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Abstract 
 
 

  Radial Basis Function (RBF) network is a type of artificial neural network, which uses the 

Gaussian kernel activation function. It has a fixed three-layer architecture. The RBF network is 

easier to be designed and trained than traditional neural networks, and they can also act as an 

universal approximator. They have good generalization properties and can respond well for 

patterns which are not used for training. RBF networks have strong tolerance to input noise, 

which enhances the stability of the designed systems. Therefore, RBF network can be considered 

as a valid alternative for nonlinear system design. 

This work presents an improved second order algorithm for training RBF networks. The 

output weights, the centers, widths, and input weights are adjusted during the training process. 

More accurate results will be obtained by increasing variable dimensions. Taking the advantages 

of fast convergence and powerful search ability of second order algorithms, the proposed 

algorithms can reach smaller training and testing errors with a much less number of RBF units. 

A new error correction algorithm is proposed for the incremental design of radial basis 

function networks. In this algorithm the number of RBF units is increased one by one until the 

training evaluation reaches desired accuracy. The initial center of the newly added RBF unit is 

properly selected based on the location of highest peak/lowest valley in the error surface; while 

for the other RBF units, the initial conditions are copied from the training results of the last step. 

Parameter adjustments, including weights, centers, and widths are performed by the Levenberg 

Marquardt algorithm. This algorithm is very efficient to design a compact network by comparing 



 
 

iii 
 

with other sequential algorithms in constructing radial basis function networks. The duplicate 

patterns test and the noise patterns test are applied to show the robustness of the proposed 

algorithm. 
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Chapter 1 

Introduction 

An Artificial Neural network (ANN) is a mathematical model which can infer a function from 

training data. Neural networks can be used for data classification [1], pattern recognition [2] and 

function approximation [3]. Neural networks are also applied for solving various problems in 

industrial applications, such as nonlinear control [4], image/audio signal processing [5], system 

diagnosis, and faults detection [6]. In this dissertation we will focus on one kind of ANN which 

is called Radial basis function (RBF) networks. We will discuss the differences between RBF 

network and ANN, the advantages and challenges of a RBF network over a traditional ANN, and 

the improvements we have made in the design of a RBF network. 

 

1.1 Basic concepts of neural networks 

An neural network is a typical supervised learning method, which is inspired by biological 

neural networks. It consists of an interconnected group of neurons. Its structure can be changed 

during a learning phase. A single neuron includes the linear/nonlinear activation function f(x) 

and weighted connections as shown in Fig. 1.1. 
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Fig. 1.1 Single neuron structure 

 

There are two steps for a single neuron calculation: 

Step 1: Calculate the net value as sum of weighted input signals: 

0

7

1
wwxnet

i
ii +=∑

=
                         (1-1) 

Step 2: Calculate the output y: 

( )netfy =                             (1-2) 

There are a number of common activation functions in use with neural networks, such as step 

function, linear function, sigmoidal shape function, and radial basis function. 

For more neurons interconnected together, the two basic computations (1-1) and (1-2) for 

each neuron remain the same; the only difference is that the inputs of a neuron could be provided 
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by either the outputs of neurons from previous layers or network inputs.  

Technically, the interconnections among neurons can be arbitrary. The most popular 

architecture is multilayer perceptron network (MLP). The other common neural network 

architecture is full connected cascade (FCC) network. In FCC networks all possible routines are 

weighted and each neuron contributes to a layer; it can solve problems using the smallest 

possible number of neurons. Fig. 1.2 shows the architecture of MLP with one hidden layer and 

FCC network. 

 

 

(a)                            (b) 

Fig.1.2 (a) Standard MLP network architecture with one hidden layer; (b)FCC networks 

 

The radial basis function network is a type of artificial neural network that uses radial basis 
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functions as activation functions and MLP architecture. It can be used for application to 

problems of supervised learning, such as regression, classification, and time series prediction. 

 

1.2 Basic concepts of Radial Basis Function Networks 

RBF networks have a fixed three-layer architecture which consists of input layer, hidden layer, 

and output layer. It has the similar layer-by-layer topology as multilayer perceptron networks. 

The input layer provides network inputs; the hidden layer remaps the input data in order to make 

them linearly separable; the output layer does linear separation. Fig.1.3 shows the general form 

of RBF networks with I inputs, H hidden units and M outputs. 
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∑
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hiu ,

I inputs                H RBF units          M outputs

 

Fig. 1.3 RBF network with I inputs, H hidden units and M outputs. 
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The basic computations in the RBF network above include: 

i) Input layer computation 

At the input of the hidden unit, the input vector x is weighted by input weights ui,h which 

represents the weight connection between the i-th input and RBF unit h: 

hiipihp uxy ,,,, =                          (1-3) 

ii) Hidden layer computation 

The output of the hidden unit is calculated by: 

( )












 −
−=

h

hhp
ph σ

ϕ
2

,exp
cy

x                         (1-4) 

Where: the activation function φl(•) for hidden unit h is normally chosen as Gaussian function; ch 

is the center of hidden unit; σh is the width of hidden unit. 

iii) Output layer computation 

The network output m is calculated by: 

( ) mp

H

h
hmhmp wwo ,0

1
,, += ∑

=

xϕ                      (1-5) 

Where: m is the index of output; 𝑤ℎ,𝑚is the output weight between hidden unit l; output unit m; 

w0,m is the bias weight of output unit m. 
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From the special architecture of the RBF networks, we can see the design of RBF network 

involves three fundamental steps: (1) find proper network size; (2) find proper initial parameters 

(centers and widths); (3) train the networks. 

 

1.3 Development of Radial Basis Function Networks 

The concept of RBF network originated from Cover’s Theorem on separability of patterns in 

1965 which state that a complex pattern-classification problem cast in a high-dimensional space 

nonlinearly is more likely to be linearly separable than in a low-dimensional space provided that 

the space is not densely populated[7]. In 1988, J.Moody and C.J. Darken first proposed the 

network architecture which uses a single internal layer of locally-tuned processing units to learn 

both classification tasks and function approximations [8]. In 1991, S. Chen, C.F.N. Cowan and 

P.M. Grant proposed the orthogonal least squares learning algorithm for RBF network [9]. This 

algorithm quantified the impact of the input to output. It chose the initial parameter based on this 

impact other than choosing it randomly. In 1992, D. Wettschereck and T.Dietterich employed a 

supervised learning of the center locations as well as the output weights to train RBF networks 

[10]. This supervised training process is much more efficient than unsupervised RBF. In 1997, 

Karayiannis, N. B proposed a framework for constructing and training RBF networks which 

merging supervised and unsupervised learning with network growth techniques [11]. In 2004, 
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Saratchandran,P. and Sundararajan, N. proposed an algorithm referred to as growing and 

pruning(GAP)-RBF uses the concept of “Significance” of a neuron and links it to the learning 

accuracy [12]. It used a piecewise-linear approximation for Gaussian function to derive a way of 

computing the significance. This algorithm can provide comparable generalization performance 

with a considerably reduced network size and training time.  

Since the RBF network architecture was invented, it has been used in many different areas. 

Sue Inn Ch’ng et al used an adaptive momentum Levenberg-Marquardt RBF for face recognition 

[13]. RBF networks can also be applied in fault diagnosis [14-15], industrial control [16, 17], 

image processing [18,19]; and system identification [20].  

 

1.4 The sequential algorithms of constructing RBF networks 

1.4.1 Resource-allocating network (RAN) and RAN-EKF algorithm 

RAN architectures were found to be suitable for online modeling of non-stationary processes. 

In this sequential learning method, the network starts with a blank slate: no patterns are yet 

stored. As patterns are presented to it, the network chooses to store some of them. At any given 

point the network has a current state, which reflects the patterns that have been stored previously 

[21]. The training process is as follows: 

1. The allocator identifies a pattern that is not currently well represented by the network and 
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allocates a new unit that memorizes the pattern. After the new unit is allocated, the desired 

output is marked as T. 

2. The center of the kernel function of RBF network is set to the novel input I: 

𝑐𝑖 = 𝐼                                  (1-6) 

The linear synapses on the second layer are set to the difference between the output of the 

network and the novel output: 

ℎ𝑖 = 𝑇 − 𝑦                             (1-7) 

The width of the response of the new unit is proportional to the distance from the nearest 

stored vector to the novel input vector: 

𝑤𝑖 = 𝑘‖𝐼 − 𝑐𝑛𝑒𝑎𝑟𝑒𝑠𝑡‖                        (1-8) 

Where k is an overlap factor; as k grows larger, the responses of the units overlap more and 

more. 

3. The RAN uses a two-part novelty condition. An input-output pair (I, T) is considered novel if 

the input is far away from existing centers and if the difference between the desired output 

and the output of the network is large: 

‖𝐼 − 𝑐𝑛𝑒𝑎𝑟𝑒𝑠𝑡‖ > 𝛿(𝑡)                        (1-9) 

‖𝑇 − 𝑦‖ > 𝜖                          (1-10) 

where 𝜖 is a desired accuracy of output of the network. Errors larger than 𝜖 are immediately 
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corrected by the allocation of a new unit, while errors smaller than 𝜖 are gradually repaired 

using gradient descent. The distance 𝛿(𝑡) is the scale of resolution that the network is fitting at 

the tth input presentation. The learning starts with 

 δ(t) = 𝛿𝑚𝑎𝑥                           (1-11) 

 where 𝛿𝑚𝑎𝑥 is the largest length scale of interest, typically the size of the entire input space of 

non-zero probability density. The system creates a coarse representation of the function at first, 

then refines the representation by allocating units with smaller and smaller widths. Finally, when 

the system has learned the entire function to the desired accuracy and length scale, it stops 

allocating new units altogether. 

If the new pattern satisfies these two criteria, the RAN is grown; otherwise, the existing 

network parameters are adjusted using a least mean square (LMS) gradient descent whenever a 

new unit is not allocated. 

The RAN-EKF algorithm is proposed to improve RAN-EKF by using an extended kalman 

filter algorithm (EKF) instead of the LMS to estimate the network parameters [22]. It is more 

compact and has better accuracy than RAN. 

 

1.4.2 Minimal Resource Allocating Network (MRAN) Algorithm [23] 

In the constructive stage of MRAN network, three criteria for adding hidden units are 
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employed. Among them, the first two are identical to those in RAN and RAN-EKF for adding 

hidden units. The third criterion is called RMS criterion. It uses the Root Mean Square value of 

the output error over a sliding data window before adding a hidden neuron. The RMS value of 

the network output error at nth observation ermsn is given by: 

𝑒𝑟𝑚𝑠𝑛 = �∑ 𝑒𝑖
∗𝑒𝑖
𝑀

𝑛
𝑖=𝑛−(𝑀−1)                   (1-12) 

The third growth criterion to be satisfied is  

𝑒𝑟𝑚𝑠𝑛 > 𝑒𝑚𝑖𝑛                      (1-13) 

Here, emin is a threshold value to be selected. This equation checks whether the network has 

met the required sum of squared error specification for the past M outputs of network. This 

newly added pruning strategy removes the superfluous hidden neurons possibly generated during 

the network constructive phase and makes the network more compact. 

 

1.4.3 Growing and Pruning (GAP) RBF networks [24]  

The algorithm referred to as GAP-RBF uses the concept of “Significance” of a neuon and 

links it to the learning accuracy. “Significance” of a neuron is defined as its contribution to the 

network output averaged over all the input data received so far. This requires the knowledge of 

the input data distribution. Using a piecewise linear approximation for the Gaussian functions, 

the way of computing this significance was derived: 
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𝐸𝑠𝑖𝑔(𝑘) = �1.8𝜎𝑘𝑙𝛼𝑘
𝑠(𝑋)

�                          (1-14) 

Where σ is width of the hidden neuron, α is the connecting weight to output neuron; s(X) 

is the range of the input pattern; l is the dimension of the input space. 

Given an approximation error emin, for each observation (xn, yn), the process of GAP-RBF 

algorithm is described bellow: 

1. Compute the overall network output. 

2. Apply the three criterions in function 1-9, 1-10, 1-13. If the new pattern satisfies these three 

criteria, allocate a new hidden neuron. 

3. If the new pattern does not satisfy, adjust the network parameters using the EKF method. 

4. Check the criterion for pruning the hidden neuron: If �1.8𝜎𝑘𝑙𝛼𝑘
𝑠(𝑋)

� < 𝑒𝑚𝑖𝑛, remove the kth 

hidden neuron. 

The GAP- RBF algorithm was proven to have good generalization, small network size and fast 

training speed when the input data is uniformly distributed. When the input data is not uniformly 

distributed, GAP-RBF gives comparable generalization performance with a much smaller 

network size and much less training time. 

The GAP was improved by M. Bortman and M. Aladjem in 2009 [25]. They used the 

Gaussian mixture model to calculate the significance of the neuron. This algorithm is called 

GAP-GMM algorithm. This makes it possible to employ the GAP algorithm for input data 
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having complex and high dimension. The result showed that the GAP-GMM algorithm 

outperforms the original GAP achieving both lower prediction error and reduced the complexity 

of the trained network.  
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Chapter 2 

Advantages and Challenges of RBF networks 

In this chapter, we will introduce the characteristics of RBF networks, the difference between 

RBF networks and traditional NN networks, and the advantages and disadvantages of RBF 

networks over traditional NNs. 

 

 2.1 Difference between traditional NN and RBF networks  

As introduced before, because of the similar layer-by-layer topology, it is often considered that 

RBF networks belong to MLP networks. It was proven that RBF networks can be implemented 

by MLP networks with increased input dimensions. Except the similarities of topologies, RBF 

networks and MLP networks behave very differently. First of all, RBF networks are simpler than 

MLP networks, which may have more than three layers architectures. Secondly, RBF networks 

act as local approximation networks because the network outputs are determined by specified 

hidden units in certain local receptive fields while MLP networks work globally, since the 

network outputs are decided by all the neurons. Thirdly, it is essential to set the correct initial 

states for RBF networks while MLP networks use randomly generated parameters initially. Last 

and most importantly, the mechanisms of classification for RBF networks and MLP networks are 

different: RBF clusters are separated by hyper spheres; while in neural networks, arbitrarily 
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shaped hyper surfaces are used for separation. In the simple two-dimension case as shown in Fig. 

2.1, the RBF network in Fig. 2.1a separates the four clusters by circles or ellipses (Fig. 2.1b) 

while the neural network in Fig. 2.1c does the separation by lines (Fig. 2.1d). 

 

∑
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∑
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Fig. 2.1 Different classification mechanisms for pattern classification in two-dimension space: 

(a) RBF network; (b) Separation result of RBF network; (b) MLP network; (c) Separation result 

of MLP network. 

 

2.2 Advantages and disadvantages of RBF networks over traditional NN 

In this part four problems are applied respectively to RBF networks and traditional NN to test 

and compare the performance of traditional neural networks and RBF networks. The result is 

obtained from the points of architecture complexity, generalization ability which is defined to 

evaluate the ability of different kind of networks to successfully handle new patterns which are 

not used for training, and noise-tolerant ability. For traditional NN, the neuron-by-neuron (NBN) 

algorithm is applied for training [26]; while for RBF networks, the improved second order (ISO) 

method which will be described in the 3rd chapter is used for parameter updating. 

The training/testing results are evaluated by the averaged sum square error calculated by: 

∑∑
= =

=
P

p

M

m
mpe

MP
E

1 1

2
,

11

                     (2-1) 

where: p is the index of patterns, from 1 to P, where P is the number of patterns; m is the index of 

outputs, from 1 to M, where M is the number of outputs. ep,m is the error at output m when 

training pattern p, calculated as the difference between desired output and associated actual 

output. 



 
 

16 
 

The testing environment consists of: Windows 7 Professional 32-bit operating system; AMD 

Athlon (tm) ×2 Dual-Core QL-65 2.10GHz processor; 3.00GB (2.75GB usable) RAM; 

MATLAB 2007b platform. 

The first experiment is called Forward kinematics which is one of practical examples well 

solved by neural networks. The purpose is to determine the position and orientation of the 

robot’s end effectors when joint angles change. The figure of manipulator is shown in Fig 2.2. 

 

End Effector

α

β

L1

L2

 

Fig 2.2  Two-link planar manipulator 

 

As shown in Fig. 2.2, in the two-dimension space, the end effector coordinates of the 

manipulator is calculated by: 
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( )βαα ++= coscos 21 LLx                           (2-2) 

( )βαα ++= sinsin 21 LLy                            (2-3) 

The data set of the two-dimensional forward-kinematics consist of 49 training patterns and 961 

testing patterns which are generated from equations (2-2) and (2-3), with parameters α and β 

uniformly distributed in range [0, 3], and L1=30, L2=10. Figs. 2.3and 2.4 below visualizes the 

training/testing points in both x and y dimensions. 

 

 

(a)                           (b) 

Fig. 2.3 Data set in x-dimension: (a) 7×7=49 training patterns; (b) 31×31= 961 testing patterns 
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(a)                             (b) 

Fig. 2.4 Data set in y-dimension: (a) 7×7=49 training patterns; (b) 31×31= 961 testing patterns 

 

For a traditional NN, all neurons are connected in FCC architectures with randomly generated 

initial weights between [-1, 1]. For RBF network, randomly selected patterns are used as initial 

centers, and the weights and widths are randomly generated between (0, 1]. For each architecture, 

the testing is repeated for 100 times and the averaged trajectories of training/testing errors are 

presented in Figs. 2.5 and 2.6 below. 
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Fig. 2.5 X-dimension of forward kinematics: training/testing errors vs. the number of hidden 

units 

 

As shown in Fig. 2.3, in x-dimension of kinematics, there is a big but not regular peak. 

Comparison results in Fig 2.5 show that RBF networks obtained smaller training/testing error 

than traditional neural networks at first. As the number of hidden units increase, traditional 

neural networks perform much better. 
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Fig. 2.6 Y-dimension of forward kinematics: training/testing errors vs. the number of hidden 

units 

 

In y-dimension kinematics, there are no regular peaks and valleys (Fig. 2.4). As the comparison 

results shown in Fig. 2.6, traditional neural networks perform much better than RBF networks. 

As the number of hidden units increase, all errors decrease at first; however, the testing errors of 

trained traditional neural networks increase due to the over-fitting problem [27]. 

The second problem is a peaks function approximation problem, in which 20×20=400 points 

(Fig. 2.7a) are applied as a training set in order to predict the values of 100×100=10,000 points 

(Fig. 2.7b) in the same range. The surface is generated by MATLAB function peaks, and all 

training/testing points are uniformly distributed. 
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(a)                                                      (b) 

Fig.2.7 Peaks function approximation problem: (a) training data, 20×20=400 points; (b) testing 

data, 100×100=10,000 points. 

 

Using RBF networks for approximating the peaks surface, since there are three peaks and two 

valleys, at least 5 hidden units are required. 

For traditional neural networks, FCC architectures are applied for training. Table 1 presents 

the experimental results. One may notice that, with the same 5 hidden units, feedforward neural 

network got more than 2 times larger training errors and more than two orders of magnitude 

larger testing errors than radial basis function network. 
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Table 1 Comparison results Of Radial RBF Networks And Traditional Neural Networks On 

Peaks Surface Approximation Problem  

Architectures Training Errors Testing Errors 

RBF with 5 hidden units 0.0111 0.0120 

FCC with 4 hidden units 0.1361 1.3706 

FCC with 5 hidden units 0.0294 1.1834 

FCC with 6 hidden units 0.0040 1.1689 

FCC with 7 hidden units 0.0018 1.1713 

FCC with 8 hidden units 0.0010 1.1728 

 

Fig.2.8 below shows the generalization results of two types of neural networks, both of which 

have 5 hidden units. It can be seen that RBF has a better generalization ability than traditional 

NNs. 
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(a)                                              (b) 

Fig. 2.8 Generalization results of neural networks with 5 hidden units: (a) traditional neural 

networks, testing error=1.1834; (b) RBF networks, testing error=0.0120 

 

The third problem is the famous two-spiral problem which is always considered as a very 

complex benchmark to evaluate the power and efficiency of training algorithms and network 

architectures. As shown in Fig 2.9, the purpose of the two-spiral problem is to generate the 94 

twisted two-dimension points into two groups, marked as +1(blue circles) and -1(red stars). 
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Fig.2.9 Two-spiral classification problem 

 

Using traditional neural networks, the two-spiral problem can be solved very efficiently and 

the minimum number of required hidden units depends on network architectures. For example, 

using standard MLP architecture with one hidden layer, at least 33 hidden units are required for 

successful training. For MLP architecture with two hidden layers (assume they have the same 

number of neurons), at least 14 hidden units are required for convergence [28]. The most 

efficient architecture, FCC networks, can solve two-spiral problem with only 7 hidden units [28]. 

Fig. 2.10 shows the generalization results of 13 hidden units in FCC networks. 
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Fig. 2.10 Generalization result of FCC architecture with 13 hidden units 

 

 

Fig. 2.11 Generalization result of RBF network with 40 hidden units 

 

Using RBF networks, in order to reach the similar training error with the FCC architecture 

with 7 hidden units, at least 40 hidden units are required. The generalization result is shown in 
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Fig. 2.11. 

For the two-spiral classification problem, one may notice that in order to get the similar 

classification results the RBF networks need many more number of hidden units than traditional 

NNs. 

The fourth problem is a character image recognition problem. As shown in Fig 2.12, for 

each column, there are 10 character images from “A” to “J”, each of which consists of 8×7=56 

pixels with normalized Jet degree between -1 and 1 (-1 for blue and 1 for red). The first column 

is the original image data without noise and used as training patterns; while the other 7 columns, 

from the 2nd column to the 8th column, are noised and used as testing patterns. The strength of 

noise is calculated by: 

δ×+= iPNPi 0                        (2-4) 

where: P0 is the original image in 1st column; NPi is the image data with i-th level noise; i is the 

noise level from 1 to 7; δ is the randomly generated noise between [-0.5, 0.5]. 

The aim is to build neural networks based on the training patterns (1st column) and then test 

the networks with noised input data (from 2nd column to 8th column). For each noise level, the 

testing will be repeated for 100 times with randomly generated noise. 
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Fig 2.12 Character images with different noise levels from 0 to 7 in left-to-right order (one data 

set in 100 groups) 

 

Using traditional neural networks, the MLP architecture 56-10 is applied for training. The 

testing results on the trained network are presented in Table 2 below. One may notice that 

recognition errors appear when patterns with 2nd level noises are applied. 
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Table 2 Success Rates Of The Trained Traditional Neural Network For Character Image 

Recognition 

   

Data 

Char       

Noise 

level 

1 

Noise level 

2 

Noise level 

3 

Noise level 

4 

Noise level 

5 

Noise level 

6 

Noise level 

7 

“A” 100% 99% 90% 70% 59% 44% 39% 

“B” 100% 100% 100% 95% 94% 84% 81% 

“C” 100% 98% 81% 52% 51% 45% 41% 

“D” 100% 97% 84% 64% 56% 34% 33% 

“E” 100% 100% 92% 70% 52% 48% 42% 

“F” 100% 95% 83% 71% 49% 36% 35% 

“G” 100% 96% 72% 58% 53% 34% 32% 

“H” 100% 94% 60% 50% 32% 32% 23% 

“I” 100% 100% 100% 95% 83% 76% 71% 

“J” 100% 100% 96% 81% 70% 54% 46% 

For RBF networks, 10 hidden units are chosen, and their centers are corresponding to 10 

characters, respectively. Applying the testing patterns, the performance of the trained RBF 

network is shown in Table 3 below. One may notice that recognition errors appear until 3rd level 

noised patterns are applied. 
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Table 3 Success Rate Of The Trained RBF Network For Character Image Recognition 

  

Data 

Char       

Noise 

level 

1 

Noise level 

2 

Noise level 

3 

Noise level 

4 

Noise level 

5 

Noise level 

6 

Noise level 

7 

“A” 100% 100% 100% 100% 100% 97% 97% 

“B” 100% 100% 100% 99% 97% 96% 87% 

“C” 100% 100% 99% 98% 90% 88% 80% 

“D” 100% 100% 100% 98% 98% 95% 88% 

“E” 100% 100% 100% 95% 94% 76% 76% 

“F” 100% 100% 100% 97% 92% 83% 79% 

“G” 100% 100% 99% 96% 88% 81% 77% 

“H” 100% 100% 100% 100% 100% 98% 91% 

“I” 100% 100% 100% 100% 100% 100% 97% 

“J” 100% 100% 100% 100% 100% 99% 95% 
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Fig.2.13 Average recognition success rates of traditional neural networks and RBF networks 

under different levels of noised inputs 

 

Fig.2.13 shows the average success rate of two types of neural network architectures. It can 

be seen that RBF networks (red line) are more robust and have a better tolerant ability to input 

noises than traditional neural networks (blue line). 

 

2.3 Conclusions 

Comparing the results of the four examples and the properties of two types of neural networks, 

it can be concluded that: 
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(1) For function approximation problems, RBF networks are specially recommended for surface 

with regular peaks and valleys since efficient and accurate design can be obtained. RBF 

networks also have better generalization ability than traditional NNs. For surfaces without 

regular peaks and valleys, traditional neural networks are preferred as a general model.  

(2) The RBF networks need larger size hidden units to solve the two spiral classification 

problems than traditional NNs. However, compared to traditional NNs, its structure is fixed 

and easier to design. 

(3) For trained networks, RBF networks perform more robustly and tolerantly than traditional 

neural networks when dealing with noised input data set.  
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Chapter 3 

Second Order Training of RBF networks 

 In original, people use unsupervised training process to construct the RBF networks [29]. 

But this is not proper for solving practical problems where there are usually hundreds of training 

patterns. In order to achieve more accuracy with less RBF units, the supervised training process 

was introduced for parameters adjusting. Based on gradient decent concept, lots of methods have 

developed to perform “deeper” training on RBF networks. Besides output weights, more 

parameters, such as centers and widths, are adjusted during the learning process. But first order 

gradient methods have very limited search ability and take a long time for convergence. In this 

chapter, we will propose an advanced training algorithm of RBF networks which is called second 

order gradient method. This method is derived from neuron-by-neuron (NBN) algorithm [26] 

and improved Levenberg Marquardt algorithm [30] used for traditional neural network training. 

In the proposed approach, all the parameters (as shown in Fig. 1), such as input weights, output 

weights, centers and widths, are adjusted by second order update rule. Furthermore, the proposed 

algorithm does not suffer from huge Jacobian matrix storage and its side effects, when training 

data is huge. With the proposed training algorithm, RBF networks can be designed very 

compactly; at the same time, the network performances, such as training speed and 

approximation accuracy, are improved. 
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Before presenting the computation fundamentals of radial basis function networks and 

Levenberg Marquardt algorithm, let us introduce the commonly used indices in this paper: 

• i is the index of inputs, from 1 to I, where I is the number of input dimensions. 

• p is the index of patterns, from 1 to P, where P is the number of input patterns. 

• h is the index of hidden units, from 1 to H, where H is the number of  units in the 

hidden layer. 

• m is the index of outputs, from 1 to M, where M is the number of outputs. 

• k is the index of iterations. 

Other indices will be interpreted in related places. 

 

3.1 Levenberg-Marquardt algorithm derivation 

The Levenberg-Marquardt algorithm was first published by Kenneth Levenberg and then 

rediscovered by Donald Marquardt [31]. It is a blend of Gradient descent and Gauss-Newton 

iteration. We will introduce them respectively. 

Gradient descent is the simplest, most intuitive technique to find minima in a function. 

Parameter updation is performed by adding the negative of the scaled gradient at each step: 

kgα−=+ k1k ww                       (3-1) 

Where w is the parameter to be adjusted, α is the learning constant gradient, g is defined as the 
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first order derivative of total error function: 
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where E is the error. Simple gradient descent suffers from various convergence problems. 

Logically, we would like to take large steps down the gradient at locations where the gradient is 

small and conversely, take small steps when the gradient is large, so as not to rattle out of the 

minima. With the above update rule, we do the opposite way. For example, if there is a long and 

narrow valley in the error surface, it might oscillate and never be convergent because the 

gradient of the valley wall is so large and the error takes such large step concurrently that it will 

never reach the base of valley. 

This situation can be improved upon by using curvature as well as gradient information, 

namely second derivatives. One way to do this is to use Newton’s method [32]. Expanding the 

gradient vector g using Taylor series around the current state and take the first order 

approximation, we get: 
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If we set left hand of the function to be 0, we get the update rule for Newton’s method: 
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kkkk gHww 1
1

−
+ −=                        (3-4) 

where H is called Hessian matrix that is defined as: 
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The main advantage of this technique is rapid convergence. However, the rate of convergence is 

sensitive to the starting location. The calculation of Hessian matrix is very complicate. In order 

to simplify the process, Jacobian matrix J is introduced as: 
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The relationship between Hessian matrix H and Jacobian matrix J is: 
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JJH T≈                              (3-7) 

So function 3-4 can be rewritten as: 

( ) k
T
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+ −=                    (3-8) 

This is so called Gauss-Newton algorithm. 

It can be seen that simple gradient descent and Gauss-Newton iteration are complementary in 

the advantages they provide. Levenberg proposed an algorithm based on this observation, whose 

update rule is a blend of the above and is given as: 

( ) k
T
kk

T
kkk eJIJJww 1

1
−

+ +−= µ                 (3-9) 

where μ is always positive, called combination coefficient and I is the identity matrix. 

This update rule is used as follows: if the error goes down following an update, it implies that 

our quadratic assumption on g is working and we reduce μ to reduce the influence of gradient 

descent. On the other hand, if the error goes up, we would like to follow the gradient more and so 

μ is increased by the same factor. 

 

3.2 Improved Second Order (ISO) algorithm 

3.2.1 The formulas of ISO algorithm in RBF networks 

Following the computation procedure in LM algorithm, the update rule of RBF networks can 

be written as: 
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where Δ is the variable vector. 

Function 3-10 can be replaced by: 
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Where: quasi Hessian matrix Q is directly calculated as the sum of P×M sub matrices qp,m: 
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and gradient vector g is calculated as the sum of P×M sub vectors ηp,m: 
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Where: vector jp,m is one row of Jacobian matrix for pattern p associated with output m calculated 

by 
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and the error ep,m is given by: 

mpmpmp oye ,,, −=                         (3-15) 

In the proposed algorithm, there are four types of variables: output weight matrix w, width 

vector σ, input weight matrix u and center matrix c. Therefore, the Jacobian row in (3-14) 

consists of four parts: 
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3.2.2 Computation of ∂ep,m/∂wh,m  

The output weight matrix w presents the weight values on the connections between hidden 

layer and output layer, also including the bias weights on output units. So the output weight 

matrix w has (H+1)×M elements. 

Using (3-15), the Jacobian element ∂ep,m/∂wh,m is calculated as: 
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By combining with (1-5), equation (3-17) is rewritten as: 
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For bias weight w0,m, related Jacobian element is calculated by 
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The width vector σ consists of the width of each RBF unit, so the total number of elements is H. 

For the RBF unit h, using (3-15) and the differential chain rule, the Jacobian element ∂ep,m/∂σh is 

calculated as: 
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By combining with equations (1-4) and (1-5), (3-20) is rewritten as 
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where: the vector yp,h  is defined as: 

hiipihp uxy ,,,, =                          (3-22) 

The input weight matrix u describes the weights on the connections between input layer and the 

hidden layer, so the total number of elements is I×H. 

Using (1-5) and the differential chain rule, the Jacobian element ∂ep,m/∂ui,h is calculated as 
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By combing with equations (1-3), (1-4) and (1-5), (3-23) is rewritten as  
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The center matrix c consists of the centers of RBF units, and the number of elements is H×I. For 

RBF unit h, using (3-15) and the differential chain rule, the Jacobian element ∂ep,m/∂ch,i is 

calculated by: 
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By combining with equations (1-3), (1-4) and (1-5), (3-25) is rewritten as: 
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With equations (3-18), (3-19), (3-21), (3-24) and (3-26), all the Jacobian row elements for output 

m when applying pattern p can be obtained. Then related sub quasi Hessian matrix qp,m and sub 

gradient vector ηp.m can be computed by (3-12) and (3-13), respectively, so do the quasi Hessian 

matrix and gradient vector. Notice that, all patterns are independent, so the related memory for 

jp,m, qp,m and ηp.m can be reused. 

 

3.3 Implementation of the ISO algorithm 

In order to explain the training process of RBF networks using the proposed algorithm, let us 

use the parity-2 (XOR) classification problem as an illustration vehicle. 

Fig. 3.1 shows the data set of XOR problem. The goal is to classify the 4 points (-1,-1), (-1,1), 

(1,-1) and (1,1) into two groups, which are marked by +1 and -1. Fig. 3.2 shows the minimum 

radial basis function network for solving the parity-2 problem. 

    In   out
 -1  -1 +1
 -1 +1  -1
+1  -1  -1
+1 +1 +1

 

Fig. 3.1 Data set of XOR problem 
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Fig. 3.2 RBF network for solving XOR problem 

 

Implementing the proposed algorithm on the example, the training procedure can be organized 

in the following steps: 

1. Initialization 

As shown in Fig. 3.2, the initial conditions are set as: output weights w=[ w0,1, w1,1, w2,1 ], 

widths of two RBF units σ=[ σ1, σ2 ], input weights u=[ u1,1, u2,1; u1,2, u2,2 ], and centers of two 

RBF units c=[ c1,1, c1,2; c2,1, c2,2 ]. 

In order to apply the update rule in (3-11), the variable vector Δ1 is built by reforming the 

current parameters w, σ, u and c as: Δ1=[ w0,1, w1,1, w2,1, σ1, σ2, u1,1, u2,1, u1,2, u2,2, c1,1, c1,2, c2,1, 

c2,2 ]. 

2. Error Evaluation 

The root mean square error E is defined to evaluate the training procedure: 
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                         (3-27) 

Where: P is the number of patterns and M is the number of outputs. 

Applying the first pattern [ -1, -1, 1 ] to RBF unit 1, the vector multiplication of x1=[ -1, -1 ] 

and u1=[ u1,1, u2,1 ] is obtained using (1-3) 

],[ 1,21,11,1 uu −−=y                       (3-28) 

With (3-28), the Euclidean Norm of vector y1,1 and vector c1 is calculated as:  

( ) ( )22,11,2
2

1,11,1
2

11,1 cucu −−+−−=− cy                (3-29) 

Using (1-4) and (3-29), the output of the RBF unit 1 is calculated by: 

( )












 −
−=

1

2
11,1

11 exp
σ

ϕ
cy

x                         (3-30) 

Then by applying pattern [ -1, -1, 1 ] to RBF unit 2, using similar computation with RBF unit 1, 

y1,2 and φ2(x1) are calculated. 

Following the computation in equation (1-5), the network output is calculated as 

( ) ( )121,2111,11,01,1 xx ϕϕ wwwo ++=                    (3-31) 

Using equations (3-15) and (3-31), the error e1,1 for the first pattern is computed by 

1,11,1 1 oe −=                            (3-32) 

Repeating the computation from (3-28) to (3-32) for other three patterns, the errors e2,1, e3,1 

and e4,1 are all obtained, then the root mean square error defined in (3-27) is calculated as: 
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2
1,4

2
1,3

2
1,2

2
1,11 2

1 eeeeE +++=                 (3-33) 

3. Computation of quasi Hessian matrix and gradient vector 

First of all, the quasi Hessian matrix Q1 and gradient vector g1 are initialized as zero: 

0g0Q == 11 ,                            (3-34) 

Applying the first pattern [ -1, -1, 1 ] and going through the computation from equations (3-28) 

to (3-32), parameters φ1(x1), φ2(x1), o1,1 and e1,1 are all obtained. 

Using equations (3-18), (3-19), (3-21), (3-24) and (3-26), all the elements of Jacobian row for 

the first pattern can be calculated and built in the format of (3-16): 

 j1,1=[ ∂e1,1/∂w0,1, ∂e 1,1/∂w1,1, ∂e 1,1/∂w2,1, ∂e 1,1/∂σ1, ∂e 1,1/∂σ2, ∂e 1,1/∂u1,1, ∂e 1,1/∂u2,1, ∂e 1,1/∂u1,2, 

∂e1,1/∂u2,2, ∂e1,1/∂c1,1, ∂e1,1/∂c1,2, ∂e1,1/∂c2,1, ∂e1,1/∂c2,2 ]. 

Using (3-12), the sub quasi Hessian matrix q1,1 is calculated to update the quasi Hessian matrix 

Q1 

1,11,11,1 jjq T=         1,111 qQQ +=               (3-35) 

Using (3-13), the sub gradient vector η1,1  calculated to update the gradient vector g1 

1,11,11,1 eTjη =          1,111 ηgg +=               (3-36) 

By repeating the computation (3-35) and (3-36) for the other three patterns, the accumulated 

results of matrix Q1 and vector g1 are the required quasi Hessian matrix and gradient vector. 

4. Parameters Update 
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After the computation of quasi Hessian matrix Q1 and gradient vector g1, using (3-11), the 

updated parameter vector Δ2 can be calculated as: 

( ) 1
1

1112 gIQΔΔ −++= µTT                  (3-37) 

From the new parameter vector Δ2, the parameters w, σ, u and c can be extracted according 

with the order of constructing the parameter vector Δ1 as was done previously. 

5. Training Procedure Control 

With the updated parameters w, σ, u and c, new root mean square error E2 can be evaluated by 

following the procedure described above. Then the training process is controlled by the rules: 

• If E2 is less than the setting value, training converges. 

• If E1≥E2, reduce parameter u1 and keep the current parameter values (used for E2 calculation). 

Then go through the above procedures for next iteration. 

• If E1<E2, increase parameter u1 and recover previous parameter values (used for E1 

calculation). Then go through the above procedures. A counter (variable flag in Fig. 3.3) 

should be added here to help avoid dead loop. 

Fig. 3.3 shows the pseudo code of the proposed algorithm with links to the equations given in 

previous sections. The block (1) in Fig. 3.3 is the main procedure for weight updating; the block 

(2) evaluates the training process according to root mean square error and the block (3) performs 

quasi Hessian matrix and gradient vector computation. Normally, the μ parameter in the 
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proposed algorithm is initialed as 0.01. 

One may notice that the proposed ISO algorithm for RBF network training takes the 

advantages of the LM algorithm for neural network training. However, because of the different 

activation functions, network architectures and parameters of the two network models, the 

Jacobian row computation and parameter update are very different as shown in Fig.3.3. 

% Initialization
initial w, σ, u and c
build parameter vector Δ based on w, σ, u and c
calculate RMSE(1);
% Training process
for iter = 2:number_of_iterations
    flag=0;
    calculate quasi Hessian matrix Q;
    calculate gradient vector g;
    Δ_backup = Δ;
    while 1
        Δ = Δ_backup-((Q+μI)\gT)T;   % Eq. (7)
        update w;
        update σ;
        update u;
        update c;
        calculate RMSE(iter);
        Training Procedure Control (μ adjustment)
    end;
    if RMSE(iter) < required_training_error;   
        break;    
    end;     
end;

Q=0; g=0;
for p=1:P                 %Number of patterns
   for h=1:H              %Number of hidden units
      calculate output of hidden units φh(xp);      %Eqs. (1-2)
   end;               
   for m=1:M            %Number of outputs
      calculate output op,m;            %Eq. (3)
      calculate error ep,m;              %Eq. (6)
      for h=1:H           %Number of hidden units
          calculate ∂ep,m/∂wh,m;        %Eqs. (13) & (14)
          calculate ∂ep,m/∂σh;           %Eq. (16)
          calculate ∂ep,m/∂ui,h;          %Eq. (18)
          calculate ∂ep,m/∂ch,i;          %Eq. (20)
      end;
      build Jacobian row jp,m;          %Eq. (11)
      calculate sub matrix qp,m;  Q=Q+qp,m;        %Eq. (8)
      calculate sub vector ηp,m;   g=g+ηp,m;        %Eq. (9)
   end;
end;

for p=1:P                 %Number of patterns
   for h=1:H              %Number of hidden units
      calculate output of hidden units φh(xp);      %Eqs. (1-2)
   end;  
   for m=1:M
       calculate network output op,m       %Eq. (3)
       calculate error ep,m                       %Eq. (6)
end;            
calculate root mean square error;      %Eq. (21)

1 2

3

 

Fig.3.3 Pseudo code (following MATLAB syntax) of the proposed algorithm to train radial basis  

function networks. Block (1) is the procedure for weight updating; block (2) evaluates the root 
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mean square error; block (3) is used for quasi Hessian matrix and gradient vector computation.  

 

3.4 Experimental Result with algorithm comparison 

Several practical issues are presented to test the performance of the improved second order 

(ISO) algorithm, from the point of training speed, required hidden units, training error and 

generalization error. In this part, at first,the ISO algorithm is compared with several algorithms 

introduced in Chapter 1, including GGAP, MRAN, RANEKF, RAN and GGAP-GMM. Next, 

four cases with different training parameters are compared based on two practical problems. 

Finally, the proposed ISO algorithm is compared with first order gradient algorithm and 

Gauss-Newton method, based on MATLAB PEAK problem. 

The testing environment of the proposed algorithm consists of: Windows 7 Professional 32-bit 

operating system; AMD Athlon (tm) ×2 Dual-Core QL-65 2.10GHz processor; 3.00GB (2.75GB 

usable) RAM; MATLAB 2007b platform. All the attributes in the data set are normalized 

(divided by the maximum value of the attribute) in range [0, 1], and 100 trials are repeated under 

similar conditions for each study case, when applying the proposed algorithm for training/testing. 

 

3.4.1 Comparing with other algorithms  

In the performed experiments, three practical problems, including Boston housing problem, 
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abalone age prediction and fuel consumption prediction from [33], are applied to test the 

performance of the proposed ISO algorithm, by comparing with other five algorithms. Each 

testing case for ISO algorithm is repeated for 100 trials and testing results of other algorithms are 

from [24] [25]. 

The Boston Housing problem has total of 506 observations, each of which consists of 13 input 

attributes (12 continuous attributes and 1 binary-valued attribute) and 1 continuous output 

attribute (the median value of owner-occupied homes). For each trial, 481 randomly selected 

observations are going to be applied for training, and the rest 25 observations will be used to test 

the trained radial basis function network. The experiment results are shown in Table 4. Fig. 3.4 

shows the training/testing RMS error trajectories when increasing the number of RBF units. 

 

Fig. 3.4 RMS errors vs. average number of RBF units for Boston housing problem 
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TABLE 4 PERFORMANCE COMPARISON FOR BOSTON HOUSING PROBLEM 

Algorithms CPU Time (s) Training RMSE Testing RMSE Number of RBF  

Units (Mean) Mean Dev Mean Dev Mean Dev 

GGAP 1.2399 0.2812 0.1507 0.0128 0.1418 0.0466 3.5 

MRAN 12.731 2.2585 0.1440 0.0108 0.1356 0.0411 13.58 

RANEKF 22.572 6.4159 0.1328 0.0086 0.1437 0.0464 19.98 

RAN 4.2664 0.4846 0.3449 0.0620 0.3432 0.0770 18.8 

ISO 0.6192 0.0591 0.1327 0.0471 0.1403 0.0553 1 

ISO 1.1103 0.1596 0.0996 0.0383 0.1018 0.0430 2 

ISO 1.5349 0.1688 0.0904 0.0318 0.0926 0.0369 3 

 

As shown in Fig. 3.4, for the Boston housing problem, the ISO algorithm can obtain smaller 

training/testing errors than other four algorithms with only 2 RBF units. 

The Abalone problem consists of 4,177 observations, each of which consists of 7 continuous 

input attributes and 1 continuous output attribute (age in years). For each trial, 3,000 randomly 

selected observations are applied as training data and the remaining 1,177 observations are 

applied for testing. The experimental results are presented in Table 5. Fig. 3.5 shows the 

relationship between training/testing RMS errors and the average number of RBF units. 
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As shown in Fig.3.5, the proposed ISO algorithm can reach similar or smaller training/testing 

errors with other algorithms using significantly compact RBF network consisting of 4 RBF units. 

 

TABLE 5 PERFORMANCE COMPARISON FOR ABALONE AGE PREDICTION 

Algorithms CPU Time (s) Training RMSE Testing RMSE Number of RBF  

Units (Mean) Mean Dev Mean Dev Mean Dev 

GGAP-GMM / / 0.08 / 0.0850 0.0027 5.13 

GGAP 83.784 73.401 0.0963 0.0061 0.0966 0.0068 23.62 

MRAN 1500.4 134.08 0.0836 0.0039 0.0837 0.0042 87.571 

RANEKF 90806 18193 0.0738 0.0042 0.0794 0.0053 409 

RAN 105.17 6.1714 0.0931 0.0091 0.0978 0.0092 345.58 

ISO 5.9672 0.7495 0.0792 0.0109 0.0792 0.0101 4 

ISO 8.4672 0.9885 0.0778 0.0066 0.0762 0.0085 5 

ISO 11.625 1.7499 0.0748 0.0047 0.0738 0.0035 6 

                                 / data not available in the literature [25] 
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Fig. 3.5 RMS errors vs. average number of RBF units for abalone age prediction problem 

 

The Auto MPG problem has 398 patterns. Each pattern consists of seven continuous input 

attributes and one continuous output attribute (the fuel consumption in mile-per-gallon). For each 

trial, 320 randomly selected patterns are applied for training and the remaining 78 patterns are 

applied for testing. The experimental results are shown in Table 6. Fig. 3.6 presents the changing 

of training/testing RMS errors as the average number of RBF units increases. 
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TABLE 6 PERFORMANCE COMPARISON FOR FUEL CONSUMPTION PREDICTION OF 

AUTOS 

Algorithms CPU Time (s) Training RMSE Testing RMSE Number of RBF  

Units (Mean) Mean Dev Mean Dev Mean Dev 

GGAP-GMM / / 0.11 / 0.1167 0.0134 3.6 

GGAP 0.4520 0.0786 0.1144 0.0132 0.1404 0.0270 3.12 

MRAN 1.4644 0.2453 0.1086 0.0100 0.1376 0.0226 4.46 

RANEKF 1.0103 0.1694 0.1088 0.0117 0.1387 0.0289 5.14 

RAN 0.8042 0.1417 0.2923 0.0808 0.3080 0.0915 4.44 

ISO 0.2105 0.0107 0.0975 0.0463 0.0995 0.0433 1 

ISO 0.3043 0.0248 0.0784 0.0294 0.0817 0.0289 2 

ISO 0.5922 0.0683 0.0622 0.0077 0.0645 0.0094 3 

          / data not available in the literature [25] 
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Fig. 3.6 RMS errors vs. average number of RBF units for fuel consumption prediction problem 

 

As the comparison results shown in Fig. 3.6, for the fuel consumption prediction problem, the 

proposed ISO method can reach smaller training/testing errors than other algorithms, with very 

compact RBF network consisting of 2 RBF units. One may also notice that the ISO method got 

better generalization ability on this problem, since the differences between training errors and 

testing errors are much smaller than other algorithms. 

The comparison results presented in Tables 1-3 show that the proposed algorithm can reach 

similar or smaller training/testing RMS errors with much less number of RBF units and less 

training time than other algorithms. 

 

3.4.2 Performance with different training parameters 

In the experiments conducted, two of the most popular data sets in [33], wine classification and 
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car evaluation, will be applied to test the proposed ISO algorithm. 

In the wine problem, there are three types of wines required to be classified according with 

other 13 attributes. There are 178 observations in total. 

In the car evaluation problem, 6 input attributes are used to evaluate the degree of satisfaction 

about the car. String data are replaced by natural numbers 1, 2, 3…. There are 1,728 observations 

in total. 

With the two benchmark problems, the following four cases with different variables are tested, 

using the proposed ISO algorithm: 

• Case 1: only output weight matrix w is updated; 

• Case 2: only input weight matrix u is updated;  

• Case 3: output weight matrix w, width vector σ and center matrix c are updated; 

• Case 4: output weight matrix w, width vector σ, input weight matrix u and center matrix 

c are all updated. 

All the input weights, output weights and widths are randomly generated in range (0, 1). All 

centers are randomly selected from the training dataset. The maximum iteration is 100 and each 

testing case is repeated for 50 trials. 

As shown in Figs. 3.7 and 3.8, several observations can be concluded: 

(1) As the number of RBF units increases, except the case 2, the training errors decrease stably.  
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(2) Case 2 (squares in line) shows the worst performance which is mainly depends on the 

initial conditions. So adjusting input weights only is not helping for RBF networks design. 

(3) For the same number of RBF units, case 4 (circles in line) mostly gets smaller training 

errors than other three cases. 

(4) As the number of RBF units increases, the difference of training results between case 3 and 

case 4 becomes small. 

 

 

Fig. 3.7 Root mean square errors vs. number of RBF units for wine classification problem 
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Fig. 3.8 Root mean square errors vs. number of RBF units for car evaluation problem 

 

3.4.3 Training speed comparison 

In the experiment conducted, the proposed ISO method is compared with the first order 

gradient method (with momentum) [34] and enhanced Gauss-Newton method, by solving the 

PEAK function approximation problem. Notice that, the original Gauss-Newton method [35] 

seldom converges because Hessian matrix is mostly not invertible for complex error surfaces. In 

the experiment, the Gauss-Newton method is enhanced by adding a constant value to the 

diagonal elements of Hessian matrix when it is not invertible. 

The purpose is to approximate the surface in Fig. 3.9b using the surface in Fig. 3.9a. All the 

data comes from MATLAB PEAKS function. RBF network with 5 hidden units is applied to do 

the approximation. The maximum number of iteration is 200 for ISO algorithm, 10,000 for first 
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order gradient method and 1,000 for the enhanced Gauss-Newton algorithm. All the parameters, 

including input weights, output weights, centers and widths are adjusted by the three algorithms. 

 

 

(a)                                  (b) 

Fig. 3.9 Peaks function approximation problem: (a) training data, 20×20=400 points; (b) testing 

data, 100×100=10,000 points. 

 

With the same initial centers, widths and input weights, but randomly generated output weights, 

the training RMS error trajectories of the three algorithms for 10 trials each are shown in Fig. 

3.10. One may notice that the proposed ISO algorithm (black dot-line) costs significantly less 

iterations than first order gradient method (red solid-line) and converges to much smaller RMS 

errors than both first order gradient method and enhanced Gauss-Newton method (blue 

dash-line), in the limited iterations (when training errors get saturated). 
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Fig. 3.10 Training RMS error trajectories: red solid-line is for first order gradient method, blue 

dash-line is for enhanced Gauss-Newton method and black dot-line stands for ISO algorithm (10 

trials for each algorithm) 

 

Figs. 3.11-3.13 show the best error surfaces of the approximating results we have tried using 

first order gradient method (Fig. 3.11), enhanced Gauss-Newton method (Fig. 3.12) and the 

proposed ISO algorithm (Fig. 3.13), respectively.  
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Fig. 3.11 Error surface of the approximating result using first order gradient method, with 

ETrain=0.8911 and ETest=0.9192 

 

 

Fig. 3.12 Error surface of the approximating result using enhanced Gauss-Newton method, with 

ETrain=0.2769 and ETest=0.2869 
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Fig. 3.13 Error surfaces of the approximating result using the proposed ISO method with 

ETrain=0.0424 and ETest=0.0440 

One may notice that, with the smallest training error, the proposed ISO algorithm also gets the 

smaller approximation errors (better generalization results) than both first order gradient method 

and enhanced Gauss-Newton method. Obviously, because of its limited search ability, first order 

gradient method is not able to adjust the centers of RBF units properly. 

 

3.5 Conclusion 

In this chapter, we introduced an advanced ISO algorithm which is derivate d from 

Levenberg-Marquardt algorithm for training RBF networks. During the implementation of the 

ISO proposed algorithm, matrix operations are replaced by vector operations, which lead to 

significant memory reduction and speed benefit. Also, all parameters including input weights, 
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output weights, centers and widths are all adjusted during the training process. Variable space 

with higher dimensions makes the designed radial basis function networks perform more 

compact and accurate for approximation when the network size is small. Compact radial basis 

function networks benefit the design in two aspects. First of all, compact architecture could be 

more efficient for hardware implementation. On the other hand, the less number of RBF units 

used for design, the better generalization ability the trained networks can obtain. The ISO 

exhibits the powerful search ability and fast convergence in the presented examples. 
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Chapter 4 

Incremental Design of RBF networks 

As we mentioned in chapter 1, the architecture of RBF networks is fixed to three-layer, so it is 

easy to design. However, sometime it may need large size hidden units to solve the problem. The 

networks applied for training should be as compact as possible. For RBF networks, not only the 

number of RBF units has to be decided, but also the center and width of each RBF unit have to 

be properly chosen. In this chapter, we will introduce the error correction algorithm which is 

proposed to find proper initial centers of RBF units and design compact RBF networks. The 

performance of the proposed algorithm is also evaluated. 

 

4.1 Error correction algorithm 

The basic idea of the ErrCor algorithm is to use kernel function with peak/valley shape to 

compensate the biggest error in error surface step by step, so as to reduce the approximation 

errors gradually. 

 

4.1.1 Graphical Interpretation 

In order to illustrate the error correction process, let us have an example to approximate the 

peak surface in MATLAB. The destination surface consists of 900 points (as training data), 
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obtained by command peaks(30), is shown in Fig. 4.1. 

 

 

Fig. 4.1 Peak surface (900 points) 

 

At the beginning, since the number of RBF units is “0”, it is reasonable to assume that all the 

actual outputs from RBF network are “0”. In this case, the desired surface in Fig. 4.1 can be also 

considered as the error surface which is obtained by (3-15). 

By going through the data of error surface in Fig. 4.1, the location (xA=-0.1034, yA=1.5517) of 

the highest peak (marked as A) is found. Then, the first RBF unit can be added with initial center 

(xA, yA), as shown in Fig. 4.2a. By applying Levenberg Marquardt algorithm (introduced in 

chapter 3) for parameter adjustment, the trained network is shown in Fig. 4.2b. Based on the 

training results, the outputs of the RBF network (Fig. 4.2b) are visualized in Fig. 4.3a and the 
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error surface (Fig. 4.3b) is obtained as the difference between Fig. 4.1 and Fig. 4.3a. Comparing 

the error surfaces in Figs. 4.1 and 4.3b, one may notice that, the highest peak (marked as A) in 

Fig. 4.1 is eliminated from Fig. 4.3b. 
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(a)                                 (b) 

Fig. 4.2 RBF network with 1 RBF unit: (a) initialed RBF network; (b) trained RBF network. 

Yellow RBF unit is newly added. 

 

 

(a)                                (b) 
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Fig. 4.3 Result surfaces of the RBF network in Fig. 4.2b with 1 RBF unit: (a) actual output 

surface; (b) error surface 

 

 By observing the data of the error surface in Fig. 4.3b, it is obtained that the lowest valley 

(marked as B) has the coordinates (xB=0.3103, yB=-1.5517). Then, the second RBF unit is added 

with initial center (xB, yB) and the parameters of the first RBF unit keeps the same as the training 

results from last step, as shown in Fig. 4.4a. After training process, the network parameters can 

be adjusted as shown in Fig. 4.4b. Fig. 4.5 presents the actual outputs and errors obtained from 

the trained network (Fig. 4.4b). Again, one may notice that, the lowest valley (marked as B) in 

error surface Fig. 4.3b is eliminated from Fig. 4.5b. 
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(a)                                        (b) 
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Fig. 4.4 RBF network with 2 RBF units: (a) initialed RBF network; (b) trained RBF network. 

Yellow RBF unit is newly added 

 

 

(a)                                (b) 

Fig. 4.5 Result surfaces of the RBF network in Fig. 4.4b with 2 RBF units: (a) actual output 

surface; (b) error surface 

 

By repeating the error correction process above, the result surfaces shown in Figs. 4.6, 4.7 and 

4.8 can be obtained from the trained RBF networks consisting of 3, 4 and 5 hidden units, as 

shown in Figs. 4.9b, 4.10b and 4.11b, respectively. 
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(a)                             (b) 

Fig. 4.6 Result surface of the RBF network in Fig. 4.9b with 3 RBF units: (a) actual output 

surface; (b) error surface 

 

 

(a)                            (b) 

Fig. 4.7 Result surface of the RBF network in Fig. 4.10b with 4 RBF units: (a) actual output 

surface; (b) error surface 
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(a)                               (b) 

Fig. 4.8 Result surface of the RBF network in Fig. 4.11b with 5 RBF units: (a) actual output 

surface; (b) error surface 
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(a)                           (b) 

Fig. 4.9 RBF network with 3 RBF units: (a) initialed RBF network; (b) trained RBF network. 

Yellow RBF unit is newly added 
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(a)                       (b) 

Fig. 4.10 RBF network with 4 RBF units: (a) initialed RBF network; (b) trained RBF network. 

Yellow RBF unit is newly added 
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(a)                               (b) 

Fig. 4.11 RBF network with 5 RBF units: (a) initialed RBF network; (b) trained RBF network. 

Yellow RBF unit is newly added 

 

From Figs. 4.6, 4.7 and 4.8, it can be seen that:  

• The highest peak in error surface Fig. 4.5b located at (xC=-0.5172, yC=-0.7241) (marked 

as C) is eliminated from error surface Fig. 4.6b, by the initialed and then trained RBF 
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network in Fig. 4.9. 

• The highest peak in error surface Fig. 4.6b located at (xD=1.3448, yD=-0.1034) (marked 

as D) is eliminated from error surface Fig. 4.7b, by the initialed and then trained RBF 

network in Fig. 4.10. 

• The lowest valley in error surface Fig. 4.7b located at (xE=-1.3448, yE=0.1034) (marked 

as E) is eliminated from error surface Fig. 4.8b, by the initialed and then trained RBF 

network in Fig. 11. 

For RBF networks design in Figs. 4.2, 4.4, 4.9, 4.10 and 4.11, notice that, yellow units are 

newly added and initialed by related peaks (or valleys) as centers; while other units are 

initialized as the training results of last steps. 

 

4.1.2 Feature Study 

The training algorithms can be usually evaluated from three aspects: (1) stability; (2) network 

efficiency; (3) time efficiency. Based on the peak surface approximation problem, let us give a 

rough evaluation on the properties of the proposed ErrCor algorithm.  

Fig. 4.12 shows the training process of each the RBF network. It can be noticed that, following 

the error correction procedure, the training errors are reduced stably as the increase of RBF units; 

the more RBF units are added, the smaller training errors can be obtained. 
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Fig. 4.12 Training Process: average sum square errors vs. number of iterations 

 

In order to evaluate the network efficiency and time efficiency, two different network 

construction strategies are compared: (a) ErrCor Algorithm; (b) Pick up initial centers randomly 

from training dataset. The testing results are averaged from 100 trials for all the testing networks. 

In Fig. 4.13, each curve represents the relationship between the training average sum square 

errors and the number of RBF units. 
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Fig. 4.13 Network efficiency evaluation: average sum square errors vs. number of RBF units. 

Blue solid line is for (a) ErrCor algorithm; while red dash line is for (b) the random center 

selection strategy 

 

It can be noticed that, the ErrCor algorithm is network efficient in constructing RBF networks. 

The ErrCor (blue solid line) cost less number of RBF units than the random center selection 

strategy (red dash line), in order to reach the similar training error levels. 

In Fig. 4.14, the two curves show the relationship between the training average time and the 

number of RBF units. 
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Fig. 4.14 Time efficiency evaluation: average training time costs vs. number of RBF units. Blue 

solid line is for (a) ErrCor algorithm; while red dash line is for (b) the random center selection 

strategy 

 

It can be seen that, the ErrCor algorithm (blue solid line) costs more training time than the 

random center selection strategy (red dash line) when the sizes of RBF networks are the same. 

The slow computation of the ErrCor algorithm is due to the greedy search: each time a new RBF 

unit is added, the whole RBF network has to be retained. 

 

4.1.3 The implementation of ErrCor Algorithm 

Generally, the proposed ErrCor algorithm can be organized as the pseudo code shown in 
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Fig.4.15. 

 

Initialization;
actual_output=0;
for n=1:maximum_RBF_unit
    err_surf=abs(desired_output – actual_output);
    find the index index_ of the maximum value in vector err_surf;    
    set center of newly added RBF unit as x(index_,:);
    set output weight of newly added RBF unit as 1;
    set width of newly added RBF unit as 1;
    if n > 1
        initial other RBF units as the training results of step n-1;
    end;
    evaluate error(1);             
    for iter = 2:maximum_iteraiton
        calculate quasi Hessian matrix Q and gradient vector g;
        update parameters;              %Eq. (3)
        evaluate error(iter);       
        if (error(iter)-error(iter-1)) < minimum_difference
           break;
        end;
    end;
    If error(iter) < desired_error
        break;
    end;
    update actual_output;
end;  

Fig. 4.15 Pseudo code of the proposed ErrCor algorithm 

 

In the implementation of ErrCor algorithm, if there are duplicated highest peaks (or lowest 

valleys), the one with the smallest index will be selected as the initial center of the next newly 

added RBF unit. 
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4.2 Performance evaluation of ErrCor algorithm 

Several examples are presented to test the performance of the proposed ErrCor algorithm. The 

experiments are organized in three parts: (1) comparison with other algorithms; (2) duplicate 

patterns test; (3) noise patterns test. 

The testing environment of the proposed algorithm consists of: Windows 7 Professional 32-bit 

operating system; AMD Athlon (tm) ×2 Dual-Core QL-65 2.10GHz processor; 3.00GB (2.75GB 

usable) RAM. 

 

4.2.1 Comparison with Other Algorithms 

Four experiments in this part are conducted to test the network efficiency and computation 

efficiency of the proposed ErrCor algorithm, by comparing with several other algorithms: 

• In the experiment A, the proposed ErrCor algorithm is compared with GGAP algorithm, 

MRAN algorithm, RANEKF algorithm and RAN algorithm.  

• In the experiments B and C, besides the four algorithms in experiment A, the recently 

developed GGAP-GMM algorithm is added into comparison.  

• In the experiment D, the proposed ErrCor algorithm is compared with the algorithms in 

literature [37-39]. 

A. Function Approximation 
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In this experiment, the proposed algorithm is applied to design RBF networks to approximate 

the following rapidly changing function  

( ) ( ) ( )xxxy 10sin2.0exp8.0 −=               (4-1) 

In this problem, there are 3000 training patterns with x-coordinates uniformly distributed in 

range [0, 10]. The testing data set consists of 1500 patterns with x-coordinates randomly 

generated in the same range [0, 10]. 

Fig.4.16 shows the training results of proposed ErrCor algorithm and other four algorithms. 

One may notice that the proposed ErrCor algorithm can reach the similar training/testing error 

level with much less number of RBF units (18 RBF units). As the number of RBF units increases, 

the training/testing errors decrease steadily. 

 

 

Fig. 4.16 Function approximation problem: training/testing average sum square errors vs. 
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average number of RBF units 

 

Figs. 4.17-4.20 show the testing results of the proposed ErrCor algorithm, with the number of 

RBF units equal to 5, 10, 15 and 20, respectively. 

 

 

Fig.4.17 Testing results of ErrCor algorithm with 5 RBF units; ETrain=2.963×10-2 and 

ETest=3.036×10-2 
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Fig. 4.18 Testing results of ErrCor algorithm with 10 RBF units; ETrain=7.846×10-3 and 

ETest=7.516×10-3 

 

 

Fig. 4.19 Testing results of ErrCor algorithm with 15 RBF units; ETrain=1.905×10-3 and 

ETest=1.862×10-3 

 

 

Fig. 4.20 Testing results of ErrCor algorithm with 20 RBF units; ETrain=5.428×10-6 and 

ETest=5.347×10-6 
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 Fig.4.21 presents the comparison of average computation time (blue bars) and average 

testing errors (red bars). For the proposed ErrCor algorithm, the computation time is counted 

until the RBF network with 18 units (with smaller training/testing errors than other algorithms) 

gets trained. 

 

 

Fig. 4.21 Computation time comparison for function approximation problem 

 

From Fig.4.21, one may notice that, the proposed ErrCor algorithm consumes more time than 

GGAP algorithm and RAN algorithm to reach the smallest testing error in the five algorithms. 

The slow convergence of the proposed ErrCor algorithm is mainly due to the retraining process 

for each newly added RBF unit. 

B. Abalone Age Prediction 
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The abalone age prediction is a practical benchmark in [39] and it consists of 4,177 

observations, where 3,000 randomly selected observations are applied as training data set and the 

remaining 1,177 observations are used to test the trained RBF networks. For each observation, 

there are 7 continuous input attributes and 1 continuous output attribute (age in years). Fig. 4.22 

shows the experimental results of the proposed ErrCor algorithm and other five algorithms. 

It can be noticed from Fig. 4.22 that, for the abalone age prediction, the proposed ErrCor 

algorithm reaches smaller training/testing errors with more compact RBF architecture (4 RBF 

units) than other five algorithms. 

 

 

Fig. 4.22 Abalone age prediction problem: training/testing average sum square errors vs. average 

number of RBF units 
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 Fig. 4.23 shows the comparison of average computation time (blue bars) and average testing 

errors (red bars) between the proposed ErrCor algorithm and other four algorithms. For ErrCor 

algorithm, the number of RBF units is increased up to 4 from scratch. 

 

 

Fig. 4.23 Computation time comparison for abalone age prediction problem.  

 

Again, the proposed ErrCor algorithm computes slower than GGAP algorithm and RAN 

algorithm, but much faster than MRAN algorithm and RANEKF algorithm. The average testing 

error of the ErrCor algorithm is smaller than other four algorithms. 

C. Fuel Consumption Prediction 

The fuel consumption prediction is another benchmark from [33] and it consists of 398 

observations, each of which has seven continuous input attributes and one continuous output 
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attribute (the fuel consumption in mile/gallon). For each trial, 320 randomly selected 

observations are applied training and the remaining 78 observations are applied to test the trained 

RBF networks. Fig.4.24 shows the relationship between the training/testing average sum square 

errors and the average number of RBF units. 

 

 

Fig.4.24 Fuel consumption prediction problem: training/testing average sum square errors vs. 

average number of RBF units 

 

With the experimental results presented in Fig. 4.24, one may notice that the ErrCor algorithm 

can get smaller training/testing errors than other five algorithms with only one RBF unit. The 

training/testing errors decrease as the number of RBF units increases. 
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Fig. 4.25 presents the average computation time (blue bars) and testing errors (red bars) of the 

five algorithms. For the proposed ErrCor algorithm, only one RBF unit is applied for network 

construction. 

 

 

Fig.4.25  Computation time comparison for fuel consumption prediction.  

 

It can be seen that, for the fuel consumption prediction, the proposed ErrCor algorithm still 

works less efficiently than GGAP algorithm, but faster than the other three algorithms. The 

average testing error of the ErrCor algorithm is the smallest in the five algorithms. 

D. Two-Spiral Classification Problem 

Two-spiral classification problem is often considered as a very complex benchmark to evaluate 
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the efficiency of learning algorithms and network architectures. The problem is described in 

chapter 2. 

Applying the ErrCor algorithm, Fig. 4.26 shows all the 30 retraining processes when starting 

the network construction from scratch.  

 

Number of RBF Units: 1

Number of RBF Units: 30

 

Fig.4.26 Training process: average sum square errors vs. number of iterations. The number of 

RBF units is increased from 1 to 30 

 

One may notice that, each newly added RBF unit contributes the error reduction during the 
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training process. After a total of 30×200=6,000 iterations, the RBF network with 30 RBF units 

approaches to the training error level 0.005. 

Figs. 4.27a-4.27e show the generalization results of the proposed ErrCor algorithm, with 

number of RBF units equal to 6, 12, 18, 24 and 30. 

 

        

(a)                                     (b)  

        

(c)                                      (d) 
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(e)                                    (f) 

Fig. 4.27 Generalization results of the two-spiral problem with different number of RBF units, 

trained by the ErrCor algorithm: (a) 6 RBF units, ErrCor algorithm, ETrain=0.7617; (b) 12 RBF 

units, ErrCor algorithm, ETrain=0.4412; (c) 18 RBF units, ErrCor algorithm, ETrain=0.3206; (d) 24 

RBF units, ErrCor algorithm, ETrain=0.1070; (e) 30 RBF units, ErrCor algorithm, ETrain=0.0005; 

(f) 70 RBF units described in [38]. 

 

The RBF-MLP networks proposed in [36] required at least 74 RBF units to solve the 

two-spiral problem. Using the orthonormalization procedure [37], the two-spiral problem can be 

solved with at least 64 RBF kernel functions. It was reported in [38] that the two-spiral problem 

was solved using 70 hidden RBF units and the average computation time is 120 seconds. The 

separation result is shown in Fig. 4.27f. When reaching the similar training error level, the 

proposed ErrCor algorithm can solve the two-spiral problem with only 30 RBF units (as shown 
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in Fig. 4.27e) and the average time cost is 56.734 seconds. 

 

4.2.2 Duplicate Patterns Test 

The ability to handle training a dataset with duplicated patterns is tested by the conducted 

experiment. The training dataset comes from the two-spiral problem in the last section, but they 

are modified by adding 10 patterns which are randomly selected from the original 194 patterns. 

Therefore, there are 204 patterns in the modified two-spiral dataset, including 10 duplicated 

patterns. 

In order to test the ability of the ErrCor algorithm to train dataset with duplicated patterns, the 

experiment is arranged in two cases for comparison. 

• Case 1: apply original two-spiral dataset (without duplication) for training 

• Case 2: apply the modified two-spiral dataset (with 10 duplicated patterns ) for training 

Fig. 4.28 shows the network construction process using the ErrCor algorithm for the two cases. 
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Fig. 4.28 Training process of the ErrCor algorithm using different dataset 

From the experimental results in Fig. 4.28, it can be noticed that the ErrCor algorithm can 

handle the dataset with duplicated patterns correctly. In order to reach the similar desired training 

level (average sum square error=0.0001), 5 more RBF units are required for network 

construction using the modified two-spiral dataset. 

Fig. 4.29 shows the generalization results of the designed RBF networks in the two cases. 
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(a)                                   (b) 

Fig. 4.29 Generalization results of the two trained RBF networks by different dataset: (a) case 1: 

original two-spiral dataset; (b) case 2: modified two-spiral dataset 

 

One may notice that the RBF network designed by the modified dataset (with 10 duplicated 

patterns) gets slightly worse generalization results (Fig.4.29b) than that obtained by the original 

dataset (without duplicated pattern) in Fig. 4.29a. 

 

4.2.3 Noise Patterns Test 

The image recognition problem is applied to test the ability of the proposed ErrCor algorithm 

to handle the training datasets contaminated by noise. Fig.4.30a shows the original images, each 

of which consists of 7×8=56 pixels. The color of pixels is scaled by the Jet degree: from -1 (blue) 

to 1 (red). Fig.4-30b shows the 6 groups of noised images. Each group consists of 20 images 

with the same noise level. The noised images are generated by the formula: 

δ×+= iPNPi 0                             (4-2) 

where: NPi are the noised image data in Fig. 4-30b; P0 is the original image data in Fig. 4.30a; i 

is the noise level from 1 to 6; δ is the randomly generated noise in range [-0.25, 0.25].  
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(a)               (b) 

Fig. 4.30 Dataset of the noised patterns test: (a) original images; (b) noised images 

 

In the experiment the ErrCor algorithm is applied to train the 6 groups of noised images 

separately. The desired training sum square error (SSE) is set as 0.0001. Fig.4.31 presents the 

minimum sizes of RBF networks required for convergence. 
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Fig. 4.31 Noise patterns test results: noise level vs. the number of RBF units cost required for 

convergence 

 

 Based on the results shown in Fig.4.31, it can be noticed that as the noise level increases, 

more RBF units are required to reach the desired training error. When the noise range (calculated 

by i×δ in (4-2)) is no more than the original data range [-1, 1] (the noise level is less than or 

equal to 4), ErrCor algorithm illustrates its good tolerance to noise data because almost the same 

size (1 or 2 RBF units) of RBF networks can be designed to solve the problem. 

 

4.3 Conclusion 

In this chapter, we present an error correction (ErrCor) algorithm to perform incremental 

design of RBF networks. During the training process, the number of RBF units is increased one 
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by one until the training evaluation reaches desired accuracy. The initial center of the newly 

added RBF unit is properly selected based on the location of highest peak/lowest valley in error 

surface; while for the other RBF units, the initial conditions are copied from the training results 

of the last step. Parameter adjustments, including weights, centers, and widths are performed by 

the Levenberg Marquardt algorithm. Taking the advantages of second order algorithms, the 

proposed algorithm converges fast in each step of building the desired RBF networks. The 

experiment results show the network efficiency and robustness of the proposed ErrCor algorithm. 
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Chapter 5 

Conclusions 

This dissertation is dedicated to the development of new algorithms to construct RBF 

networks. The improved second-order algorithm was proposed to apply in RBF training process. 

It not only used the second-order algorithm, but also introduced all the parameters, including 

input weights, output weights, centers and widths to be adjusted. The ISO algorithm exhibits 

good search ability, fast convergence, and high network efficiency. The proposed ErrCor 

algorithm which performed an incremental design of RBF network solved the problem of 

deciding the number of RBF units and initial parameters of kernel function in RBF network. The 

algorithm shows higher network efficiency and robustness compared with other algorithms in the 

references. By combining these two algorithms together, the desired RBF network with proper 

size and initial conditions could be successfully constructed.  

 

 

 

 

 

 



 
 

94 
 

REFERENCES 

[1] T. Hrycej, “Modular Learning in Neural Networks: A Modularized Approach to Neural 

Network Classification”, John Wiley&Sons, 1992 

[2] P.Yohhan,”Adaptive pattern recognition and neural networks”, Reading, Addison-Wesley 

Publishing, 1989. 

[3] T.H. Smith, “A self-tuning EWMA controller utilizing artificial neural network function 

approximation techniques”, IEEE Transactions on Components, Packaging and Manufacturing 

Technology, Part C, Vol 20(2), pp. 121-132, 1997. 

[4] D. Wang, J. Huang, “Neural network-based adaptive dynamic surface control for a class of 

uncertain nonlinear systems in strict-feedback form”, IEEE Transactions on Neural Networks, 

Vol 16(1), pp.195-202, 2005. 

[5] M. Bratislav, A. Marija, S, Zoran, D. Nebojsa and S. Maja, “Application of neural networks 

in spatial signal processing”, 11th Symposium on Neural Network Applications in Electrical 

Engineering, pp. 5-14, 2012. 

[6] P.Goel, G. Dedeoglu, S.I. Roumeliotis and G.S. Sukhateme, “Fault detection and 

identification in a mobile robot using multiple model estimation and neural network”, IEEE 

conference on Robotics and Automation, Vol 3, pp. 2302-2309, 2000. 

[7] T.M. Cover, “Geometrical and Statistical properties of systems of linear inequalities with 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6409519�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6409519�


 
 

95 
 

applications in pattern recognition”, IEEE Transactions on Electronic Computers,pp: 356-334, 

1965. 

[8] J. Moody and C. Darken  D. Touretzky , G. Hinten and T. Sejnowski  "Learning with 

localized receptive fields", Proc. 1988 Connectionist Models Summer School,  1988. 

[9] S. Chen, C. F. N. Cowan, and P. M. Grant,  "Orthogonal least squares learning algorithm for 

radial basis function networks",  IEEE Trans. Neural Networks,  vol. 2,  pp.302 -309, 1991. 

[10] D. Wettschereck and T. Dietterich,  J. E. Moody, S. J. Hanson, and R. P. 

Lippmann,  "Improving the performance of radial basis function networks by learning center 

locations",  Advances in Neural Information Processing Systems 4,  pp.1133 -1140 1992.  

[11] N. B. Karayiannis and G. W. Mi,  "Growing radial basis neural networks: Merging 

supervised and unsupervised learning with network growth techniques",  IEEE Trans. Neural 

Networks,  vol. 8,  pp.1492 -1506, 1997. 

[12] Huang, G.-B., Saratchandran, P. and Sundararajan, N.: An efficient sequential learning 

algorithm for Growing and Pruning RBF (GAP-RBF) networks, IEEE Transactions on Systems, 

Man and Cybernetics-Part B: Cybernetics, Vol 34(6), pp.2284–2292, 2004. 

[13]S.I. Ch’ng, K.P.Seng and L.M. Ang, “Adaptive momentum Levenberg-Marquardt RBF for 

face recognition”, 2012 IEEE International Conference on Circuits and Systems, 

pp.126-131,2012. 



 
 

96 
 

[14] K. Meng, Z. Y. Dong, D. H. Wang and K. P. Wong, "A Self-Adaptive RBF Neural Network 

Classifier for Transformer Fault Analysis," IEEE Trans. on Power Systems, vol. 25, issue 3, pp. 

1350-1360, 2010. 

[15] S. Huang and K. K. Tan, "Fault Detection and Diagnosis Based on Modeling and Estimation 

Methods," IEEE Trans. on Neural Networks, vol. 20, issue 5, pp. 872-881, 2009. 

[16] L. Cai, A. B. Rad and W. L. Chan, "An Intelligent Longitudinal Controller for Application 

in Semiautonomous Vehicles," IEEE Trans. on Industrial Electronics, vol. 57, no. 4, pp. 

1487-1497, 2010. 

[17] C. C. Tsai, H. C. Huang and S. C. Lin, "Adaptive Neural Network Control of a 

Self-Balancing Two-Wheeled Scooter," IEEE Trans. on Industrial Electronics, vol. 57, no. 4, pp. 

1420-1428, 2010. 

[18] L. Cai, A. B. Rad and W. L. Chan, "An Intelligent Longitudinal Controller for Application 

in Semiautonomous Vehicles," IEEE Trans. on Industrial Electronics, vol. 57, no. 4, pp. 

1487-1497, 2010. 

[19] C. C. Tsai, H. C. Huang and S. C. Lin, "Adaptive Neural Network Control of a 

Self-Balancing Two-Wheeled Scooter," IEEE Trans. on Industrial Electronics, vol. 57, no. 4, pp. 

1420-1428, 2010. 



 
 

97 
 

[20] K. B. Cho and B. H. Wang, "Radial basis function based adaptive fuzzy systems and their 

applications to system identification and prediction",  Fuzzy Sets Syst.,  vol. 83,  pp.325 -339, 

1996. 

[21] J. Platt, "A resource-allocating network for function interpolation",  Neural Computa.,  vol. 

3,  pp.213 -225 1991. 

[22] V. Kadirkanianathan and M. Niraujan, “A function estimation approach to sequential 

learning with neural networks”, Neural Computation, Vol 5(6):954–975, 1993. 

[23] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequential learning scheine for 

function approximation using minimal radial basis function neural networks”, Neural 

Computations, Vol 9 (2) pp.461–478, 1997. 

[24] G.-B. Huang , P. Saratchandran and N. Sundararajan  "A generalized growing and pruning 

RBF (GGAP-RBF) neural network for function approximation",  IEEE Trans. Neural 

Networks,  vol. 16,  no. 1,  pp.57 -67 2005. 

[25] M. Bortman and M. Aladjem, "A growing and pruning method for radial basis function 

networks",  IEEE Trans. Neural Networks,  vol. 20,  no. 6,  pp.1039 -1045 2009. 

[26] H. Yu and B. M. Wilamowski, "Fast and efficient and training of neural networks," in Proc. 

3nd IEEE Human System Interaction Conf.  HSI 2010, Rzeszow, Poland, May 13-15, pp. 

175-181 2010. 



 
 

98 
 

[27] B. M. Wilamowski, “Neural Network Architectures and Learning Algorithms: How Not to 

Be Frustrated with Neural Networks,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 

56-63, Dec. 2009. 

[28] B. M. Wilamowski and H. Yu, "Neural Network Learning Without Backpropagation," IEEE 

Trans. on Neural Networks, vol. 21, no.11, pp. 1793-1803, Nov. 2010. 

[29] L. Tarassenko and S. Roberts, "Supervised and unsupervised learning in radial basis 

function classifiers",  Proc. Inst. Elect. Eng.-Visual Image Signal Processing, vol. 141,  no. 

4,  pp.210 -216 1994. 

[30] B. M. Wilamowski and H. Yu, "Improved Computation for Levenberg Marquardt Training," 

IEEE Trans. on Neural Networks, vol. 21, no. 6, pp. 930-937, June 2010. 

[31] D.W. Marquardt, “An algorithm for least squares estimation of nonlinear 

parameters”, SIAM J. Appl. Math. 11, pp. 431–441, 1963. 

[32] P.T. Harker and B. Xiao, “Newton's method for the nonlinear complementarity problem: A 

B-differentiable equation approach,” Mathematical Programming, Vol 48 pp:339–357, 1990. 

[33] C. Blake and C. Merz, UCI Repository of Machine Learning Databases, Dept. Inform. 

Comput. Sci., Univ. California, Irvine, 1998. 

[34] H. Yu and B. M. Wilamowski, "Efficient and Reliable Training of Neural Networks," in 

Proc. 2nd IEEE Human System Interaction Conf.  HSI 2009, Catania, Italy, pp. 109-115, 2009. 

[35] H. Yu and B. M. Wilamowski, “Levenberg–Marquardt Training” Industrial Electronics 

Handbook, vol. 5 – Intelligent Systems, 2nd Edition, chapter 12, pp. 12-1 to 12-15, CRC Press 

2011. 



 
 

99 
 

[36] N. Chaiyaratana and A. M. S. Zalzala, "Evolving Hybrid RBF-MLP Networks Using 

Combined Genetic/Unsupervised/Supervised Learning," UKACC International Conference on 

Control '98, vol. 1, pp. 330-335, Swansea, UK, Sep. 01-04, 1998. 

[37] W. Kaminski and P. Strumillo, "Kernel Orthonormalization in Radial Basis Function Neural 

Networks," IEEE Trans. on Neural Networks, vol. 8, no. 5, pp. 1177-1183, Sep. 1997. 

[38] Neruda and P. Kudová, "Learning Methods for Radial Basis Function Networks," Future 

Generation Computer Systems, vol. 21, issue. 7, pp. 1131-1142, , July 2005. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

100 
 

APPENDIX 
Appendix 1: Improved Second Order Algorithm Implementation of Training RBF networks 
function [a1, a2, a3] = ISO method 
clear all; format long; 
%% generate training patterns 
[x1,y1,z1]=peaks(10); 
x1 = x1(1,:); 
y1 = y1(:,1); 
for i = 1:length(x1) 
    for j = 1:length(y1) 
        inputs((i-1)*length(y1)+j,1)=x1(i); 
        inputs((i-1)*length(y1)+j,2)=y1(j); 
        outputs((i-1)*length(y1)+j,1)=z1(i,j); 
    end; 
end; 
[m,n] = size(inputs); 
figure(1);clf; 
surf(x1,y1,z1); 
%% set the number of RBF units   
number_of_hidden_unit = 10; 
%% initial parameter generation 
[weights_input, weights_output, widths, centers] = 
generate_initial_parameters(number_of_hidden_unit,inputs); 
%% combination of parameters 
para_cur = parameter_combination(weights_output, widths, weights_input, centers); 
%% other parameters 
I = eye(length(para_cur)); 
maximum_iteration = 300; 
maximum_error = 0.001; 
mu = 0.01; 
%% training process 
[SSE(1)] = calculate_SSE(weights_input, weights_output,widths,centers,inputs,outputs); 
fprintf('iteration = 1, SSE = %6.10f\n',SSE(1)); 
tic 
for iter = 2:maximum_iteration 
    jw = 0; 



 
 

101 
 

    [gradient, hessian] = calculate_gradient(weights_input, weights_output, widths, centers, 
inputs, outputs ); 
    para_back = para_cur; 
    while 1 
        para_cur = para_back - ((hessian+mu*I)\gradient')'; 
        [weights_output, widths, weights_input, centers] = 
parameter_divison(para_cur,number_of_hidden_unit,inputs); 
        [SSE(iter)] = calculate_SSE(weights_input, 
weights_output,widths,centers,inputs,outputs); 
        if SSE(iter) <= SSE(iter-1) 
            if mu > 10^-20; 
                mu = mu/10; 
            end; 
            break; 
        end; 
        if mu < 10^20 
            mu = mu*10; 
        end; 
        jw = jw + 1; 
        if jw > 5 
            break; 
        end; 
    end; 
    fprintf('iteration = %d, SSE = %6.10f\n',iter, SSE(iter)); 
    if SSE(iter) < maximum_error 
        break; 
    end; 
end; 
%% plot the error curve 
SSE(iter) 
figure(2);clf; 
loglog(1:iter,SSE); 
%% plot the test patterns 
[x1_,y1_,z1_]=peaks(30); 
x1_ = x1_(1,:); 
y1_ = y1_(:,1); 
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for i = 1:length(x1_) 
    for j = 1:length(y1_) 
        inputs_((i-1)*length(y1_)+j,1)=x1_(i); 
        inputs_((i-1)*length(y1_)+j,2)=y1_(j); 
    end; 
end; 
output_ = verification(weights_input, weights_output, widths, centers, inputs_); 
for i = 1:length(x1_) 
    for j = 1:length(y1_) 
        test_output(i,j) = output_((i-1)*length(y1_)+j); 
    end; 
end; 
figure(3);clf; 
surf(x1_,y1_,test_output); 
a1 = 1; a2 = 1; a3 = 1; 
%% gradient computation 
function [gradient, hessian] = calculate_gradient(ww, weights, widths, centers, inputs, outputs) 
    [p1,p2] = size(weights); 
    [p3,p4] = size(centers); 
    [p5,p6] = size(widths); 
    [p7,p8] = size(ww); 
    g_weight = zeros(p1,p2); 
    g_center = zeros(p3,p4); 
    g_width = zeros(p5,p6); 
    g_ww = zeros(p7,p8); 
    gradient = zeros(1,p1*p2+p3*p4+p5*p6+p7*p8); 
    hessian = zeros(p1*p2+p3*p4+p5*p6+p7*p8,p1*p2+p3*p4+p5*p6+p7*p8); 
%     gradient = zeros(1,p1*p2+p3*p4+p7*p8); 
%     hessian = zeros(p1*p2+p3*p4+p7*p8,p1*p2+p3*p4+p7*p8); 
    [m,n] = size(inputs); 
    for i = 1:m 
        net = weights(1); 
        for j = 1:p3 
            node(j) = exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)); 
            net = net + node(j)*weights(j+1); 
        end; 
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        % for g_weight 
        out = net; 
        de = 1; 
        err = outputs(i,1) - out; 
        J_weight(1) = -de; 
        for j = 2:p2 
            J_weight(j) = J_weight(1)*node(j-1); 
        end; 
        % for g_center 
        for j = 1:p3 
 J_center(j,:) = (-1)*weights(j+1)*node(j)*2*(ww(j,:).*inputs(i,:)-centers(j,:))./widths(j); 
 J_width(j) = (-1)*weights(j+1)*node(j)*sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)^2; 
            for k = 1:n 
             J_ww(j,k) = 
(-1)*weights(j+1)*node(j)*(-1)/widths(j)*2*(ww(j,k)*inputs(i,k)-centers(j,k))*inputs(i,k); 
            end; 
        end; 
        J = parameter_combination(J_weight, J_width, J_ww, J_center); 
        gradient = gradient + err*J; 
        hessian = hessian + J'*J; 
    end; 
%% error computation 
function [SSE] = calculate_SSE(ww, weights,widths,centers,inputs,outputs) 
    [m,n] = size(inputs); 
    [p,q] = size(centers); 
    SSE = 0; 
    for i = 1:m 
        count = weights(1);  
        for j = 1:p 
            count = count + 
weights(j+1)*exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)); 
        end; 
        SSE = SSE + (count - outputs(i,1))^2; 
    end; 
    SSE = sqrt(SSE/m); 
%% generate weights 
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function [weights_input, weights_output, widths, centers] = 
generate_initial_parameters(num,data) 
    [row,col] = size(data); 
    weights_input = ones(num,col); 
    weights_output = ones(1,num+1); 
    widths = ones(1,num); 
    for i = 1:num 
        ind(i) = mod(floor(20000*rand(1)),row)+1; 
        if i > 2 
            while 1 
                flag = 0; 
                for j = 1:(i-1) 
                    if ind(i) == ind(j) 
                        flag = 1; 
                        break; 
                    end; 
                end; 
                if flag == 0 
                    break; 
                end; 
                ind(i) = mod(floor(20000*rand(1)),row)+1; 
            end; 
        end; 
        centers(i,:) = data(ind(i),:); 
    end; 
%% parameter combination 
function [vector] = parameter_combination(weights_output, widths, weights_input, centers) 
    [p1,p2] = size(weights_input); 
    [p3,p4] = size(centers); 
    vector = [weights_output widths reshape(weights_input',1,p1*p2) 
reshape(centers',1,p3*p4)]; 
%     vector = [weights_output reshape(weights_input',1,p1*p2) reshape(centers',1,p3*p4)]; 
%% parameter division 
function [weights_output, widths, weights_input, centers] = parameter_divison(vector, num, 
data) 
    [row, col] = size(data); 
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    for i = 1:(num+1) 
        weights_output(1,i) = vector(1,i); 
    end; 
    for i = 1:num 
        widths(1,i) = vector(1, num+1+i); 
    end; 
    for i = 1:num 
        for j = 1:col 
            weights_input(i,j) = vector(1,2*num+1+(i-1)*col+j); 
%             weights_input(i,j) = vector(1,num+1+(i-1)*col+j); 
        end; 
    end; 
    for i = 1:num 
        for j = 1:col 
            centers(i,j) = vector(1,2*num+1+num*col+(i-1)*col+j); 
%             centers(i,j) = vector(1,num+1+num*col+(i-1)*col+j); 
        end; 
    end; 
%     widths = calculate_width(centers); 
%% verification process 
function [output] = verification(weights_input, weights_output, widths, centers, testing_input) 
    [m,n] = size(testing_input); 
    [p,q] = size(centers); 
    for i = 1:m 
        count = weights_output(1);  
        for j = 1:p 
            count = count + 
weights_output(j+1)*exp(-sum((weights_input(j,:).*testing_input(i,:)-centers(j,:)).^2)/widths(j)); 
        end; 
        output(i,1) = count; 
    end; 
%% calculate width 
function [widths] = calculate_width(centers) 
    [m,n] = size(centers); 
    for i = 1:m 
        d = 0; 
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        for j = 1:m 
            d = d + sum((centers(j,:)-centers(i,:)).^2); 
        end; 
        widths(1,i) = sqrt(d)/m; 

end; 
 

Appendix 2: Implementation of Error Correction Algorithm of RBF network 
function [a1, a2, a3] = ISO_Training 
clear all; format long; 
  
x1=0:0.1:5; 
for i = 1:length(x1) 
 inputs(i,1)=x1(i);  
 outputs(i,1)=0.8*exp(-x1(i)/2)*sin(3*x1(i)); 
end; 
  
[m,n] = size(inputs); 
actual_output_ = zeros(size(outputs)); 
  
centers = []; 
weights_input = []; 
weights_output = [1]; 
widths = []; 
number_of_hidden_unit = 0; 
  
for kkk = 1:10 
    SSE = []; 
    [maxi_, index_1] = max(abs(outputs-actual_output_)); 
    number_of_hidden_unit = number_of_hidden_unit + 1; 
    centers = [centers; inputs(index_1,:)]; 
    weights_input = [weights_input; ones(1,n)]; 
    weights_output = [weights_output, 1]; 
    widths = [widths, 1]; 
    para_cur = parameter_combination(weights_output, widths, centers); 
    % para_cur = weights_output; 
    I = eye(length(para_cur)); 
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    % other parameters 
    maximum_iteration = 100; 
    maximum_error = 0.00001; 
    mu = 0.01; 
    % training process 
    [SSE(1)] = calculate_SSE(weights_input, weights_output,widths,centers,inputs,outputs); 
    fprintf('Number of RBF units = %d, iteration = 1, SSE = %6.10f\n',kkk,SSE(1)); 
    for iter = 2:maximum_iteration 
        jw = 0; 
        [gradient, hessian] = calculate_gradient(weights_input, weights_output, widths, centers, 
inputs, outputs ); 
        para_back = para_cur; 
        while 1 
            para_cur = para_back - (inv(hessian+mu*I)*gradient')'; 
            [weights_output, widths, centers] = 
parameter_divison(para_cur,number_of_hidden_unit,inputs) 
            [SSE(iter)] = calculate_SSE(weights_input, 
weights_output,widths,centers,inputs,outputs); 
            if SSE(iter) <= SSE(iter-1) 
                if mu > 10^-20; 
                    mu = mu/10; 
                end; 
                break; 
            end; 
            if mu < 10^20 
                mu = mu*10; 
            end; 
            jw = jw + 1; 
            if jw > 5 
                break; 
            end; 
        end; 
        fprintf('Number of RBF units = %d, iteration = %d, SSE = %6.10f\n',kkk,iter, 
SSE(iter)); 
        if abs(SSE(iter-1)-SSE(iter)) < 0.0000000001 
            break; 
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        end; 
        if SSE(iter) < maximum_error 
            break; 
        end; 
    end; 
     [actual_] = verification(weights_input, weights_output, widths, centers, inputs); 
      figure(5); 
     plot(x1,actual_,'ro'); 
      axis([0 5 -1 1]); 
      figure(6); 
      plot(x1, outputs-actual_,'ro'); 
      axis([0 5 -1 1]); 
  
    if SSE(iter) < maximum_error 
        break; 
    end; 
  
    [actual_output_] = verification(weights_input, weights_output, widths, centers, inputs); 
     
     pause(2); 
end; 
a1 = 1; a2 = 1; a3 = 1; 
%% gradient computation 
function [gradient, hessian] = calculate_gradient(ww, weights, widths, centers, inputs, outputs) 
    [p1,p2] = size(weights); 
    [p3,p4] = size(centers); 
    [p5,p6] = size(widths); 
    [p7,p8] = size(ww); 
    g_weight = zeros(p1,p2); 
    g_center = zeros(p3,p4); 
    g_width = zeros(p5,p6); 
    g_ww = zeros(p7,p8); 
    gradient = zeros(1,p1*p2+p3*p4+p5*p6); 
    hessian = zeros(p1*p2+p3*p4+p5*p6,p1*p2+p3*p4+p5*p6); 
%     gradient = zeros(1,p1*p2+p3*p4+p5*p6+p7*p8); 
%     hessian = zeros(p1*p2+p3*p4+p5*p6+p7*p8,p1*p2+p3*p4+p5*p6+p7*p8); 
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    [m,n] = size(inputs); 
    for i = 1:m 
        net = weights(1); 
        for j = 1:p3 
            node(j) = exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)); 
            net = net + node(j)*weights(j+1); 
        end; 
        % for g_weight 
        out = net; 
        de = 1; 
        err = outputs(i,1) - out; 
        J_weight(1) = -de; 
        for j = 2:p2 
            J_weight(j) = J_weight(1)*node(j-1); 
        end; 
        % for g_center 
        for j = 1:p3 
            J_center(j,:) = 
(-1)*weights(j+1)*node(j)*2*(ww(j,:).*inputs(i,:)-centers(j,:))./widths(j); 
            J_width(j) = 
(-1)*weights(j+1)*node(j)*sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)^2; 
%             for k = 1:n 
%                 J_ww(j,k) = 
(-1)*weights(j+1)*node(j)*(-1)/widths(j)*2*(ww(j,k)*inputs(i,k)-centers(j,k))*inputs(i,k); 
%             end; 
        end; 
        J = parameter_combination(J_weight, J_width, J_center); 
%         J = parameter_combination(J_weight, J_width, J_ww, J_center); 
        gradient = gradient + err*J; 
        hessian = hessian + J'*J; 
    end; 
%% error computation 
function [SSE] = calculate_SSE(ww, weights,widths,centers,inputs,outputs) 
    [m,n] = size(inputs); 
    [p,q] = size(centers); 
    SSE = 0; 
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    for i = 1:m 
        count = weights(1);  
        for j = 1:p 
            count = count + 
weights(j+1)*exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)); 
        end; 
        SSE = SSE + (count - outputs(i,1))^2; 
    end; 
    SSE = SSE/m; 
%% parameter combination 
% function [vector] = parameter_combination(weights_output, widths, weights_input, centers) 
function [vector] = parameter_combination(weights_output, widths, centers) 
    [p3,p4] = size(centers); 
    vector = [weights_output widths reshape(centers',1,p3*p4)]; 
%     [p1,p2] = size(weights_input); 
%     [p3,p4] = size(centers); 
%     vector = [weights_output widths reshape(weights_input',1,p1*p2) 
reshape(centers',1,p3*p4)]; 
%% parameter division 
function [weights_output, widths, centers] = parameter_divison(vector, num, data) 
% function [weights_output, widths, weights_input, centers] = parameter_divison(vector, num, 
data) 
    [row, col] = size(data); 
    for i = 1:(num+1) 
        weights_output(1,i) = vector(1,i); 
    end; 
    for i = 1:num 
        widths(1,i) = vector(1, num+1+i); 
    end; 
    for i = 1:num 
        for j = 1:col 
            centers(i,j) = vector(1,2*num+1+(i-1)*col+j); 
        end; 
    end; 
%% verification process 
function [output] = verification(weights_input, weights_output, widths, centers, testing_input) 
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    [m,n] = size(testing_input); 
    [p,q] = size(centers); 
    for i = 1:m 
        count = weights_output(1);  
        for j = 1:p 
            count = count + 
weights_output(j+1)*exp(-sum((weights_input(j,:).*testing_input(i,:)-centers(j,:)).^2)/widths(j)); 
        end; 
        output(i,1) = count; 
    end; 
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