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Abstract 

Very little time has been devoted to the application of Dual Neural Networks and 

advances that they might produce by utilizing them for conversion between network 

architectures. By leveraging the efficiencies of the various networks, one can begin to 

draw some conclusions about the unleashed power of network conversion. If we could 

harness the advantages of multiple network architectures and somehow combine them 

into one network, we could make great advances in ANNs. By introducing the DNN as a 

tool for training, optimization, and architecture conversion, we find that this newly 

presented architecture is key to unlocking the strengths of other network architectures. 

Results in this study show that DNN networks have significantly higher overall success 

rates compared to BMLP and MLP networks. In fact, the DNN architecture had either the 

highest or the second highest success rate in all experiments. With the conversion 

methods presented in this study, not only do we now have a path for network conversion 

between BMLP, DNN, and MLP architectures, but also a means for training networks 

that were previously untrainable. 
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Chapter 1 

Introduction 

 An enormous amount of research has been devoted to artificial neural network 

(ANN) research over the past several decades. Much research has focused on training 

algorithms such as Error Back Propagation (EBP) [1] [2], the Levenberg Marquardt (LM) 

algorithm [3] [4], and the Neuron by Neuron (NBN) algorithm [5] [6] [7]. Other research 

has seized opportunities to optimize training algorithms and network architecture. This 

research has produced improvements in algorithms such as momentum [8] and flat-spot 

elimination [9] for EBP. We have also seen the architecture progression from the multi-

layer Perceptron (MLP) to the bridged multi-layer Perceptron (BMLP) to the fully 

connected cascade (FCC) architecture [10] and finally to dual neural networks (DNN) 

[11]. All of this research has produced many advances in the methods used to train ANNs 

as well as improvements in architecture design which have significantly improved 

efficiency [11] [12] [13]. However, little time has been devoted to conversion between 

network architectures and any advances that this might produce. 

 By looking at the efficiencies of the various networks, one can begin to draw 

some conclusions about network conversion. Research has shown that for the Parity-N 

problem an MLP network with one hidden layer requires N+1 neurons [14].  So, for the 

Parity-11 problem, twelve neurons would be required in an 11-11-1 MLP architecture. 

The number of neurons required for this same problem can be reduced by one if the MLP 
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network has two hidden layers in an 11-5-5-1 MLP architecture. Figure 1.1 shows the 

network for the Parity-11 problem using the 11-5-5-1 MLP architecture. With further 

testing, we find that this is the smallest MLP network that can be trained for the Parity-11 

problem. 

 

Figure 1.1: MLP Network for Parity-11 Problem 

 If we move away from the mainstream architectures that utilize only sigmoidal 

activation functions and look at a DNN architecture which utilizes neurons with both 

sigmoidal and linear activation functions, we discover something quite surprising. We 

find that if we use two linear neurons, one in each hidden layer, in a traditional MLP type 

architecture, that we can reduce the number of required neurons for the Parity-11 problem 

from 11 to 6.  This DNN network can be seen in Figure 1.2 and has an 11-1(1)-2(1)-1 

architecture where the number in parentheses represents the number of linear neurons in 

that hidden layer.  As seen in this network, an analytical solution was found for the 

Parity-11 problem. By applying the input patterns for this network, one can see that it 

yields the correct solution for each input pattern. 
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Figure 1.2: DNN Network for Parity-11 Problem 

 Analytically, the ANN seen in Figure 1.2 is not capable of solving the Parity-11 

problem.  So, what made this possible? As I studied the networks in Figures 1.1 and 1.2, I 

could only conclude that what made the network in Figure 1.2 so much more powerful 

was the addition of linear neurons. Simply changing the activation function of two 

neurons from sigmoidal to linear transformed a traditional MLP network capable of 

solving Parity-6 into a DNN capable of solving Parity-11. These results led me to ask 

several important questions: 

1) Can this type of result be duplicated with other network architectures? 

2) Is there a way to directly convert between DNN and other architectures? 

3) Can the use of DNNs assist with the training of other network architectures? 

Pondering these questions let me to consider that further investigation into DNNs 

was warranted. Therefore, I decided to focus my research on answering these questions. 

With this end in mind, the future chapters will aid one in understanding how we can 

utilize DNNs as a tool for training, optimization, and architecture conversion. 

Chapter 2 will discuss the current state of ANN research with regards to training, 

optimization, architectures, and the many benchmarks used to test and analyze ANNs. 

Chapter 3 will explain the motivation for my research of DNNs. Chapter 4 will cover 
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conversion methods between architectures. Chapter 5 will compare the results of the 

various network architectures. Finally, Chapter 6 will provide a summary and conclusion 

of the research. 
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Chapter 2 

Overview of ANN Research 

 ANNs are currently used in many different applications. We likely see them every 

day, but don’t realize that they are there. When you watch the weather forecast on the 

news or view it on the Internet or you mobile phone, few of us realize that ANNs were 

likely used to generate the forecast [15] [16] [17]. In industry, ANNs are used to control 

induction [18] [19] [20], permanent magnet [21] [22], and stepper motors [23]. 

Additionally, they are used in robotics [24], motion control [25], battery control [26], job 

scheduling [27], and networking [28]. Some more advanced ANNs are used in highly 

complex, dynamic systems such as oil wells [29] [30]. Although their uses vary, you can 

see that ANNs are found almost everywhere.  

As mentioned in the introduction, much research has been performed on ANNs 

over the past several decades. So, what is the current state of ANN research with regards 

to training, optimization, and architectures? Each of these areas will be addressed 

separately in this chapter. 

2.1 ANN Training Algorithms 

 The three main training algorithms that exist today are the Error Back Propagation 

(EBP) algorithm, the Levenberg Marquardt (LM) algorithm, and the Neuron by Neuron 

(NBN) algorithm. Each of these algorithms has benefits and drawbacks and they have all 

seen modifications and improvements over the years. A discussion of each algorithm 
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with its benefits and drawbacks will be discussed in this section while the optimizations 

to each algorithm will be discussed in the next section of this chapter. 

2.1.1 EBP Algorithm 

 The EBP algorithm is probably the most widely used and popular algorithm for 

ANN training. EBP is a supervised learning method based upon a generalization of the 

delta rule. This algorithm was developed in 1969 by Arthur E. Bryson and Yu-Chi Ho 

[31], but was not applied in the context of neural networks until 1974 [1] [2]. Its “re-

discovery” in 1974 caused a so-called “renaissance” in the field of ANN research. The 

benefit of this algorithm is that it has the ability to reduce learning errors to very small 

values. However, this algorithm has many drawbacks [10]. Generally speaking, EBP is a 

very inefficient algorithm that is computationally intensive. Although it can be very 

successful at training an ANN to a give training set, there is no guarantee that the 

resulting network has good generalization abilities. Another drawback of this algorithm is 

that its solution search process only follows the gradient, leaving it vulnerable to being 

trapped in local minima. 

2.1.2 Levenberg Marquardt Algorithm 

 The Levenberg Marquardt algorithm is a second order algorithm that interpolates 

between the Gauss–Newton (GNA) and EBP algorithms. The LM algorithm applies a 

Jacobian matrix to evaluate the change of the gradient. This algorithm has two main 

benefits. First, it typically provides much better results than the EBP algorithm. And 

second, it is very fast and more efficient than the EBP algorithm. However, the LM 

algorithm also has several drawbacks. First, computation of the Jacobian matrix can 

become an impediment if the number of input patterns exceeds a few hundred [4]. 
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Second, this algorithm only finds a local minimum, not a global minimum. So, in 

situations where there are multiple minima, the algorithm will only find a solution if the 

initial guess is close to the final solution. Third, the algorithm functions in such a way 

that it only works on MLP network architectures. It does not have the ability to function 

on arbitrarily connected networks. Finally, for very large network architectures which 

have a large number of neurons and weights, the computational load is very heavy and 

can be taxing to even the most current computers.  

 In spite of its drawbacks, the LM algorithm was a major step forward in ANN 

training. It not only provided more efficient results in faster times, it also gave 

researchers an additional training algorithm option when the widely used EBP algorithm 

failed to converge to a solution. 

2.1.3 Neuron by Neuron Algorithm 

 One of the biggest drawbacks of both the EBP and LM algorithms is that both 

only work on MLP architectures. Even the very popular MATLAB Neural Network 

Toolbox’s [32] first and second order training algorithms only work on MLP networks. 

This was a very limiting factor which gave researchers no other choice but to use MLP 

architectures and any results obtained were usually less than satisfactory [33]. Both the 

architectural and size limitations were solved by the development of the Neuron by 

Neuron (NBN) algorithm [5] [6] [7]. A fully functioning software package that 

implements the NBN algorithm along with EBP, LM, and other variations is available 

online as the Neural Network Trainer [34] [35]. This particular algorithm has two main 

benefits. First, it can work on all of the previously discussed network architectures: MLP, 

BMLP, FCC, and DNN. Second, it supports several types of neuron activation functions 
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such as unipolar, bipolar, and linear. The NNT software allows a user to define new types 

of activation functions. The only know drawback of this algorithm is that it has some of 

the same vulnerabilities as the LM algorithm in that it can get stuck in local minima and 

like other algorithms, is not guaranteed to produce a solution. 

2.2 ANN Algorithm Optimization  

 The previous section discussed the development of the three main training 

algorithms used today in ANN research. As with most things, engineers are always 

looking for ways to improve things. This is true of the EBN, LM, and NBN algorithms. 

This section will discuss the optimizations developed over the years for the mentioned 

algorithms as well as architectural optimizations. 

2.2.1 EBP Optimizations 

 The EBP algorithm is the oldest of the algorithms that we have discussed, so it 

will probably come as no surprise that this algorithm probably has the most 

optimizations, or enhancements. Over the many years that EBP has existed, many 

improvements have been developed to solve some of the algorithm’s inherent problems. 

We will discuss some of the more well known optimizations. 

2.2.1.1 EBP with Momentum 

 In this optimization to EBP, the momentum term is added to the weight update 

rule to speed up the process of learning. The momentum term is added to the weight 

update equation to prevent the system from converging to a saddle point or local 

minimum. The momentum, typically given the Greek letter alpha, is a value between 0 

and 1. The momentum term, which is the product of alpha and the change in weight that 

occurred in the previous weight update, is added to the current weight update. By adding 
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this momentum term, weight changes can be kept on a faster and more even path to a 

solution [36]. 

 Addition of this momentum term to the weight update equation doesn’t come 

without risks. One must be careful when setting this parameter. While a high alpha can 

help increase the speed of convergence, it can also cause instability in the system with a 

risk of overshooting the minimum. At the other end of the spectrum, a low alpha is not 

guaranteed to ovoid local minima and it will slow the training process. While the addition 

of momentum improves EBP, the selection of alpha is more of an art than a science. 

2.2.1.2 EBP with Stochastic Learning Rate 

 As a deterministic decent gradient algorithm, EBP has a limitation on speed and 

convergence. These limitations are mainly due to large plateaus on the surface of the 

error function as well as the potential presence of several local minima on that same 

surface. As the size of the network and number of weights increase, these problems are 

magnified. To overcome these problems, researchers have suggested adding a stochastic, 

or random, process to the learning algorithm [37]. 

 In 1988, Kolen suggested restarting the entire learning process with random 

weights every time the algorithm failed to converge at a solution [38]. Starting over every 

time the algorithm fails to converge is very impractical and could be very inefficient. 

Instead, other researchers suggested that the stochastic element be added in real-time in 

parallel with the deterministic weight changes rather than at the end of a training cycle. 

The idea behind this procedure is to somehow avoid or get out of local minima and 

achieve better solutions [39] [40]. It was shown that any of the stochastic modifications 

improved either the convergence quality or speed. 
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2.2.1.3 EBP with Flat-Spot Elimination 

 If an ANN has high neuron gain or has neuron states that are well defined and far 

from the thresholds, back-propagation convergence is typically very slow. In both of 

these cases, the gradient calculated for the back-propagation algorithm are very small 

making it difficult for errors to propagate back through the network and effect 

meaningful change in weights. Under these circumstances, “flat-spots” are encountered 

and the output of the network can be entirely wrong while producing a small SSE. At 

least three different methods were employed by different researchers to eliminate these 

“flat-spots” and increase the speed of convergence. One method added an offset to the 

activation function [41]. Another used a scaled linear approximation of the sigmoidal 

function for the error calculation [42]. The last method uses a logic OR in the calculation. 

Depending on whether the error is large or small, one of two effective gradient 

calculations is used [9]. All three modifications yielded improvement in convergence.  

2.2.1.4 RPROP 

 RPROP, or Resilient PROPagation, was developed to deal with the inherent 

issues introduced with EBP with momentum. As you will remember, the momentum 

parameter is chosen by the individual training the network. If this parameter is too small 

or too large, it will cause convergence issues. The selection of this parameter value 

became more of an art than a science and was different for every network.  

 To counter the problems just listed, RPROP introduces an individual weight 

update value which solely determines the change in that weight. This adaptive update 

value for each weight changes during the learning process based upon its local sight on 

the error function. In general terms, the weight update value is adjusted as outlined here. 
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If the partial derivative of the weight changes signs, then the previous update was too 

large and jumped over a local minimum. In this case, the weight update value is 

decreased. On the other hand, if the partial derivative of the weight does not change 

signs, then the previous update was too small and the weight update value is slightly 

increased. 

 Once the weight update values are all determined, the actual weight update 

follows this guideline. If the derivative is positive, meaning increasing error, then the 

weight is decreased by the weight update value. If the derivative is negative, meaning 

decreasing error, then the weight is summed with the update value. The only exception to 

this update is when the partial derivative changes signs, meaning that a local minimum 

was jumped. In this instance, the previous weight change is reversed and the process 

continues [43]. 

 The success of this algorithm stems from the fact that there is individual and 

direct weight adaptation during each training cycle. Essentially, it eliminates the error 

caused by the “what’s good for one is good for all” mentality. 

2.2.1.5 QUICKPROP 

 The QUICKPROP algorithm [44] is similar to the RPROP algorithm discussed in 

the last section. In developing this algorithm, Fahlman makes two risky assumptions: 1) 

He assumes that the error versus weight curve is an upward pointing parabola; and 2) The 

changes in each individual weight do not affect the other weights. The goal of the 

algorithm is to move downward in the parabola until the minimum is reached. To do this 

the error derivative calculated during the previous iteration are stored and compared to 

the current error derivative. For each weight, we use the previous and current error slopes 
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coupled with the weight-change between the points at which these slopes were measured. 

This information allows us to determine a parabola for that weight. With two known 

points on the parabola, we are now able to jump directly to the minimum point of this 

parabola. 

 In practice, the algorithm deals with three different cases: 1) If the current slope is 

somewhat smaller and in the same direction as the previous slope, then the weight is 

moving in the right direction. How much the weight is changed depends on the ratio of 

slope change to weight change in the last iteration; 2) If the current slope is the opposite 

direction (sign changes) of the previous slope, it means that the previous weight change 

caused the weight to jump over the minimum. The weight is now on the opposite side of 

the parabola. In this case, the weight is changed in the opposite direction in an amount 

that puts it somewhere in between the previous two weights; and 3) In the final case, the 

current slope is either the same or larger than the previous slope. In this case, a parameter 

called the “maximum growth factor” is implemented to prevent a large step in the wrong 

direction. This factor is multiplied by the previous step size and the weight is moved by 

that amount. 

 While QUICKPROP is a significant optimization over standard EBP, it still can 

suffer from the flat-spot problem. Thus we see that no algorithm is perfect. 

2.2.2 Levenberg Marquardt Optimizations 

 Like the EBP algorithm, the LM algorithm has also seen a number of 

optimizations, or enhancements. Over the many years that the LM algorithm has been 

used in ANN training, many improvements have been developed to solve some of the 

algorithm’s problems. We will discuss some of the more well known optimizations. 
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2.2.2.1 Neighborhood Based Levenberg Marquardt 

The LM algorithm has been extensively applied as a neural-network training 

method. In addition to only operating on MLP networks, it requires a very large overhead 

in memory and number of operations when the network to be trained has a large number 

of adaptive weights. The Neighborhood Based Levenberg Marquardt (NBLM) algorithm 

was inspired by the way that biological brains seem to act; letting different groups of 

neurons specialize in different tasks [45]. 

 This algorithm optimization works by dividing the ANN into different groups or 

neighborhoods and considers each group an independent learning unit. The algorithm 

then allows weight adaptation to take place in each neighborhood independent of other 

neighborhoods. The process for the algorithm has three steps: 

1) Define the network structure and initial weights, and then assign neighborhoods. 

2) Select a neighborhood to be trained and then train it with the LM algorithm. 

3) Evaluate SSE to see if the training error was reached. If not, repeat steps 2 and 3. 

The results of the NBLM algorithm showed a significant reduction in memory 

and time requirements for computations. This was most noticeable in very large 

networks. The gains in training times were found to considerably depend upon the 

neighborhood size and selection; however, no general guidelines for selecting 

neighborhoods have been outlined by the developers [46].  

2.2.2.2 Modified NBLM 

 Several years following the development of the NBLM algorithm, its original 

developer worked with other researchers to make additional improvements to the 

algorithm. The researchers made one simple modification. They implemented a locally 
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adaptive learning coefficient for the LM algorithm in each defined neighborhood. The 

results of testing this modified algorithm showed statistically significant improvements in 

learning times over the original NBLM algorithm [47].  

2.2.2.3 Improved Computation for LM 

 As previously discussed, one of the major limitations of the LM algorithm is how 

taxing the computational requirements are. In this modification to the LM algorithm, the 

researchers developed a method to compute a Quasi-Hessian matrix and gradient vector 

directly without utilizing Jacobian matrix multiplication and storage. This new method 

solves the memory limitation problem for LM training [6]. 

 To accomplish this exploit, only elements in the upper/lower triangular array need 

to be calculated. Therefore, the Quasi-Hessian matrix, Q, can be calculated as an 

approximation of Hessian matrix:  

  H ≈ Q = JTJ   (1) 

Similarly, the gradient vector can be calculated as follows: 

 g = JTe  (2) 

Huge computational savings are achieved as a result of the Quasi-Hessian matrix, Q, and 

gradient vector, g, being calculated directly without the necessity of calculating and 

storing Jacobian matrix, J [6]. 

2.2.2.4 LM for Arbitrarily Connected Neural Networks 

 Another major limitation of the LM algorithm is that it only worked for MLP 

networks. As mentioned previously, a C++ implementation of the NNT [35] [48] was 

developed to assist researchers in ANN training research. This tool implements two 

different versions of the LM algorithm: 1) Traditional forward-backward computation; 
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and 2) A newly developed forward-only computation. Additionally, these new 

implementations can not only handle MLP networks, but also arbitrarily connected 

networks (ACN). 

 This is a momentous step forward for the LM algorithm as researchers are no 

longer tied to using MLP networks when utilizing the LM algorithm for training and 

testing purposes. 

2.2.3 NBN Optimizations 

 The NBN algorithm is relatively young in comparison to the EBP and LM 

algorithms. In spite of its youth, this algorithm has also seen a few improvements and 

optimizations. In addition to its traditional forward-backward computation algorithm, two 

additional optimizations have been developed. 

2.2.3.1 NBN Forward Only 

The designers of the NBN algorithm [34] [49]and NNT implemented a 

modification to the standard NBN algorithm that improves its speed. This modification 

utilizes a forward-only computation capable of handling ACNs. Due to the reduced 

computational requirements, the NBN forward only algorithm is significantly faster than 

the standard NBN algorithm. This increased speed is even more noticeable on ANNs with 

multiple output neurons.  

2.2.3.2 NBN Improved Algorithm 

The most recent optimization to the NBN algorithm is based upon the NBN 

forward only algorithm just described. This optimization focuses on improving 

computational speed. To accomplish this goal, the algorithm is designed to only invert 

the Hessian matrix one time per iteration, reducing computational overhead. 
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Theoretically and in experiments, this algorithm is able to compute faster than the LM 

and NBN algorithms which need to invert the Hessian matrix several times per iteration. 

Additionally, minor modifications were made to improve convergence [34]. 

2.3 ANN Topologies 

 There are four different ANN architectures that are commonly used today. They 

are MLP, BMLP, FCC, and DNN. Each of these architectures has advantages and 

disadvantages. While the architectures themselves have not changed over time, a 

significant amount of research has been done to help determine optimal network size. We 

will discuss each architecture separately. 

2.3.1 MLP 

 A MLP network is a feedforward ANN that maps a set of input patterns to a set of 

output patterns. It is made up of a given number of hidden layers and an output layer. All 

inputs are connected to all neurons in the first hidden layer and all neurons outputs in the 

hidden layers are connected to the inputs of neurons in the next layer. Figure 2.1 shows a 

MLP network with one hidden layer with a 2-5-1 architecture. Figure 2.2 shows a MLP 

network with two hidden layers with a 2-3-2-1 architecture. 
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Figure 2.1: MLP network with 2-5-1 architecture 

 

 

Figure 2.2: MLP network with 2-3-2-1 architecture 

 As will all networks, the first question one usually asks is, “What is the power of 

this network?” Or, in other words, how big of a problem is a given network able to solve. 

For purposes of this comparison, we will use the Parity-N problem as a benchmark for 

comparing the networks. For a MLP network with one hidden layer, like that seen in 

Figure 2.1, the total number of neurons, J, required to solve the Parity-N problem is: 

 J = N + 1 (3) 
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Although only two inputs are shown, we can conclude that the network in Figure 2.1 is 

capable of solving the Parity-5 problem [11] [10]. Essentially, the number of neurons in 

the first and only hidden layer is equal to the parity number, N. 

 For a MLP network with multiple hidden layers, the largest Parity-N problem that 

a network can solve is defined by: 

 N = (h1 + 1) + (h2 + 1) + … + (hn +1) -1 (4) 

where hn represents the number of neurons in the nth hidden layer and it is assumed that 

there is a single output neuron. Based upon this, we can conclude that the MLP network 

in Figure 2.2 is capable of solving Parity-6.  

2.3.2 BMLP 

A BMLP network is also a feedforward ANN that maps a set of input patterns to a 

set of output patterns. It is made up of a given number of hidden layers and an output 

layer. All inputs are connected to all neurons in the entire network. Additionally, all 

outputs from neurons in the hidden layers are fully connected to all neurons in forward 

layers, including the output layer. Figure 2.3 shows a BMLP network with two hidden 

layers and a 2=3=2=1 architecture. 

 

Figure 2.3: BMLP network with 2=3=2=1 architecture 
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For a BMLP network with multiple hidden layers, the largest Parity-N problem 

that a network can solve is defined by [10] [14]: 

 N = 2(h1 + 1)(h2 + 1) … (hn +1) -1 (5) 

where hn represents the number of neurons in the nth hidden layer and it is assumed that 

there is a single output neuron. Based upon this, we can conclude that the BMLP network 

in Figure 2.3 is capable of solving Parity-23. As can be seen by comparing the networks 

in Figures 2.2 and 2.3, the only difference is that bridged connections are added to the 

network in Figure 2.3. These bridged network connections significantly increase the 

power of this network by nearly a factor of 4. 

2.3.3  FCC 

 The FCC network is actually a special case of the BMLP network with only a 

single neuron in each hidden layer. Once again, all connections are fully connected to all 

neurons. Figure 2.4 shows a FCC network with two hidden layers and a 2=1=1=1 

architecture. Research has shown that the largest Parity-N problem that a FCC network 

can solve is defined by: 

 N = 2n-1 (6) 

where n is the total number of neurons in the network [10] [11] [14]. Based upon this, we 

can conclude that the FCC network in Figure 2.4 is capable of solving Parity-7. Notice 

that this answer also agrees with equation (5) above. This is due to the fact that FCC is a 

special case of BMLP and therefore the calculation in equation (5) also applies to FCC. 

However, the calculation in equation (6) is simplified and easier to use. 
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Figure 2.4: FCC network with 2=1=1=1 architecture 

2.3.4 DNN 

A majority of research to date looks at neural networks as if they only contain a 

single type of neuron. What if we looked at ANNs differently and allowed them to have 

different types of neurons, each with a different function. The use of 2 different types of 

neurons in the same architecture falls under a class of architectures called Dual Neural 

Networks (DNN). Many researchers have looked to DNNs to solve specific problems 

[50] [51]. Figure 2.5 shows a diagram of the human brain, outlining the different sections 

of the brain and the functions or specialization that occurs in that section of the brain. If 

we apply this methodology on a small scale to DNNs by using only two different types of 

neurons, we can construct a very powerful and versatile network structure. A majority of 

DNNs to date in the literature are very specialized, using a myriad of different 

components such as fuzzy devices, summers, logic blocks, and countless others.  
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Figure 2.5: The different parts and functions of the human brain 

This research will focus on a simple DNN design that utilizes standard linear and non-

linear neurons. Figure 2.6 shows a simple DNN network with a 2-1(2)-1(1)-1 

architecture. Note that the numbers in parentheses represent the number of linear neurons 

in that hidden layer. 

 

Figure 2.6: DNN network with 2-1(2)-1(1)-1 architecture 

 Extensive research has not been performed by outside researchers on this specific 

architecture, however, based upon its architecture; we can draw some conclusions 

regarding the power of the network. One may notice that the network in Figure 2.6 looks 
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very similar to the FCC network in Figure 2.4. Likewise, if you look at the DNN network 

 

Figure 2.7: DNN network with 2-3(3)-2(1)-1 architecture 

in Figure 2.7 that has a 2-3(3)-2(1)-1 architecture, you will notice that it is also very 

similar to the BMLP network in Figure 2.3. In both cases, we see that the bridged 

connections are removed from the BMLP and FCC networks and they are replaced with 

linear neurons and non-bridged connections.  

 For purposes of determining the power of these networks for the Parity-N 

problem, we will make the assumption that we can treat the networks in Figures 2.6 and 

2.7 like BMLP networks and use equation (5) to determine their power. In doing this, we 

will only consider the non-linear neurons in each hidden layer for purposes of 

calculations. By doing this, we find that the DNN network in Figure 2.6 is capable of 

solving Parity-7 and the network in Figure 2.7 is capable of solving Parity-23. This can 

be verified by training both networks with the specified parity data set. What is not know 

is if these DNNs possess even greater power than the BMLP equation shows. However, 
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we do know that the BMLP equation does give us a minimum power value for DNN 

networks [11].  

2.4 Benchmark Data Sets Used for Training and Comparison 

 When performing research with Neural Networks, one must have pre-defined sets 

of data to use for training, testing, and comparison. These benchmark data sets must 

provide a vigorous and robust means for validating and comparing Neural Networks. 

This section will discuss many of the benchmarks used in this and other research. In order 

to compare results between different Neural Network architectures, there must be 

benchmark data sets used for comparison and validation. The general method is to select 

a benchmark data set and train a given network architecture to that set. Then, perform the 

network conversion. Following the conversion, validate the newly created network with 

the same data set. If the network conversion is correct, the results for all inputs will be 

identical on both networks. The conversions described later in this work will use one of 

four baseline data sets: 1) Simple 3-D Surface; 2) 3-D Surface; 3) Two Spiral 

Classification; 4) Parity-N problems; and 5) Checker-N problem. 

2.4.1 Benchmark #1A – Simple 3-D Surface 

 The Surface seen in Figure 2.8 results from a set of 25 ordered pairs obtained 

from the function: 

ݖ  ൌ ሾఈሺ௫ି௫బሻି݁ߛ
మାఉሺ௬ି௬బሻమሿ (7) 

where x,y ∈ (0, 1, 2, 3, 4) , x0=4, y0=3,and γ=4. This particular data set yields a rough 3-D 

surface. 
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Figure 2.8: Simple 3-D Surface 

 X Axis Value 

0 1 2 3 4 

Y
 A

xi
s 

V
al

ue
 0 0.00403 0.01152 0.02439 0.03825 0.044436 

1 0.04911 0.14034 0.29709 0.46594 0.54134 

2 0.22009 0.62895 1.3315 2.0882 2.4261 

3 0.36287 1.037 2.1952 3.4428 4 

4 0.22009 0.62895 1.3315 2.0882 2.4261 

Table 2.1: Simple 3-D Surface Data Set 

2.4.2 Benchmark #1B – 3-D Surface 

The Surface seen in Figure 2.9 results from a set of 1600 ordered pairs obtained 

from function 7. However, in this implementation, x,y ∈ (0, 0.2564, 0.5128, …, 9.7436, 

10) , x0=9, y0=5,and γ=1. As this surface is created from a more extensive data set, it 

provides a much more rigorous challenge for training. The data set consists of 1600 

ordered pairs with unique outputs derived from a mathematical function. 
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Figure 2.9: 3-D Surface 

2.4.3 Benchmark #2 – Two Spiral Classification 

The Two Spiral Classification seen in Figure 2.10a results from a set of data 

consisting of two input values (X and Y) and an output (Z) which is either a +1 or -1 

classification. This set of data creates two spirals that are intertwined. The data set 

consists of 382 ordered pairs with either a +1 or -1 which was generated from the 

MATLAB code seen in Figure 2.10b. Values for Z are classifications of either -1 (blue) 

or +1 (red).  
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(a) 

 

clear all; format compact; format short; 
m=2; %multiplier for number of patterns if m=1 then np=194 
n=m*96; 
j=0; 
for i = 0:n 
    angle = i*3.1415926/(m*16.0); 
    radius = 6.5*(104*m-i)/(104*m); 
    x = radius*sin(angle); 
    y = radius*cos(angle); 
    j=j+1; 
    a(j,:)=[x,y,1] 
    j=j+1; 
    a(j,:)=[-x,-y,-1] 
end 
figure(1); clf; 
scatter(a(:,1),a(:,2),7,a(:,3),’filled’); 
axis([-7 7 -7 7]); 
whos 

(b) 

Figure 2.10: Two Spiral Classification – (a) Graph; and (b) MATLAB code 
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2.4.4 Benchmark #3 – Parity-N Problems 

Parity-N Problems consists of a set of N inputs and a single output. All inputs and 

the output are either unipolar (0 or 1) or bipolar (-1 or +1). The goal of the parity problem 

is to calculate the parity bit for any given set of inputs. The resulting output will be +1 if 

the number of +1 inputs is odd and will be 0 or -1 if the number of +1 inputs is even. 

There is no way to visualize the parity problem, but example data sets for Parity-3 and 

Parity-5 can be found in Table 2.2. The parity calculation is used frequently in today’s 

computers and has become one of the standards for Neural Network training.  

 

Table 2.2: Example Parity-N data sets – bipolar and unipolar 

Input 1 Input 2 Input 3 Input 4 Input 5 Parity Bit
Input 1 Input 2 Input 3 Parity Bit -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 1 1
-1 -1 1 1 -1 -1 -1 1 -1 1
-1 1 -1 1 -1 -1 -1 1 1 -1
-1 1 1 -1 -1 -1 1 -1 -1 1
1 -1 -1 1 -1 -1 1 -1 1 -1
1 -1 1 -1 -1 -1 1 1 -1 -1
1 1 -1 -1 -1 -1 1 1 1 1
1 1 1 1 -1 1 -1 -1 -1 1

-1 1 -1 -1 1 -1
-1 1 -1 1 -1 -1
-1 1 -1 1 1 1
-1 1 1 -1 -1 -1
-1 1 1 -1 1 1
-1 1 1 1 -1 1

Input 1 Input 2 Input 3 Input 4 Parity Bit -1 1 1 1 1 -1
0 0 0 0 0 1 -1 -1 -1 -1 1
0 0 0 1 1 1 -1 -1 -1 1 -1
0 0 1 0 1 1 -1 -1 1 -1 -1
0 0 1 1 0 1 -1 -1 1 1 1
0 1 0 0 1 1 -1 1 -1 -1 -1
0 1 0 1 0 1 -1 1 -1 1 1
0 1 1 0 0 1 -1 1 1 -1 1
0 1 1 1 1 1 -1 1 1 1 -1
1 0 0 0 1 1 1 -1 -1 -1 -1
1 0 0 1 0 1 1 -1 -1 1 1
1 0 1 0 0 1 1 -1 1 -1 1
1 0 1 1 1 1 1 -1 1 1 -1
1 1 0 0 0 1 1 1 -1 -1 1
1 1 0 1 1 1 1 1 -1 1 -1
1 1 1 0 1 1 1 1 1 -1 -1
1 1 1 1 0 1 1 1 1 1 1

Parity-3 Problem (bipolar)
Parity-5 Problem (bipolar)

Parity-4 Problem (unipolar)
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2.4.5 Benchmark #4 – Checker-N Problems 

 The Checker-N problem consists of a 10N x 10N grid similar to a checker board. 

The checker board consists of N2 squares, each containing 100 data points. For a given 

ordered pair, the output is calculated with the following equation: 

 ݀ሺݔ, ሻݕ ൌ ሾۂݔہ ൅ 2ሿ	݀݋݉	ۂݕہ െ 1 (7) 

where x and y are respectively (0, 0.1, 0.2, …, N) and ہ.  .is the floor operator [52] ۂ

Figure 2.11 shows a visual representation of the Checker-3 problem which contains 961 

data points. Note that blue diamonds represent a +1 output while red diamonds represent 

a -1 output. 

 

(a) 
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clear all; format compact; format short; 
m=10 
n=3; 
np=m*n 
j=0; 
for x = 0:np 
  for y = 0:np 
    z=2*mod(floor(x*0.1) + floor(y*0.1),2) -1 
    j=j+1; 
    a(j,:)=[x*0.1,y*0.1,z] 
  end 
end 
figure(1); clf; 
scatter(a(:,1),a(:,2),3,a(:,3)'filled'); 
axis([0 3 0 3]); 
whos 

(b) 

Figure 2.11: Checker-3 Problem – (a) Graph; and (b) MATLAB code 

2.4.6 Additional Benchmarks 

 The previous four benchmarks are only a small portion of the many benchmarks 

that exist and are used in NN research. In his research on efficient optimization 

algorithms, Pham [48] utilizes many additional test functions. Thirteen additional test 

functions are outlined below. For functions that can be limited to 2 variables, graphs of 

the function are shown below the respective function. 
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1) Beale function 

ܨ ൌ ሺ1.5 െ ݔ ൅ ሻଶݕݔ ൅	ሺ2.25 െ ݔ ൅ ଶሻଶݕݔ ൅	ሺ2.625	– 	x	 ൅ 	xyଷሻଶ 

 (8) 

 

2) Biggs Exp6 function 

ܨ ൌ 	෍ሾݔ௜ାଶ݁௧೔௫೔ െ ௜ାଷ݁ି௧೔௫೔శభݔ ൅ ௜ାହ݁௧೔௫೔శరݔ െ ௜ሿଶݕ
௡

௜ୀଵ

 

 (9) 

3) Box function 

ܨ ൌ෍ሾ݁ି௔௫೔ െ ݁ି௔௫೔శభ െ ௜ାଶሺ݁ି௔ݔ െ ݁ିଵ଴௔ሻሿଶ
௡

௜ୀଵ

 

 (10) 

4) Colville function 

ܨ ൌ෍ሾ100ሺݔ௜
ଶ െ ௜ାଵሻଶݔ ൅ ሺݔ௜ െ 1ሻଶ ൅ ሺݔ௜ାଶ െ 1ሻଶ

௡

௜ୀଵ

൅ 10.1ሺሺݔ௜ାଵ െ 1ሻଶ ൅ ሺݔ௜ାଷ െ 1ሻଶሻ ൅ 90ሺݔ௜ାଶ
ଶ െ ௜ାଷሻଶݔ

൅ 19.8ሺݔ௜ାଵ െ 1ሻሺݔ௜ାଷ െ 1ሻሿ 

 (11) 

  



31 

 

5) De Jong function 

ܨ ൌ෍ݔ௜
ଶ

௡

௜ୀଵ

 

 (12) 

 

6) De Jong function with a moved axis 

ܨ ൌ ∑ ሺݔ௜ െ ܽ௜ሻଶ
௡
௜ୀଵ  (13) 

  

 

7) Powell function 

ܨ ൌ෍ሾሺݔ௜ ൅ ௜ାଵሻଶݔ10 ൅ 5ሺݔ௜ାଶ െ ௜ାଷሻଶݔ ൅ ሺݔ௜ାଵ െ ௜ାଶሻସݔ2
௡

௜ୀଵ

൅ 10ሺݔ௜ െ  ௜ାଷሻସሿݔ

 (14) 
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8) Quadruple function 

ܨ ൌ෍ሺ
௜ݔ
4
ሻସ

௡

௜ୀଵ

 

 (15) 

 

9) Rosenbrock function 

ܨ ൌ෍ሾ100ሺݔ௜ାଵ െ ௜ݔ
ଶሻଶ ൅ ሺݔ௜ െ 1ሻଶሿ

௡

௜ୀଵ

 

  (16) 
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10) Step function 

ܨ ൌ෍|ݔ௜ ൅ 0.5|ଶ
௡

௜ୀଵ

 

 (17) 

 

11) Schwefel function 

ܨ ൌ 418.9829݊ െ	෍ቀݔ௜݊݅ݏඥ|ݔ௜|ቁ

௡

௜ୀଵ

 

 (18) 
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12) Sum of different power function 

ܨ ൌ෍|ݔ௜|௜ାଵ
௡

௜ୀଵ

 

 (19) 

 

13) Zarakov function 

ܨ ൌ෍ݔ௜
ଶ ൅ ൭෍0.5݅ݔ௜

௡

௜ୀଵ

൱

ଶ

൅ ൭෍0.5݅ݔ௜

௡

௜ୀଵ

൱

ସ௡

௜ୀଵ

 

 (20) 

 

 

2.5 Summary of Algorithms, Optimization, Topologies, and Benchmarks 

The previous sections have been dedicated to understanding and outlining the 

current state of ANN research with regards to training, optimization, architectures, and 

benchmarks. In the training section, we discussed the main methods used for training 
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ANNs today, namely EBP, LM, and NBN. In the optimization section, we discussed 

optimizations made to the three mainstream algorithms and the advantages that these 

optimizations bring to bear. In the architecture section, the current state of each of the 

four main architectures was discussed. Time was spent discussing the power and 

efficiency of each network architecture and the Parity-N benchmark was used as a 

baseline to compare all four architectures. In the benchmark section, we discussed a small 

portion of the many benchmarks that are used for ANN training and testing. 

Now, with an understanding of where research has brought ANNs over the past 

several decades, we are ready to look at the motivation for this work and the role of 

DNNs in architectural conversion. 
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Chapter 3 

Motivation of Research 

The exclusive-OR (XOR) and parity-N problems are used very frequently in 

digital systems.  For example, a chain of XOR operators is used to convert Gray code to 

binary code.  Also, parity-N circuits are essential for error detection and correction such 

as generation of a parity bit and checksums.  Likewise, digital addition and multiplication 

require parity-N circuits. Additionally, parity-N circuits are often used in digital 

transmission systems to detect errors and they are also used in digital memory to detect 

hardware failures [14]. 

3.1 Digital Approach 

 In approaching XOR problems in a digital world, we are able to substitute a 

neuron for a digital logic gate or unit. Figure 3.1 shows and simple XOR module which 

utilizes 3 neurons. 

 

Figure 3.1: XOR module with ANNs as digital units (3 neurons) 

 To solve larger Parity-N problems in a digital world, the XOR module seen in 
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Figure 3.1 can be duplicated and combined to solve Parity-4, Parity-8, Parity-16, and so 

on. Each time the parity number is doubled and the number of required neurons is two 

times the parity number minus 1, or 2N-1. 
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Figure 3.2: Parity-4 by combining XOR units (7 neurons) 

 Figure 3.2 shows a digital solution for the Parity-4 problem. In this solution, two 

XOR modules are placed side-by-side and their outputs are combined with the addition of 

a single output neuron. Notice that this network requires 2N-1, or 7 neurons. Similarly, 

figure 3.3 shows the digital solution for the Parity-8 problem. In this case, we placed two 

of the Parity-4 modules side-by-side and combined the outputs with a single output 

neuron. This network required 2N-1, or 15 neurons. 
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Figure 3.3: Parity-8 by combining XOR units (15 neurons) 

3.2 Digital Implementation with ANNs 

A significant research effort has been made for many decades toward optimizing 

the design of threshold logic networks.  At the same time, many researchers were trying 

to solve the XOR and parity-N problems with artificial neurons that use non-linear 

activation functions.    

In 1961, Minnink showed that solving the parity-N problem using threshold 

networks with one hidden layer required N hidden threshold units plus one output unit 

[53].  Since this time, the standard for solving a Parity-N problem using a MLP with one 
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hidden layer required N+1 neurons. Figures 3.4 and 3.5 show the networks for Parity-4 

and Parity-8, respectively. Using the power of the non-linear activation function, the 

number of neurons required for Parity-4 and Parity-8 were reduced from 7 (digital 

approach) to 5 (ANN approach) and 15 (digital approach) to 9 (ANN approach), 

respectively. 

 

Figure 3.4: Parity-4 using MLP ANN architecture (5 neurons) 

 

Figure 3.5: Parity-8 using MLP ANN architecture (9 neurons) 
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 The reduction in the number of required neurons for Parity-N resulting from use 

of ANNs was significant. The requirement of N+1 neurons for a single hidden layer MLP 

network to solve the Parity-N problem has been the standard for over 50 years.  

3.3 A Puzzle and a Discovery 

 The N+1 threshold discussed in section 3.2 has never really been overcome. 

However, in various experiments, I discovered that I was able to solve the Parity-N 

problem with fewer than N+1 neurons. Figures 3.6 and 3.7 show solutions for Parity-4 

and Parity-8, respectively.  Note that in Figure 3.7, it is assumed that all 8 inputs are 

connected to each of the neurons in the first hidden layer. These input connections are not 

shown to simplify the drawings. 

 

Figure 3.6: Parity-4 solution using only 4 neurons 

 

Figure 3.7: Parity-8 solution using only 6 neurons 
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 Although the networks in Figures 3.6 and 3.7 should theoretically not be able to 

solve the Parity-4 and Parity-8 problems, I found that I was able to train these networks 

to do just that. The success rates for training these networks were extremely low; 

however, I was able to obtain solutions. These results violated the 50+ year old standard 

and raised the question, “How is it possible to solve the Parity-N problem with fewer than 

N+1 neurons in a MLP network?” I went forward, determined to answer this question. 

 After analyzing the training results for the Parity-4 and Parity-8 solutions, I found 

that at least one of the neurons in the first hidden layer of each MLP network was 

operating in its linear region. This was identified by very small input weights and a very 

large output weight on the linear-acting neuron. This was a significant discovery! 

 Once I realized that the N+1 threshold could be overcome by having one or more 

neurons operate in their linear region, I began to look at the potential advances that could 

come from creating a network with both linear and non-linear neurons. This type of 

network is the Dual Neural Network (DNN) discussed previously.  I suspected that this 

type of network could provide significant advances in ANN research. I proceeded to 

investigate how a DNN could be used as a tool for training, optimization, and 

architectural conversion.  
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Chapter 4 

  Network Architecture Conversion 

Researchers to date have dedicated very little time and research to conversion 

between different neural network architectures. Generally, research has focused on the 

advantages of a particular neural network architecture over another. Many architectures 

have been developed with very specific problems or tasks in mind, leaving them very 

specialized and incapable of being used for solutions outside the realm of that specific 

research. However, when one explores the possibility of converting a particular neural 

network architecture to a different architecture which yields an identical result, a world of 

possibilities is opened.  

For example, research has shown that some neural network architectures are 

easier to train, others require less time to train, and others are more likely to yield a 

solution to a training set [10]. Some architectures are more efficient, using a smaller 

number of neurons, and others less efficient, requiring more neurons for a solution [11].  

Figure 4.1 shows an example of a 2=3=2=1 BMLP network and a 2-1(1)-1 DNN 

network. Please note that the networks in Figure 4.1 are not equivalent networks. Notice 

that in a BMLP network, all inputs are connected to all neurons in the network. In 

addition to this, the output of each neuron is connected to all neurons in forward layers. 

In the DNN network, notice that there are no cross-layer or bridged connections. The 

inputs are only connected to neurons in the first hidden layer and linear neurons are used 
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in each hidden layer to pass inputs to forward layers. This chapter will explore and 

discuss conversions between three different neural network architectures: BMLP, DNN, 

and MLP. All NN training will be performed with software developed by Yu and 

Wilamowski [35]. 

 

                                    (a)                                                                   (b) 

Figure 4.1: (a) 2=3=2=1 BMLP and (b) 2-1(1)-1 DNN Architectures  

4.1 Architecture Conversion Overview 

 After a significant amount of research, it was discovered that the DNN 

architecture is the key to conversion between BMLP and MLP architectures. While there 

is no direct conversion from MLP to BMLP or from BMLP to MLP, both of these 

architectures can be converted to and from the DNN architecture. Figure 4.2 shows three 

equivalent networks: 1) 2=1=1=1 BMLP; 2) 2-1(2)-1(1)-1 DNN; and 3) 2-3-2-1 MLP. 

 

Figure 4.2: Conversion relationship between BMLP, DNN, and MLP 
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Note that if I train any one of the networks in Figure 4.2 to a given data set, I can convert 

the architecture and weights to either of the other two equivalent networks. If I start with 

a DNN network, then I can directly convert to either BMLP or MLP. If I start with a 

BMLP or MLP network and I desire to convert to the other, I must first convert to the 

DNN architecture and then to the desired architecture. In other words, the DNN 

architecture provides the path for conversion between BMLP and MLP. 

 With an understanding of the conversion relationship between BMLP, DNN, and 

MLP, it is now important to understand the process to complete these conversions. The 

next sections will cover the following conversions: 

1) BMLP to DNN conversion 

2) DNN to BMLP conversion 

3) DNN to MLP conversion 

4) MLP to DNN conversion 

4.2 BMLP to DNN Conversion Process 

This section will focus on the conversion from the BMLP architecture to an 

equivalent DNN architecture. A specific process is employed to convert from the BMLP 

architecture to the DNN architecture. This conversion has two different parts: 1) The 

architecture conversion; and 2) The weight conversion. We will look at each part of the 

conversion separately. 

4.2.1 BMLP to DNN Architecture Conversion 

 One of the purposes of the BMLP to DNN architecture conversion is to eliminate 

cross-layer or bridged connections found in the BMLP architecture. To do this, linear 

neurons are inserted into the DNN architecture in each hidden layer to pass signals across 
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layers without creating bridged connections. For example, if a bridged connection in a 

BMLP network crossed 4 hidden layers, the DNN network would have 4 linear neurons, 

one in each hidden layer, to pass the signals to the destination neuron. 

4.2.1.1 BMLP to DNN Examples 

To understand how this architectural conversion works, it is beneficial for us to 

first look at several examples. Figures 4.3 and 4.4 show examples of simple BMLP 

networks converted to DNN networks.  

 

Figure 4.3: BMLP 2=1=1 to DNN 2-1(1)-1 

Notice how the bridged connections are eliminated by inserting linear neurons. To 

create the DNN in Figure 4.3, the bridged connections going from the two inputs to the 

output neuron are replaced by connections to a linear neuron (1) in parallel with the 

bipolar neuron in the first hidden layer. The sum of the inputs to this linear neuron is then 

passed to the output neuron by a single connection (2) from the output of the linear 

neuron to the input of the output neuron. And this simple architecture conversion is 

complete. 
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Figure 4.4: BMLP 2=1=1=1 to DNN 

To create the DNN in Figure 4.4, the bridged connections going from the two 

inputs to the neuron in the second hidden layer and the output neuron had to be replaced.  

First, the two bridged inputs to the second hidden layer neuron are replaced by 

connections to a linear neuron (1) in parallel with the bipolar neuron in the first hidden 

layer. The sum of the inputs to this linear neuron is then passed to the second hidden 

layer neuron by a single connection.  

Next, the two bridged inputs to the output neuron are replaced by connections to a 

linear neuron (2) in parallel with the bipolar neuron in the first hidden layer. The sum of 

the inputs to this linear neuron is then passed to another linear neuron (3) in parallel with 

the bipolar neuron in the second hidden layer. The sum of inputs to this linear neuron (3) 

is passed to the output neuron via a single connection. 
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Finally, the bridged connection from the output of the first hidden layer neuron to 

the input of the output neuron is replaced (4) by a connection from the output of the first 

hidden layer neuron to the input of the linear neuron (3) in layer 2. Thus, the output 

neuron receives input from the first hidden layer neuron via a linear neuron (3) in layer 

two rather than by a bridged connection. And, now, the architecture conversion is 

complete. 

The previous two examples were quite simple and straight forward; however, let 

us look at a more complex conversion. Let us consider the BMLP network with an 

X=2=3=2=1 architecture found in Figure 4.5. As the number of inputs to the network is 

not important to it structure, we will ignore them in this example with the understanding 

that all inputs are connected to every neuron in the BMLP network.  

 

Figure 4.5: BMLP X=2=3=2=1 network 

Using the same method as in the previous examples, the network in Figure 4.5 can 

be converted to the DNN network in Figure 4.6. It is understood that all inputs to the 

network will be connected to all neurons in the first hidden layer of the DNN network in 

Figure 4.6. 
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Figure 4.6: DNN network equivalent to BMLP in Figure 4.5 

Let us now break down this more complex example from Figures 4.5 and 4.6 and 

determine how we arrived with the network in Figure 4.6. In doing this, we will reference 

the two networks side-by-side in Figure 4.7. Remember, it is understood that all inputs to 

the network will be connected to all neurons in the first hidden layer of the DNN network 

and all inputs are connected to all neurons in the BMLP network. 

To create the DNN in Figure 4.7, the bridged connections going from the inputs to 

the neuron in the second and third hidden layers and the output neuron had to be 

replaced.  First, the three bridged inputs to the second hidden layer neurons are replaced 

by connections to linear neurons (1) in parallel with the bipolar neurons in the first 

hidden layer. The sum of the inputs to this linear neuron is then passed to the second 

hidden layer neuron by a single connection.  

Next, the bridged inputs to the two bipolar neurons in the third hidden layer are 
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replaced by connections to two linear neurons (2) in parallel with the bipolar neurons in 

the first hidden layer. The sum of the inputs to these linear neurons is then passed to two 

additional linear neurons (3) in parallel with the bipolar neurons in the second hidden 

layer. The sum of inputs to these linear neurons (3) is passed to the two bipolar neurons 

in the third hidden layer via a single connection (4). 

 

Figure 4.7: BMLP X=2=3=2=1 to DNN X-2(6)-3(3)-2(1)-1 

Then, the bridged inputs going to the output neuron are replaced by a series of 3 
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linear neurons, one in each of the first three hidden layers (5). The sum of the inputs to 

the first linear neuron in this series is passed to each of the future neurons by a single 

connection between the neurons in each layer. Thus, the output neuron receives input via 

three linear neurons in series rather than by bridged connections.  

Finally, we deal with the connections between hidden layers. Instead of using 

bridged connections to go between layers, connections are routed to the linear neuron in 

next hidden layer that feeds the destination neuron. These connections are blue in Figure 

4.7. Notice how the bridged connection from one bipolar neuron in the first hidden layer 

to a bipolar neuron in the third hidden layer is replaced with a connection to a linear 

neuron in the second hidden layer. This path is highlighted with a blue dotted line (6). 

Now, the architecture conversion is complete. 

4.2.1.2 BMLP to DNN Architecture Conversion Methodology 

The previous three examples show progressively more complicated conversions. 

After significant analysis, standardized methods have been developed with simple 

formulas that determine the number of non-linear and linear neurons in each layer. Table 

4.1 contains the variables used for BMLP to DNN architecture conversion. As seen in 

this table, when converting from the BMLP architecture to the DNN architecture, the 

DNN architecture will have the same total number of layers and the same number of 

Variable Description 
K The total number of layers in both the BMLP and DNN networks. 
nL Number of non-linear neurons in the Lth layer of both the BMLP and DNN 

networks where L is from 1 to K 
hL Number of linear neurons in the Lth layer of the DNN network where L is 

from 1 to K. This is a calculated value. 

Table 4.1: Variables used for BMLP to DNN conversion 
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non-linear neurons in each hidden layer. The only parameter that must be calculated is 

the number linear neurons in each hidden layer of the DNN architecture. From analysis, 

the number of linear neurons in each hidden layer is equal to the number of bipolar 

neurons in all future layers combined. This value can be calculated with Equation 21. 

    (21) 

 Note that the number of inputs to the network has no effect on the architectural 

conversion. For this reason, I have limited the number of inputs in the example networks 

to two in order to simplify the drawings and make them less cluttered by connections 

between neurons. Now, with all of the conversion tools at our disposal let us now 

consider a more complex circuit like that found in Figure 4.8. This figure shows a BMLP 

network with a 2=3=2=1 architecture. As seen in the figure, there are two inputs, three 

 

Figure 4.8: BMLP 2=3=2=1 Network 
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non-linear neurons in the first hidden layer, two non-linear neurons in the second hidden 

layer, and one non-linear neuron in the output layer. Now, with an understanding of 

Table 4.1 and Equation 21, we can calculate the architecture of the DNN network which 

is equivalent to the BMLP network in Figure 4.8. The calculations for h1, h2, and h3 are: 

 

 

 

Remember that the number of non-linear neurons in each layer, nL, is the same for both 

architectures. A summary of our results can be found in Table 4.2 and the corresponding 

DNN network can be found in Figure 4.9. 

Layer nL hL 
1 3 3 
2 2 1 
3 1 0 

Table 4.2: Parameters for DNN Network equivalent to BMLP in Figure 4.3 
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Figure 4.9: DNN network equivalent to BMLP in Figure 4.8 
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Figure 4.10: X=2=3=2=1 BMLP to X-2(6)-3(3)-2(1)-1DNN conversion with calculations 
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 Let us look at the conversion example seen in Figure 4.7 again. This time, we will 

use Equation 21 and Table 4.1 to validate the conversion. Figure 4.10 shows the BMLP 

and DNN networks in Figure 4.7 along with the calculations for the number of linear 

neurons in each hidden layer. Table 4.3 summarizes all the parameters for the DNN 

network. Thus we see that the conversion shown in Figure 4.7 is accurate. 

Layer nL hL 
1 2 6 
2 3 3 
3 2 1 
4 1 0 

Table 4.3: Parameters for the conversion in Figure 4.10 

4.2.1.3 BMLP to DNN Architecture Conversion Summary 

 This section has focused on the BMLP to DNN architecture conversion. As we 

saw, the number of layers in the network and the number of non-linear neurons in each 

layer did not change. It is only necessary to calculate the number of linear neurons for 

each hidden layer and understand how they are placed and connected. Notice that in all 

cases, no non-linear neurons will be added to the output layer. With an understanding of 

the architecture conversion, we must now gain an understanding of the weight 

conversion. 

4.2.2 BMLP to DNN Weight Conversion 

 With an understanding of the BMLP to DNN architecture conversion, we are now 

prepared to discuss the weight conversion. This weight conversion follows three rules: 

1) All weights for non-bridged connections remain the same. 

2) Weights for bridged connections remain the same, but are transferred to the new 

network connection going to the linear neuron in the next hidden layer. 
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3) The weight on the output of every linear neuron is 1. 

These rules may be a little bit confusing, so it is easiest to illustrate the application of 

the three rules on networks that we have looked at previously in this chapter. Let’s look 

at the network conversion in Figures 4.3 and 4.4. We will use these same networks to 

illustrate the weight conversion. To simplify the network diagrams for illustrative 

purposes, unique variable weights will be assigned so that it is easy to see how the 

weights are converted. Figure 4.11 shows the weight conversion for the network in 

Figure 4.3. Figure 4.12 shows the weight conversion for the network in Figure 4.4. 

 

 

Figure 4.11: Weight Translation of networks in Figure 4.3 
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Figure 4.12: Weight Translation of networks in Figure 4.4 

 As can be seen in the examples illustrated in Figures 4.11 and 4.12, the weight 

conversion during the BMLP to DNN conversion is simple and straight forward. There is 

now a clear path for conversion between BMLP network architectures and the DNN 

network architecture. The opposite conversion will be dealt with later in this chapter. 

4.2.3 BMLP to DNN Conversion Examples 

The process for converting a BMLP network to an equivalent DNN network is 

rather simple and straight forward with the information that we have just covered. This 

section will focus on an overview of the conversion tests performed as part of this 

research and the implications of these tests. 

4.2.3.1 BMLP to DNN Using Simple 3-D Surface Benchmark 

The first conversion test was performed using the Simple 3-D Surface benchmark. 

A BMLP network was built with two architectures: 2=3=2=2=1 and 2=2=3=2=1. In both 
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cases, the BMLP network was trained to SSE ≤ 0.01. Once the training was completed, 

each network was converted to the DNN architecture using the standard conversion 

process. The DNN equivalent architectures gave identical output results with no 

variation. Figure 4.13 shows the trained 2=3=2=2=1 BMLP. Figure 4.14 shows the DNN 

equivalent network. 

 

 

Figure 4.13: 2=3=2=2=1 BMLP network for the Simple 3-D Surface 
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Figure 4.14: DNN equivalent network for the network in Figure 4.13 

As mentioned previously, the networks in Figures 4.13 and 4.14 yielded identical 

results to the benchmark data set.  

4.2.3.2 BMLP to DNN Using 3-D Surface Benchmark 

The second conversion test was performed using the 3-D Surface benchmark. 

This time, a BMLP network was built with the architecture 2=3=2=1. The BMLP 

network was trained to SSE ≤ 0.01. Once the training was completed, the network was 

converted to the DNN architecture using the standard conversion process. Figure 4.15 

shows the BMLP network and Figure 4.16 shows the DNN equivalent. Note that the 
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DNN equivalent architecture gave identical output results with no variation.  

 

Figure 4.15: 2=3=2=1 BMLP Network for 3-D Surface Benchmark 

 

Figure 4.16: DNN equivalent network for the network in Figure 4.15 
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4.2.3.3 BMLP to DNN Using Parity-N Benchmark 

 The third conversion test was performed using the Parity-N benchmark. The 

BMLP network was built for Parity-11 using an 11=2=1=1 architecture. The BMLP 

network was trained to SSE ≤ 0.01. Once the training was completed, the network was 

converted to the DNN architecture using the standard conversion process. Figure 4.17 

shows the BMLP network and Figure 4.18 shows the DNN equivalent. Note that the 

DNN equivalent architecture gave identical output results with no variation.  

 

Figure 4.17: 11=2=1=1 BMLP Network for Parity-11 Benchmark 

 

Figure 4.18: DNN equivalent network for the network in Figure 4.17 
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4.2.3.4 BMLP to DNN Conversion Summary 

The results in Section 4.2.3 are significant because we have shown with multiple 

data sets and multiple BMLP architectures that we can train a given BMLP network to 

any given data set and then convert that trained network to an equivalent DNN 

architecture. This equivalent architecture will give us identical results to those obtained 

with the original BMLP network. 

4.3 DNN to BMLP Conversion Process 

This section will focus on the conversion from the DNN architecture to an 

equivalent BMLP architecture. Under certain circumstances, it may be desirable to 

minimize the total number of neurons in a NN with the trade-off of added bridged 

connections. A specific process is employed to convert from the DNN architecture to the 

BMLP architecture. This conversion has two different parts: 1) The architecture 

conversion; and 2) The weight conversion. We will look at each part of the conversion 

separately. 

4.3.1 DNN to BMLP Architecture Conversion 

One of the purposes of the DNN to BMLP architecture conversion is to minimize 

the total number of neurons in the NN architecture. To do this, linear neurons are 

removed from the DNN architecture and are replaced with bridged connections. For 

example, if a series of three linear neurons (1 in each hidden layer prior to the output 

layer) feeds the sum of the inputs to the output neuron, the three linear neurons are 

removed and a bridged connection is made from each input to the output neuron. 

Additionally, connections from the output of non-linear neurons in the hidden layers to 

linear neurons in the next hidden layer are replaced by bridged connections to the 
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destination non-linear neuron. 

4.3.1.1 DNN to BMLP Examples 

To understand how this architectural conversion works, it is beneficial for us to 

first look at several examples. We will revisit many of the networks presented previously. 

Figures 4.19 and 4.20 show examples of simple DNN networks converted to BMLP 

networks.  

 

Figure 4.19: DNN 2-1(1)-1 to BMLP 2=1=1 

 Notice in Figure 4.19 how the linear neuron was removed and the two 

connections to its inputs were simply extended to the input of the output neuron. 

Although this is a very simple example, it shows that we are able to simply remove linear 

neurons and create bridged connections to replace them and the inputs that they receive. 

Notice that the network in Figure 4.20 is more complex than the one in Figure 

4.19. Its conversion will take more time.  First, a single linear neuron in the first hidden 

layer is removed (1) and the two connections it received are replaced with bridged 

connections to the bipolar neuron in the second hidden layer. Next, two linear neurons 

which pass outputs to the output neuron are removed (2) and the connections coming 
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from the input are replaced with bridged connections to the output neuron. 

 

Figure 4.20: DNN 2-1(2)-1(1)-1 to BMLP 2=1=1=1 

With the removal of the last two neurons (2), the output from the bipolar neuron 

in the first hidden layer to the linear neuron in the second hidden layer must be replaced 

with a bridged connection (3). With the placement of this last bridged connection, the 

conversion from DNN to BMLP is complete.  

4.3.1.2 DNN to BMLP Architecture Conversion Methodology 

 The previous two examples show the basic concepts for converting from the DNN 

architecture to the BMLP architecture. Referring back to Table 4.1 and what we learned 

earlier in this chapter, we know the following about the BMLP network: 

1) The BMLP network will have the same number of layers as the DNN network.  

2) The number of non-linear neurons in each of the hidden layers will remain the 

same. 

3) The output neuron(s) will remain the same. 

With an understanding of the points outlined above, we can now outline a 
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standardized methodology for the DNN to BMLP conversion. As noted above, the main 

idea behind this conversion is to remove all linear neurons and replace them with bridged 

connections. The process for this conversion is as follows: 

1) Identify all of the linear neuron series in the network.  

2) Of the linear neuron series remaining in the network, work on the series with the 

highest number of neurons in it. Trace the series from the inputs to the final 

destination neuron. 

3) Identify inputs to linear neurons in the series that come from neurons outside of 

the series. Replace these inputs with bridged connections from the source neuron 

to the final destination neuron. 

4) After all tangential connections to the series are removed, remove all linear 

neurons in the series and replace them with bridged connections from all inputs 

that went to the first linear neuron in the series to the final destination neuron. 

5) Repeat steps 2-4 until there are no linear neurons remaining in the network. 

These steps may seem a little confusing, so let us look at two examples on the 

more complex networks found in Figures 4.9 and 4.10. We will start with Figure 4.9 

which is smaller and will apply the steps outlined above in order. Figure 4.21 shows the 

network in Figure 4.9 with all linear neuron series identified with blue arrows.  

In Figure 4.22, we perform steps 2 and 3 on the largest linear neuron series. The 

three outside inputs to the linear neuron series are identified by dotted blue lines. These 

connections are removed and replaced with the three bridged connections which are red. 
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Figure 4.21: 2-3(3)-2(1)-1 DNN conversion Step 1 

 

 

Figure 4.22: 2-3(3)-2(1)-1 DNN conversion Steps 2 and 3 
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 In Figure 4.23, we perform step 4. Here, we remove the two linear neurons in that 

series along with the associated connections. We then replace them with two bridged 

connections from the two inputs to the output neuron. These new connections are red. 

 

Figure 4.23: 2-3(3)-2(1)-1 DNN conversion Step 4 
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Figure 4.24: 2-3(3)-2(1)-1 DNN conversion Step 2 repeated 

 I will now repeat steps 2 through 4 for the remaining two linear neurons. As 

neither of the two remaining linear neurons has outside connections, we are able to skip 

step 3 and only do steps 2 and 4. Figure 4.24 identifies the linear neuron series we will 

work on. Figure 4.25 shows replacement of the linear neuron with bridged connections. 

 We will now repeat steps 2 and 4 one more time to complete the conversion. 

Figure 4.26 identifies the linear neuron series we will work on. Figure 4.27 shows 

replacement of the linear neuron with bridged connections. As always, the new 

connections are red. This step is now complete. 
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Figure 4.25: 2-3(3)-2(1)-1 DNN conversion Step 4 repeated 

 

Figure 4.26: 2-3(3)-2(1)-1 DNN conversion Step 2 repeated 
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Figure 4.27: 2-3(3)-2(1)-1 DNN conversion Step 4 repeated 

 Let us now look at a more complex network which is found in Figure 4.10. Figure 

4.28 shows the network in Figure 4.10 with all of the linear neuron series identified with 

blue arrows. For simplicity, it is assumed that all inputs are connected to all neurons in 

the first hidden layer. 

 

Figure 4.28: X-2(6)-3(3)-2(1)-1 DNN conversion Step 1 
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Note that during step 1 shown in Figure 4.28, we identified six linear neuron 

series. There is one series with 3 linear neurons, two series with 2 linear neurons each, 

and three series with a single linear neuron each. In Figure 4.29a, we perform steps 2 and 

3 and in Figure 4.29b, we perform step 4 on the largest linear neuron series. The five 

outside inputs to the linear neuron series are identified by dotted blue lines. These 

connections are removed and replaced with the three bridged connections which are red. 

The X bridged input connections are shown as one single, thick dotted blue line. 

  

                         (a)                                                                   (b) 

Figure 4.29: DNN conversion Steps 2 and 3 (a) and 4 (b) 

 After finishing the first iteration of conversion, we are ready to repeat steps 2 

through 4 on the remaining linear neuron series. Since the next largest series is two linear 

neurons and there are two of these series, we can work on both in parallel. Refer to  
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(a)                                                                (b) 

Figure 4.30: DNN conversion Steps 2 and 3 (a) and 4 (b) repeated 

 

Figure 4.28 to identify the two series that we will work on. Figure 4.30a will show steps 2 

and 3 on these series. Figure 4.30b will show step 4 on the same series.  

After finishing the second iteration of conversion, we are ready to repeat steps 2 

through 4 on the final three linear neuron series. As the remaining three linear neuron 

series are all a single neuron, we can work on them in parallel. Refer to Figure 4.28 to 

identify the three series that we will work on. Figure 4.31a will show steps 2. Step 3 is 

not needed as there are no inputs from outside neurons. Figure 4.31b will show step 4 on 

the same set of series. The conversion from DNN to BMLP is now complete for this 

network. This particular network took three iterations of the conversion process to 

complete. 

 



72 

 

  

(a)                                                             (b) 

Figure 4.31: DNN conversion Steps 2 and 3 (a) and 4 (b) repeated 

4.3.1.3 DNN to BMLP Architecture Conversion Summary 

 This section has focused on the DNN to BMLP architecture conversion. As we 

saw, the number of layers in the network and the number of non-linear neurons in each 

layer did not change. It was only necessary to remove all linear neurons from the DNN 

network hidden layers and replace them with the appropriate bridged connections. With 

an understanding of the architecture conversion, we must now gain an understanding of 

the weight conversion. 

4.3.2 DNN to BMLP Weight Conversion 

 With an understanding of the DNN to BMLP architecture conversion, we are now 

prepared to discuss the weight conversion. This weight conversion follows these rules: 

1) All weights to non-linear neurons in the first hidden layer remain the same. 

2) All weights from the outputs of non-linear neurons to the output neuron or the 

inputs of non- linear neurons in the next hidden layer remain the same. 
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3) All weights from the outputs of non-linear neurons in any hidden layer to the 

inputs of linear neurons in the next hidden layer are multiplied by all subsequent 

linear neuron output weights through to the destination neuron. The result of this 

operation provides the new weight for the bridged connection created in the 

architecture conversion. 

4) All input weights that go to linear neurons in the first hidden layer are multiplied 

by all subsequent linear neuron output weights through to the destination neuron. 

The result of this operation provides the new weights for the bridged connections 

created in the architecture conversion. 

The last two rules may be somewhat confusing, so it is easiest to illustrate the 

application of the rules on networks that we have looked at previously in this chapter. 

Let’s look at the network conversion in Figures 4.19 and 4.20. We will use these same 

networks to illustrate the weight conversion. To simplify the network diagrams for 

illustrative purposes, unique variable weights will be assigned so that it is easy to see how 

the weights are converted. Figure 4.32 shows the weight conversion for the network in 

Figure 4.19. Figure 4.33 shows the weight conversion for the network in Figure 4.20.  In 

each of these three figures, arrows will show how the weight conversions are performed. 

Each arrow will be numbered to show which step of the conversion process is being 

performed on the specified weights.  When a weight conversion requires an initial weight 

to be multiplied by one or more factors, the dot operator will be used to signify the 

multiplication operation. Dotted lines with an arrow will show the contribution of the 

additional factors to the initial weight. The converted weight will be displayed as a 

product. For example, “a” times “g” would be displayed as a·g. 
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Figure 4.32: Weight Conversion for Network in Figure 4.19 

 

Figure 4.33: Weight Conversion for Network in Figure 4.20 
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 As can be seen in the examples illustrated in Figures 4.32 and 4.33, the weight 

conversion during the DNN to BMLP conversion is more complex than the BMLP to 

DNN weight conversion. With this conversion understood, there is now a clear path for 

conversion between the DNN network architectures and the BMLP network architecture. 

4.3.3 DNN to BMLP Conversion Examples 

The process for converting a DNN network to an equivalent BMLP network is 

more complex than the previous conversion, but is accomplished through a systematic 

process. This section will focus on an overview of the conversion tests performed as part 

of this research and the implications of these tests. 

For the DNN to BMLP conversion tests, I used the same input data sets as were 

used in the BMLP to DNN conversion. Only, in all cases, the DNN network was 

constructed first, trained, and then converted to the equivalent BMLP architecture.  

4.3.3.1 DNN to BMLP Using Simple 3-D Surface Benchmark 

The first conversion test was performed using the Simple 3-D Surface benchmark. 

A DNN network was built with two architectures: BMLP 2=3=2=2=1 equivalent and 

BMLP 2=2=3=2=1 equivalent. In both cases, the DNN network was trained to SSE ≤ 

0.01. Once the training was completed, each network was converted to the BMLP 

architecture using the conversion process outlined earlier in this chapter. The BMLP 

equivalent architectures gave identical output results with no variation.  

Figure 4.34 shows the trained 2-3(5)-2(3)-2(1)-1 DNN network and Figure 4.35 

shows the BMLP equivalent. It is important to note that both the DNN and BMLP 

architectures had different weights than the architectures in Section 4.3.2. This is due to 

the fact that the DNN network was trained to the benchmark and then converted to a 
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BMLP. Since the origin network was different, the weights are different. Note that the 

BMLP equivalent architecture gave identical output results with no variation.  

 

Figure 4.34: 2-3(5)-2(3)-2(1)-1 DNN network for the Simple 3-D Surface 
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Figure 4.35: BMLP equivalent network for the network in Figure 4.34 

 

4.3.3.2 DNN to BMLP Using 3-D Surface Benchmark 

The second conversion test was performed using the 3-D Surface benchmark. 

This time, a DNN network was built with the BMLP 2=3=2=1 equivalent architecture. 

The DNN network was trained to SSE ≤ 0.01. Once the training was completed, the 

network was converted to the BMLP architecture using the standard conversion process. 

The BMLP equivalent architecture gave identical output results with no variation.  

Figure 4.36 shows the DNN network and Figure 4.37 shows the BMLP equivalent 

network. Once again, the DNN and BMLP architectures had different weights than the 

architectures in Section 4.3.2.   
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Figure 4.36: 2-3(3)-2(1)-1 DNN network for the 3-D Surface 

 

Figure 4.37: BMLP equivalent network for the network in Figure 4.36 



79 

 

4.3.3.3 DNN to BMLP Using Parity-N Benchmark 

 The third conversion test was performed using the Parity-N data set. The DNN 

network was built for Parity-11 using a BMLP 11=2=2=1 equivalent architecture. This 

network was then trained to SSE ≤ 0.01. Once training was completed, the network was 

converted to the BMLP architecture using the standard two-step conversion process. The 

BMLP equivalent architectures gave identical output results with no variation.  

Figure 4.38 shows the DNN network and Figure 4.39 shows the BMLP equivalent 

network. Note that the BMLP equivalent architecture gave identical output results with 

no variation. As with the previous two tests, the DNN and BMLP architectures had 

different weights than the architectures in Section 4.3.2.  

 

Figure 4.38: 11-2(3)-2(1)-1 DNN network for Parity-11 
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Figure 4.39: BMLP equivalent network for the network in Figure 4.38 

4.3.3.4 DNN to BMLP Conversion Summary 

The results in this section are significant because we have shown with multiple 

data sets and DNN architectures that we can train a DNN network to a given data set and 

then convert that trained network to an equivalent BMLP architecture.  

It has now been demonstrated that we are able to convert back and forth from 

BMLP and DNN. This gives us many advantages, some of which will be discussed later. 

4.4 DNN to MLP Conversion Process 

This section will focus on the conversion from the DNN architecture to an 

equivalent MLP architecture. The DNN to MLP conversion is not nearly as straight 

forward as the other conversions that we have looked at thus far. And, in some 

circumstances, the conversion may not be successful. As with previous conversions, a 

specific process is employed to convert from the DNN architecture to the MLP 
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architecture. This conversion has two different parts: 1) The architecture conversion; and 

2) The weight conversion. We will look at each part of the conversion separately. 

4.4.1 DNN to MLP Architecture Conversion 

The architectural conversion from DNN to MLP is actually very simple. Once the 

DNN network is trained, it can be converted to the MLP architecture by simply replacing 

all linear neurons in the DNN network with bipolar neurons. We will color these bipolar 

neurons the same color as the linear neurons to remind us that these neurons will have 

weight adjustments that help them to operate in their linear region. 

4.4.1.1 DNN to MLP Examples 

 As mentioned above, the architectural conversion from DNN to MLP is very 

simple. No connections are changed, only the linear neurons are replaced with bipolar 

neurons. Let’s take a look at a few examples. Figure 4.40 and Figure 4.41 show examples 

of the DNN to MLP architectural conversion. Notice that the networks look identical with 

the exception of the linear neurons being changed to bipolar neurons. 

 
Figure 4.40: 2-1(1)-1 DNN to 2-2-1 MLP conversion 
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Figure 4.41: 2-1(2)-1(1)-1 DNN to 2-3-2-1 MLP conversion 

 
 
4.4.1.2 DNN to MLP Architecture Conversion Summary 

This brief section has focused on the DNN to MLP architecture conversion. As 

we saw, the MLP architecture looks identical to the DNN architecture except for the 

linear neurons being changed to bipolar neurons. Remember that the color of these newly 

placed bipolar neurons is the same as the linear neurons to remind us that these neurons 

will have weight adjustments that help them to operate in their linear region. With an 

understanding of the architecture conversion, the remainder of this section will focus on 

the weight conversion which is much more complex. 
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4.4.2 DNN to MLP Weight Conversion 

With an understanding of the DNN to MLP architecture conversion, we are now 

prepared to discuss the weight conversion. After a significant amount of testing, it was 

determined that all inputs into linear acting bipolar neurons had to be reduced by a factor 

≥106 to yield identical results to the DNN network. As this is not realistically feasible, an 

alternate solution was developed for determining the weights of the MLP network.  This 

weight conversion follows these rules: 

1) All weights to non-linear neurons in the first hidden layer remain the same. 

2) All weights from the outputs of non-linear neurons to the output neuron or the 

inputs of non- linear neurons in the next hidden layer remain the same. 

3) All weights to the inputs of linear neurons in the first hidden layer are divided by 

the given factor (generally 100). 

4) All weights from non-linear neurons in the hidden layers to inputs of linear 

neurons in the next hidden layer are divided by the given factor. 

5) Weights for connections between one linear neuron’s output to the input of a 

linear neuron in the next hidden layer remains unchanged. 

6) Weights for connections between the one linear neuron’s output to the input of a 

non-linear neuron in the next hidden layer or an output neuron are multiplied by 

the given factor (i.e. x·100 if the factor was 100 and the weight was “x”). 

This weight conversion yields a MLP network that is relatively close to a final 

solution, but has a SSE >> 0.01. The output function for the bipolar neuron is:  

 fb(net) = tanh(1 x net) + 0.01 x net  (22) 

A graph of this activation function can be seen in Figure 4.42. Due to the nature of the  
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Figure 4.42: Graph of bipolar activation function 

tangent hyperbolic function, its linear region is very small. Therefore, we need small net 

values (typically ≤ 0.1) in order to get a nearly linear output. Testing showed that 

dividing inputs to the neurons by a value ≥100 was sufficient. Outputs could then be 

multiplied by the same factor where appropriate. 

Performance of these six steps will be demonstrated by revisiting the networks in 

Figure 4.40 and Figure 4.41. Once again, we will use unique variables for the weights so 

that we can see how the conversion takes place. Figure 4.43 and Figure 4.44 show the 

weight conversions for the networks in Figure 4.40 and Figure 4.41, respectively. These 

figures will not have arrows showing weight movements as the weights will remain in the 

same physical location, but will either be left alone, divided by a factor, or multiplied by 

a factor. For simplicity, when several factors are multiplied together, only the product 

will be shown. For example, if our conversion factor is 100 and we are performing step 6 

on variable “x”, the converted weight will be displayed as “x·100” rather than “x·1·100.” 

Once the weight conversion is complete, the MLP network is ready for final 

training iterations with the NNT software [34]. With the starting weights obtained by 
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using steps 1-6 outlined above, experimentation has shown that it usually takes <50 

training iterations with the Neuron-by-Neuron algorithm [6] [7].  

 

Figure 4.43: 2-1(1)-1 DNN to 2-2-1 MLP weight conversion 
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Figure 4.44: 2-1(2)-1(1)-1 DNN to 2-3-2-1 MLP weight conversion 

To illustrate the entire process of weight conversion, we will re-examine the 

network in Figure 4.35. For this example, the DNN network in Figure 4.45 will be trained 

to SSE ≤ 0.01 and it will not be converted to the standardized form. This means that the 

linear neurons will have bias weights and their output weights will not be equal to 1. 

Please note that the inputs and neurons in Figure 4.45 are given sequential node numbers 

starting with the inputs. Therefore, the inputs are nodes 1 and 2 and the neurons are 

numbered nodes 3 through 19 going top to bottom and left to right. These node numbers 

will be used when we look at the topology map for this network. 
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Figure 4.45: 2-3(5)-2(3)-2(1)-1 DNN network for Simple 3-D Surface Problem 

The topology map and weights in Tables 4.4 and 4.5 warrant further explanation. 

Using the network in Figure 4.45 and Table 4.4 for explanation, let us first address the 

topology map. Each neuron or input in Figure 4.45 is given a node number as explained 

previously. The network in Figure 4.45 has two inputs and 17 neurons. In the topology 

portion of Table 4.4, each neuron is listed sequentially in the left-hand column with the 

lowest numbered neuron at the top and the highest numbered neuron at the bottom. Along 

with the neuron number, you will also find its type: unipolar, bipolar, or linear. In the 

columns to the right, you see listed which nodes provide inputs to that neuron. Please 

remember that node numbers can be either inputs or neuron outputs. 
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Table 4.4: Topology for the network in Figure 4.45 

 

Table 4.5: Weights for the network in Figure 4.45 

Neuron
bipolar 3 1 2
bipolar 4 1 2
bipolar 5 1 2
linear 6 1 2
linear 7 1 2
linear 8 1 2
linear 9 1 2
linear 10 1 2

bipolar 11 3 4 5 6
bipolar 12 3 4 5 7
linear 13 3 4 5 8
linear 14 3 4 5 9
linear 15 3 4 5 10

bipolar 16 11 12 13
bipolar 17 11 12 14
linear 18 11 12 15
linear 19 16 17 18

Topology
Nodes connected to neuron

Neuron Bias
3.08025801 0.6126632 -2.39058
0.82199443 -1.862036 -0.705177
1.53836839 -0.566183 -0.636743
-0.9956325 -0.536091 1.480373
-0.6684818 -0.595857 -1.10077
-0.9683538 -0.019494 -1.019197
-1.5016464 0.7368931 0.5822719
-0.6546572 -1.557863 -2.056673
1.09760861 -0.296337 -0.699554 -1.127874 -1.416979
0.91290076 -0.119499 0.7418785 -0.154638 -0.523773
0.52186636 0.0234138 -0.988214 0.4395666 -0.842445
-0.3563915 1.6641668 -0.575217 0.4944395 -1.298709
1.34918296 -0.808509 0.324148 -3.253097 0.2072503
-0.3881175 0.7695723 -0.739663 -0.6214
-0.3561072 0.0590711 0.1192312 1.8024681
0.35572164 -2.245134 -0.544116 -3.168171
-0.3251274 0.2428015 3.4537729 -3.794651

Weights from connection to neuron
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 To familiarize ourselves with the topology map and weight table, let’s examine 

Table 4.4 and Table 4.5. By looking at Table 4.4, I can see that node 3 is a bipolar neuron 

and is listed as “bipolar 3” in the topology map. I can now look at the correlating cell in 

Table 4.5 to find that the bias weight for neuron 3 is 3.08025801. Similarly, I can look at 

node 15 and see that it is a linear neuron listed as “linear 15” in topology map in Table 

4.4. In this same topology map, I can see that neuron 15 receives inputs from nodes 3, 4, 

5, and 10. Each of these connections going to the input of neuron 15 has a weight 

associated with it. If I wanted to know what the input weight coming from node 10 into 

neuron 15, I would locate the corresponding cell in the weight table in Table 4.5 and see 

that this weight is 0.2072503. While this may seem tedious at first, it gets much easier 

with a little practice. Note that it is important to understand the topology map and the 

weight table in order to understand the weight conversion process about to be described. 

 

Figure 4.46: 2-8-5-3-1 MLP network for the network in Figure 4.45 
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Table 4.6: Topology for the network in Figure 4.46 

 

Table 4.7: Initial conversion weights for the network in Figure 4.46 

Neuron
bipolar 3 1 2
bipolar 4 1 2
bipolar 5 1 2
bipolar 6 1 2
bipolar 7 1 2
bipolar 8 1 2
bipolar 9 1 2
bipolar 10 1 2
bipolar 11 3 4 5 6
bipolar 12 3 4 5 7
bipolar 13 3 4 5 8
bipolar 14 3 4 5 9
bipolar 15 3 4 5 10
bipolar 16 11 12 13
bipolar 17 11 12 14
bipolar 18 11 12 15
linear 19 16 17 18

Topology
Nodes connected to neuron

Neuron Bias
3.08025801 0.6126632 -2.39058
0.82199443 -1.862036 -0.705177
1.53836839 -0.566183 -0.636743 /100

-0.009956325 -0.005361 0.0148037
-0.006684818 -0.005959 -0.011008 x100
-0.009683538 -0.000195 -0.010192
-0.015016464 0.0073689 0.0058227 x1
-0.006546572 -0.015579 -0.020567
1.09760861 -0.296337 -0.699554 -1.127874 -141.6979
0.91290076 -0.119499 0.7418785 -0.154638 -52.37735
0.52186636 0.0234138 -0.988214 0.4395666 -0.842445
-0.35639153 1.6641668 -0.575217 0.4944395 -1.298709
1.34918296 -0.808509 0.324148 -3.253097 0.2072503
-0.38811753 0.7695723 -0.739663 -62.14001
-0.35610724 0.0590711 0.1192312 180.24681
0.35572164 -2.245134 -0.544116 -3.168171
-0.32512742 0.2428015 3.4537729 -379.4651

Weights from connection to neuron
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Table 4.8: Final weights for the network in Figure 4.46 

 In this example, the DNN weights were converted to MLP weights using a factor 

of 100. In some cases, you may need to increase the factor to obtain a final result. As 

seen in Table 4.7, all weights highlighted in orange were divided by the factor. All 

weights highlighted in green were multiplied by 100. Finally, weights highlighted in blue 

were multiplied by 1, or left unchanged. This conversion gave us the initial training 

weights for the MLP network. After 15 iterations of training using the Neuron-by-Neuron 

algorithm, an SSE = 0.0098 was achieved and the resulting weights are found in Table 

4.8. Although the results of the MLP are not identical to the DNN network for any given 

input in the data set, the result is acceptable because we achieved SSE ≤ 0.01. 

4.4.3 DNN to MLP Conversion 

 Converting from a DNN architecture to an equivalent MLP architecture proved to 

Neuron Bias
4.34861146 0.4308709 -2.391354
0.56880824 -1.993203 -1.137935
2.43241213 -1.521003 0.1752029
-3.89975667 -0.559942 2.0931741
-0.6707688 -0.440732 -1.162265
-0.96690361 -0.052703 -0.992139
-2.13978938 0.9667528 -0.419782
0.23989112 -1.639442 -0.111844
1.61316693 0.9173422 -0.571508 -0.237162 -4.293259
0.77067376 -0.602085 0.8525756 0.1313983 -0.376507
0.52020742 0.044344 -0.983806 0.4045055 -0.831085
0.46269498 1.2281474 -1.203796 1.2096349 -2.289386
0.60310117 -5.1284 0.6672689 -3.62143 1.5179751
-0.34602684 0.8856006 -0.722258 -0.560782
0.19584711 1.7527249 0.2180854 2.9040219
1.63388368 -3.019219 -0.557369 -4.838114
0.18648368 0.3942708 4.320831 -5.077064

Weights from connection to neuron



92 

 

be much more difficult than other conversion. Since the MLP architecture does not have 

any bridged connections across layers, it is necessary for the MLP architecture to include 

at least one neuron in each hidden layer that is functioning in its linear region.  

Let us look at two simple examples of this conversion. For the purposes of these 

examples, only the DNN to MLP conversion will be demonstrated.  

4.4.3.1 DNN to MLP Using Simple 3-D Surface Benchmark 

Figure 4.47 shows a 2-3(5)-2(3)-2(1)-1 DNN network trained for the Simple 3-D 

Surface benchmark. This network was trained to SSE=0.00950321. Figure 4.48 the MLP 

equivalent network obtained with the conversion process described previously. Note that 

the output neuron is not changed and remains a linear neuron per the conversion 

procedure. After the initial weight conversion, the network in Figure 4.48 received final 

training with the NNT software. This training was successful and yielded 

SSE=0.00449923 in 15 iterations. 

 

Figure 4.47: 2-3(5)-2(3)-2(1)-1 DNN network for Simple 3-D Surface Problem 
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Figure 4.48: 2-8-5-3-1 MLP equivalent network for network in Figure 4.47 

4.4.3.2 DNN to MLP Using 3-D Surface Benchmark 

Figure 4.49 is identical to Figure 4.36 presented earlier in this chapter and is 

placed here for ease of comparison during this example. This figure shows a DNN 2-

3(3)-2(1)-1 architecture for the 3-D Surface problem.  This network was trained to SSE= 

0.00968703. Figure 4.50 shows the MLP equivalent network obtained with the 

conversion process described above. Note that the output neuron is not changed and 

remains a linear neuron per the conversion procedure. After the initial weight conversion, 

the network in Figure 4.50 received final training with the NNT software. This training 

was successful and yielded SSE= 0.00972139 in 59 iterations. 



94 

 

 

Figure 4.49: DNN 2-3(3)-2(1)-1 network for 3-D Surface Benchmark 

 

Figure 4.50: MLP equivalent network for network in Figure 4.49 

4.4.3.3 DNN to MLP Conversion Summary 

These results are momentous because it has been shown that a DNN network can 

be trained and then converted to a MLP architecture. This is important because training 

deep MLP networks has been very challenging and typically has a very low success rate. 

While it may not work in all cases, the method just described provides another option for 
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training challenging MLP networks. Additionally, the success rate of training deep MLP 

networks can be significantly increased by using the new method just described. 

4.5 MLP to DNN Conversion Process 

This section will focus on the conversion from the MLP architecture to an 

equivalent DNN architecture. The MLP to DNN conversion is slightly less complex than 

the DNN to MLP conversion in the previous section. As with previous conversions, a 

specific process is employed to convert from the MLP architecture to the DNN 

architecture. This conversion has two different parts: 1) The architecture conversion; and 

2) The weight conversion. We will look at each part of the conversion separately. 

4.5.1 MLP to DNN Architecture Conversion 

The architectural conversion from MLP to DNN is actually very simple. Once the 

MLP network is trained, it can be converted to the DNN architecture by simply replacing 

all linear-acting bipolar neurons in the MLP network with linear neurons. Remember that 

the linear-acting bipolar neurons are the same color as the linear. 

4.5.1.1 MLP to DNN Examples 

 As mentioned above, the architectural conversion from MLP to DNN is very 

simple. No connections are changed, only the linear-acting bipolar neurons are replaced 

with linear neurons. Let’s take a look at a few examples. Figure 4.51 and Figure 4.52 

show examples of the MLP to DNN architectural conversion. Notice that the networks 

look identical with the exception of the linear-acting bipolar neurons being changed to 

linear neurons. 
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Figure 4.51: 2-2-1 MLP to 2-1(1)-1 DNN conversion 

 
Figure 4.52: 2-3-2-1 MLP to 2-1(2)-1(1)-1 DNN conversion 

 
4.5.1.2 MLP to DNN Architecture Conversion Summary 

This brief section has focused on the MLP to DNN architecture conversion. As 
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we saw, the DNN architecture looks identical to the MLP architecture except for the 

linear-acting bipolar neurons being changed to linear neurons. Remember that the color 

of these linear-acting bipolar neurons is the same as the linear. With an understanding of 

the architecture conversion, the remainder of this chapter will focus on the weight 

conversion which is much more complex. 

4.5.2 MLP to DNN Weight Conversion 

With an understanding of the MLP to DNN architecture conversion, we are now 

prepared to discuss the weight conversion. This weight conversion follows these rules: 

1) All weights to non-linear neurons in the first hidden layer remain the same. 

2) All weights from the outputs of non-linear neurons to the output neuron or the 

inputs of non-linear neurons in the next hidden layer remain the same. 

3) All output weights for linear-acting bipolar neurons remain the same. 

This weight conversion yields a DNN network that is relatively close to a final 

solution, but has a SSE > 0.01.  

Performance of these three steps will be demonstrated on the networks in Figure 4.53 

and Figure 4.54. Once again, we will use unique variables for the weights so that we can 

see how the conversion takes place. As before, these figures will not have arrows 

showing weight movements as the weights will remain in the same physical location and 

will remain unchanged.  

Once the weight conversion is complete, the DNN network is ready for final 

training iterations with the NNT software [34]. With the starting weights obtained by 

using steps 1-3 outlined above, experimentation has shown that it usually takes <50 

training iterations with the Neuron-by-Neuron algorithm [6] [7].  
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Figure 4.53: 2-2-1 MLP to 2-1(1)-1 DNN weight conversion 

 
Figure 4.54: 2-3-2-1 MLP to 2-1(2)-1(1)-1 DNN weight conversion 

4.5.3 MLP to DNN Conversion 

 Let us look at an example of this conversion. For the purposes of this example, 
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only the MLP to DNN conversion will be demonstrated.  

To illustrate the entire process of weight conversion, we will examine the network 

in Figure 4.55. This network was trained for the Simple 3-D Surface benchmark. The 

resulting topology map can be found in Table 4.9 and the resulting weights can be found 

in Table 4.10. 

 

 

Figure 4.55: 2-8-5-3-1 MLP network for Simple 3-D Surface Problem 
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Table 4.9: Topology for the network in Figure 4.55 

 

Table 4.10: Weights for the network in Figure 4.55 

Neuron
bipolar 3 1 2
bipolar 4 1 2
bipolar 5 1 2
bipolar 6 1 2
bipolar 7 1 2
bipolar 8 1 2
bipolar 9 1 2
bipolar 10 1 2
bipolar 11 3 4 5 6
bipolar 12 3 4 5 7
bipolar 13 3 4 5 8
bipolar 14 3 4 5 9
bipolar 15 3 4 5 10
bipolar 16 11 12 13
bipolar 17 11 12 14
bipolar 18 11 12 15
linear 19 16 17 18

Topology
Nodes connected to neuron

Neuron Bias
2.48386872 0.3391859 -2.446145
0.86353479 -0.800207 -0.337705
1.51179365 -0.427785 -0.626862
0.013593 0.0856393 0.049224
0.2802055 0.2875856 0.0970668
0.11637587 -0.052247 0.3852626
0.125717 -0.075481 -0.231028

-0.18270813 -0.247846 -0.21535
2.5086595 -0.198985 -0.685744 -1.137666 195.99979
1.26875625 -0.11896 0.737556 -0.153597 196.00021
0.23606937 -0.329665 0.0423351 -0.003764 1.9625221
-0.14593281 -0.237823 -0.387408 -0.186387 2.0362219
0.00418045 -0.013606 -0.356509 -0.381559 1.7635307
-1.21451414 0.7665509 -0.734969 196.00011
2.51404962 0.2812977 0.1215542 195.99918
0.00176091 0.0031047 -0.075732 1.4589998
12.91383034 0.1040237 4.150778 195.99519

Weights from connection to neuron



101 

 

 

 

 

Figure 4.56: 2-3(5)-2(3)-2(1)-1 DNN network for Simple 3-D Surface Problem 

 

Table 4.11 shows the topology map for the DNN network and Table 4.12 shows 

the converted weights obtained by step 3. After the initial weight conversion, the network 

in Figure 4.56 received final training with the NNT software.  
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Table 4.11: Topology for the network in Figure 4.56 

 

Table 4.12: Beginning weights for the network in Figure 4.56 

Neuron
bipolar 3 1 2
bipolar 4 1 2
bipolar 5 1 2
linear 6 1 2
linear 7 1 2
linear 8 1 2
linear 9 1 2
linear 10 1 2

bipolar 11 3 4 5 6
bipolar 12 3 4 5 7
linear 13 3 4 5 8
linear 14 3 4 5 9
linear 15 3 4 5 10

bipolar 16 11 12 13
bipolar 17 11 12 14
linear 18 11 12 15
linear 19 16 17 18

Topology
Nodes connected to neuron

Neuron Bias
2.48386872 0.3391859 -2.446145
0.86353479 -0.800207 -0.337705
1.51179365 -0.427785 -0.626862
0.013593 0.0856393 0.049224
0.2802055 0.2875856 0.0970668

0.11637587 -0.052247 0.3852626
0.125717 -0.075481 -0.231028

-0.18270813 -0.247846 -0.21535
2.5086595 -0.198985 -0.685744 -1.13767 195.99979

1.26875625 -0.11896 0.737556 -0.15360 196.00021
0.23606937 -0.329665 0.0423351 -0.00376 1.9625221
-0.14593281 -0.237823 -0.387408 -0.18639 2.0362219
0.00418045 -0.013606 -0.356509 -0.38156 1.7635307
-1.21451414 0.7665509 -0.734969 196.00011
2.51404962 0.2812977 0.1215542 195.99918
0.00176091 0.0031047 -0.075732 1.45900

12.91383034 0.1040237 4.150778 195.99519

Weights from connection to neuron
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Table 4.13: Final weights for the network in Figure 4.56 

In this example, the MLP weights required no changes. As seen in Table 4.12, all 

weights highlighted in yellow remained the same, giving us a starting point for training. 

After 65 iterations of training using the Neuron-by-Neuron algorithm, an SSE = 

0.00967125 was achieved and the resulting weights are found in Table 4.13. Although the 

results of the DNN network are not identical to the MLP network for any given input in 

the data set, the result is acceptable because we achieved SSE ≤ 0.01.  

4.6 Conversion Summary 

As shown in the previous sections of this chapter, we are now able to convert 

between BMLP, DNN, and MLP networks. As we discovered, the DNN architecture 

provides the key for conversion between BMLP and MLP. If I start with a DNN network, 

then I can directly convert to either BMLP or MLP. If I start with a BMLP or MLP 

Neuron Bias
4.14626735 0.2568368 -3.006063
2.60073766 -0.10758 -0.674673
2.51577592 -1.355735 -0.349683
0.67166225 0.6315569 0.1414477
0.63301109 0.2482514 -0.015002
0.22037034 0.0502236 0.4690399
0.68221011 0.0083547 0.3357026
-0.20082532 -0.691805 -2.152607
2.53580054 -0.554188 -0.712023 -1.137542 196.00541
1.28312069 -0.108948 0.7404038 -0.148668 196.00129
0.66138032 -0.201117 0.0193988 0.0754367 2.0358455
-0.71014083 0.3395287 0.020528 0.1942554 3.8971835
-2.16988419 -1.220909 2.8424076 -1.033485 0.999659
-1.19716736 0.7821705 -0.717134 196.0018
2.48804015 0.1618998 0.0987929 196.01029
0.00821911 -0.221949 0.4109369 3.6250751
12.9342263 0.1981816 5.3071404 196.01165

Weights from connection to neuron
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network and I desire to convert to the other, I must first convert to the DNN architecture 

and then to the desired architecture.  

With the ability to convert between the different NN architectures, one has many 

new options when it comes to NN training, especially for those hard to train networks.  

  

 

 

 

  



105 

 

 

 

Chapter 5 

Comparison of Training Success Rate and Efficiency 

The conversion methods described in Chapter 4 provides additional means to 

increase the odds of obtaining a solution to a NN problem. Normally, NN problems are 

solved by selecting a NN architecture, compiling a training set, and then training the NN 

to the desired SSE. Unfortunately, this method can often yield lower success rates.  

To improve the odds of obtaining a solution, consider training multiple NN 

architectures in parallel for the same problem. For example, you could select a BMLP 

architecture and also a DNN architecture. Apply the same training set to both 

architectures and train them in parallel. Not only do the odds of finding a solution 

increase, but you very well may end up with solutions for both architectures. If only one 

NN yields a solution, you have the option to use that architecture or convert it to a 

different architecture. If both architectures yield solutions, you are able to choose the best 

solution. If desired, you can convert to a different architecture using the methods 

described in Chapter 4.   

5.1 Efficiency Comparison 

 When researchers compare NN efficiency, they generally look at the power of the 

network, or in other words, how many neurons are required to solve a given problem. 

While this is a good comparison mechanism, it does not tell the entire story. For example, 

Figure 5.1 shows an efficiency comparison of MLP, BMLP, FCC, and DNN network 
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architectures based upon the Parity-N benchmark. If we are to simply judge our networks 

based upon the number of neurons required to solve a given Parity-N problem, we would 

likely conclude that the FCC architecture is the most efficient and the MLP architecture is 

the least efficient. We could also conclude that the new DNN architecture presented in 

this research falls somewhere in the middle close to BMLP with two hidden layers. And, 

this would be somewhat disappointing! 

Granted, Figure 5.1 is an important piece of data when comparing NN 

architectures and it surely should not be ignored, however, this data only correlates the 

number of neurons with the network power or efficiency. To get a more full picture 

 

Figure 5.1: Efficiency comparison of various neural network architectures 

 

of a network’s true capabilities, we must also consider other aspects of its architecture 

such as the number and type of connections. Table 5.1 shows these same network 

architectures with an additional piece of data. In addition to showing the number of 
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neurons required to solve the given Parity-N problem, this table shows us the number of 

weights in the architecture which is also equal to the number of connections in the 

network. 

 

Table 5.1: Comparison of neural network efficiency with required weights 

 By more thoroughly analyzing the data presented in Table 5.1, one can easily see 

the drastic impact that the NN architecture has on the number of weights and connections 

in the network. For example, if we look at the Parity-63 column, we see that an MLP 

network requires 4096 connections, a BMLP network with one hidden layer requires, 

2144 connection, a FCC network requires 399 connections, and the DNN network only 

requires 83 connections. Immediately, this gives us a much different picture than what we 

saw in Figure 5.1.  

 Rather than solely basing your judgment on either the number of neurons required 

or the number of connections in the architecture, an alternative method for judging 
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efficiency may be used. By summing the number of neurons required to solve a given 

problem with the number of weights or connections in that architecture, a fuller picture of 

network efficiency is seen. In this way, we take into account the entire solution, including 

any advantages or disadvantages that the architecture may have. As we know, the number 

of weights in an architecture has a direct effect on training times and success rates. 

Applying our new method to the data in Table 5.1, we can conclude that the new DNN 

architecture introduced in this research is truly more efficient than the others. 

5.2 Experimental Training Results 

Experimental results were obtained by comparing the BMLP, DNN, and MLP 

equivalent architectures on given benchmarks. Simulations were run using the NNT 

software [34] discussed previously. The user interface for the NNT can be seen in Figure 

5.2 below. 

 

Figure 5.2: NNT User Interface 

 There are five main areas in the NNT user interface that are important to 

understand. In order to better understand the experimental results, it is important to 

1 2

5

3
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understand the tools used. The NNT was selected as the tool of choice because of its 

flexibility, statistical display, error plot display, and its breadth of available training 

algorithms. Each area of the NNT user interface and its functionality will be discussed 

separately. 

 The first area, labeled “1” in Figure 5.2 is the error plot. In this area, the error is 

plotted for each training iteration. The vertical axis displays error while the horizontal 

axis displays the training iteration number. The error plot seen in this figure is a result of 

500 training iterations and we see all 500 training curves. Notice that some curves end 

when they reach the desired error, 1.0E-02, and others extend across the screen, never 

reaching the desired error level. 

The second area, labeled “2” in Figure 5.2 is the console area. This area displays 

information pertaining to the current and previous training runs. This information 

includes the name of the network training file, topology information (i.e. number of 

inputs, outputs, weights, training patterns, nodes, and neurons), the desired maximum 

error, the maximum number of iterations allowed in each training cycle, the number of 

times to perform the training, and algorithm specific training parameters. 

The third area, labeled “3” in Figure 5.2 is where certain algorithm independent 

training parameters are set. “Training Times” is the total number of times you want to 

train the given network. “Maximum error” is the desired maximum error for training. 

When the current training error is less than or equal to this value, the current training 

cycle ends. “Maximum iterations” sets the maximum number of training iterations that 

can be performed in any cycle before training ends. If the maximum number of iterations 

is reached before total training error reaches a value less than or equal to “Maximum 
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error,” the current training cycle ends. 

The fourth area, labeled “4” in Figure 5.2 is the control area. In the drop-down 

menu at the top, we are able to select the desired training algorithm. The button labeled 

“Load Data File” allows us to select and load our desired network topology file. This is 

the network that we want to train. The button labeled “Set Parameters” allows us to set 

algorithm specific parameters that affect how the chosen algorithm works. The button 

labeled “Start To Train” starts the training process. The button labeled “Clear Plotting” 

clears the error plots displayed in area 1. One would typically clear the plotting area in 

between training runs. 

The fifth area, labeled “5” in Figure 5.2 displays training information from the 

current training runs. Remember that a training run may train a given network many 

times as defined by “Training Times” in area 3. Each training cycle can only perform up 

to a give number of iterations as defined by “Maximum iterations” in area 3. The top two 

values displayed in the training information area tell us about the current training cycle. 

“Cur Iteration” displays the current training iteration in the current cycle. This value 

counts up for each consecutive training iteration until the desired error is reached or the 

maximum number of iterations is reached, whichever comes first. “Cur SSE” displays the 

Sum of Squares Error for the current iteration. The bottom 4 parameters show statistical 

data for the training run. “Ave Iteration” gives the average number of iterations needed to 

train the network to the specified error. “Av Time (ms)” gives the average number of 

milliseconds required to train the network to the specified error. “Total Times” shows 

how many times the software successfully trained the network to the specified error. 

“Succ Rate” displays the rate at which the software was successful in training the 
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network. This value is equal to “Total Times” divided by “Training Times.” 

 All experiments were run using the NBN algorithm and all initial weights for 

training were randomized to non-zero values between +1 and -1. Training trials were run 

100 times for each network up to a maximum of 500 training iterations in each trial. The 

desired SSE was set to 0.01. Many training trials were run for each network, attempting 

to optimize the training parameters. Final results shown for each network architecture 

were the optimal results obtained during experimentation.  

 The first set of experiments will focus on comparing equivalent networks, as 

defined in Chapter 4, against benchmarks to see which of the equivalent networks yields 

the highest success rate. This range of experiments will help determine if, all things being 

equal (i.e. networks are functionally equivalent), one particular architecture is 

consistently superior to the others with regards to training success across a range of 

benchmarks. In essence, this helps determine if architecture superiority is dependent on 

the benchmark. The second set of experiments will focus on comparing a minimally sized 

network against the same benchmarks to see which network yields the best success rate. 

This range of experiments will serve as a control group for comparison to the first set.  

Again, we will see if a particular architecture is consistently superior to the others with 

regards to training success when network size, not network equivalence, is the varied 

parameter. 

 The 3-D Control Surface Benchmark which has 1600 training patterns was used 

as the first benchmark to compare the success rate, average number of iterations required, 

and the average training time for equivalent BMLP, DNN, and MLP networks. 

Equivalent network architectures were setup per the architectural conversion process 
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outlined in Chapter 4. The BMLP network used a 2=3=2=1 architecture. The equivalent 

DNN network used a 2-3(3)-2(1)-1 architecture. And the equivalent MLP network used a 

2-6-3-1 architecture. Figure 5.3 shows the three equivalent networks side-by-side for ease 

of comparison and review. Table 5.2 summarizes the training results. The supporting 

training data may be found in Appendix A. 

 

 2-6-3-1 MLP 2=3=2=1 BMLP 2-3(3)-2(1)-1 DNN 

Figure 5.3: Equivalent networks for 3-D Surface 

 

Table 5.2: Comparison of equivalent architectures on 3-D Surface 

 The Simple 3-D Control Surface Benchmark which has 25 training patterns was 

used as the second benchmark to compare the success rate, average number of iterations 

required, and the average training time for equivalent BMLP, DNN, and MLP networks. 
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Again, equivalent network architectures were setup per the architectural conversion 

process outlined in Chapter 4. The BMLP network used a 2=2=2=1 architecture. The 

equivalent DNN network used a 2-2(3)-2(1)-1 architecture. And the equivalent MLP 

network used a 2-5-3-1 architecture. Figure 5.4 shows the three equivalent networks side-

by-side while Table 5.3 summarizes the results. The corresponding training data which 

supports the results in the table may be found in Appendix B. 

 

 2-5-3-1 MLP 2=2=2=1 BMLP 2-2(3)-2(1)-1 DNN 

Figure 5.4: Equivalent networks for Simple 3-D Surface 

 

Table 5.3: Comparison of equivalent architectures on Simple 3-D Surface 

 The Parity-11 Benchmark which has 2048 training patterns was used as a third 

benchmark to compare the success rate, average number of iterations required, and the 

A
rc

h
it

ec
tu

re

S
u

cc
es

s 
R

at
e

A
ve

ra
ge

 
It

er
at

io
n

s

A
ve

ra
ge

 T
ra

in
in

g 
T

im
e 

(m
s)

MLP
2-5-3-1

100.00% 35.3 46.55

BMLP
2=2=2=1

86.00% 59.38 50.28

DNN
2-2(3)-2(1)-1

90.00% 96.71 96.23
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average training time for equivalent BMLP, DNN, and MLP networks. Once again, 

equivalent network architectures were setup per the architectural conversion process 

outlined in Chapter 4. The BMLP network used a 11=2=2=1 architecture. The equivalent 

DNN network used a 11-2(3)-2(1)-1 architecture. And the equivalent MLP network used 

a 11-5-3-1 architecture. Figure 5.5 shows the three equivalent networks side-by-side. 

Table 5.4 summarizes the results. Training results supporting the data summarized in 

Table 5.4 can be found in Appendix C 

  

 11-5-3-1 MLP 11=2=2=1 BMLP 11-2(3)-2(1)-1 DNN 

Figure 5.5: Equivalent networks for Parity-11 

 

Table 5.4: Comparison of equivalent architectures on Parity-11 Benchmark 

 The Checker-N Benchmark which has 961 training patterns for the 3x3 grid was 
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used as the fourth benchmark to compare the success rate, average number of iterations 

required, and the average training time for equivalent BMLP, DNN, and MLP networks. 

Once again, equivalent network architectures were setup per the architectural conversion 

process outlined in Chapter 4. The BMLP network used a 2=4=3=3=1 architecture. The 

DNN network used a 2-4(7)-3(4)-3(1)-1 architecture. And the MLP network used a 2-11-

7-4-1 architecture. Figure 5.6 shows the three equivalent networks side-by-side. Table 5.5 

summarizes the results. In this instance, the BMLP network had the highest success rate. 

The MLP network failed to converge and the DNN network had a 1% success rate. The 

data supporting these results can be found in Appendix D. 

 

 2-11-7-4-1 MLP 2=4=3=3=1 BMLP 2-4(7)-3(4)-3(1)-1 DNN 

Figure 5.6: Equivalent networks for Checker-3 
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Table 5.5: Comparison of equivalent architectures on Checker-3 Benchmark 

 In this sequence of experiments, where equivalent networks were compared, we 

found that the MLP architecture had the highest success rate with the 3-D Surfaces, but 

came in last on both the Parity and the Checker benchmarks. The BMLP architecture 

performed the best on the Checker benchmark and came in second on the Parity and 3-D 

Surfaces benchmarks. The DNN architecture yielded the best results for the Parity 

benchmark and yielded the second best results for the 3-D Surfaces and Checker 

benchmarks. These results show that no single architecture is superior across all 

benchmarks, solidifying the need for different architectures and the ability to convert 

between them. 

 The next set of experiments focuses on comparing a minimally sized network 

from each of the three architectures against four different benchmarks. The goal is to find 

which architecture yields the highest success rate for the given benchmark. Once the best 

network architecture is found, one can convert to either of the two other architectures if 

desired.   

 The 3-D Control Surface Benchmark which has 1600 training patterns was used 
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again as a benchmark to compare the success rate, average number of iterations required, 

and the average training time for the BMLP, DNN, and MLP networks. Minimal network 

architectures were used for each architectural. The BMLP network used a 2=3=3=1 

architecture. The DNN network used a 2-3(4)-3(1)-1 architecture. And the MLP network 

used a 2-3-3-1 architecture. Table 5.6 summarizes the results. The supporting training 

data may be found in Appendix E. 

 

Table 5.6: Minimal Architecture Comparison on 3-D Surface Benchmark 

 The Simple 3-D Control Surface Benchmark which has 25 training patterns was 

used as a benchmark to compare the success rate, average number of iterations required, 

and the average training time for the BMLP, DNN, and MLP networks. Minimal network 

architectures were used for each architectural. The BMLP network used a 2=2=2=1 

architecture. The DNN network used a 2-2(3)-2(1)-1 architecture. And the MLP network 

used a 2-2-2-1 architecture. Table 5.7 summarizes the results. The corresponding training 

data which supports the results in the table may be found in Appendix F. 
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Table 5.7: Minimal Architecture Comparison on Simple 3-D Surface Benchmark 

 The Parity-11 Benchmark which has 2048 training patterns was used as a 

benchmark to compare the success rate, average number of iterations required, and the 

average training time for the BMLP, DNN, and MLP networks. Minimal network 

architectures were used for each architectural. The BMLP network used a 11=2=2=1 

architecture. The DNN network used a 11-2(3)-2(1)-1 architecture. And the MLP 

network used a 11-2-2-1 architecture. Table 5.8 summarizes the results. Training results 

supporting the data summarized in Table 5.8 can be found in Appendix G. 

 

Table 5.8: Minimal Architecture Comparison on Parity-11 Benchmark 

 The Checker-N Benchmark with 961 training patterns for the 3x3 grid was used 
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MLP
2-2-2-1

74.00% 73.42 63.64

BMLP
2=2=2=1

86.00% 59.38 50.28

DNN
2-2(3)-2(1)-1

88.00% 96.71 96.23
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MLP
11-2-2-1

2.00% 298.5 10749.00

BMLP
11=2=2=1

3.00% 201.33 5455.00

DNN
11-2(3)-2(1)-1

5.00% 275.40 11956.40
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as a benchmark to compare the success rate, average number of iterations required, and 

the average training time for the BMLP, DNN, and MLP networks. Once again, minimal 

network architectures were used for each architectural. The BMLP network used a 

2=4=3=3=1 architecture. The DNN network used a 2-4(7)-3(4)-3(1)-1 architecture. And 

the MLP network used a 2-4-3-3-1 architecture. Table 5.9 summarizes the results. In this 

instance, the BMLP network had the highest success rate. The MLP network failed to 

converge and the DNN network had a 1% success rate. The data supporting these results 

can be found in Appendix H. 

 

Table 5.9: Minimal Architecture Comparison on Checker-3 Benchmark 

In this sequence of experiments where minimizing network size was the main 

objective, the MLP architecture came in last for all benchmarks. The BMLP architecture 

yielded the best result, once again, on the Checker benchmark and the second best result 

on the others. The DNN architecture had the best training results for all benchmarks, 

except for the Checker benchmark where it came in second. Table 5.10 summarizes the 

results of all tests, noting winners with a green highlight and second place with a yellow 

highlight. 

A
rc

h
it

ec
tu

re

S
u

cc
es

s 
R

at
e

A
ve

ra
ge

 

It
er

at
io

n
s

A
ve

ra
ge

 T
ra

in
in

g 

T
im

e 
(m

s)
MLP

2-4-3-3-1
0.00% N/A N/A

BMLP
2=4=3=3=1

9.00% 256.10 21045.40

DNN
2-4(7)-3(4)-3(1)-1

1.00% 141.00 2262.00
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 MLP BMLP DNN  
 

3D Surface 
94% 15% 19% Equivalent 

Networks 
32% 36% 45% Minimal 

Networks 
 

Simple 3D 
Surface 

100% 86% 90% Equivalent 
Networks 

74% 86% 88% Minimal 
Networks 

 
Parity-N 

1% 3% 5% Equivalent 
Networks 

2% 3% 5% Minimal 
Networks 

 
Checker-N 

Failed to 
Converge 

10% 1% Equivalent 
Networks 

Failed to 
Converge 

9% 1% Minimal 
Networks 

Table 5.10: Summary of Winners 

By reviewing Table 5.10, one can easily see that the DNN architecture placed first 

or second in all experiments. Additionally, it has four wins to the other networks’ two 

wins each. While the DNN architectures tend to have slightly higher average training 

times, this is overshadowed by its overall superior success rate. One would willingly take 

a longer training time over a failure to converge during the training process. While the 

DNN architecture does not always yield the highest success rate, it did converge in all 

test cases showing that it is a valuable tool for training and optimization.  

The newly introduced DNN architecture proves to have success rate advantages 

both when compared to equivalent networks as well as when it is pitted against other 

minimally sized networks. These are two qualities that are highly desirable in any NN 

architecture. 
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Chapter 6 

Conclusion 

Over the past several decades, we have seen many advances in the field of ANNs, 

including the architecture progression from the multi-layer Perceptron (MLP) to the 

bridged multi-layer Perceptron (BMLP) to fully connected cascade (FCC) architecture 

[10] and finally to dual neural networks (DNN) [11]. This research has produced many 

advances in training algorithms as well as improvements in architecture design which 

have significantly improved efficiency [11] [12] [13]. However, until now, little time has 

been devoted to conversion between network architectures and any advances that this 

might produce. 

 As I noted in the introduction, I discovered that if you use two linear neurons, one 

in each hidden layer, in a traditional MLP architecture, that we can reduce the number of 

required neurons for the Parity-11 problem from 11 to 6. My conclusion was that 

somehow this DNN design significantly increases the power of a network.  I wondered, 

“What other advantages do DNNs offer?” This let me to investigate DNNs as a tool for 

training, optimization, and network conversion. 

 The DNN architecture presented in this study offers advances in training, 

optimization, and network conversion. One of its biggest advances can be seen in the area 

of deep neural networks. Figure 6.1 shows a success rate comparison between BMLP and 

MLP networks. Notice that as the number of hidden layers increases, the success rate for 
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the BMLP networks steadily increase until they are essentially 100%. During this same 

time, as the networks get deeper, the MLP success rate drops to 0%.This highlights a 

fundamental problem with Deep MLP networks. They are very hard, if not impossible to 

train – at least until now! 

 

Figure 6.1: Success rates comparison for training the two-spiral patterns [10] 

 With the conversion methods presented in this study, we now have a path for 

network conversion between BMLP, DNN, and MLP architectures. That means that we 

now have a training solution for deep MLP networks. As seen in the experimental results 

in the previous chapter, DNN networks have significantly higher overall success rates 

compared to BMLP and MLP networks. In fact, the DNN architecture had either the 

highest or the second highest success rate in all experiments. In some cases, the MLP 

network failed to converge while one or both of the other architectures yielded 

convergence. In these cases, we can simply train either a DNN or BMLP network and 

then perform the conversion to MLP if that architecture is desired. 

 The utilization of DNNs as a tool for training, optimization, and network 

conversion solves some of the most difficult problems faced in today’s ANN research. 
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This research provides a method for improved ANN training, optimization of ANN 

architectures, and a mechanism for ANN architecture conversion using DNNs. These 

new advances will revolutionize ANN research.  
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Appendices 

Appendix A 

Supporting Data for 3-D Benchmark testing of equivalent networks 

Best training data for MLP 2-6-3-1 network  

 

Best training data for BMLP 2=3=2=1 network  
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Best training data for DNN 2-3(3)-2(1)-1 network  
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Appendix B 

Supporting Data for Simple 3-D Benchmark testing of equivalent networks 

Best training data for MLP 2-5-3-1 network  

 

Best training data for BMLP 2=2=2=1 network  
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Best training data for DNN 2-2(3)-2(1)-1 network  
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Appendix C 

Supporting Data for Parity-11 Benchmark testing of equivalent networks 

Best training data for MLP 11-5-3-1 network  
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Best training data for BMLP 11=2=2=1 network  
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Best training data for DNN 11-2(3)-2(1)-1 network  
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Appendix D 

Supporting Data for Checker-3 Benchmark testing of equivalent networks 

Best training data for MLP 2-11-7-4-1 network  
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Best training data for BMLP 2=4=3=3=1 network  
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Best training data for DNN 2-4(7)-3(4)-3(1)-1 network  
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Appendix E 

Supporting Data for 3-D Benchmark testing of minimal networks 

Best training data for MLP 2-3-3-1 network  

 

Best training data for BMLP 2=3=3=1 network  
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Best training data for DNN 2-3(4)-3(1)-1 network  

 

 

  



149 

 

Appendix F 

     Supporting Data for Simple 3-D Benchmark testing of minimal networks 

Best training data for MLP 2-2-2-1 network  
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Best training data for BMLP 2=2=2=1 network  
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Best training data for DNN 2-2(3)-2(1)-1 network  
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Appendix G 

     Supporting Data for Parity-11 Benchmark testing of minimal networks 

Best training data for MLP 11-2-2-1 network  
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Best training data for BMLP 11=2=2=1 network  
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Best training data for DNN 11-2(3)-2(1)-1 network  
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Appendix H 

     Supporting Data for Checker-N Benchmark testing of minimal networks 

Best training data for MLP 2-4-3-3-1 network  
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Best training data for BMLP 2=4=3=3=1 network  
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Best training data for DNN 2-4(7)-3(4)-3(1)-1 network  
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