface
The Simple 3-D Control Surface Benchmark which has 25 training patterns was
used as the second benchmark to compare the success rate, average number of iterations

required, and the average training time for equivalent BMLP, DNN, and MLP networks.
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Again, equivalent network architectures were setup per the architectural conversion

process outlined in Chapter 4. The BMLP network used a 2=2=2=1 architecture. The

equivalent DNN network used a 2-2(3)-2(1)-1 architecture. And the equivalent MLP

network used a 2-5-3-1 architecture. Figure 5.4 shows the three equivalent networks side-

by-side while Table 5.3 summarizes the results. The corresponding training data which

supports the results in the table may be found in Appendix B.
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Figure 5.4: Equivalent networks for Simple 3-D Surface
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Table 5.3: Comparison of equivalent architectures on Simple 3-D Surface

The Parity-11 Benchmark which has 2048 training patterns was used as a third

benchmark to compare the success rate, average number of iterations required, and the
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average training time for equivalent BMLP, DNN, and MLP networks. Once again,
equivalent network architectures were setup per the architectural conversion process
outlined in Chapter 4. The BMLP network used a 11=2=2=1 architecture. The equivalent
DNN network used a 11-2(3)-2(1)-1 architecture. And the equivalent MLP network used
a 11-5-3-1 architecture. Figure 5.5 shows the three equivalent networks side-by-side.
Table 5.4 summarizes the results. Training results supporting the data summarized in

Table 5.4 can be found in Appendix C
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Figure 5.5: Equivalent networks for Parity-11
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Table 5.4: Comparison of equivalent architectures on Parity-11 Benchmark

The Checker-N Benchmark which has 961 training patterns for the 3x3 grid was
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used as the fourth benchmark to compare the success rate, average number of iterations
required, and the average training time for equivalent BMLP, DNN, and MLP networks.
Once again, equivalent network architectures were setup per the architectural conversion
process outlined in Chapter 4. The BMLP network used a 2=4=3=3=1 architecture. The
DNN network used a 2-4(7)-3(4)-3(1)-1 architecture. And the MLP network used a 2-11-
7-4-1 architecture. Figure 5.6 shows the three equivalent networks side-by-side. Table 5.5
summarizes the results. In this instance, the BMLP network had the highest success rate.
The MLP network failed to converge and the DNN network had a 1% success rate. The

data supporting these results can be found in Appendix D.
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Figure 5.6: Equivalent networks for Checker-3
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Table 5.5: Comparison of equivalent architectures on Checker-3 Benchmark

In this sequence of experiments, where equivalent networks were compared, we
found that the MLP architecture had the highest success rate with the 3-D Surfaces, but
came in last on both the Parity and the Checker benchmarks. The BMLP architecture
performed the best on the Checker benchmark and came in second on the Parity and 3-D
Surfaces benchmarks. The DNN architecture yielded the best results for the Parity
benchmark and yielded the second best results for the 3-D Surfaces and Checker
benchmarks. These results show that no single architecture is superior across all
benchmarks, solidifying the need for different architectures and the ability to convert
between them.

The next set of experiments focuses on comparing a minimally sized network
from each of the three architectures against four different benchmarks. The goal is to find
which architecture yields the highest success rate for the given benchmark. Once the best
network architecture is found, one can convert to either of the two other architectures if
desired.

The 3-D Control Surface Benchmark which has 1600 training patterns was used

116



again as a benchmark to compare the success rate, average number of iterations required,
and the average training time for the BMLP, DNN, and MLP networks. Minimal network
architectures were used for each architectural. The BMLP network used a 2=3=3=1
architecture. The DNN network used a 2-3(4)-3(1)-1 architecture. And the MLP network
used a 2-3-3-1 architecture. Table 5.6 summarizes the results. The supporting training

data may be found in Appendix E.
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Table 5.6: Minimal Architecture Comparison on 3-D Surface Benchmark

The Simple 3-D Control Surface Benchmark which has 25 training patterns was
used as a benchmark to compare the success rate, average number of iterations required,
and the average training time for the BMLP, DNN, and MLP networks. Minimal network
architectures were used for each architectural. The BMLP network used a 2=2=2=1
architecture. The DNN network used a 2-2(3)-2(1)-1 architecture. And the MLP network
used a 2-2-2-1 architecture. Table 5.7 summarizes the results. The corresponding training

data which supports the results in the table may be found in Appendix F.
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MLP
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2921 74.00% | 73.42 63.64
BMLP
0,
o=p—o-1 86.00% | 59.38 50.28
DNN

88.00% | 96.71 96.23

2-2(3)-2(1)-1

Table 5.7: Minimal Architecture Comparison on Simple 3-D Surface Benchmark

The Parity-11 Benchmark which has 2048 training patterns was used as a
benchmark to compare the success rate, average number of iterations required, and the
average training time for the BMLP, DNN, and MLP networks. Minimal network
architectures were used for each architectural. The BMLP network used a 11=2=2=1
architecture. The DNN network used a 11-2(3)-2(1)-1 architecture. And the MLP
network used a 11-2-2-1 architecture. Table 5.8 summarizes the results. Training results

supporting the data summarized in Table 5.8 can be found in Appendix G.
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MLP
0,
1iooq | 200% | 2985 [10749.00
BMLP
0,
1o | 3:00% [ 201.33 | 5455.00
DNN

5.00% | 275.40 111956.40

11-2(3)-2(1)-1

Table 5.8: Minimal Architecture Comparison on Parity-11 Benchmark

The Checker-N Benchmark with 961 training patterns for the 3x3 grid was used
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as a benchmark to compare the success rate, average number of iterations required, and
the average training time for the BMLP, DNN, and MLP networks. Once again, minimal
network architectures were used for each architectural. The BMLP network used a
2=4=3=3=1 architecture. The DNN network used a 2-4(7)-3(4)-3(1)-1 architecture. And
the MLP network used a 2-4-3-3-1 architecture. Table 5.9 summarizes the results. In this
instance, the BMLP network had the highest success rate. The MLP network failed to
converge and the DNN network had a 1% success rate. The data supporting these results

can be found in Appendix H.
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MLP
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BMLP
0,
24=3=3—1 9.00% | 256.10 J21045.40
DNN

1.00% | 141.00 ] 2262.00

2-4(7)-3(4)-3(1)-1

Table 5.9: Minimal Architecture Comparison on Checker-3 Benchmark

In this sequence of experiments where minimizing network size was the main
objective, the MLP architecture came in last for all benchmarks. The BMLP architecture
yielded the best result, once again, on the Checker benchmark and the second best result
on the others. The DNN architecture had the best training results for all benchmarks,
except for the Checker benchmark where it came in second. Table 5.10 summarizes the
results of all tests, noting winners with a green highlight and second place with a yellow
highlight.
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MLP BMLP DNN
94% 15% 19% Equivalent
3D Surface Networks
32% 36% 45% Minimal
Networks
100% 86% 90% Equivalent
Simple 3D Networks
Surface 74% 86% 88% Minimal
Networks
1% 3% 5% Equivalent
Parity-N Networks
2% 3% 5% Minimal
Networks
Failed to 10% 1% Equivalent
Checker-N Converge Networks
Failed to 9% 1% Minimal
Converge Networks

Table 5.10: Summary of Winners

By reviewing Table 5.10, one can easily see that the DNN architecture placed first
or second in all experiments. Additionally, it has four wins to the other networks’ two
wins each. While the DNN architectures tend to have slightly higher average training
times, this is overshadowed by its overall superior success rate. One would willingly take
a longer training time over a failure to converge during the training process. While the
DNN architecture does not always yield the highest success rate, it did converge in all
test cases showing that it is a valuable tool for training and optimization.

The newly introduced DNN architecture proves to have success rate advantages
both when compared to equivalent networks as well as when it is pitted against other

minimally sized networks. These are two qualities that are highly desirable in any NN

architecture.
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Chapter 6

Conclusion

Over the past several decades, we have seen many advances in the field of ANNSs,
including the architecture progression from the multi-layer Perceptron (MLP) to the
bridged multi-layer Perceptron (BMLP) to fully connected cascade (FCC) architecture
[10] and finally to dual neural networks (DNN) [11]. This research has produced many
advances in training algorithms as well as improvements in architecture design which
have significantly improved efficiency [11] [12] [13]. However, until now, little time has
been devoted to conversion between network architectures and any advances that this
might produce.

As I noted in the introduction, I discovered that if you use two linear neurons, one
in each hidden layer, in a traditional MLP architecture, that we can reduce the number of
required neurons for the Parity-11 problem from 11 to 6. My conclusion was that
somehow this DNN design significantly increases the power of a network. I wondered,
“What other advantages do DNNs offer?” This let me to investigate DNNs as a tool for
training, optimization, and network conversion.

The DNN architecture presented in this study offers advances in training,
optimization, and network conversion. One of its biggest advances can be seen in the area
of deep neural networks. Figure 6.1 shows a success rate comparison between BMLP and

MLP networks. Notice that as the number of hidden layers increases, the success rate for
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the BMLP networks steadily increase until they are essentially 100%. During this same
time, as the networks get deeper, the MLP success rate drops to 0%.This highlights a
fundamental problem with Deep MLP networks. They are very hard, if not impossible to

train — at least until now!

Deep MLP Networks vs. Deep BMLP networks

T T T T T T

MLP - 3 neurons in each layer
BMLP - 3 neurons in each layer
MLP - 4 neurons in each layer
* BMLP - 4 neurons in each layer
MLP - 5 neurons in each layer
BMLP - 5 neurons in each layer
MLP - 6 neurons in each layer
BMLP - 6 neurons in each layer
¢/ MLP -7 neurons in each laver
> BMLP - 7 neurons in each layer
MLP - 8 neurons in each layer
BMLP - 8 neurons in each layer

o
(==

Success Rate
o
o

o
=
T

02f Wy [—=
S S, e SO O S, S, S

0 1 2 3 - 5 6 7} 8 9 10 1
Number of Hidden Layers

L

Figure 6.1: Success rates comparison for training the two-spiral patterns [10]

With the conversion methods presented in this study, we now have a path for
network conversion between BMLP, DNN, and MLP architectures. That means that we
now have a training solution for deep MLP networks. As seen in the experimental results
in the previous chapter, DNN networks have significantly higher overall success rates
compared to BMLP and MLP networks. In fact, the DNN architecture had either the
highest or the second highest success rate in all experiments. In some cases, the MLP
network failed to converge while one or both of the other architectures yielded
convergence. In these cases, we can simply train either a DNN or BMLP network and
then perform the conversion to MLP if that architecture is desired.

The utilization of DNNSs as a tool for training, optimization, and network

conversion solves some of the most difficult problems faced in today’s ANN research.
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This research provides a method for improved ANN training, optimization of ANN
architectures, and a mechanism for ANN architecture conversion using DNNs. These

new advances will revolutionize ANN research.
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Supporting Data for 3-D Benchmark testing of equivalent networks

Appendices

Appendix A

Best training data for MLP 2-6-3-1 network

1.0E404

1.OE+01

1.0E-00

1.0E-

1.0E-02

1.0E-03

1.0E-04
0

3 4 5 6 7 8 9

cns: 1
Irpes Fie: 30_susbisce_top_2e6=31 in
e Traiing Irformation-

Cur lteration
Gur S8E
fve teration [ 2024681

Ave Time (ms)
Total Times
Suce Raly

heration [x 50)
;

@ Muni Curves Tralning Algorithm

Oorscum CTa—)
ermeer | Cmmm)
@i Carmmm )
s o (oo )

Training Times
Maximurn Emor

Maximum eration -“

@ Training Patiermns

() @ esnoatans

@ Create 20 Patiems

Best training data for BMLP 2=3=2=1 network

3 4 5 13 7 8 9
Iteration [x 50 )

Traming ind

Cur Heration
Cur 55€
s eration
Ave Time (me)
Total Times
Suce Rale

Floth

@ Multi Curves Training Algorithm Tralning Times
@ one Curve LLL] [] Masdmum Error
@ Delayed Curve. @ Maximurn iteration
| e
e = @ Training Pattems
(Frenmeation) @ Testing Patiems
@save Data (Corear rm @ Create 2-D Pattems.

128




Input Fie: 30_surface_baiip_2=3=2=1in

Enatle tianing aulomaticaly

Trainging algosihin: NEN
Combanabon

1.0E-03
1.0E-04
0 4 3 L) 5 L] i ] 9 10 e
Meration [ x 50 l:l e
fialna Rlamain) Y Goniciaa)
@ Mumi Curves Training Algorithm Training Times 10|
Cureration 3 e
- @ ons cure Masimum Eror
Cur 8SE __"HB’25
@ Delayed Curve Maxmum Heration
o aton (Emsonare—)
ey [ (| () p—
ining ms
@unnn o)
Total Tmes () @ Testng Patiems
Sute Rate (ke E @ Create 2-D Pattems.
1.0E+04
1.OE+03
1.0E402]
1LOE+01 neurans: 6
It Fie: 3D_susface_broip_2-3«2+10
—_— e 1] e e
1.0E-00 Teaingng aigothee: HEN
Conbination coslficiert i 0030000
1.OE-01
1.0E-02
1.0E-03
1.0E-04
o 1 2 3 4 5 L 7 B 9 10
Ieration [x 50 )
& Wulti Curves Training Algorithm Training Ti _ma
Curteraton S
@ One Cure HEN 8 Maxmum Error
[Toosa0zzio |
CEEE @ Delayed Curve Madmum feration
e st Cosome)
neTme ey [_rssres | | (CITII—— || () v
ining ms
@rsnrun Comm )
TotlTires () @ esing Panems
Suce Rate 01400 Bsmeata E @ Creats 2-D Pattarns

3 4 5 8
Heration (x50

Fi 30_surface_barip_2e3m2el. 0

Cur Heration
cursse
e leration

Ave Time (ms)
Total Times
Suce Rata

FlotMod

@ Multi Curves
@ One Curve
@ Delayed Curve

B auto Run

@ 5ave Data

ontral A

Training Algorithm

HEN

8

Training Times.
Masimum Emor
Madmum iteration

@ Training Pattems

@ @ Testing Pattems

@ Creale 2-D Paflems

129




1.0E-00

1.0E-01

1.0E-02
1.OE-03
1.0E-04
L 1 2 3 4 5 L T 8 9 10
Ieration [ x50 ]
[ Camaes
@ Multi Curves. Training Algorithrm
cutsn oune 3
ne Curve
010332343
CursSE e —
p— Esmrres)
Awe Time (ms)
Tota Times (ot e
succ e B s

Huenbes of rewrons: &
Input File: 30_susisca_brokp_2e3e2e1 10

1ainng
Trainging aigorthve: HEN
Conbinali

ingtion coslficiert mu 0050000
500

Training Times
Maximum Error

Maximum iteration

@ Training Patierns

() © Tt patims

@ Create 2-D Patiems

1.0E+04)

1.0E+03|

1.0E+02]

4 5 &
Ieration [ x50

| e Moo ey
@ Mutt Curves Training Algorthm

Cur Neration P oo 3
Cwose Jrena @ Delayed Cuve

s s EEm———
e Time (ms) [ 3853 | S| )
Total Times B 4uto Run

SuccRate @ save Data

Training Times

N e

@ Training Pattemns

@ @ Testing Patiems

@ Craate 2.D Patterns

Coamund Consaler.

4 5 6
heration [ 50)

[lirsinsne Talormacico Tl 1l U | C-oiol i+

Cuf Nerabion :g::::s ':::iﬂﬂNMm .
e @ Delayed Curve

Aue lteration 031053 L E
e Time (ms) [Tt o

Tots! Times BautoRun

Suce Rate @saveData

1.0E+DA
Maarrn o (010000

1.0E+03) Lﬁ’m@z
Nusmber of outputs: 1

T.OE+02 mmgm;;ﬁ]
Nummber of nodes: 12
Nusnber of newrens: 10

1.0E+01 Input Fie: 30_suface_don_2e3=2+1n

1.0E-00

1.0E-01

1.0E-02

1.0E-03

1.0E-04

[ 2 3 7 8 9 10

Training Times

Maimum Error
Maimum feraion

@ Training Patterns
@ Testing Pattems
@ Create 2. Pattems




1.0E+01
1.0E-00
1.0E-M
1.0E-02
1.0E-03

1.0E-04
0

4 5 13
Iteration [x 50 )

Cesaund Conaoler

Number of patterns: 1600
Husnber of wesghts. 37
Mumber of nodez: 12

Humber of reuons: 10
Irput File: 30_surlace_drn_2=32e1.in
automaiicaly

Flot Modss.
© Mulli Curves
@ one Curve
@ Delayed Curve
mnm-(ms: m—
TotaiTimes
Suce Rate B save Dala

Training Algorithm
MEN

Training Times.
Masimm Error
Maimum teration

@ Training Paltems
@ Testing Pattems
@ Creste 2-D Palterns

1.0E-00

1LOE-01
1.0E-02
1.0E-03
1.0E-04
[] 2 3 4 5 6 7 8 9
Teration [x 50)

@ Multi Curves ‘Training Algorithm 100

PP, _ Training Times. [ o ]
-E.W‘ p- @onscune Waimum Ermor

Cur SSE [oossiarer |

@ Delayed Curve - Maximum itaration
- Cmmommi)
e Tima ms) (037555 | Carsmem) p—

ng ems

Toa Times A P——
Succrate e @ custs 20 panems

131




Supporting Data for Simple 3-D Benchmark testing of equivalent networks

Appendix B

Best training data for MLP 2-5-3-1 network
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Supporting Data for Parity-11 Benchmark testing of equivalent networks

Appendix C

Best training data for MLP 11-5-3-1 network
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Best training data for DNN 11-2(3)-2(1)-1 network
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Appendix D

Supporting Data for Checker-3 Benchmark testing of equivalent networks

Best training data for MLP 2-11-7-4-1 network
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Best training data for DNN 2-4(7)-3(4)-3(1)-1 network
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Supporting Data for 3-D Benchmark testing of minimal networks

Appendix E

Best training data for MLP 2-3-3-1 network
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Supporting Data for Simple 3-D Benchmark testing of minimal networks

Appendix F

Best training data for MLP 2-2-2-1 network
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Best training data for BMLP 2=2=2=1 network
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Appendix G

Supporting Data for Parity-11 Benchmark testing of minimal networks

Best training data for MLP 11-2-2-1 network

1.0E+D4

1.0E403

1.0E402 g
Mumoer o nodes 205
Numbes of reurans:

1.0E+01 Irgud Fiee pasiy11_ip_11-221in
Enable lraing sulomalc

1.0E-00

1.0E-01

1.0E-02

1.0E-03

1.0E-04
o

4 5 6
heration [x 50 )

@ Mutti Curves. Traini m
CurNaration ing Algorith Training Times
@ one Curve NEN ] -
_8 1690934
Cursse @ Delayed Curve |
e eraon E=mr=ry

Ave Time (s}
Total Times

@ Training Patems
| P e
SuceRate

Coarem ) @ Cresto 20 Patems

1.0E+04 Command Comaslar |
X Mo, 10000
‘+aining bmes; 1
1.0E+03 Nusnber of Inputs: 11
Number of outputs: 1
Nusber of paterns: 2048
1.0E+02 Muroer of weighis; 76
luenbes of newsons:
1.0E+01 Ingu Fie: party11_mip_11-221.n
e
1.0E-00 Trainging algorihe NBN
Conboutoncosicin mc 0020000
| Sttt | e a0
1.0E-01 Masun evce: (010000
Training fines: 100
Nusber o Ingus: 11
1.0E-02 Hurber of oupus: 1
Nuerber of pattems: 2048
Nunber of weighiz: 76
1.0E-03 MNumber of nodes: 20
Number of newons: 3
1.0E-04 IFA- ,l-,ﬂl E 11-2-21n
[ 1 2 3 a 5 6 7 [ 9 0 F————
Heration [x 50 ) :' At
T ===
@ uul Curves Training Algorithm ing Ti
- oot
@ one Cunve HEH [ Maximum Error

3743475019

ELEE @ Delayed Curve

e teaton

heTime ey oo | || (CrEme) PR
—

Totai Times @ 4sto Run S |( g ¢ esworans

Suce Rate 00 Bsaenan Coriomng ) @ Creste 2.0 Patems

Emmmey (|

156



1.0E+04

Command Conzolex

1.0E+03
1.0E+02
Number of newons: 3
1.0E+01 Irgud Fie: paityl1_tmip_11:2:21.n
- Traring [dceinatior s
1.0E-00
1.0E-0
1.0E-02
1.0E-03
1.0E-04
] z 3 4 5 B T8 IR T]
Heration (50) I
[ Forstor oo
@ Multi Curves Training Algorithm Training Times
Curteraton [ 4]
e @ One Curve NEN 8 Mavimum Error
CurSSE 1
i @ Delayed Curve Maximum iteration
p— (Crssivsane )
e Time () (ST
e S iy
Total Times - @ Testing P: s
SuccRale o) @ creats 20 patems
1.0E+04
1.0E+03
1.0E402
Hunber of nodes: 20
Nurtiber of neuons: 3
1.0E+01 Ingust Fie: panityl1_mip_11-22-1in
Trainging sigorthm: NEN
1.0E-00 Conbination coafiient tu 0040000
50
1LOE-01
1.0E-02
1.0E-03
1.0E-04
] 1 2 1 5 6 7 8 9 1
Ieration [ x50 )
i)
@ Multi Curves Training Algorithm
Gurtston o :
7356223881
cursse e
e eration Ermrr—)
:
v Time (ms) LS J
@ Ao @ Training Panems
b ) || o)
SuccRate BsaeDus (cwarPemng ) @ Create 2.0 Panems

Best training data for BMLP 11=2=2=1 network

1.0E+04
1.0E403
1.0E+02
1.0E+01
1.0E-00
1.0E-01
1.0E-02
1.0E-03

1.0E-04
0

CurReration
Cur SSE 800146550

Aue leration
Ave Time (ms)
Total Times
Suce Rate

Trawing ines: 100

Number of newrons: 5
Irout Fie: paityl 1_bmip_11+22+Lin

7 8 9 10
@ Ml Curves Training Algosithm
@ One Cunve NEM. imgeaved 3
@ Delayed Curve
B Auto Run
@ 5ave Data

- Trarig
Trangng algonthen: NBN, improved
dcha: 0.001000

Waimum Error
Maimum tersion

Training Times

@ Training Paflems.
@ Testing Patterns
@ Create 2-D Patterns

1

57



1.0E+04

1.0E403

1.0E+02

1.0E+01

1.0E-00

1.0E-01

1.0E-02

1.0E-03

1.0E-D4
0

Cur teration
CurSSE
e eration
Ave Time (ms)
Total Times
Suce Rate

S gy
=——

Huber of newscers: 5
Irpus File: parity11_berkg 11=2=2=1.n

4 5 6 7 L 9
Reration [x 50]

e
@ Multi Curves. Training Algofithm
® One Curve
e | ey
== (Eem—
Do
oo | (o)

Tusging aigeettan: NBM, impeoved
0.001000

Training Times
Marimum Error

Maximum teration

@ Training Patterns
@ Testing Patierns
@ Create 2-D Patterns

1.0E+04

1.0E+03 3

1.0E+02
1.0E+01
1.0E-00
1.0E-01
1.0E-02
1.0E-03

1.0E-04
0

H 4 5 B 7 B 9
Heration [x 50)
T D S
© Multi Curves Training Algorithm
S ? na ko Training Times
W @ One Curve NEN. improved 8 Maximum Error
CESIE LETHET | @ Delayed Curve Maximum iteration
e Roraton s
Ave Time (ms) @ Training Pat
ng | Ems
ot Times @ Testng Patams
SuccRate @ Create 2-D Pattemns
1.0E404

1.0E403

1.0E+02
1.0E+01
1.0E-00
1.0E-01
1.0E-02
1.0E-03

1.0E-04
o

Cur Resaion
Cur SSE 224016327

P
Awe Time (ms)
Total Times

‘Succ Rate oo

@ Muli Curves.
@ One Curve
@ Delayed Cunve

Training Algoithm

NBN, npeoved 8

Training Times
Matimum Ertoe
Maximum teration

@ Training Pattems

& ™ @ Testing Panems
@ Create 2-D Pattemns

158



1.0E+04 Conmand Conseler
1.0E+03 N
1.0E+02
1.0E401 Trainging aigathin: NBN, imgeaved
posapha (1001000
1.0E-00 Pk
el
e
1.0E01 Training mes: 1
Number of Irguts: 11
Number of outputs: 1
1.0E-02 Nusmber of pflems: 2048
s o et 3
Numbet of nodes: 11
1.0E-03 Mkt oS
1.0E-04
Cur herstion LIrEns Training Times |10
@0 cune e
Cur SSE 4800216553
@ Delayed Curve Maimum feration
A teration
e Time (ms) _
@ Training Pattemns
e (5 P,
Suce Rate @ Create 2.0 Pattems

1.0E+04
1.0E+03 “\ \\ \‘\‘\
| T Y
1.0E+02 o - Huntst
Husnbes of neurons: 9
1.0E+01 Irgut File: packyi1_don_11=2=2=1.in
= Trainging sigoithon NBN, impecved
1.0E-00 po agha 0001000
10601
1.0E02
10603
1.0E-04
0 2 3 4 5 & 1 8 18
Iteration [ 50 )
s
© Mult Curves Training Algorithm
Cur teration -E_
e @ One Curve NEM, impeaved
curgsE (2047959
’ @oeascune (Pt
s erton Crmomr)
e Tine ey (i | —
rsining Paltems
[ ] 1B Auto Run
s @ Testing Pattems
sows  [EET e @ Create 2.0 Patioms
1.0E+04
LW -
1.0E+03
|
1002 Hurbes of nodes: 20
Husrbes of ntuncas: 9
1.0E+01 Inpust File: party11_dnn_11=2s2=1.n
Tiainging sgosthn NEN, mvpeoved
po aipha 0.001000
1.0E-00 po s
o
1.0E-01
1.0E-02
1.0E-03
1.0E-04
o 1 2 1 5 [ 7 8 9 10
e 1501 —
Multi Curves. Training Algorithm 100
Curteration o s TanngTines 100 _|
@ One Curve NEMN, irgrved 8 O RTIE
[2046 00000000]
o Ot P
P =
i oy 100 | | RS PR—
raining Pattems
e ] B Auto Run
e @ Testing Patiems
uce e @saeoms o

159



1.0E+04

1.0E+03
1LOE+02
1.0E+01
1.0E-00
1OE-01
1.0E-02
1.0E-03
1.0E-04
0 H 4 5 5 7 8 9
Ieration [ x50 )
Training Algorithm
Cour teration
@ One Curve BN, ingroved
Cur SSE (2036, 4763455
! @ Delayed Curve Maximum iteration
pp— Emm)
Fore Time (ms) @ Training Pattems:
raining

Total Times @ Testing Fatiems

Suce Rate @ Create 2D Pattems
1.0E+04

1.0E403

1.0E+02

1.OE+01

Huerber of newons: 3
Inges File: parity11_dre_11=2e2e1in
v T 10 e
Tranging sigeether: MBN, improved
po sipha 0001000

Cur$SE BOOTSIITE
e teration
#we Time (ms)
Tota Times
SuccRate

@ Delayed Cunve

1.0E-00 o
1.0E-01
1.0E-02
1.0E-03 neucn
Fie pary
1.0608 = =
0 2 3 4 s & 1 8 8 w
Heration [ 501 |
S i RS
o III @ Multi Curves Training Algorithm Training Times
on
— @ One Cune NEN, improved Maimum Eror
cursse  [20e7sssessss] @ Delayed Cunve Marimum iteration
oo mrsion Emmmes)
e Time (ms) @ Training Pattem:
9 5
1B Auto Run
Total Times @ Testing Patterns
Succ Rate Ly @ Create 2.0 Patems
1.0E+04
1.0E+03
1.0E+02
1.0E+01
1.0E-00
1.0E-01
1.0E-02
1.0E-03
1.0E-04
] 2 3 4 5 B 7 8 3 W
Iteration [x 50 )
Centrol Ares
& Nulti Curves Training Algorithm
S Tralning Times
® One Curve NN, mproved E) Masimum Error

o
Eormmr)
oo —)

Masimumn iteration

@ Training Pattems
@ Testing Patterns
@ Create 2D Patterns

160




Supporting Data for Checker-N Benchmark testing of minimal networks

Appendix H

Best training data for MLP 2-4-3-3-1 network
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Best training data for DNN 2-4(7)-3(4)-3(1)-1 network
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